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Abstract

One of the most significant merit figures in the Large Hadron Collider, LHC, is the
luminosity. Larger values of luminosity allow for more interesting physical observations
by the experiments, and it is a metric to quantify the instantaneous rate of the particles
interacting in the collider. The luminosity is a scalar observable that indicates how much
“Physics” is created during the run in the LHC, hence it is directly connected to LHC’s
capability for discovery. The intensity of the two beams, the number of colliding bunches, the
bunch profiles, the frequency of revolution, etc. . . are all physical quantities that contribute
to the luminosity. Several facets of the accelerator and the beam properties are integrated
into this figure.

The objective of this thesis is to employ various numerical and mathematical techniques
in order to enhance the efficiency of luminosity computation. At the beginning, we will
present a mathematical model for the calculation of colliding bunches, followed by a com-
prehensive examination of an optimized Python implementation. Subsequently, our objec-
tive will be to optimize the number of colliding bunches through the strategic arrangement
of these bunches, more focusing on a number theory approach. The primary difficulty is in
the vast number of potential combinations and the numerous limits that must be adhered
to. Consequently, achieving our fundamental goal becomes almost unreachable, as we shall
soon discover. Subsequently, we will analyse the bunch profiles, attempting to calculate
them based on the observed luminosity. The latter refers to a scalar quantity that is derived
through a convolution in three-dimensional space and time of these bunch profiles. Our
objective is to obtain distinct values from a single scalar using an analytical approach. This
presents a problem that is inherently ill-conditioned. However, as we will demonstrate later,
we are able to obtain intriguing results. By pursuing this approach, we will endeavour to
solve the same ill-conditioned problem but in the presence of noise.
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Introduction

0.1 CERN: its history and accelerator complex
0.1.1 Historical background
The European Organization for Nuclear Research, commonly known as CERN, is a renowned
worldwide scientific research organization situated on the border of Switzerland and France.
The organization was established in 1954 and currently has a membership of 23 countries.
Initially, its primary objective was to understand the composition of atomic nuclei, with
a focus on nuclear physics. However, as CERN’s energy capacity progressively expanded,
its research emphasis transitioned towards the field of particle physics. Scientists at CERN
engage in the study of matter’s constituents and underlying forces to gain a comprehen-
sive understanding of the fundamental principles governing our Universe. According to the
publication by ([CERN]), the Organization adheres to the principle that its research and
scientific discoveries shall be openly accessible to the public and will not be influenced by
any military obligations.

In addition to its advancements in high-energy physics, CERN has significantly con-
tributed to various academic disciplines. In the latter part of the 1970s, a technique was
devised to employ hypertext as a means of arranging and disseminating knowledge within
scientific networks. The introduction of hyperlinks facilitated the accessibility of informa-
tion, leading to the development of the initial web browsers and servers. This significant
advancement had a pivotal role in shaping the progression of the World Wide Web, which
was subsequently made available to the public in 1990. The discovery of the Higgs boson,
which was postulated by Higgs in the 1960s as an explanation for the mechanism by which
particles obtain mass, is a notable achievement of the recent years. The Nobel Prize in
Physics 2013 was awarded jointly to François Englert and Peter W. Higgs “for the theoret-
ical discovery of a mechanism that contributes to our understanding of the origin of mass
of subatomic particles, and which recently was confirmed through the discovery of the pre-
dicted fundamental particle, by the ATLAS and CMS experiments at CERN Large Hadron
Collider”. Since then, LHC is still the largest circular particle accelerator ever built.

The Organization persistently aims to expand the frontiers of scientific knowledge and
technological advancements by employing data analysis, advanced computing systems, and
the development of sophisticated engineering technologies. These efforts are directed towards
investigating fundamental inquiries pertaining to the nature of the Universe.

0.1.2 CERN complex accelerators
At CERN, the primary instruments used to investigate the forces and components are the
accelerators and decelerators, which are designed in two distinct configurations:

• Linear colliders are scientific instruments that employ electric and magnetic fields to
drive two particle beams along a linear trajectory, spanning the entire length of the
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accelerator. The accurate determination of the collision shape is possible due to the
singular location where the particles interact. These are single-passage machines, since
the particle covers the full accelerator length only once.

• Circular colliders adopt radio-frequency (RF) cavities to impart energy increments,
while magnetic fields guide the two particle beams along a circular trajectory. The
particles travel along the accelerator ring several billions of times, which increases
the likelihood of undergoing rare particle interactions. The interaction points refer to
specific positions along the accelerator where the two counter-rotating beams of the
collider cross each other, and hence collisions may occur.

Figure 1: CERN complex accelerator in 2022 ([Hal11])

At CERN, a variety of accelerators are used to generate particles with precise energies
required for several experimental purposes. These accelerators, which are depicted in Figure
1, play a crucial role in facilitating the research conducted at CERN. Particles are subjected
to acceleration or deceleration processes to attain different energy levels before their injection
into the subsequent accelerator within this sequence. The sequential use of acceleration
phases facilitates the acquisition of the necessary energy to conduct investigations in the
field of fundamental physics. As an example, the aforementioned Higgs boson has a mass of
≈126 GeV/c2, that is approximately 130 times larger than the mass of a proton. This boson
can be observed in a proton machine only by colliding high energetic protons, with kinetic
energy several thousands times their rest mass energy.
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Specifically, the supply of protons originates from LINAC4 and thereafter traverses the
Protons Synchrotron Booster (PSB), the Proton Synchrotron (PS), and the Super Proton
Synchrotron (SPS) before reaching the Large Hadron Collider (LHC) that accelerator them
up to 6.8 TeV (that is more than 7000 times their rest mass of ≈0.938 GeV).

0.2 Luminosity
To allow for RF acceleration, particle colliders exhibit a specific longitudinal beam struc-
tures, wherein particles are organized into several clusters, referred to as bunches, with their
quantity varying from a single one to several thousand. In each axis is possibe to define a
scalar quantity that represents the arrangement of particles within the bunches along that
particular direction. These scalar quantities, are known as emittances. Multiple bunches of
particles of the two colliding beams, are accelerated in opposite directions and then collide
at a designated interaction point (IP). The detectors, which are positioned at the interac-
tion point , are specifically designed to capture and analyse a vast amount of data resulting
from these collisions such as secondary particles, potential instabilities, and other pertinent
phenomena.

As illustrated in Figure 2, the LHC beams runs in two different dedicated pipelines con-
tained within individual vacuum chambers. Even if in each sector, there exists one interior
and one external pipeline these overlap near each detector. Indeed, the selection of detector
placements is conducted with the intention of maintaining a consistent total circumference
for both beams at all times. Each detector is dedicated to the exploration of a distinct
branch of physics. These detectors exploit the common physical phenomenon of particle
collisions, although with the aim of investigating diverse research domains:

• The ATLAS (A Toroidal LHC ApparatuS) ([AT08]) and CMS (Compact Muon Solenoid)
([CM08]) detectors have been designed specifically to quantify the characteristics of
secondary particles generated as an outcome of high-energy collisions. From the col-
lision a substantial amount of data, estimated to be in the range of petabytes, is
collected and analysed by a group of experts and scholars. The discovery of the Higgs
Boson has been achieved through the utilisation of a specific methodology and the
implementation of particular detectors ([Aad12]).

• The LHCb (Large Hadron Collider beauty) experiment([LH08]), aims to explore rare
decays and particle interactions with the purpose of elucidating several enigmas asso-
ciated with antimatter.

• The ALICE (A Large Ion Collider Experiment) ([AL08]) primarily concentrates on
investigations related to heavy ions.

Researchers are currently addressing unresolved inquiries regarding the origins of the
cosmos through the examination of particle interactions at elevated energy levels within the
LHC.

For further exploration of the LHC experiments, one may refer to the work by [Hal11].
The luminosity, denoted as L, quantified in units of inverse barns per unit of seconds

( fb−1Hz), holds significant importance as a key performance indicator in all colliders. The
aforementioned quantity denotes the proportionality between the cross-sectional area of
interaction and the rate at which events occur, and it is different in each detector as shown
in Figure (3)

As a result of enhanced luminosity, the potential for observing a larger number of un-
common physics events is raised, which generate a direct correlation with the collider’s
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Figure 2: Schematic layout of the LHC rings, arcs, and interaction points ([We16])

capability for advancing scientific knowledge in the field of physics. The number of bunch
collisions for each IP, denoted as nb,IP , is strongly linked to the longitudinal arrangement
of the bunches in the two beams, referred to as filling schemes, and has a significant im-
pact on the luminosity (L). Indeed, the luminosity for each given IP can be factorized by
calculating the cumulative luminosity resulting from all the collisions that occurred at that
specific location (notation inspired to the one of the LPC, LHC Programme Coordinator):

LIP = n{bb,IP }Lbb. (0.1)

where the calculation of Lbb involves computing a quadruple integral over three spatial
dimensions and time of the distributions of the two colliding bunches (beam profiles). On
the other hand, the determination of n{bb,IP } is achieved through discrete convolution of the
filling scheme. The filling scheme represents the positions of these bunches within the ring
as two boolean vectors, where “True” denotes the presence of a bunch and “False” indicates
the absence of a bunch.

To improve the performance of the collider’s machine, it is necessary to optimize the inte-
gral of luminosity with respect to time (

s
LIP dt) for each experiment. From this, considering

that these two factor in the definition (0.1) are both definite positive and independent of
each other, it’s possible to optimize them separately.

0.3 Goals of this thesis work
As introduced previously, the luminosity for each given IP can be factorized by calculating
the cumulative luminosity resulting from all the collisions that occurred at that specific
location, as shown in equation (0.1)
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Figure 3: Values of luminosity .for ions studies, for all the detectors in the LHC, for the first
weeks of the RUNs in different years([Wi17])

The goal of this thesis is to optimize the luminosity in all its complexity, properly ex-
ploiting this factorization.

Firstly, the initial element under analysis pertains to the number of collisions. The objec-
tive is to identify a discernible pattern or a rule that governs the arrangement of the bunches.
The final purpose is to determine the optimal configuration that maximises the number of
collisions throughout all the detectors. The first part of this analysis will introduce a model
for determining the number of collisions resulting from the arrangement of bunches. The
following part will concentrate on defining the various constraints associated with the place-
ment of the bunches. Once the optimization problem has been comprehensively outlined,
the emphasis will shift towards identifying patterns for arranging the bunches. In cases
where finding such patterns are not so trivial, strategies will be employed to overcome any
encountered challenges.

Next, we will examine the second factor, namely the luminosity bunch-by-bunch, with
the goal of using this scalar quantity to derive fundamental parameters known as transverse
emittances (for the x-axis and y-axis). The first part of this analysis will provide a definition
of emittance and an explanation of the tools used to measure this parameter in an accelera-
tor. Subsequently, a model will be presented for calculating the luminosity bunch-by-bunch,
using a set of distinct parameters known as the configuration system, highlighting the de-
pendence of the emittance within this formula. The second part will be focused on inverting
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the luminosity model to obtain the desired unknowns. For this reason, after defined the
usual configuration system, some of its parameters will be perturbed to generate varying
values and model of luminosity bunch-by-bunch. The difference between these luminosity
values and the model will be used to establish a system of equations where the emittances
are the unknowns, which will then be solved through the Non-linear least squares method.
This problem it has been also studied for the case in which the luminosity value is affected
by a random error.

0.4 Thesis Overview
The structure of the thesis is as follows:

Chapter 1 is a background chapter
This chapter presents the mathematical model used to calculate the number of collisions.

It provides a concise elucidation of the physics principles and notation employed in the ar-
rangement of the bunches, named filling scheme. The emphasis is placed on distinguishing
between bunches and RF buckets, differentiating Head-on and Long-range collisions, and
highlighting specific accelerator requirements that inherently influence the arrangement of
the bunches throughout the accelerator ring. Once defined the mathematical model for cal-
culating the number of bunch colliding in a particular detector, it is presented an optimised
implementation in Python, along with a comparison to other possible implementations.

Chapter 2 is a result chapter
This chapter uses the mathematical model and the requirements of the accelerator out-

lined in Chapter 1 to define an optimization problem. Subsequently, an analysis is conducted
on several simplification cases of the optimization problem with the aim of identifying a rule
for arranging the bunches in the accelerator ring. The final case under analysis pertains to
a general scenario where no discernible patterns or rules are found. Instead, a Monte Carlo
simulation is employed, starting from an input filling scheme. This simulation uses the de-
gree of freedom in the arrangement of the bunches, allowing for the exploration of alternative
schemes. This chapter concludes with the presentation of interesting results derived from the
simultaneous used. These results not only validate certain assertions made in earlier cases
examined, but also identify alternative arrangements that outperform the most employed
filling scheme in the LHC in 2022. .

Chapter 3 is a background chapter
This chapter provides an exposition of the mathematical model used in the calcula-

tion of luminosity bunch-by-bunch. The chapter begins by providing a definition of particle
emittance and of beam emittance. Emphasis is placed on the significance of obtaining this
parameter, and an examination of the instruments employed thus far to measure it with
the greatest possible accuracy. Subsequently, the computation of the luminosity model is
delineated, starting with the most general formula. Subsequently examining the distinc-
tive characteristics of the various parameters and the assumptions introduced, the model
culminates in the ultimate formula that will be employed in Chapter 4. Furthermore, the re-
lationship between the emittance and the expressed luminosity model is highlighted.Finally,
it is presented an implementation in Python, using Numba, that optimize the computational
time of a script already used

Chapter 4 is a result chapter
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This chapter employs the mathematical model defined in Chapter 3 to derive the trans-
verse emittances from the luminosity. The reason for selecting luminosity and not other
observables of the LHC is elucidated, highlighting the idea and the inspiration underlying
the adoption of different configuration systems to capture collisions from multiple perspec-
tives in order to obtain the emittance, placing attention on the initial configuration system.
It has been delineating the shifted parameters, the methodology behind, and distinct hy-
potheses associated with this approach. Subsequently, the analysis progresses from simplified
scenarios to more intricate ones, assuming the accuracy and absence of errors in the values
obtained from the luminosity model. The concluding section of this study discusses the
aforementioned cases, but taking into account random error in luminosity values obtained
from the model. The objective in this part is to elucidate the sensitivity of the employed
approach and explore alternative strategies for obtaining the different emittances.
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Chapter 1

Mathematical model and
computation of the number of
collisions

1.1 Mathematical model
As reported in Chapter (0.2), there exists a direct correlation between the luminosity of
a collider and its potential for making significant physics discoveries. Luminosity is an
aggregated information that encompasses several properties of the collider, such as optics
and beam dynamics, and produces a scalar value that succinctly represents the effectiveness
of the collider.

One of the fundamental dependencies within the mathematical framework underlying
the conventional calculation of luminosity is a direct proportion to the number of bunch
collisions occurring at the interaction point (IP). For this reason, modern colliders feature
several hundred of bunches.

This chapter aims to present the mathematical theory that forms the foundation for the
computation of the number of collisions. In addition, the optimized Python code will be
analysed, and its results will be compared to the previous computation conducted in CERN
([FillPatt]).

To start with the description of the mathematical model applicable to a broad range
of accelerators, it is pertinent to provide a brief overview of the aims and structure of the
LHC, hence facilitating the utilization of this model for this particular accelerator.

1.1.1 LHC filling schemes
Definition of bunches

The LHC holds the distinction of being the largest and most powerful circular particle
accelerator in the world, boasting a circumference of 27 km. The procedure to accelerate
protons or ions to velocities that approach the speed of light entails employing RF cavities
and magnets. The acceleration process requires the longitudinal structure of two beams not
to be continuous, but rather consists of particles arranged into numerous clusters referred
to as bunches, as represented in Figure (1.1). This is because in the event of a continuous
beam, the RF cavity induces different acceleration and deceleration of distinct portions of
the beam depending on the specific RF voltage represented in the Figure (1.1).
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Figure 1.1: The structure of bunches and buckets, considering the Radio Frequency voltage
([Vidal])

The concept of a bunch in accelerator physics is closely interconnected with that of a
bucket, which holds significance in understanding the mathematical model:

• Buckets are virtual positions in the LHC ring, corresponding to discrete phasing with
respect to the RF cavity, wherein particles receive acceleration or deceleration. In fact,
the cavities function at a specific frequency and each period of the RF field defines an
RF bucket. The LHC RF cavities function at a frequency of 400.79 MHz, which equates
to a period of 2.5 ns for each LHC RF bucket. The synchronization of the buckets
within the RF cavities plays a crucial role in the acceleration of the particles. Indeed,
a necessary requirement for RF cavities is that the ratio, denoted as hRF that is the
total number of available buckets, between the revolution frequency of the beam in
the ring and the frequency of the cavity must be an integer. This condition ensures
that, after completing one full cycle, the cavity returns to phase alignment with the
ring’s frequency. In the LHC this ratio is 35640, hence LHC has 35640 RF buckets.

• Bunches refer to clusters comprised of various particles within a single beam, sharing
a common RF buckets. In each of the three directions, the distribution of the particle
in the bunch is characterized by a particle density, the transverse beam profiles are
modelled as Gaussian, the longitudinal beam profile is depicted in Figure (1.2). These
bunches are established during the initial stages of the LHC chain as particles undergo
energy modifications, after which they are subsequently gathered using various meth-
ods. Bunches play a vital part in the efficiency of an accelerator due to their critical
beam properties, such as the beam profile, and the consequential number of collisions
resulting from their placement within the accelerator.

From a technical point of view, it is possible to establish a one-to-one connection between
the bunches and buckets because each period RF bucket that may hold a particle bunch,
this would imply that bunches might also be evenly spaced at intervals of 2.5 nanoseconds.
Nevertheless, in this particular arrangement, the detectors would encounter limitations in
their capacity to handle a substantial amount of data, as well as their inability to differen-
tiate between recently generated secondary particles and those that have been present for
a longer duration. This was one of the reason why it was decided to arrange protons in
clusters at intervals of 7.5 meters, one bunch every 10 RF buckets (25 nanoseconds).

For further insight into the process of aggregating various bunches in the accelerator
chain of the LHC, relevant literature sources such as ([Da18]) and ([Ga01]) provide valuable
information.
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Based on this concise elucidation, it can be asserted that each bunch can be injected in
every 10th bucket. This injection bucket is denoted as bunch slot.

In the following, “slot” and “bucket” will be considered synonyms.

Figure 1.2: Longitudinal beam profiles over 12 hours in collisions ([Hos18])
.

Filling scheme

The filling scheme, as seen in Figure (1.3), refers to the specific sequence in which the
bunches are injected and circulated within the ring to attain a specific level of machine
performance. From this definition, it is easy to observe that the total length of the filling
scheme in the LHC is 3564 (35640/10) slots. Several filling schemes have been implemented
in the LHC to accommodate the diverse requirements and outcomes of the accelerator. In
particular, several elements must be taken into account during the development of a filling
scheme:

• Machine structure: The LHC represents the final stage of the accelerator complex at
the CERN. Within each ring of the accelerator complex, the particle beam undergoes
acceleration before being injected into a bigger ring. The interconnection between two
consecutive rings, as shown in Figure (1), is determined by the application of radio
frequencies (RF), which meticulously control the arrangement of particles in the LHC
filling scheme.
These cavities play a crucial role in ensuring that the spacing between each bunch is
precisely maintained at 25 nanoseconds. This specific bunch spacing is achieved by the
Proton Synchrotron (PS), which gathers the various bunches into a batch known as the
PS batch. Typically, the PS batch consists of a multiple of 12 bunches, each separated
by 25 ns. The PS batches are injected into the SPS (Super Proton Synchrotron) to
generate the SPS batch (also referred to as ‘train’), which consists of multiple PS
batches spaced by minimum 200 ns (7 slots) as determined by the RF system. This
batch is then accelerated from an initial energy of 26 GeV to a final energy of 450
GeV. Subsequently, the aforementioned trains are introduced into the LHC, with a
minimum spacing of 800 nanoseconds between them (equivalent to 31 slots), with
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the purpose of achieving acceleration up to 6.8 teraelectronvolts (TeV) per beam.
For further understanding of the functioning of the RF system in the LHC, readers
are encouraged to refer to ([Bo99]). Additionally, for more comprehensive information
regarding the various spacing and gaps inside the LHC ring, ([Ve17]) provides detailed
insights.

• Machine Diagnostic: The filling system also takes into account certain needs pertaining
to diagnostic procedures. Specifically, the presence of non-colliding bunches is necessary
for the purpose of machine and detector diagnostics, despite its impact on the number
of collision and subsequent luminosity performance. One of the most crucial measures
is related to the “betatron tune” (q) which is closely associated with the oscillation
of the beam within the transverse plane. This tune is measured specifically using the
initial twelve bunches, which are intentionally prevented from colliding within
the ATLAS/CMS detectors. For further elaboration on the betatron tune, interested
readers may refer to the work ([Jo18]) for additional information.

• Machine protection: it is a crucial element for the preservation of the LHC, as it is
a very intricate accelerator that necessitates the implementation of numerous safety
protocols. Among these protocols, the Abort gap stands out as an important one.
The procedure of dumping the beams of the LHC is a crucial and intricate operation.
It must be executed with great caution to prevent magnet quenching, damages, and
minimize losses during the rise time of the LHC extraction kicker. To accomplish
this, a ≈3 µs (121 slots) gap (i.e. without bunches) known as “abort gap”(AG) is
positioned in the filling scheme. This gap ensures that a portion of the LHC ring
remains free of particles during the transient related to the dumping process. The
initial RF bucket located beyond the abort gap is designated as bucket 1. To ensure
the absence of bunches within the abort gap, the final slot eligible for bunch train
injection is determined by adding the length of the abort gap to that of the longest
previously injected bunch train. The sum of the abort gap and the longest bunch train
of the filling scheme defines the so-called “Abort Gap Keeper” (AGK).
For a more comprehensive understanding of the Abort Gap and its associated mecha-
nism, interested readers are encouraged to refer to the work ([We17]).

• Disposition of the detectors: As shown in the Figure (2) the LHC is organized into
eight distinct octants, with each octant accommodating a total of 445.5 slots. The
positions of the detectors in the LHC can be denoted in terms of the longitudinal
variable, s, relative to the circumference of the LHC(C ≈ 27 km):

ATLAS (IP1): at s = 0, (1.1)

ALICE (IP2): at s = C

8 , (1.2)

CMS (IP5): at s = C

2 , (1.3)

LHCb (IP8): at s = 7C

8 − 15C

hRF
. (1.4)

It is evident that, except the LHCb which is displaced by a distance of 11.22 m
(equivalent to 1.5 times the distance between consecutive slots) from the centre of
the eighth octant, the majority of the interaction points are located in the centre of the
octants. Therefore, the LHC does not exhibit an octagonal symmetry. Indeed, in the

14
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event that we introduce four equidistantly distributed bunches in the same positions
for the two beams, this will result in a collision occurring at IP1, IP5, and IP2, but
not in IP8.

• Experiment requirements: The filling scheme considers various detector needs, such
as collision count and bunch spacing. One of the most intriguing obligations to fulfil
within the context of the LHC involves the INDIVs (individual bunches). These
trains, consisting of a solitary bunch, are employed for collision purposes with
another INDIV within a designated detector. This specific collision event is used
for detectors’ setup and calibration.

All these aspects affect the structure of the filling scheme, as represented in the Figure
(1.3).

tune bunches

INDIV PS batch SPS batch

Abort Gap

Abort Gap Keeper

Figure 1.3: Example of filling scheme used at CERN, B1 in blue and B2 in green. In the
zoom, it is represented the distance between bunches that is lost from the filling scheme
representation. In different colours are represented, how the various aspects presented affect
the filling scheme structure.

Due to the inherent complexity of the accelerator ring, acquiring information regarding
the collisions is a non-trivial task.

Collisions in LHC

The computation of a collision schedule involves determining the specific bunches and their
collision locations. This computation relies on the positions of the detectors and the two
filling schemes employed to represent the beams. The types of collision, as represented in
Figure (1.4), can be split into:

• Head-on collisions, commonly referred to as “central collisions”, occur at the centre
of the detector. In this type of collisions, the centre of mass energy is maximized as
a result of the physical collision of the beams. This form of collision has the potential
to generate novel particles, while also enabling the observation of rarer particles.

• Long-range collisions occur within a common vacuum chamber in proximity to the
interaction point. Despite being physically separated (no nuclear interactions), the
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two beams experience electromagnetic forces generated by the other one. Hence,
these types of collisions are commonly referred to as “parasitic”. The number of long-
range collisions at each interaction point is contingent upon the threshold longitudinal
distance at which one may disregard electromagnetic collisions between the two beams.
The threshold in question pertains to the accelerator’s facilities.Indeed, in the LHC at
a distance of around 60 meters (equivalent to 8 slots), there exists a dipole. Beyond
this dipole, the separation between the beams rises rapidly. Hence, this quantity is not
predetermined, but rather contingent upon the user’s purpose and the configuration
of the accelerator. If the user is interested in studying dipolar (linear) effects or higher
order effects, he may need to take into account the distance between the magnet
and the interaction point in order to determine the appropriate number of long-range
collisions to investigate.

Figure 1.4: Representation of Head-On collisions and Parasitic ones, ([La16])

For additional information, please refer to the publication by W. Herr([He01]).

It would be of great interest determining an optimal approach for the computation of
a detailed schedule for both types of collisions in a general accelerator, with particular
emphasis on the LHC due to its significant number of bunches (named or collision schedule
or BB encounter schedule). This schedule should encompass the following elements:

• the data regarding the number of HO and LR collisions occurring at an interaction
location,

• the number of respective collision partners, starting from bucket 1, in either the HO
and LR collision at a given interaction point for each bunch (named BB partner),

• the distance from the interaction point, if the collision is long-range.

Furthermore, due to the presence of accelerator constraints, the bunches are not evenly
spaced along the LHC-ring, but instead present distinct intervals or gaps. Consequently, the
particles experience different beam-beam forces, leading to an intricate collision schedule.
Establishing a clear and concise model is of the highest priority in order to effectively
compute all necessary details pertaining to the collision schedule. Moreover, it would be
highly advantageous if this model could be used to both Head-On and Long-Range collisions.

Before looking into the model, it is important to address a minor detail. The LHC is a
particle accelerator consisting of two rings, one interior and one external, each containing
an isolated vacuum chamber. Within these chambers, two beams of particles circulate at a
synchronized revolution frequency. It is important to note that while the vacuum chambers
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1.1 – Mathematical model

may have shared segments and the radio frequency (RF) may need the total circumference
of the two beam routes to be equal, it is possible for the length of the two beam paths to
vary from a specific reference point to a more generic one. However, in our analysis, which
is grounded in the findings of ([Jo99]), we can assert that the paths covered by two beams
in a single revolution are identical.

1.1.2 Mathematical model
The aim of this study is to develop a computational model that accurately represents the
BB encounter schedule.

We aim to obtain a data frame as output of this calculation, which will encompass com-
prehensive details regarding the number of Head-On collisions taking place at a specific
ring slot (an interaction point). Additionally, the data frame will include information about
the partner involved in each collision (HO or LR), as well as the number of Long-Range
interactions occurring with different bunches and the corresponding locations relative to an
interaction point, here are reported some columns and rows of this data frame for LHCb.

index, # of LR in LHCB, HO partner in LHCB, BB partners in LHCB, Positions in LHCB
135, 9.0, nan, [2817.0, 2818.0, 2819.0, 2820.0, 2821.0, [12.0, 13.0, 14.0, 15.0, 16.0,

2822.0, 2823.0, 2824.0, 2825.0], 17.0, 18.0, 19.0, 20.0]
136, 10.0, nan, [2817.0, 2818.0, 2819.0, 2820.0, 2821.0, [11.0, 12.0, 13.0, 14.0, 15.0,

2822.0, 2823.0, 2824.0, 2825.0, 2826.0], 16.0, 17.0, 18.0, 19.0, 20.0]
137, 11.0, nan, [2817.0, 2818.0, 2819.0, 2820.0, 2821.0, 2822.0, [10.0, 11.0, 12.0, 13.0, 14.0, 15.0,

2823.0, 2824.0, 2825.0, 2826.0, 2827.0], 16.0, 17.0, 18.0, 19.0, 20.0]
138, 12.0, nan, [2817.0, 2818.0, 2819.0, 2820.0, 2821.0, 2822.0, [9.0, 10.0, 11.0, 12.0, 13.0, 14.0,

2823.0, 2824.0, 2825.0, 2826.0, 2827.0, 2828.0], 15.0,16.0, 17.0, 18.0, 19.0, 20.0]
1029, 11.0, 135.0, [136.0, 137.0, 138.0, 139.0, 140.0, 141.0, 142.0, [1.0, 2.0, 3.0, 4.0, 5.0, 6.0,

143.0, 144.0, 145.0, 146.0], 7.0, 8.0, 9.0, 10.0, 11.0]
1030, 11.0, 136.0, [135.0, 137.0, 138.0, 139.0, 140.0, 141.0, 142.0, [-1.0, 1.0, 2.0, 3.0, 4.0, 5.0,

143.0, 144.0, 145.0, 146.0], 6.0, 7.0, 8.0, 9.0, 10.0]
1031, 11.0, 137.0, [135.0, 136.0, 138.0, 139.0, 140.0, 141.0, 142.0, [-2.0, -1.0, 1.0, 2.0, 3.0, 4.0,

143.0, 144.0, 145.0, 146.0], 5.0, 6.0, 7.0, 8.0, 9.0]
1032, 11.0, 138.0, [135.0, 136.0, 137.0, 139.0, 140.0, 141.0, 142.0, [-3.0, -2.0, -1.0, 1.0, 2.0, 3.0,

143.0, 144.0, 145.0, 146.0], 4.0, 5.0, 6.0, 7.0, 8.0]

From the physics behind the phenomenon, it has been decided to describe this computa-
tion using a discrete convolution in the longitudinal space. This approach is taken in order
to precisely extract the required information and emphasize the similarities between the
two categories of collisions. In the following, we will present the hypothesis considered and
the final model.

It is postulated that the two beams will engage in collision within the designated slot,
wherein the objective is to calculate the number of collisions. Consequently, it can be in-
ferred that the two beams will occupy the same vacuum chamber. Due to this assumption,
information pertaining to planes other than the longitudinal plane is considered unnecessary
for this computation.

Therefore, the two filling schemes can be represented as boolean vectors, where each slot
is assigned a value of 1 if it is filled and 0 if it is empty. This modelling approach is suitable
since the filling pattern is not concerned with individual particles, but rather with bunches
of particles. Therefore, it is sufficient to consider the positions of these bunches rather than
the detailed beam profiles.

Moreover, considering the fact that the two beams are moving in opposite directions,
we can determine the number of collisions occurring in a specific ring slot by summing the
overlapping bunches generated through the shifting of the two filling schemes:

ncoll[idslot] =

hRF
10 =3564Ø

i=0
B1[i − mod(idslot, 3564)] ∗ B2[i + mod(idslot, 3564)] = (1.5)
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Mathematical model and computation of the number of collisions

hRF
10 =3564Ø

i=0
B1[i − mod(2 ∗ idslot, 3564)] ∗ B2[i]

where idslot denotes the detector’s position in units of bunch slots, whereas the term “mod”
represents the module function, as the entire ring exhibits periodicity after completing one
full turn.

We are particularly interested in the number of collisions occurring at the four interaction
points of the LHC. The positions of the detectors, referred to as the IP pattern, are obtained
by dividing the equations (1.1)-(1.4) by the bunch spacing:

C
0üûúý

IP 1

, 445.5ü ûú ý
IP 2 at 3564

8

, 1782ü ûú ý
IP 5

, 3117ü ûú ý
IP 8 at 7∗3564

8 −1.5

D
→

mod(2idslot,3564)ú ýü ûè
0,891,0,2670

é
(1.6)

The number of head-on collisions occurring at the LHC can be efficiently and easily
determined by using the provided positions. It is important to note that this calculation
holds true for both Head-On and Long-Range collisions.

A theorem is presented in Appendix A.1 as an application of the mathematical model
to determine filling schemes that in specific slots do not have Long-Range interactions.

1.2 Python implementation
One of the objectives of this mathematical model was to translate it in a Python function,
with the aim of speeding-up the calculation process of the beam-beam encounter schedule.
Before the approach presented in this work, the software employed at CERN for the beam-
beam encounter schedule was suboptimal ([FillPatt]).

Instead of performing a discrete convolution on the boolean vectors, one may easily
determine the number of collisions by exploiting the information in the frequency domain
through the utilization of a Fast Fourier Transform:

import numpy as np
from scipy.fft import fft, ifft
N = 3564
B1 = np.random.randint(0,2,N)
B2 = np.random.randint(0,2,N)
id_slot = np.random.randint(0,N,1)

# Computation in frequency domain
fft_B1 = fft(B1)
fft_B2 = fft(np.flip(B2))
n_coll_freq = np.flip(ifft(fft_B1*fft_B2))
# Computation in time domain
n_coll_time = (np.roll(B1,id_slot)*B2).sum()

assert int(np.abs(n_coll_freq[id_slot]))==n_coll_time

While both computations yield equal results in a technical sense, one of them is more
computational efficient. The computing cost of the two approaches are as follows:

1. Using the convolution: Nids ∗ N
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1.2 – Python implementation

2. Using the FFT: N ∗ log(N)

where Nids represents the quantity of interaction points at which the user want to calcu-
late the number of collisions and N the length of the filling scheme. Subsequently, the relative
magnitude of the ratio Nids

log(N) determines the comparative efficiency of the two methods. It
is important to note that Nids << N , limiting the performance of the FFT method.

A further drawback associated with employing the FFT for determining the number
of collisions, is the computation of the partner bunches and the precise location of the LR
collision. Their computation can be easily performed in the time domain. Prior to computing
the final sum of the convolution in a specific slot, it is possible to determine the information
regarding the partner bunches involved in collisions within that slot. This can be achieved
by selecting an element from the vector resulting from the product, which has a value of
1. By subtracting (summing) the position of the chosen slot from the index of that vector
element, the output value corresponds to the number of the partner bunch for B1(B2) in that
specific slot. In the context of frequency domain analysis, it remains uncertain whether the
conversion of this calculation is feasible, properly because the information represented in the
frequency domain exhibits a high level of complexity. Consequently, it has been determined
that adopting the time domain analysis is more advantageous, primarily due to its optimized
computing efficiency and also for its semplicity of interpretaion. This limitation arises due
to the analysis of data in the frequency domain rather than in the time domain.

As a result of these factors, we choose to compile a Python script for the purpose of
calculating the BB encounter schedule using the first technique. This implementation re-
sulted in a significant enhancement in computational efficiency, that is represented in the
histograms in Figure (1.5).

most used filling scheme in 2023 most used filling in 2022
1178:1178b_1165_696_693_9inj_2INDIV 1551:1551b_1538_1406_1472_12inj_3INDIVs

1818:1818b_1805_1057_1182_14inj_2INDIV 1935:1935b_1922_1602_1672_14inj_3INDIVs
1886:1886b_1873_1217_1173_12inj_2INDIV 2173:2173b_2160_1804_1737_11inj_1INDIV
1903:1903b_1890_1099_1160_12inj_3INDIV 2390:2390b_2378_1967_2106_18inj_2INDIV
2358:2358b_2345_1692_1628_14inj_2INDIV 2413:2413b_2400_1836_1845_12inj_1INDIV
2374:2374b_2361_1730_1773_13inj_2INDIV 2461:2461b_2448_1737_1733_16inj_1INDIV

2464::2464b_2452_1842_1821_12inj 2462:2462b_2450_1737_1735_17inj_2INDIV

Table 1.1: Table representing the notation for most used filling scheme in the
LHC used as x-axis in the Figure (1.5), the notation represent “NumberOf-
Bunches_ATLAS/CMS_ALICE_LHCb_NumberOfIjections_NumberOfINDIV”. In par-
ticular, the filling schemes used in the 2023 are all hybrid filling schemes.

The histograms presented in Figure (1.5) clearly illustrate the disparities between the
two algorithms. Specifically, the figure depicting the cumulative time highlights a signif-
icant enhancement of approximately 50 times when comparing the newer method to the
older one. Conversely, the plot illustrating the total time clearly demonstrates a two-order-
of-magnitude improvement between the two algorithms. Another intriguing aspect of the
histogram is its ordering of the various filling schemes based on the total number of bunches
within the ring. It is observed that both the computation time of the older algorithm in-
creases in accordance with the chosen order. Conversely, the new algorithm exhibits different
fluctuations that are not easily interpretable, as well as anomalous decreases, such as the
one observed on the right side of the picture subsequent to the first fillig scheme. It can
be readily asserted that these fluctuations may be contingent upon several circumstances,
such as the number of collisions on a particular detector or the arrangement of the particle

19



Mathematical model and computation of the number of collisions

Figure 1.5: Histogram of the performances of the two algorithms tested on the most used filling schemes on 2022 and
2023 in the LHC, shown in the Table (1.1), the order shown in the x-axis is increasing with respect to the number of
bunches of the filling scheme. Both the histogram have been plotted from a time average of 10 repeated algorithms
on the same filling scheme obtained from cProfile in python. On left is represented the cumulative time, on right is
represented the total time.

bunches. However, it is important to note that there exists a counterexample that effectively
refutes this assertion. Indeed, it can be noticed that on the left side of the picture there
is a significant reduction in computational time between the cases 2461_22 and 2462_22.
Although the two filling schemes are nearly identical, with the only difference being that
the second one has one INDIV bunch more for each beam, but the arrangement of the
bunches remains consistent in the same slots. This behaviour completely disprove that this
peculiar behaviour it is governed by the bunch disposition in the filling scheme. This phe-
nomenon could be elucidated, taking into account the utilization of additional libraries such
as numpy in the algorithm, by proposing that there is a form of memory inside the frame-
work of algorithmic computation. This indicates that, after repeated testing, the Python
compiler preserves certain steps of the method in memory. Consequently, in subsequent
tests, the compiler bypasses certain steps in order to enhance efficiency. In order to mitigate
this behaviour, we have chosen to recompute the identical computation, while recording the
distinct values and restarting the Python kernel either for both the algorithms. The ensuing
outcome is presented in the Figure (1.6)

In order to know more details about this implementation, it is possible to see ([CollSched]).
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1.2 – Python implementation

Figure 1.6: Histogram of the performances of the two algorithms tested on the most used filling schemes on 2022 and
2023 in the LHC, shown in the Table (1.1), the order shown in the x-axis is increasing with respect to the number of
bunches of the filling scheme. Both the histogram have been plotted from a time average of 10 repeated algorithms on
the same filling scheme obtained from cProfile in python, where passing from one filling scheme to another the python
kernel has been restarted. On left is represented the cumulative time, on right is represented the total time.
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Chapter 2

Maximization of the number of
collisions

In the preceding chapter, our objective was to determine, for a given filling scheme, the
most effective method for calculating the BB encounter schedule.

In this chapter, the approach is reversed, aiming to study the problem synthetically. The
objective is to identify a pattern or rule governing the arrangement of bunches, with the
ultimate goal of determining the best filling scheme. The reader may inquire as to which
objective it is feasible to establish a superior filling scheme. The subsequent explanation
will elucidate this matter.

In order to enhance the operational efficiency and performance of the accelerator, it is
imperative to maximize the integrated luminosity at the interaction points over time. In
this purpose there are a lot of factors that play a crucial rule, one of them is to arrange the
bunches in a manner that maximizes the number of collisions at each interaction point. This
chapter will primarily address the task of identifying a governing principle for determining a
filling scheme that may optimize the number of collisions in each detector within the LHC.
However, it is pertinent to question the feasibility of achieving such an objective.

Firstly, this analysis will present certain features and limitations associated with the
LHC, which are also evident in the arrangement of particle bunches. After formulating the
comprehensive optimization problem, a systematic analysis will be conducted, starting with
simpler examples with different assumptions and progressing, by incremental steps, towards
the fully-fledged problem.

2.1 Formulation of the optimization problem

Given the mathematical model offered in the preceding chapter (1.1.2) and considering the
limitations and requirements imposed by the filling scheme outlined in the previous chapter
(1.1.1), we may now formulate our optimization problem in mathematical terms:
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Maximization of the number of collisions

max
B1,B2∈R3564

(B1 ∗ B2)[0]
(B1 ∗ B2)[891]
(B1 ∗ B2)[2670]

 Real detectors’ disposition

s.t. ∃! PS(x,12) ∈ B1, B2, where x < 36ü ûú ý
Machine diagnostic: bunches for tune measurement

|x2 − x1| ≥ bunq, for PS(x1, bunq)B1, PS(x2, bunq)B2ü ûú ý
Machine diagnostic: bunches for tune measurement

δ(x)B1, δ(x)B2 ∈ B1, B2, has specific collisionsü ûú ý
Experiment requirements: INDIV

SPSn(x1, bun) =
nØ

i=1
PS(xi, bun), where xi+1 ≥ xi + bun + 8ü ûú ý

Machine structure: RF cavity

ntrainØ
i=1

SPSni(xi, bun) ∈ B1, B2, where xi+1 ≥ xi + nibun + 32ü ûú ý
Machine structure: RF cavity

δ(x), SPSn(x, bun), where x ≤ AG = (3564 − 121)ü ûú ý
Machine protection:Abort Gap and Abort Gap Keeper

(2.1)

where B1 and B2 denote the boolean vectors representing the filling scheme of two beams.
The discrete δ-function, denoted as δ(x), is used to represent the INDIV. The discrete door
function, PS(x, bun), is employed to represent the PS batch. The train (SPS batch) is
represented by SPSn(x, bun), composed by n PS batches, where ntrain refers to the number
of injected trains utilized in the filling scheme and bunq represent the number of bunches for
tune measurement. This number is the same for both beams. The indices at which we aim to
maximize the convolution are obtained from the module function of the detectors’ positions
from (1.6). Based on the mathematical representation, it is evident that the maximization
of collisions in four distinct detectors can be achieved by using only three indices. This
conclusion is derived from the module function incorporated in the mathematical model.
Indeed, it is worth noting that due to symmetry considerations, the ATLAS and CMS
detectors will consistently exhibit an equal number of collisions.

The mathematical representation of this problem reveals its non-trivial nature in terms
of optimization. Firstly, the objective is to maximize the convolution only at specific points
that deviate from the 8-fold symmetry mentioned in the introduction. Secondly, numerous
constraints must be considered to ensure the feasibility of a filling scheme for the accelerator.

The ultimate objective of our study is to develop an algorithm that, given the length of
the empty gap between consecutive PS batches, when provided with specific input as:

• number of bunches per PS batch

• number of INDIV per beam

• maximum length for an SPS batch
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2.2 – Unrealistic cases

• number of bunches per tune measurement

• number of slots to inject the bunches for tune measurement

can determine the most optimal filling scheme satisfying the constraints of the optimization
problem.

In each analysed example, the minimum number of vacant slots between two successive
PS batches and the number of bunches for each PS batch will be fixed as a constant for
all the resolution methods. So the final goal of the approach is to determine the empty
space between two SPS batches and their length, properly because the information of the
PS batch will be fixed from the user.

To facilitate a comprehensive understanding of the problem at hand, it has been employed
a systematic approach wherein the complexity will be gradually escalated in a stepwise
manner.

2.2 Unrealistic cases
The objective of our study is to identify the optimal filling scheme, specifically the filling
scheme that maximizes the number of collisions across all detectors simultaneously.

From a mathematical perspective this problem is well-defined, but in some configuration
it is impossible to solve, as it will be elucidated later. It is important to note that this
analysis will be limited to certain simplified scenarios.

2.2.1 1st case: Abort Gap, free disposition of the bunches
In this particular scenario, it is assumed that there are no constraints on the number of
bunches that can be injected into the ring. This allows for the ring to be filled without
following any established structure, such as SPS batches, PS batches, INDIV, or bunq.
By eliminating all potential structures, the limitations associated with RF cavities for all
proton injections in the proton chain are removed. Consequently, there is no longer a need
to maintain a vacant interval between the bunches, except the 25 ns gap, which is not
visually depicted in the boolean vectors. The sole constraint taken into account in this
scenario is the one related to machine protection, but with a slight modification. Defining an
abort gap killer (AGK) becomes problematic when the concept of SPS batch is eliminated.
Consequently, in this scenario, the focus is solely on the limitation of the abort gap, without
considering the AGK.

max
B1,B2∈R3564

(B1 ∗ B2)[0]
(B1 ∗ B2)[891]
(B1 ∗ B2)[2670]

 Real detectors’ disposition

s.t. ∀x ≤ AG = (3564 − 121)ü ûú ý
Machine protection: all the bunches injected before the Abort Gap

In this particular arrangement, taking into account the actual placements of the detectors
within the LHC and the constraint pertaining to the abort gap, it can be demonstrated
trivially that the mathematical solution for this configuration entails a filling scheme that,
except the abort gap, is entirely occupied.

In this proposed solution, the optimization of all detectors is emphasized. However, it
is important to note that despite 8-fold symmetry in the disposition of the detectors is not
valid, because we are considering the real positions, as well as ATLAS and CMS, also LHCb
and ALICE will experience an equal number of collisions. This is due to the absence of
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any spacing, indeed technically we know that in order to have a specific collision in that
detector we should arrange the bunches in the filling scheme in order to “synchronize” with
the position of the detectors along the ring, for this reason if we introduce four equidistantly
distributed bunches in the same position for the two beams, this will result in a collision
occurring at IP1, IP5, and IP2, but not in IP8, because the IP1 and 5 has harmonic 1 and
IP2 has harmonic 4, while IP2 has a completely different harmonic. In this case the filling
scheme has no harmonic, because there is no spacing between the bunches, it is a constant
function, for this reason is synchronized with all positions of the detectors. This ensures
that the symmetry of all detectors is maintained, as shown in Figure (2.1).

It is crucial to recognize that, despite this equality in the number of collision between
LHCb and ALICE, the presence of the abort gap constraint results in a different number
of collisions experienced by the other couples of detectors, as shown in Figure (2.1).

2.2.2 2nd case: detectors symmetric, SPS batches
The hypotheses in this particular case differ from the previous one. We will specifically focus
on using SPS batches and PS batches for filling the ring, excluding the bunches for tune
measurement or INDIVs. The actual spacing between particles will be determined by the RF
cavities. Additionally, it is assumed that the 8-fold symmetry is maintained, meaning that
LHCb is positioned precisely at the centre of the octave. This results in a perfect symmetry
with ALICE in relation to ATLAS. Furthermore, the Abort Gap and the Abort Gap Keeper
are no longer taken into account:

max
B1,B2∈R3564

(B1 ∗ B2)[0]
(B1 ∗ B2)[891]

(B1 ∗ B2)[2673]

 Symmetric detectors’ disposition: not realistic, harmonic 4

s.t. SPSn(x1, bun) =
nØ

i=1
PS(xi, bun), where xi+1 ≥ xi + bun + 8ü ûú ý

Machine structure: RF cavity

ntrainØ
i=1

SPSni(xi, bun) ∈ B1, B2, where xi+1 ≥ xi + nibun + 32ü ûú ý
Machine structure: RF cavity

To optimize the number of collisions in the various detectors, it is necessary to strategi-
cally fill multiple SPS batches into both beams. This can be achieved by exploiting different
degrees of freedom. Assuming that the total number of bunches allocated for filling the ring
with both the SPS batches and PS batches has been determined, this particular configu-
ration presents only two degrees of freedom. These correspond to the arrangement of the
SPS batches for each beam, with one degree of freedom assigned to each beam. In order to
enhance the performance of ATLAS and CMS, it is imperative to consider only one con-
straint, as depicted in Figure (2.1a). The SPS batches need to be positioned in both beams
within the same slot, resulting in an equal number of bunches for each beam. This ensures
that the convolution component is maximized, as there is no shift for B1 in relation to these
detectors. In this particular scenario, the removal of one degree of freedom in ATLAS/CMS
has been introduced to optimize its performance. This ensures that the filling process of
one beam uniquely determines the filling of the other beam. Currently, the main goal is
to enhance the performance of ALICE and LHCb by optimising the remaining degree of
freedom, which pertains to the configuration of SPS batches within a single beam. It is
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2.2 – Unrealistic cases

(a) Shifts for the collisions in ATLAS/CMS

(b) Shifts for the collisions in ALICE

(c) Shifts for the collisions in LHCb

Figure 2.1: Representation of the shifts for Beam1 and consequently the effect of the product for
the computation of the number of collisions, for two filling schemes completely filled, except the
AG.

worth noting that the detectors’ positions exhibit an 8-fold symmetry. However, when con-
sidering the shift of Beam1 in the convolution model process described in equation (1.1.2),
this symmetry is reduced to a 4-fold symmetry:

mod(2 ∗ idslot, 3564) =
C
0, 891üûúý

ALICE at 3564
4

,0, 2673ü ûú ý
LHCb at 3∗3564

4

D
In this particular instance, determining the mathematical layout of the SPS batches is

a straightforward task, as the ring consists of a total of 3564 slots. It is necessary for the
SPS batches in the filling scheme of B1 to be repeated every 891 slots, which is equivalent
to 3564/4 slots, as illustrated in Figure (2.2).

By neglecting the initial hypothesis that the total number of bunches has been fixed by
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(a) Shifts for the collisions in ALICE

(b) Shifts for the collisions in LHCb

Figure 2.2: Representation of the shifts for Beam1 and consequently the effect of the product for
the computation of the number of collisions, for two filling schemes created by the repetition of
the same structure every quarter of the ring. This is an idealistic case in which the detectors are
symmetric

the user and considering the algorithm structure outlined in (2.1), the ultimate objective
is to achieve the desired symmetrical configuration while also maximizing the number of
injected bunches within the ring, while adhering to the various constraints. One possible
approach to attaining the desired arrangement, wherein the SPS batches are injected in the
same slots for both beams and a 4 harmonic structure is employed, entails allocating one
quarter of the filling pattern for both beams in the identical slots with the SPSn(xi, bun),
fixed the number of bunches. Afterwards, it is possible to replicate and insert this quarter
into the remaining portions, so insuring the preservation of harmonic 4 without the need
for manual modification.

Based on the proposed technique, the only remaining variable is the configuration of
SPS batches within one-fourth of the entire ring, with the objective of maximising the
overall number of bunches. The aim is to enhance the collision rate in the ATLAS and
CMS detectors by maximising the number of bunches within the specified quarter. Based
on the information presented in Figure (2.2), it is apparent that this particular strategy
would effectively optimise the number of collisions also in ALICE and LHCb. One potential
strategy for optimizing the number of bunches, taking into account the maximum number
of PS batches inside an SPS batch (len(SPSmax) and the spacing requirements, is to allocate
a quarter of the ring to accommodate the longest trains (SPSmax) minimizing the empty
spaces between the various trains. When it becomes infeasible to insert a train of this type
any further, the subsequent step is filling the remaining available space with a shorter train
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to complete the ring. This mathematical technique is considered optimal, as seen in Table
(2.1).

len(SPSmax) # of bunches in the quarter
3 612
4 648
5 648
6 648
7 684
8 684

Table 2.1: Table representing the total number of bunches in a quarter of the ring using the
first approach described, using an PS batch of 36 bunches.

Nevertheless, implementing different types of train into a filling scheme might pose sig-
nificant challenges in practise. In order to mitigate this concern, a limitation has been
implemented. Based on this restriction, it is important that the final train to be introduced
into the system is not of a length shorter (len(SPSmax) − 3). For this, two alternatives for
filling a quarter of the ring with the same type of PS batch are illustrated in Figure (2.3).
Nevertheless, the first approach given for filling the quarter would result in Figure (2.3b),
this configuration is not feasible due to the constraint that has been explained.

(a) Disposition of the PS batches, composed by
36 bunches, in case when len(SPSmax) = 7PS.

(b) Disposition of the PS batches, composed by
36 bunches, in case when len(SPSmax) = 8PS

Figure 2.3: Disposition of the SPS batches composed by different length of PS batches of 36
bunches, in order to fit inside the quarter, following the easier approach

To determine the ideal length, several train lengths have to be tested to determine the
extent to which they result in a greater number of bunches. The process in order to test the
different trains is exposed here:

1. In this process, we introduce the following notation: ni represents the length of the
SPS (Super Proton Synchrotron) batch, which refers to the number of PS (Proton
Synchrotron) batches contained within the SPS batch. The value of ni ranges from 1 to
n, where n is the maximum SPS length specified by the user. Mni denotes the number
of SPS batches with a length of ni in a given quarter. Additionally, pni represents
the length of the last SPS batch in the quarter. Finally, bun indicates the number of
bunches in each PS batch, which is determined by the user.
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2. Based on the given definition: the value of Mni can be computed as the integer
part of 891

bun(ni)+7(ni−1)+31 . The value of pni can be computed as the integer part of
(891−31−bun)−(bun(ni)+7(ni−1)+31)Mni

bun+7 , where pni ≤ ni − 3. It is important to note that
Mni is always less than or equal to Mni−1 for all values of ni greater than 1. Specif-
ically, considering the variable pni is for the last train, it is necessary to exclude any
elements that cannot be included in the denominator’s length with respect to Mni.
This implies that the last PS gap and the SPS gap hasn’t to be counted in the total
length because they always occur between two batches.

3. The total quantity of bunches in the quarter can be calculated using the formula:
bun[niMni + pni + 1].

By performing the aforementioned computation, we acquire a vector that represents the
number of bunches within each quarter for various choices of ni. The highest value from
this vector can be selected. Using this ni and adhering to the other criteria for filling the
remaining quarters and positioning the other beam will maximize the number of collisions
for all detectors simultaneously.

In this proposed method all detectors are optimized, and as in the previous case, LHCb
and ALICE will likewise experience an equal number of collisions alongside ATLAS and
CMS.

2.3 Realistic cases
To address the practical scenario, it becomes imperative to delete all assumptions made
in the previous chapter’s analyses. Unfortunately, it is no longer feasible, mathematically
speaking, to accomplish the original objective of determining the optimal filling scheme
that maximizes the performance of all four detectors simultaneously. The reasons for this
limitation would be elucidated.

In practical scenarios, it is seen that the filling scheme exhibits empty gaps between
batches due to the presence of RF cavities in the accelerator chain. Furthermore, the posi-
tioning of the detectors does not adhere to an 8-fold symmetry. Given the requirement for
equal numbers and types of trains on both beams, the positioning of the trains, using the
two degrees of freedom exposed in the previous section, is fundamental in order to achieve
our goal. The methods described in the previous chapter allow for using the symmetry be-
tween ATLAS and CMS, thereby maximizing their potential. This can be achieved by solely
maintaining a consistent spatial distance between the beams for each SPS batch. Notably,
this distance is set to zero. However, compared to the other cases, now the harmonic 8 is
no longer adhered to, thereby it’s needed to use also the distance between the SPS batches
within the same beam. This enables the maximization of one of the two remaining detec-
tors, due to the absence of symmetry between them. Indeed, in Figures (2.4) and (2.5) two
distinct filling schemes are depicted, both utilising the same SPS batches but arranged in
different manners. It is evident that while the filling scheme in Figure (2.4) maximises the
number of collisions in ALICE, this does not necessarily imply that LHCb is also maximised.
Actually, an alternative configuration, as shown in Figure (2.5), presents that the number
of collisions in ALICE is reduced while the number of collisions in LHCb is increased.

In summary, it may be stated that it is not feasible to identify a filling scheme that max-
imizes all four detectors simultaneously. However, it is rather straightforward, according to
the approach presented in the preceding section, to identify a filling scheme that maximizes
three out of the four detectors.

However, in the preceding chapter it was not solely assumed that the detectors were
symmetric; indeed, three other hypotheses have been presented:
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(a) Shifts for the collisions in ALICE

(b) Shifts for the collisions in LHCb

Figure 2.4: Representation of the shifts for Beam1 and consequently the effect of the product for
the computation of the number of collisions, for two filling schemes created by the repetition of
the same structure every quarter of the ring. This is a real case in which LHCb is disposed in the
right position

• The terms “Abort Gap” and “Abort Gap Keeper” were not taken into consideration.

• The selection of bunches for the tune measurement was not taken into consideration.

• The opportunity to incorporate INDIV into the filling system was not available.

If these hypotheses are eliminated, the complexity of the problem will increase. Specifi-
cally, the inclusion of these limitations in the optimization problem will no longer yield the
desired outcome of maximizing three detectors simultaneously using a harmonic analysis.
Why?

Because each of these constraints damages the harmonic structure behind the analysis
of the second degree of freedom. Taking into account the Abort Gap, it can be concluded
that the entire ring is no longer available for injecting bunches, resulting in a reduction of
121 slots in its length. Consequently, it is no longer feasible to replicate all the SPS batches
within the same beam over a distance of 891 slots due to insufficient space. As a result, the
previous studies are rendered invalid.

Based on the aforementioned line of reasoning, it is straightforward to further explore
the question at hand. Given the many constraints inherent in the LHC, the question is
to figure out the possibility of identifying a filling scheme that optimizes the simultaneous
maximization of three out of the four detectors.

Before addressing these questions, it is important to clarify a detail regarding the con-
straints. The most intricate constraint that needs to be taken into account is the final one
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(a) Shifts for the collisions in ALICE

(b) Shifts for the collisions in LHCb

Figure 2.5: Representation of the shifts for Beam1 and consequently the effect of the product
for the computation of the number of collisions, for two filling schemes created with a particular
approach. This is a real case in which LHCb is disposed in the right position

(the INDIVs), as it is observed to be the one that most violates the harmonic analysis.
Therefore, the optimization problem will initially be solved without considering INDIV,
and subsequently, the complete problem will be addressed.

2.3.1 3rd case: Real filling scheme without INDIV

From now on, the mathematical methodology employed in the preceding chapters has been
abandoned. The algorithm presented in this chapter adheres to the same conceptual frame-
work as the previous chapters, although lacking formal mathematical proofs. Indeed, these
algorithms have solely undergone numerical testing.

This algorithm is specifically designed to address the optimization problem with all the
possible constraints, apart:
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max
B1,B2∈R3564

(B1 ∗ B2)[0]
(B1 ∗ B2)[2670]
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Machine diagnostic: bunches for tune measurement
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Machine diagnostic: bunches for tune measurement
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nØ

i=1
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Machine structure: RF cavity

ntrainØ
i=1
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Machine structure: RF cavity

δ(x), SPSn(x, bun), where x ≤ AG = (3564 − 121)ü ûú ý
Machine protection:Abort Gap and Abort Gap Keeper

and only for protons studies in LHC.
Indeed the LHC employs a hierarchical approach in selecting detectors for various anal-

yses and studies. Specifically, for proton studies, the preferred detectors are ALTAS and
CMS, followed by LHCb, with ALICE being the least prioritized. Conversely, for ions stud-
ies, ALICE is the preferred detector, followed by ATLAS and CMS, while LHCb is the least
prioritized. Hence, the algorithm that will be presented in this study aims to prioritize the
maximization of ATLAS and CMS, followed by LHCb. However, it is worth noting that the
approach may be readily expanded to encompass the maximization of ATLAS, CMS, and
ALICE.

One final aspect to emphasize is that this algorithm was discovered following an extensive
period of data analysis, which involved studying the filling schemes employed in the Large
Hadron Collider over previous years. Additionally, the investigation examined the underlying
structure of the “Filling Scheme Editor” used by the LHC Programme Coordinator (LPC)
([LPC]) and its “Pre-fill” algorithm. The objective was to identify a pattern or rule that
would optimize the filling process.

Optimized algorithm Pre-fill without INDIV

The underlying concept of this method is to incorporate the harmonic structure previously
discussed in the preceding chapter, while addressing the increased complexity of the current
scenario and trying to expand upon that approach. We have taken into account all the
constraints, except the INDIV constraint. Although the other constraints we have introduced
may disrupt the symmetry of the problem, we are fortunate that these two constraints are
satisfied at the beginning and end of the ring. From a mathematical perspective, this violates
the principles of harmonic analysis. However, by employing certain strategies, we can adapt
the previous analysis to accommodate this particular scenario.

The full procedure behind the algorithm is presented in Appendix A.2 in which is pre-
sented in all the passages, considering the different cases.
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Given that the present analysis involves a reevaluation of a harmonic approach presented
before, it is important to note that the mathematical proof for these passages is lacking.
However, to address this limitation, we conducted a numerical assessment of the algorithm
using a Monte Carlo simulation. The subsequent section will discuss into the details of this
simulation, which plays a central role in our investigation.

2.3.2 4th case: Real filling scheme with INDIV
Taking into account all the limitations, including those pertaining to the individual particles
(INDIVs), the problem’s structure would become significantly intricate, as represented in
(2.1). This is mostly due to the arbitrary nature of the INDIVs’ injection, with the single
restriction of head-on collisions between them in specific detectors. Due to the aforemen-
tioned factors, it is feasible to insert these entities into any available positions inside the
ring. Given that the harmonic analyses conducted in the preceding chapter are deemed
irrelevant for this particular scenario, it becomes very challenging to devise an algorithm
that effectively arranges the SPS batches and INDIVs according to the user’s specifications
while simultaneously maximizing the number of collisions. The issue in this particular case
does not lie in the optimization of ATLAS/CMS, as it can be easily achieved by placing the
batches for both beams in the same slot. However, the challenge arises when attempting to
maximize LHCb, as the conventional copy and paste method can no longer be employed
due to the potential presence of an INDIV requested by the user in the middle of a quarter.

Due to this reason, we have chosen to undertake a comprehensive examination of the
optimization problem via an alternative methodology. This approach diverges from the
previously described harmonic and theoretical methods, instead adopting a pragmatic per-
spective by employing a Monte Carlo simulation.

Monte Carlo simulations using a three maker

The conceptual framework underlying this approach diverges significantly from the other
approaches discussed. Unlike the algorithmic methods, this simulation does not generate a
filling scheme based on input data from the user about the filling scheme. Rather, it operates
on a pre-existing filling scheme. In what manner can this be accomplished? The algorithm
calculates the vacant intervals between the SPS batches of the filling scheme that exceed
the size specified by the RF cavities (800 ns), as shown in Figure (2.6).

These intervals are then stored in a vector. From this computation, it is feasible to de-
termine the SPS batches that can be shifted and the direction in which they can be shifted.
A random element, distinct from zero, is selected from the vector and the corresponding
SPS batch is shifted by one slot in that specific direction for both beams simultaneously.
This process generates an alternative filling scheme that adheres to the constraints of the
optimization problem. The SPS batches has been shifted in both beams in order to maintain
the number of collisions in ATLAS/CMS unaffected, as it is already maximized. However,
by altering the spacing between the SPS batches within the same beam, alternative config-
urations of the filling scheme can be explored. These configurations may result in a greater
number of collisions in either one or both of the other two detectors. Furthermore, to main-
tain the integrity of the constraints regarding the movement of INDIVs and to prevent the
occurrence of INDIV-INDIV collisions at an interaction point different from ATLAS/CMS,
the INDIVs involved in collisions are simultaneously displaced to ensure a constant separa-
tion distance, in order to maintain the collision occurring within that specific detector.

Ultimately, by repeatedly applying this arbitrary transformation and preserving each in-
termediate iteration, it becomes feasible to generate a Monte Carlo simulation that exhibits
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Figure 2.6: Example of filling scheme used at CERN, B1 in blue and B2 in green, same
as shown in Figure (1.3). In the zoom, it is represented the distance between SPS batches,
underlining the gaps longer than 800 ns (31 slots).

alternative arrangements for the filling scheme that has different numbers of collisions for
ALICE and LHCb experiments.

From a computational perspective, the Monte Carlo simulation in question does not
impose a significant burden in terms of processing cost. This is mostly due to the fact that
the simulation primarily consists of sub-vector shifts. The main issue is the computational
cost of calculating the number of collisions in ALICE and LHCb at each intermediate step,
given that the number of iterations could be as high as ∼ 50000/100000. For this reason,
the first chapter focused on the computational cost of the optimized script for computing
the number of collisions.

An additional noteworthy aspect of this simulation, from an informatics perspective,
pertains to memory allocation. Given the substantial number of iterations involved and
considering that it is necessary to store not only the varying collision counts for LHCb
and ALICE but also all the filling schemes. Those are crucial for assessing compliance with
constraints and facilitating the continuation of the simulation from intermediate stages.
Consequently, meticulous attention must be paid to the memory storage of this simulation:

• One possible approach to efficiently save the intermediate step is by using numpy.array
to store the two boolean vectors representing the filling scheme of the two beams. Given
that the memory allocation for a boolean number is typically 1 byte, and assuming a
vector length of 3564 and a potential number of steps of approximately 50000/100000,
the required memory storage can be calculated. Approximately 713 megabytes.

• One trivial improvement can be obtained by leveraging the fact that the two beams,
except for the initial bunches employed in the tuning measurement, are situated in
identical slots. Instead of storing two separate boolean vectors for each beam, it is
feasible to save a single boolean vector that represents one beam and includes the
injection slot for the tune measurement of the other beam. This approach reduces the
required memory storage. Approximately 357 megabytes.

• An intriguing potential enhancement might involve leveraging a specific function from
the numpy library, namely numpy.packbits ([npbits]). This function facilitates the
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conversion of components within a binary-valued array into bits stored in an uint8
array. As a result, the memory allocation of the array can be reduced by a factor of
up to eight. Due to this rationale, employing this methodology results in a further
reduction in memory capacity. Approximately 56 megabytes.

• The approach employed in the final script differs as well. By leveraging the fact that
the various SPS batches, excluding the bunches used for tune measurements and the
INDIVs, consist of a series of PS batches with an equal number of bunches, it becomes
feasible to optimize storage by retaining only the initial and final slots of each SPS
batch. By using this information, along with the knowledge that the PS empty gap
covers 7 slots, it becomes possible to accurately reconstruct all SPS batches uniquely.
Given that the position slots are represented as integers and the ring has a length of
3564 slots, it is typically observed that there are no more than 20 injections in each
beam. By employing this methodology and storing the positions of the slots as unsigned
16-bit integers, it is feasible to attain a memory storage of around 8 megabytes.

The simulation aims to explore a wide range of potential configurations derived from
a predetermined filling scheme, with the objective of identifying the optimal configuration
among the numerous possibilities. To enhance the exploration of various configurations, it
is beneficial to conduct multiple parallel Monte Carlo simulations starting from a common
filling scheme. This approach allows for the examination of a wider range of potential con-
figurations. Additionally, when aiming to maximize the number of collisions in the LHCb
and ALICE detectors, it is more advantageous to select the most optimal filling scheme
in terms of collisions for these remaining two detectors. Subsequently, this selected scheme
can be employed as a starting point for subsequent simulations, thereby investigating the
potential for further improvements in collision outcomes.

Based on the aforementioned objectives, it has been determined that the implementation
of a Monte Carlo simulation using a three-maker approach is appropriate. This approach
involves generating a set of filling schemes, each of which produces different descendants.
During the transition from one generation to the next, only the filling schemes that result
in a greater number of collisions in ALICE at each value of number of collision in LHCb
(i.e., the most optimal ones) are selected. Subsequently, the next generation is regenerated
based on these selected filling schemes, and the process continues iteratively.

Based on the pragmatic and random nature of the Monte Carlo simulation, it is not pos-
sible to definitively claim that this simulation will yield the optimal solution. This assertion
is further weakened by the structure of the three maker, as the transition between consec-
utive generations is comparable to the algorithm of the steepest descent method, which is
known to potentially converge to local minima.

Results of the MonteCarlo simulations

The objective of this Monte Carlo simulation is to identify a more optimal configuration,
with respect to the number of collisions in LHCb and ALICE, based on the given constraints
of the optimization problem. Hence, this simulation, which investigates several potential
filling schemes, could serve as a valuable tool to numerically test the methodology, results,
and assertions presented in the preceding sections.

• As an initial step, we can conduct a test on the simplest scenario, which involves
symmetric detectors. This test will use the structure of the SPS batches, namely the
2nd case discussed in the preceding section. We will begin the Monte Carlo simulation
with the solution that we have previously determined to be the most optimized.
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Figure 2.7: Different values of number of collisions for LHCb and ALICE in all the con-
figurations reached by the Monte Carlo, considering LHCb shifted perfectly symmetric to
ALICE, starting from a used filling scheme in the LHC with SPS batches composed by 7
or 5 PS batches of 36 bunches. Starting the Monte Carlo simulation from the optimized
solution found in the previous section.

The Figure (2.7) demonstrates that the Monte Carlo results align with the findings
presented in the corresponding section. Specifically, the number of collisions observed in
ALICE and LHCb exhibits perfect equality. Furthermore, all the data points conform
to the diagonal line on the plane, indicating that the simulation does not identify a
more optimal configuration compared to the theoretically obtained.

• For the second test, a more realistic scenario may be examined by evaluating an actual
filling scheme that incorporates several SPS batches. All restrictions, except for the
INDIVs constraint, will be taken into account. This corresponds to the 3rd case that was
discussed. In the preceding section, a mathematical proof establishing the optimality of
the algorithm in terms of maximizing collisions in LHCb or ALICE was not obtained.
However, through the use of Monte Carlo simulations, various configurations were
numerically reached. The objective was to evaluate the algorithm’s performance and
determine if the outcomes align with the anticipated promising results. Consequently,
the simulation was started from the filling scheme determined by the algorithm.
The simulation depicted in the Figure (2.8) provides confirmation for the assertions
made in the preceding section. Specifically, approaching a more realistic scenario, it
becomes increasingly challenging to identify a single optimal solution that maximizes
all detectors simultaneously. This is due to the possibility of encountering a filling
scheme that results in a greater number of collisions in one detector while adversely
affecting the other. Furthermore, the Monte Carlo simulation successfully identified
more optimal configurations in terms of collision count in the ALICE experiment, but
not in the LHCb experiment, which was maximized by the algorithm. This can be seen
as a numerical validation of the algorithm’s effectiveness.
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Figure 2.8: Different values of number of collisions for LHCb and ALICE in all the config-
urations reached by the Monte Carlo, considering LHCb and ALICE in the right positions,
starting from a used filling scheme in the LHC with SPS batches composed by 7 or 5 PS
batches of 36 bunches without any INDIV. Starting the Monte Carlo simulation from the
optimized solution found with the algorithm for the maximization of the number of colli-
sions in LHCb in the previous subsection.

The implementation of this Monte Carlo simulation in a practical filling scheme with
INDIV has yielded the most intriguing outcome. Specifically, we have examined the most
common filling scheme employed during the RUN 3 in LHC in 2022. The selected filling
scheme used in the LHC was chosen from a comprehensive dataset. The simulation ben-
efited the Three Maker structure, as described earlier, employing three generations. The
process involved an initial longer step consisting of 80,000 shifts, followed by subsequent
generations with shorter steps of 3,000 shifts. This approach facilitated the exploration of
various configurations in a more expedited manner. Our predicted outcome would have been
that the filling scheme employed in the LHC would align with the boundaries of the Monte
Carlo simulation. Consequently, we would not have been able to identify a superior filling
scheme in terms of collisions within the ALICE and LHCb detectors. However, we could
have identified alternative filling schemes that would favour one detector over the other.

However, the outcome depicted in Figure (2.9) contradicted our first beliefs. The sim-
ulation successfully identified different configurations for the arrangement of SPS batches
that had the potential to increase the amount of collisions in both detectors concurrently.
Hence, it can be concluded that alternative filling schemes proved to be more efficient com-
pared to the scheme employed in the previous year in the LHC. In particular, this approach
has resulted in an increase of 2% in the number of collisions for each detector at maxi-
mum. Although this outcome may not be considered a pivotal finding or so overwhelming,
it is entirely cost-free, as it merely serves as a means to maximize our available resources
and expertise. Furthermore, we cannot guarantee that we have identified the most optimal
boundary, as indicated by the uncertainty related to our ability to attain the global optimum
through this simulation.
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Figure 2.9: Different values of number of collisions for LHCb and ALICE in all the
configurations reached by the Monte Carlo, considering LHCb and ALICE in the right
positions, starting from the most used filling scheme in 2022 in the LHC with SPS
batches composed by 5 or 3 PS batches of 36 bunches and two INDIV each beam.
Starting the Monte Carlo simulation from the filling scheme used in the LHC, rep-
resented in the plot by a black cross (2461b_2448_1737_1735, notation NumberOf-
Bunches_ATLAS/CMS_ALICE_LHCb), and the two blue points are two configurations
that fit on the boundary of the Monte Carlo simulations and have the same number of
collisions one in LHCb and the other in ALICE of the initial configuration.

2.4 Conclusions and following studies
The objective of this analysis was to employ optimization and algebraic techniques to cap-
italize on the problem’s symmetry and constraints, outlined using the model defined in
the Section (1.1.2), with the aim of maximizing the number of collisions among designated
detectors. A threshold has been established, beyond which the identification of an optimal
solution in analytical terms becomes non-trivial. Consequently, a more pragmatic shortcut
has been devised to overcome the limitations of our analytical capabilities, by studying the
problem using a brute force approach, exploiting the python optimization presented in the
Section (1.2). This approach has yielded noteworthy results and improvements to a filling
scheme that was implemented in the LHC. Moreover, this brute force strategy has been
employed for some experimental session, namely Machine Development, in 2023.

An extension of the aforementioned approach, which has been already incorporated in the
code, can be to use it not only for the analysis of protons filling scheme in the LHC, but also
for heavy ions. In this particular scenario, the problem’s structure undergoes modifications,
affecting both the objectives and the limitations. Specifically, in relation to the objective,
there is no longer a necessity to prioritize the maximization of ATLAS/CMS, followed by
LHCb, and finally ALICE. The hierarchical structure in this scenario has been completely
reversed. The objective is to optimize the performance of ALICE, ATLAS, CMS, and lastly
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LHCb, with the understanding that the performance of LHCb may potentially be lower as
that of the other experiments but at least larger than zero. Hence, it is no longer necessary
for the batches of the two beams to be injected into the same slots; rather, they might be
asymmetric, properly because maximizing the number of collisions in ATLAS/CMS is not
the first goal. The only need is that the injection remains consistent, ensuring an equal
total number of bunches between the two beams. Hence, the Monte Carlo simulation has
the capability to iteratively change the SPS batch positions of the two beams in diverse
manners.

Additionally, there is a slight modification in the limitations. In the case of heavy ions,
the intervals between bunches cannot be solely 25 ns (equivalent to 7.5 m). Instead, the
distance is required to be doubled at minimum. In the filling schemes employed for heavy
ions in recent years, the intervals between bunches were adjusted to 50 ns, 75 ns, and 100
ns. Consequently, this alteration in the spacing between bunches also affects the spacing
between PS batches, which varies depending on the specific scenario. For further information
regarding this extension, interested readers may refer to the work of ([Co16]).

The aforementioned expansion was used during the operational phase of ions in 2023
to delineate the optimal filling scheme options with respect to the constraints of the given
scenario.

An additional expansion, drawing inspiration from the work ([Fa21]), involves doing an
analysis of the aforementioned problem within the context of hybrid protons filling scheme.
In the present year, a novel filling scheme has been implemented for the first time in the
LHC during the running period. This scheme is characterized by the utilization of two dis-
tinct types of PS batches. The objective of this filling technique is to mitigate the adverse
phenomenon known as electron-cloud ([Zi02]).

Furthermore, an additional intriguing improvement can be implemented in the Monte
Carlo simulation. In particular, can be defined a useful metrics in the “collisions plane”. Af-
ter conducting the initial iteration of the Monte Carlo simulation, the selection process will
identify not only the most optimal filling schemes but also the one more distant from the ini-
tial one. Following this, the subsequent generation is regenerated using the aforementioned
selected filling schemes, and this iterative process persists. This alternative methodology
exhibits a higher degree of randomness compared to the previous one, and it slightly devi-
ates from the steepest descent method.

Finally, it would be intriguing to expand the scope of this study by using the Monte
Carlo simulation to not only include the shifting of SPS batches in the filling scheme, but
also the PS batches considering all the relevant constraints of the given scenario.
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Chapter 3

Mathematical model:
luminosity from emittance

The objective of this thesis is to employ various mathematical techniques to examine the
calculation of luminosity, aiming not only to maximize it but also to take advantage of
this value’s potential in deriving significant metrics that are essential for characterizing the
efficiency of the accelerator.

The luminosity formula presented in the Introduction (Eq. 0.1) comprises two primary
components: the number of collisions in each interaction point (nIP ), which was the focus of
analysis in the initial phase of this project aimed at maximizing it in various filling scheme
configurations, and the quadruple integral (Lcol), which will be the subject of investigation
in the subsequent part of this thesis.

The main goal of this part of the project is to derive the emittance, by the “inversion”
of the quadruple integral.

3.1 The beam emittance and its importance
In the field of accelerator physics, as seen in the Introduction 0.1 and in Chapter 1, a beam
consists of a collection of particles, moving all with the same total energy. In the LHC,
the beam within the pipe is not continuous, it is organized into clusters known as bunches.
These bunches consist of a collection of particles, typically protons, densely packed together,
and these bunches are spaced by ≈7.5 m. The number of particles contained within each
bunch is approximately 1e11. The beams, in a cycle, run a distance of ≈27 km, and they
are designed to collide with each other as many as possible. The engineering challenge of
this goal is particularly clear, considering that the transverse area of each beam is on the
order of 1 × 10−6 m, basically it’s like we would like to make collide two needles throwing
them from Geneva to Chicago.

To determine the number of collisions, as discussed in Chapter (1), we employed a model
that treated the bunches as discrete entities, disregarding the density profile. Instead, in
order to determine the luminosity, it is imperative to acknowledge that these bunches exhibit
varying density distributions in the three spatial directions, that represent the distributions
of the bunch particles, commonly considered Gaussian. Specifically. The emittance is closely
linked to the variance of these distributions, and this also explains its significant correlation
with the luminosity.

It is evident from this short introduction why it is important to measure this beam
parameter, and it will be expressed in the section how this correlation can be expressed
from a mathematical point of view.
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3.1.1 The definition of beam emittance
The emittance of a single particle as well as the emittance of a beam can be defined.

Courant-Snyder invariant or Single particle emittance

Using a classical mechanical approach, the goal, given a phase space trajectory, it is to
understand the invariant of the motion.

To establish the concept of emittance, it is necessary to formulate the equations of motion
using Hamiltonian formalism:  i̇ = ∂H

∂pi

ṗi = −∂H
∂i i = x, y, z,

(3.1)

where H is the Hamiltonian of the system. If it does not depend explicitly on time, as
shown ([dgaranin]), it represents the total energy of the system that is invariant; in this
case, there is only one phase space trajectory originating from any point in the phase space,
and distinct trajectories cannot cross. In this particular analysis, we examine the case where
the motion along each axis is separated from each other, the motion along the axes are all
decoupled. The idea is to find other factor function of x and px that is commutative with
respect to the Poisson brackets.

In particular, in a beam line where the longitudinal magnetic field is considered to be
negligible, the potential vector Φ⃗ of the magnetic field is perpendicular to the magnetic
field itself, indicating a longitudinal orientation. In the present scenario, the transverse
constituents of the particle momentum, denoted as p⃗ − eΦ⃗, are equal to the transverse
component of the conjugate momentum, represented as p⃗. Consequently, the derivative on
time x′ is linked to px through a linear relation:

px = mβrγrcx′

where m is the rest mass of the particles, the relativistic βr = v
c and γr = 1√

1−β2
are related

to the particle velocity and so to the particle’s energy. Hence, in a ring without acceleration
and devoid of longitudinal magnetic field, the particle’s energy remains constant, thereby
preserving the ratio between x′ and px. In this case, it is possible to define another invariant
of the motion in terms of x and x′, that is called the Courant-Snyder invariant (also referred
as single particle emittance):

ϵCS,x = (γ

2 x2 + αxx′ + β

2 x′2). (3.2)

where:

•
√

β represents the particle envelope per unit emittance,

• √
γ represents the particle divergence per unit emittance.

•
√

α is proportional to the correlation between x and x′.

these parameters, as it will be explained later are defined as optics function or Twiss pa-
rameters, each of them has a geometric interpretation as shown in Figure (3.1).

Specifically, the particle within the transverse plane undergoes oscillations along the ac-
celerator, as represented in Figure (3.1) on the left. It has been demonstrated in ([Se92])
that an individual particle, in a linear accelerator, traces an elliptical path in the transverse
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phase space, as represented in Figure (3.1) on the right. The area contained in this trajec-
tory in the phase space is equal, by a factor 2π, to the transverse emittance ϵ of a single
particle defined in Equation 3.2. It is possible to show that this definition is related to the
Hamiltonian mechanics, indeed it is possible to show that the Hamiltonian action from 3.1
is perfectly equal to the single particle emittance. In alternative phrasing, the concept of
single particle emittance quantifies the magnitude to which a particle’s trajectory diverges
from an ideal reference trajectory during its passage through the ring.

Figure 3.1: On the left of the picture is represented the particle’s trajectory with respect to
the reference one. It is worth noting its oscillating behaviour. On the right, its movement
in the phase space is represented. It follows an ellipse shape. The geometrical meaning of
α,β and γ parameters (the optics functions) is also depicted.

In a circular accelerator such as the LHC, it can be observed that the emittance is not
constant during the acceleration ramp. However, the energy normalized emittance

ϵCS,xN = βrγrϵx

is an invariant in a linear machine. The reason for this phenomenon is that while the product
of βr and γr increases in direct proportion to the momentum of the particle( px

mc = βrγr),
the emittance is proportional to the inverse of the momentum.

In the following Section, we will generalize the definition made for a single particle in the
case of an ensemble of particles, trying to keep its main characteristic, the invariance. For a
more comprehensive understanding of this definition and its generalization for an ensemble,
interested readers can refer to the works of ([Bu94]) and ([Hi21]) for further details.

Statistical beam emittance

The beam can be effectively modelled by the Hamiltonian system, wherein the system’s N
particles can be seen as a Hamiltonian system with 3N degrees of freedom, not including
the internal degrees of freedom of the particles. Consequently, the canonical phase space
should be considered to have dimensions of 6N, accounting for the momenta as well.

In this project, the model is simplified by assuming that the N particles are indistin-
guishable and do not interact with each other. Consequently, only the phase space of a
single particle is considered, which serves as a representative for the entire system. The 6N
phase space describes the state of the beam at a specific time t. This state is represented by
a collection of N points, denoted as Pj(t), with each point corresponding to an individual
particle.

In this particular investigation, we examine a scenario where the longitudinal motion
along the beam axis is fully decoupled from the motion in the transverse plane of the
beam axis. Consequently, the 6-dimensional phase space can be divided into a longitudi-
nal phase space consisting of 2 dimensions and a transverse phase space consisting of 4
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dimensions. Furthermore, assuming uncouple transverse motion, the transverse phase space
can be divided into two 2D phase spaces. Eventually, the 6-dimensional phase space un-
dergoes a reduction and simplification process, resulting in the formation of three distinct
2-dimensional phase spaces, each corresponding to a certain spatial component.

In the scenario of ignoring mutual interactions and coupling among the three coordinates
of a particle, it becomes feasible to establish the beam emittance for each individual degree
of freedom, that is invariant for all the phase spaces.

In this section of the thesis, the focus will be on the transverse emittance, so analysing
only those in the horizontal and vertical planes. Given the introduction of Courant-Snyder
invariant, the beam emittance can be defined as the average of the Courant-Snyder of the
whole ensemble

ϵ̄CS,x = 1
N

NØ
i=1

ϵCS,x,i

so that it will be also invariant. As indicated by Equation (3.2), the computation of emittance
cannot be only based on x and x′. The inclusion of the optics function is necessary, as it
is in the average definition. However, it is noteworthy that when the beam is matched
with the optics function at all instants t, meaning that the normalised particle distribution
in the ensemble remains statistically invariant under rotation, the optics function is no
longer necessary to define the statistical emittance. In this scenario, the average statistical
emittance ϵ̄CS,x converges to

ϵrms,x =

öõõõôdet

 x̄2 x̄x′

x̄x′ x̄′2

 =
ñ

x̄2x̄′2 − x̄x′2 (3.3)

For more details about this definition of matched beam distribution, it is possible to
read ([St20]). It is crucial to recognize that the provided definition of emittance refers to
the second central moment, as represented in Figure (3.2).

Figure 3.2: Beam particles represented by point in the (x, x’) trace space, where on the left
there is the tilted ellipse shape while on the right it is upright, ([Bu94]).

It is feasible to prove that the statistical emittance, specifically in instances when the
machine lattice is linear, remains constant in accordance with the motion equation. Consid-
ering that, LHC can be considered a linear lattice, this assertion of invariance is particularly
promising. For further elaboration, interested readers may refer to ([Bu94]).

However, this linearity hypothesis on the motion can be relaxed.
In situations when the number of particles, denoted as N , is quite large in a tiny volume,

the state of the particle beam can be described by a phase density function, denoted as
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f(q⃗, p⃗, t). This function allows us to determine the number of particles, dN , present within
an infinitesimally small volume at a specific time, t:

dN = f(q⃗, p⃗, t)d3qd3p (3.4)

There exists a significant theory concerning the temporal evolution of a system in an
infinitesimal volume, that holds crucial importance in generalizing the concept of emittance.
The evolution of a physical system can be conceptualized as a mapping from the phase space
onto itself, establishing a connection between two representative points at distinct moments
in time.

Theorem 3.1.1. Liouville’s theorem:When this evolution is governed by Hamiltonian
forces, the density function represented in (3.4) is constant when measured at the position
of a state moving through phase space

f(q⃗(t), p⃗(t), t) = f(q⃗(t′), p⃗(t′), (t′))

if the reader wants more details about the connection of this theorem and the beam
dynamics can read ([So88]).

From this theorem, the movement of the representative points within a 6-dimensional
phase space, as described before, can be compared to the motion of an incompressible fluid.
This analogy arises from the similarity between the phase density and the mass density of
the fluid.

Specifically, while taking into account the unique form of the equation of motion in
(3.1), the Liouville’s theorem applied to our phenomenon turns in stating that the volumes
encompassed by a given contour remain unchanged under the mapping function.

In particular, the theorem posits that the “local” beam emittance defined as the vol-
ume that contains all the particles in the phase space, considering that these particles are
clustered in an infinitesimal volume, remains constant during the beam’s evolution either
if the motion is linear or not. This principle applies whatever it is the Hamiltonian system
time-invariant.

3.1.2 The importance of emittance
The definition of emittance is important, as indicated by the concise explanation provided
below:

• Firstly, the efficiency of collisions is strictly connected with the beam envelope. The
objective is to minimize the latter in order to maximize the luminosity at the interac-
tion points, in order to have “better” bunch collisions. This means reducing the beam
size to an ideal point-like configuration, thereby enhancing the collision rate. Addi-
tionally, this reduction in beam size serves to improve the resolution of fixed target
experiments conducted along the ring. As anticipated, achieving this objective is not a
simple task, as there are numerous effects that are adverse to our objective of confining
≈ 1e11 particles within a limited space. As a type of example, the typical value for
the transverse emittance is ≈2.3 × 10−6 m.

• Secondly, it is one integral of motion of the system (3.1) in linear accelerators. This
plays a crucial role as it implies that this number, regardless of the circumstances,
must remain constant within the accelerator. Recognizing this aspect is essential as it
serves as the initial step for further calculations aimed at determining other param-
eters. Unfortunately, achieving this assertion in practical terms is unfeasible within
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real accelerators due to the intricate nature of various effects. In particular, the emit-
tance typically experiences an increase known as “emittance blow up”, which is often
attributed to noise sources, which contradicts the initial objective. For further elabo-
ration on this topic, interested readers may refer to the work ([Ku16]) for additional
information.
In the context of particle acceleration, it is crucial to replicate a near-zero pressure
environment in order to facilitate the attainment of light speed by the particles. To do
this, a vacuum chamber has been constructed within the vacuum chamber, containing
two distinct levels of vacuum. Understanding the spread of beam dispersion is crucial
in determining whether the beam is compatible with the dimensions of the vacuum
chamber. In the scenario of “emittance blow up”, it is imperative to comprehend the
dispersion of beam spread. This understanding is pivotal in assessing the compatibility
of the beam with the dimensions of the vacuum chamber and establishing the temporal
feasibility of beam utilisation during the operational phase.

• Thirdly, the detectors possess limitations in their ability to examine all potential parti-
cle collisions. In fact, they employ a discerning logic that selectively triggers and filters
certain collisions based on certain criteria, so enabling the analysis of only the most
significant and relevant collisions. In the context of “emittance blow up,” it is possible
for particles to undergo collisions with various facilities within the pipe, distant from
the interaction point. As a result, secondary particle showers may reach the detector,
leading to the triggering of unproductive collisions. This, in turn, can adversely im-
pact the efficiency of the detector analysis. This phenomenon isn’t going to have a
significant impact on the lifetime of the beam during the operational period. However,
it may compromise the efficacy of the goal analysis conducted by the accelerator.

3.1.3 Emittance measurement
Accurately measuring the longitudinal emittance can be achieved, relatively easily, by em-
ploying a monitoring technique to attain the desired value ([Ca09]). Conversely, measuring
the transverse beam emittance poses significant challenges due to the temporal variation
of the signal along the longitudinal axis in comparison to the stationary nature of the
transverse axis during the run. Additionally, the concentration of beam energy in the trans-
verse plane (approximately in the order of GeV) is significantly smaller than that along the
longitudinal axis ≈7 TeV.

To determine the transverse beam emittance, it is necessary to acquire the transverse
beam profile. This can be accomplished by accelerating the beam towards a stationary target
to gather the desired data. However, this approach results in the loss of the beam, thereby
compromising the primary objective of obtaining collisions and luminosity.

Unfortunately, performing an accurate measurement of the transverse emittance is chal-
lenging due to intrinsic limits of the adopted techniques, of the working assumptions, and
to the potential alterations to the beam’s transverse emittance caused by certain method-
ologies.

The development and improvement of the transverse emittance measurement techniques
has been the subject of extensive research for several decades, dating back to the 1950s. A
substantial body of literature exists, encompassing various methodologies and techniques.

Currently, the Wire Scanners are a typical instrument used for emittance measurement in
the accelerators, such as the SPS at CERN. The transverse beam profile and beam emittance
are determined by analysing the shower of secondary particles resulting from the interaction
between a rapidly moving thin wire and the beam. This interaction occurs within a vacuum
chamber, and the detection of the secondary particles takes place outside the chamber on an
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assembly. From this measurement it is possible to reconstruct the transverse beam profiles,
and so the transverse beam emittance. This particular approach is widely employed and
known for its high level of precision. However, a drawback of this strategy is that even when
the wire used is extremely thin, it still has an impact on the beam structure. This impact,
while minor, results in a modification of the beam profile, so altering the actual emittance
value from that moment onward.

An alternative methodology, commonly employed in the LHC, involves the utilization of
the Synchrotron Light monitor. This monitoring technique uses the Synchrotron radiation
emitted by the particle beam. The emitted radiation of the beam is then directed towards
a specialized stationary detector through the use of lenses. This detector, by examining
the properties of the light, such as its intensity and wavelength, can determine the trans-
verse emittance of the beam. For further elaboration on the aforementioned instruments,
interested readers may refer to the work ([Ku16]).

However, a definitive method for achieving transverse emittance that is as pristine as
the longitudinal counterpart has not yet been established. The most prevalent approach
employed in the accelerators thus far has been outlined. However, an extensive body of
literature exists on these analyses, encompassing a wide range of methodologies. Only a
select few have been mentioned here:

• Quadrupole Scans ([Mi03])

• Three-gradient measurements ([Ol13])

• IPM(Ionization Profile Monitor) ([St15])

The objective of this part of the project was to explore an alternative methodology for
determining the transverse emittance, without relying on any specific tool employed in an
accelerator, but rather employing a numerical approach starting from the measured lumi-
nosity. The objective is to invert the luminosity integral, so the transverse emittance of the
beam is obtained from the luminosity, which represents one of the most accurate measure-
ment in an accelerator. The relationship between luminosity and transverse beam emittance
is clearly apparent from a technical point of view, while its mathematical representation will
be derived in the following section.

3.2 Luminosity model computation
The purpose of this section is to define a general formula for the computation of luminosity
which contains some intrinsic accelerator aspects (crossing angle, offset, hourglass effect...)
but, with the aid of several assumptions, can address and compute luminosity in an opti-
mized manner. It is imperative for the purpose of this section of the thesis that this model
satisfies these two prerequisites, and the reasons for this will be elucidated in Section XYZ.

3.2.1 The luminosity integral
Luminosity is derived as a scalar output resulting from a convolution of multiple factors
that represent several features of the beam during collision. This notion encompasses var-
ious aspects, including beam emittance, energy, frequency of beam oscillation, number of
bunches, and the number of collisions between individual bunches, etc . . . . There exist two
discernible categories of luminosity, specifically the luminosity linked to a beam interacting
with a fixed target and the luminosity related with the collision of two beams. The aim of
this thesis is to conduct a comprehensive study of the second case.
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In this particular scenario, both beams operate simultaneously as the “target” and “in-
coming” beam, as represented in Figure (3.3).

Figure 3.3: The bunches before collision and thus displaced, in which the target of one beam
is precisely the position of the other. It is evident that, considering that in the accelerator
all the bunches are in a row, there will be other collisions away from the interaction point,
([Co14]).

The analysis of beam density distribution along the three axes plays a critical role in
understanding the dynamics of this specific collision scenario, especially when compared to
the scenario involving a fixed target. Moreover, it is important to acknowledge that the two
beams under consideration are not in a stationary state, but rather in motion with respect
to each other with a velocity comparable to that of light. Consequently, the degree of their
intersection is impacted not solely by the longitudinal positioning of the bunches, but also by
the time duration in which they intersect. The determination of luminosity in this context
requires the calculation of an overlap integral across the three spatial dimensions and the
temporal dimension. Consequently, it is reasonable to assert that

L = N1N2nbfr

ó
(v⃗1 − v⃗2)2 − v⃗1 × v⃗2

c2

ÚÚÚÚ ∞

−∞
ρB1ρB2dxdydzdt (3.5)

where ρ denotes the normalized beam distribution in a four-dimensional space. Let N
represent the quantity of particles per bunch, v⃗ denote the velocity, and nb indicate the
number of bunch collisions in the interaction point (IP). The variable fr represents the
frequency of collisions, whereas c denotes the amplitude of light speed. Lastly, the square
element is referred to as the Moeller factor.

This is the most commonly employed and straightforward approach to delineate the
luminosity in the context of colliding beams within a circular or linear accelerator. As the
inclusion of hypotheses is introduced into this definition, the mathematical formulation
progressively gets more intricate, especially when applying this definition to the specific
context of the LHC.for determining the track of the particle beam within the accelerator
ring

In order to specify the formula and render it analysable, let’s introduce some hypothesis.
However, before their assumption, it is necessary to establish some parameters that will play
a crucial role in the ultimate depiction of the model, focusing mostly on the LHC structure.

3.2.2 Introducing the parameters
Crossing angles

The utilization of beam velocity data is evident in the computation of luminosity. Specif-
ically, the exact velocities of the two beams in the LHC are not known, but they can be
determined from the energy of the beams in (eV ), as set by the accelerator, by calculating
the Lorentz factor derived from the Lorentz transformations of special relativity.
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One essential attribute of the LHC, which is pivotal for determining the track of the
particle beams within the accelerator ring and so also for their velocity, are the crossing
angles. The LHC accommodates nearly 3000 tightly packed bunches. If the two beams
were to remain confined within the same pipe, each bunch from one beam would collide
with all the bunches from the other beam at various locations along the ring where no
dedicated detector is present to capture the secondary particles, as shown in Figure (3.3).
Consequently, these particle collisions within the pipe give rise to multiple mechanical issues
within the accelerator. Hence, in order to mitigate the occurrence of multiple undesired
collisions, the two beams in the LHC are directed through separate pipes. As the beams
approach the interaction point, magnets are employed to deflect them at a crossing angle
of approximately ≈160 µ rad, as shown in Figure (3.4). This strategic deflection ensures
that the beams collide exclusively at the designated location of the detector, effectively
preventing any other incidental collisions.

Figure 3.4: The bunches before collision and thus displaced, rotated by a crossing angle, in
such a way that the bunches don’t collide Head-On apart from the interaction point. There
will be electromagnetic forces between the bunches apart from the interaction point, called
Long-Range collision, that are particularly smaller than the Head-On ones,([Co14]).

The crossing angle in the Figure (3.4) was implemented along the x-axis. This approach
can be readily expanded, particularly in the context of the LHC, where the crossing an-
gle usually vary from zero in one plane for each detector. The evaluation of the overlap
integral occurs in both the x and y dimensions. However, altering the collision angle re-
sults in a transition of the reference system to a rotated system. For further elaboration
on the computation, interested readers may refer to the works of ([Mu06]) and ([Co14])
for additional information. Drawing inspiration from various literary references and looking
into the functioning of the LHC, it is plausible to highlight, assuming one hypothesis, the
inherent symmetry of the problem. This assumption, which does not yield any discernible
disparities, states that the overall crossing angle Φ is composed of two rotations, namely
Φ/2 and −Φ/2, for each beam within the desired plane, as shown in Figure (3.4).

Offset

A modification of the previous structure is required in instances where the beams do not
collide directly, but instead have a slight transverse offset, as shown in Figure (3.5). This
scenario can be analysed with or without a crossing angle. The objective of this arrangement
is to induce a distinct collision pattern between the bunches, wherein the core of one bunch’s
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particle density collides with the tail of the other bunch.

Figure 3.5: The bunches before collision and thus displaced, rotated by a crossing angle and
shifted in the transverse plane, in this situation the target of the bunches of one beam isn’t
precisely the other bunch, and the collision Head-On didn’t happen any more, in particular
there will be a collision between a tail of one bunch with the core of the other one, ([Co14]).

For further elaboration on the computations in this particular example, interested readers
may refer to the works of ([Mu06]) and ([Co14]) for additional in-depth information. As
previously examined, and in order to highlight the structural symmetry, it can be postulated
in this instance that the overall offset (X1 for B1 and X2 for B2) consists of two opposite
offsets, namely µ0/2 and −µ0/2, for each beam within the designated plane.

Twiss parameters

From a theoretical point of view, it is widely acknowledged that the beam emittance holds
significant importance as a fundamental invariant within the system. It should be noted
that the variances (σx, σx′), that represent the beam size and the beam divergence, are not
fixed quantities. Specifically, they are subject to variation along the beam line, as they are
influenced by the magnet optics. To mitigate the influence of the magnets on the beam
characteristics, it is feasible to perform a normalization procedure:

σ2
x(s) = ϵx · βx(s)

σ′2
x (s) = ϵx · γx(s)

rσ2
x(s)σ′2

x (s) = −ϵx · αx(s)
where r is the correlation coefficient. These parameters that encompass all the influence

of the magnets are the same as the ones defined in the (3.1.1)

Hourglass effect

As previously mentioned, the variances in beam density within the specified plane can ex-
hibit shifts. We have accurately described the influence of the magnets on this phenomenon
to emphasize the theoretical invariance of the transverse emittance. In particular, the β
function exhibits variation in proximity of the interaction point:

β(s) = β∗ − 2α∗z + γ∗β∗ (3.6)
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where the notation involving the star signifies the evaluation of the function at a curvilin-
ear abscissa of zero (i.e. IP). This suggests a correlation between the densities of transverse
and longitudinal beams. The phenomenon described is commonly referred to as the Hour-
glass effect, which is attributed to the parabolic curvature of the β function in proximity of
the interaction point, as represented in the Figure (3.6).

The actual impact of this phenomenon would result in a modification of the luminosity
factor when the bunch length is comparable to the β∗. Otherwise, it can be regarded as
insignificant. Specifically, within the context of the LHC, the length of the particle bunch is
denoted as σz = 7.55 cm, whereas the beta function is represented as β∗ = 30 cm. Conse-
quently, it is crucial to account for this particular phenomenon. For further elaboration on
the computations, interested readers may refer to the works of ([Mu06]) and ([Co14]) for
more information.

Figure 3.6: Illustration of the hourglass effect showing how varies the beta function, consid-
ering alpha null, in the longitudinal axis around the IP for two different values of β∗ with
the LHC nominal bunch length of 7.55 cm, ([Co14]).

The many characteristics and effects that must be taken into account for a comprehen-
sive description of the problem have been described. By incorporating all the necessary
assumptions, it is feasible to establish a model for the luminosity of two colliding beams.

3.2.3 Model and hypothesis
The computation involved in the luminosity formula presents challenges, apart from the
convolution and quadruple integral. The difficulties arise from the complex nature of the
intrinsic properties of the beam density. These complexities make it impossible to obtain a
closed-form solution, and in some cases, it may be neither feasible to reduce the dimensions
of the integral.

Thus, in order to enhance the comprehensibility and accessibility of the formula, it is
necessary to establish certain assumptions beforehand.
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Factorization of distributions

Firstly, considering the structure of equation (3.5), it is more convenient to assume the hy-
pothesis of distribution factorization. This hypothesis suggests that the distributions along
the various geographical axes are independent and not correlated.

ρB =
Ù

i∈{x,y,z}
ρB

i , with B ∈ {B1, B2}

from this hypothesis, it is no longer feasible to take into account any sort of coupling
effects in the transverse plane ([Br91]). Consequently, the formula (3.5) becomes

L = N1N2nbfr

ó
(v⃗1 − v⃗2)2 − v⃗1 × v⃗2

c2

ÚÚÚÚ ∞

−∞
ρB1

x ρB2
x ρB1

y ρB2
y ρB1

z ρB2
z dxdydzdt (3.7)

Transverse dependence with respect to z

Furthermore, based on the paraxial approximation, which assumes that particle trajectories
are in proximity to the optical axis (i.e. curvilinear abscissa along the ring) and that devia-
tions from the axis are negligible compared to the ideal trajectory, the equation of motion
can be simplified. This simplification allows for the expression of these deviations as linear
transformations ([Hi21]). From this, without considering any other possible mechanism in
the accelerator, it’s feasible to assume that

ρB
x = ρB

x (x, z), with B ∈ {B1, B2}

ρB
y = ρB

y (y, z), with B ∈ {B1, B2}

ρB
z = ρB

z (z, t), with B ∈ {B1, B2}

For additional clarification on this idea, interested readers might refer to ([Sy07]). Based
on the aforementioned hypothesis, since ρz is independent of both x and y, the luminosity
formula (3.7) can be written like this:

L = N1N2nbfr

ó
(v⃗1 − v⃗2)2 − v⃗1 × v⃗2

c2

Ú ∞

−∞

Ú ∞

−∞
ρB1

z ρB2
z dt

Ú ∞

−∞
ρB1

x ρB2
x dx

Ú ∞

−∞
ρB1

y ρB2
y dydz

(3.8)

Beam density as normal distributions

Thirdly, it is worth noting that the beam distribution in each axis can be reasonably mod-
elled as a normal distribution. However, it is important to acknowledge that this approx-
imation is not entirely accurate due to the dynamic nature of the beam shape during the
operation of the LHC. Recent research ([Pa20]) has reported that the beam distribution
becomes more intricate, following a Q-Gaussian distribution. Nevertheless, for the purposes
of this project, the analysis is confined to the assumption of a normal distribution:

ρB
i = 1√

2πσi,B

e
−

(i−µi,B)2

2σ2
i,B , with B ∈ {B1, B2} and i ∈ {x, y, z}

where the µz,B = βrct, with βr that represents the relativistic beta from the Lorentz
transformations.
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The primary objective of this assumption is to simplify the 4-dimensional integral in x,
y, z, and t into a 1-dimensional integral in z. This is achieved by analytically solving the
integral in time and in the transverse plane, hence improving the efficiency of the numerical
integration for the unsolvable portion.

After performing the process of analytical integration, it is necessary to describe the mean
and variance of the beam distribution in the various planes as a function of z. Subsequently,
the final integral needs to be numerically integrated.

The closed form of the transverse integral on the x-axis can be represented based on the
results obtained through analytical computations. It is worth noting that the y-axis has a
similar structure.

xfactor =
√
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2 +µx1µx2−
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as this, it’s it is feasible to depict the outcome factor of the t-integration
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Finally, the formula for the computation of the luminosity is

L = N1N2nbfr
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(3.9)

Moeller factor as constant

Finally, it can be postulated that the velocities of the two beams (v⃗1,v⃗2) are not influenced
by changes in spatial or temporal variables. In the context of ultra-relativistic conditions,
where the velocities of the two beams satisfy v⃗1 = −v⃗2 and |v⃗1| = |v⃗2| = c, it has been seen
that the Moeller efficiency may be well approximated as 1. Consequently, the final formula
for the calculation of luminosity can be expressed as follows

L = N1N2nbfr
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The dependency of the emittance in this final luminosity formula is not immediately
evident. Consequently, the task of inverting the formula to get the transverse emittance
appears to be unachievable. To determine the relationship with the emittance, it is neces-
sary to establish the functional expressions of the average and standard deviation of the
transverse beam distributions with respect to z.
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Specifically, the mean value exhibits a z-linear trajectory as a result of the influence of
the crossing angle

µx(z) = µx0 + px(z = 0)z (3.11)

where µx0 represents the average value of µx at the interaction point, denoted as z = 0.
This average is associated with the offset of the beams.

Meanwhile, the standard deviation of a given quantity is influenced by two distinct fac-
tors, namely the betatronic component denoted as σβ and the off-momentum contribution
denoted as σ ∆p

p
. The first contribution is influenced by the magnetic quadrupole lenses’

strength, which selectively focus or defocus particles depending on their transverse posi-
tion. In contrast, the second factor describes the variations in particles’ transverse position
resulting from differential magnet-induced kicks due to their slightly disparate energy levels.
For further elaboration, interested readers may refer to ([Hi21]) for additional information.

The final representation of the standard deviation is

σx(z) =
ò

σ2
x,β(z) + σ2

x, ∆p
p

(z)

with

σx,β(z) =
ó

β(z)ϵx,n

βrγr

where it’s important to differentiate between the relativistic Lorentz parameter, denoted
as βr, and the β function, which is associated with accelerator optics, and

σx, ∆p
p

(z) = dx(z)∆p

p

This depiction provides a clearer understanding of the desired dependence and the un-
derlying structure of the transverse emittance with respect to the standard deviation.

3.2.4 Cost computation optimization
The calculation of luminosity, based on the model, involves performing a numerical in-
tegration on the final integral with respect to the longitudinal variable. This is neces-
sary as a closed-form solution does not exist. The resulting implementation in Python
was discovered ([PythonLumi]). This Python implementation utilises the widely-used tool
“scipy.integrate.quad” to calculate the numerical integral. The “scipy.integrate.quad” func-
tion employs quadrature formulas to approximate the desired values. To obtain this estima-
tion, the tool evaluates the integrand multiple times, typically around ∼ 1e2 evaluations. It
is important to note that these evaluations are not instantaneous.

This implies that employing this model to depict luminosity in an iterative manner or in
the context of data analysis, or representing this model as a function of certain parameters,
may not be instantaneous, mostly due to the intricate nature of computing the integrand
function.

To enhance the efficiency of this computation, the decision was made to utilise Numba.
Numba is a Just-In-Time (JIT) compiler for the Python programming language, specifically
developed to enhance the performance of numerical computations, particularly those involv-
ing NumPy arrays, functions, and loops. Numba accomplishes this objective by transform-
ing Python code into machine code that is highly optimised, hence enhancing performance
without necessitating code rewriting. Upon the initial execution of the Python compiler, it
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3.2 – Luminosity model computation

compiles the provided code and stores it in the memory. Consequently, subsequent execu-
tions of the same code, even with little modifications, will not necessitate recompilation of
all functions, as the compiler retains the compiled version in memory. If the reader desires
further information, they may refer to the source cited as ([Numba]).

The first code implemented in ([PythonLumi]) was modified to achieve the same result
while employing a different computational strategy. Specifically, the code was re-adapted
to optimise its performance using Numba. As a consequence, the computation was much
enhanced. Without the implementation of Numba, the integration process took ≈1×10−2 s.
However, with the inclusion of Numba, the initial compilation time increased to around one
second, but the subsequent integration time decreased significantly to ≈1 × 10−4 s. This
optimization in computational cost is evident when performing numerous integration, as
shown in the Figure (3.7).

Figure 3.7: Representation of the different average, over 2000 cases, for the computational
time of the quadrature method implemented in SciPy for the numerical integral in the lumi-
nosity formula between the case in which the integrand is defined with and without Numba.
The plots are represented over the relative error tolerance of the numerical integration.

In the figure, it has been performed the average of time over 2000 integration, restarting
the python kernel after transitioning from one value of the relative error tolerance of the
quadrature method to the next. By restarting the kernel, it becomes feasible to observe the
impact of the initial compilation. This is evident as there exists a discernible difference,
which is less than two orders of magnitude, between the two plots.
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Chapter 4

Inversion problem: emittance
from luminosity

The objective of this chapter is to employ the mathematical model proposed in the preceding
chapter to perform an inversion and derive the transverse emittance from the luminosity.
This goal is particularly interesting, as we aim to derive specific variables from a scalar that
is generated by the convolution of multiple factors and parameters. Firstly, it is apparent
that the problem at hand exhibits ill conditioning. Indeed, it is already evident, in a sim-
plification, that it is not feasible to reconstruct the original three addends solely from the
sum of three numbers. In this case, the final scalar represents the result of a notably more
intricate computation. However, the ultimate objective remains unchanged: to address and
resolve a problem that is characterised by ill conditioning.

4.1 Non-linear system to obtain the emittance
The previous Chapter (3.1) provided a comprehensive definition of emittance, highlighting
its meaning and elucidating its conceptual representation. Additionally, the chapter also
presented a review of relevant literature pertaining to the measurement of emittance. The
measurement of emittance poses a significant challenge in the field of accelerator physics,
particularly in the context of transverse emittance. Moreover, many of the existing measure-
ment techniques employed in accelerator physics have the potential to perturb the beam,
thereby altering the emittance value being measured. Furthermore, it is worth noting that
the majority of commonly employed measuring techniques exhibit a relative estimation er-
ror on the order of 10%. Consequently, the accurate determination of emittance remains an
unresolved issue in this field.

Despite the inherent complexity and non-linearity of the model, the objective is to ef-
fectively inverse it by leveraging the intricate structure of the machine under analysis. This
involves attempting to appropriately and realistically use the flexibility of the detectors,
even if just in simulated scenarios.

Upon concluding this introductory section, readers may find themselves contemplating
the methodology behind the use of luminosity and wondering the underlying motivations
for using it with respect to other factors on which the emittance has a significant impact.

4.1.1 The reason why it has been used the luminosity
The luminosity holds significant importance in accelerators, as it is as a scalar quantity
that reflects the efficiency of the accelerator. It quantifies the amount of information that

57
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can be obtained from the collisions of bunches throughout the entire operational period. By
convoluting diverse factors within a single value, the luminosity compactly represents the
intricate nature of collision phenomena.

Properly for this reason is one of the most accurate measurements in the LHC, it is
an indirect measurement derived from the secondary particles produced during the colli-
sion of particle bunches. Various detectors are employed for this purpose, with numerous
researchers dedicated to studying the most precise methods for its measurement. Extensive
literature exists on this intricate measurement process. Hence, the measurement in question
holds significant precision within the LHC considering its magnitude, estimated to be ap-
proximately e34, indeed this measurement is regarded accurate up to the third significant
digit (denoted as 1e − 3).

Numerous parameters influence this value, with some being precisely measured, others
manually controlled by the machine, and finally, the emittances, which are known to have
the lower accuracy measurements.

Hence, our objective is to invert a challenging non-linear model, which arises from the
convolution of a quadruple integral and that is influenced by numerous parameters. Fur-
thermore, the objective is to acquire a four-dimensional vector, that represents emittance
values for each plane and each beam, from a single scalar. This is a priori, even in the most
simple computation possible (a sum of different values), an ill conditioned problem

So, finally the primary idea is to identify a method for strategically conditioning the
problem, with the aim of becoming the impossible (an ill conditioned problem with mul-
tiple solutions for the inversion problem) difficult (a well conditioned problem particularly
complex with inversion well-defined and unique). The primary analysis revolves around the
appropriate manner in order to condition the problem.

4.1.2 The idea behind this approach
It is not feasible to derive a vector from a single scalar, namely the luminosity, by inverting
its model. The fundamental idea of this approach is to examine the collision from various
perspectives and viewpoints shifting some parameters from their initial values, in order to
establish a system which includes distinct and independent equations, which collectively
enable the determination of the desired unknowns. The equations presented herein will
be formulated from the difference between the luminosity value and the corresponding
model with that specific choice of parameters, named configuration system. In order to
have independent equations, it has been used the nonlinear dependence of luminosity on
various parameters, and by shifting these parameters using the flexibility of the detectors,
this collision has been analysed from multiple, non-redundant perspectives.

Inspiration of this approach

The motivation for this analysis derives from the vast amount of literature exploring the
use of luminosity values in various configurations for beam diagnostics, as in ([Hos18]). The
primary difficulty in this study lies in rejecting a main hypothesis, which is commonly seen
in the existing literature, that assumes an equal value of emittance across various beams
and/or planes.

The methodology employed in this study can be classified as a form of perturbation the-
ory. Its objective is to establish a more precise characterization of the relationship between
luminosity and four distinct values of emittance. This is achieved by manipulating certain
parameters, creating a system of equations, to highlight the underlying numerical depen-
dencies of the model. By employing the Nonlinear Least Squares method of SciPy ([LS])
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4.1 – Non-linear system to obtain the emittance

(denoted LS) on the system, the model’s various dependencies can be discerned, allowing
for the determination of the emittances.

Some challenges may arise in certain cases from the inherent complexity of the problem,
which exhibits numerous symmetries. Consequently, it becomes difficult to manipulate the
parameters in a strategic manner to effectively condition the problem. This difficulty is
particularly pronounced in the most general scenario, where the objective is to obtain four
distinct emittances. In this case, representing the penalty function of the LS algorithm as
a function of four variables is particularly intricate.

The concept of manipulating certain parameters to generate diverse equations for the
same collision is derived from a method studied by a Nobel Prize that is the Van der
Meer scan method, which was developed in 1968 and continues to be employed in the LHC
for luminosity calibration purposes. This method involves transversely sweeping the beams
across each other ([Ba21], [Wh10]).

Choice of the parameters

There exist various parameters that do not exhibit a linear relationship with luminosity,
including the offset, crossing angle, longitudinal standard deviation, β function, and α func-
tion. Specifically, considering the dependence of the parameters in the model, it is not
necessary to have the maximum degree of freedom when adjusting them. For instance, if
there is a need to modify the offset of the x-axis for the B1 component of the quantity
C without altering the offset of the x-axis for B2, the same outcome can be achieved by
shifting the B1 component of C/2 and the B2 component of -C/2. Due to the presence
of certain shifts that result in redundant information and the potential interconnection be-
tween the shifting parameters of the beams, a decision has been made to consistently change
both beams simultaneously. Specifically, altering the offset or crossing angle of B1 along a
given axis results in a corresponding shift in the opposite direction on the same plane for
B2. Conversely, when it pertains to the longitudinal beam size and the Twiss parameters,
modifying the parameter for B1 by C/2 produces an equivalent shift of C/2 for B2.

Furthermore, among the several potential parameters that can be shifted, certain ones
are favoured due to the simplicity of modification within the machine and their greater
compatibility for precise adjustment. The offset and crossing angle are relatively easier to
modify due to their precise calibration by the machine. Subsequently, the longitudinal beam
size is considered, followed by the Twiss parameters.

To enhance our comprehension of the underlying physics and the luminosity model, we
conducted experiments on various parameter combinations. Specifically, we will primarily
present the results pertaining to shifting of offset and crossing angle, while also considering
other cases.

To gain a distinct perspective on the collision during the shift on the parameter, and
taking into account that luminosity is precisely measured up to the 3rd significant digit
(1e − 3 of its nominal value), an intentional adjustment is made to a specific parameter in
both beams. This adjustment is designed to collectively impact the luminosity value by a
factor of 1e − 2, thereby enabling a more significant observation of a different measurement
value. This substantial alteration in the nominal value provides valuable information within
the mathematical framework that necessitates inversion. In the configuration system of the
LHC, this adjustment on the parameters that leads to a 1% change in nominal luminosity
has been demonstrated to be realisable from a practical and engineering standpoint.
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Non-linear Least Square method

To further clarify the subsequent section’s results plot, a brief introduction is provided
on the non-linear least squares method implemented in SciPy. Our use of this method is
intentionally simplified to ensure its intuitive nature.

By using the default parameters (penalty function, method for the Jacobian, method for
the minimization) and providing the system of equations that we aim to minimize from an
initial guess of the solution, a penalty function is formed:

Fpenalty (⃗ϵ) =
nØ

i=0
fi(⃗ϵ)

The penalty function is evaluated at the initial guess, as well as two other points that
are slightly displaced along the axis relative to the initial guess. The method evaluates
the plane that intersects these points to approximate the “slope” of the penalty function
and move along the direction of sharpest fall. The algorithm progresses in that particular
direction until it locates the optimal point, characterised by a reduced penalty function. It
then iteratively repeats this process, starting from the most recently discovered point, until
it finally arrives at the same point as the initial one of that step. For further information
regarding the features, parameters, and procedures, interested readers may refer to the
source ([LS]).

Based on the concise description provided, it is evident that there is a necessity to employ
the numba library in representing the model discussed in section (3.2.4). This is due to the
presence of multiple equations and many steps involved in the LS process, resulting in a
significant number of evaluations of the integrand. Consequently, this could potentially pose
challenges in accurately computing the inverse problem without using Numba, leading to a
substantial increase in the time required to resolve it, lasting hours or even days.

4.2 1st inversion problem, without errors
The derived formula for the luminosity exhibits a high level of complexity, incorporating
several inherent characteristics of the problem as well as factors related to the flexibility
of the machine. In virtue of this, it is imperative to partition the many input variables
of the luminosity expression, so achieving a more formal and beneficial framework for the
mathematical delineation of the problem.

To do this, the various parameters have been divided into three distinct clusters:

• The unknown variables, referred to as emittances, provide information about the sigma
value of the Gaussian beam profile along the axes, (⃗ϵ = (ϵx1, ϵx2, ϵy1, ϵy2))

• The variable parameters refer to those parameters that may be adjusted on the ma-
chine. These parameters are used to achieve different luminosity values for various
machine configurations, in order to have for a more comprehensive understanding of
the collision process, ( ⃗pvar = (µ{x,y,1,2}, p{x,y,1,2}, β∗

{x,y,1,2}, α∗
{x,y,1,2}, σz{1,2})), where the

notation of the subscript signifies (v{x,y,1,2} = vx1, vx2, vy1, vy2)

• The constant parameters refer to those parameters that must be set at fixed values
in order to ensure the proper functioning of the LHC according to its programmed
specifications. These parameters are either non-shiftable or, if they can be shifted,
their variations exhibit a linear relationship with the luminosity. Consequently, any
shifts in these parameters would not provide meaningful insights into the final system.
( ⃗pconst = (nb, fr, N{1,2}, H{1,2})), where H is the total energy of the beam
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4.2 – 1st inversion problem, without errors

L = L(⃗ϵ| ⃗pvar, ⃗pcost)

Starting from the initial choice of the parameters (initial configuration system), that
correspond to one equation, the primary objective is to identify a shift in diverse components
of pvar that will result in a modification of the initial luminosity value by 1%. Subsequently,
the model will be recalculated using these adjusted values of pvar, leading to a distinct
equation. Therefore, proceeding in this manner, a system of equations will be generated,
each, except the first one related to the initial configuration system, with the same luminosity
value but computed using different shifted parameters. The ultimate objective is to employ
a Non-linear Least Square method to reduce the complexity of this system, with the aim of
determining the desired unknown emittances.

It is noteworthy that the initial values assigned to pvar are primarily derived from the
actual values employed in the LHC. Consequently, there is no justification for seeking dif-
ferent machine conditioning between the two beams. In this analysis, all parameters will
therefore be equally set for both beams, or in some cases, set as opposites. As a result, any
shifts observed in the relevant parameters will adhere to this symmetry.

This approach is similar to a simulation, wherein the equations used in the LS method
are generated by the identical model. The manner in which this is accomplished is as follows:

• From the selected initial configuration system for a detector, a decision has been made
on which parameter to modify, resulting in a new value for that parameter.

• Selecting the four emittances randomly, which are assumed to be unknown. These
emittances are then provided as input to the model with the objective of calculating
the luminosity.

• The luminosity is acquired and afterwards used in the equation by subtracting it from
the model with the selected configuration system.

• The equation is incorporated into the system, subsequently it has been decided another
parameter for shifting, and the process restarts from the original stage.

In practise, when implementing this methodology within the accelerator, the control
room of the LHC may set the different values for the parameters. Moreover, it is important
to note that the luminosity value is derived from detector measurements rather than relying
on the model employed for equation composition.

The passage from simulation to a realistic method highlights the presence of some hy-
potheses that have thus far been omitted, but are nevertheless significant to emphasise:

• The accurate determination of luminosity without of random error: it has been assumed
that the value obtained from the model is perfect and devoid of any errors. However, it
is important to note that in practise, the luminosity value is obtained through machine
measurements, which inherently possess a random error of up to 1e − 3.

• The accurate determination of parameter values: it is contingent upon the assump-
tion that the values set from the machine control room correspond precisely to those
present in the physical accelerator facility. However, it is important to acknowledge
that these values may be subject to both random errors arising from the limitations
of the measurement tool’s precision, and systematic errors resulting from incorrect
calibration of the facility.

• The exact luminosity model: this is the most complicated hypothesis to deal with. It as-
sumes that the model accurately describes the phenomenon under analysis. However,
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this assumption is highly unrealistic given the intricate nature of the phenomenon,
which is influenced by numerous factors. Consequently, it is very difficult to develop a
model that precisely captures the intricacies of this collision. This model is a simpli-
fication of reality, indeed does not incorporate some known aspects. However, it has
the potential for extension and further development.

In this section, we will present some results based on the aforementioned hypotheses.
Subsequently, an attempt was made to eliminate at least the first hypothesis in order to
not only consider a more realistic scenario, but also to assess the sensitivity of the approach
that will be presented when incorporating realistic random errors on the luminosity value.

The upcoming presentation will present the results in ascending order of complexity, first
with the 1D (all equal emittances) scenario which is more straightforward to visualize, and
culminating with the 4D (four distinct emittances) scenario which is inherently impossible
to fully visualize due to its dimension.

The accelerator’s initial configuration, specifically the starting values of its parameters,
has been established based on the customary configuration system, as shown in the Table
(4.1).

parameters value

⃗pcost

frev 11 245 Hz
nb 2736

N1,N2 1.4e11
dispersion 0
tot energy 6800 TeV

⃗pvar

∆µ0x, ∆µ0y 0
∆θ0x 0 µrad
∆θ0y 320 µrad

βx1, βx2, βy1, βy2 30 cm
αx1, αx2, αy1, αy2 0 cm

σz1, σz2 35 cm

Table 4.1: Table representing the different parameters to determine the initial configuration
system.

where the notation ∆p means ∆p = pB1 − pB2. For the purpose of simplicity, it has been
assumed that there is no dispersion, leading to the conclusion that the transverse standard
deviation of the beam profile is solely influenced by the betatronic component.

4.2.1 1D case : analytical solution
The present scenario is the only one that is well conditioned in advance. The objective is
to determine a singular emittance (ϵ = ϵx1 = ϵx2 = ϵy1 = ϵy2) that is the same across all
planes and beams, from a single equation. This equation correspond to the computation
of luminosity within the initial configuration system. In this particular scenario, the com-
putation of the model becomes more feasible due to the ability to calculate the integral
presented in equation (3.10) along the longitudinal axis using analytical methods, resulting
in a closed-form solution. Indeed, in the scenario where the configuration system is assumed
to have a perfect head-on collision (with no crossing angle), that there is no significant de-
pendence of the transverse axis on the longitudinal one, and it is possible also to assume that
the relativistic beta value for both beams is identical and that the optics remain constant,
β(z) = β∗. Under these conditions, the equation can be reformulated as follows:
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Given that we are examining the scenario in which all the transverse emittances exhibit
equal values, this can be reformulated as:

L = N1N2nbfr

4πβrσ2 = N1N2nbfr

4πβrβ∗ϵ
(4.2)

Hence, the emittance can be determined using analytical means by inverting the sole
equation representing the luminosity value in the given reference scenario. Due to the well-
conditioned nature of the problem, it is unnecessary to consider collisions from several
perspectives, as the provided information is deemed adequate.

Furthermore, the underlying physics behind the structure can be deemed even more
intricate. Specifically, if we imagine that the crossing angle deviates from zero in one of the
two transverse axes (in the y-axis), it becomes feasible to employ the previously mentioned
formula presented in the previous chapter (3.11) within equation (3.10). From this new
luminosity formula, by maintaining the assumption that the relativistic beta is equivalent
for both beams and that the optics remain constant, it remains possible to calculate a closed
form solution, although it is more complex:
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Finally, it is worth noting that a closed form for luminosity calculation exists. However,
determining the emittance from this closed form is currently not a straightforward task.

4.2.2 2D cases
In this scenario, the objective is to increase the degrees of freedom in order to obtain two
distinct emittances within the beams or planes. In order to condition the problem, it is
necessary to introduce an additional equation.

There is a preference in choosing which parameter to shift in order to obtain a different
perspective of the collision. Indeed, as already indicated, certain parameters, especially
β∗ and α, pose challenges in terms of manipulation. Shifting these parameters is a non-
trivial task, requiring a complex technique, and accurately measuring their values is not
straightforward.

63



Inversion problem: emittance from luminosity

Among the various parameters that can be adjusted, there exist certain ones that are
relatively more straightforward to manipulate. Specifically, these parameters pertain to the
orbit of the beams, and they encompass the offset and the crossing angle of the two beams.

Another easily modifiable parameter that can be accurately measured is the standard
deviation of the longitudinal beam profile. This choice raises the question on whether altering
the longitudinal beam profile to manipulate luminosity values is truly indicative of the
system and can provide insights into the transverse beam profile. The answer is affirmative,
as the problem exhibits a strong coupling, so adjusting the longitudinal beam profile is
informative in order to effectively invert the problem.

In theory, it is feasible to use all of these parameters inside our configuration system to
achieve a problem inversion. However, the parameters most commonly employed are those
associated with the orbit of the beam.

Given that the problem is two-dimensional, it is sufficient to have only one additional
equation in addition to the one defined by the configuration system. Therefore, only one
parameter needs to be shifted. Specifically, the following results will be presented by shifting
only the offset on the x-axis (i.e., µx1 = µx1,0 + c/2, µx2 = µx2,0 − c/2). The selection of this
parameter is made arbitrarily, as the outcomes remain consistent regardless of the specific
parameter picked among those associated with the orbit. To demonstrate this, the final
result will be shown for all the orbit parameters.

In all the various numerical analysis, unless explicitly stated otherwise, we will use the
beta function in its wbore complexity as expressed by equation (3.6).

Different emittances in the two transverse axis

In this case, let us consider the hypothetical scenario where the emittances between the two
beams along the same axis are identical (ϵx = ϵx1 = ϵx2, ϵy = ϵy1 = ϵy2). We will use the
initial conventional configuration system with a non-zero plane crossing angle on the y-axis,
and afterwards with an offset shift on the x-axis, as previously depicted. By employing the
LS, it becomes feasible to attain the desired emittances. Figure (4.1) depicts the iteration
stack of the LS in order to attain the desired emittance on the system’s penalty function.

(a) LS stack on the penalty function in (ϵx,ϵy)
(b) Zoom of the LS stack on the penalty function in
(ϵx,ϵy)

Figure 4.1: At left, the representation of the stack in the square outlining the 20% of the first
estimation, at right, the zoom of the same plot on left.

The initial observation pertains to the distinctive structure of the penalty function, which
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exhibits a rift-like pattern similar to a line where all values converge towards zero. However,
this perception is misleading and arises from the differences in magnitude, as there exists
a substantial discontinuity within a limited range. This is evident in Figure (4.2), which
represents the penalty function values within this rift, clearly indicating the presence of a
global minimum along that. The observed rift can be explained by the non-zero crossing
angle of the y-axis. The penalty function used in this analysis is based on the least squares
method, where the two equations are obtained by a subtraction of a function and a scalar
value. Therefore, the dependence illustrated in Figure (4.2) is solely determined by the
luminosity function. The observed dependence is not unexpected, as it indicates that the
luminosity model exhibits greater sensitivity to variations in emittance within the plane
where there is no crossing angle; so where the two beams are perfectly aligned, and it is
logical that the collision in that axis would be more sensitive.

(a) Penalty function in (ϵx,ϵy)
(b) Penalty function in (ϵx,ϵy) on the rift
over the distance from the desired emittance.

Figure 4.2: At left, the representation of the penalty function in the 2D plane with the represen-
tation of the different LS iterations, at right, the plot of the penalty function in the dashed cyan
line of the plot on the left.

Another notable aspect to observe is the configuration of the stack, which clearly demon-
strates the presence of the intrinsic procedure and the local approximation technique em-
ployed to attain the global minimum, as described in (4.1.2). In the last iterations, as the
rift has been achieved, the penalty value of the function exhibits a notably tiny magnitude.
To emphasise this characteristic, the relative errors of the luminosity estimation in the last
20 iterations of the LS have been graphically represented in Figure (4.3). The plot clearly
illustrates the small order of magnitude of the relative error in the last iterations, despite
their imprecise estimation of epsilon.

To ensure the validity of the approach, the procedure was replicated for a total of two
hundred distinct selections of (ϵx, ϵy). Each component was chosen randomly within a range
of 20% relative to the initial estimate of 2.3e − 6. Figure (4.4) depicts the precision of this
approach, considering shifting approach not only in µx, but also in µy, θx, and θy

The Table (4.2) displays the average relative error and average calculation time for the
least squares method across all 200 emittances, for all potential orbit shifts.

For the purpose of clarity, the subsequent sections will solely present the final figure,
unless there are unusual cases that require otherwise, representing the accuracy of the
techniques across a total of two hundred cases.
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Figure 4.3: Relative errors on the luminosity value of the last 20 iterations of the LS, in
order to reach the best solution

(a) Shift for the offset in the x-axis (b) Shift for the offset in the y-axis

(c) Shift for the crossing angle in the x-axis (d) Shift for the crossing angle in the y-axis

Figure 4.4: Accuracy of the approach for two hundred random emittances ϵ⃗ = (ϵx, ϵy) chosen
randomly in the cyan square of 20% with respect to the initial guess, with different shifting
parameter

Different emittances for the two beams

In this scenario, let us consider the equal emittances between the two axes within the same
beam (ϵ1 = ϵx1 = ϵy1, ϵ2 = ϵx2 = ϵy2). We will employ the conventional configuration system
with a non-zero plane crossing angle on the y-axis, and afterwards with an offset shift on
the x-axis, as previously depicted. It is possible to see that, in comparison to the previous
case, it is not feasible to attain the desired emittance using the LS. Indeed, the iteration
stack of the LS is represented on the system’s penalty function, in the Figure (4.5), and it
is evident that it does not achieve the desired solution.

The analysis of the image reveals two distinct observations. Firstly, the LS successfully
reaches the rift, but experiences troubles in finding the desired emittance. Additionally, it is
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(ϵx,ϵy) without err LS time
µx 1.1658782597902616e-12 0.11228418350219727
µy 9.164000124614319e-14 0.04223036766052246
θx 9.041838560737559e-15 0.0397799015045166
θy 3.892071327841851e-13 0.06345224380493164

Table 4.2: Table representing the average for all the 200 samples emittances of the relative
error and computation time of the non liner LS estimation, for all the possible shifts of the
orbit.

Figure 4.5: Relative errors on the luminosity value of the last 20 iterations of the LS, in
order to reach the best solution

observed that the rift occupies an anti-diagonal position within the two-dimensional plane.
Consequently, the sum of the LS result’s components results is identical to the sum of the
desired emittances, indicating a potential symmetry issue. This deduction aligns with the
visual representation provided in Figure (4.6). From the computation of the penalty function
on the rift is illustrated in Figure (4.7), it can be observed that the values on the rift are
mainly null. Consequently, despite the addition of another equation, the problem remains
ill conditioned. This result, from the analysis of the luminosity model, isn’t so surprising.

From a technical point of view, the primary objective is to achieve distinct emittances
for each beam. However, the selected initial configuration system for the model is entirely
symmetrical, respecting this requirement across all parameters. Hence, the objective is to
discern a distinction between the two beams in the unknown variables, while assuming all
other parameters to be perfectly symmetrical. By symmetrically manipulating a parameter
that is inherently symmetrical, it was predictable that this action would not provide any
meaningful outcome. It is necessary to disrupt the symmetry inside the configuration sys-
tem. However, a pertinent question arises whether employing a single random parameter is
adequate for achieving this objective.

The model reveals a visible relation with certain parameters (β,ϵ), given that the stan-
dard deviation of off-momentum is zero
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(a) Shift for the offset in the x-axis (b) Shift for the offset in the y-axis

(c) Shift for the crossing angle in the x-axis (d) Shift for the crossing angle in the y-axis

Figure 4.6: Accuracy of the approach for two hundred random emittances ϵ⃗ = (ϵ1, ϵ2) chosen
randomly in the cyan square of 20% with respect to the initial guess, with different shifting
parameter

(a) Penalty function in (ϵ1,ϵ2)
(b) Penalty function in (ϵ1,ϵ2) on the rift
over the distance from the desired emittance.

Figure 4.7: At left, the representation of the penalty function in the 2D plane with the represen-
tation of the different LS iteration, at right, the plot of the penalty function in the dashed cyan
line of the plot on the left.
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This observation highlights the fact that regardless of the parameter selected to introduce
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4.2 – 1st inversion problem, without errors

asymmetry in the configuration system until the beta function is equal for both beams, the
least squares method always results in identical outcomes. This is due to the LS method’s
inability to discern any distinction in that particular dependence, resulting in estimating
the sum and producing the same value for both components. Therefore, it is necessary to
disrupt the symmetry into the configuration system by altering either the β∗ or the α∗.

From a practical point of view, this alteration presents a considerable level of complexity
due to the uncommon requirement of modifying the optical properties of the machine in
a distinct manner for B1 as compared to B2. This is primarily due to the fact that the
optical characteristics are inherent to the machine itself, rather than being specific to the
beam. Consequently, this request appears almost impractical from a technical standpoint.
However, in order to facilitate the LS in achieving the desired emittance, it is not necessary
to make significant modifications of the Twiss parameters. Specifically, a change on the
order of 1e−4 in the β∗ is required, which is smaller than 1e−3 of the original value chosen
in the Table (4.1). Hence, it is necessary to establish that β∗

1 = β∗ and β∗
2 = β∗ + 1e − 4.

The justification for this modification in the value of β∗ can be readily explained by noting
that the relative error associated to the measurement of this parameter exceeds 1e − 3.
Consequently, this discrepancy in the two beta functions is already a component of the
problem.

By implementing this slight shift in order to break the symmetry between the two beams,
the outcomes face a full transformation, resulting in the successful attainment of the desired
emittance, as illustrated in Figure (4.8) and Figure (4.9)

(a) Penalty function in (ϵ1,ϵ2)
(b) Penalty function in (ϵ1,ϵ2) on the rift
over the distance from the desired emittance.

Figure 4.8: At left, the representation of the penalty function in the 2D plane with the represen-
tation of the different LS iteration, at right, the plot of the penalty function in the dashed cyan
line of the plot on the left. Both cases when the configuration system in which the beta functions
between the two beams are different(β∗

1 = β∗ and β∗
2 = β∗ + 1e − 4).

The Table (4.3) displays the average relative error and average calculation time for the
least squares method across all 200 emittances, for all potential orbit shifts.

4.2.3 4D case: realistic case
In this particular scenario, all the emittances have distinct values, this renders the observa-
tion of the penalty function’s behaviour across the unknown variables more complex. This
is due to the fact that the function would be plotted within a five-dimensional space. There-
fore, when necessary, only a partial representation of this function will be depicted, focusing
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Inversion problem: emittance from luminosity

(a) Shift for the offset in the x-axis (b) Shift for the offset in the y-axis

(c) Shift for the crossing angle in the x-axis (d) Shift for the crossing angle in the y-axis

Figure 4.9: Accuracy of the approach for two hundred random emittances ϵ⃗ = (ϵ1, ϵ2) chosen
randomly in the cyan square of 20% with respect to the initial guess, with a configuration system
in which the beta functions between the two beams are different(β∗

1 = β∗ and β∗
2 = β∗ + 1e − 4),

with different shifting parameter

(ϵ1,ϵ2) without err LS time
µx 4.3193644987350564e-09 3.666034460067749
µy 1.313205239961527e-10 0.6698188781738281
θx 1.8395420483684256e-07 5.77882194519043
θy 1.6103278738191488e-07 5.784540414810181

Table 4.3: Table representing the average for all the 200 samples emittances of the relative
error and computation time of the non liner LS estimation, for all the possible shifts of the
orbit.

on the projection around our initial guess of the least squares.
The objective in this case is to apply the knowledge gained from prior cases to achieve

a favourable outcome in this most general scenario. Therefore, based on the previous case
analysis, the initial configuration system employed is the one where the β∗ functions vary
between the beams. Given the presence of four unknown variables in this particular sce-
nario, it is insufficient to shift a single parameter. Indeed, it can be easily demonstrated
that only adjusting the offset along the x-axis will not yield the intended outcome. From a
mathematical perspective, it is particularly predictable due to our objective of determining
four distinct unknowns from a system consisting of only two equations leading to an under-
determined system. Hence, in order to achieve the desired solution, it is necessary to have
a system consisting of a minimum of four well-conditioned equations. In order to enhance
computational efficiency and facilitate notation, we will use a system of five equations. This
system will include shifting for both the crossing angle and the offset for both axes. However,
empirical testing has demonstrated that identical outcomes may be attained by adjusting
only three out of the four aforementioned parameters. In this particular case, it is intriguing
to examine two distinct configurations of the machine.
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4.2 – 1st inversion problem, without errors

Plane crossing angle

This example under analysis is considered to be the most realistic, as it involves a non-zero
plane crossing angle along the y-axis, as well as distinct emittance values for each beam
and for each axis. Inspiring on the previous cases, a noteworthy favourable outcome can
be observed. This is evident from the visual representations provided in Figures (4.10) and
(4.11), which clearly demonstrate the efficacy of the LS approach in achieving the desired
emittances.

Figure 4.10: Relative errors on the luminosity value of the last 20 iterations of the LS, in
order to reach the best solution

One noteworthy observation is the repetitive nature of the plot of the projections of the
penalty functions around the initial guess. It is intriguing to note that there exist six distinct
pairs of plots that exhibit perfect symmetry. Consequently, we will select only six of these
interesting plots for further analysis, those that are underlined in red in Figure (4.10).

The table (4.4) displays the average relative error and average computing time for the
LS method across 200 different emittances, with all orbit parameters being shifted.

HO collision (both crossing angle null)

One intriguing scenario that is never used in the LHC involves collisions conducted with a
null crossing angle in both planes. According to the previous chapters, certain parameters
are considered preferable to be shifted. For this reason, all the previously presented results
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Inversion problem: emittance from luminosity

Figure 4.11: Relative errors on the luminosity value of the last 20 iterations of the LS, in
order to reach the best solution

(ϵx1,ϵy1,ϵx2,ϵy2) without err LS time
orbit 1.2571219944678352e-09 5.893694162368774

Table 4.4: Table representing the average for all the 200 samples emittances of the relative
error and computation time of the non liner LS estimation, obtained shifting the different
parameters of the orbit

were solely achieved by shifting the orbit (crossing angle and offset). However, it is worth
noting that modifying the optics (β∗ and α∗), would yield similar outcomes. The only two
exceptions to this are: the 2D scenario where the two beams possess different emittances
with the initial configuration system with identical optics and this particular scenario. In
the latter case, when the orbit is shifted, the LS is able to get the desired emittances, as
demonstrated in Figure (4.12). However, when the optics are shifted, as shown in Figure
(4.13), the LS may encounter certain difficulties. This result, considering the physics behind
the collision, is not so surprising.

In particular, the Twiss parameters have been formally defined as optical functions that
are associated with the magnets along the accelerator ring. Given that one can be derived
from the other two, our analysis will solely concentrate on the parameters β∗ and α∗. The
first one pertains to the focusing or defocusing capability of the quadrupole magnets. In-
deed, as depicted in Figure (3.6), decreasing the value of β∗ increases the focusing ability
of the quadrupole magnets. On the other hand, the second parameter is primarily associ-
ated with the position of the minimum, illustrated in Figure (3.6). When it deviates from
zero, the origin of the parabola shifts in relation to the interaction point. Based on the
concise explanation provided regarding the parameters, it is not surprising that the desired
emittance cannot be achieved through the LS shifting of optics in this particular scenario.
This is primarily due to the absence of a crossing angle, wherein the bunches are already
optimally aligned. Consequently, introducing a new configuration and equation shifting the
optics function would not yield additional insights into the overall system, resulting in an
under-conditioned problem.
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4.3 – 2nd inversion problem, with random errors in the Luminosity output

Figure 4.12: Relative errors on the luminosity value of the last 20 iterations of the LS, in
order to reach the best solution

Figure 4.13: Relative errors on the luminosity value of the last 20 iterations of the LS, in
order to reach the best solution

4.3 2nd inversion problem, with random errors in the
Luminosity output

The reason underlying this approach aligns with the introduction of Section (4.2). The ideal
setup of the luminosity formula is as follows:

L = L(⃗ϵ| ⃗pvar, ⃗pconst)

Shifting the variable ⃗pvar, we aim to derive a set of equations that can be minimized
using the Non-linear Least Square method. In the previous section, the comparison between
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Inversion problem: emittance from luminosity

this simulation and a practical approach on the accelerator has revealed the presence of
some assumptions made by the simulation that may not be immediately apparent. The
purpose of this section is to eliminate one of these hypotheses, specifically the assumption
that the value of luminosity is accurately measured. Instead, it will be assumed that there
is a random error associated with its measurement. This generalization slightly modifies the
underlying structure of the simulation:

• From the selected initial configuration system for a detector, a decision has been made
on which parameter to modify, resulting in a new value for that parameter.

• Selecting the four emittances randomly, which are assumed to be unknown. These
emittances are then provided as input to the model with the objective of calculating
the luminosity (L).

• Obtained the luminosity L, it is combined with a random error derived from
a random sample following a normal distribution with mean µ = 0 and
standard deviation σ = L∗1e − 3.

• The value of the luminosity with random error, L + ∆L it is used in the
equation, by subtracting it from the model with the chosen configuration
(the one that when subjected to randomly chosen emittances returns L).

• The equation is incorporated into the system, subsequently it has been decided another
parameter for shifting, and the process restarts from the original stage.

The simulation has resulted in the development of a system wherein each equation ex-
hibits a diverse sample error in luminosity value compared to the subtracted model.

The idea of this section is to test the proposed approach, as the previous section re-
vealed fascinating outcomes with a nearly perfect estimation of the desired emittances. The
objective of this section is to evaluate the sensitivity of this approach to random errors in
luminosity, with the aim of determining the impact on the estimation of emittances. This
error pertaining to luminosity, given the complexity of its measurement, is notably minimal.
This is the primary reason why we have chosen to use luminosity as the central element of
this inversion.

Given the recent inclusion of a random error in the luminosity model, the task of using
the luminosity formula and the underlying physics to determine the cause for the different
outcomes in the LS has become more challenging. Due to these reasons, this particular phase
of the project will prioritise a “numerical” approach rather than exploring into the physics
behind. Indeed, it seeks to use the penalty function’s representation in many domains to
address and overcome various challenges.

To evaluate the impact of random errors on luminosity in the simulation, the first two
examples will be examined without modifying the approach, in order to observe how the
estimation is affected.

4.3.1 Adding the errors in the approach used before: 1D case
The initial situation under examination pertains to the well-defined scenario of a single
equation for a solitary unknown. It is assumed that the emittances, both across planes and
beams, are identical (ϵ = ϵx1 = ϵx2 = ϵy1 = ϵy2). Based on the preceding section, it has been
established that the integral inside the luminosity formula can be evaluated in a closed form.
Therefore, it was unnecessary to employ the least squares method to address the problem
in question, as it may be resolved using analytical means. From this well-definition of the
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4.3 – 2nd inversion problem, with random errors in the Luminosity output

problem, it has been expected that this particular scenario will exhibit minimal sensitivity to
random errors in luminosity. Indeed, the sensitivity is expected to be exclusively determined
by the dependence on emittance in the luminosity closed form. In the present context, it
is possible to resolve the equation with analytical techniques. Nevertheless, in order to
maintain consistency with the other cases, also this has been analysed by employing the
least squares method. This method enables a computational analysis of the influence on
the penalty function. The penalty function for different values of ϵ is depicted in Figure
(4.14), displaying both the presence and absence of error in the same scenario. The use of
this graphic depiction facilitates a comprehensive comparison of the two cases.

(a) Penalty function in ϵ (b) Zoom of the penalty function in ϵ

Figure 4.14: At left, the representation of the penalty functions with and without error, with
underlined the respective minimum, at right the zoom of the functions on left near the minimum
with the representation of the different iteration of the LS on the penalty function with error.

The Figure (4.14b) illustrates that the penalty function with error in the 1D case displays
a noticeable displacement from the ideal function. This displacement has the potential
to result in an inaccurate assessment of the ideal ϵ. The estimation exhibits a relative
inaccuracy of approximately 2‰, that is particularly promising given that the current
instruments employed for emittance estimation in the LHC possess a 10% margin of relative
error.

4.3.2 2D cases
The second case presents a more intricate challenge, as it is no longer straightforward to
assert that the problem is well-defined. In this scenario, we are assuming that the emittances
are the same for the beams but differ on the planes, (ϵx = ϵx1 = ϵx2 and ϵy = ϵy1 = ϵy2). In
this particular scenario, the integral inside the luminosity formula hasn’t a closed form, hence
rendering it impossible to analytically compute the inversion of the luminosity. Based on
the complexity of this situation, it is expected that the relative inaccuracy of the emittance
estimation is at least equal to, if not bigger than, that of the prior case. In each of the several
figures presented within this subsection, unless otherwise specified, the desired outcome will
be attained by shifting the offset on the x-axis for both beams, as illustrated in the Section
(4.2.2). The Figure (4.15) always illustrates the same approach with two different random
error on the luminosity, properly to visualize the sensitivity of the approach defined.

The image clearly demonstrates that when the order of the error increases towards our
desired value, the LS method is notably misleading in estimating the desired emittance. The
least squares method is able to accurately identify the rift, approaching the desired value
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(a) Penalty function in (ϵx,ϵy), with random er-
ror sample from generated by a normal distribu-
tion with σ = L∗1e − 6

(b) Penalty function in (ϵx,ϵy), with random er-
ror sample from generated by a normal distribu-
tion with σ = L∗1e − 3

Figure 4.15: At left, the representation of the penalty functions with error of the order 1e-6, with
underlined the ideal value of emittance and the different iteration of the LS in order to reach the
goal value, at right the representation of the penalty functions with error of the order 1e-3, with
underlined the ideal value of emittance and the different iteration of the LS in order to reach the
goal value. Both the approach has been done in a configuration system with plane crossing angle
on the y-axis.

ϵx with an error of 2‰. However, when it comes to the deviation along the rift, the LS
method fails to achieve the desired value ϵy and reaches the boundary of the LS, leading to
a total relative error, for the entire vector, of 20%. The present error is similar to the one of
the employed devices within the accelerator. However, our primary objective is to enhance
the accuracy of the emittance estimation.

Based on this concise study, it can be asserted that even in the two-dimensional sce-
nario with error, it is possible to observe the inherent pathological structure of the penalty
function. The aforementioned misleading estimation is not directly relevant to the problem
at hand, as it remains well-conditioned. However, the approach is significantly affected by
a strong sensitivity to random errors in luminosity, which in turn results in an undesired
unique global minimum of the penalty function.

4.3.3 Approaches to overpass this sensitivity
The objective of this section is to use the penalty function’s structure to develop an approach
for effectively mitigating this sensitivity.

One potential strategy to consider is to systematically increase the quantity of samples
within the selected configuration. When selecting a configuration system for a specific de-
tector, it is important to note that in the case of a circular collider, it is feasible to achieve
consistent measurements of luminosity through numerous repetitions, each with a different
random error. This is primarily due to the high velocity of the beam, which approaches the
speed of light. This would result, for the law of large numbers, in a reduction of the relative
error associated with emittance estimation. This is primarily due to the mitigation of the
effect of the random errors in luminosity on the overall penalty function. Unfortunately,
this approach is not feasible due to our objective of achieving the appropriate emittance
values in the shortest possible time. Waiting for extended periods in a particular configura-
tion to acquire diverse data is a luxury that is beyond our capability. The optimal strategy
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should establish a connection between the objectives of acquiring additional measurements
in a single configuration system and of accelerating the transition between the different
configuration systems.

The attainment of this ideal strategy may appear unachievable due to the simultaneous
pursuit of two conflicting objectives, but this argument is not entirely accurate. The tran-
sition between two configuration systems is achieved through a constant shift in a detector
that observes bunch collisions occurring on the order of nanoseconds. The detector, prior to
reaching the desired configuration system, observes collisions between bunches in numerous
potential configurations. Unfortunately, a full review of thousands of configurations, before
arriving to the desired one, is unfeasible due to the prevalence of rumours and errors below
a certain threshold. Consequently, the effort would yield no meaningful results. Given the
presence of a random error on the luminosity with a maximum magnitude of 1e − 3, and
taking into account that the desired shifts in the parameter would result in an impact on the
luminosity value of 1%, the objective is to select just 10 configurations from the numerous
available options. Each of these configurations would induce a luminosity alteration of 1‰.
By adopting this technique, it becomes feasible to increase the quantity of luminosity mea-
surement, so moving closer to the objective of mitigating the impact of random errors on
the final penalty function, without affecting the transition between configurations system.
Unfortunately, as will be elucidated afterwards, this particular strategy, without further
techniques, is insufficient to achieve the desired emittance.

Different emittances in the two transverse axis

In this particular case, we are examining the identical scenario as previously discussed(ϵx =
ϵx1 = ϵx2, ϵy = ϵy1 = ϵy2), with a plane crossing angle on the y-axis. Furthermore, instead of
solely focusing on the shifted configuration system and the initial one, we are incorporating
other nine configurations that can be precisely measured within the transition, based on
the insights gained from the prior analysis. This slightly modifies the underlying structure
of the simulation:

• From the selected configuration system for a detector, a decision has been made
on which parameter to change by 1‰the luminosityin relation to the config-
uration system, resulting in a new value for that parameter.

• Selecting the four emittances randomly, which are assumed to be unknown. These
emittances are then provided as input to the model with the objective of calculating
the luminosity (L).

• Obtained the luminosity L, it is combined with a random error derived from a random
sample following a normal distribution with mean µ = 0 and standard deviation
σ = L∗1e − 3.

• The value of the luminosity with random error, L + ∆L it is used in the equation,
by subtracting it from the model with the chosen configuration (the one that when
subjected to randomly chosen emittances returns L).

• This equation is added in the system, afterwards using the same parameter with
the same value, and then resetting the process.

Unfortunately, using this approach is insufficient, as the system fails to entirely eliminate
the luminosity error over the penalty function. Consequently, the LS method does not yield
the desired emittance, as depicted in Figure (4.16).
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(a) Penalty function in (ϵx,ϵy), with random er-
ror sample from generated by a normal distribu-
tion with σ = L∗1e − 3, with two vertical lines
that has the abscissa of the estimated emittance
and of the true emittance

(b) Penalty function in ϵy, at ϵx fixed the mini-
mum found with the LS is smaller than the de-
sired emittance

Figure 4.16: At left, the representation of the penalty functions with error of the order 1e-3, with
underlined the ideal value of emittance and the different iteration of the LS in order to reach the
goal value, and with two vertical lines that has the abscissa of the estimated emittance and of the
true emittance. At right the representation of the penalty functions over the ϵy of the two lines of
the plot on left, with underlined the ideal value of emittance and the different iteration, on both
the functions, of the LS in order to reach the goal value. Also, if complicated to notice, the black
function is smaller than the red one in order of 1e29.

In addition to the aforementioned undesirable outcome, it is interesting to observe an-
other significant aspect. The difference between the penalty function’s structure in (4.16)
and the one depicted in Figure (4.15) is apparent. Specifically, the rift in Figure (4.16a) is
noticeably wider compared to the preceding figure, and it contains values that are not so
small. The observed distinction is not solely attributable to the random selection of errors or
goal emittances, but rather is mostly influenced by the chosen approach. Indeed, remarking
the structure of the LS, as shown in the subsection (4.1.2), the overall penalty function is
obtained by squaring the sum of different 11 functions that share the same structure with
the rift. However, considering that each of the 11 equations in the system contains a distinct
random error, this rift slightly shifts its position along the x-axis, but particularly affecting
the location of the minimum along the y-axis. The reason for the increased thickness of the
final penalty function’s rift, as well as the larger values it contains, can be attributed to
this factor. Additionally, due to the same underlying factor, the penalty function exhibited
by the two lines within the rift, as depicted in Figure (4.16b), demonstrates a smoother
behaviour compared to previously illustrated functions.

Hence, the proposed approach is insufficient in achieving the target emittance mostly due
to the intrinsic structure of the penalty function, which exhibits a rift along the y-axis. Given
the reasoning behind this rift exposed in (4.2.2) and the underlying concept of the LS method
in the SciPy library (4.1.2), it may be interesting to explore the possibility of mitigating
the aforementioned rift phenomenon by using the data from two detectors simultaneously,
rather than relying solely on the information from a single detector. Specifically, within the
Large Hadron Collider, the two detectors that generate the highest luminosity are ATLAS
and CMS. These detectors experience the same collisions between bunches of particles, with
the main difference being that the planes in which the crossing angle is non-zero are precisely
opposite to each other. Changing the plane for crossing angle results in a different penalty
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function, as depicted in Figure (4.17a). It is worth noting that while the specific value of
this angle in each detector may vary, the orientation of the planes remains opposite, with
one corresponded along the x-axis and the other along the y-axis.

Based on the assumption that the emittance of the beam remains constant during its
traversal of the pipe, it is feasible to employ two distinct initial configuration systems. One
system involves a non-zero crossing angle in the y-axis, while the other system involves
a non-zero crossing angle in the x-axis. By using the aforementioned approach for both
configuration systems, a system consisting of 22 equations can be derived.

By employing this methodology, it is feasible to achieve the necessary emittance using
the LS, as illustrated in Figure (4.17b).

(a) Penalty function in (ϵx,ϵy), with random er-
ror sample from generated by a normal distribu-
tion with σ = L∗1e−3, with plane crossing angle
in the x-axis

(b) Penalty function in (ϵx,ϵy) generated with
two different initial configuration system (sys-
tem of 24 equations), with random error sam-
ple from generated by a normal distribution with
σ = L∗1e−3. So this is the final plot given by the
“sum” of the ones in Figure (4.17a) and (4.16a)

Figure 4.17: At left, the representation of the penalty functions with error of the order 1e-3, with
underlined the ideal value of emittance and the different iteration of the LS in order to reach
the goal value, with plane crossing angle in the x-axis. At right the representation of the penalty
functions with error of the order 1e-3 from two initial configuration system with different plan of
crossing angles, with underlined the ideal value of emittance and the different iteration of the LS
in order to reach the goal value.

To ensure the validity of the methodology, the procedure was replicated for a total of
two hundred distinct random selections of (ϵx, ϵy). Figure (4.18) depicts the precision of this
approach, considering shifting all the orbit parameters.

The Table (4.5) displays the average relative error and average calculation time for the
least squares method across all 200 emittances, for all potential orbit shifts.

Different emittances for the two beams

Unfortunately, as previously analysed also in this case (ϵ1 = ϵx1 = ϵy1, ϵ2 = ϵx2 = ϵy2) em-
ploying a single initial configuration and the described approach is inadequate to achieve the
desired emittance. Exploiting that in the LHC there are different detectors, it is feasible to
use two distinct initial configuration systems to achieve the desired objective. The challenge
related to this technique is in identifying an alternative initial configuration that exhibits
an identical shape to the one depicted in Figure (4.19a), but with a slightly curved “rift”.
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(a) Shift for the offset in the x-axis (b) Shift for the offset in the y-axis

(c) Shift for the crossing angle in the x-axis (d) Shift for the crossing angle in the y-axis

Figure 4.18: Accuracy of the approach for two hundred random emittances ϵ⃗ = (ϵx, ϵy) chosen
randomly in the cyan square of 20% with respect to the initial guess, with different shifting
parameter, considering a random error of 1e-3 on the luminosity value.

(ϵx,ϵy) with err LS time
µx 0.00010802083137094839 0.15717744827270508
µy 0.0001101968663368108 0.16458821296691895
θx 0.00010735539312379033 0.1674044132232666
θy 0.00011774767791462203 0.17041945457458496

Table 4.5: Table representing the average for all the 200 samples emittances of the relative
error and computation time of the non liner LS estimation, for all the possible shifts of the
orbit.

Based on the examination of the rift in section (4.2.2), it is intuitive to determine alterna-
tive configurations with varying proportions of β∗ between the two beams. This intuitive
approach is conclusive; indeed, in Figure (4.19b) it has been shown how it is modified the
rift structure, changing the proportion of β∗ between the two beams.

In the final penalty function, as depicted in Figure (4.20), the presence of the bore is less
pronounced compared to Figure (4.17b). However, the steepness of the penalty function is
sufficient to enable the least squares estimation to accurately determine the ideal emittance
with a suitable level of error.

The approach has been evaluated by randomly selecting two hundred distinct emittances
(ϵ1, ϵ2) values to assess its accuracy, as shown in Figure (4.21).

The Table (4.6) displays the average relative error and average calculation time for the
least squares method across all 200 emittances, for all potential orbit shifts.

Unfortunately, the current approach is less achievable compared to the previous one.
This is due to the fact that in the second configuration system, a difference of 20% has
been introduced for the β∗ values between the two beams. This difference exceeds the
measurement error of this parameter.
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(a) Penalty function in (ϵ1,ϵ2), with random error
sample from generated by a normal distribution
with σ = L∗1e − 3, with the same beta∗ for both
beams

(b) Penalty function in (ϵ1,ϵ2), with random er-
ror sample from generated by a normal distribu-
tion with σ = L∗1e − 3, with a difference for the
β∗ of the two beams of 20%

Figure 4.19: At left, penalty functions with the same beta∗ for both beams, underlined the ideal
value of emittance and the different iteration of the LS in order to reach the goal value. At right,
penalty functions with the different beta∗ for both beams (20%), underlined the ideal value of
emittance and the different iteration of the LS in order to reach the goal value. Both plots of the
penalty functions were with error of the order 1e-3.

Figure 4.20: Penalty function in (ϵ1,ϵ2) generated with two different initial configuration
system (system of 24 equations), with random error sample from generated by a normal
distribution with σ = L∗1e − 3. So this is the final plot given by the “sum” of the ones in
Figures (4.19a) and (4.19b)

4.3.4 4D case: realistic case

This particular case is the peak of realism and complexity examined within the context of
this thesis. As in the beginning of the previous scenario, by employing the approach outlined
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(a) Shift for the offset in the x-axis (b) Shift for the offset in the y-axis

(c) Shift for the crossing angle in the x-axis (d) Shift for the crossing angle in the y-axis

Figure 4.21: Accuracy of the approach for two hundred random emittances ϵ⃗ = (ϵ1, ϵ2) chosen
randomly in the cyan square of 20% with respect to the initial guess, with different shifting
parameter, considering a random error of 1e-3 on the luminosity value.

(ϵ1,ϵ2) with err LS time
µx 0.00517200003553423 0.17585420608520508
µy 0.005093828086478383 0.18398523330688477
θx 0.004551753308190394 0.18548011779785156
θy 0.004732640950103416 0.1875004768371582

Table 4.6: Table representing the average for all the 200 samples emittances of the relative
error and computation time of the non liner LS estimation, for all the possible shifts of the
orbit.

and starting from a single initial configuration system, the LS algorithm successfully identi-
fied a minimum value for the penalty function, which deviated from the desired emittances.
The idea of this case is to start the investigation by already considering two distinct config-
uration systems. The first configuration involves a plane crossing angle denoted as θx on the
x-axis not null and an equal value of β∗ for the two beams have. The second configuration
exhibits a non-zero crossing angle on the y-axis (θy) and varying β∗ values between the
two beams, with a difference of 20%. As mentioned in the preceding section, without error,
plotting the penalty function in this case presents a notable challenge due to its nature as
a function in a five-dimensional space. Consequently, it has been determined that only the
projections of the penalty function onto a two-dimensional plane, specifically around the
initial guess of the LS, will be plotted. These projections will be visually represented using
a colour code. The approach, starting from these two initial configuration systems, also
inspiring on the projection plots of the error-free scenario originating from these two given
configurations (as depicted in Figure (4.22)), appears to hold significant potential. This is
due to the observed variations in the slope of the rift across all the different projections.
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(a) Penalty function for the different projections of the space (ϵx1,ϵy1,ϵx2,ϵy2), with plane crossing
angle on x-axis and equal β∗ for both beams

(b) Penalty function for the different projections of the space (ϵx1,ϵy1,ϵx2,ϵy2), with plane crossing
angle on y-axis and different β∗ between the beams, 20%

Figure 4.22: Penalty function for the different projections of the space (ϵx1,ϵy1,ϵx2,ϵy2) in different
initial configuration system.

Unfortunately, employing these two initial configuration systems and adopting the de-
fined approach, which would result in a system consisting of 22 equations, proves to be
insufficient, as depicted in Figure (4.23a). Based on the projections of the penalty functions
for only the equations, with error, related to one of the two initial configuration systems,
depicted in Figure (4.23b) and (4.23c), it can be concluded that the error in luminosity
has a significant impact on their projections. Specifically, this effect is pronounced in the
two epsilon values associated to the plane where the crossing angle deviates from zero in
that configuration system. These observations align with the findings from the previous case
analysis (4.3.3), where altering the slope of the rift was found to be a more challenging task.
Consequently, the final “sum” of the two components in these two projection planes would
result in a “sum” of two distinct rifts with differing widths. This would contribute to the
overall penalty function, as depicted in Figure (4.23a), where the rift persists in these two
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out of the six projections.

(a) Penalty function for the different projections of the space (ϵx1,ϵy1,ϵx2,ϵy2) created by two
different initial configuration system, (4.23b) and (4.23c)

(b) Penalty function for the different projections of the space (ϵx1,ϵy1,ϵx2,ϵy2), with plane crossing
angle on y-axis and equal β∗ for both the beams

(c) Penalty function for the different projections of the space (ϵx1,ϵy1,ϵx2,ϵy2), with plane crossing
angle on x-axis and different β∗ between the beams, 20%

Figure 4.23: Projections of the penalty function on (ϵx1,ϵy1,ϵx2,ϵy2) of a system, from different
groups of initial configuration, with random error from a normal distribution with σ = L∗1e − 3.
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As previously said, the purpose to have a penalty function that transforms a rift into a
bore within the entire space is considered effective. In this case, the objective is to observe
the presence of this bore in all the six projections of the five-dimensional plane. Nevertheless,
this requirement is a necessary condition, but it may not be sufficient to determine if the
LS achieves the desired emittance. This goal encounters similar challenges as attempting
to analyse a two-dimensional plane by studying one-dimensional projections along the axis
of a specific point. These projections, while necessary, are insufficient to comprehensively
examine the entire plane.

One way to reach the objective is to distance even more from a realistic approach. The
plots depicted in Figure (4.23) demonstrate that employing solely two initial configuration
systems is insufficient for effectively “clarifying” the structure of the penalty functions and
removing the occurrence of rifts leading to bores. From Figures (4.23b) and (4.23c), it is
observed that there is a single projection, in each figure, which is particularly susceptible to
errors. To address this issue, it is proposed to explore four distinct initial configurations. The
first configuration involves a plane crossing angle (θx) on the x-axis not null and identical
value of β∗ for both beams. In the second configuration, the structure remains the same, but
the plane crossing angle is now on the y-axis. The third configuration exhibits a non-zero
crossing angle (θx) on the x-axis and varying β∗ values between the two beams, differing
by 20%. The last configuration shares the same structure as the previous one, with plane
crossing angle on the y-axis. This choice would result in the formation of a solitary bore
in each of the six distinct two-dimensional projections that have been previously depicted,
as illustrated in Figure (4.24). It can be noticed that despite this condition, from a math-
ematical point of view, is not sufficient, the formation of these unique voids in the various
projections, as a result of rotational symmetry, monotonicity, and other complex properties
of the functions, is sufficient for the LS to attain the desired emittance, as depicted in Figure
(4.24).

Figure 4.24: Penalty function for the different projections of the space (ϵx1,ϵy1,ϵx2,ϵy2) cre-
ated by four different initial configuration system, with random error sample from generated
by a normal distribution with σ = L∗1e − 3.

In order to improve the statistical validity of the analysis, a total of two hundred random
examples of emittances were randomly selected and examined. The identification of these
emittances was achieved just by employing shifts on the orbits, as depicted in Figure (4.25).

The Table (4.7) displays the average relative error and average computing time for the
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Figure 4.25: Accuracy of the approach for two hundred random emittances ϵ⃗ =
(ϵx1, ϵy1, ϵx2, ϵy2) chosen randomly in the cyan square of 20% with respect to the initial
guess, with different shifting parameter, considering a random error of 1e-3 on the luminos-
ity value.

LS method across 200 different emittances, with all orbit parameters being shifted.

(ϵx1,ϵy1,ϵx2,ϵy2) with err LS time
orbit 0.0011446379949476258 2.2011311054229736

Table 4.7: Table representing the average for all the 200 samples emittances of the relative
error and computation time of the non liner LS estimation, obtained shifting the different
parameters of the orbit.

It is noteworthy to observe that the Table (4.6) indicates that the average error of the
two-dimensional case (ϵ1 = ϵx1 = ϵy1, ϵ2 = ϵx2 = ϵy2) is larger compared to the four-
dimensional case. This phenomenon may be attributed only to one factor, as it can be
shown that the two problematic projections of the 4D case correspond to the planes studied
in the 2D case mentioned. The solution for the 4D situation follows a similar approach to
that of the 2D example, with the primary distinction being a greater number of equations.
Specifically, the total number of equations in the system is doubled. This increase, for the
law large numbers, serves to “reduce” the overall random error on the penalty function.
Even a minor reduction of this error has a significant impact on accurately estimating the
emittances value for the sensitivity of the approach.

Unfortunately, while this strategy may yield the desired outcome, it poses additional
challenges in terms of implementing it in an actual accelerator. Specifically, already in the
preceding situation (4.3.3), it was challenging from a physics perspective to achieve signif-
icantly different β∗ values for both beams within the same detector. The current objective
has become even more intricate. It necessitates either the use of four distinct detectors, each
starting with a unique initial configuration system, or the use of only two detectors with
the ability to switch the crossing angle during operation while maintaining a constant β∗,
or alternatively modifying the β∗ value for one of the two beams while keeping the plane
crossing constant. It is evident that if the preceding scenario was challenging to implement,
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the current one is far more laborious.
One notable aspect of this approach is its composition of multiple equations and its small

error, as demonstrated in Table (4.7). As a result, some assumptions regarding the starting
configurations can be relaxed. It is always essential to have four initial configurations. How-
ever, if we examine a favourable scenario where the change in β∗ between configurations is
2%, the average relative error of 200 random samples is presented in the Table (4.8).

(ϵx1,ϵy1,ϵx2,ϵy2) with err LS time
orbit 0.006575467531951761 2.207535743713379

Table 4.8: Table representing the average for all the 200 samples emittances of the relative
error and computation time of the non liner LS estimation, obtained shifting the different
parameters of the orbit

When the change in β∗ is further relaxed by 2‰, the resulting error is approximately
7.5%.

4.4 Conclusions and following studies
This chapter discusses the utilisation of the luminosity model and its optimized implementa-
tion, as previously introduced in Chapter (3.2), to address an ill-posed problem. Specifically,
the objective is to determine the transverse emittances based on a singular scalar, namely
the luminosity.

This chapter provides a comprehensive overview of various methodologies and approaches
to address the challenges encountered during the analysis process. It specifically focuses on
handling complex situations and highlights the favourable outcomes achieved in different
scenarios, in contrast to the existing instrument employed for emittance measurement.

Various instances have been evaluated in an attempt to identify the most realistic one,
that takes into account the nominal random error associated with the luminosity value. In
each of the situations discussed, a strategy was identified that enabled the attainment of
the reasonable level of error in the estimation of emittance.

Undoubtedly, the aforementioned solutions exhibit varying degrees of feasibility depend-
ing on the specific circumstances. It would be of great interest to explore other strategies that
could potentially yield comparable or superior outcomes to those presented, while avoiding
the limitations inherent in our current methodologies. The latter two cases mentioned would
be the most intriguing to improve.

Considering that the idea behind the approaches employed in this chapter aligns with
the concept presented in the introduction of Section (4.2).

It may be of interest to remove another hypothesis that is assumed in Section (4.2), the
one pertaining to the precise luminosity model. In relation to this, it is well-established that
the current model used is not yet complete. Specifically, it is important to consider in the
model the inclusion of the crab cavities’ contribution ([Ca12]), as well as the impacts stem-
ming from beam-beam interactions ([He14]) and so on. One potential enhancement could
involve incorporating the model of these phenomena into the luminosity formula, such as
incorporating generic errors that are dependent on the emittance, the latter improvement
would allow for the consideration of particularly intricate effects that are challenging to
model. By doing so, the approach, described in (4.2), of examining the collision from several
perspectives is expected to still yield positive results. However, it is possible that alterna-
tive strategies may be required to deal with the ill-conditioning of the problem. It would
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be intriguing to evaluate the impact of the least squares method in terms of both relative
error and computational time for this specific computational problem.

Another potential improvement is removing the remaining hypothesis pertaining to the
accurate measurement of the parameters, as discussed in Section (4.2). In this particular
scenario, the values of the parameters can be affected by two types of errors:

• Random error: in this particular scenario, the issue at hand is similar to the previously
examined problem. The presence of a random error in the parameter has the potential
to impact the value of luminosity, which in turn may be subject to a related ran-
dom error. Upon initial examination, it appears that the approach described in (4.3)
may be applicable also to this particular scenario. However, conducting a thorough
investigation would be highly intriguing in order to validate this assumption.

• Systematic error: in this case, the problem is completely different. Now the error is due
to calibration problems, so now the error on the selected parameter doesn’t change
in each equation, but changes its impact on the luminosity value. One potential solu-
tion is treating the error as an unknown variable within the LS method, which allows
a direct estimation of the error from the calculation process. Unfortunately, the LS
system, which encompasses the manipulation of all orbit parameters, consists of five
distinct equations. Therefore, it would be capable of estimating a systematic error
for a single parameter within the configuration system. It would be intriguing to in-
vestigate whether employing the same approach as described in (4.3) would result in
an improvement of the least squares estimation when systematic errors are present in
several parameters. If not, it is intriguing to examine this scenario as well, in order to
comprehensively understand the problem in its entirety.

Lastly, it would be intriguing to explore the aforementioned analysis by releasing the
assumptions regarding Gaussian beam profiles (e.g. considering q-Gaussian ones, used in
([Pa20])) and the factorization of the beam profile distribution for the x-y axes.

88



Conclusions

As introduced in Section 0.2, the luminosity for each given Interaction Point can be factor-
ized by calculating the cumulative luminosity resulting from all the collisions that occurred
at that specific location

LIP = n{bb,IP }Lbb.

The objective of this thesis was to optimise the luminosity in a comprehensive manner
by effectively using the aforementioned factorization. The initial two chapters were dedi-
cated to analysing the number of bunches, n{bb,IP }, colliding in a specific detector, while
the remaining two chapters focused on the instantaneous luminosity bunch-by-bunch, Lbb.
The fundamental idea of this two-step investigation presented similarities in the approach
adopted for each step:

• The odd chapters of the study mostly centred on the physics and the underlying model
(analytic phase). Additionally, these chapters examined the potential for optimising a
pre-existing Python implementation used at CERN by employing specific techniques
to reduce its computational costs. In particular, it has been used for:

– the number of collisions: an alternative model has been employed, resulting in an
improvement in performance by ∼ 100 compared to the previously used model

– the luminosity bunch by bunch: it has been employed using the same model, how-
ever with different implementations aimed at boosting its performance through
the utilisation of Numba. This optimisation has resulted in a performance im-
provement of up to a factor of 100.

• The primary objective of the even chapters was to investigate the optimization of the
inversion problem by a synthetic approach, supported by the given model:

– In the second chapter, the studies focused on the impact of the filling scheme on
the number of collisions. Specifically, the goal was to optimise the arrangement of
bunches in order to maximise the number of collisions.
The chapter presented an interesting outcome in the form of a parallel implemen-
tation of a Monte Carlo simulation. This simulation was specifically tested on the
widely employed filling scheme in the LHC in 2022. The results of the simula-
tion revealed several feasible alternative filling schemes with a larger number of
collisions compared to the scheme employed in the accelerator (up to 2% gain).
Moreover, this simulation has been used either for ions operational phase in 2023
and in some experimental session, namely Machine Development, with protons in
2023. In this study, we assume filling schemes composed exclusively of a single
type of PS batch. To generalize the present results, one could consider

∗ to apply the same analysis for hybrid filling schemes: filling scheme composed
by different PS batches
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∗ to extend the Monte Carlo simulation: not only shifting the SPS batch, but
also the PS batch

∗ to improve the parallelization of the Monte Carlo simulation
– In the fourth chapter, the bunch by bunch luminosity (scalar) has been inverted,

using a perturbation theory approach, to derive some variables of the model,
specifically the four transverse emittances of the colliding beams. This problem
is clearly ill-conditioned, because the goal is to obtain a vector from a scalar.
In the chapter it has been introduced some strategies and approach in order to
condition the problem, also exploiting the python optimization obtained from
Numba exposed in the third chapter. The analysis of this scenario also took into
consideration the existence of noise in the luminosity determination. The primary
objective of this chapter was to describe various ways for successfully acquiring the
emittances from the luminosity, and, at the same time, to outline the limitation
associated with these particular approaches.
From the present status of the study, we see several interesting studies worthy of
exploration:

∗ Identify alternative numerical methodologies that yield comparable outcomes
to the one elucidated, while overcoming the limitation delineated in the chap-
ter.

∗ To properly consider that the model used is not fully accurate to describe
the phenomenon. In particular, that are some known effects that are not
considered in the model like the beam-beam or the Crab Cavities, it would be
interesting to see how change the performance of the approaches presented in
this generalization.

∗ Consider that the values of the different parameters measured from the ma-
chine may be subject to both random and systematic errors.

∗ Relax the hypotheses on the Gaussian profiles (e.g., considering q-Gaussian
ones) and on the x-y factorization of the bunch transverse distributions.
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A.1 Studies on Long-Range interactions
In this appendix is shown an approach to obtain a filling scheme of the two beams that
would lead to a filling pattern with Long Range interaction only in some specific slots near
an interaction point

A.1.1 Using the mathematical model...
The purpose of this theorem is to create a pattern that has to be respected, from a mathe-
matical point of view, in order to get Long Range collisions only in some specific slots.

Theorem A.1.1. Given two beams, the first only with N consecutive bunches and the second
one with M bunches, which positions are set in order that their first particle is symmetric
with respect to the slot where all the collisions happen. There will be N-M+1 points where
it happens at least one collision in the semicircle where all the N bunches stood before the
collision (either Head On and Long Range).

For notation we will call these points as interaction slots, because considering that the
tow beams are moving one against the other, these interaction slots are spaces by the half
of the accelerator slot, so in the LHC they are spaced by ≈3.75 m.

Proof. In the proof, that will be per induction, the choices of 0 as position of collisions and
to fix N bunches on left of 0, are done for sake of simplicity, but the position of the collisions
can be shifted, and we could fix the particles on right of that position.

1. So, for simplicity, we fix the number of bunches on left of 0, Nb on left (then all empty
slots) and 1 beam on right of 0 for the two beams, respectively. From construction,
it’s trivial that there will be N (N-1+1) interaction slots where it happens at least 1
collision, the one Head On in slot 0 all the other Long Range on left of slot 0 (for
notation this N interaction slots where it happens at least 1 collision we will call them
as true interaction slots and the ones where didn’t happen false interaction slots). In
order to get easier the following steps, now we consider the case of N bunches on left
of 0 and 2 on right. The 2° bunch of the 2° beam will collide with all the N bunches
of the other beam, but with one time in delay with respect to the 1° bunch of its own
beam (12,5 ns later). Then, considering that we had a vector for the collisions with
the 1° bunch of the 2° beam, the collisions with the 2° bunch is the same vector but
shifted by one interaction slot. So in this case we will have N+1 collisions: the Head
on at 0,and for the Long range N-1 on left of 0 and one on right.

2. If we had N bunches for the 1° beam and M for the 2° beam, and I suppose to have
N-M+1 true interaction slots in total, now if I add another bunch at the end of the
queue of the M bunches for the 2° beam I will have that this last will collide with N
bunches of the 1° beam but with one interaction slot shifted with respect to the vector
of collisions for M° bunch of the second beam, so with respect to the case Nb and Mb
now we will have N-M true interaction slots.

A.1.2 ... in a practical point of view
Considering that in the LHC (in proton studies, in order to maximize the collisions in
ATLAS/CMS) the disposition of the two beams will be the same and symmetric with
respect to the origin, we can model every kind of bunches disposition used in the LHC as a
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NbMe, that is composed by N consecutive bunches(spaced every 25 ns) and M consecutive
empty spaces (accelerator slots), continuing to repeat always the same structure. Then,
considering the two beams modeled as a NbMe on left and right of the origin, we know
from the theorem that the collisions of the bunches between the two beams are the same as
before but now the bunches will meet also the empty spaces. For sake of simplicity, we will
see only the collisions of the bunches of beam 1 but it can be extended for symmetry also in
the other one. Considering the algebraic structure behind the theorem, it can be extended
easily for the match of bunches and empty spaces, so as before the first that runs into all
the M empty spaces will be the 1° bunch of the beam 1. Then, we know that from the (N)°
interaction slot there will be no collisions between bunches for M consecutive interaction
slots (considering also the N° interaction slot); instead the 2° of beam 1 will have the same
collisions but with one interaction slot of delay, but in this case we cannot see this delay
because in the (N-1)° interaction slot is already true, there has already been a collision
between the 1° bunch of beam 1 with the (N)° bunch of beam 2, so nothing changed in the
output of interaction slots. Then we iterate this structure for all the matches between the
bunches of beam 1 with the empty spaces of beam 2. As result we will have false interaction
slots in these intervals [-M-N+1,-N+1], [N-1,M+N-1] and true ones in [-N+1,N-1]. At the
end, considering the two beams as NbMe repeated consequently until the end of the space,
after the matches between Nb of beam 1 and Me of beam 2, there will be another collision
with Nb between the two beams in the (M-N)° slot, that will follow the theorem because
the symmetric hypothesis is respected, so we will have N-1 true interaction slots on right
and left of (M-N)° slot. So eventually we will have, considering all symmetric on left of 0,
true interaction slots in the intervals [0,N-1] and [M+1,M+2N-1], instead of false interaction
slots between [N,M] and then this pattern repeats continuously until all the space available
is filled, and all this structure is repeated around IP5 for symmetry.

A.2 Optimized algorithm Pre-fill without INDIV
Here it is represented the different steps, for the computation of the "best" filling scheme in
the most general case without INDIVs.

1. The following notation will be used. Let b be the quantity of bunches for each PS
batch. The typical number of vacant spots between successive PS batches (empties)
is 8. The variable SPSbatch represents the maximum length of an SPS batch, which
is defined as the number of PS batches included within it. Additionally, the variable
injspace denotes the amount of empty space between SPS batches, often set to a value
of 32. The variable buntune represents the quantity of bunches utilised for the tune
measurements, typically set at a value of 12. injtune is the slot number where to
inject the other beam for the tune in order to prevent collisions between the two
beams in ATLAS and CMS, which is typically 12, given that in one beam this slot is
0.

2. The initial step in this process, drawing inspiration from the algorithm discussed in
the preceding chapter, involves determining the optimal length of SPS batches. This
is necessary to maximise the number of bunches within both rings:

• In this study, we introduce the following notation: ni represents the length of
the SPS (Super Proton Synchrotron) that we wish to test, where 1 ≤ ni ≤ n.
Here, n denotes the maximum SPS length specified by the user. Additionally, we
define Mni as the number of SPS batches with length ni in a given quarter apart
the first one, and pni as the length of the last SPS in that quarter. Furthermore,
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Mni1 represents the number of SPS batches with length ni in the first quarter,
while pni1 denotes the length of the last SPS in the first quarter. The variable
bun represents the number of bunches in each PS (Proton Synchrotron) batch, as
determined by the user. Finally, we introduce q as the number of free slots in the
first quarter between the buntune and the first train.

• from the definition it’s possible to compute:
– Mni = int( 891

bun(ni)+7(ni−1)+31) with Mni ≤ Mni−1,1 ∀ni > 1

– Mni1 = int(891−121−injtune−buntune−9
bun(ni)+7(ni−1)+31 ) and

pni1 = int(891−(31+bun)−121−(injtune+buntune)−9−(bun(ni)+7(ni−1)+31)Mni1
bun+7 ), with Mni1 ≤

Mni−1,1 ∀ni > 1, pn1 ≤ n − 1 and pni1 ≤ n ∀ni < n

– q = int(891−121−injtune−buntune−9−Mni1(bun(ni)+7(ni−1)+31)−pni1∗ni−(pni1−1)7
3 ) and

finally pni = int(891+3+q−(bun(ni)+7(ni−1)+31)Mni

bun+7 ), with pn ≤ n − 1 and pni ≤ n
∀ni < n

• the total number of bunches in the quarter are: bun[niMni + pni + 1]

The algorithm yields a vector with the varying number of bunches within the quarter
for all possible choices of ni. The greatest value can be selected;

3. Given the current constraint regarding the abort gap, it is necessary to adjust the
analysis of the quarters by accounting for the length of the abort gap, which consists
of 121 slots. Consequently, the first quarter will be smaller than the subsequent ones
due to the presence of the abort gap, which prohibits injection. It is important to note
that the structure under consideration is periodic in nature, as it forms a ring. In the
absence of explicit notation, we shall consistently refer to the divisions as "quarters."
However, it is important to note that these quarters are not precisely aligned with the
quarter of the ring, with ATLAS serving as the reference point (designated as 0). Each
quarter is comprised of a total of (891-121,891,891,891) slots.
Hence, the algorithm seeks to use the altered structure of these quarters by populating
the Abort Gap Keeper with the most optimal train calculated previously. It then
proceeds to fill all subsequent quarters with the same train, excluding the last one
(which has a shorter length denoted as pni). It is also feasible to insert the buntune at
the start of the ring, namely in slot 0, for one of the two beams. Similarly, the other
beam can be placed in the slot determined by the injtune.

4. Thirdly, the structure of the previous quarter is replicated and applied to the remain-
ing quarters. Each quarter is shifted by three slots, resulting in a cumulative shift of
nine slots for the first quarter. This adjustment is made to align the quarters harmon-
ically with the Large Hadron Collider (LHC). Specifically, the postion of the LHCb
detector in the convolution was 2670 on the "left" for Beam 1. Consequently, it needed
to be shifted by 894 slots to the "right" (3564-2670 = 894 = 891+3) to match the
desired harmonic position. This copy and paste procedure was necessary to optimise
the utilisation of SPS batches within this harmonic configuration.

5. The shift has caused substantial modification to the harmonic frequencies. Never-
theless, it is important to acknowledge that a significant proportion of bunches still
correspond to the desired harmonics of the target detectors. The primary goal of this
stage is to strategically use the available vacant time slots in order to include additional
shorter trains in an optimized manner. The methodology employed to accomplish this
objective is outlined as follows:
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• After duplicating the most superior trains across the rings, we have the ability
to insert the smaller train in the initial quarter, situated between the clusters
of melodies and the foremost exemplary train. Despite the administration of the
injection, it is possible that residual vacant space remains. This is due to the
fixed number of bunches in the shorter train, which may result in unoccupied
slots inside the initial "quarter" of the train.

• The subsequent procedure for utilising the available space involves evenly dis-
tributing it across one quadrant of the ring. How might this be accomplished?
The length is divided by three and the resulting quotient is used to shift the
different quarters. This process is performed in order to distribute the available
space evenly throughout the quarters, effectively filling these unoccupied slots in
the first quarter while creating three distinct free areas between the quarters. The
combined lengths of these free areas is equal to the length of the initial free space.
The rationale behind this approach is that by adjusting the positioning of the
quarters, the LHCb harmonic is disrupted, resulting in a reduction in the number
of collisions. However, by increasing the spacing between the quarters, there is
a potential opportunity to introduce an additional PS batch within the shorter
SPS batch (from pni + 1 to pni + 2), thereby increasing the number of collisions
in ALTAS/CMS and maybe also again in LHCb.

If the inclusion of this passage does not result in an increase in the number of PS
batches in the shorter train, we can proceed to reposition the quarters as described in
step 4. By doing so, it becomes feasible to inject the shorter train, which has a length
of pni +1, between the quarters in the available space. This injection is carried out in a
manner that ensures the slots where the SPS batches are inserted between consecutive
quarters are separated by a distance of 894 slots (891+3), in order to respect again
the LHCb harmonic.

The algorithm can be readily expanded to optimize ALICE, with the key distinction be-
tween ALICE and LHCb being the placement. Specifically, only one step in the algorithm
needs to be modified, which pertains to the harmonic positions of the SPS batches. Given
that ALICE’s position with respect to the 4th harmonic obviates the necessity for a con-
tinuous shift of 3 slots, this step is replaced with a conventional copy and paste procedure
that no longer involves shifting.

The algorithm shown above is a logical progression of the previously derived mathemati-
cal solution, incorporating certain modifications to account for the influence and limitations
imposed by the additional restrictions introduced in the optimization issue.
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