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Abstract 
 

This thesis aims to explore the intricate dynamics of urban heat islands (UHIs), a critical 

concern exacerbated by the combined forces of climate change and urbanization.  

The primary objective is to develop an urban-scale model, leveraging advanced 

machine learning algorithms, capable of incorporating a wide array of variables. The 

study also endeavours to probe the influence of climate change on UHIs through a 

meticulous examination of historical climate data, seeking to identify any discernible 

trends that might be linked to the exacerbation of the phenomenon.  

Furthermore, the research sets out to assess the efficacy of substantial urban 

regeneration projects in mitigating the adverse effects of UHIs. A key aspect of this 

evaluation involves a comparative analysis of data sets collected both prior to and after 

these interventions, focusing specifically on the years 2001 (pre-intervention) and 2018 

(post-intervention).  

Through these multifaceted approaches, this research seeks to yield valuable insights 

into UHIs, their interaction with climate change, and the potential of urban revitalization 

initiatives to mitigate their detrimental impacts, thereby offering valuable guidance for 

more sustainable urban planning strategies.  
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1. Literature Review 
 

1.1 General overview of the analysis 
 

Urban heat islands (UHIs) represent a significant and growing environmental 

challenge, as the world's urban population continues to expand. UHIs refer to the 

phenomenon of cities, and urban areas, experiencing higher temperatures than their rural 

surroundings, due to increased heat absorption and retention by materials in the built-up 

environment.  

This report aims to provide a comprehensive literature review of the latest (and most 

relevant) research on UHIs, examining the negative impacts of UHIs and interventions 

that can be taken into consideration to mitigate their effects. Through this review, we aim 

to enhance the comprehension of UHIs and help in detect tools to spot this phenomenon.  

Remote sensing technologies, like satellite imagery and aerial photography, can 

provide an extensive overview of the urban landscape and temperature distribution; 

ground-based measurements, such as temperature sensors and thermal cameras, can 

provide more detailed data at specific locations; additionally, computer models can 

simulate temperature patterns and identify potential UHIs.  

The combination of these tools can provide a comprehensive understanding of UHIs 

and aid in devising strategies to mitigate their effects. 

In the following paragraphs, we will explore several methodologies that can be used 

to study and address the challenges posed by urban heat islands, but first, we need to set 

a general overview of the phenomenon. 
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1.2 Introduction to Urban Heat Islands 
 

Luke Howard (1772 - 1864), was an English chemist and meteorologist of the early 

19th century1, he was the first to provide evidence that urban areas impact local climates 

by revealing higher air temperatures compared to adjacent rural regions (Howard, 1833 

[2]; Oke, 1982 [3]). He concentrated his analysis (of the London urban extension) on 

examining two interrelated yet distinct subjects: (1) the impact of urbanization on 

the quality of meteorological data and (2) the factors contributing to the urban 

effect. 

Howard’s analysis stated that “the temperature of the city is not to be considered as 

that of the climate”, in fact, he talks about an “artificial warmth” that partakes to its 

construction, dense population, and high fuel consumption. 

Howard (1833) identified, four main causes for these differences in air temperature: 

▪ Human activities that generate heat contribute to the warming of the 

atmosphere, especially during the winter season. 

▪ The geometry of urban surfaces which ‘traps’ radiation and obstructs ‘free 

radiation to the sky. 

▪ The unevenness of urban surfaces can hinder the movement of the “gentle” 

summer winds. 

▪ The availability of moisture for evaporation in the country. 

Some years later, another important scholar has been concentrated on urban climate 

and micrometeorology studies, T.R. Oke [4] a Canadian geographer, and climatologist 

who is known for his research on urban climate and micrometeorology.  

According to Oke’s study (1982), UHIs can be generalised, initially, by the illustration 

of common features of heat island morphology, describing the “near-surface” of the heat 

 
[1] https://www.scienceandsociety.co.uk/index.asp 
[2] Howard, L. (1833). The Climate of London. London, UK: Harvey and Darton. 
[3] Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal 
Meteorological Society, 108(455), 1-24. 
[4] https://geog.ubc.ca/profile/tim-oke/ 
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island, moreover, he considers irrelevant the topography of the surroundings and puts the 

accents to the urban/rural boundaries that follows the outline of the built-up area. In fact, 

from the Figure 1, it is noticeable that the city centre displays higher temperature readings 

in comparison to the surrounding region.  

Additionally, it is crucial to bring attention to the fact that, most of the urban area, 

exhibits a more gradual horizontal thermal gradient, but occasional, warm, or cool spots 

can be found, correlated with specific areas of unusually high or low building density.  

It is possible for areas such as parks or lakes to have a cooler temperature, whereas 

more industrialized areas, apartments, shopping districts, or the downtown core may be 

warmer.  

In the presence of a light wind, these temperature discrepancies can be observed as 

they move slightly downwind from their source locations. 

 

 

Figure 1 - Representation by Oke T.R. The energetic basis of the UHIs (Oke,1982) 
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Oke took inspiration, for his representation, by Howard (1833) Figure 2 where he 

illustrated the increase magnitude oh UHI towards the core of the settlement (of London 

urban area), in correspondence with greatest building density. 

 

1.3 Urban Canopy, Urban Canyon, and Urban Boundary 
Layer 

 

So far, we've been talking about how urban heat islands (UHIs) can spread out 

horizontally, but it's also important to consider their vertical components. According to 

Oke, there are two distinct layers of UHIs that can form from urbanization Figure 3: 

▪ the Urban Canopy  

▪ the Urban Boundary Layer. 

This distinction is crucial because each layer has unique characteristics that contribute 

to the overall UHI effect. Oke's research on this topic can be found in his 1976 study [5]. 

Where he defined the Urban Canopy Layer (UCL) Figure 3, as the layer that lies 

between the ground and the average height of buildings and trees. Its features are mainly 

influenced by the transfer of energy and matter between the different patches of land 

surfaces and the air in the urban canyon. The urban canyon Figure 4 refers to the narrow 

 
[5] Oke T.R.  (1976) The distinction between canopy and boundary‐layer urban heat islands, 

Atmosphere, 14:4, 268-277, DOI: 10.1080/00046973.1976.9648422 

Figure 2 - Howard's examination of the urban effect in London (1833) 
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and tall structures that create an enclosed space in an urban area, often resembling the 

shape of a canyon. These structures can be buildings, skyscrapers, and other urban 

features that line up along the streets, blocking natural light and airflow. 

Instead, the urban boundary layer Figure 3 refers to the layer of the atmosphere that 

is directly influenced by the characteristics and activities of urban areas. It typically 

extends from the surface up to a height of a few hundred meters and is characterized by 

intense turbulence and mixing due to the presence of buildings, roads, and other urban 

infrastructure.  

In other words, the urban boundary layer encompasses the entire portion of the 

atmosphere that is influenced by urban areas, while the urban canopy layer is a subset of 

that layer that focuses specifically on the interactions between the air and the surfaces of 

buildings and other structures. 

 

 

 

Figure 3 - Schematic representation of the urban atmosphere illustrating a two-layer classification of 
thermal modification (Illustration by T.R. Oke, 1976) 

Figure 4 - Urban Canyon (Illustration by Y. Choi, S.Lee, H.Moon, 2018) 
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1.4 Consequences of UHIs 

 
The causes of UHI are multifaceted, including factors such as urbanization, air pollution, 

and changes in land use. Numerous studies have shown that UHI has significant impacts 

on the environment and public health, making it an important area of research. However, 

the continuous expansion of urban areas has caused a rise in surface temperature, which 

has a significant impact on the distribution of resources and energy in urban 

environments. Rising temperatures in urban areas can lead to an increase in energy usage, 

which places a heavier strain on power resources. Furthermore, the urban heat island 

effect intensifies the concentration of pollutants and worsens atmospheric conditions 

within cities. Overall, the UHI effect negatively impacts the various aspects of social-

ecological systems in local areas, this change also affects the way urban ecological 

systems work, which could ultimately harm severely the health of city dwellers (Howard, 

1833; Yang et al., 2016 [6]). 

Climate change is further exacerbating this problem, leading to more frequent, severe, 

and longer heat waves. Pollution has been reported to affect health with hard outcomes: 

research studies have suggested that higher temperatures and pollution in the air could 

elevate the incidence of infectious ailments such as malaria and long-term diseases 

including obesity, hypertension, diabetes, asthma, respiratory and cardiovascular 

disorders (Wang et al., 2023) [7]. 

Urbanization can be considered a significant driver of environmental problems: the four 

main aspects introduced by Howard in 1833, and later elaborated by Oke in his studies 

on UHIs in 1982 (conveyed in this report in the previous paragraph at page 3), led to the 

assumption that these four factors can be modified by urban expansion.  

 
[6] Yang, L., Qian, F., Song, D.-X., & Zheng, K.-J. (2016). Research on Urban Heat-Island Effect. 
Procedia Engineering 169 (2016) 11 – 18. Doi: 10.1016/j.proeng.2016.10.002 
[7] Wang S., W. Cai, Y. Tao, Q. Chayn Sun, P. Pui Yun Wong, X.Huang, Y. Liu, (2023). Unpacking the 
inter- and intra-urban differences of the association between health and exposure to heat and air quality 
in Australia using global and local machine learning models. Science of The Total 
Environment.Volume871. 162005.ISSN 0048-9697. 
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Although, in the research chased by Vujovic et al. (2021) [8], the development of urban 

areas has significant impacts on the environment; specifically, on the natural hydrology 

and energy systems, this is due to the replacement of pervious and semi-pervious surfaces 

with impervious surfaces (such as asphalt and concrete pavements). These modifications 

directly impact watershed hydrology by (1) reducing infiltration capacity, (2) increasing 

surface runoff, (3) shortening time of concentration, and (4) decreasing recharge of 

groundwater. If surface runoff drains faster, then there won't be as much water for 

evapotranspiration. This affects the way that energy balances out on the surface in urban 

areas. When there are more impervious surfaces, it causes the land surface temperature to 

go up, this is because the changes of the local energy balance, by:  

- Albedo, defined by Britannica (2022) [9] as the fraction of incoming solar energy 

that is reflected into space from the Earth's surface. It is a measure of the reflective 

properties of a surface, with values ranging from 0 to 1. Surfaces with high albedo 

reflect more solar energy and absorb less, whereas those with low albedo absorb 

more solar energy and reflect less. 

- Specific heat capacity, defined by Britannica (2022) [10] as the amount of heat 

energy required to raise the temperature of a unit mass of a substance by one degree 

Celsius. It is a measure of the ability of a substance to store heat energy. 

- Thermal conductivity, defined by Britannica (2022) [11] as the property of a 

material that determines how quickly it can transfer heat energy. It is a measure of 

the ability of a material to conduct heat. 

 
[8] Vujovic, S., Haddad, B., Karaky, H., Sebaibi, N., & Boutouil, M. (2020). Urban Heat Island: Causes, 
Consequences, and Mitigation Measures with Emphasis on Reflective and Permeable Pavements. 
Sustainability, 12(23), 9836. doi: 10.3390/su12239836 

[9] Britannica, The Editors of Encyclopaedia. "albedo". Encyclopedia Britannica, 29 Dec. 2022, 
https://www.britannica.com/science/albedo. Accessed 27 April 2023. 

[10] Britannica, T. Editors of Encyclopaedia (2022) specific heat. Encyclopedia Britannica. 
https://www.britannica.com/science/specific-heat 

[11] Stewart, K. (2023). thermal conductivity.Encyclopedia Britannica. 
https://www.britannica.com/science/thermal-conductivity 

https://www.britannica.com/science/albedo.%20Accessed%2027%20April%202023
https://www.britannica.com/science/specific-heat
https://www.britannica.com/science/thermal-conductivity
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Xu et al. (2013) [12] conducted a 20-year study revealing a significant positive 

exponential relationship between impervious surface and land surface temperature. The 

study highlights the need for urban planners and civil engineers to consider the 

environmental impacts of urban development and to implement sustainable practices 

that mitigate these impacts, as also retrieved by the study conducted by Vujovic et al. 

(2021) [13]. 

  

 
[12] Xu, H.; Lin, D.; Tang, F. The impact of impervious surface development on land surface 
temperature in a subtropical city: Xiamen, China. Int. J. Climatol. 2013, 33, 1873–1883. 

[13] Ibid. [7] 
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1.5 Evaluate and mitigate UHIs 

The scientific literature is consulted with the purpose of comprehending and extracting 

the methodologies utilized for evaluating the urban heat island phenomenon in diverse 

case studies. The fact that various approaches were presented in the literature suggests 

that there is no one-size-fits-all method for UHI assessment, and the optimal approach 

may depend on specific research objectives and spatial scales.  

By summarizing the varied approaches presented in the literature, and identifying the 

most intriguing ones, the analysis may facilitate the development of more effective UHI 

assessment methods. 

Various analysis has been developed to assess the UHI effect, ranging from remote 

sensing and geospatial analysis to in-situ measurements and numerical models. However, 

the choice of the most appropriate method is often dependent on factors such as: 

- Data availability 

- Spatial resolution 

- Research objectives. 

Therefore, a comprehensive review of the scientific literature on UHI assessment is 

crucial for selecting the most appropriate model for a specific study. 

This paragraph delves into an examination of a variety of research studies and papers 

intended to identify the methodologies that have been utilized to assess urban heat 

island occurrences. As a general overview of the analysis, the most used methodologies 

to deal with urban heat islands, in these papers are: 1. GIS analysis; 2. Machine learning 

algorithms. Specifically, GIS was used to: a.) map the spatial distribution of UHI, b.) 

assesses urban morphology, c.) identifies ventilation corridors, and d.) predict UHI using 

artificial neural networks. Machine learning algorithms were used to: a.) predict land 

use land cover changes and surface UHI phenomena, b.) model outdoor thermal comfort, 

c.) simulate and mitigate UHI effects, and d.) conduct scenario analysis to study the future 

of UHI effects.  
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Some commonly formulas for quantifying UHIs are: 

 

▪ Delta T formula (Scott et al, 2019; Oke, 1987) [14] [15]: This formula calculates 

the temperature difference between an urban area and a nearby rural area. It is 

expressed as: 

 

 

where: 

ΔT = temperature difference (in °C) 

Tu = temperature in the urban area (in °C) 

Tr = temperature in the rural area (in °C) 

 

The Delta T formula can be corrected using coefficients to account for different 

factors that may affect the urban heat island intensity. Here are some examples of 

correction factors that can be included in the Delta T formula: 

▪ Wind speed correction: Wind speed can affect the heat transfer between 

the urban and rural areas, with higher wind speeds leading to more 

efficient mixing and lower urban heat island intensity. The wind speed 

correction coefficient can be calculated based on the ratio of the wind 

speed at the urban location to the wind speed at the rural location. 

 

 

▪ Surface cover correction: Different land cover types can have different 

thermal properties and affect the surface energy balance differently. The 

surface cover correction coefficient can be calculated based on the 

 
[14] Scott, A. A., Waugh, D. W., & Zaitchik, B. F. (2019). Reduced urban heat island intensity under 
warmer conditions. Environmental Research Letters, 14(9), 094011. 
[15] Oke, T. R. (1987). Boundary Layer Climates (2nd ed.). Methuen. 

ΔT = Tu - Tr 

WS_coeff = (WS_urban - WS_rural) / WS_rural 
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fractional coverage of impervious surfaces, vegetation, and water bodies 

in the urban and rural areas. 

 

▪ Solar radiation correction: Solar radiation can affect the surface 

temperature and energy balance, with higher solar radiation leading to 

higher urban heat island intensity. The solar radiation correction 

coefficient can be calculated based on the incoming solar radiation at the 

urban and rural locations. 

▪ Time of day correction: The urban heat island intensity can vary 

throughout the day and night, with the largest differences typically 

occurring during the late afternoon and early evening. The time-of-day 

correction coefficient can be calculated based on the time of day when the 

temperature measurements are taken. 

 

▪ Energy Balance Method: involves estimating the energy balance at the surface 

of an urban area, which involves accounting for the different heat fluxes 

(incoming solar radiation, outgoing longwave radiation, sensible heat flux, latent 

heat flux, and ground heat flux).  

The UHI intensity is then calculated as the difference between the surface 

temperature in the urban area and the surface temperature in a nearby rural area.  

 

The formula used for this method is: 

 

where: 

 
UHI = Urban Heat Island intensity 

Ts_urban = Surface temperature in the urban area 

Ts_rural = Surface temperature in the rural area 

 

UHI = Ts_urban - Ts_rural 
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The surface temperature (Ts) can be calculated using the energy balance equation, 

which involves accounting for the different heat fluxes at the surface. The basic formula 

for surface temperature is: 

 

 
where: 

 
Rn = net radiation at the surface 

G = soil heat flux 

H = sensible heat flux 

σ = Stefan-Boltzmann constant (5.67 x 10^-8 W m^-2 K^-4) 

ε = surface emissivity 

 
Net radiation (Rn) is the difference between the incoming solar radiation and the 

outgoing longwave radiation. It can be calculated as: 
 

 
 

where: 

 
Rsi = incoming solar radiation 

α = surface albedo (reflectivity) 

Rl = outgoing longwave radiation 

 
Soil heat flux (G) is the energy transferred into or out of the soil and can be estimated 

using soil temperature measurements and heat transfer equations. 

Sensible heat flux (H) is the energy transferred from the surface to the atmosphere 

due to temperature differences and can be estimated using atmospheric measurements and 

heat transfer equations. 

Ts = (Rn - G - H) / σε 
 

Rn = Rsi * (1 - α) - Rl 
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Surface emissivity (ε) is a measure of the efficiency with which the surface emits 

longwave radiation and can be estimated based on the surface material and its 

temperature. 

 

It's important to note that the energy balance equation is a complex equation that 

requires accurate measurements of the different heat fluxes and properties such as albedo 

and emissivity. In practice, there are different methods and models that can be used to 

estimate surface temperature, depending on the data availability and level of accuracy 

required. 

Additionally, the choice of method may also depend on the specific characteristics of the 

urban area being studied.  

Some commonly used factors for measuring UHIs include:  

▪ Land surface temperature (LST) - This is the temperature of the Earth's surface 

as measured by satellite imagery or thermal infrared imaging. Urban heat islands 

can be identified by comparing LSTs. 

▪ Air temperature - This can be measured using weather stations or mobile sensors 

located in different urban areas. 

▪ Emissivity - This is a measure of how efficiently a surface emits thermal radiation. 

Urban areas typically have lower emissivity due to their built environment, which 

can lead to higher temperatures. 

▪ Vegetation cover - The amount of vegetation cover in an urban area can impact 

the urban heat island effect. Studies have shown that areas with a higher 

percentage of green space tend to have lower temperatures. 

▪ Wind speed measurements - Urban areas tend to have lower wind speeds due to 

the presence of buildings and other structures which create obstacles to the flow 

of air. This can result in higher temperatures in urban areas due to reduced 

ventilation. 

▪ Urban density - refers to the degree of compactness of urban development within 

a given area; higher urban density can exacerbate the phenomenon by increasing 

the number of heat-absorbing surfaces and reducing green spaces, while lower 

urban density with more green spaces can help mitigate it. 
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The subsequent section will provide an exposition of the scientific sources we 

compiled during our inquiry into measurement methodologies for the urban heat 

island effect. This literature review forms the groundwork for determining the most 

appropriate techniques for our research.  

The first of the research papers is the study conducted by Y. Zheng et al. (2023) [16] 

in Hong Kong, that focuses on the impact of urban morphology and geographical 

conditions on local thermal environments and associated heat exposure risks in high-

density cities.  

The spatial variability of urban forms and geographical conditions has been quantified 

using the Local Climate Zone (LCZ) framework, which consists of 17 basic classes that 

standardize the observation and report of UHI (Urban Heat Island) studies. In Hong Kong, 

the LCZ classification maps have been used to differentiate local thermal variation, and 

UHI intensity has been found to be maximized in deep night or early morning. The 

method includes the use of TESTO 480 temperature and humidity probe and data logger 

for measurement, bivariate and multivariate analysis, and the establishment of 

quantitative connections between LCZ parameters and UHI intensity.  

The study suggests the need for increased urban openness and permeability, and the 

promotion of radiative and convective cooling through wider setbacks of buildings and 

the use of green spaces with high pervious surface cover. 

In research by K. Liao et al. (2021) [17] it is considered the impact of spatial 

heterogeneity in urban morphology on surface urban heat islands (SUHIs). It analyses 

the relationship between SUHIs and urban morphology factors such as building density, 

height, and materials used for construction.  

 
[16] Sun, T., Gao, J., Yu, Q., & Wang, X. (2021). Mapping the spatial distribution of nocturnal urban heat 
island based on Local Climate Zone framework. Sustainable Cities and Society, 72, 103072. 
https://doi.org/10.1016/j.scs.2021.103072 

[17] Liao, K., Hong, Y., & Heo, J. (2018). The effect of spatial heterogeneity in urban morphology on 
surface urban heat islands. Environmental Research Letters, 13(6), 064014. doi: 10.1088/1748-
9326/aac2d8 
 

https://doi.org/10.1016/j.scs.2021.103072
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The research found that urban morphology plays a significant role in the formation of 

SUHIs, with factors such as high building density and low vegetation cover contributing 

to higher temperatures. The study also emphasizes the importance of considering urban 

morphology in the design and planning of sustainable cities. 

The data analysis between these two articles (Y. Zheng et al. (2023); K. Liao et al. 

(2021)) uses spatial statistical analysis to map the spatial distribution of nocturnal UHIs, 

while the second article uses a regression analysis to examine the relationship between 

urban morphology and SUHIs. 

C. Reis, et al. (2021) [18] presents maps of Urban Heat Island (UHI) for the Lisbon 

Metropolitan Area (LMA) based on local weather patterns. The maps were created by 

analysing hourly air temperature data. An urban mask was created from Local Climate 

Zones (LCZ) classification (using the same approach of Y. Zheng et al. (2023)), and UHI 

intensity was estimated using an R script. The maps were divided by thermal seasons and 

local weather types (LWT) with average UHI intensity estimated for each LWT.  

The study found that UHI effects are more pronounced in areas with less vegetation and 

more impermeable surfaces, particularly during periods of high temperature and low wind 

speed. 

Research conducted by X. Liu, et al. (2018) [19], discusses the various parameters that 

are used to calculate the roughness of urban surfaces, primarily focusing on the frontal 

area index (FAI) as the most reliable indicator of roughness. It goes on to discuss the 

planning of urban ventilation corridors, which must consider factors such as wind 

environment, ventilation potential, and heat island intensity. The passage explains how 

various indicators are used to assess the wind environment, including DEM, vegetated 

space, open space, building density, building height, frontal area density (FAD), road 

density, road connectivity, and examines the correlations between FAD and these factors 

 
[18] Reis, C., Lopes, A., & Santos Nouri, A. (2021). Urban heat island data by local weather types in 
Lisbon metropolitan area based on Copernicus climate variables dataset for European cities. Sustainable 
Cities and Society, 65, 102618. 

[19] Liu, X., Huang, B., Li, R., Zhang, J., Gou, Q., Zhou, T., & Huang, Z. (2018). Wind environment 
assessment and planning of urban natural ventilation corridors using GIS: Shenzhen as a case study. 
Building and Environment, 129, 100-113. 
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using Pearson's correlation analysis. The authors suggest that this approach could be 

applied to other cities facing similar issues with poor air quality and ventilation. 

The study by Wang W., et al. (2022) [20] proposes a novel method that integrates land 

surface temperature retrieval, GIS spatial analysis, and weather data to identify functional 

and compensatory spaces, assess ventilation potential, and determine wind direction and 

speed. 

The findings of the study demonstrate the potential of constructing primary and 

secondary ventilation corridors in Hangzhou, China, utilizing water bodies, green 

spaces, and roads. The article presents a cost-effective research model for UVC planning, 

using remote sensing images and basic urban and meteorological data. 

The article by V. Equere, et al. (2021) [21] illustrates research that aimed to improve 

the prediction of urban heat islands (UHI) by incorporating topographic variations 

using a new terrain factor (TF) integrated with other morphological parameters. The study 

used Landsat images and LiDAR data to derive vertical and horizontal morphological 

parameters, which were trained in an artificial neural network (ANN) to predict the 

surface UHI indicated by land surface temperature (LST) in two areas in Illinois, USA 

with high and low topographic variations. Results showed that the model trained with TF 

performed better in predicting UHI in areas with complex surface elevation. The study 

also found that NDBI and NDVI were the most significant parameters influencing UHI 

in urban areas, while TF was a significant factor in areas with high topographic variations. 

The study concluded that the inclusion of TF is essential for explaining UHI formation in 

areas with significant topographic variations and suggested that future studies should 

consider the impact of atmospheric and climatic factors. 

 
[20] Wang, W., Wang, D., Chen, H., Wang, B., & Chen, X. (2022). Identifying urban ventilation 
corridors through quantitative analysis of ventilation potential and wind characteristics. Building and 
Environment, 208, 108759. 

[21] Equere, V., Mirzaei, P. A., Riffat, S., & Wang, Y. (2021). Integration of topological aspect of city 
terrains to predict the spatial distribution of urban heat island using GIS and ANN. Sustainable Cities 
and Society, 69, 102825. https://doi.org/10.1016/j.scs.2021.102825 

https://doi.org/10.1016/j.scs.2021.102825
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C.M. Nakata-Osaki, et al (2018) [22] created a simulation model called THIS, which 

is integrated into a GIS and designed to estimate the maximum intensity of urban heat 

islands by utilizing urban geometry data. The researchers used a theoretical-numerical 

approach (Oke model) and tested the model on two Brazilian cities. The main purpose of 

the tool is to simulate how urban geometry affects the maximum intensity of nocturnal 

heat islands. The study found that different urban settings had varying trends in the 

UHImax value for the H/W ratio and roughness length. Specifically, urban canyons with 

greater roughness showed UHImax values that were roughly half of the value of canyons 

with less roughness for the same H/W ratio. 

A. Oliveira, et al (2021) [23] discusses a machine learning approach to predict the 

synthetic nocturnal surface Urban Heat Island (SUHI) during a heatwave event in 

Naples. The authors calculate urban energy balance components for diurnal Landsat-8 

imagery and Meteosat's Spinning Enhanced Visible and InfraRed Imager (MSG- 

SEVIRI) to understand the relation with the nocturnal SUHI. They test a data fusion 

approach to develop a sub-kilometric synthetic nocturnal LST prediction model based on 

diurnal high-resolution heat flux components and nocturnal kilometric thermal imagery. 

The Random Forest algorithm is used for machine learning model development. The 

study explores an energy balance-based machine learning approach to predict the 

nocturnal SUHI during an HW event, ensuring mean square errors inferior to 0.1 K. The 

results support the adoption of the energy balance approach, and the study's method and 

results are a precursor to upscale an energy balance-based data fusion approach for SUHI 

prediction, which would provide an efficient urban climate monitoring tool whenever in-

situ observations are not readily available. 

 
[22] Nakata-Osaki, C. M., Souza, L. C. L., & Rodrigues, D. S. (2017). Tool for Heat Island Simulation: A 
GIS extension model to calculate urban heat island intensity based on urban geometry. Computers, 
Environment and Urban Systems, 65, 104-117. doi: 10.1016/j.compenvurbsys.2017.04.002 
[23] Oliveira, A., Lopes, A., Niza, S., & Soares, A. (2021). An urban energy balance-guided machine 
learning approach for synthetic nocturnal surface Urban Heat Island prediction: A heatwave event in 
Naples. Building and Environment, 195, 107749. https://doi.org/10.1016/j.buildenv.2021.107749 
 

https://doi.org/10.1016/j.buildenv.2021.107749
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In the article by G. Mutani and S. Beltramino (2022) [24], The authors describe the 

development and validation of a geospatial model for assessing outdoor thermal 

comfort in urban areas, using data from field measurements, satellite imagery, and 

numerical modelling. They also present a case study of the model's application in the city 

of Turin, Italy, to evaluate the thermal comfort conditions of different urban typologies 

and land uses. 

The model (SOLWEIG) uses high-quality Digital Surface Models and weather data to 

simulate the effects of radiant flux densities and mean radiant temperature. The study 

compares SOLWEIG with ENVI-met for thermal comfort analyses in various urban 

spaces in hot and cold weather conditions. The results show that SOLWEIG is a more 

suitable tool for assessment and analyses at the urban scale, while ENVI-met is more 

useful for feasibility studies with high spatial and temporal resolution or for the pre-

design phase of little neighbourhoods. The study highlights the importance of evaluating 

outdoor thermal comfort across the whole city to prioritize interventions and define the 

urban characteristics for more liveable outdoor spaces. 

V. Todeschi and G. Mutani, et al. (2021) [25] in their study describe the development and 

implementation of a multi-disciplinary approach to urban rooftop transformation, 

which involves stakeholders from different sectors and disciplines, including architecture, 

engineering, and social sciences. They also provide an overview of the smart solutions 

and technologies that are used to improve the sustainability and functionality of urban 

rooftops, such as green roofs, solar panels, and rainwater harvesting systems. 

The study finds that the Re-Coding project has the potential to make significant 

contributions to the sustainability and liveability of cities, by enhancing the quality of 

urban spaces and reducing the environmental impact of buildings. The authors suggest 

that the multi-disciplinary approach and smart solutions employed in the project can serve 

as a model for other urban development initiatives. 

 
[24] Mutani, G., & Beltramino, S. (2022). Geospatial assessment and modeling of outdoor thermal comfort 
at urban scale. Sustainable Cities and Society, 77, 103245. https://doi.org/10.1016/j.scs.2021.103245 
 
[25] Todeschi, V., Mutani, G., Baima, L., Nigra, M., & Robiglio, M. (2021). Smart Solutions for Sustainable 
Cities—The Re-Coding Experience for Harnessing the Potential of Urban Rooftops. Sustainability, 13(16), 
8954. https://doi.org/10.3390/su13168954 
 

https://doi.org/10.1016/j.scs.2021.103245
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The paper "Urban Heat Island Mitigation: A GIS-based Model for Hiroshima" by G. 

Mutani, et al. (2019) [26] presents a GIS-based model that evaluates the urban heat island 

(UHI) effect in the city of Hiroshima and proposes mitigation measures to reduce its 

impact. The authors used GIS analysis to calculate the surface temperature of the city 

and identify areas with the highest UHI intensity. They also conducted surveys to gather 

data on the thermal comfort of residents and the urban morphology of the city. The 

methodology used for evaluating air temperature variations and UHI effects on the city is 

described, and variables such as satellite images, weather station (WS) data, and 

indicators are used to construct the models. The main variables that influence air 

temperature were identified, including altitude, vegetation, and water, which reduce air 

temperature. Linear regression models of air temperature are presented, with the best 

results obtained from models including all non-normalized variables or normalized 

variables without LST. The models show that air temperature is higher in urban areas 

than in the peripheral plain and mountain areas, which are mitigated by altitude, 

vegetation, and lower building density. The UHI intensity (UHII) is used as an indicator 

to measure the hourly and daily amplitude and temperature gradient of the air between 

the urban and surrounding rural areas. The model results suggest that interventions on 

variables such as buildings density and relative building height can improve 

microclimatic conditions and mitigate air temperature. 

In the next part, of the literature review, our goal was to identify articles that 

implemented machine learning techniques in the evaluation of urban heat islands 

(UHIs). This involved a targeted search of academic databases and other relevant 

sources using specific keywords and search terms related to machine learning and 

UHIs. 

Research by D. Espino, et al. (2022) [27] the article presents a new GIS add-in called 

ArcUHI that allows for the automated modelling of the Urban Heat Island (UHI) effect 

 
[26] Mutani, G., Todeschi, V., & Matsuo, K. (2019). Urban Heat Island Mitigation: A GIS-based Model 
for Hiroshima. Sustainability, 11(8), 2369. https://doi.org/10.3390/su11082369 
[27] Espino, D. J., Manchado, C., Valcarce, A. R., & Moscardò, V. (2022). ArcUHI: A GIS add-in for 
automated modelling of the Urban Heat Island effect through machine learning. Environmental Modelling 
& Software, 146, 105176. doi: 10.1016/j.envsoft.2021.105176 

https://doi.org/10.3390/su11082369
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using machine learning techniques. The add-in is designed to work with ArcGIS 

software and allows users to quickly and easily generate UHI models using a variety of 

machine learning algorithms. The authors provide a detailed description of the ArcUHI 

add-in and its capabilities, and present results from a case study in the city of Oviedo, 

Spain, where the add-in was used to model the UHI effect. The results demonstrate that 

ArcUHI can generate accurate UHI models using machine learning techniques and has 

the potential to be a valuable tool for urban planning and management. The article 

concludes with a discussion of the potential applications and limitations of the ArcUHI 

add-in, as well as directions for future research. The article explains the process of using 

satellite data to extract surface temperature information, and the creation of Digital 

Surface Models (DSM) from building rasterizations. Nonlinear machine learning 

algorithms such as Support Vector Regression (SVR) and Random Forest Regression 

(RFR) were used to model the UHI effect. The results showed the suitability of using ΔT 

(the difference between land surface temperature and air temperature) as a representative 

for UHI. The add-in can be used to propose retrofitting measures for SUHI mitigation, 

such as roof and wall greening, planting trees, and replacing dark asphalt roads with 

"cool" pavements. 

The article by J. Lin, et al. (2022) [28] investigates the relationship between the 

spatial pattern of green spaces and urban heat island (UHI) intensity using machine 

learning methods. The study found that UHI intensity was negatively related to the 

density of green space and positively related to the density of built-up areas, population 

density, and mean building height. Additionally, the study found that the morphological 

characteristics of green space could exert a substantial influence on UHI intensity. The 

random forest model suggested that the density of core green space can substantially 

contribute to the mitigation of UHI effect in the study area. The study suggests that 

improving the morphological spatial pattern of green space through land use planning 

would be more helpful in mitigating the UHI effect. 

 
[28] Lin, J., Qiu, S., Tan, X., & Zhuang, Y. (2022). Measuring the relationship between morphological 
spatial pattern of green space and urban heat island using machine learning methods. Sustainable Cities 
and Society, 95, 103877. doi: 10.1016/j.scs.2021.103877 
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The paper by P. Mohammad, et al. (2022) [29] describes a study that uses machine 

learning algorithms to predict land use land cover (LULC) and land surface 

temperature (LST) changes to characterize the surface urban heat island (SUHI) 

phenomena in Ahmedabad, India. The study uses remote sensing data from Landsat 8 

satellite images to extract LULC and LST data for the period from 2013 to 2020. The 

authors then use machine learning algorithms, specifically random forest and support 

vector regression, to model the relationships between LULC and LST and to predict LST 

changes based on LULC changes. 

The study conducted by S. Liu, et al. (2021) [30] used a combination of remote sensing 

data, meteorological data, and field measurements to build a model that predicted UHI 

intensity in the study area. The model was then used to simulate different mitigation 

scenarios, such as the addition of green roofs and cool roofs to buildings, to determine 

their effectiveness in reducing UHI intensity. 

The results of the study showed that the machine learning model was able to accurately 

predict UHI intensity in the study area, and that the addition of green roofs and cool roofs 

had a significant impact in reducing UHI intensity. The authors suggest that the use of 

machine learning models in UHI mitigation planning can help to identify the most 

effective strategies for reducing UHI effects in urban areas. 

Quite similar research has been conducted by G. Mutani, et al. (2020) [31] this study 

looks at how green surfaces integrated with building envelopes and urban morphology 

can mitigate the urban heat island (UHI), improve thermal comfort, and save energy. 

Using data from seven weather stations in Turin, the study finds that covering roofs with 

vegetation and creating green urban areas can have several benefits, including increasing 

biodiversity, decreasing pollution and storm water runoff, and improving indoor and 

 
[29] Mohammad, P., Goswami, A., Chauhan, S., & Nayak, S. (2022). Machine learning algorithm-based 
prediction of land use land cover and land surface temperature changes to characterize the surface urban 
heat island phenomena over Ahmedabad city, India. Sustainable Cities and Society, 96, 103952. doi: 
10.1016/j.scs.2021.103952 
[30] Liu, S., Zhang, J., Li, J., Li, Y., Zhang, J., & Wu, X. (2021). Simulating and mitigating extreme urban 
heat island effects in a factory area based on machine learning. Sustainable Cities and Society, 70, 
102977. doi: 10.1016/j.scs.2021.102977. 

[31] Mutani, G., & Todeschi, V. (2020). The Effects of Green Roofs on Outdoor Thermal Comfort, Urban 
Heat Island Mitigation and Energy Savings. Sustainability, 12(2), 616. doi: 10.3390/su12020616. 
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outdoor thermal comfort. The study also shows that outdoor and indoor thermal comfort 

increases with vegetation and green roofs, higher values of albedo, and lower building 

density, while UHI discomfort increases with higher values of canyon height-to-width 

ratio and building density. The study proposes requalifying critical areas in Turin with 

green roofs, parks, and rows of trees to improve thermal comfort, reduce energy 

consumption, and mitigate the UHI effect. 

The authors, S. Wang et al., (2023) [32] conducted a study that explores the 

relationship between health and exposure to heat and air quality in different urban 

areas across Australia. The authors use global and local machine learning models to 

analyse how these factors affect health outcomes, and they examine how this 

relationship varies depending on specific geographic locations. The study finds that heat 

and air quality are significant predictors of health outcomes, but the effects vary across 

different urban areas. The authors suggest that policymakers should use these findings 

to inform targeted interventions to mitigate the negative health impacts of urban heat 

and air pollution. 

The last of the researchers analysed is by T. Lan, et al. (2023) [33], the study uses a 

hybrid approach that combines global climate models and regional climate models to 

predict the future UHI effect in China under different climatic and socioeconomic 

scenarios. The results show that the UHI effect is expected to increase in the future under 

all scenarios, but the magnitude of the increase varies depending on the policies 

implemented. The study also highlights the potential benefits of implementing sustainable 

policies to mitigate the UHI effect, such as green infrastructure and energy-efficient 

buildings. Overall, the study provides insights into the future of UHI in China and the 

potential role of policies in mitigating its impact. 

  

 
[32] Wang, S., Cai, W., Tao, Y., Sun, Q. C., Wong, P. P. Y., Huang, X., & Liu, Y. (2023). Unpacking the 
inter- and intra-urban differences of the association between health and exposure to heat and air quality 
in Australia using global and local machine learning models. Environmental Research, 204, 112012. 
https://doi.org/10.1016/j.envres.2022.112012 
[33] Lan, T., Peng, J., Liu, Y., Zhao, Y., Dong, J., Jiang, S., Cheng, X., & Corcoran, J. (2023). The future 
of China’s urban heat island effects: A machine learning based scenario analysis on climatic-
socioeconomic policies. Science of The Total Environment, 153114. 
https://doi.org/10.1016/j.scitotenv.2022.153114 
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1.6 Environmental protocols for reducing UHI effect 

Environmental protocols such as ITACA and LEED play a crucial role in the planning 

and development of new neighbourhoods with a focus on sustainability. These protocols 

provide a framework for assessing and promoting sustainable development in the built 

environment, considering various environmental factors and impacts. 

When planning a new neighbourhood, environmental protocols can be used to guide 

decisions related to building design, energy efficiency, water management, waste 

reduction, and more. For example, protocols may recommend strategies for reducing 

energy consumption, such as the use of renewable energy sources, high-efficiency 

insulation, and low-energy lighting. They may also promote the use of sustainable 

materials, such as recycled or locally sourced building materials. 

In addition to promoting sustainable development, environmental protocols can also 

help improve the quality of life for residents. For example, by promoting green spaces 

and vegetation, protocols can help mitigate the effects of urban heat islands and improve 

air quality. By reducing water consumption and managing stormwater runoff, protocols 

can help prevent flooding and protect water resources. 

Overall, environmental protocols provide a roadmap for creating sustainable, liveable 

neighbourhoods that balance environmental, economic, and social considerations. By 

following these protocols, planners and developers can help create communities that are 

more resilient, healthy, and equitable for all residents. 

This chapter will provide a technical examination of the environmental protocols 

ITACA and LEED, specifically with regards to the methods used to calculate urban heat 

island (UHI). The UHI calculation is an essential component of these protocols as it helps 

to identify the factors that contribute to the urban heat island effect, such as building 

density, materials, and vegetation cover. By examining the UHI calculation methods in 

ITACA and LEED, we can gain a deeper understanding of how these protocols help 

promote sustainable development in the built environment and mitigate the environmental 

and health impacts of urban heat islands. 

ITACA (Integrated Assessment for the sustainable Built Environment) is an 

environmental protocol developed in Italy to assess the sustainability of buildings and 
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neighbourhoods. It considers various aspects, such as energy efficiency, water 

consumption, materials used, and indoor comfort. The aim is to promote sustainable 

development in the built environment. 

LEED (Leadership in Energy and Environmental Design) is a similar protocol 

developed in the United States. It provides a framework for designing and constructing 

green buildings and neighbourhoods, with a focus on energy efficiency, water 

conservation, and sustainable materials. 

In urban areas, the phenomenon of urban heat islands can have significant 

environmental and health impacts. To address this issue, various methods are used to 

calculate the urban heat island (UHI) in different neighbourhoods. This involves 

measuring the temperature differences between urban and rural areas, and analysing 

factors that contribute to the urban heat island effect, such as building density, materials, 

and vegetation cover.  

The subsequent section outlines trough a table, the factors considered for the 

identification and calculation of urban heat island (UHI) in the two environmental 

protocols. 
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Table 1 - Factors of UHIs in Environmental Protocols 

The green symbols indicate that the protocol accounts for the factor in its calculation 

of the final score, whereas the red cross indicates that the protocol does not consider that 

factor. After analysing these two protocols, we can conclude that the ITACA protocol 
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provides a more comprehensive examination of the factors that contribute to the Heat 

Island (HUI) effect. 

According to Protocollo ITACA a Scala Urbana SINTETICO [34], is reported how 

the factors shown in the table above were calculated for evaluating the Urban Heat Island 

(UHI) effect, according to the protocol's guidelines. 

Solar Reflectance Index (SRI): is an indicator of a surface's ability to reflect solar 

radiation and dissipate the heat generated by absorbed radiation. The SRI is defined as a 

combination of solar reflectance (albedo) and surface thermal emittance and is expressed 

on a scale of 0 to 100, where higher values indicate greater heat dissipation ability. 

H/D ratio: is a measure of the relationship between the height of buildings and the size 

of the open space they overlook. Specifically, it is calculated by dividing the height of the 

buildings (H) by the dimension of the open space (D). Lower values of the H/D ratio 

indicate that buildings are shorter in relation to the open space, resulting in a greater 

proportion of open sky. This increased exposure to the atmosphere facilitates greater heat 

loss, which can contribute to a reduction in temperature. From a technical perspective, 

this phenomenon can be explained by the fact that buildings act as barriers to the flow of 

air, reducing the rate of heat exchange between the surface of the earth and the 

atmosphere. By contrast, open spaces allow for greater convection and radiation, which 

facilitates heat loss to the atmosphere. This effect is particularly important in urban 

environments, where high concentrations of buildings can lead to a phenomenon known 

as the "urban heat island" effect. By optimizing the H/D ratio to maximize open space 

and minimize building height, it may be possible to mitigate the impacts of this effect and 

reduce overall energy consumption. 

Sky view factor (SVF): is a measure of the visible portion of the sky from a given 

observation point. An SVF value of 0.0 indicates that the sky is completely obstructed 

and therefore not visible, while an SVF value of 1.0 indicates that the sky is completely 

visible from all angles. For this reason, the higher the calculated SVF, the greater the heat 

loss to the atmosphere. This effect is particularly important in urban environments, where 

the high concentration of buildings can obstruct the view of the sky and limit the potential 

 
[34] Istituto Per L’innovazione E Trasparenza Degli Appalti E La Compatibilità Ambientale Itaca, 
Protocollo Itaca A Scala Urbana Sintetico, Metodologia E Strumento Di Verifica, Versione 2.02 (2020) 
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for heat exchange. By optimizing the SVF to maximize the visible sky, it may be possible 

to reduce the impacts of the "urban heat island" effect and improve overall energy 

efficiency. 

Soil permeability: it refers to the ability of soil to allow water or other fluids to pass 

through it. Soils with high permeability allow water to flow through them easily, while 

soils with low permeability tend to hold water. In the context of urban design and 

management, permeable soils are important in reducing the urban heat island effect. The 

scenario will be satisfied if has been considered and reached the criteria in the evaluation 

criteria area n°5.01 of the document mentioned in citation [34]. 

Green roof and vegetation: The use of green roofs or materials that guarantee a Solar 

Reflectance Index (SRI) of at least 29 [35] is preferred if the slope is greater than 8.5°, 

and 76 in the case of roofs with a slope of less than or equal to 8.5°. Green surfaces: the 

presence of green surfaces provides solar protection, cooling of the ambient air through 

evapotranspiration, and improves air quality. The presence of green roofs and vertical 

gardens can also significantly contribute to the reduction of urban temperatures. The 

scenario will be satisfied if has been considered and reached the criteria in the evaluation 

criteria area n°6 of the document mentioned in citation [34]. 

Waste heat from urban anthropogenic activities: reduce the presence in open spaces 

of waste heat generated by anthropogenic activities (transportation, air conditioning, etc.). 

The scenario is satisfied by highlighting, during the pre-operation phase, which activities 

generate waste heat and the strategies adopted to reduce their effects, which will then be 

verified during the post-operation phase. 

Presence of water: The presence of natural low-temperature reservoirs such as ponds, 

puddles, fountains, etc. contributes to lowering the temperature through 

evapotranspiration. The scenario is satisfied by highlighting in the pre-operative phase 

what natural heat dissipators are present and/or expected. Their presence can later be 

verified in the post-operative phase. 

Materials: Materials: in open spaces, on the facades of buildings facing these spaces, 

and on their roofs, reflective or so-called cool materials should be favored, which have 

 
[35] Istituto Per L’innovazione E Trasparenza Degli Appalti E La Compatibilità Ambientale Itaca, 
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high reflectivity to solar radiation and a high coefficient of emissivity. In the case of 

materials with low absorption of solar radiation and high infrared emission, the surface 

temperature of the materials is minimized, thus reducing the amount of heat released into 

the atmosphere. These materials include, for example: natural materials that have high 

reflectivity to solar radiation; artificial coatings in white or light colors; coatings colored 

with high reflectivity in the infrared spectrum; "smart" coatings mixed with 

thermochromic substances or paints and phase change materials (PCM) that improve the 

thermal and optical properties of the coating.  

The evaluation or choice of materials can be carried out in the following way: external 

paved or pedestrian or bicycle use surfaces (e.g., pedestrian paths, sidewalks, squares, 

courtyards, cycle paths, etc.): the use of permeable materials (e.g., draining materials, 

green surfaces, pavements with open meshes or grated elements, etc.) with a Solar 

Reflectance Index (SRI) of at least 29 should be provided [36]. 

Overall, both protocols aim to mitigate the UHI effect, but they have some minimal 

differences in terms of the calculation and mitigation strategies, reflecting the different 

priorities and contexts of the regions in which they were developed. 

 

LITERATURE TABLE 

  

 
[36] Istituto Per L’innovazione E Trasparenza Degli Appalti E La Compatibilità Ambientale Itaca, 
Protocollo Itaca A Scala Urbana Sintetico, Metodologia E Strumento Di Verifica, Versione 2.02 (2020) 
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2. Studying urban heat islands: 
the case of Turin 

 
In this research, we have selected the city of Turin, Italy, as a case study to investigate 

the phenomenon of urban heat islands. Turin is the capital city of the Piedmont region in 

northern Italy and has a population of approximately 900,000 people. It is a historically 

and culturally rich city with a significant industrial past, that is the reason of the need of 

significant urban transformation. Despite these efforts, the city is still susceptible to the 

formation of urban heat islands due to its dense urban fabric and high concentration of 

anthropogenic heat sources. 

In this study, we aim to analyse the spatial and temporal patterns of surface 

temperature in Turin, and to evaluate the intensity of the urban heat island effect and its 

impact on the local climate. 

Furthermore, the study will examine the impact of large-scale urban interventions, 

such as the redevelopment of former industrial areas and the expansion of green 

infrastructure, on the urban heat island phenomenon.  

Figure 5 - Photo by Fabio Fistarol on Unsplash 
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2.1 Main purposes of the UHI analysis in Turin 

 

Within the framework of this thesis, dedicated to the exploration of the urban heat 

island (UHI) phenomenon in Turin, the analysis serves crucial objectives aligned with the 

specific urban and environmental dynamics of the city. In particular, the survey focuses 

on the former TEKSID area, a major industrial area undergoing a comprehensive 

redevelopment initiative. This context injects additional layers of significance into the 

analysis as it examines UHI dynamics in the wake of urban redevelopment. The analysis 

is driven by the following primary purposes: 

- Contextual Understanding: a paramount objective is to dissect Turin's distinctive 

UHI dynamics within the context of the Ex-area TEKSID's transformation. By 

discerning how urbanization, combined with post-industrial regeneration actions, 

influences local microclimate patterns, the study yields insights tailored to the 

specific nuances of this area. Understanding how regeneration impacts UHI 

dynamics is essential for refining mitigation strategies for areas undergoing similar 

urban rejuvenation efforts. 

- Mitigation Strategy Formulation: an integral aspect of this analysis is to pinpoint 

variables that significantly contribute to UHI intensity within the Ex-area TEKSID. 

The goal is to quantitatively assess whether the regeneration intervention has 

mitigated UHI effects. By evaluating the impacts of various factors on UHI, the 

analysis informs the development of targeted strategies that harness the benefits of 

urban regeneration to alleviate temperature differentials.  

 

In essence, this analysis of UHI, focusing on the transformation of the Former 

TEKSID area, seeks to contribute scientifically rigorous insights into the effectiveness 

of regeneration actions in mitigating the effects of UHI.  

 

By linking scientific inquiry with pragmatic concerns of urban redevelopment, the 

study seeks to provide a data-driven basis for resilient, comfortable, and sustainable urban 

environments in revitalized areas.  
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2.2.1 Visualizing Thesis Methodology: Flowchart Overview 
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2.2 Understanding Climate Context: A Brief Overview 

A climate context overview provides a broad understanding of the climate conditions 

in a particular region. It encompasses various factors such as temperature, precipitation, 

seasonal variations, and notable climate patterns. This overview aims to provide a 

foundation for understanding the typical climate characteristics and trends in the area. 

The overview usually includes information about the average annual temperature 

range, highlighting the general temperatures experienced throughout the year. It may also 

mention the seasonal temperature variations, describing the differences in temperature 

between the various seasons. 

Precipitation is another essential aspect covered in the overview. It typically includes 

the average annual precipitation amount, indicating the level of rainfall or snowfall the 

region receives over a year. The overview might also highlight the seasonal distribution 

of precipitation, pointing out the wettest and driest months or any notable patterns 

observed. 

In addition to temperature and precipitation, a climate context overview may touch 

upon other relevant aspects. These can include humidity levels, prevailing winds, the 

occurrence of extreme weather events, or specific climatic phenomena associated with 

the region. 

Furthermore, if applicable, the overview may address the impact of climate change on 

the area. It might briefly mention any observed changes or trends resulting from climate 

change, such as temperature shifts, altered precipitation patterns, or increased frequency 

of extreme weather events. 

A climate context overview aims to provide a concise yet informative summary of the 

climate conditions in each region. It serves as a starting point for understanding the typical 

weather patterns, seasonal variations, and potential climate-related challenges in that area.  
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The climatic data comes from the weather station chosen in: “Torino, Via della 

Consolata, 10”.  

 

 

 
Figure 6 - Weather station localization 
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▪ Temperature chart 
 

 
Table 2 - Mean monthly temperature over years [°C] 

▪ Precipitation chart 
 

 
Table 3 - Mean monthly precipitation over years [mm] 

 
The table depicting temperature and precipitation data displays the monthly averages 

for precipitation in millimetres and temperature in degrees Celsius for each year. At the 

bottom of the table, are present the basic statistics for each month, which will be utilized 

in the construction of the climograph.  

Year J F M A M J J A S O N D
2010 1.7 4.4 8.9 14.6 17.6 22.3 26.7 23.4 19.2 12.9 8.5 2.5
2011 3.3 6.8 9.8 17.3 20.5 21.7 23 25.6 22.5 14.7 9 6.1
2012 4.4 2.7 13.6 12.6 18.5 23.7 25.3 25.9 19.9 15 10 3.9
2013 4.6 3.9 7.9 13.6 16 22.4 25.9 24.6 20.5 14.6 9.2 5.5
2014 5.7 7.1 12 15.6 17.9 22.7 22.6 22.2 20.1 16.2 10.6 6.3
2015 5.6 5.4 10.8 15.1 19.2 23.4 28.3 24.4 18.9 13.6 9.8 6.4
2016 5.1 7.2 10 14.9 17.1 22 25.5 24.7 22 13.5 9.6 5.5
2017 2.9 6.9 12.9 15.1 19.4 24.9 25.6 25.7 19 15.8 8.7 3.1
2018 6.5 4 7.9 16.2 18.5 23.7 26 25.9 21.7 15.7 9.7 4.9
2019 4 7.6 12.1 13.5 15.9 24.4 26 24.8 20.3 15.7 8.8 6.7
2020 4.3 9.4 9.8 15 19 21 24.9 25 20.8 13.3 9.9 5.1
2021 3.9 8 10.9 12.6 16.9 23.7 24.3 24.3 21.5 14.2 8.8 4.8
2022 4.8 8.2 9.6 14.1 20.5 25.4 28 25.9 20.4 17.8 10.1 4.6

Mean Temperature 4.37 6.28 10.48 14.63 18.23 23.18 25.55 24.80 20.52 14.85 9.44 5.03
Std. 1.27 2.01 1.79 1.36 1.51 1.30 1.65 1.09 1.15 1.38 0.65 1.28

(+) Std 5.64 8.28 12.27 15.99 19.74 24.47 27.20 25.89 21.67 16.23 10.09 6.31
(-) Std 3.10 4.27 8.68 13.28 16.72 21.88 23.90 23.71 19.37 13.46 8.79 3.76

Year J F M A M J J A S O N D
2010 38.6 58.6 49.4 43.4 172.4 261.4 24.2 230.8 84.2 113.8 173.8 76.4
2011 13.6 35 196.8 44.6 37.4 249.8 171.2 28.8 150.6 13.8 229 0.8
2012 35 8 38.4 168.8 133.2 88.8 101.2 38.8 52.4 48.8 167.6 2
2013 11.8 12 112 188.6 166.4 60.2 107 100.4 34.4 67 104 79.8
2014 71 104.4 71.2 65.4 115.6 74.2 202.8 75.6 48 31.2 238.2 67.2
2015 13.4 102.6 122.2 87 29.8 73.4 29.8 195.6 51.4 197.4 0 0
2016 4.4 107.6 57 63.8 166.4 108.4 91.4 77 25.4 61.4 171.8 50.2
2017 2.6 33.4 58.4 42 66.6 127 40.8 35.6 24.2 0 37.6 24
2018 88.8 62.8 76 86.6 195 96.2 131.4 44.6 57.6 153.4 100 5.2
2019 2 19.8 10 122.8 135 90 247.8 70.6 43.8 129.6 269.2 72.2
2020 0 0 21 129.6 89 224.4 43.6 184.4 32.6 90 1.6 31.8
2021 85 19.2 0.8 52.4 78.6 181.8 172 51.6 65.4 33 116.2 11.8
2022 0.4 4.4 8.2 12.2 57.2 13.8 39.2 42 25.8 40.4 26.6 40

Mean 28.20 43.68 63.18 85.17 110.97 126.88 107.88 90.45 53.52 75.37 125.82 35.49
St.d 32.99 39.70 55.03 52.91 55.12 77.83 73.04 68.26 34.01 58.47 91.34 30.87

St.d + 61.19 83.37 118.21 138.07 166.09 204.71 180.92 158.71 87.53 133.84 217.16 66.36
St.d - -4.79 3.98 8.16 32.26 55.84 49.05 34.83 22.19 19.52 16.90 34.47 4.62
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▪ Climograph – mean temperature and precipitation tendency (from 2010 to 

2022) 
 

Climograph offer a concise way to visually represent complex climate data. It 

combines average temperature and precipitation data into a single graph, using line 

graphs for temperatures and bars for precipitation. In this study, we focus on Turin and 

use data from 2010 to 2022 to create a climograph. This graph provides a quick overview 

of Turin's typical temperature and rainfall patterns over this period, forming a basis for 

deeper analysis of the city's climate. 

 
Table 4 – Climograph showing temperature (line) and precipitation (bar) 

 

 Following the presentation of the graph, we will delve into the process of 
calculating trends over the years. 
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▪ Trends calculation 
 
To calculate the trends in precipitation and temperature over the years has been 

followed these steps: 

• For each year, it was created a graph reporting the average 

temperature/precipitation by each month. 

• It was displayed the trend line and the equation of the graph. 

• To calculate the trend, it was taken the average value coming from the averages 

of all the years for a given month, then multiplied for the angular coefficient 

of the equation displayed in the graph related to the month considered. 

Here following, is shown the process using our data: 
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Graph 1 - Temperature [°C] trend analysis 

Month Temperature trend over years [°C] 

J 0.437 

F 2.134 

M 0.052 

A -1.170 

M 0.250 

J 3.477 

J 2.299 

A 1.934 

S 0.944 

O 2.004 

N 0.212 

D 0.231 

Average trend from 2010 to 
2022 

1.067 

Table 5 – Temperature [°C] trend over years (2010 - 2022) 

▪ Temperature Trends in Turin (2010-2022): A Comprehensive Analysis of 
Annual and Monthly Variations 

 
• Annual Temperature Trends: The temperature data from 2010 to 2022 reveals 

a picture of Turin's climate dynamics. The overall trend indicates a gradual 

increase in average temperatures over this time span. The calculated average 

trend of 1.067°C confirms this warming trend, suggesting that the city has 

experienced a notable rise in its average annual temperature during this period. 
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• Monthly Temperature Variations: Analysing the monthly temperature trends 

provides insights into the specific months that have contributed to this warming 

trend: 

- January: The data indicates a positive temperature trend over the years, with an 

increase of approximately 0.44°C per year. This reflects the warming trend even in 

the typically colder months, likely influenced by broader climate shifts. 

- February: Like January, February demonstrates a significant warming trend, with 

an average annual temperature increase of around 2.13°C. 

- March: March shows a minor positive trend, with an average increase of 

approximately 0.05°C per year. Although the rise is slight, it contributes to the 

overall warming pattern. 

- April: In contrast to the previous months, April exhibits a negative temperature 

trend, with an average decrease of about -1.17°C per year. This may be influenced 

by various factors, including changes in cloud cover and atmospheric circulation. 

- May: May experiences a slight positive trend of approximately 0.25°C per year. 

This contributes to the gradual warming observed during the spring months. 

- June: June's temperature trend is notably positive, with an increase of around 3.48°C 

per year. This substantial warming could have significant implications for summer 

temperatures and associated climate phenomena. 

- July: July follows suit with June, displaying a substantial warming trend of about 

2.30°C per year. The combined effects of urbanization and broader climatic factors 

could be contributing to this increase. 

- August: August mirrors the trends seen in June and July, with a positive temperature 

trend of approximately 1.93°C per year. This consistency across the summer months 

underlines the significance of the warming pattern. 

- September: September's trend is positive, albeit relatively moderate, with an 

average increase of around 0.94°C per year. This contributes to the transition from 

summer to autumn temperatures. 

- October: October's trend indicates a warming of about 2.00°C per year. This 

considerable rise in autumn temperatures can have implications for various 

ecological and climatic interactions. 
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- November: The positive trend in November is relatively small, with an average 

increase of about 0.21°C per year. Nonetheless, it contributes to the overall upward 

temperature trajectory. 

- December: December shows a minor positive trend, with an average increase of 

approximately 0.23°C per year. This indicates that even the colder months are 

experiencing a warming trend. 

 

▪ Climatic Implications: 
 
The observed temperature trends in Turin from 2010 to 2022 have broader climatic 

implications. The warming trend aligns with global patterns [37] of temperature increase 

attributed to climate change. It can impact various aspects of the city's ecosystem, 

including agriculture, urban planning, and water resources. Understanding these trends is 

vital for adapting to changing climate conditions and making informed decisions about 

sustainable development and resilience. 

  

 
[37] IPCC Report 2023, “Summary for Policymakers”, page 16-17: IPCC_AR6_SYR_SPM.pdf 

https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_SPM.pdf
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As for the temperature trends, the same process has been followed for the 

precipitation, here following are reported the related graphs: 
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Graph 2 - Precipitation [mm] trend analysis 
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▪ Precipitation Trends in Turin (2010-2022): A Comprehensive Analysis of 
Annual and Monthly Variations 
 

Month 
Precipitation trend over years 

[mm] 

J -19.455 

F -253.772 

M -668.936 

A -287.421 

M -352.660 

J -832.642 

J 150.672 

A 3.365 

S -234.501 

O 2.487 

N -1222.762 

D -38.474 

Average trend from 2010 to 
2022 

-312.842 

Table 6 - Precipitation trend over years [mm] from 2010 to 2022 

 

Annual Precipitation Trends: 

The precipitation data from 2010 to 2022 reveals insights into Turin's precipitation 

patterns. The calculated delta of -312.842 mm indicates a notable decrease in average 

annual precipitation during this period. 

 

Monthly Precipitation Variations: 

Analysing the monthly precipitation trends provides insights into the specific months 

that have contributed to this overall decrease in precipitation: 

 

- January: The negative precipitation trend in January (-19.45 mm) suggests a 

decrease in average precipitation over the years. This could impact the winter 

hydrological balance and water resources. 

- February: February exhibits a significant negative precipitation trend of 

approximately -253.77 mm per year. This could influence early spring water 

availability and related ecological dynamics. 
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- March: The negative trend in March (-668.93 mm) points to a substantial reduction 

in average precipitation. This could impact soil moisture and vegetation during the 

transition to spring. 

- April: April follows the trend of reduced precipitation, with a negative trend of -

287.41 mm. This could influence agricultural activities and groundwater recharge. 

- May: The negative precipitation trend in May continues (-352.60 mm), indicating a 

decrease in water availability during this critical growing season. 

- June: June's trend is highly negative (-832.64 mm), highlighting a significant 

reduction in precipitation during the early summer months. 

- July: July's positive trend of 150.67 mm suggests a slight increase in average 

precipitation. This could have implications for summer water availability and related 

sectors. 

- August: August's positive trend of 3.36 mm indicates a modest increase in 

precipitation. However, this increase might not be substantial enough to 

counterbalance the negative trends of the preceding months. 

- September: September's negative trend of -234.50 mm implies a reduction in fall 

precipitation, which can affect soil moisture and late-season vegetation. 

- October: October's positive trend of 2.48 mm is relatively small. While any increase 

is valuable, the cumulative negative trends in previous months might still impact 

overall water resources. 

- November: The pronounced negative trend in November (-1222.76 mm) suggests a 

substantial decrease in average precipitation during this month. This could influence 

autumn water availability and ecological processes. 

- December: The negative trend in December (-38.47 mm) points to reduced 

precipitation during the late autumn and early winter months. 

 

Climatic Implications: 

The observed precipitation trends in Turin from 2010 to 2022 have significant climatic 

implications. The overall decrease in precipitation aligns with broader patterns of 

changing precipitation regimes attributed to climate change. Decreased water 
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availability can impact multiple sectors, including agriculture, water supply, and 

ecosystem health [38].  

Interplay with Temperature: 

It's important to note that the negative precipitation trends coincide with the generally 

warming temperatures observed during this period. The combination of warming 

temperatures and decreased precipitation raises concerns about potential shifts in local 

climate dynamics, including altered hydrological cycles and increased risk of drought 

[39]. 

In conclusion, the precipitation trends in Turin over this period underscore the city's 

vulnerability to changing climate conditions. The data reflects a notable decrease in 

average precipitation, which can have wide-ranging impacts on various aspects of the 

city's environment and economy. The need for informed decision-making, water 

management strategies, and climate resilience measures becomes crucial considering 

these trends [40]. 

 

  

 
[38] IPCC Report 2023, “Longer Report”, page 49: IPCC_AR6_SYR_LongerReport.pdf 
[39] IPCC Report 2023, “Longer Report”, page 50: IPCC_AR6_SYR_LongerReport.pdf 
[40] IPCC Report 2023, “Longer Report”, page 105: IPCC_AR6_SYR_LongerReport.pdf 

Month 
Temperature trend over 

years (°C) 

 J 0.437 

F 2.134 

M 0.052 

A -1.170 

M 0.250 

J 3.477 

J 2.299 

A 1.934 

S 0.944 

O 2.004 

N 0.212 

D 0.231 

Av temp 2010 to 
2022 

1.067 

Month 
Precipitation trend 

over years (mm) 

J -19.455 

F -253.772 

M -668.936 

A -287.421 

M -352.660 

J -832.642 

J 150.672 

A 3.365 

S -234.501 

O 2.487 

N -1222.762 

D -38.474 

Av  Precipitation 
2010 to 2022 

-312.842 

Table 7 - Comparative example about temperature increase and related precipitation 

https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_LongerReport.pdf
https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_LongerReport.pdf
https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_LongerReport.pdf
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To support our analyses, the IPCC 2023 reports provide a global overview of the 

phenomenon of climate change. Below, we present two figures from the previously 

mentioned IPCC Report 2023. These figures will enhance our analysis in explaining the 

phenomena of 'Hot extremes,' 'Heavy precipitation,' 'Agricultural and ecological 

droughts,' and 'Observed impacts and related losses and damages of climate change. 

 

Figure 7 - IPCC Longer Report, 2023 (MED area means Mediterranean area, it also includes Italy) 41 

 
[41] IPCC Report 2023, “Longer Report”, page 48: IPCC_AR6_SYR_LongerReport.pdf 
 

https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_LongerReport.pdf
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Figure 8 - IPCC Longer Report, 2023 42 

  

 
[42] IPCC Report 2023, “Longer Report”, page 49: IPCC_AR6_SYR_LongerReport.pdf 

https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_LongerReport.pdf
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2.3 Transforming the Urban Landscape: Large-Scale 

Interventions in Turin 
 
 

  

Figure 9 – Area EX TEKSID captured in the orthophoto of CGR IT2000 Provincia di Torino (year 2000)  
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▪ How the TEKSID area was born? 
 
The EX-AREA TEKSID's origin is intertwined with the history of Ferriere Piemontesi, 

a significant industrial entity in Turin. It traces its roots back to the French company 

Vandel & C., which relocated its nail and wire manufacturing facilities from Ferriére-

sous-Jougne to Avigliana in 1891. The enterprise initially focused on shoe nails, "punte 

di Parigi" (Paris points), and wire production. However, by 1896, with the installation of 

a Martin furnace and a rolling mill, Vandel expanded into steel manufacturing and rod 

rolling. This evolution continued, and in 1899, after further expansion, the company 

transformed into Ferriere di Buttigliera Alta e di Avigliana, becoming a joint-stock 

company. The growing demand for processing from the Piedmontese industry prompted 

the company to establish a larger facility in Turin in 1906. This led to the birth of Ferriere 

Piemontesi, characterized by an operational steelwork with multiple furnaces and rolling 

equipment. The Turin complex commenced operations in 1907 near the Dora Station, 

boasting multiple Martin Siemens furnaces, electric furnaces, and rolling mills. 

During World War I, the Ferriere Piemontesi complex, employing approximately 550 

workers, played a role not only in steel production but also in manufacturing steel parts 

for weaponry. This strategic significance attracted Fiat's interest, and in 1917, Fiat 

acquired the Piemontese Group, incorporating significant metallurgical companies like 

Ferriere Piemontesi. This move was regarded as a pivotal business decision during and 

after the war. 

The complex underwent further expansion during and after the war, with Fiat's 

involvement. Its capabilities expanded beyond metallurgy to encompass machinery, 

automotive parts, and more. Throughout World War II, Ferriere Piemontesi endured 

bombings, yet remained a hub of resistance and refuge for partisans. The factory became 
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a focal point of anti-fascist activities, a hub for distributing clandestine materials, and a 

site of collaboration for the resistance. 

After the war, the factory experienced a resurgence in production, culminating in the 

establishment of the Teksid company in 1978. Teksid consolidated Fiat's metallurgical 

and siderurgical operations, becoming a subsidiary of Finsider in 1982 [43]. 

44 
AREA EX 

FERRIERE FIAT 
VITALI 

AREA EX 
FERRIERE FIAT 

VALDOCCO 

AREA EX 
FERRIERE 

FIAT INGEST 
Construction 1920 1917 1939 
Expansion 1973 1925 - 

Bombardment - 1942 - 
Abandonment 1992 1992 1992 

Demolition/Transformation 2001 2005 1995 
Table 8 – Ex Area TEKSID divided in FIAT’s ex-industrial plant, source: Museo Torino 

 

 

Figure 10 - Ex ferriere Fiat Valdocco (left), Ex ferriere Fiat Vitali (right) 

  

 
[43] Torino 1938|45 Luoghi memoria: Torino 1938|45 - La città delle fabbriche. Fiat Ferriere 
(istoreto.it)  
 
[44] Ex Stabilimento TEKSID, ex Ferriere Fiat Vitali: Ex stabilimento Teksid, ex Ferriere Fiat 
Vitali - MuseoTorino 
 
[44] Ex Stabilimento TEKSID, ex Ferriere Fiat Valdocco: Ex stabilimento Teksid, ex Ferriere 
Fiat Valdocco - MuseoTorino 
 
[44] Ex Stabilimento TEKSID, ex Ferriere Fiat Ingest: Ex Stabilimento Teksid, ex Ferriere Fiat 
Ingest - MuseoTorino 

http://www.istoreto.it/to38-45_industria/schede/fiat_ferriere.htm
http://www.istoreto.it/to38-45_industria/schede/fiat_ferriere.htm
https://www.museotorino.it/view/s/2ddd80eae7ca4555b51692f187cf20cd
https://www.museotorino.it/view/s/2ddd80eae7ca4555b51692f187cf20cd
https://www.museotorino.it/view/s/02583d7ab89a43c08590ac5c47d61be4
https://www.museotorino.it/view/s/02583d7ab89a43c08590ac5c47d61be4
https://museotorino.it/view/s/a0886cd0a4924bde964799ca9952b297#:~:text=Lo%20stabilimento%2C%20collocato%20nell%27area%20compresa%20tra%20le%20vie,Urbana%20che%20ha%20trasformato%20l%E2%80%99area%20di%20Spina%203.
https://museotorino.it/view/s/a0886cd0a4924bde964799ca9952b297#:~:text=Lo%20stabilimento%2C%20collocato%20nell%27area%20compresa%20tra%20le%20vie,Urbana%20che%20ha%20trasformato%20l%E2%80%99area%20di%20Spina%203.
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With the passage of time and changing economic dynamics, many of these industrial 

areas underwent transformation and decline. This shift led to a unique challenge: how 

to preserve the industrial heritage while adapting to new socio-economic and 

environmental realities. Here below are shown two images about one of the renewals, the 

source images are “Immagini del cambiamento: PD04 (polito.it)” 

 

Figure 11 - Teksid area and other factories, from Verolengo Street (view looking south), 1970 

 

Figure 12 - Dora Park, condominiums, urban empty residue, 2018  

https://areeweb.polito.it/imgdc/schede/PD04.html
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3.  Pre-modelling: Assessment of 
Environmental Variables 

 

 

3.1 Data collection and processing 

 

In the subsequent step, we conducted the calculation of indexes utilizing Landsat 8 

images. The acquisition of the data was facilitated by a QGIS tool called "STAC API 

Browser Plugin," which allows direct downloading of the required bands into the 

software. This streamlined process enabled seamless access to the necessary materials for 

index calculation within the QGIS environment.  

Figure 13 - STAC API Browser (Qgis Plugin) 
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Figure 14 - Selection of the images 
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For the preprocessing of Landsat images, the “Semi-Automatic Classification 

Plugin (SCP) tool” within the QGIS software has been utilized. SCP offers a 

comprehensive set of functions for processing remote sensing data. 

This tool assists in tasks such as radiometric calibration, atmospheric correction, 

geometric correction, and cloud masking. By integrating SCP into QGIS, we can 

streamline the preprocessing workflow, ensuring accurate and well-prepared data for 

subsequent analyses. 

 

  

Figure 15 - SCP Preprocessing for satellite images (Qgis) 
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The subsequent steps involve calculating various indexes using the raster bands 

extracted from these images. To streamline and expedite this process, we harnessed the 

power of the Python Console in QGIS. By utilizing the Python programming language, 

we were able to write custom codes that automated the index calculation, replacing 

the need for the "raster calculator tool" that is typically used in a manual workflow. 

 

 

The advantage of using Python scripts in the Python Console lies in the automation 

and efficiency it brings to the process. Rather than manually executing the calculations 

for each image and index using the graphical user interface, the Python scripts allowed 

us to execute the necessary commands automatically. 

To achieve this automation, we adapted the codes in a way that made it easy to modify 

just the band paths for each image. Instead of hardcoding specific bands for individual 

images, we made the scripts flexible by allowing the input of different band paths or 

filenames as variables. This way, the same script could be reused for multiple images, 

reducing the need for repetitive manual tasks. 

 

   

Figure 16 - Python Console (QGis) 
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3.2 Candidate variables 

Candidate data for modelling refers to the subset of data that is selected or considered 

as potential input for the modelling phase of a data analysis project. It is the data that 

is believed to have a high likelihood of being useful and informative for building a model 

to address a particular research question. 

Category Variables 

LAND COVER 
VARIABLES 

Use of soil  

Normalized difference vegetation index (NDVI) 

Proportion Vegetation index (PVI) 

Normal difference water index (NDWI) 

Normal difference moisture index (NDMI) 

Albedo 

Emissivity 

SRI (Solar reflectance index) 

URBAN 
GEOMORPHOLOGY 

Buildings - geometry and human activities - (2018) 

Sky view factor 

Normalized Difference Built-Up Index (2001) 

S/V ratio 

Weather stations 

Relative humidity 

Wind speed 

Wind direction 

Incoming solar irradiation 

Air Temperature 

 

Table 9 - Candidate variables for modelling 
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▪ Satellite images for the calculation of the variables – LANDSAT 8 [2018]: 
 

- SUMMER: 
 
LANDSAT_PRODUCT_ID LC08_L2SP_195029_20180822_2020083

1_02_T1 
DATE_ACQUIRED 2018-02-11 
SCENE_CENTER_TIME 10:16:47.63 
CLOUD_COVER 41.25 
GRID_CELL_SIZE_REFLECTIVE
/ THERMAL 

30 

 
- WINTER: 

 
LANDSAT_PRODUCT_ID LC08_L2SP_195029_20180211_2020090

2_02_T1 
DATE_ACQUIRED 2018-08-22 
SCENE_CENTER_TIME 10:17:08.07 
CLOUD_COVER 22.91 
GRID_CELL_SIZE_REFLECTIVE
/ THERMAL 

30 

 

- MID SEASON: 
 
LANDSAT_PRODUCT_ID LC08_L2SP_195029_20180416_2020090

1_02_T1 
DATE_ACQUIRED 2018-04-16 
SCENE_CENTER_TIME 10:16:36.47 
CLOUD_COVER 28.46 
GRID_CELL_SIZE_REFLECTIVE
/ THERMAL 

30 

 
 

▪ Satellite images for the calculation of the variables – LANDSAT 7 [2001]: 
 

- SUMMER: 
 

LANDSAT_PRODUCT_ID LE07_L1TP_194029_20010824_2020091
7_02_T1 

DATE_ACQUIRED 2001-08-24 
SCENE_CENTER_TIME 09:59:54.42 
CLOUD_COVER 4.00 
GRID_CELL_SIZE_REFLECTIVE
/ THERMAL 

30 
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- WINTER: 
 
LANDSAT_PRODUCT_ID LE07_L1TP_195029_20001218_2021112

2_02_T1 
DATE_ACQUIRED 2000-12-18 
SCENE_CENTER_TIME 10:07:43.39 
CLOUD_COVER 5.00 
GRID_CELL_SIZE_REFLECTIVE
/ THERMAL 

30 

 

- MID SEASON: 
 
LANDSAT_PRODUCT_ID LE07_L1TP_195029_20010527_2020091

7_02_T1 
DATE_ACQUIRED 2001-05-27 
SCENE_CENTER_TIME 10:07:06.43 
CLOUD_COVER 10.00 
GRID_CELL_SIZE_REFLECTIVE
/ THERMAL 

30 

 

▪ Day temperature [°C]  

Seasonality 

2001 2018 

Landsat 7 Landsat 8 

gg °C gg °C 

Summer 24-ago 26,1 22-ago 26,2 

Mid-Season 27-mag 23,2 16-apr 17,9 

Winter 18-dic 2,1 11-feb 3,8 
 

Satellite imagery from 2001 and 2018 was selected for analysis based on 

comparable temperature parameters during each respective season. The process involved 

careful curation of satellite images that exhibited similar temperature patterns across 

corresponding seasons in both years. This methodology aimed to provide a refined 

basis for evaluating climate-related changes and their consequences on the environment. 

The resulting alignment of images with similar temperatures facilitated the examination 

of the evolving relationship between temperature variations and corresponding shifts in 

land use and climatic conditions. 



Analysing Urban Heat Island Dynamics in Turin: A Machine Learning-based Investigation of Climate 

Changes and Intervention Effects | A. Scalise, X. Sufa 

Supervisor Professor G. Mutani  

Politecnico di Torino, 2023 

 

 
64 

 

3.2.1 Land cover variables 

The data production method used for the classification of the land uses is an 

experimental application of a new European model proposed by EAGLE. It involves 

using the regional geo-topographic database (BDTRE) as a foundation and enriching it 

with thematic information such as the Forest Map and Regional Landscape Plan. 

Additionally, new information derived from satellite imagery (Copernicus and 

Telerilevamento Piemonte) is integrated and correlated with cadastral mapping parcels. 

This approach aims to enhance land monitoring by utilizing a combination of existing 

databases and satellite imagery to gather comprehensive and up-to-date information about 

land cover and related characteristics. 

▪ Use of soil: The composition of land cover, such as concrete, asphalt, vegetation, 

or open spaces, significantly influences the urban heat island effect. Evaluating land uses 

allows for a better understanding of how different areas contribute to heat retention or 

mitigation.  
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f) Residential areas d) Industrial areas 

c) Commercial and services areas e) Logistical spaces 

a) Resource extraction and waste 
disposal areas 

b) Urban green areas 
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i) Agricultural areas j) Forest areas 

h) Grazing areas g) Aquatic areas 

k) Use of soil (total municipal area) 
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▪ Fractional roof cover: 
 

Asphalt 
Area  

Total 
Metropolitan 

Area  

Asphalt 
Area  

Total 
Metropolitan 

Area  

 
FRACTIONAL ROOF 

COVER 

[m^2] [m^2] [ha] [ha]  

25534029,9 142653650,2 2553,40 14265,37  

18% 
 

Table 10 - Fractional roof cover [%] – Elaboration on data by Geoportale Comune di Torino 

 
▪ Fractional soil cover: 

 

Category Total area [m2] Total area [ha] Fractional soil 
cover % 

Residential areas 53741782,27 5374,178227 37,67% 

Industrial areas 13069847,23 1306,984723 9,16% 

Commercial & services areas 9450942,313 945,0942313 6,63% 

Logistical spaces 16341443,45 1634,144345 11,46% 

Resource extraction and waste 
disposal areas 

1679569,661 167,9569661 1,18% 

Urban green areas 13390711,83 1339,071183 9,39% 

Agricultural areas 8936226,606 893,6226606 6,26% 

Forest areas 20922900,9 2092,29009 14,67% 

Grazing areas 1214062,255 121,4062255 0,85% 

Aquatic areas 3906163,707 390,6163707 2,74% 
    

TOT 142653650,2 14265,36502 100,00% 
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Figure 17 - Fractional soil cover [%] - Elaboration on data by Copernicus 
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▪ Normalized difference vegetation index (NDVI): 
 

The NDVI is a vegetation index derived from satellite imagery that measures the 

density of green vegetation. It compares the reflectance values of the near-infrared 

(NIR) and red bands of the electromagnetic spectrum, using the calculator in QGis. 

PYTHON SCRIPT OF THE AUTOMATIZED PROCESS 

  

NDVI = 𝑁𝐼𝑅−𝑉𝐼𝑆

𝑁𝐼𝑅+𝑉𝐼𝑆
 = 𝐵5 − 𝐵4

𝐵5+ 𝐵4
 

NDVI calculation [QGis] – WINTER 2018 & 2000 

NDVI calculation [QGis] – SUMMER 2018 & 2001 
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▪ Proportion vegetation index (PVI): 

A vegetation index that quantifies the proportion of vegetation cover within a 

specific area (0 to 1 index). It is calculated by comparing the reflectance values of 

vegetation and non-vegetation elements in remote sensing imagery, using QGis. 

 

PYTHON SCRIPT OF THE AUTOMATIZED PROCESS 

PVI = [𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼 + 𝑁𝐷𝑉𝐼𝑚𝑎𝑥
]2  

NDVI calculation [QGis] – MID SEASON 2018 & 2001 

PVI Calculation [QGis] – SUMMER 2018 & 2001 
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PVI Calculation [QGis] – WINTER 2018 & 2000 

PVI Calculation [QGis] – MID SEASON 2018 & 2001 
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▪ Normal difference water index (NDWI) 

NDWI highlights the presence and extent of water within a given area. We need 

to highlight that, the presence of noise in the image, does not allow the perfect distinction 

of the waterbodies. 

 

PYTHON SCRIPT OF THE AUTOMATIZED PROCESS 

NDWI = 𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 +𝑁𝐼𝑅
 = 𝐵3 − 𝐵5

𝐵3+ 𝐵5
  

NDWI Calculation [QGis] – SUMMER 2018 & 2001 

NDWI Calculation [QGis] – WINTER  2018 & 2000 
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▪ Normal difference moisture index (NDMI) 

It measures the moisture content and water stress of vegetation. By comparing the 

near-infrared (NIR) and shortwave infrared (SWIR) bands of the satellite data, NDMI 

indicates the relative moisture content of vegetation. Higher NDMI values indicate 

healthier vegetation with higher moisture content, while lower values suggest stressed 

vegetation with lower moisture content. 

 
PYTHON SCRIPT OF THE AUTOMATIZED PROCESS 

NDMI = 𝑁𝐼𝑅−𝑆𝑊𝐼𝑅

𝑁𝐼𝑅+𝑆𝑊𝐼𝑅
 = 𝐵5 − 𝐵6

𝐵5 ∓ 𝐵6
  

NDWI Calculation [QGis] – MID SEASON  2018 & 2001 



Analysing Urban Heat Island Dynamics in Turin: A Machine Learning-based Investigation of Climate 

Changes and Intervention Effects | A. Scalise, X. Sufa 

Supervisor Professor G. Mutani  

Politecnico di Torino, 2023 

 

 
74 

 

NDMI Calculation [QGis] - SUMMER 2018 & 2001 

NDMI Calculation [QGis] – WINTER 2018 & 2000 
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▪ Albedo 

Albedo is expressed as a percentage or a value between 0 and 1, with 0 representing 

a perfectly absorbing surface (no reflection) and 1 representing a perfectly reflecting 

surface (complete reflection). 

 
PYTHON SCRIPT OF THE AUTOMATIZED PROCESS 

 

 
 

 
Albedo = 𝜌𝑁𝐼𝑅 + 𝜌𝑆𝑊𝐼𝑅

2 ∗ (1 − 𝜌𝑅𝑒𝑑)
  

NDMI CODING

-1 - -0.8 Bare soil

-0,8 -  -0,6 Almost absent canopy cover

-0,6 - -0,4 Very low canopy cover

-0,4 - -0,2 Low canopy cover

-0,2 - 0 Mid low canopy cover

1 - 0,2 Average canopy cover

0,2 - 0,4 Mid high canopy cover 

0,4 - 0,6 High canopy cover

0,6 - 0,8 Very high canopy cover

0,8 - 1 Total canopy cover

NDMI Calculation [QGis] –MID SEASON 2018 & 2001 

Table 11 - NDMI Coding 
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ρNIR represents the reflectance in the near-infrared band (band 5), ρSWIR represents 

the reflectance in the shortwave infrared band (band 7), and ρRed represents the 

reflectance in the red band (band 4). 

 

Reflectance ρ = DN * scale factor + offset 

 
N.B. The scale factor and offset values can be found in the metadata associated with 

the Landsat 8 image. 
  

Albedo calculation [QGis] - SUMMER 2018 & 2001 

Figure 18 – Scale factor by Landsat 8’s metadata 
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▪ Emissivity  

Emissivity refers to the ability of a surface to emit thermal radiation. It is a measure 

of how efficiently a surface radiates heat compared to an ideal blackbody radiator. 

 

E = (0,004*PVI)+0,986 

 
PYTHON SCRIPT OF THE AUTOMATIZED PROCESS 

Albedo calculation [QGis] - WINTER 2018 & 2000 

Albedo calculation [QGis] – MID SEASON 2018 & 2001 
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Emissivity calculation [QGis] – SUMMER 2018 & 2001 

Emissivity calculation [QGis] – WINTER 2018 & 2000 
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▪ Solar reflectance index (SRI) 

The Solar Reflectance Index (SRI) is a measure of a material's ability to reflect solar 

heat (solar reflectance) and emit absorbed heat (thermal emittance). It is used to 

evaluate the potential of a surface to stay cooler in the sun by reducing the amount of 

solar radiation it absorbs. The SRI is expressed on a scale from 0 to 100, where 0 

represents a surface that absorbs all solar radiation and heats up significantly, and 100 

represents a surface that reflects all solar radiation and remains cool. Higher SRI values 

indicate a material's better ability to reflect sunlight and lower its surface temperature, 

reducing the heat island effect in urban areas and lowering cooling demands in buildings. 

 
PYTHON SCRIPT OF THE AUTOMATIZED PROCESS 

 

In this formula: 

SR represents the solar reflectance of the surface being analyzed. 

SR_min is the minimum solar reflectance value for a standard black surface (typically 

0.05). 

SRI = [ 𝑆𝑅−𝑆𝑅𝑚𝑖𝑛

𝑆𝑅𝑚𝑎𝑥−𝑆𝑅𝑚𝑖𝑛
] * 100 

Emissivity calculation [QGis] – MID SEASON 2018 & 2001 
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SR_max is the maximum solar reflectance value for a standard white surface (typically 

0.80). 

  

SRI calculation [QGis] – SUMMER 2018 & 2001 

SRI calculation [QGis] – WINTER 2018 & 2001 
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3.2.2 Urban geo-morphology variables 
 
 
▪ Buildings Density 

 

Figure 19 - SRI Calculation [QGis] 

SRI calculation [QGis] – MID SEASON 2018 & 2001 
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Statistics: 
NND (Nearest Neighbour Distance) analysis - Buildings 

Observed mean distance: 18.14 

Expected mean distance: 28.29 

Nearest neighbour index: 0.64 

 

Nearest Neighbour Analysis has been conducted to determine if there is any 

clustering or dispersion in the point distribution. The output of this analysis will give us 

the average nearest neighbour distance, which can help in guiding the selection of the 

search radius for the kernel density analysis. 

Kernel Density Analysis was conducted on the buildings using the shapefile provided 

by Turin Municipality. The analysis involved converting the buildings' spatial distribution 

into centroids and then into a density map through the application of Kernel Density 

Analysis. 

 

▪ Sky view factor 

The Sky View Factor (SVF) is a metric used to measure the proportion of visible sky 

from a location. It ranges from 0 to 1, where 0 means no visible sky (fully obstructed), 

and 1 means a completely unobstructed view of the sky. SVF is valuable to assess the 

urban heat island effect. The saga tool “sky view factor” has been used for the final 

evaluation. The sky view factor has been performed using a DSM 1 meter of precision, 

later exported in 30mx30m size in order to be correctly scaled to be used also with the 

other satellite images. 
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▪ S/V Ratio 

 

The surface-to-volume ratio (s/v ratio) plays a role in the urban heat island effect, 

affecting heat absorption and retention in buildings. We evaluated the s/v ratio using 

building characteristics in a shapefile and converted the data into points. This allowed us 

to create a kernel density map, highlighting areas with specific s/v ratio 

concentrations.  

Figure 20 - S_V [Shape and heatmap QGis] 

Figure 21 – SKY VIEW FACTOR 
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▪ Land Surface Temperature: Landsat 7 (2001) and LANDSAT 8 (2018) 

Land Surface Temperature (LST) provides valuable information on surface heat 

patterns and energy exchange. To ensure accuracy and reliability of the LST, radiometric 

calibration is essential. This calibration process corrects for various atmospheric and 

sensor-related influences on the thermal data, resulting in precise LST measurements. 

 

 

 

 

Figure 22 - LST retrieving process (Authors elaboration) 



Analysing Urban Heat Island Dynamics in Turin: A Machine Learning-based Investigation of Climate 

Changes and Intervention Effects | A. Scalise, X. Sufa 

Supervisor Professor G. Mutani  

Politecnico di Torino, 2023 

 

 
85 

 

Landsat 7 (2001) – LST Calculation 

For the calculation of the LST with Landsat 7 images, band 6 has been used, in fact, 

several steps characterised the evaluation [45].  

 

1. Conversion from Digital Number [DN] to Radiance [Lγ]: 

 

 

 

2. Calculation of temperature brightness in Celsius: 

 

  

 
[45] Rahman, M. N., Rony, M. R. H., Jannat, F. A., Chandra Pal, S., Islam, M. S., Alam, E., & Islam, A. 
R. M. T. (2022). Impact of Urbanization on Urban Heat Island Intensity in Major Districts of Bangladesh 
Using Remote Sensing and Geo-Spatial Tools. Climate, 10, 3. https://doi.org/10.3390/cli10010003 
 

Lγ = (
𝐿𝑀𝐴𝑋𝜸 −𝐿𝑀𝐼𝑁𝜸 

𝑄𝐶𝐴𝐿𝑚𝑎𝑥−𝑄𝐶𝐴𝐿𝑚𝑖𝑛
) * (QCAL – QCALmin) + Lminγ 

Tc = ( 𝐊𝟐 

ln (
𝐊𝟏 

𝐋𝜸 
+1)

) – 273.15 

Lγ = (
17.040 −0.000 

255 −1
) * (Band 6 – 1) + 0 

Tc = ( 𝟏𝟐𝟖𝟐.𝟕𝟏 

ln (
𝟔𝟔𝟔.𝟎𝟗 

𝐋𝜸 
+1)

) – 273.15 

Equation 2 - Metadata information 

Equation 1 - Metadata information 

https://doi.org/10.3390/cli10010003


Analysing Urban Heat Island Dynamics in Turin: A Machine Learning-based Investigation of Climate 

Changes and Intervention Effects | A. Scalise, X. Sufa 

Supervisor Professor G. Mutani  

Politecnico di Torino, 2023 

 

 
86 

 

Landsat 8 (2018) – LST Calculation 

For the calculation of the LST with Landsat 8 images, band 10 has been used, in fact, 

several steps characterised the evaluation [46].  

1. Conversion from Digital Number [DN] to Radiance [Lγ]: 

 

 

2. Calculation of temperature brightness in Celsius: 

 

3. 

 
[46] Rahman, M. N., Rony, M. R. H., Jannat, F. A., Chandra Pal, S., Islam, M. S., Alam, E., & Islam, A. 
R. M. T. (2022). Impact of Urbanization on Urban Heat Island Intensity in Major Districts of Bangladesh 
Using Remote Sensing and Geo-Spatial Tools. Climate, 10, 3. https://doi.org/10.3390/cli10010003 
 

Lγ = Ml x QCal + Al 

Lγ = 0.1 x Band 10 + 3.3420E − 04 

Equation 3 - Metadata information 

Tc = ( K2 

ln (
K1 

L𝛾 
+1)

) – 273.15 

TBc = ( 1321.0789 

ln (
774.8853 

L𝛾 
+1)

) – 273.15 

Equation 4 - Metadata information 

https://doi.org/10.3390/cli10010003
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Calculation of emissivity: See paragraph 3.2.1 (Land cover variables - 

Emissivity) 

 
4. Calculation of Land Surface temperature in Celsius 

 

 

𝜸 = 10.6 

C2= 14,388 umK 

E= Emissivity 

 

This study delves into the dynamic shifts in Land Surface Temperature (LST) by examining 

LST maps across distinct periods in two pivotal years, 2001 and 2018. To facilitate direct visual 

assessment, LST values were categorized into standardized ranges. This classification process 

establishes a harmonized framework that enables seamless visual comparisons across different 

periods and years. 

Recognizing the multifaceted influences on LST, the analysis extends beyond air 

temperature considerations. Factors such as land use transformations, albedo modifications, 

cloud cover fluctuations, and broader climate shifts were acknowledged as supplementary 

contributors to LST variations. 

  

Tc = 𝑇𝐵𝑐/(1 + (𝛾 ∗ 
TB 

C2
) 𝒍𝒏( 𝑬)) 
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3.2.3 Weather stations variables 

 

AIR TEMPERATURE 

In the context of our research, a crucial step involved the interpolation of air 

temperature data. To achieve this, we employed the Smart Map interpolation technique 

within the QGIS software. This approach was essential due to the spatially limited nature 

of temperature measurements. The Smart Map interpolation method utilizes advanced 

algorithms that consider the spatial relationships between data points. This enables the 

estimation of temperature values at locations where direct measurements were not 

available. 

 

- SUMMER [2018/08/22]: 
 
NAME X Y T_AVERAGE T_MAX T_MIN 

AVIGLIANA 373692 4994636 24.1 32.2 16.7 
BAUDUCCHI 398146 4979330 24.8 33.3 16.1 
BRANDIZZO 

MALONE 409800 5003797 24.8 32.2 17.2 

CALUSO 409839 5015610 23.9 33.1 16 
CANDIA LAGO 413672 5019220 23.8 32.3 17.9 
CARMAGNOLA 396234 4971145 23.7 31.5 15.9 

CASELLE 394011 5004435 25.2 32.3 19 
CASTAGNETO 

PO 412254 5000266 25.5 30.6 20.8 

COAZZE 361678 4989124 21.3 26.5 17.6 
CUMIANA  373092 4980177 25.9 34.8 17.2 

FRONT 
MALONE 395359 5015296 23.4 32.8 14.9 

LANZO 381803 5016138 23.1 33.8 15.2 
LANZO STURA 

DI LANZO 380979 5013879 24.5 31.3 19.1 

MARENTINO 411709 4988709 26.1 34.4 19.1 
PINO 

TORINESE 402746 4988284 25.9 31.5 21.6 

RIVOLI LA 
PEROSA 381856 4992919 25.9 32.9 20.5 
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SANTENA 
BANNA 403909 4977517 24.5 32.8 16.8 

TORINO 
ALENIA 390620 4992658 26.4 33.7 19.3 

TORINO REISS 
ROMOLI 395446 4996307 26.2 33.5 19 

TORINO 
VALLERE  395514 4985692 25.2 33.9 17.1 

TORINO VIA 
DELLA 

CONSOLATA 
395970 4992224 26.9 34.2 20.8 

TRANA 
SANGONE 375548 4988109 24.4 32.7 16.4 

VARISELLA 379790 5005562 23.3 28.9 19 
VENARIA 
CERONDA 392378 4998772 24.5 33.2 15.9 

VENARIA LA 
MANDRIA 386790 5003396 23.6 32.1 15.7 

VEROLENGO 422299 5003982 24 33.7 15 
 
 
- SUMMER [2001/08/24]: 
 

NAME X Y T_AVERAGE T_MAX T_MIN 

AVIGLIANA 373692 4994636 0,6 8 -3,5 

BAUDUCCHI 398146 4979330 1,9 8,6 -2 

CARMAGNOLA 396234 4971145 1 7,9 -2,7 

COAZZE 361678 4989124 1,5 5 -0,2 

CUMIANA  373092 4980177 2,2 8,3 -1,6 

FRONT MALONE 395359 5015296 3,7 9 0,6 

LANZO 381803 5016138 2 7,3 -1,3 

MARENTINO 411709 4988709 2,8 8,7 -1,1 

PINO TORINESE 402746 4988284 4,8 7,7 3,3 

SANTENA BANNA 403909 4977517 0,5 8,9 -3,4 

TORINO BUON PASTORE 395526 4992621 3,2 9,4 0 

VARISELLA 379790 5005562 1,9 7 0,1 

VEROLENGO 422299 5003982 0,2 7,6 -3,5 
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- WINTER [2018/02/11]: 

 
NAME X Y T_AVERAGE T_MAX T_MIN 

AVIGLIANA 373692 4994636 2.60 9.40 -3.30 

BAUDUCCHI 398146 4979330 2.70 10.20 -2.50 

BRANDIZZO 
MALONE 409800 5003797 2.30 7.90 -2.20 

CALUSO 409839 5015610 2.00 10.40 -2.70 

CANDIA LAGO 413672 5019220 1.90 7.90 -2.30 

CARMAGNOLA 396234 4971145 2.20 9.10 -2.70 

CASELLE 394011 5004435 3.10 8.50 -1.60 

CASTAGNETO PO 412254 5000266 2.40 5.10 -0.40 

COAZZE 361678 4989124 0.40 4.10 -2.10 

CUMIANA  373092 4980177 3.50 9.60 -1.20 

FRONT MALONE 395359 5015296 1.10 9.60 -4.60 

LANZO 381803 5016138 2.50 7.40 -2.00 

LANZO STURA DI 
LANZO 380979 5013879 3.20 7.10 0.10 

MARENTINO 411709 4988709 4.00 9.50 1.20 

PINO TORINESE 402746 4988284 3.10 7.90 0.60 

RIVOLI LA 
PEROSA 381856 4992919 3.20 9.00 -2.10 

SANTENA BANNA 403909 4977517 2.30 9.40 -2.80 

TORINO ALENIA 390620 4992658 4.00 9.10 0.40 

TORINO REISS 
ROMOLI 395446 4996307 3.80 8.60 0.30 

Air temperature - Weather Station interpolation [QGis] – SUMMER 2018 & 2001 
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TORINO VALLERE  395514 4985692 3.30 9.40 -1.70 

TORINO VIA 
DELLA 

CONSOLATA 395970 4992224 4.60 9.20 1.60 

TRANA 
SANGONE 375548 4988109 1.40 7.60 -3.00 

VARISELLA 379790 5005562 1.90 5.00 -1.00 

VENARIA 
CERONDA 392378 4998772 1.70 8.90 -2.90 

VENARIA LA 
MANDRIA 386790 5003396 1.70 8.80 -3.50 

VEROLENGO 422299 5003982 1.40 9.10 -4.30 

 
-  WINTER [2000/12/18]: 
 
NAME X Y T_AVERAGE T_MAX T_MIN 

AVIGLIANA 373692 4994636 0,6 8 -3,5 

BAUDUCCHI 398146 4979330 1,9 8,6 -2 

CARMAGNOLA 396234 4971145 1 7,9 -2,7 

COAZZE 361678 4989124 1,5 5 -0,2 

CUMIANA  373092 4980177 2,2 8,3 -1,6 

FRONT MALONE 395359 5015296 3,7 9 0,6 

LANZO 381803 5016138 2 7,3 -1,3 

MARENTINO 411709 4988709 2,8 8,7 -1,1 

PINO TORINESE 402746 4988284 4,8 7,7 3,3 

SANTENA BANNA 403909 4977517 0,5 8,9 -3,4 

TORINO BUON 
PASTORE 395526 4992621 3,2 9,4 0 

VARISELLA 379790 5005562 1,9 7 0,1 

VEROLENGO 422299 5003982 0,2 7,6 -3,5 
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- MID SEASON [2018/04/16]: 

 
NAME X Y T_AVERAGE T_MAX T_MIN 

AVIGLIANA 373692 4994636 15.90 24.60 5.80 

BAUDUCCHI 398146 4979330 16.00 25.30 6.90 

BRANDIZZO 
MALONE 

409800 5003797 16.70 23.20 8.90 

CALUSO 409839 5015610 15.90 24.00 7.50 

CANDIA LAGO 413672 5019220 16.30 24.30 8.90 

CARMAGNOLA 396234 4971145 15.30 23.70 6.90 

CASELLE 394011 5004435 16.50 24.70 7.50 

CASTAGNETO PO 412254 5000266 16.70 22.80 10.50 

COAZZE 361678 4989124 12.60 18.80 6.90 

CUMIANA  373092 4980177 16.10 24.90 6.50 

FRONT MALONE 395359 5015296 14.70 24.00 4.50 

LANZO 381803 5016138 14.60 22.30 6.40 

LANZO STURA DI 
LANZO 

380979 5013879 15.60 21.80 8.70 

MARENTINO 411709 4988709 17.10 24.80 9.00 

PINO TORINESE 402746 4988284 16.50 21.60 11.30 

RIVOLI LA PEROSA 381856 4992919 16.60 23.90 7.10 

Air temperature - Weather Station interpolation [QGis] – WINTER 2018 & 2000 
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SANTENA BANNA 403909 4977517 15.50 23.80 7.40 

TORINO ALENIA 390620 4992658 17.40 23.90 8.90 

TORINO REISS 
ROMOLI 

395446 4996307 17.90 25.50 9.20 

TORINO VALLERE  395514 4985692 16.10 24.80 7.00 

TORINO VIA DELLA 
CONSOLATA 

395970 4992224 18.30 25.40 10.40 

TRANA SANGONE 375548 4988109 14.50 22.10 6.00 

VARISELLA 379790 5005562 14.80 20.70 8.90 

VENARIA CERONDA 392378 4998772 15.40 24.40 6.10 

VENARIA LA 
MANDRIA 

386790 5003396 14.70 23.90 4.70 

VEROLENGO 422299 5003982 16.20 24.70 8.30 

 

- MID SEASON [2001/05/27]: 
 

NAME X Y T_AVERAGE T_MAX T_MIN 

AVIGLIANA 373692 4994636 20.70 28.90 13.40 

BAUDUCCHI 398146 4979330 22.60 29.80 14.70 

CARMAGNOLA 396234 4971145 22.00 30.20 13.80 

COAZZE 361678 4989124 17.80 21.10 14.20 

CUMIANA  373092 4980177 22.30 30.30 14.40 

FRONT MALONE 395359 5015296 21.80 30.90 12.60 

LANZO 381803 5016138 20.10 27.00 13.10 

MARENTINO 411709 4988709 23.10 29.40 15.60 

PINO TORINESE 402746 4988284 22.90 27.00 18.80 

SANTENA BANNA 403909 4977517 21.80 29.50 13.60 

TORINO BUON 
PASTORE 395526 4992621 23.20 30.50 15.40 

TORINO VALLERE  395514 4985692 22.10 29.50 14.10 

VARISELLA 379790 5005562 20.90 26.50 15.50 

VEROLENGO 422299 5003982 21.00 29.90 12.20 
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WIND SPEED & DIRECTION 

 

- SUMMER [2018/08/22]: 
 

NAME X Y WIND_SPEED SECTOR SECTOR_DEGREE 

AVIGLIANA 373692 4994636 0.8 WSW 247.5 

BAUDUCCHI 398146 4979330 1.2 ESE 112.5 

CALUSO 409839 5015610 0.8 NNW 337.5 

CANDIA LAGO 413672 5019220 0.9 WSW 247.5 

CARMAGNOLA 396234 4971145 0.8 S 180 

CASELLE 394011 5004435 1.7 WNW 292.5 

CUMIANA  373092 4980177 1.1 NW 315 

PINO 
TORINESE 

402746 4988284 1.2 SSE 157.5 

RIVOLI LA 
PEROSA 

381856 4992919 2.2 SW 225 

TORINO 
ALENIA 

390620 4992658 1.5 NW 315 

TORINO REISS 
ROMOLI 

395446 4996307 1.3 NE 45 

Air temperature - Weather Station interpolation [QGis] – MID SEASON 2018 & 2001 
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TORINO VIA 
DELLA 

CONSOLATA 
395970 4992224 1.2 E 90 

VENARIA LA 
MANDRIA 

386790 5003396 0.6 N 0 

VEROLENGO 422299 5003982 0.8 WSW 247.5 

 
 
- SUMMER [2001/08/24]: 
 
NAME X Y WIND_SPEED SECTOR SECTOR_DEGREE 

AVIGLIANA 373692 4994636 1.00 W 270.00 

BAUDUCCHI 398146 4979330 1.20 ESE 112.50 

CARMAGNOLA 396234 4971145 0.80 NE 45.00 

CUMIANA  373092 4980177 1.20 NW 315.00 

PINO TORINESE 402746 4988284 1.20 WNW 292.50 

TORINO BUON 
PASTORE 395526 4992621 0.90 NW 315.00 

CASELLE 394011 5004435 2.00 NW 315.00 

CALUSO 409839 5015610 0.80 W 270.00 

 

 

Wind Speed - Weather Station interpolation [QGis] – SUMMER 2018 & 2001 
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- WINTER [2018/02/11]: 
 

NAME X Y WIND_SPEED SECTOR SECTOR_DEGREE 

AVIGLIANA 373692 4994636 1.00 WNW 292.50 

BAUDUCCHI 398146 4979330 1.40 WSW 247.50 

CALUSO 409839 5015610 1.00 E 90.00 

CANDIA LAGO 413672 5019220 1.10 SW 225.00 

CARMAGNOLA 396234 4971145 0.90 E 90.00 

CASELLE 394011 5004435 1.80 NW 315.00 

CUMIANA  373092 4980177 1.00 ESE 112.50 

PINO TORINESE 402746 4988284 1.50 NNW 337.50 

RIVOLI LA PEROSA 381856 4992919 1.40 WSW 247.50 

TORINO ALENIA 390620 4992658 1.90 NNE 22.50 

TORINO REISS 
ROMOLI 395446 4996307 1.50 NW 315.00 

TORINO VIA DELLA 
CONSOLATA 395970 4992224 1.30 ENE 67.50 

VENARIA LA 
MANDRIA 386790 5003396 1.20 NNW 337.50 

VEROLENGO 422299 5003982 1.00 WSW 247.50 

 
  

Wind Direction - Weather Station interpolation [QGis] – SUMMER 2018 & 2001 
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- WINTER [2000/12/18]: 
 

NAME X Y WIND_SPEED SECTOR SECTOR_DEGREE 

AVIGLIANA 373692 4994636 1.40 W 270.00 

BAUDUCCHI 398146 4979330 0.70 ESE 112.50 

CARMAGNOLA 396234 4971145 0.80 WSW 247.50 

PINO TORINESE 402746 4988284 1.30 NW 315.00 

TORINO BUON 
PASTORE 

395526 4992621 0.40 NW 315.00 

CASELLE 394011 5004435 3.20 E 90.00 

CALUSO 409839 5015610 0.10 NW 315.00 

  

Wind Speed - Weather Station interpolation [QGis] – WINTER  2018 & 2000 

Wind Direction - Weather Station interpolation [QGis] – WINTER 2018 & 2000 
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- MID SEASON [2018/04/16]: 
 

NAME X Y WIND_SPEED SECTOR SECTOR_DEGREE 

AVIGLIANA 373692 4994636 1.10 W 270.00 

BAUDUCCHI 398146 4979330 1.00 SE 135.00 

CALUSO 409839 5015610 1.20 NNW 337.50 

CANDIA LAGO 413672 5019220 0.90 SW 225.00 

CARMAGNOLA 396234 4971145 1.00 S 180.00 

CASELLE 394011 5004435 2.00 WNW 292.50 

CUMIANA  373092 4980177 1.30 S 180.00 

PINO TORINESE 402746 4988284 1.80 SSE 157.50 

RIVOLI LA 
PEROSA 

381856 4992919 2.40 SW 225.00 

TORINO ALENIA 390620 4992658 1.80 SSW 202.50 

TORINO REISS 
ROMOLI 

395446 4996307 1.60 SSE 157.50 

TORINO VIA 
DELLA 

CONSOLATA 
395970 4992224 1.20 SSW 202.50 

VENARIA LA 
MANDRIA 

386790 5003396 1.20 NNW 337.50 

VEROLENGO 422299 5003982 1.20 WSW 247.50 

 

- MID SEASON [2001/05/27]: 

NAME X Y WIND_SPEED SECTOR SECTOR_DEGREE 

AVIGLIANA 373692 4994636 1.50 W 270.00 

BAUDUCCHI 398146 4979330 1.10 SE 135.00 

CARMAGNOLA 396234 4971145 0.80 ESE 112.50 

CUMIANA  373092 4980177 1.20 NW 315.00 

PINO TORINESE 402746 4988284 1.60 WNW 292.50 

TORINO BUON 
PASTORE 395526 4992621 0.80 NW 315.00 

CASELLE 394011 5004435 1.30 E 90.00 

CALUSO 409839 5015610 0.90 NW 315.00 
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Wind Speed - Weather Station interpolation [QGis] – MID SEASON  2018 & 2001 

Wind Direction - Weather Station interpolation [QGis] – MID SEASON 2018 & 2001 
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HUMIDITY 

- SUMMER [2018/08/22]: 
 

NAME X Y REL_HUMIDITY 

AVIGLIANA 373692 4994636 60 

BAUDUCCHI 398146 4979330 63 

CANDIA LAGO 413672 5019220 65 

CARMAGNOLA 396234 4971145 72 

CASELLE 394011 5004435 55 

COAZZE 361678 4989124 55 

CUMIANA  373092 4980177 53 

FRONT MALONE 395359 5015296 73 

LANZO 381803 5016138 70 

MARENTINO 411709 4988709 52 

PINO TORINESE 402746 4988284 49 

SANTENA BANNA 403909 4977517 68 

TORINO ALENIA 390620 4992658 61 

TORINO REISS 
ROMOLI 

395446 4996307 53 

TORINO VALLERE  395514 4985692 62 

TORINO VIA DELLA 
CONSOLATA 

395970 4992224 52 

VEROLENGO 422299 5003982 72 
  
- SUMMER [2001/08/24]: 
 

NAME X Y HUMIDITY 

AVIGLIANA 373692 4994636 73.00 

BAUDUCCHI 398146 4979330 76.00 

CARMAGNOLA 396234 4971145 76.00 

COAZZE 361678 4989124 73.00 

CUMIANA  373092 4980177 56.00 

FRONT MALONE 395359 5015296 72.00 

LANZO 381803 5016138 72.00 

MARENTINO 411709 4988709 59.00 

PINO TORINESE 402746 4988284 54.00 

SANTENA BANNA 403909 4977517 72.00 

TORINO BUON PASTORE 395526 4992621 56.00 

TORINO VALLERE  395514 4985692 57.00 

VEROLENGO 422299 5003982 75.00 
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- WINTER [2018/02/11]: 
 

NAME X Y REL_HUMIDITY 

AVIGLIANA 373692 4994636 71.00 

BAUDUCCHI 398146 4979330 89.00 

CANDIA LAGO 413672 5019220 79.00 

CARMAGNOLA 396234 4971145 73.00 

CASELLE 394011 5004435 76.00 

COAZZE 361678 4989124 63.00 

CUMIANA  373092 4980177 70.00 

FRONT MALONE 395359 5015296 87.00 

LANZO 381803 5016138 69.00 

MARENTINO 411709 4988709 71.00 

PINO TORINESE 402746 4988284 79.00 

SANTENA BANNA 403909 4977517 89.00 

TORINO ALENIA 390620 4992658 67.00 

TORINO REISS ROMOLI 395446 4996307 72.00 

TORINO VALLERE  395514 4985692 85.00 

TORINO VIA DELLA 
CONSOLATA 395970 4992224 73.00 

VEROLENGO 422299 5003982 91.00 

 
 

Humidity - Weather Station interpolation [QGis] – SUMMER  2018 & 2001 
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- WINTER [2001/12/18]: 
 

NAME X Y T_MIN 

AVIGLIANA 373692 4994636 84 

BAUDUCCHI 398146 4979330 90 

CARMAGNOLA 396234 4971145 91 

COAZZE 361678 4989124 52 

FRONT MALONE 395359 5015296 88 

LANZO 381803 5016138 65 

MARENTINO 411709 4988709 78 

PINO TORINESE 402746 4988284 64 

SANTENA BANNA 403909 4977517 84 

TORINO BUON PASTORE 395526 4992621 74 

VEROLENGO 422299 5003982 91 

 

  

Humidity - Weather Station interpolation [QGis] – WINTER  2018 & 2001 
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- MID SEASON [2018/04/16]: 
 

NAME X Y REL_HUMIDITY 

AVIGLIANA 373692 4994636 60.00 

BAUDUCCHI 398146 4979330 70.00 

CANDIA LAGO 413672 5019220 62.00 

CARMAGNOLA 396234 4971145 71.00 

CASELLE 394011 5004435 57.00 

COAZZE 361678 4989124 54.00 

CUMIANA  373092 4980177 59.00 

FRONT MALONE 395359 5015296 58.00 

LANZO 381803 5016138 54.00 

MARENTINO 411709 4988709 57.00 

PINO TORINESE 402746 4988284 50.00 

SANTENA BANNA 403909 4977517 66.00 

TORINO ALENIA 390620 4992658 51.00 

TORINO REISS ROMOLI 395446 4996307 51.00 

TORINO VALLERE  395514 4985692 64.00 

TORINO VIA DELLA 
CONSOLATA 

395970 4992224 52.00 

VEROLENGO 422299 5003982 71.00 

 

- MID SEASON [2001/05/27]: 

NAME X Y HUMIDITY 

AVIGLIANA 373692 4994636 71.00 

BAUDUCCHI 398146 4979330 73.00 

CARMAGNOLA 396234 4971145 71.00 

COAZZE 361678 4989124 64.00 

CUMIANA  373092 4980177 54.00 

FRONT MALONE 395359 5015296 67.00 

LANZO 381803 5016138 67.00 

MARENTINO 411709 4988709 56.00 

PINO TORINESE 402746 4988284 48.00 

SANTENA BANNA 403909 4977517 66.00 

TORINO BUON PASTORE 395526 4992621 54.00 

TORINO VALLERE  395514 4985692 58.00 

VEROLENGO 422299 5003982 69.00 
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SOLAR RADIATION 
 

- SUMMER [2018/08/22]: 

 

NAME X Y 
SOLAR RADIATION 

[MJ/mq] 

SOLAR 
RADIATION 
[kWh/mq] 

AVIGLIANA 373692 4994636 23.6 6.56 

BAUDUCCHI 398146 4979330 23.5 6.53 

CANDIA LAGO 413672 5019220 21.6 6.00 

CARMAGNOLA 396234 4971145 23.2 6.44 

CASELLE 394011 5004435 21.6 6.00 

CUMIANA  373092 4980177 23.5 6.53 

PINO TORINESE 402746 4988284 22.1 6.14 

TORINO ALENIA 390620 4992658 23.4 6.50 

TORINO REISS 
ROMOLI 

395446 4996307 22.2 6.17 

TORINO VALLERE  395514 4985692 20.1 5.58 

TORINO VIA DELLA 
CONSOLATA 

395970 4992224 19.4 5.39 

VEROLENGO 422299 5003982 23.1 6.42 

 
  

Humidity - Weather Station interpolation [QGis] – MID SEASON  2018 & 2001 
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- SUMMER [2001/08/24]: 

NAME X Y 
SOLAR RADIATION 

[MJ/mq] 

SOLAR 
RADIATION 
[kWh/mq] 

AVIGLIANA 373692 4994636 21.30 5.92 

BAUDUCCHI 398146 4979330 21.60 6.00 

CARMAGNOLA 396234 4971145 22.00 6.11 

CUMIANA  373092 4980177 22.30 6.19 

PINO TORINESE 402746 4988284 21.60 6.00 

TORINO BUON 
PASTORE 395526 4992621 14.70 4.08 

TORINO VALLERE  395514 4985692 15.10 4.19 

VEROLENGO 422299 5003982 20.50 5.69 

  

Solar radiation - Weather Station interpolation [QGis] – SUMMER 2018 & 2001 
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- WINTER [2018/02/11]: 

NAME X Y 
SOLAR RADIATION 

[MJ/mq] 

SOLAR 
RADIATION 
[kWh/mq] 

AVIGLIANA 373692 4994636 11.70 3.25 

BAUDUCCHI 398146 4979330 10.70 2.97 

CANDIA LAGO 413672 5019220 9.80 2.72 

CARMAGNOLA 396234 4971145 10.00 2.78 

CASELLE 394011 5004435 9.80 2.72 

CUMIANA  373092 4980177 10.10 2.81 

TORINO ALENIA 390620 4992658 11.40 3.17 

TORINO REISS 
ROMOLI 

395446 4996307 10.40 2.89 

TORINO VALLERE  395514 4985692 9.90 2.75 

TORINO VIA DELLA 
CONSOLATA 

395970 4992224 9.60 2.67 

VEROLENGO 422299 5003982 9.70 2.69 

 

- WINTER [2000/12/18]: 

NAME X Y 
SOLAR 

RADIATION 
[MJ/mq] 

SOLAR 
RADIATION 
[kWh/mq] 

AVIGLIANA 373692 4994636 5,8 1,6111124 

BAUDUCCHI 398146 4979330 6,1 1,6944458 

CARMAGNOLA 396234 4971145 6,3 1,7500014 

PINO TORINESE 402746 4988284 6,3 1,7500014 

TORINO BUON 
PASTORE 395526 4992621 4,5 1,250001 

VEROLENGO 422299 5003982 6 1,666668 
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- MID SEASON [2018/04/16]: 

NAME X Y 
SOLAR 

RADIATION 
[MJ/mq] 

SOLAR 
RADIATION 
[kWh/mq] 

AVIGLIANA 373692 4994636 23.7 6.58 

BAUDUCCHI 398146 4979330 23.5 6.53 

CANDIA LAGO 413672 5019220 21.8 6.06 

CARMAGNOLA 396234 4971145 23.3 6.47 

CASELLE 394011 5004435 21.3 5.92 

CUMIANA  373092 4980177 23.4 6.50 

TORINO ALENIA 390620 4992658 23.9 6.64 

TORINO REISS 
ROMOLI 395446 4996307 23.6 6.56 

TORINO VALLERE  395514 4985692 24.3 6.75 

TORINO VIA DELLA 
CONSOLATA 395970 4992224 20.7 5.75 

VEROLENGO 422299 5003982 22.7 6.31 

 

Solar radiation - Weather Station interpolation [QGis] – SUMMER 2018 & 2001 
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- MID SEASON [2001/05/27]: 
 

NAME X Y 
SOLAR 

RADIATION 
[MJ/mq] 

SOLAR 
RADIATION 
[kWh/mq] 

AVIGLIANA 373692 4994636 26.80 7.44 

BAUDUCCHI 398146 4979330 27.30 7.58 

CARMAGNOLA 396234 4971145 27.60 7.67 

CUMIANA  373092 4980177 27.60 7.67 

PINO TORINESE 402746 4988284 28.10 7.81 

TORINO BUON 
PASTORE 395526 4992621 19.00 5.28 

TORINO VALLERE  395514 4985692 19.20 5.33 

VEROLENGO 422299 5003982 26.30 7.31 

 

 

  

Solar radiation - Weather Station interpolation [QGis] – MID SEASON 2018 & 2001 
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3.2.4 UHI evaluation 
 

The Urban Heat Island (UHI) phenomenon, characterized by elevated temperatures in 

urban areas compared to their rural surroundings, can be quantified using a standardized 

approach. The UHI intensity is computed using the formula [47]: 

 

 

 

This formula serves to normalize the LST value by considering its deviation from 

the mean LST and scaling it by the variability (standard deviation) of LST within the 

region. A positive UHI value signifies that the LST at the given location is higher than 

the regional average, indicating an urban area with intensified heat. Conversely, a 

negative UHI value suggests that the LST is lower than the regional average, signifying 

a cooling effect in comparison to the surroundings. 

 

By employing this standardized calculation, UHI assessments gain a context-

independent measure of temperature deviations, enabling meaningful comparisons 

between diverse urban and rural regions. This approach contributes to a more 

comprehensive understanding of UHI dynamics and supports informed urban planning 

and environmental management strategies. 

 

 

  

 
[47] Rahman, M. N., Rony, M. R. H., Jannat, F. A., Chandra Pal, S., Islam, M. S., Alam, E., & Islam, A. 
R. M. T. (2022). Impact of Urbanization on Urban Heat Island Intensity in Major Districts of Bangladesh 
Using Remote Sensing and Geo-Spatial Tools. Climate, 10, 3. https://doi.org/10.3390/cli10010003 
 

UHI = LST−LSTmean 

LSTstdev
 

https://doi.org/10.3390/cli10010003
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UHI Intensity 24/08/2001 - SUMMER  

Notes: 
As evident from the map, the Urban Heat 
Island (UHI) effect has been notably 
pronounced within regions marked by 
industrial land utilization, as well as 
areas characterized by high building 
density. Specifically, this phenomenon is 
discernible in the southern and 
northern sectors of the city of Turin. 
Meanwhile, in the provincial zone the 
effect registers higher values in 
correspondence of built-up areas where 
human activities take place. 
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UHI Intensity 22/08/2018 - SUMMER 

  Notes: 
In 2018, Turin's Urban Heat Island 
(UHI) effect exhibited increased 
balance and cooling areas attributed to 
changes in land use. This citywide 
improvement marked a reduced UHI 
impact. In the provincial region, 
compared to 2001, we observe more 
balanced and cooling areas, indicating 
a less prominent UHI effect overall. 
However, areas with historical 
industrial presence (southern part of 
the region) continue to experience 
exacerbated UHI effects. 
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UHI Intensity 18/12/2000 - WINTER 

  Notes: 
 
In the winter of 2000, Turin exhibited a 
distinct Urban Heat Island (UHI) 
phenomenon, characterized by elevated 
temperatures in its southern areas. This 
warming was influenced by factors 
such as industrial and residential 
concentrations, house heating and heat-
absorbing building materials. 
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UHI Intensity 11/02/2018 - WINTER 

  Notes: 
 
Compared to the winter 2000, in 2018 
are observable more areas of balance. It 
is important to notice that the UHI 
phenomena has been sprawl 
homogeneously in the whole provincial 
territory. 
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UHI Intensity 27/05/2001 – MID SEASON 

  Notes: 
 
In the mid-season of 2001, it is evident 
that the UHI phenomenon is 
concentrated within the city of Turin. In 
contrast, the provincial territory 
exhibits a more balanced distribution, 
with less pronounced intensity. 
Furthermore, the highest intensity is 
observed in proximity to industrial 
areas. 
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UHI Intensity 16/04/2018 – MID SEASON 

  Notes: 
 
In 2018, the UHI effect in Turin exhibits 
a greater balance between warmer and 
cooler areas, in contrast to the conditions 
observed in 2001. The significant 
industrial complexes, owing to their size, 
materials, and activities, play a 
substantial role in contributing to the 
UHI effect, even in their immediate 
vicinity. 
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4 Modelling: Variables 
Influencing Urban Heat Island 
Effect in Turin 

 
In the context of Urban Heat Island (UHI) research, the modelling phase refers to the 

crucial step where we develop computational models to study and simulate the 

phenomenon of Urban Heat Islands. 

 
4.1 Hyperparameters tuning 

 
The convergence of machine learning techniques, geospatial data analysis, and 

hyperparameter optimization has yielded powerful tools for addressing complex 

environmental and ecological challenges. In this context, the following code snippet 

presents a holistic process that embodies these concepts.  

This process revolves around optimizing a “Random Forest Classifier” through 

intricate hyperparameter tuning using the “Optuna library”. Geospatial data, 

characterized by its multidimensional nature and spatial referencing, plays a pivotal role 

in environmental analysis. The code commences by engaging with a collection of raster 

files, each housing crucial environmental information. The raster’s files are not uniform 

in their spatial properties, necessitating a harmonization process. This is achieved 

through reprojection and resampling, aligning all raster data with the attributes of a 

reference raster. The result is a harmonized dataset that can be readily employed for model 

development. 

The synthesized dataset, enriched with simulated labels to emulate a classification 

task, undergoes partitioning into training and testing subsets. This partition is 

fundamental to the subsequent model evaluation process, ensuring the assessment of 

model performance on unseen data. It is in this setting that the Optuna library assumes a 

significant role. Optuna, a library specializing in hyperparameter optimization, 

orchestrates an intricate exploration of the hyperparameter space. Hyperparameters, 

integral to the configuration of machine learning algorithms, influence the model's 
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behaviour and predictive prowess. Through systematic trial and evaluation, Optuna seeks 

to pinpoint the combination of hyperparameters that maximizes the model's accuracy. 

The outcome of the optimization journey culminates in the identification of optimal 

hyperparameters. These parameters, fine-tuned for the specific dataset, are then applied 

in the creation of a final Random Forest Classifier. This classifier, harnessed with the 

optimal hyperparameters, is subsequently trained on the designated training dataset. The 

culmination of this training imbues the model with predictive capabilities, shaping it into 

a refined tool for classification. 

Importantly, the optimization of these parameters serves a larger purpose: the creation 

of a robust model that can be effectively integrated into ArcGIS Pro using the 

Random Forest Regression tool. By fine-tuning the hyperparameters, the model's 

performance is optimized, enabling accurate predictions and informed decision-making 

within the ArcGIS Pro environment. 

Below is an illustrative excerpt of the Python code introduced within Data Spell to 

perform hyperparameter tuning.  

The complete code is provided in Section B of the appendix. 
import numpy as np 

from sklearn.model_selection import train_test_split, cross_val_score 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import accuracy_score, f1_score, roc_auc_score 

import rasterio 

import optuna 

 

# List of raster file paths 

raster_paths = [ 

    'C:/Users/aless/Dropbox (Politecnico Di Torino 

Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2001/LANDSAT 

7/CALCOLI Maggio 2001/0_CROP/NDWI_TO.tif', 

    'C:/Users/aless/Dropbox (Politecnico Di Torino 

Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2001/LANDSAT 

7/CALCOLI Maggio 2001/0_CROP/NDMI_TO.tif', 

    'C:/Users/aless/Dropbox (Politecnico Di Torino 

Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1_BANCA DATI 

METEREOLOGICA/2001_05_27/Turin_Tiff/0_RASTER_TIFF/humidity.tif', 

    'C:/Users/aless/Dropbox (Politecnico Di Torino 

Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2001/LANDSAT 

7/CALCOLI Maggio 2001/0_CROP/EMISSIVITY_TO.tif', 

    'C:/Users/aless/Dropbox (Politecnico Di Torino 

Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1 - MODELLO/DTM.tif', 

    'C:/Users/aless/Dropbox (Politecnico Di Torino 

Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1_BANCA DATI 

METEREOLOGICA/2001_05_27/Turin_Tiff/0_RASTER_TIFF/wind_sector.tif', 

    'C:/Users/aless/Dropbox (Politecnico Di Torino 
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Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2001/LANDSAT 

7/CALCOLI Maggio 2001/0_CROP/ALBEDO_TO.tif', 

    'C:/Users/aless/Dropbox (Politecnico Di Torino 

Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1_BANCA DATI 

METEREOLOGICA/2001_05_27/Turin_Tiff/0_RASTER_TIFF/temperature.tif', 

    'C:/Users/aless/Dropbox (Politecnico Di Torino 

Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2001/LANDSAT 

7/CALCOLI Maggio 2001/0_CROP/NDVI_TO.tif', 

    'C:/Users/aless/Dropbox (Politecnico Di Torino 

Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2001/LANDSAT 

7/CALCOLI Maggio 2001/0_CROP/SRI_TO.tif', 

    'C:/Users/aless/Dropbox (Politecnico Di Torino 

Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1_BANCA DATI 

METEREOLOGICA/2001_05_27/Turin_Tiff/0_RASTER_TIFF/wind_speed.tif', 

    'C:/Users/aless/Dropbox (Politecnico Di Torino 

Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1_BANCA DATI 

METEREOLOGICA/2001_05_27/Turin_Tiff/0_RASTER_TIFF/solar_rad.tif', 

    'C:/Users/aless/Dropbox (Politecnico Di Torino 

Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2001/LANDSAT 

7/CALCOLI Maggio 2001/0_CROP/NDBI_TO.tif', 

] 

 

reference_raster_path = 'C:/Users/aless/Dropbox (Politecnico Di Torino 

Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2001/LANDSAT 

7/LE07_L1TP_195029_20010527_20200917_02_T1/CALCULATION_NEW/UHI/UHI_TO_

27_05_2001.tif' 

 

# Load reference raster using rasterio 

with rasterio.open(reference_raster_path) as ref_src: 

    reference_raster = ref_src.read(1)  # Read the first band 

 

# Initialize an empty array to hold all the raster data 

raster_data_list = [] 

 

from rasterio.warp import reproject, Resampling 

 

# Loop through raster paths and load data into the list 

for path in raster_paths: 

    with rasterio.open(path) as src: 

        raster_data = src.read(1)  # Read the first band 

        # Reproject the raster data to match the reference raster 

        resampled_raster = np.empty_like(reference_raster) 

        reproject( 

            source=raster_data, 

            destination=resampled_raster, 

            src_transform=src.transform, 

            src_crs=src.crs, 

            dst_transform=ref_src.transform, 

            dst_crs=ref_src.crs, 

            resampling=Resampling.bilinear 

        ) 

        raster_data_list.append(resampled_raster.flatten()) 

 

# Combine all raster data into a single array 

raster_data_array = np.array(raster_data_list) 
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# Generate synthetic labels for demonstration purposes (replace with 

your actual labels) 

labels = np.random.randint(0, 2, size=raster_data_array.shape[0]) 

 

# Split the data into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(raster_data_array, 

labels, test_size=0.2, random_state=42) 

 

# Define the objective function to optimize 

def objective(trial, X, y): 

    n_estimators = trial.suggest_int('n_estimators', 50, 200) 

    max_depth = trial.suggest_int('max_depth', 10, 50) 

    min_samples_split = trial.suggest_int('min_samples_split', 2, 10) 

    min_samples_leaf = trial.suggest_int('min_samples_leaf', 1, 8) 

 

    rf = RandomForestClassifier( 

        n_estimators=n_estimators, 

        max_depth=max_depth, 

        min_samples_split=min_samples_split, 

        min_samples_leaf=min_samples_leaf, 

        random_state=42 

    ) 

 

    return np.mean(cross_val_score(rf, X, y, n_jobs=-1, cv=3, 

scoring='accuracy')) 

 

# Create an Optuna study 

study = optuna.create_study(direction='maximize') 

 

# Optimize the study 

study.optimize(lambda trial: objective(trial, X_train, y_train), 

n_trials=15, n_jobs=-1) 

 

 

# Get the best parameters from the study 

best_params = study.best_params 

 

# Create the final random forest classifier with the best parameters 

best_rf = RandomForestClassifier( 

    n_estimators=best_params['n_estimators'], 

    max_depth=best_params['max_depth'], 

    min_samples_split=best_params['min_samples_split'], 

    min_samples_leaf=best_params['min_samples_leaf'], 

    random_state=42 

) 

 

# Fit the final model on the training data 

best_rf.fit(X_train, y_train) 

 

# Make predictions 

y_pred = best_rf.predict(X_test) 

 

# Calculate accuracy, F1-score, and ROC-AUC 

accuracy = accuracy_score(y_test, y_pred) 

f1 = f1_score(y_test, y_pred) 

roc_auc = roc_auc_score(y_test, y_pred) 
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# Print best parameters, cross-validation results, and evaluation 

metrics 

print("Best Parameters:") 

for param, value in best_params.items(): 

    print(f"{param}: {value}") 

 

print("Cross-Validation Results:") 

cv_results = study.trials_dataframe() 

print(cv_results) 

 

print(f"Accuracy: {accuracy:.2f}") 

print(f"F1-score: {f1:.2f}") 

print(f"ROC-AUC: {roc_auc:.2f}") 

 

 
Figure 23 - Data Spell Python code example for hyper parametrization tuning 

Here following, is provided the explanation of the code used: 

The code use “Optuna” library for hyperparameter optimization with a “Random 

Forest Classifier” in the context of remote sensing image analysis.  

1. Importing Libraries:   The necessary libraries are imported at the beginning of 

the code, including `numpy`, `sklearn`, `rasterio`, and `optuna`. These libraries 

are used for data manipulation, machine learning modelling, remote sensing 

image processing, and hyperparameter optimization. 

2. Raster File Paths: A list of file paths pointing to different raster image files is 

provided. These raster images likely contain the explanatory training raster (e.g., 

wind speed, temperature etc.). 

3. Reference Raster Path: The path to a reference raster image is provided. This 

reference raster will serve as the template for reprojecting other raster images to 

ensure that they all have the same spatial characteristics. 

4. Loading Reference Raster: The reference raster is loaded using the `rasterio` 

library. The first band of the raster is read and stored in the `reference_raster` 

variable. 

5. Loading Raster Data: A loop iterates through the list of raster paths. For each 

path, the corresponding raster data is loaded using `rasterio`. The raster data is 

then reprojected to match the spatial characteristics of the reference raster using 
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bilinear resampling. The reprojected raster data is flattened and added to the 

`raster_data_list`. 

6. Combining Raster Data: All the reprojected and flattened raster data is combined 

into a single `raster_data_array` using `numpy`. 

7. Generating Labels: Synthetic labels are generated for demonstration purposes. 

These labels are randomly generated binary values (0 or 1) and are associated with 

the raster data samples. 

8.  Train-Test Split: The combined raster data (`raster_data_array`) and the 

generated labels are split into training and testing sets using the `train_test_split` 

function from `sklearn`. This is a common step in machine learning to evaluate 

the model's performance on unseen data. 

9. Defining the Objective Function: The `objective` function is defined, which 

takes in Optuna's `trial` object, the training data (`X_train` and `y_train`). Inside 

this function, different hyperparameters for the `Random Forest Classifier` are 

suggested by the `trial.suggest_int` method. Then, a `Random Forest Classifier` is 

created with those hyperparameters, and its cross-validated accuracy is returned. 

10. Creating an Optuna Study: An Optuna study is created to manage the 

optimization process. The study is set to maximize the objective function. 

11. Optimizing the Study: The study's `optimize` method is called with the 

`objective` function and the training data. The `n_trials` parameter defines how 

many trials (hyperparameter combinations) Optuna should try to optimize the 

objective function. The `n_jobs` parameter specifies parallelization, with `-1` 

indicating using all available CPU cores. 

12. Getting Best Parameters: The best set of hyperparameters found during the 

optimization is retrieved from the study's `best_params`. 

13. Creating Final Random Forest Classifier: Using the best hyperparameters, a 

final `Random Forest Classifier` (`best_rf`) is created. 

14. Fitting the Model: The final model is fitted on the training data using the `fit` 

method. 

15. Making Predictions: The trained model is used to predict labels for the test data 

(`X_test`). 
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16. Printing Results: The best hyperparameters, cross-validation results, and 

evaluation metrics are printed to the console. 

For what concern the parameters we imputed in the system are: 

- Test size: we allocated 20% of the data for testing purposes.  

- Range of random forest trials: We defined a range of values for the 

following parameters in the random forest model: number of estimators, max 

depth, minimum sample split, and minimum sample leaf. These parameters 

will be explored systematically to find the best combination that results in 

optimal performance. 

- Folds in cross validation (cv): We employed a 3-fold cross-validation 

approach. This means the dataset is divided into three subsets, and the model's 

performance is evaluated three times, each time using a different subset for 

testing and the remaining for training. 

- Number of trials: We set the number of optimization trials to a specified 

value, denoted as 'n'. 

To have a better understanding of the results is reported an output of the process for a best 

iteration, performed with the images of 24/08/2001. 

 

Figure 24 - Best parameters output from Python code 
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What cross validation is? “Cross-validation is a step in the process of building a 

machine learning model which helps us ensure that our models fit the data accurately 

and also ensures that we do not overfit [48]”.  

▪ Classification problems, metrics available for machine learning method: 
 
- Accuracy 
- Precision (P) 
- Recall (R) 
- F1 score (F1) 
- Area under the ROC (Receiver Operating Characteristics) curve or simply 

AUC (AUC) 
- Log loss 
- Precision at k (AP@k) 
- Mean average precision at k (MAP@k) 

In this case, we used accuracy as classification problems metric, “Accuracy is one of 

the most straightforward metrics used in machine learning. It defines how accurate your 

model is. To do an example, if we build a model that classifies 90 images accurately, our 

accuracy is 90% or 0.90. If only 83 images are classified correctly, the accuracy of our 

model is 83% or 0.83 [49]”. 

For our analysis we chose those parameters that presents an accuracy value greater 

than 0.70, once the best parameters were estimated, we inserted them into ArcGIS Pro to 

launch the random forest regression model.  

 
[48] Thakur, Abhishek. Approaching (Almost) Any Machine Learning Problem (English Edition) 

(p.14). Abhishek Thakur. Kindle Edition. 

[49] Thakur, Abhishek. Approaching (Almost) Any Machine Learning Problem (p.32). 
Abhishek Thakur. Edition Kindle. 
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4.2 Machine Learning algorithm [RF] 

▪ What Random Forest is [50] - Random Forest [RF] is an ensemble learning method, 

which means it combines the predictions of multiple individual models (in this case, 

decision trees) to make a final prediction. The idea behind ensemble learning is that 

by combining the predictions of several models, we can improve the overall accuracy 

and robustness of the final prediction. 

 

- Decision Trees: A decision tree is a simple tree-like structure that breaks down 

a dataset into smaller and smaller subsets by making decisions based on the 

values of input features. Each internal node in the tree represents a decision or 

a test on a specific feature, and each leaf node represents the final prediction or 

classification. 

- Training on Random Subsets: In a Random Forest, multiple decision trees are 

created, and each tree is trained on a random subset of the original data. This 

randomness ensures that each decision tree is trained on slightly different data, 

introducing diversity into the ensemble. 

- Using Random Subsets of Features: Not only is the data sampled randomly, 

but also the features (input variables) used to split the data at each node of the 

decision tree are randomly chosen. This means that at each node, the decision 

tree considers only a subset of features to make the best split. The number of 

features considered at each node is typically less than the total number of 

features in the dataset. 

- Aggregating Predictions: After training multiple decision trees on their 

respective random subsets, the predictions from each individual tree are 

combined to make the final prediction. In the case of classification tasks (e.g., 

predicting whether an area has a high, medium, or low UHI effect), the final 

prediction is determined by majority voting. Each tree "votes" for a specific 

 
[50] Esri. (2023). Random Forest guide in ArcGIS. Retrieved July 31, 2023, from 
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-
statistics/forestbasedclassificationregression.htm 
 

https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/forestbasedclassificationregression.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/forestbasedclassificationregression.htm
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class, and the class with the most votes becomes the final prediction. In 

regression tasks (e.g., predicting the exact temperature increase), the final 

prediction is the average of the predictions from all the trees. 

- Overfitting Reduction and Generalization Improvement: The randomness 

introduced during both data sampling and feature selection helps to reduce 

overfitting. Overfitting occurs when a model becomes too complex and fits the 

training data too closely, leading to poor performance on new, unseen data. By 

using random subsets of data and features, Random Forest prevents individual 

trees from memorizing the training data and encourages them to capture more 

general patterns in the data. This improves the model's ability to generalize and 

make accurate predictions on new data. 

 

▪ Usefulness for UHI Evaluation  

- High Accuracy: Random Forest tends to deliver high accuracy in predictions, 

making it suitable for complex and non-linear relationships often present in 

UHI studies. It can efficiently capture the intricate interactions between various 

factors contributing to UHI, such as land cover, urban morphology, 

meteorological conditions, and anthropogenic activities. 

 

- Feature Importance (sensitivity): Random Forest can provide information 

about the importance of different features in predicting UHI intensity. This 

feature importance analysis helps researchers identify the most critical 

variables influencing UHI, guiding urban planners and policymakers in making 

informed decisions to mitigate UHI effects. 

 

- Robustness to Outliers and Noise: UHI evaluation often involves dealing with 

noisy or imperfect data. Random Forest is robust to outliers and noise, reducing 

the risk of the model being overly influenced by data irregularities. 
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- Handling Missing Data: Random Forest can handle missing data in a dataset 

effectively. This is crucial in real-world UHI studies, where data gaps or sensor 

failures can be common. 

 

- Non-linearity: UHI is a complex phenomenon with non-linear relationships 

between different variables. Random Forest can capture these non-linear 

patterns, making it more suitable than traditional linear regression models. 

 
 

▪ Benefits from a Statistical Point of View 

• Bias-Variance Trade-off: Random Forest mitigates the bias-variance trade-

off, a common challenge in machine learning. It reduces overfitting by 

averaging predictions from multiple trees, striking a balance between model 

complexity and generalization performance. 

• Consistent Performance: Random Forest tends to have stable and consistent 

performance on different datasets. This consistency is particularly beneficial in 

UHI evaluation, where generalization to various urban environments is 

essential. 

• Model Interpretability: While Random Forest is not as interpretable as linear 

models, it still provides insights into feature importance (sensitivity). This 

information aids in understanding the relative impact of various factors on UHI 

formation. 

• Handling Multicollinearity: UHI variables may be correlated, leading to 

multicollinearity issues in traditional regression models. Random Forest is 

more robust to multicollinearity, allowing it to handle such situations 

effectively. 
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4.3 Training & Prediction model of the UHI in the case study 

 
Within this section, we showcase the findings derived from the implementation of the 

random forest regression model. The model was executed within ArcGIS Pro, utilizing 

the "Forest-Based Classification and Regression" tool. The input parameters for the tool 

were established through the process of hyperparameter tuning, as elucidated in paragraph 

4.1, in the image has been highlighted with a red box.  

 

Figure 25 - Forest-based Classification and Regression (ArcGis Pro) 
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This versatile tool fulfils a twofold role: it simplifies both dataset training and 

validation, while also empowering the development of a predictive model. Subsequently, 

this predictive model will undergo a comparison with observed Urban Heat Island (UHI) 

data maps obtained from satellites. This comparative analysis aims to unveil any 

disparities between the observed and calculated values, commonly referred to as 

residuals—a metric conveniently supplied by the tool itself. 

To offer a comprehensive guide on completing the tool's fields effectively, the 

following explanations are provided: 

• Input Training Feature: Within this section, it's essential to input a punctual-

shaped shapefile containing the recorded UHI values from the observation 

campaign. 

• Variable to Predict: In this segment, it's crucial to select the field associated 

with UHI values. The field's name corresponds to the attribute table entry in 

the shapefile. 

• Explanatory Training Raster: This field necessitates the inclusion of raster files 

that correspond to variables contributing to model creation (e.g., wind 

speed.tif, temperature.tif, NDBI.tif, etc.). 

• Output Prediction Surface: In this category, you must specify the path to save 

the raster prediction surface. 

• Match Explanatory Raster: This section will be automatically populated by the 

tool. 

• Additional Output: These fields require you to define the paths for saving both 

the trained feature and the variable importance table. 

• Advanced Forest Option: In this section, enter the parameters derived from 

hyperparameter optimization using the Data Spell software. 
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After initiating the random forest process, its duration will vary based on the 

performance of the utilized machine. In this analysis, the following machine 

configuration was employed:  

• Processor: 11th Gen Intel(R) Core (TM) i7-1165G7 @ 2.80GHz   2.80 GHz 

• RAM: 16,0 GB  

• SSD: 1TB 

• GPU Memory: Intel IRIS Xe Graphics 8 GB 

In this scenario, all the operations conducted within the Random Forest framework 

proved to be consistently time efficient. The duration of these operations ranged from a 

minimal time of one minute to a maximum of 25 minutes, as indicated by the table below: 

 Elapsed time 

Summer 2018 13 mins - 2 seconds 

Mid-season 2018 13 mins - 2 seconds 

Winter 2018 1 min - 42 seconds 

Summer 2001 3 mins - 59 seconds 

Mid-season 2001 25 mins - 36 seconds 

Winter 2000 7 mins - 22 seconds 
Table 12 - Elapsed time for different simulations 

▪ Hyper parameters settings: 
 

For a comprehensive perspective, all six simulations are presented collectively 

(encompassing summer, mid-season, and winter for both 2018 and 2001). The delineated 

process adheres to a sequential order, with the initial table detailing the hyperparameter 

settings: 

 HYPER PARAMETERS 

 Number of 
Trees 

Leaf 
size 

Tree 
depth 
range 

Mean 
Tree 
depth 

% of training 
available per 

Tree 

N° randomly 
sampled 
variables 

% of training 
data excluded 
for validation 

Summer 2018 200 1 31-31 31 100 5 20 
Mid-season 

2018 59 3 13-13 13 100 5 20 

Winter 2018 60 5 25-25 25 100 5 20 
Summer 2001 59 1 39-50 44 100 4 20 

Mid-season 
2001 164 1 38-44 43 100 4 20 

Winter 2000 97 2 16-16 16 100 4 20 
Table 13 - Hyper parameters 
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As mentioned earlier, the hyperparameters are derived from the outcomes obtained 

through Data Spell.  

▪ OBB model’s performance: 
When it comes to regression tasks, there are several commonly used evaluation metrics 

to assess the performance of the predictive models. Some of the most frequently used 

regression evaluation metrics include: 

- Mean absolute error (MAE) 

- Mean squared error (MSE) 

- Root mean squared error (RMSE) 

- Root mean squared logarithmic error (RMSLE) 

- Mean percentage error (MPE) 

- Mean absolute percentage error (MAPE) 

- R2 

 

The choice of evaluation metrics falls into MSE, RMSE and R2.  

 

MSE = (True Value – Predicted Value )2 ;  

RMSE = SQRT (MSE), [51] both allows for a comprehensive assessment of the 

model's predictive capabilities, considering both the magnitude and distribution of errors. 

The magnitude of the score errors remains within an acceptable range across all seasons. 

 OBB MODEL (Out of Bag Errors) 

 MSE RMSE 

Summer 2018 0.023 0.152 

Mid-season 2018 0.08 0.283 

Winter 2018 0.021 0.145 

Summer 2001 0.045 0.212 

Mid-season 2001 0.017 0.130 

Winter 2000 0.011 0.105 

Table 14 - OBB model's performance (MSE and RMSE) 

 
[51] Thakur, Abhishek. Approaching (Almost) Any Machine Learning Problem (p.67). 
Abhishek Thakur. Edition Kindle. 
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The presented table showcases the model's varying accuracy across different seasons 

and years in predicting UHI phenomena. Notably, the model's performance is influenced 

by temporal factors, with varying levels of accuracy observed.  

 

▪ Coefficient of determination R2 in training and validation phase 
   

“R-squared says how good your model fits the data. R-squared closer to 1.0 says that 

the model fits the data quite well, whereas closer 0 means that model isn’t that good [52]”.  

The formula for R-squared is shown here below: 

 

𝑅2 = 1 −  
∑ (𝑦𝑡𝑖 − 𝑦𝑝𝑖)2𝑁

𝑖=1

∑ (𝑦𝑡𝑖 − 𝑦𝑡𝑚𝑒𝑎𝑛)2𝑁
𝑖=1

 [53] 

 

Training R2 
Statistical 

significance 
[p-value] 

Standard error 

Summer 2018 0.997 0.000 0.000 

Mid-season 
2018 

0.948 0.000 0.001 

Winter 2018 0.991 0.000 0.000 

Summer 2001 0.994 0.000 0.000 

Mid-season 
2001 

0.990 0.000 0.000 

Winter 2000 0.853 0.000 0.001 
Table 15 - Coefficient of determination R2 in training phase 

The analysis of the training phase reveals noteworthy R2 coefficients, highlighting the 

model's effectiveness in explaining the variance within the dependent variable. The 

consistent statistical significance, represented by p-values consistently below 0.001, 

firmly establishes the robustness of the identified associations. Moreover, the modest 

standard errors underline the precision of the coefficient estimates. Importantly, the 

model consistently maintains a high level of precision across diverse seasonal contexts, 

 
[52] Thakur, Abhishek. Approaching (Almost) Any Machine Learning Problem (p.69). 
Abhishek Thakur. Edition Kindle. 
[53] Thakur, Abhishek. Approaching (Almost) Any Machine Learning Problem (p.69). 
Abhishek Thakur. Edition Kindle. 
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spanning from an impressive R2 of 0.997 observed during the summer of 2018 to a 

substantial value of 0.853 in the winter of 2000. 

Now, is shown the coefficient of determination in the validation phase. 

Validation R2 
Statistical significance 

[p-value] 
Standard error 

Summer 2018 0.980 0.000 0.001 

Mid-season 
2018 

0.932 0.000 0.001 

Winter 2018 0.955 0.000 0.001 

Summer 2001 0.954 0.000 0.001 

Mid-season 
2001 

0.925 0.000 0.002 

Winter 2000 0.714 0.000 0.002 
Table 16 - Coefficient of determination R2 in validation phase 

The validation phase table elucidates significant insights into the predictive 

performance of the model. The recorded R2 coefficients serve as indicators of the model's 

aptitude in elucidating the variance within the response variable. Notably, the model 

achieves a commendable explanatory capability across various seasons, as evidenced by 

the R2 values. The statistical significance of these associations, denoted by p-values 

consistently at or below 0.001, reinforces the robustness of the identified relationships. 

The marginal standard errors support the reliability of the coefficient estimations. It is 

noteworthy that the model exhibits consistent predictive precision across distinct 

temporal segments. This spans from a noteworthy R2 of 0.980 in the summer of 2018 to 

the substantial value of 0.714 encountered during the winter of 2000. 

▪ Residuals analysis: 
 

 Mean Residuals St. dev of Residuals 

Summer 2018 -0.00041 0.07864 

Mid-season 2018 -0.00004 0.23776 

Winter 2018 -0.0002 0.07564 

Summer 2001 -0.00082 0.10517 

Mid-season 2001 -0.00026 0.06821 

Winter 2000 -0.00013 0.07934 
Table 17 - Residuals analysis (Mean and St.deviation) 



Analysing Urban Heat Island Dynamics in Turin: A Machine Learning-based Investigation of Climate 

Changes and Intervention Effects | A. Scalise, X. Sufa 

Supervisor Professor G. Mutani  

Politecnico di Torino, 2023 

 

 
136 

 

Residuals, representing the differences between the observed and predicted values, are 

essential in assessing the effectiveness of a model's predictions. The calculated mean 

residuals indicate that, on average, the model's predictions closely align with the actual 

observed values. The proximity of mean residuals to zero underscores the model's 

capability to mitigate systematic biases, while the standard deviations of residuals provide 

a measure of the variability of errors around the mean. Notably, the small standard 

deviations of residuals across various seasons signify that the model's predictions 

maintain a relatively stable level of accuracy. This is evident in the marginal deviations 

from zero for mean residuals, suggesting that the model consistently achieves a balanced 

prediction performance across different timeframes. It is evident that the model's 

predictions are not only accurate on average but also exhibit consistent precision, as 

indicated by the narrow dispersion of residuals around their respective means. 

 

Winter 2018 Residuals’ distribution graph: 
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Mid-season 2018 Residuals’ distribution graph: 

 

 

 

Summer 2018 Residuals’ distribution graph: 

 

 

 

Winter 2001 Residuals’ distribution graph: 
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Mid-season 2001 Residuals’ distribution graph: 

 

 

 

Summer 2001 Residuals’ distribution graph: 

 

 

 

The residual values obtained from the analysis are relatively small, indicating a close 

alignment between the model's predictions and the observed data. The mean residuals, 

ranging from -0.001 to 0.001, signify that, on average, the model's predictions are highly 

accurate and closely match the actual observed values. These small deviations from zero 

suggest that the model captures the underlying patterns of the urban heat island (UHI) 

effect with precision. Furthermore, the standard deviations of residuals, typically falling 

within the range of 0.05 to 0.25, are also relatively small. This suggests that the 

differences between the predicted and observed values tend to cluster closely around 

the mean residual. The smaller standard deviations indicate consistent model 
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performance across different seasons and years. In essence, the small residual values 

underscore the robustness of the UHI model's predictions. 

 

▪ Sensitivity analysis: 
 

 Variable Importance %   Variable Importance %   Variable Importance % 

Su
m

m
e

r 
2

0
1

8
 

NDMI 27652,59 25  
M

id
-s

e
as

o
n

 2
0

1
8

 
Buildings 

(geometry 
and human 
activities) 

26503,93 25  

W
in

te
r 

2
0

1
8

 

DTM 7934,46 20 

Buildings 
(geometry 
and human 
activities) 

22908,52 21  DTM 22336,14 21  Sky View 
Factor 

5801,25 15 

NDWI 10005,72 9  Sky View 
Factor 

8598,10 8  

Buildings 
(geometry 
and human 
activities) 

4659,05 12 

NDVI 8896,15 8  Emissivity 7220,27 7  Humidity 3065,70 8 

Wind speed 6756,35 6  NDMI 4958,73 5  Wind speed 2918,58 7 

DTM 6140,77 6  NDVI 4937,59 5  NDMI 2590,64 7 

Emissivity 5940,83 5  S/V Ratio 4575,53 4  Wind 
direction 

2294,09 6 

Solar 
radiation 

3543,30 3  SRI 3857,27 4  Temperature 2273,02 6 

Wind 
direction 

3359,64 3  Albedo 3737,53 4  Solar 
radiation 

1937,59 5 

Sky View 
Factor 

3304,64 3  Temperature 3662,86 3  S/V Ratio 1869,04 5 

SRI 3219,35 3  Wind speed 3430,94 3  Albedo 1728,76 4 

S/V Ratio 3075,77 3  NDWI 3019,41 3  SRI 639,46 2 

Humidity 2316,41 2  Wind 
direction 

2973,04 3  NDVI 469,13 1 

Temperature 2104,24 2  Humidity 2891,29 3  NDWI 439,92 1 

Albedo 988,68 1  Solar 
radiation 

2328,75 2  Emissivity 368,12 1 
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 Variable Importance %   Variable Importance %   Variable Importance % 

Su
m

m
e

r 
2

0
0

1
 

DTM 16748,36 19  

M
id

-s
e

as
o

n
 2

0
0

1
 

NDBI 4792,56 21  

W
in

te
r 

2
0

0
0

 

Wind speed 430,58 13 

Solar 
radiation 

11975,42 14  NDMI 3576,73 16  DTM 363,73 11 

NDBI 11733,79 13  SRI 2434,22 11  Albedo 308,42 10 

NDMI 8869,92 10  NDVI 2218,11 10  Humidity 306,32 10 

Albedo 8588,63 10  Emissivity 1854,66 8  SRI 287,59 9 

Temperature 7283,06 8  NDWI 1539,75 7  Temperature 259,66 8 

NDVI 5692,54 7  DTM 1194,88 5  Wind 
direction 

250,93 8 

Emissivity 3840,87 4  Temperature 929,91 4  Solar 
radiation 

234,62 7 

Wind 
direction 

3713,77 4  Albedo 856,33 4  NDVI 179,52 6 

SRI 2682,92 3  Wind speed 819,37 4  NDWI 156,52 5 

NDWI 2149,92 2  Solar 
radiation 

773,62 3  Emissivity 155,58 5 

Humidity 2052,98 2  Wind 
direction 

762,47 3  NDMI 147,08 5 

Wind speed 2021,69 2  Humidity 747,69 3  NDBI 139,58 4 

Table 18 - Sensitivity analysis for the six simulations (2001 and 2018) 

 The provided tables offer insights into the variable importance for each simulation 

within a given season. However, gaining a comprehensive understanding of the Urban 

Heat Island (UHI) phenomenon and identifying the most influential variables necessitates 

calculating the “average aggregate importance” of these variables across all six models 

(three models for 2018 and three for 2001). To achieve this, a Python code executed 

within the Data Spell environment computes and analyzes the “mean aggregate 

importance”, providing a more comprehensive view of the factors impacting UHI 

intensity: 
import pandas as pd 

import matplotlib.pyplot as plt 

 

# Load CSV files for each simulation with semicolon separator 

simulation1_df = pd.read_csv('C:/Users/aless/Dropbox (Politecnico Di 

Torino 

Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/13_MODELLI_FINALI/24_08_2001/Sens

itivity_analysis/Sensitivity_summer_2001.csv', sep=';') 

simulation2_df = pd.read_csv('C:/Users/aless/Dropbox (Politecnico Di 

Torino 

Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/13_MODELLI_FINALI/27_05_2001/Sens

itivity_analysis/Sensitivity_midseason_2001.csv', sep=';') 

simulation3_df = pd.read_csv('C:/Users/aless/Dropbox (Politecnico Di 

Torino 

Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/13_MODELLI_FINALI/18_12_2000/Sens

itivity_winter_2000/sensitivity_winter_2000.csv', sep=';') 
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# Combine DataFrames into a single DataFrame 

all_simulation_df = pd.concat([simulation1_df, simulation2_df, 

simulation3_df], 

                              ignore_index=True) 

 

# Calculate aggregate importance scores across simulations for each 

variable 

agg_importance = 

all_simulation_df.groupby('Variable')['Importance'].mean().reset_index

() 

 

# Rank variables based on aggregate importance scores 

ranked_variables = agg_importance.sort_values(by='Importance', 

ascending=True) 

 

# Create a bar plot to visualize the results 

plt.figure(figsize=(10, 6)) 

plt.barh(range(1, len(ranked_variables) + 1), 

ranked_variables['Importance']) 

plt.yticks(range(1, len(ranked_variables) + 1), 

ranked_variables['Variable']) 

plt.xlabel('Aggregate Importance') 

plt.ylabel('Variable') 

plt.title('Most Important Variables Across Simulations') 

plt.tight_layout() 

 

# Save the plot as an image file 

plt.savefig('ranked_variables_plot.png') 

 

# Display the plot 

plt.show() 

 

 The values in the table are arranged in descending order, with the highest importance 

values presented first. 
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Table 19 - Aggregate mean importance of the variables 

 
Sensitivity Analysis Comparison: Urban Heat Island (UHI) Model for 2001 and 

2018: 

Understanding the sensitivity of urban heat island (UHI) dynamics across different 

years provides crucial insights into the evolving relationship between urbanization, 

environmental variables, and local temperature variations. In this analysis, we explore the 

UHI sensitivity scores for the city of Turin during two distinct periods: 2001 and 2018. 

These scores are based on the average aggregate points obtained from three 

simulations conducted across various seasons, including summer, winter, and mid-

season. 

2001 Analysis: 

The UHI sensitivity analysis for 2001 provides an intriguing snapshot of UHI 

dynamics in the earlier urban landscape of Turin. Notably, "DTM" (Digital Terrain 

Model) takes a prominent place among the top-ranked variables. This underscores the 

2018 

Rank Variable Score 

1 
Buildings 

(geometry and 
human activities) 

18023.83 

2 DTM 12137.12 

3 NDMI 11733.99 

4 Sky View Factor 5901.33 

5 NDVI 4767.623 

6 Emissivity 4509.74 

7 NDWI 4488.35 

8 Wind speed 4368.623 

9 S/V Ratio 3173.447 

10 Wind direction 2875.59 

11 Humidity 2757.8 

12 Temperature 2680.04 

13 Solar radiation 2603.213 

14 SRI 2572.027 

15 Albedo 2151.657 

2001 

Rank Variable Score 

1 DTM 6102.323 

2 NDBI 5555.31 

3 Solar radiation 4327.887 

4 NDMI 4197.91 

5 Albedo 3251.127 

6 Temperature 2824.21 

7 NDVI 2696.723 

8 Emissivity 1950.37 

9 SRI 1801.577 

10 Wind direction 1575.723 

11 NDWI 1282.063 

12 Wind speed 1090.547 

13 Humidity 1035.663 
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long-standing influence of elevation and topography in shaping temperature patterns 

within the city. 

Furthermore, "Solar Radiation" emerges as a significant factor, signifying the role of 

energy input in driving temperature disparities. 

The inclusion of "NDBI" (Normalized Difference Built-Up Index) in the top ranks 

points to the increasing impact of built-up areas on UHI during this period. This suggests 

evolving urbanization patterns and their implications for localized heat intensification. 

Variables such as "NDMI," "NDVI," and "Albedo" emphasize the enduring importance 

of vegetation and surface properties in mitigating UHI effects. "Temperature" holds a 

significant place, but its position within the rankings suggests that other variables are 

equally instrumental in shaping UHI. 

Meteorological variables like "Wind Direction," "Wind Speed," and "Humidity" 

underline their consistent role in UHI modulation. "Emissivity" and "SRI" reflect the 

ongoing impact of surface characteristics on heat retention and reflection. 

 

2018 Analysis: 

Comparatively, the UHI sensitivity analysis for 2018 offers insights into the UHI 

dynamics in a more recent urban context. Here, " Buildings (geometry and human 

activities)" emerges as the top-ranked variable, signifying the increasing influence of 

urban structural characteristics on UHI. This underscores the growing importance of 

urban planning and design in managing UHI effects. 

Similar to 2001, "DTM" maintains its significance, showcasing the persistent role of 

topography in governing temperature variations. "NDMI" and "NDVI" continue to 

highlight the importance of vegetation and moisture content in mitigating UHI, aligning 

with the understanding of green spaces' impact on temperature moderation. 

Variables like "Emissivity," "Albedo," and "Solar Radiation" underscore the role of 

surface properties and energy exchange processes in UHI development. Meteorological 

factors such as "Wind Speed," "Wind Direction," "Humidity," and "Temperature" reflect 

the intricate interplay between atmospheric conditions and localized temperature patterns. 
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Comparative Insights: 

A compelling observation from these analyses is the shared importance of factors such 

as vegetation, surface properties, and meteorological conditions in both years. This 

suggests that certain underlying mechanisms shaping UHI effects remain relatively 

consistent across different urban contexts. 

In conclusion, these sensitivity analyses underscore the intricate interactions among 

urban form, land use, vegetation, surface characteristics, and atmospheric conditions that 

collectively drive UHI. As cities evolve, these insights can guide strategies to mitigate 

UHI effects, fostering more sustainable and resilient urban environments. 

 

▪ Predicted vs Calculated [graphical results] 

In our study, we employed a Random Forest algorithm to calculate and predict UHI 

intensity, yielding intriguing results. First, we can observe in the following maps that the 

magnitude of UHI intensity remained consistent across calculations and predictions, 

indicating robustness in the algorithm's performance. However, a slight divergence in the 

classification emerged, leading to variations in spatial delineation. This discrepancy 

implies that while the overall UHI effect remains consistent, the algorithm may capture 

subtle distinctions in UHI distribution. 

Furthermore, a pronounced seasonality in UHI intensity was identified. The 

warmer months displayed heightened UHI intensity, whereas midseason transition 

periods experienced a reduction in intensity. Surprisingly, UHI intensity exhibited a 

notable decrease during the winter months, particularly within built-up areas. This 

observation suggests complex interactions between urban morphology, land cover 

characteristics, and climatic influences (as snow), beyond just heating-related effects.  

Additionally, the consistent UHI intensity values observed on the winter map, 

approximating unity, raise questions about the role of snow cover for December 2000. 
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The Pearson correlation coefficients presented in the provided graph represent the 

degree and direction of linear relationships between various environmental variables and 

the Urban Heat Island (UHI) effect. These coefficients quantify the strength and 

direction of linear relationships between each variable and the UHI effect. Positive 

coefficients indicate a positive linear correlation, while negative coefficients indicate a 

negative linear correlation. The magnitude of the coefficient reflects the strength of the 

relationship. Pearson correlation coefficients are specifically designed to measure linear 

correlations between two variables, providing a single numerical value representing the 

strength and direction of that linear relationship. In contrast, random forest importance 

scores are used in machine learning to assess the relative importance of variables for 

predictive modelling, considering both linear and nonlinear relationships and not 

providing a measure of correlation strength. Integrating the information from both tables, 

the Pearson correlation coefficients graph and the Random Forest importance scores 

table, serves a dual purpose. Firstly, it aids in prioritizing variables that are not only 

significantly correlated with the Urban Heat Island (UHI) effect but also exhibit high 

importance scores in predictive modelling. Such variables are of particular interest 

because they are likely influential in driving the UHI effect and hold potential for targeted 

interventions. 

-1 

1 

0 
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Secondly, this integration offers valuable contextual insights. It helps researchers 

delve beyond mere correlation strength and considers how variables interact in complex, 

nonlinear ways. For instance, a variable might display a weak linear correlation with the 

UHI effect according to Pearson coefficients but receive a high importance score in the 

random forest model. This suggests that although the linear relationship is weak, the 

variable plays a critical role in predicting the UHI effect due to intricate nonlinear 

interactions. 
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UHI Intensity - RF prediction – [24/08/2001 – SUMMER]  
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UHI Intensity - RF prediction – [22/08/2018 – SUMMER]  
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UHI Intensity - RF prediction – [11/02/2018 –WINTER]  
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UHI Intensity - RF prediction – [18/12/2000 – WINTER]  
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UHI Intensity - RF prediction – [16/04/2018 – MIDSEASON]  
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UHI Intensity - RF prediction – [2705/2001 – MIDSEASON]  
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UHIi CALCULATED [2001] UHIi PREDICTED RF [2001] 

Figure 26 - Calculated vs Predicted RF UHIi [2001] 
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UHIi CALCULATED [2018] UHIi PREDICTED RF [2018] 

Figure 27 - Calculated vs Predicted RF UHIi [2018] 
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5 Urban regeneration & UHI 
The main thrust of our research was to harness machine learning techniques to quantify 

Urban Heat Island (UHI) intensity by deploying a multifactorial model encompassing 

variables recognized as significant contributors to this climatic phenomenon within the 

urban context of Turin. Building upon foundational studies in urban climate science (Oke, 

1982) [54], our investigation sought to illuminate the complex interplay of factors 

influencing UHI. Through meticulous evaluation of UHI dynamics across multiple 

seasons during the pivotal years of 2001 and 2018, we aimed to provide a comprehensive 

spatiotemporal understanding of UHI variation within the Turin metropolitan area. This 

research also grappled with a pivotal second research question, probing the potential of 

extensive urban regeneration interventions to ameliorate UHI intensity in the locales 

where they are implemented. Drawing upon seminal work in urban planning and 

sustainability, our inquiry into the mitigative capacity of urban regeneration interventions 

holds promise in enhancing our comprehension of UHI management strategies and their 

broader implications for sustainable urban development. 

Turin, with its unique history of transitioning from an industrial powerhouse to a 

post-industrial city, provided an intriguing case study. The city's industrial past, marked 

by heavy manufacturing and associated urban infrastructure, underwent a significant 

transformation starting in the early 2000s as industries were disinvested and 

deindustrialization processes began. 

Our research, therefore, explored how these dynamic urban changes, including the 

dismission of industry, may have influenced UHI dynamics.  

The case, for the assessment of the changes in UHI magnitude, is the Parco Dora area 

[EX-Teksid], in the following paragraph we will delve into the results obtained by the 

model to confirm the research question. 

  

 
[54] Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of 
the Royal Meteorological Society, 108(455), 1-24 
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5.1 UHI magnitude before and after the great intervention 

 
Urban regeneration, within the context of UHI mitigation, represents a multifaceted 

urban planning and development approach underpinned by scientific principles. The 

Urban Heat Island (UHI) effect, characterized by elevated temperatures within urban 

areas, is primarily driven by changes in land use, land cover, and heat-absorbing surfaces.  

When comparing the impact of a great urban regeneration intervention on UHI 

between two years, 2001 and 2018, it's essential to choose seasons that are 

representative and can highlight potential changes. Summer is typically the season 

when UHI intensity is most pronounced due to higher temperatures and increased energy 

consumption.  

Climate change, a prominent global driver, has the potential to influence local climate 

patterns significantly (Intergovernmental Panel on Climate Change, 2014) [55].  

Concurrently, urbanization and the expansion of impervious surfaces can intensify the 

Urban Heat Island (UHI) effect, contributing to elevated LST values within urban areas 

(Oke, 1982) [56]. Changes in land use, surface materials, can further exacerbate UHIs, 

affecting the local thermal environment (Voogt & Oke, 2003; Shashua-Bar & Hoffman, 

2009) [57].  

 

These complex interactions illustrate the importance of considering not 

only air temperature but also broader climatic and urbanization factors 

when analysing LST variations over time. 
 

  

 
[55] Intergovernmental Panel on Climate Change (IPCC). (2014). Climate Change 
2014: Synthesis Report. Retrieved from https://www.ipcc.ch/report/ar5/syr/ 
 
[56] Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal 
of the Royal Meteorological Society, 108(455), 1-24 
 
[57] Ibid [53] 

https://www.ipcc.ch/report/ar5/syr/
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The evaluation of Urban Heat Island (UHI) intensity serves as a vital metric for 

comprehending the thermal dynamics of urban environments. In the context of Turin's 

EX-area Teksid, a region that underwent substantial urban regeneration efforts between 

2001 and 2018, understanding changes in UHI intensity provides critical insights into the 

efficacy of urban planning interventions. 

By quantifying this intensity before and after urban regeneration, we aim to ascertain 

whether these efforts have led to a reduction in temperature disparities and a more 

thermally sustainable urban environment. Such assessments are instrumental in gauging 

the success of urban revitalization projects in mitigating the UHI effect and fostering more 

comfortable urban spaces. 

 

“What alterations have occurred in the Urban Heat Island 

(UHI) intensity from 2001 to 2018?” 
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The evaluation of Urban Heat Island (UHI) intensity within Turin's EX-area Teksid 

over the period from 2001 to 2018 reveals a noteworthy and positive transformation. 

The data analysis indicates a substantial decrease in UHI intensity during this time 

frame, suggesting the effectiveness of urban regeneration initiatives in mitigating thermal 

disparities. Notably, this reduction in UHI intensity is not uniform across all seasons. 

During summer months, when UHI effects are typically most pronounced, the decline is 

particularly noteworthy, signifying a more substantial cooling effect in response to these 

urban interventions. Conversely, winter and midseason (spring) show milder decreases, 

highlighting the complexity of UHI dynamics in different seasons and the potential for 

further strategies tailored to specific climatic conditions. These findings underscore the 

importance of considering seasonality in urban planning and climate resilience efforts 

within dynamic urban environments. 

 

  

Variable Area of analysis
Distance's radius from 

the intervention [m]
Intensity Variation 

Summer (2001-2018)
Intensity Variation 
Spring (2001-2018)

Intensity Variation 
Winter (2001-2018)

Total mean 
[absolute value]

UHI (Intervention 
Area statistics) 0 -0.944 -1.037 -0.544 -0.841

UHI (District 
statistics) 500 -0.413 -0.524 -0.476 -0.471

UHI (Municipal 
statistics)

All Turin's 
municipal area -0.500 -0.849 -0.492 -0.614

Table 20 - UHI Variation 2001-2018 



Analysing Urban Heat Island Dynamics in Turin: A Machine Learning-based Investigation of Climate 

Changes and Intervention Effects | A. Scalise, X. Sufa 

Supervisor Professor G. Mutani  

Politecnico di Torino, 2023 

 

 
160 

 

 
5.2 Potential insights: Combating UHIs through Urban 

Planning for Climate-Resilient Futures 
 

As urbanization accelerates, cities face the Urban Heat Island (UHI) effect—a rise in 

temperatures within urban areas. This phenomenon has far-reaching implications for 

health, energy, and city life. Urban planning is essential to combat UHI, as seen in 

sensitivity analyses of Turin for 2001 and 2018. By understanding key variables, we 

unveil actionable strategies for cooler cities. Climate change is intertwined with UHI, 

emphasizing the link between global climate shifts and local temperature disparities. 

Urban planning's role aligns cities with climate action, fostering sustainable, adaptable, 

and vibrant urban environments. 

 

1. Urban Planning Strategies to Mitigate Urban Heat Island (UHI) Effect: 
 

1. Increase Green Spaces and Vegetation: The consistent prominence of variables 

like "NDVI" and "NDMI" in both years underscores the importance of green 

spaces and vegetation. Urban planners should prioritize incorporating parks, 

green roofs, and trees to provide shade, reduce heat absorption, and encourage 

evaporative cooling (as we see in the case of Ex-TEKSID Area). 

 
Figure 28 - Parco Dora renewal, Ex Area TEKSID  [58] 

 
[58] Comune di Torino: Parco Dora: aperti al pubblico il lotto Valdocco Nord e Iron Valley – 
Verde Pubblico (comune.torino.it) 

http://www.comune.torino.it/verdepubblico/parchi-e-giardini/parco-dora-aperti-al-pubblico-il-lotto-valdocco-nord-e-iron-valley/
http://www.comune.torino.it/verdepubblico/parchi-e-giardini/parco-dora-aperti-al-pubblico-il-lotto-valdocco-nord-e-iron-valley/
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2. Promote Sustainable Land Use: The emergence of " Buildings (geometry and 

human activities)" as a top-ranking variable in 2018 indicates the impact of urban 

form. Urban planning should encourage mixed land use, compact development, 

and high-density areas to minimize heat-retaining surfaces while optimizing 

energy efficiency. 

3. Design Reflective Surfaces: "Albedo" and "SRI" highlight the role of surface 

reflectivity. Urban planners can encourage the use of reflective and cool roofing 

materials, light-coloured pavements, and other strategies to reduce heat 

absorption. 

 
Figure 29 – Oslo Opera House [59] 

4. Implement Cool Roofs and Pavements: Building codes and regulations can 

require cool roofs and pavements that reflect more sunlight and absorb less heat, 

contributing to localized cooling effects. 

 
[59] Oslo Opera House, Oslo, Norway, Daniel Ghio, Unspalsh: 
https://unsplash.com/it/foto/LHf1WVqdmCI 
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5. Promote Energy-Efficient Building Design: Incorporate energy-efficient 

building designs that reduce the need for air conditioning, thus decreasing local 

heat generation. 

6. Urban Forestry Management: Invest in urban forestry management to ensure 

healthy tree populations, strategically placed to provide shade and cooling effects. 

 
Figure 30 - Yuan Ching Road, Jurong Lake Gardens, Singapore [60] 

 

2. Importance of Climate Change in Relation to UHI: 
 

• Amplification of UHI: As global temperatures rise due to climate change, UHI 

effects are amplified. Urban areas experience higher baseline temperatures, 

intensifying UHI impacts and making urban residents more vulnerable to extreme 

heat events. 

• Positive Feedback Loop: UHI contributes to a positive feedback loop where 

higher temperatures in urban areas lead to increased energy consumption for 

cooling, further contributing to greenhouse gas emissions. 

 
[60] Unsplash: https://unsplash.com/it/foto/bIpKSEsaN6Q 
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• Adaptation and Resilience: Urban areas need to adapt to changing climate 

patterns. Strategies to counter UHI effects align with broader climate adaptation 

efforts, ensuring cities are resilient in the face of rising temperatures. 

• Health and Equity Concerns: UHI poses health risks, particularly to vulnerable 

populations. Elderly, children, and low-income communities are more susceptible 

to heat-related illnesses. Addressing UHI is part of promoting equitable urban 

environments. 

• Mitigation and Global Efforts: Mitigating UHI contributes to broader global 

climate mitigation efforts. Cooler cities reduce energy consumption, which in turn 

reduces greenhouse gas emissions from power generation. 

• Collaborative Approach: Combating UHI due to climate change requires a 

collaborative effort among urban planners, policymakers, researchers, and 

communities. Local policies and initiatives need to align with regional and global 

climate goals. 

 

In conclusion, addressing the urban heat island effect through urban planning 

strategies is essential for creating liveable, sustainable cities. Climate change intensifies 

UHI impacts, making adaptation and mitigation crucial components of urban 

development strategies. By implementing innovative urban planning measures and 

understanding the interconnectedness between UHI and climate change, cities can 

contribute to a more resilient and sustainable future. 

3. Similarities and Mitigation Strategies in Singapore: 
 

One city that has effectively mitigated the urban heat island (UHI) effect and faces 

similar challenges as Turin is Singapore. Singapore is known for its tropical climate, 

rapid urbanization, and efforts to create a sustainable and liveable urban environment. 

Despite its distinct climate, Singapore's strategies to address UHI can offer valuable 

insights for Turin and other cities facing similar issues. 
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1. Green Spaces and Vegetation: Like Turin, Singapore has prioritized the 

incorporation of green spaces, parks, and rooftop gardens. The city's "City in a 

Garden" initiative focuses on enhancing urban greenery to provide shade and 

reduce heat absorption. 

2. Cool Roof Initiatives: Singapore has promoted the use of cool roofs, which reflect 

sunlight and absorb less heat. This helps to maintain lower rooftop temperatures 

and reduce overall UHI impact. 

3. Urban Planning and Mixed Land Use: Both cities emphasize sustainable land 

use planning to optimize energy efficiency and reduce the heat island effect. 

Compact development and mixed land use encourage efficient use of space and 

reduce heat-absorbing surfaces. 

4. Vegetated Infrastructure: Singapore's innovative approach includes vegetated 

facades, vertical gardens, and green corridors. These elements enhance urban 

aesthetics, biodiversity, and cooling effects. 

5. Water Features and Blue-Green Infrastructure: Both cities have incorporated 

water features, such as ponds, lakes, and canals, to cool the environment through 

evaporative cooling. Singapore's "ABC Waters" program integrates water 

management with urban planning. 

6. Climate-Responsive Architecture: Singapore's architecture incorporates climate-

responsive designs that optimize natural ventilation, shading, and energy 

efficiency, aligning with UHI mitigation. 

7. Research and Innovation: Singapore's research institutions collaborate with the 

government and private sector to develop cutting-edge solutions for UHI 

mitigation. This approach encourages ongoing innovation in addressing urban 

climate challenges. 
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While Singapore's climate differs from Turin's, its emphasis on green infrastructure, 

energy-efficient designs, and integrated planning offers transferable lessons for UHI 

mitigation. 

 

 
Figure 31 - Singapore National Parks Board (NParks) [61] 

 

While Singapore pursued such a strategy, the city of Turin opted for a similar 

approach, implementing two distinct strategic plans to enhance its resilience in the face 

of climate change. 

 

1. Il Piano Strategico dell’Infrastruttura Verde Torinese 

2. Piano di Resilienza Climatica 

 

  

 
[61] Singapore National Parks Board (NParks): Parks & Nature Reserves - Gardens, Parks & 
Nature - National Parks Board (NParks) 

http://www.comune.torino.it/verdepubblico/il-verde-a-torino/piano-infrastruttura-verde/httphttp:/www.comune.torino.it/verdepubblico/il-verde-a-torino/piano-infrastruttura-verde/:/www.comune.torino.it/verdepubblico/il-verde-a-torino/piano-infrastruttura-verde/
http://www.comune.torino.it/torinosostenibile/documenti/200727_Piano_Resilienza_Climatica_allegati.pdf
https://www.nparks.gov.sg/gardens-parks-and-nature/parks-and-nature-reserves
https://www.nparks.gov.sg/gardens-parks-and-nature/parks-and-nature-reserves
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Figure 32 - Green system in the city of Turin 

 
In line with the earlier mentioned plans, the city of Turin has already implemented 

proactive solutions aimed at mitigating the effects of the Urban Heat Island (UHI) 

phenomenon. 

Chapter six of the “Piano di Resilienza Climatica” titled “Torino a Rischio”, addresses 

all aspects pertaining to the urban heat island risk. Information on the implemented 

nature-based solutions and ongoing initiatives can be found in Chapter eleven. 

Below, we provide an example of an action that has already been implemented present 

in chapter eleven of the report: 
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Figure 33 - Piano di Resilienza Climatica - Torino 2030  
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6 Conclusions: Integrated 
Reading and Interpretation of 
Results 

 

 In conclusion, our comprehensive analysis, utilizing a machine learning model that 

incorporated a range of variables, has provided valuable insights into the factors 

influencing the phenomenon under investigation of the UHI effect in our case study Turin. 

Through a systematic exploration of these variables, we have discerned their individual 

impacts, shedding light on the key determinants at play, as for example buildings. In 

fact, we need to consider that, while the geometric characteristics of buildings themselves 

may not bear all the primary determinant of UHI intensity, the human activity taking place 

within/around these structures plays a pivotal role in shaping urban microclimates. The 

energy consumption, heating, cooling, and industrial processes occurring within 

buildings significantly contribute to the heat generated in urban areas. These activities 

release waste heat into the environment, which, when aggregated across a densely urban 

landscape, can substantially elevate local temperatures. In fact, if we consider the 

graphical results obtained in the UHI maps (see chapter 3, paragraph 3.2.4), for winter, 

we expect no UHI phenomena, instead, we found out that the phenomenon was indeed 

present, even with low magnitude, this probably related to the heating systems-on in that 

period. 

 It is important to note that, these variables should be considered, although they are 

often analysed more in-depth in other research efforts. As such, understanding the 

interplay between building-related human activities and UHI dynamics is indispensable 

for devising effective strategies to manage and mitigate the urban heat island 

phenomenon. 

Instead, our approach has enabled us to identify which of the fifteen variables 

considered hold the most significant influence over the outcome in question (Buildings, 

moisture, green, etc.), by allowing us to obtain a more intercalary perspective of the 

phenomenon (urban, district and intervention scale), across two distinct time periods 
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(2001 and 2018), this temporal comparison spanning nearly two decades has allowed us 

to discern the transformations that have transpired over this significant timeframe, as the 

deindustrialisation process (see chapter 2.3) that occurred in Turin in 2000s. 

Furthermore, the evaluation of variables (almost fifteen in total, see chapter 3.2), 

morphological, climate and land cover one, helped us to detect the main changes that 

intercurred in these last twenty-years, assuming the changes in climate conditions, as: the 

reduction of precipitations regime ( -312,84 mm since 2010 to today) and the increase of 

air temperature (+1,07 °C, since 2010 to today); a general overview of the phenomenon 

can be found in chapter 2, paragraph 2.2, where, with a broad climate trend analysis 

(weather station data), we directly could appreciate the differences between this time 

span. 

 

6.1 Assessing the Impact of Climate Change: Analysis of 
Variables Across Seasons in 2001 and 2018 

“Climate change is not a mere hypothesis; it's an undeniable 

scientific truth, and the very cities we inhabit stand as prime 

architects fuelling this planetary crisis”.  

This assumption marked a crucial starting point because cities, with their anthropic 

activities, represent the primary focus of our investigation, into factors that amplify 

the adverse impacts of climate change. It's not just the planet at stake; it's also the well-

being of the individuals residing in these urban centres, as we saw in the literature 

analysed in chapter 1, paragraph 1.4. Among the phenomena posing a potential threat to 

cities, the Urban Heat Island (UHI) effect (see paragraphs 1.1, 1.2, 1.3) in dense urban 

areas (as Turin) stands out as a significant concern. This phenomenon it is important 

enough to warrant inclusion in international environmental protocols as listed in 

paragraph 1.6. 

Since dense cities are the core of the phenomenon of the UHI, our main research 

question was: 
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"Can good planning practices demonstrate tangible microclimatic 

changes?" 

The answer to this question has been retrieved by the elaboration of a machine 

learning model (see chapter 4) that leverage algorithms and statistical techniques to 

identify patterns and relationships within the data and provide insights into how various 

factors influence the UHI phenomenon in Turin. 

Modelling phase was preceded by a pre-modelling phase where all the data were 

collected in a comparable way between 2001 and 2018 (see paragraph 3.2), the variables 

were processed with the algorithms (paragraphs 4.1, 4.2, 4.3) and finally, a rank of 

variables has been retrieved by a significance score.  

In fact, into this chapter we will delve into the main comparisons to resume the 

results obtained. 

 

▪ Compared variables: These tables are the results from the average aggregate 

importance of the variables, across summer, winter, and midseason (2001 and 2018), 

that resulted having a significant influence on our UHI model. The specific 

significance of each season can be consulter at paragraph 4.3. 

 

Figure 34 - Retrieved from page 105, chapter 4.3. 
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From this table what emerges is that the variables that have the heaviest importance 

are pretty the same for 2001 and 2018. Buildings (NDBI for 2001), as already anticipated 

at the beginning of this chapter, are the main participants of the UHI phenomenon, 

together with: DTM, NDMI, NDVI, Emissivity, etc. Moreover, the variables from 2001 

have a slightly different rank, due to the: seasonal variations (for ex. Spring in 2018 is 

less rainy than in 2001) and data quality (ex. Buildings are much more accurate in 2018 

than 2001, because we used a very accurate shapefile from the Piemonte region instead, 

in 2001, we calculated an index using satellite imagery). 

But mainly the variables show a consistent presence in both the years, furthermore, to 

analyse the differences we retrieved some statistics from the most relevant variables: 

 

 

• Soil moisture: in urban areas humidity can vary widely due to differences in land use 

and soil properties. These variations can influence UHI intensity by affecting the 

thermal properties of the surface, including heat storage and heat transfer processes. 

Moisture, whether in the form of soil moisture, vegetation, or higher atmospheric 

humidity, has a cooling effect that counteracts the heat island effect. 

Variable Scale
Variation Summer 

(2001-2018)
Variation Spring 

(2001-2018)
Variation Winter 

(2001-2018)
Total mean variation 

(2001-2018)

Intervention 10,07% -7,41% 17,89% 6,85%

District 6,77% -4,27% 17,69% 6,73%

Municipal 8,44% -12,43% 17,39% 4,47%

Intervention 19,46% 21,79% 8,23% 16,49%

District 6,41% 16,61% 7,61% 10,21%

Municipal 6,17% 11,09% 1,53% 6,26%

Intervention -0,02% -0,08% 0,00% -0,03%

District -0,03% -0,10% 0,00% -0,04%

Municipal -0,03% -0,10% -0,01% -0,05%

Intervention 3,09% 0,63% 14,86% 6,19%

District 1,18% 0,11% 13,46% 4,92%

Municipal 3,27% 0,23% 15,40% 6,30%

NDMI

NDVI

EMISSIVITY

ALBEDO

Table 21 - Tabular statistics of some of the most relevant variables of UHI 
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The reference by Stewart and Oke (2012) [62] highlights the relevance of considering 

local climate zones in urban temperature studies, emphasizing the importance of soil 

moisture as a key variable. Moisture levels vary across seasons due to temperature 

fluctuations and atmospheric conditions. From the table above we can notice that: 

- moisture variation levels (2001-2018) in Turin are slightly increased, also in 

the intervention area the values are higher. 

- Spring registers a negative variation, this referred to the fact that the rainy 

season is characterised by less precipitation in 2018. 

 
[62] Stewart, I. D., & Oke, T. R. (2012). Local climate zones for urban temperature 
studies. Bulletin of the American Meteorological Society, 93(12), 1879-1900 
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• Increased Vegetation: Urban regeneration often includes initiatives to enhance 

green spaces and increase urban vegetation. This scientific approach aligns with 

findings that vegetation, through processes such as transpiration and shading, can 

significantly reduce surface temperatures (Shashua-Bar & Hoffman, 2009) [63]. 

From the NDVI calculations for 2001 and 2018 is pretty evident that the vegetation 

increased in the area where the urban interventions took place. In fact, the built-up 

area is coloured with dark blue, instead, the green area is coloured with 

highlighted green. Nowadays more areas with highlighted green are present. 

Note that in winter the classification palette used to enhance the green is darker (dark 

violet), because the fact that most of the leaves felled. Instead, in mid-season the 

vegetation is blossoming so lighter colours indicate that there’s a major presence of 

vegetation. 

 
[63] Shashua-Bar, L., & Hoffman, M. E. (2009). Vegetation as a climatic component in 
the design of an urban street: An empirical model for predicting the cooling effect of 
urban green areas with trees. Energy and Buildings, 41(6), 647-655 
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• Emissivity: Surfaces with higher emissivity values have a greater ability to emit 

thermal radiation, which means they release heat more efficiently. In contrast, 

surfaces with lower emissivity values retain heat, contributing to higher 

temperatures within urban environments. This phenomenon can exacerbate the 

UHI effect by causing urban areas to become significantly warmer. 
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• Albedo Modification: Scientific research highlights the importance of albedo 

modification in UHI mitigation. Urban regeneration initiatives can introduce high-

albedo surfaces, such as cool roofs and reflective pavements, which reflect more 

solar radiation and absorb less heat, thereby mitigating UHI effects (Akbari et al., 

2009) [64]. 

Albedo in 2001 registers areas with low reflectance capacity (darker colours), 

instead, 2018 has areas where the reflectance capacity, after intervention, has 

increased (lighter colours). 

For winter and midseason, the output is the same, for 2018 results show better 

reflective capacity. 

 

 

 

 

 
[64] Ibid [63] 
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Does intervention mitigation bring new effects to light 
in UHI intensity? 

The answer to this question has been computed using the variations registered between 

2001 and 2018 (see chapter 5, paragraph 5.1) of the main variables contributing to the 

phenomenon, and the normalised intensities of UHI values for the same time considered. 

In fact, starting from the importance scores resulted from the Random Forest regression, 

we observed a high influence of Buildings, NDMI, NDVI, DTM, and Albedo. 

Buildings, as previously mentioned, are the main elements that contribute to the 

phenomenon, underlining the fact that our analysis is not enough descriptive of all the 

phenomenon. DTM, for sure is a variable that influences the intensity of UHI, in fact, 

from the UHI maps we can observe the heating effect in the downtown, instead in the 

hills, and more elevated areas, a cooling effect can be displayed. 

What is important for us to highlight is the effect/impact that planning practices can 

have on the phenomenon in question, by showing practical results in decreasing 

percentage of intensity, enacted by NDMI, NDVI and Albedo, that are indexes that can 

be measured and compared consistently. 

Variables 
Incidence % 

UHI 
Pearson coefficient (r) 

RF Importance 
Score 

NDMI 

 

-16.39 % -0.797 11733.990 

NDVI 

 

-15.52 % -0.679 4767.600 

ALBEDO 

 

-7.48 % -0.594 2151.600 

EMISSIVITY 

 

0.07 % -0.658 4509.740 

Table 22 - Variables' incidence on UHI mitigation 
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Can we highlight differences in UHI intensity across 
different urban morphologies? 

 

Yes, we can indeed highlight some differences in Urban Heat Island (UHI) intensity 

across various urban morphologies. UHI intensity varies based on the characteristics 

and layout of urban areas. For instance, densely built-up urban cores with tall buildings 

and limited green spaces tend to exhibit higher UHI intensities due to increased heat 

retention and reduced natural cooling mechanisms, an example can be the “Sacchi” 

neighbourhood in Turin. In contrast, open areas often have lower UHI intensities as they 

feature more open spaces and vegetation. Therefore, by studying these variations, we can 

gain valuable insights into how urban planning and design can mitigate the impacts of 

UHI. 

 

 

  

Figure 35 - Sacchi vs Arquata neighbourhood 

Table 23 - Table retrieved by Urban scale energy models, G. Mutani, et al (2020) 
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District UHIav 18/08/2018 UHIav 11/02/2018 UHIav 16/04/2018 

Sacchi 1.3445 0.2819 0.6041 

Arquata 1.2560 0.3824 0.4382 

Table 24 - Sacchi vs Arquata neighbourhood UHIi averages 

The intensity of the Urban Heat Island (UHI) varies slightly between the Sacchi and 

Arquata neighbourhoods. Sacchi features a densely built urban environment, whereas 

Arquata is characterized by a more open layout of buildings. During the summer and 

midseason, UHI tends to be more pronounced in the densely populated Sacchi 

neighbourhood. Conversely, during the winter, UHI levels are higher in the Arquata 

neighbourhood, likely influenced by industrial activities near Arquata. 

Figure 36 - UHI Sacchi vs Arquata neighborhoods UHIi 

SUMMER WINTER MIDSEASON 
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6.2 Planning documents and future directions for UHIs 

research 

In the ongoing effort to combat the adverse effects of Urban Heat Islands (UHI), it 

becomes increasingly evident that key elements such as vegetation, humidity, and albedo 

play crucial roles in achieving effective mitigation. To gain insights into the Turin’s 

regulatory framework addressing UHI concerns, we turned our attention to the 

planning documents of the city. Among the specific documents, the “Allegato Energetico 

Ambientale di Torino” emerged as a noteworthy resource. Within this document, a range 

of mitigation strategies are outlined, emphasizing normativism and voluntary elements.  

An example of content of the building code attachment is the colour of external 

building surfaces that carries energy implications, as it correlates with the absorption and 

emission coefficients of these surfaces [65]. A low emission coefficient coupled with a 

high absorption coefficient can lead to passive behaviour, causing these surfaces to heat 

up in the sun and transmit a portion of this thermal energy. Additionally, the roughness 

of external surfaces also impacts thermal exchange, with heat transfer decreasing as 

surface roughness increases. 

In fact, we could appreciate this by analysing the results of Albedo for Turin, where 

surfaces with high values are exceptionally reflective and tend to bounce back a 

significant portion of incoming solar radiation, helping in reducing the retaining of heat 

in the city. 

Another question seems to appear of interest: 

 

Why do we frequently encounter newly constructed buildings that 
feature dark colors? Is this a deliberate design choice or is there 

another reason behind it? 

  

 
[65] Allegato Energetico - Ambientale al Regolamento Edilizio della Città di Torino, 
p.53, 2020 
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The answer to this question has been derived from the extensive analysis of numerous 

articles in the literature, as well as from the results of our analysis, which highlighted a 

reduction of UHI intensity by almost 7.5% through albedo modifications with the new 

intervention in the Ex-Teksid area. 

Considering this, as one of the mitigation initiatives that can be implemented to 

“modify albedo”, in fact could be useful, at least in new developments, to observe the use 

of light colours for outer surfaces. Generally, seems more aesthetically to privilege the 

use of dark colours, as we can observe from these real estate listings in Turin: 

 
Figure 37 - New buildings in Borgo San Paolo and Aurora – Turin – Source: Idealista.it 

 
Albedo, in a new development, for sure is not the only variable to consider, but is also 

one of the main variables to consider when we discuss about UHI phenomenon.  

In this regard, we also inquired the “Piano del Colore” to understand if there were 

specific binding limitations to the use of colours in surfaces, but nothing noteworthy 

related to UHI topic. 
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In conclusion, this study represents a significant step forward in understanding the 

dynamics of the Urban Heat Island (UHI) phenomenon in the context of Turin, Italy, from 

2001 to 2018. The application of machine learning techniques has allowed us to 

comprehensively analyse and quantify the variations in UHI intensity over this period. 

Our findings have highlighted the critical importance of several key variables, in 

driving the fluctuations of UHI. These variables have emerged as influential factors in 

shaping the urban heat landscape and should serve as pivotal considerations for future 

urban planning. 

Furthermore, this research offers practical implications for urban regeneration and 

mitigation strategies. By demonstrating the potential for tangible UHI reduction through 

urban regeneration interventions (as the one of the EX-Teksid area) we underscore the 

significance of incorporating UHI mitigation measures in urban planning and 

development projects. The successful case of mitigating UHI through thoughtful urban 

regeneration initiatives in Turin serves as a model for other cities striving to create more 

sustainable and climate-resilient urban environments.  

As we move forward, it is imperative to translate these insights into actionable policies 

and practices that prioritize the reduction of UHI effects. The collaboration between data-

driven analysis, machine learning, and urban planning holds great promise in addressing 

the challenges posed by UHI and fostering healthier, more sustainable, and resilient cities. 
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https://d.docs.live.net/8e7ec8768139e3da/TESI_UHI_FINAL_PROD_ONLY/0_Tesi_Scalise_Sufa.docx#_Toc145255659


Analysing Urban Heat Island Dynamics in Turin: A Machine Learning-based Investigation of Climate 

Changes and Intervention Effects | A. Scalise, X. Sufa 

Supervisor Professor G. Mutani  

Politecnico di Torino, 2023 

 

 
194 

 

APPENDIX 
Automating processes in QGIS using Python can be a powerful way to streamline 

repetitive tasks, improve efficiency, and enhance geospatial workflows. The Python 

Console in QGIS provides an interactive environment where Python scripts can be 

executed to interact with QGIS' functionality and data. 

 

A. Python scripts (Variables 
calculation) 

 

NDVI *Change paths (blu part) 
import rasterio 

import numpy as np 

from qgis.core import QgsRasterLayer, QgsProject, QgsMapLayerType 

from qgis.utils import iface 

 

# Define the paths to the red and NIR bands of Landsat 8 

red_band_path = 'C:/Users/sufa/Dropbox (Politecnico Di Torino Studenti)/0 

- Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2018/22 AGO 

2018/LC08_L2SP_195029_20180822_20200831_02_T1_SR_B4.TIF' 

nir_band_path = 'C:/Users/sufa/Dropbox (Politecnico Di Torino Studenti)/0 

- Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2018/22 AGO 

2018/LC08_L2SP_195029_20180822_20200831_02_T1_SR_B5.TIF' 

output_ndvi_path = 'C:/Users/sufa/Dropbox (Politecnico Di Torino 

Studenti)/0 - Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI 

TERMICHE/2018/Agosto 2018/NDVI/output_ndvi.tif' 
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# Open the red band and read the data 

with rasterio.open(red_band_path) as red_ds: 

    red = red_ds.read(1).astype(np.float32) 

 

 

# Open the NIR band and read the data 

with rasterio.open(nir_band_path) as nir_ds: 

    nir = nir_ds.read(1).astype(np.float32) 

 

# Calculate NDVI 

ndvi = (nir - red) / (nir + red) 

 

# Write NDVI to output file 

with rasterio.open(red_band_path) as src: 

    profile = src.profile 

    profile.update(dtype=rasterio.float32, count=1) 

 

    with rasterio.open(output_ndvi_path, 'w', **profile) as dst: 

        dst.write(ndvi, 1) 

 

# Add the NDVI layer to QGIS 

layer = QgsRasterLayer(output_ndvi_path, 'NDVI') 

QgsProject.instance().addMapLayer(layer) 

layer.setRenderer(layer.renderer().clone()) 

QgsProject.instance().layerTreeRoot().insertLayer(0, layer) 
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# Refresh the map canvas 

iface.mapCanvas().refreshAllLayers() 

 

# Open the NDVI output file in QGIS 

iface.addRasterLayer(output_ndvi_path, 'NDVI') 

 

PVI *Change band paths (blu part) 

import rasterio 

import numpy as np 

from math import sqrt 

from qgis.core import QgsRasterLayer, QgsProject 

from qgis.utils import iface 

 

# Define the paths to the red and NIR bands of satellite image 

red_band_path = 'C:/Users/sufa/Dropbox (Politecnico Di Torino Studenti)/0 

- Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2018/22 AGO 

2018/LC08_L2SP_195029_20180822_20200831_02_T1_SR_B4.TIF' 

nir_band_path = 'C:/Users/sufa/Dropbox (Politecnico Di Torino Studenti)/0 

- Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2018/22 AGO 

2018/LC08_L2SP_195029_20180822_20200831_02_T1_SR_B5.TIF' 

output_pvi_path = 'C:/Users/sufa/Dropbox (Politecnico Di Torino 

Studenti)/0 - Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI 

TERMICHE/2018/Agosto 2018/PVI/output_pvi.tif' 

 

# Open the red band and read the data 
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with rasterio.open(red_band_path) as red_ds: 

    red = red_ds.read(1).astype(np.float32) 

 

# Open the NIR band and read the data 

with rasterio.open(nir_band_path) as nir_ds: 

    nir = nir_ds.read(1).astype(np.float32) 

 

# Calculate NDVI 

ndvi = (nir - red) / (nir + red) 

 

# Calculate NDVImin and NDVImax 

ndvi_min = np.nanmin(ndvi) 

ndvi_max = np.nanmax(ndvi) 

 

# Calculate PVI 

pvi = np.sqrt((ndvi - ndvi_min) / (ndvi_max - ndvi_min)) 

 

# Write PVI to output file 

with rasterio.open(red_band_path) as src: 

    profile = src.profile 

    profile.update(dtype=rasterio.float32, count=1) 

 

    with rasterio.open(output_pvi_path, 'w', **profile) as dst: 

        dst.write(pvi, 1) 

 

# Add the PVI layer to QGIS 
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layer = QgsRasterLayer(output_pvi_path, 'PVI') 

QgsProject.instance().addMapLayer(layer) 

 

# Refresh the map canvas 

iface.mapCanvas().refreshAllLayers() 

 

# Open the PVI output file in QGIS 

iface.addRasterLayer(output_pvi_path, 'PVI') 

 

NDMI *Change band paths (blu part) 
import rasterio 
import numpy as np 
from qgis.core import QgsRasterLayer, QgsProject 
from qgis.utils import iface 
 
# Define the paths to the near-infrared (NIR) and shortwave infrared 
(SWIR) bands of Landsat 8 
nir_band_path = 'C:/Users/sufa/Dropbox (Politecnico Di Torino Studenti)/0 
- Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2018/22 AGO 
2018/LC08_L2SP_195029_20180822_20200831_02_T1_SR_B5.TIF' 
 
swir_band_path = 'C:/Users/sufa/Dropbox (Politecnico Di Torino 
Studenti)/0 - Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI 
TERMICHE/2018/22 AGO 
2018/LC08_L2SP_195029_20180822_20200831_02_T1_SR_B6.TIF' 
 
output_ndmi_path = 'C:/Users/sufa/Dropbox (Politecnico Di Torino 
Studenti)/0 - Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI 
TERMICHE/2018/Agosto 2018/NDMI/output_ndmi.tif' 
 
# Open the NIR band and read the data 

with rasterio.open(nir_band_path) as nir_ds: 
    nir = nir_ds.read(1).astype(np.float32) 
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# Open the SWIR band and read the data 

with rasterio.open(swir_band_path) as swir_ds: 
    swir = swir_ds.read(1).astype(np.float32) 
 
# Calculate NDMI 

ndmi = (nir - swir) / (nir + swir) 
 
# Write NDMI to output file with the same metadata as the NIR band 
with rasterio.open(nir_band_path) as src: 
    profile = src.profile 
    profile.update(dtype=rasterio.float32, count=1) 
 
    with rasterio.open(output_ndmi_path, 'w', **profile) as dst: 
        dst.write(ndmi, 1) 
 
# Add the NDMI layer to QGIS 

layer = QgsRasterLayer(output_ndmi_path, 'NDMI') 
QgsProject.instance().addMapLayer(layer) 
 
# Refresh the map canvas 
iface.mapCanvas().refreshAllLayers() 
 
# Open the NDMI output file in QGIS 
iface.addRasterLayer(output_ndmi_path, 'NDMI') 

 
ALBEDO *Change band paths (blu part) 
import rasterio 
import numpy as np 
from qgis.core import QgsRasterLayer, QgsProject 
from qgis.utils import iface 
 
# Define the paths to the necessary bands of Landsat 8 
band2_path = 'C:/Users/sufa/Dropbox (Politecnico Di Torino Studenti)/0 - 
Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2018/22 AGO 
2018/LC08_L2SP_195029_20180822_20200831_02_T1_SR_B2.TIF'    
 
# Blue band 
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band3_path = 'C:/Users/sufa/Dropbox (Politecnico Di Torino Studenti)/0 - 
Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2018/22 AGO 
2018/LC08_L2SP_195029_20180822_20200831_02_T1_SR_B3.TIF'    
 
# Green band 
band4_path = 'C:/Users/sufa/Dropbox (Politecnico Di Torino Studenti)/0 - 
Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2018/22 AGO 
2018/LC08_L2SP_195029_20180822_20200831_02_T1_SR_B4.TIF'    
 
# Red band 
output_albedo_path = 'C:/Users/sufa/Dropbox (Politecnico Di Torino 
Studenti)/0 - Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI 
TERMICHE/2018/Agosto 2018/ALBEDO/output_albedo_2.tif' 
 
# Open the Landsat 8 bands and read the data 
with rasterio.open(band2_path) as band2_ds: 
    band2 = band2_ds.read(1).astype(np.float32) 
 
with rasterio.open(band3_path) as band3_ds: 
    band3 = band3_ds.read(1).astype(np.float32) 
 
with rasterio.open(band4_path) as band4_ds: 
    band4 = band4_ds.read(1).astype(np.float32) 
 
# Calculate the reflectance 
reflectance_band2 = band2 / np.max(band2) 
reflectance_band3 = band3 / np.max(band3) 
reflectance_band4 = band4 / np.max(band4) 
 
# Calculate the albedo 
albedo = (reflectance_band2 + reflectance_band3 + reflectance_band4) / 
3.0 
 
# Normalize the albedo values between 0 and 1 
albedo = np.clip(albedo, 0, 1) 
 
# Write albedo to output file with the same metadata as the Blue band 
with rasterio.open(band2_path) as src: 
    profile = src.profile 
    profile.update(dtype=rasterio.float32, count=1) 
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    with rasterio.open(output_albedo_path, 'w', **profile) as dst: 
        dst.write(albedo, 1) 
 
# Add the albedo layer to QGIS 
layer = QgsRasterLayer(output_albedo_path, 'Albedo') 
QgsProject.instance().addMapLayer(layer) 
 
# Refresh the map canvas 
iface.mapCanvas().refreshAllLayers() 
 
# Open the albedo output file in QGIS 
iface.addRasterLayer(output_albedo_path, 'Albedo') 

 
 
EMISSIVITY *Change band paths (blu part) 
import rasterio 
import numpy as np 
from qgis.core import QgsRasterLayer, QgsProject 
from qgis.utils import iface 
 
# Define the paths to the necessary bands of Landsat 8 
pvi_path = 'C:/Users/sufa/Dropbox (Politecnico Di Torino Studenti)/0 - 
Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2018/Agosto 
2018/PVI/output_pvi.tif'           
# Proportional Vegetation Index (PVI) band 
output_emissivity_path = 'C:/Users/sufa/Dropbox (Politecnico Di Torino 
Studenti)/0 - Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI 
TERMICHE/2018/Agosto 2018/EMISSIVITY/output_emissivity_2.tif' 
 
# Open the PVI band and read the data 
with rasterio.open(pvi_path) as pvi_ds: 
    pvi = pvi_ds.read(1).astype(np.float32) 
 
# Calculate emissivity 
emissivity = (0.004 * pvi) + 0.986 
 
# Write emissivity to output file with the same metadata as the PVI band 
with rasterio.open(pvi_path) as src: 
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    profile = src.profile 
    profile.update(dtype=rasterio.float32, count=1) 
 
    with rasterio.open(output_emissivity_path, 'w', **profile) as dst: 
        dst.write(emissivity, 1) 
 
# Add the emissivity layer to QGIS 
layer = QgsRasterLayer(output_emissivity_path, 'Emissivity') 
QgsProject.instance().addMapLayer(layer) 
 
# Refresh the map canvas 
iface.mapCanvas().refreshAllLayers() 
 
# Open the emissivity output file in QGIS 
iface.addRasterLayer(output_emissivity_path, 'Emissivity') 

 
SRI *Change band paths (blu part) 
import rasterio 
import numpy as np 
 
# Define the paths to the Landsat 8 bands 
 
red_band_path = 'C:/Users/sufa/Dropbox (Politecnico Di Torino Studenti)/0 
- Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2018/22 AGO 
2018/LC08_L2SP_195029_20180822_20200831_02_T1_SR_B4.TIF' 
 
green_band_path = 'C:/Users/sufa/Dropbox (Politecnico Di Torino 
Studenti)/0 - Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI 
TERMICHE/2018/22 AGO 
2018/LC08_L2SP_195029_20180822_20200831_02_T1_SR_B3.TIF' 
 
blue_band_path = 'C:/Users/sufa/Dropbox (Politecnico Di Torino 
Studenti)/0 - Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI 
TERMICHE/2018/22 AGO 
2018/LC08_L2SP_195029_20180822_20200831_02_T1_SR_B2.TIF' 
 
nir_band_path = 'C:/Users/sufa/Dropbox (Politecnico Di Torino Studenti)/0 
- Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2018/22 AGO 
2018/LC08_L2SP_195029_20180822_20200831_02_T1_SR_B5.TIF' 
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# Define the output path for the SRI raster 
output_sri_path = 'C:/Users/sufa/Dropbox (Politecnico Di Torino 
Studenti)/0 - Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI 
TERMICHE/2018/Agosto 2018/SRI/output_SRI_hd2.tif' 
 
# Open the Landsat 8 bands using rasterio 
with rasterio.open(red_band_path) as red_ds, \ 
     rasterio.open(green_band_path) as green_ds, \ 
     rasterio.open(blue_band_path) as blue_ds, \ 
     rasterio.open(nir_band_path) as nir_ds: 
 
    # Read the band data 
    red = red_ds.read(1).astype(np.float32) 
    green = green_ds.read(1).astype(np.float32) 
    blue = blue_ds.read(1).astype(np.float32) 
    nir = nir_ds.read(1).astype(np.float32) 
 
    # Calculate the spectral reflectance values 
    reflectance = (nir / (red + green + blue),) 
 
    # Calculate the Solar Reflectance Index (SRI) 
    sri = 100 - (0.75 * (100 - reflectance[0])) - (0.15 * (1 - reflectance[0])) - 
(0.10 * (1 - reflectance[0])) 
 
    # Write the SRI raster to output file 
    profile = red_ds.profile  # Use the profile of one of the bands 
    profile.update(dtype=rasterio.float32, count=1, compress='lzw') 
    with rasterio.open(output_sri_path, 'w', **profile) as sri_ds: 
        sri_ds.write(sri, 1) 
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B. Hyper parameters tuning (codes 
and results) 

 

Hyper parameter tuning (winter 2018)*Change parameters (blu part) 
import numpy as np 
from sklearn.model_selection import train_test_split, cross_val_score 
from sklearn.ensemble import RandomForestClassifier 
from sklearn.metrics import accuracy_score, f1_score, roc_auc_score 
import rasterio 
import optuna 
# List of raster file paths 
raster_paths = [ 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2018/11 FEB 
2018/CROP/0_TIFF/NDWI.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2018/11 FEB 
2018/CROP/0_TIFF/NDMI.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1_BANCA DATI 
METEREOLOGICA/2018_02_11/Turin_TIFF/0_RASTER_TIFF/humidity.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2018/11 FEB 
2018/CROP/0_TIFF/EMISSIVITY.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1 - MODELLO/DTM.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1_BANCA DATI 
METEREOLOGICA/2018_02_11/Turin_TIFF/0_RASTER_TIFF/wind_sector.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2018/11 FEB 
2018/CROP/0_TIFF/ALBEDO.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/0_SHP REQUIREMENTS/Buildings/Buildings_30.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1_BANCA DATI 
METEREOLOGICA/2018_02_11/Turin_TIFF/0_RASTER_TIFF/temperature.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2018/11 FEB 2018/CROP/0_TIFF/NDVI.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2018/11 FEB 2018/CROP/0_TIFF/SRI.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1_BANCA DATI 
METEREOLOGICA/2018_02_11/Turin_TIFF/0_RASTER_TIFF/wind_speed.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1_BANCA DATI 
METEREOLOGICA/2018_02_11/Turin_TIFF/0_RASTER_TIFF/solar_rad.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/0_SHP REQUIREMENTS/Buildings/S_V/S_V_To.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/5_DSM 1M/SKYVIEW_30M.tif' 
] 
reference_raster_path = 'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2018/11 FEB 
2018/LST/1_UHI_Febbraio 18/UHI_TO_Febbraio_18.tif' 
# Load reference raster using rasterio 
with rasterio.open(reference_raster_path) as ref_src: 
    reference_raster = ref_src.read(1)  # Read the first band 
# Initialize an empty array to hold all the raster data 
raster_data_list = [] 
from rasterio.warp import reproject, Resampling 
# Loop through raster paths and load data into the list 
for path in raster_paths: 
    with rasterio.open(path) as src: 
        raster_data = src.read(1)  # Read the first band 
        # Reproject the raster data to match the reference raster 
        resampled_raster = np.empty_like(reference_raster) 
        reproject( 
            source=raster_data, 
            destination=resampled_raster, 
            src_transform=src.transform, 
            src_crs=src.crs, 
            dst_transform=ref_src.transform, 
            dst_crs=ref_src.crs, 
            resampling=Resampling.bilinear 
        ) 
        raster_data_list.append(resampled_raster.flatten()) 
# Combine all raster data into a single array 
raster_data_array = np.array(raster_data_list) 
# Generate synthetic labels for demonstration purposes (replace with your actual labels) 
labels = np.random.randint(0, 2, size=raster_data_array.shape[0]) 
# Split the data into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(raster_data_array, labels, test_size=0.2, random_state=42) 
# Define the objective function to optimize 
def objective(trial, X, y): 
    n_estimators = trial.suggest_int('n_estimators', 50, 200) 
    max_depth = trial.suggest_int('max_depth', 10, 50) 
    min_samples_split = trial.suggest_int('min_samples_split', 2, 10) 
    min_samples_leaf = trial.suggest_int('min_samples_leaf', 1, 8) 
    rf = RandomForestClassifier( 
        n_estimators=n_estimators, 
        max_depth=max_depth, 
        min_samples_split=min_samples_split, 
        min_samples_leaf=min_samples_leaf, 
        random_state=42 
    ) 
    return np.mean(cross_val_score(rf, X, y, n_jobs=-1, cv=3, scoring='accuracy')) 
# Create an Optuna study 
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study = optuna.create_study(direction='maximize') 
# Optimize the study 
study.optimize(lambda trial: objective(trial, X_train, y_train), n_trials=55, n_jobs=-1) 
# Get the best parameters from the study 
best_params = study.best_params 
# Create the final random forest classifier with the best parameters 
best_rf = RandomForestClassifier( 
    n_estimators=best_params['n_estimators'], 
    max_depth=best_params['max_depth'], 
    min_samples_split=best_params['min_samples_split'], 
    min_samples_leaf=best_params['min_samples_leaf'], 
    random_state=42 
) 
# Fit the final model on the training data 
best_rf.fit(X_train, y_train) 
# Make predictions 
y_pred = best_rf.predict(X_test) 
# Calculate accuracy, F1-score, and ROC-AUC 
accuracy = accuracy_score(y_test, y_pred) 
f1 = f1_score(y_test, y_pred) 
roc_auc = roc_auc_score(y_test, y_pred) 
# Print best parameters, cross-validation results, and evaluation metrics 
print("Best Parameters:") 
for param, value in best_params.items(): 
    print(f"{param}: {value}") 
print("Cross-Validation Results:") 
cv_results = study.trials_dataframe() 
print(cv_results) 
print(f"Accuracy: {accuracy:.2f}") 
print(f"F1-score: {f1:.2f}") 
print(f"ROC-AUC: {roc_auc:.2f}") 
[I 2023-08-17 10:32:37,727] A new study created in memory with name: no-name-9fd03530-6ba2-4354-99b5-bec4f08429ad 
[I 2023-08-17 10:32:40,290] Trial 5 finished with value: 0.75 and parameters: {'n_estimators': 60, 'max_depth': 25, 'min_samples_split': 5, 'min_samples_leaf': 5}. Best is 
trial 5 with value: 0.75. 
[I 2023-08-17 10:32:40,577] Trial 3 finished with value: 0.75 and parameters: {'n_estimators': 136, 'max_depth': 34, 'min_samples_split': 5, 'min_samples_leaf': 5}. Best is 
trial 5 with value: 0.75. 
[I 2023-08-17 10:32:40,714] Trial 7 finished with value: 0.75 and parameters: {'n_estimators': 99, 'max_depth': 37, 'min_samples_split': 6, 'min_samples_leaf': 4}. Best is 
trial 5 with value: 0.75. 
[I 2023-08-17 10:32:41,186] Trial 2 finished with value: 0.75 and parameters: {'n_estimators': 153, 'max_depth': 40, 'min_samples_split': 4, 'min_samples_leaf': 4}. Best is 
trial 5 with value: 0.75. 
[I 2023-08-17 10:32:41,193] Trial 1 finished with value: 0.75 and parameters: {'n_estimators': 133, 'max_depth': 46, 'min_samples_split': 9, 'min_samples_leaf': 8}. Best is 
trial 5 with value: 0.75. 
[I 2023-08-17 10:32:41,608] Trial 6 finished with value: 0.75 and parameters: {'n_estimators': 131, 'max_depth': 26, 'min_samples_split': 8, 'min_samples_leaf': 1}. Best is 
trial 5 with value: 0.75. 
[I 2023-08-17 10:32:41,723] Trial 8 finished with value: 0.75 and parameters: {'n_estimators': 72, 'max_depth': 43, 'min_samples_split': 2, 'min_samples_leaf': 5}. Best is 
trial 5 with value: 0.75. 
[I 2023-08-17 10:32:41,821] Trial 0 finished with value: 0.75 and parameters: {'n_estimators': 168, 'max_depth': 29, 'min_samples_split': 6, 'min_samples_leaf': 2}. Best is 
trial 5 with value: 0.75. 
[I 2023-08-17 10:32:41,938] Trial 4 finished with value: 0.75 and parameters: {'n_estimators': 189, 'max_depth': 41, 'min_samples_split': 2, 'min_samples_leaf': 4}. Best is 
trial 5 with value: 0.75. 
[I 2023-08-17 10:32:42,403] Trial 10 finished with value: 0.5 and parameters: {'n_estimators': 107, 'max_depth': 23, 'min_samples_split': 5, 'min_samples_leaf': 1}. Best is 
trial 5 with value: 0.75. 
[I 2023-08-17 10:32:42,621] Trial 9 finished with value: 0.5833333333333334 and parameters: {'n_estimators': 178, 'max_depth': 30, 'min_samples_split': 3, 
'min_samples_leaf': 2}. Best is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:42,670] Trial 11 finished with value: 0.75 and parameters: {'n_estimators': 120, 'max_depth': 26, 'min_samples_split': 3, 'min_samples_leaf': 6}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:42,872] Trial 12 finished with value: 0.75 and parameters: {'n_estimators': 125, 'max_depth': 34, 'min_samples_split': 8, 'min_samples_leaf': 5}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:43,198] Trial 15 finished with value: 0.5833333333333334 and parameters: {'n_estimators': 52, 'max_depth': 46, 'min_samples_split': 3, 
'min_samples_leaf': 2}. Best is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:43,243] Trial 14 finished with value: 0.75 and parameters: {'n_estimators': 103, 'max_depth': 48, 'min_samples_split': 7, 'min_samples_leaf': 4}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:43,319] Trial 13 finished with value: 0.5 and parameters: {'n_estimators': 172, 'max_depth': 26, 'min_samples_split': 4, 'min_samples_leaf': 1}. Best is 
trial 5 with value: 0.75. 
[I 2023-08-17 10:32:43,486] Trial 16 finished with value: 0.75 and parameters: {'n_estimators': 87, 'max_depth': 43, 'min_samples_split': 4, 'min_samples_leaf': 6}. Best is 
trial 5 with value: 0.75. 
[I 2023-08-17 10:32:43,992] Trial 17 finished with value: 0.75 and parameters: {'n_estimators': 191, 'max_depth': 12, 'min_samples_split': 8, 'min_samples_leaf': 2}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:44,029] Trial 18 finished with value: 0.75 and parameters: {'n_estimators': 162, 'max_depth': 11, 'min_samples_split': 10, 'min_samples_leaf': 8}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:44,441] Trial 19 finished with value: 0.75 and parameters: {'n_estimators': 164, 'max_depth': 12, 'min_samples_split': 10, 'min_samples_leaf': 8}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:44,474] Trial 20 finished with value: 0.75 and parameters: {'n_estimators': 166, 'max_depth': 48, 'min_samples_split': 10, 'min_samples_leaf': 8}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:44,668] Trial 21 finished with value: 0.75 and parameters: {'n_estimators': 167, 'max_depth': 14, 'min_samples_split': 10, 'min_samples_leaf': 8}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:45,105] Trial 22 finished with value: 0.75 and parameters: {'n_estimators': 162, 'max_depth': 15, 'min_samples_split': 10, 'min_samples_leaf': 8}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:45,144] Trial 23 finished with value: 0.75 and parameters: {'n_estimators': 156, 'max_depth': 14, 'min_samples_split': 10, 'min_samples_leaf': 8}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:45,168] Trial 24 finished with value: 0.75 and parameters: {'n_estimators': 155, 'max_depth': 10, 'min_samples_split': 10, 'min_samples_leaf': 8}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:45,733] Trial 25 finished with value: 0.75 and parameters: {'n_estimators': 156, 'max_depth': 18, 'min_samples_split': 10, 'min_samples_leaf': 8}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:45,767] Trial 26 finished with value: 0.75 and parameters: {'n_estimators': 147, 'max_depth': 18, 'min_samples_split': 10, 'min_samples_leaf': 8}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:46,283] Trial 27 finished with value: 0.75 and parameters: {'n_estimators': 147, 'max_depth': 19, 'min_samples_split': 9, 'min_samples_leaf': 7}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:46,315] Trial 28 finished with value: 0.75 and parameters: {'n_estimators': 148, 'max_depth': 39, 'min_samples_split': 7, 'min_samples_leaf': 3}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:46,331] Trial 29 finished with value: 0.75 and parameters: {'n_estimators': 148, 'max_depth': 39, 'min_samples_split': 7, 'min_samples_leaf': 3}. Best 
is trial 5 with value: 0.75. 
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[I 2023-08-17 10:32:46,799] Trial 30 finished with value: 0.75 and parameters: {'n_estimators': 147, 'max_depth': 39, 'min_samples_split': 7, 'min_samples_leaf': 3}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:46,904] Trial 31 finished with value: 0.75 and parameters: {'n_estimators': 146, 'max_depth': 38, 'min_samples_split': 7, 'min_samples_leaf': 3}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:46,961] Trial 32 finished with value: 0.75 and parameters: {'n_estimators': 147, 'max_depth': 39, 'min_samples_split': 7, 'min_samples_leaf': 3}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:47,410] Trial 33 finished with value: 0.75 and parameters: {'n_estimators': 141, 'max_depth': 40, 'min_samples_split': 7, 'min_samples_leaf': 3}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:47,460] Trial 34 finished with value: 0.75 and parameters: {'n_estimators': 145, 'max_depth': 38, 'min_samples_split': 7, 'min_samples_leaf': 3}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:48,090] Trial 35 finished with value: 0.75 and parameters: {'n_estimators': 140, 'max_depth': 39, 'min_samples_split': 6, 'min_samples_leaf': 3}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:48,544] Trial 36 finished with value: 0.75 and parameters: {'n_estimators': 135, 'max_depth': 32, 'min_samples_split': 6, 'min_samples_leaf': 3}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:48,783] Trial 37 finished with value: 0.75 and parameters: {'n_estimators': 200, 'max_depth': 30, 'min_samples_split': 6, 'min_samples_leaf': 3}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:48,854] Trial 38 finished with value: 0.75 and parameters: {'n_estimators': 134, 'max_depth': 33, 'min_samples_split': 5, 'min_samples_leaf': 6}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:49,025] Trial 39 finished with value: 0.75 and parameters: {'n_estimators': 134, 'max_depth': 33, 'min_samples_split': 5, 'min_samples_leaf': 6}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:49,397] Trial 40 finished with value: 0.75 and parameters: {'n_estimators': 134, 'max_depth': 33, 'min_samples_split': 5, 'min_samples_leaf': 6}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:49,887] Trial 41 finished with value: 0.75 and parameters: {'n_estimators': 200, 'max_depth': 33, 'min_samples_split': 5, 'min_samples_leaf': 6}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:49,966] Trial 42 finished with value: 0.75 and parameters: {'n_estimators': 133, 'max_depth': 32, 'min_samples_split': 5, 'min_samples_leaf': 6}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:50,434] Trial 43 finished with value: 0.75 and parameters: {'n_estimators': 182, 'max_depth': 34, 'min_samples_split': 5, 'min_samples_leaf': 6}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:50,692] Trial 44 finished with value: 0.75 and parameters: {'n_estimators': 182, 'max_depth': 35, 'min_samples_split': 5, 'min_samples_leaf': 6}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:50,755] Trial 45 finished with value: 0.75 and parameters: {'n_estimators': 125, 'max_depth': 35, 'min_samples_split': 5, 'min_samples_leaf': 6}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:51,048] Trial 46 finished with value: 0.75 and parameters: {'n_estimators': 116, 'max_depth': 43, 'min_samples_split': 4, 'min_samples_leaf': 7}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:51,232] Trial 47 finished with value: 0.75 and parameters: {'n_estimators': 114, 'max_depth': 44, 'min_samples_split': 4, 'min_samples_leaf': 5}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:51,428] Trial 48 finished with value: 0.75 and parameters: {'n_estimators': 182, 'max_depth': 43, 'min_samples_split': 2, 'min_samples_leaf': 4}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:51,530] Trial 49 finished with value: 0.75 and parameters: {'n_estimators': 114, 'max_depth': 42, 'min_samples_split': 2, 'min_samples_leaf': 4}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:52,023] Trial 50 finished with value: 0.75 and parameters: {'n_estimators': 116, 'max_depth': 42, 'min_samples_split': 2, 'min_samples_leaf': 4}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:52,066] Trial 51 finished with value: 0.75 and parameters: {'n_estimators': 115, 'max_depth': 42, 'min_samples_split': 2, 'min_samples_leaf': 4}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:52,129] Trial 52 finished with value: 0.75 and parameters: {'n_estimators': 119, 'max_depth': 43, 'min_samples_split': 2, 'min_samples_leaf': 4}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:52,504] Trial 53 finished with value: 0.75 and parameters: {'n_estimators': 175, 'max_depth': 43, 'min_samples_split': 2, 'min_samples_leaf': 4}. Best 
is trial 5 with value: 0.75. 
[I 2023-08-17 10:32:52,583] Trial 54 finished with value: 0.75 and parameters: {'n_estimators': 177, 'max_depth': 45, 'min_samples_split': 2, 'min_samples_leaf': 4}. Best 
is trial 5 with value: 0.75. 
Best Parameters: 
n_estimators: 60 
max_depth: 25 
min_samples_split: 5 
min_samples_leaf: 5 
 
 
Cross-Validation Results: 
    number     value  ... params_n_estimators     state 
0        0  0.750000  ...                 168  COMPLETE 
1        1  0.750000  ...                 133  COMPLETE 
2        2  0.750000  ...                 153  COMPLETE 
3        3  0.750000  ...                 136  COMPLETE 
4        4  0.750000  ...                 189  COMPLETE 
5        5  0.750000  ...                  60  COMPLETE 
6        6  0.750000  ...                 131  COMPLETE 
7        7  0.750000  ...                  99  COMPLETE 
8        8  0.750000  ...                  72  COMPLETE 
9        9  0.583333  ...                 178  COMPLETE 
10      10  0.500000  ...                 107  COMPLETE 
11      11  0.750000  ...                 120  COMPLETE 
12      12  0.750000  ...                 125  COMPLETE 
13      13  0.500000  ...                 172  COMPLETE 
14      14  0.750000  ...                 103  COMPLETE 
15      15  0.583333  ...                  52  COMPLETE 
16      16  0.750000  ...                  87  COMPLETE 
17      17  0.750000  ...                 191  COMPLETE 
18      18  0.750000  ...                 162  COMPLETE 
19      19  0.750000  ...                 164  COMPLETE 
20      20  0.750000  ...                 166  COMPLETE 
21      21  0.750000  ...                 167  COMPLETE 
22      22  0.750000  ...                 162  COMPLETE 
23      23  0.750000  ...                 156  COMPLETE 
24      24  0.750000  ...                 155  COMPLETE 
25      25  0.750000  ...                 156  COMPLETE 
26      26  0.750000  ...                 147  COMPLETE 
27      27  0.750000  ...                 147  COMPLETE 
28      28  0.750000  ...                 148  COMPLETE 
29      29  0.750000  ...                 148  COMPLETE 
30      30  0.750000  ...                 147  COMPLETE 
31      31  0.750000  ...                 146  COMPLETE 
32      32  0.750000  ...                 147  COMPLETE 
33      33  0.750000  ...                 141  COMPLETE 
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34      34  0.750000  ...                 145  COMPLETE 
35      35  0.750000  ...                 140  COMPLETE 
36      36  0.750000  ...                 135  COMPLETE 
37      37  0.750000  ...                 200  COMPLETE 
38      38  0.750000  ...                 134  COMPLETE 
39      39  0.750000  ...                 134  COMPLETE 
40      40  0.750000  ...                 134  COMPLETE 
41      41  0.750000  ...                 200  COMPLETE 
42      42  0.750000  ...                 133  COMPLETE 
43      43  0.750000  ...                 182  COMPLETE 
44      44  0.750000  ...                 182  COMPLETE 
45      45  0.750000  ...                 125  COMPLETE 
46      46  0.750000  ...                 116  COMPLETE 
47      47  0.750000  ...                 114  COMPLETE 
48      48  0.750000  ...                 182  COMPLETE 
49      49  0.750000  ...                 114  COMPLETE 
50      50  0.750000  ...                 116  COMPLETE 
51      51  0.750000  ...                 115  COMPLETE 
52      52  0.750000  ...                 119  COMPLETE 
53      53  0.750000  ...                 175  COMPLETE 
54      54  0.750000  ...                 177  COMPLETE 
[55 rows x 10 columns] 

 
 
Hyper parameter tuning (Summer 2018)*Change parameters (blu 
part) 
C:\Users\aless\AppData\Local\Programs\Python\Python311\python.exe "C:/Program Files/JetBrains/DataSpell 2023.2/plugins/python-ce/helpers/pydev/pydevconsole.py" -
-mode=client --host=127.0.0.1 --port=55595  
import sys; print('Python %s on %s' % (sys.version, sys.platform)) 
sys.path.extend(['C:\\Users\\aless\\Dropbox (Politecnico Di Torino Studenti)\\Tesi_HUI\\1_PARTE_OPERATIVA\\1 - MODELLO', 'C:\\Users\\aless\\Dropbox 
(Politecnico Di Torino Studenti)\\Tesi_HUI\\1_PARTE_OPERATIVA\\1 - MODELLO\\Python all var', 'C:\\Users\\aless\\Downloads']) 
import numpy as np 
from sklearn.model_selection import train_test_split, cross_val_score 
from sklearn.ensemble import RandomForestClassifier 
from sklearn.metrics import accuracy_score, f1_score, roc_auc_score 
import rasterio 
import optuna 
# List of raster file paths 
raster_paths = [ 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2018/22 AGO 2018/0_TIFF/NDWI.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2018/22 AGO 2018/0_TIFF/NDMI.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1 - MODELLO/HUMIDITY.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2018/22 AGO 
2018/0_TIFF/EMISSIVITY.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1 - MODELLO/DTM.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1 - MODELLO/DIREZIONE VENTO.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2018/22 AGO 2018/0_TIFF/ALBEDO.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/0_SHP REQUIREMENTS/Buildings/Buildings_30.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1_BANCA DATI METEREOLOGICA/2018_08_22/Air 
temp/temperatura_to.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2018/22 AGO 2018/0_TIFF/NDVI.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2018/22 AGO 2018/0_TIFF/SRI.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1 - MODELLO/MODELLO_VELOCITA_VENTO.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1 - MODELLO/SOLAR RADIATION.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/0_SHP REQUIREMENTS/Buildings/S_V/S_V_To.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/5_DSM 1M/SKYVIEW_30M.tif' 
] 
reference_raster_path = 'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2018/22 AGO 
2018/LST_UHI/UHI/UHI_TO_Ago18.tif' 
# Load reference raster using rasterio 
with rasterio.open(reference_raster_path) as ref_src: 
    reference_raster = ref_src.read(1)  # Read the first band 
# Initialize an empty array to hold all the raster data 
raster_data_list = [] 
from rasterio.warp import reproject, Resampling 
# Loop through raster paths and load data into the list 
for path in raster_paths: 
    with rasterio.open(path) as src: 
        raster_data = src.read(1)  # Read the first band 
        # Reproject the raster data to match the reference raster 
        resampled_raster = np.empty_like(reference_raster) 
        reproject( 
            source=raster_data, 
            destination=resampled_raster, 
            src_transform=src.transform, 
            src_crs=src.crs, 
            dst_transform=ref_src.transform, 
            dst_crs=ref_src.crs, 
            resampling=Resampling.bilinear 
        ) 
        raster_data_list.append(resampled_raster.flatten()) 
# Combine all raster data into a single array 
raster_data_array = np.array(raster_data_list) 
# Generate synthetic labels for demonstration purposes (replace with your actual labels) 
labels = np.random.randint(0, 2, size=raster_data_array.shape[0]) 
# Split the data into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(raster_data_array, labels, test_size=0.2, random_state=42) 
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# Define the objective function to optimize 
def objective(trial, X, y): 
    n_estimators = trial.suggest_int('n_estimators', 50, 200) 
    max_depth = trial.suggest_int('max_depth', 10, 50) 
    min_samples_split = trial.suggest_int('min_samples_split', 2, 10) 
    min_samples_leaf = trial.suggest_int('min_samples_leaf', 1, 8) 
    rf = RandomForestClassifier( 
        n_estimators=n_estimators, 
        max_depth=max_depth, 
        min_samples_split=min_samples_split, 
        min_samples_leaf=min_samples_leaf, 
        random_state=42 
    ) 
    return np.mean(cross_val_score(rf, X, y, n_jobs=-1, cv=3, scoring='accuracy')) 
# Create an Optuna study 
study = optuna.create_study(direction='maximize') 
# Optimize the study 
study.optimize(lambda trial: objective(trial, X_train, y_train), n_trials=70, n_jobs=-1) 
# Get the best parameters from the study 
best_params = study.best_params 
# Create the final random forest classifier with the best parameters 
best_rf = RandomForestClassifier( 
    n_estimators=best_params['n_estimators'], 
    max_depth=best_params['max_depth'], 
    min_samples_split=best_params['min_samples_split'], 
    min_samples_leaf=best_params['min_samples_leaf'], 
    random_state=42 
) 
# Fit the final model on the training data 
best_rf.fit(X_train, y_train) 
# Make predictions 
y_pred = best_rf.predict(X_test) 
# Calculate accuracy, F1-score, and ROC-AUC 
accuracy = accuracy_score(y_test, y_pred) 
f1 = f1_score(y_test, y_pred) 
roc_auc = roc_auc_score(y_test, y_pred) 
# Print best parameters, cross-validation results, and evaluation metrics 
print("Best Parameters:") 
for param, value in best_params.items(): 
    print(f"{param}: {value}") 
print("Cross-Validation Results:") 
cv_results = study.trials_dataframe() 
print(cv_results) 
print(f"Accuracy: {accuracy:.2f}") 
print(f"F1-score: {f1:.2f}") 
print(f"ROC-AUC: {roc_auc:.2f}") 
PyDev console: starting. 
Python 3.11.4 (tags/v3.11.4:d2340ef, Jun  7 2023, 05:45:37) [MSC v.1934 64 bit (AMD64)] on win32 
[I 2023-08-17 12:08:31,321] A new study created in memory with name: no-name-d5aaa270-2caf-4839-8465-5c19e6fb43da 
[I 2023-08-17 12:08:34,941] Trial 5 finished with value: 0.5 and parameters: {'n_estimators': 131, 'max_depth': 18, 'min_samples_split': 7, 'min_samples_leaf': 8}. Best is 
trial 5 with value: 0.5. 
[I 2023-08-17 12:08:35,832] Trial 0 finished with value: 0.5 and parameters: {'n_estimators': 179, 'max_depth': 31, 'min_samples_split': 10, 'min_samples_leaf': 2}. Best is 
trial 5 with value: 0.5. 
[I 2023-08-17 12:08:35,978] Trial 6 finished with value: 1.0 and parameters: {'n_estimators': 200, 'max_depth': 31, 'min_samples_split': 2, 'min_samples_leaf': 1}. Best is 
trial 6 with value: 1.0. 
[I 2023-08-17 12:08:36,038] Trial 2 finished with value: 0.5 and parameters: {'n_estimators': 97, 'max_depth': 42, 'min_samples_split': 10, 'min_samples_leaf': 7}. Best is 
trial 6 with value: 1.0. 
[I 2023-08-17 12:08:36,066] Trial 1 finished with value: 0.9166666666666666 and parameters: {'n_estimators': 75, 'max_depth': 38, 'min_samples_split': 5, 
'min_samples_leaf': 1}. Best is trial 6 with value: 1.0. 
[I 2023-08-17 12:08:36,422] Trial 3 finished with value: 0.5 and parameters: {'n_estimators': 105, 'max_depth': 50, 'min_samples_split': 3, 'min_samples_leaf': 8}. Best is 
trial 6 with value: 1.0. 
[I 2023-08-17 12:08:36,512] Trial 4 finished with value: 0.5 and parameters: {'n_estimators': 195, 'max_depth': 25, 'min_samples_split': 4, 'min_samples_leaf': 6}. Best is 
trial 6 with value: 1.0. 
[I 2023-08-17 12:08:36,745] Trial 7 finished with value: 0.5 and parameters: {'n_estimators': 162, 'max_depth': 38, 'min_samples_split': 10, 'min_samples_leaf': 8}. Best is 
trial 6 with value: 1.0. 
[I 2023-08-17 12:08:36,990] Trial 8 finished with value: 0.5 and parameters: {'n_estimators': 146, 'max_depth': 48, 'min_samples_split': 4, 'min_samples_leaf': 6}. Best is 
trial 6 with value: 1.0. 
[I 2023-08-17 12:08:37,088] Trial 10 finished with value: 0.5 and parameters: {'n_estimators': 59, 'max_depth': 49, 'min_samples_split': 2, 'min_samples_leaf': 4}. Best is 
trial 6 with value: 1.0. 
[I 2023-08-17 12:08:37,173] Trial 9 finished with value: 0.5 and parameters: {'n_estimators': 141, 'max_depth': 50, 'min_samples_split': 10, 'min_samples_leaf': 1}. Best is 
trial 6 with value: 1.0. 
[I 2023-08-17 12:08:37,475] Trial 12 finished with value: 0.5 and parameters: {'n_estimators': 74, 'max_depth': 14, 'min_samples_split': 8, 'min_samples_leaf': 6}. Best is 
trial 6 with value: 1.0. 
[I 2023-08-17 12:08:37,765] Trial 11 finished with value: 0.5 and parameters: {'n_estimators': 144, 'max_depth': 32, 'min_samples_split': 5, 'min_samples_leaf': 6}. Best is 
trial 6 with value: 1.0. 
[I 2023-08-17 12:08:37,921] Trial 13 finished with value: 0.5 and parameters: {'n_estimators': 109, 'max_depth': 12, 'min_samples_split': 5, 'min_samples_leaf': 4}. Best is 
trial 6 with value: 1.0. 
[I 2023-08-17 12:08:37,999] Trial 15 finished with value: 0.5 and parameters: {'n_estimators': 88, 'max_depth': 35, 'min_samples_split': 7, 'min_samples_leaf': 7}. Best is 
trial 6 with value: 1.0. 
[I 2023-08-17 12:08:38,085] Trial 14 finished with value: 0.5 and parameters: {'n_estimators': 131, 'max_depth': 22, 'min_samples_split': 3, 'min_samples_leaf': 4}. Best is 
trial 6 with value: 1.0. 
[I 2023-08-17 12:08:38,767] Trial 18 finished with value: 0.8333333333333334 and parameters: {'n_estimators': 51, 'max_depth': 32, 'min_samples_split': 6, 
'min_samples_leaf': 3}. Best is trial 6 with value: 1.0. 
[I 2023-08-17 12:08:39,012] Trial 16 finished with value: 0.9166666666666666 and parameters: {'n_estimators': 188, 'max_depth': 25, 'min_samples_split': 3, 
'min_samples_leaf': 3}. Best is trial 6 with value: 1.0. 
[I 2023-08-17 12:08:39,061] Trial 17 finished with value: 0.9166666666666666 and parameters: {'n_estimators': 200, 'max_depth': 14, 'min_samples_split': 7, 
'min_samples_leaf': 3}. Best is trial 6 with value: 1.0. 
[I 2023-08-17 12:08:39,325] Trial 19 finished with value: 0.9166666666666666 and parameters: {'n_estimators': 103, 'max_depth': 32, 'min_samples_split': 5, 
'min_samples_leaf': 3}. Best is trial 6 with value: 1.0. 
[I 2023-08-17 12:08:39,519] Trial 20 finished with value: 0.9166666666666666 and parameters: {'n_estimators': 105, 'max_depth': 25, 'min_samples_split': 2, 
'min_samples_leaf': 3}. Best is trial 6 with value: 1.0. 
[I 2023-08-17 12:08:39,603] Trial 21 finished with value: 0.9166666666666666 and parameters: {'n_estimators': 86, 'max_depth': 38, 'min_samples_split': 2, 
'min_samples_leaf': 2}. Best is trial 6 with value: 1.0. 
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[I 2023-08-17 12:08:40,011] Trial 22 finished with value: 0.9166666666666666 and parameters: {'n_estimators': 58, 'max_depth': 26, 'min_samples_split': 2, 
'min_samples_leaf': 2}. Best is trial 6 with value: 1.0. 
[I 2023-08-17 12:08:40,055] Trial 23 finished with value: 0.9166666666666666 and parameters: {'n_estimators': 55, 'max_depth': 40, 'min_samples_split': 2, 
'min_samples_leaf': 2}. Best is trial 6 with value: 1.0. 
[I 2023-08-17 12:08:40,756] Trial 24 finished with value: 0.9166666666666666 and parameters: {'n_estimators': 169, 'max_depth': 42, 'min_samples_split': 3, 
'min_samples_leaf': 1}. Best is trial 6 with value: 1.0. 
[I 2023-08-17 12:08:40,985] Trial 25 finished with value: 0.9166666666666666 and parameters: {'n_estimators': 164, 'max_depth': 41, 'min_samples_split': 2, 
'min_samples_leaf': 1}. Best is trial 6 with value: 1.0. 
[I 2023-08-17 12:08:41,451] Trial 26 finished with value: 0.9166666666666666 and parameters: {'n_estimators': 164, 'max_depth': 42, 'min_samples_split': 2, 
'min_samples_leaf': 1}. Best is trial 6 with value: 1.0. 
[I 2023-08-17 12:08:41,785] Trial 27 finished with value: 0.9166666666666666 and parameters: {'n_estimators': 171, 'max_depth': 41, 'min_samples_split': 2, 
'min_samples_leaf': 1}. Best is trial 6 with value: 1.0. 
[I 2023-08-17 12:08:41,879] Trial 28 finished with value: 0.9166666666666666 and parameters: {'n_estimators': 178, 'max_depth': 41, 'min_samples_split': 3, 
'min_samples_leaf': 1}. Best is trial 6 with value: 1.0. 
[I 2023-08-17 12:08:42,528] Trial 29 finished with value: 0.9166666666666666 and parameters: {'n_estimators': 178, 'max_depth': 27, 'min_samples_split': 3, 
'min_samples_leaf': 1}. Best is trial 6 with value: 1.0. 
[I 2023-08-17 12:08:42,757] Trial 30 finished with value: 0.9166666666666666 and parameters: {'n_estimators': 179, 'max_depth': 43, 'min_samples_split': 3, 
'min_samples_leaf': 1}. Best is trial 6 with value: 1.0. 
[I 2023-08-17 12:08:43,276] Trial 31 finished with value: 0.9166666666666666 and parameters: {'n_estimators': 179, 'max_depth': 44, 'min_samples_split': 3, 
'min_samples_leaf': 1}. Best is trial 6 with value: 1.0. 
[I 2023-08-17 12:08:43,607] Trial 32 finished with value: 1.0 and parameters: {'n_estimators': 185, 'max_depth': 27, 'min_samples_split': 4, 'min_samples_leaf': 1}. Best is 
trial 6 with value: 1.0. 
[I 2023-08-17 12:08:44,052] Trial 33 finished with value: 1.0 and parameters: {'n_estimators': 185, 'max_depth': 28, 'min_samples_split': 4, 'min_samples_leaf': 1}. Best is 
trial 6 with value: 1.0. 
[I 2023-08-17 12:08:44,413] Trial 34 finished with value: 1.0 and parameters: {'n_estimators': 184, 'max_depth': 28, 'min_samples_split': 4, 'min_samples_leaf': 2}. Best is 
trial 6 with value: 1.0. 
[I 2023-08-17 12:08:44,874] Trial 35 finished with value: 1.0 and parameters: {'n_estimators': 184, 'max_depth': 28, 'min_samples_split': 4, 'min_samples_leaf': 2}. Best is 
trial 6 with value: 1.0. 
[I 2023-08-17 12:08:45,149] Trial 36 finished with value: 1.0 and parameters: {'n_estimators': 188, 'max_depth': 28, 'min_samples_split': 4, 'min_samples_leaf': 2}. Best is 
trial 6 with value: 1.0. 
[I 2023-08-17 12:08:45,529] Trial 37 finished with value: 1.0 and parameters: {'n_estimators': 192, 'max_depth': 29, 'min_samples_split': 4, 'min_samples_leaf': 2}. Best is 
trial 6 with value: 1.0. 
[I 2023-08-17 12:08:45,761] Trial 38 finished with value: 0.5 and parameters: {'n_estimators': 200, 'max_depth': 19, 'min_samples_split': 8, 'min_samples_leaf': 3}. Best is 
trial 6 with value: 1.0. 
[I 2023-08-17 12:08:46,204] Trial 39 finished with value: 0.5 and parameters: {'n_estimators': 192, 'max_depth': 18, 'min_samples_split': 8, 'min_samples_leaf': 3}. Best is 
trial 6 with value: 1.0. 
[I 2023-08-17 12:08:46,576] Trial 40 finished with value: 0.9166666666666666 and parameters: {'n_estimators': 190, 'max_depth': 29, 'min_samples_split': 4, 
'min_samples_leaf': 2}. Best is trial 6 with value: 1.0. 
[I 2023-08-17 12:08:47,032] Trial 41 finished with value: 0.9166666666666666 and parameters: {'n_estimators': 191, 'max_depth': 29, 'min_samples_split': 4, 
'min_samples_leaf': 2}. Best is trial 6 with value: 1.0. 
[I 2023-08-17 12:08:47,360] Trial 42 finished with value: 1.0 and parameters: {'n_estimators': 188, 'max_depth': 28, 'min_samples_split': 4, 'min_samples_leaf': 2}. Best is 
trial 6 with value: 1.0. 
[I 2023-08-17 12:08:47,710] Trial 44 finished with value: 0.9166666666666666 and parameters: {'n_estimators': 155, 'max_depth': 22, 'min_samples_split': 6, 
'min_samples_leaf': 2}. Best is trial 6 with value: 1.0. 
[I 2023-08-17 12:08:47,788] Trial 43 finished with value: 0.9166666666666666 and parameters: {'n_estimators': 190, 'max_depth': 22, 'min_samples_split': 4, 
'min_samples_leaf': 2}. Best is trial 6 with value: 1.0. 
[I 2023-08-17 12:08:48,363] Trial 45 finished with value: 0.9166666666666666 and parameters: {'n_estimators': 154, 'max_depth': 21, 'min_samples_split': 5, 
'min_samples_leaf': 2}. Best is trial 6 with value: 1.0. 
[I 2023-08-17 12:08:48,467] Trial 46 finished with value: 0.9166666666666666 and parameters: {'n_estimators': 152, 'max_depth': 35, 'min_samples_split': 5, 
'min_samples_leaf': 2}. Best is trial 6 with value: 1.0. 
[I 2023-08-17 12:08:48,715] Trial 47 finished with value: 0.5 and parameters: {'n_estimators': 154, 'max_depth': 22, 'min_samples_split': 6, 'min_samples_leaf': 5}. Best is 
trial 6 with value: 1.0. 
[I 2023-08-17 12:08:49,160] Trial 48 finished with value: 0.9166666666666666 and parameters: {'n_estimators': 153, 'max_depth': 23, 'min_samples_split': 6, 
'min_samples_leaf': 2}. Best is trial 6 with value: 1.0. 
[I 2023-08-17 12:08:49,242] Trial 49 finished with value: 0.9166666666666666 and parameters: {'n_estimators': 154, 'max_depth': 35, 'min_samples_split': 5, 
'min_samples_leaf': 2}. Best is trial 6 with value: 1.0. 
[I 2023-08-17 12:08:49,936] Trial 50 finished with value: 0.9166666666666666 and parameters: {'n_estimators': 154, 'max_depth': 23, 'min_samples_split': 6, 
'min_samples_leaf': 1}. Best is trial 6 with value: 1.0. 
[I 2023-08-17 12:08:50,004] Trial 51 finished with value: 0.9166666666666666 and parameters: {'n_estimators': 154, 'max_depth': 35, 'min_samples_split': 5, 
'min_samples_leaf': 1}. Best is trial 6 with value: 1.0. 
[I 2023-08-17 12:08:50,076] Trial 52 finished with value: 0.9166666666666666 and parameters: {'n_estimators': 155, 'max_depth': 35, 'min_samples_split': 5, 
'min_samples_leaf': 1}. Best is trial 6 with value: 1.0. 
[I 2023-08-17 12:08:50,459] Trial 53 finished with value: 0.5 and parameters: {'n_estimators': 119, 'max_depth': 34, 'min_samples_split': 6, 'min_samples_leaf': 5}. Best is 
trial 6 with value: 1.0. 
[I 2023-08-17 12:08:50,912] Trial 54 finished with value: 0.5 and parameters: {'n_estimators': 172, 'max_depth': 34, 'min_samples_split': 6, 'min_samples_leaf': 5}. Best is 
trial 6 with value: 1.0. 
[I 2023-08-17 12:08:51,180] Trial 55 finished with value: 0.9166666666666666 and parameters: {'n_estimators': 173, 'max_depth': 34, 'min_samples_split': 5, 
'min_samples_leaf': 1}. Best is trial 6 with value: 1.0. 
[I 2023-08-17 12:08:51,608] Trial 56 finished with value: 0.9166666666666666 and parameters: {'n_estimators': 171, 'max_depth': 35, 'min_samples_split': 4, 
'min_samples_leaf': 1}. Best is trial 6 with value: 1.0. 
[I 2023-08-17 12:08:51,960] Trial 57 finished with value: 0.9166666666666666 and parameters: {'n_estimators': 171, 'max_depth': 31, 'min_samples_split': 4, 
'min_samples_leaf': 1}. Best is trial 6 with value: 1.0. 
[I 2023-08-17 12:08:52,353] Trial 58 finished with value: 1.0 and parameters: {'n_estimators': 184, 'max_depth': 31, 'min_samples_split': 4, 'min_samples_leaf': 1}. Best is 
trial 6 with value: 1.0. 
[I 2023-08-17 12:08:52,505] Trial 59 finished with value: 0.5 and parameters: {'n_estimators': 184, 'max_depth': 33, 'min_samples_split': 4, 'min_samples_leaf': 5}. Best is 
trial 6 with value: 1.0. 
[I 2023-08-17 12:08:53,330] Trial 60 finished with value: 1.0 and parameters: {'n_estimators': 183, 'max_depth': 31, 'min_samples_split': 4, 'min_samples_leaf': 1}. Best is 
trial 6 with value: 1.0. 
[I 2023-08-17 12:08:53,402] Trial 61 finished with value: 1.0 and parameters: {'n_estimators': 185, 'max_depth': 31, 'min_samples_split': 4, 'min_samples_leaf': 1}. Best is 
trial 6 with value: 1.0. 
[I 2023-08-17 12:08:54,186] Trial 63 finished with value: 0.9166666666666666 and parameters: {'n_estimators': 184, 'max_depth': 31, 'min_samples_split': 4, 
'min_samples_leaf': 3}. Best is trial 6 with value: 1.0. 
[I 2023-08-17 12:08:54,190] Trial 64 finished with value: 0.5 and parameters: {'n_estimators': 183, 'max_depth': 31, 'min_samples_split': 4, 'min_samples_leaf': 4}. Best is 
trial 6 with value: 1.0. 
[I 2023-08-17 12:08:54,233] Trial 62 finished with value: 1.0 and parameters: {'n_estimators': 184, 'max_depth': 31, 'min_samples_split': 4, 'min_samples_leaf': 1}. Best is 
trial 6 with value: 1.0. 
[I 2023-08-17 12:08:54,758] Trial 65 finished with value: 0.5 and parameters: {'n_estimators': 185, 'max_depth': 27, 'min_samples_split': 3, 'min_samples_leaf': 4}. Best is 
trial 6 with value: 1.0. 
[I 2023-08-17 12:08:54,833] Trial 66 finished with value: 0.5 and parameters: {'n_estimators': 184, 'max_depth': 26, 'min_samples_split': 3, 'min_samples_leaf': 4}. Best is 
trial 6 with value: 1.0. 
[I 2023-08-17 12:08:55,074] Trial 67 finished with value: 0.5 and parameters: {'n_estimators': 197, 'max_depth': 27, 'min_samples_split': 3, 'min_samples_leaf': 7}. Best is 
trial 6 with value: 1.0. 
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[I 2023-08-17 12:08:55,553] Trial 68 finished with value: 0.9166666666666666 and parameters: {'n_estimators': 197, 'max_depth': 27, 'min_samples_split': 3, 
'min_samples_leaf': 3}. Best is trial 6 with value: 1.0. 
[I 2023-08-17 12:08:55,710] Trial 69 finished with value: 0.9166666666666666 and parameters: {'n_estimators': 196, 'max_depth': 27, 'min_samples_split': 3, 
'min_samples_leaf': 3}. Best is trial 6 with value: 1.0. 
 
Best Parameters: 
n_estimators: 200 
max_depth: 31 
min_samples_split: 2 
min_samples_leaf: 1 
 
 
 
 
Cross-Validation Results: 
    number     value  ... params_n_estimators     state 
0        0  0.500000  ...                 179  COMPLETE 
1        1  0.916667  ...                  75  COMPLETE 
2        2  0.500000  ...                  97  COMPLETE 
3        3  0.500000  ...                 105  COMPLETE 
4        4  0.500000  ...                 195  COMPLETE 
..     ...       ...  ...                 ...       ... 
65      65  0.500000  ...                 185  COMPLETE 
66      66  0.500000  ...                 184  COMPLETE 
67      67  0.500000  ...                 197  COMPLETE 
68      68  0.916667  ...                 197  COMPLETE 
69      69  0.916667  ...                 196  COMPLETE 
[70 rows x 10 columns] 

 

Hyper parameter tuning (Mid-season 2018)*Change parameters 
(blu part) 
C:\Users\aless\AppData\Local\Programs\Python\Python311\python.exe "C:/Program Files/JetBrains/DataSpell 2023.2/plugins/python-ce/helpers/pydev/pydevconsole.py" -
-mode=client --host=127.0.0.1 --port=54424  
import sys; print('Python %s on %s' % (sys.version, sys.platform)) 
sys.path.extend(['C:\\Users\\aless\\Dropbox (Politecnico Di Torino Studenti)\\Tesi_HUI\\1_PARTE_OPERATIVA\\1 - MODELLO', 'C:\\Users\\aless\\Dropbox 
(Politecnico Di Torino Studenti)\\Tesi_HUI\\1_PARTE_OPERATIVA\\1 - MODELLO\\Python all var', 'C:\\Users\\aless\\Downloads']) 
import numpy as np 
from sklearn.model_selection import train_test_split, cross_val_score 
from sklearn.ensemble import RandomForestClassifier 
from sklearn.metrics import accuracy_score, f1_score, roc_auc_score 
import rasterio 
import optuna 
# List of raster file paths 
raster_paths = [ 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2018/16 APR 
2018/CROP/0_TIFF/NDWI.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2018/16 APR 
2018/CROP/0_TIFF/NDMI.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1_BANCA DATI 
METEREOLOGICA/2018_04_16/Interpolation_2018_04_16/APRILE/Turin/0_RASTER_TIFF/humidity.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2018/16 APR 
2018/CROP/0_TIFF/EMISSIVITY.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1 - MODELLO/DTM.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1_BANCA DATI 
METEREOLOGICA/2018_04_16/Interpolation_2018_04_16/APRILE/Turin/0_RASTER_TIFF/wind_degree.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2018/16 APR 
2018/CROP/0_TIFF/ALBEDO.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/0_SHP REQUIREMENTS/Buildings/Buildings_30.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1_BANCA DATI 
METEREOLOGICA/2018_04_16/Interpolation_2018_04_16/APRILE/Turin/0_RASTER_TIFF/temperature.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2018/16 APR 
2018/CROP/0_TIFF/NDVI.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2018/16 APR 2018/CROP/0_TIFF/SRI.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1_BANCA DATI 
METEREOLOGICA/2018_04_16/Interpolation_2018_04_16/APRILE/Turin/0_RASTER_TIFF/wind_speed.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1_BANCA DATI 
METEREOLOGICA/2018_04_16/Interpolation_2018_04_16/APRILE/Turin/0_RASTER_TIFF/sol_rad.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/0_SHP REQUIREMENTS/Buildings/S_V/S_V_To.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/5_DSM 1M/SKYVIEW_30M.tif' 
] 
reference_raster_path = 'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2018/16 APR 
2018/LST/UHI_TO_16_04_2018.tif' 
# Load reference raster using rasterio 
with rasterio.open(reference_raster_path) as ref_src: 
    reference_raster = ref_src.read(1)  # Read the first band 
# Initialize an empty array to hold all the raster data 
raster_data_list = [] 
from rasterio.warp import reproject, Resampling 
# Loop through raster paths and load data into the list 
for path in raster_paths: 
    with rasterio.open(path) as src: 
        raster_data = src.read(1)  # Read the first band 
        # Reproject the raster data to match the reference raster 
        resampled_raster = np.empty_like(reference_raster) 
        reproject( 
            source=raster_data, 
            destination=resampled_raster, 
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            src_transform=src.transform, 
            src_crs=src.crs, 
            dst_transform=ref_src.transform, 
            dst_crs=ref_src.crs, 
            resampling=Resampling.bilinear 
        ) 
        raster_data_list.append(resampled_raster.flatten()) 
# Combine all raster data into a single array 
raster_data_array = np.array(raster_data_list) 
# Generate synthetic labels for demonstration purposes (replace with your actual labels) 
labels = np.random.randint(0, 2, size=raster_data_array.shape[0]) 
# Split the data into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(raster_data_array, labels, test_size=0.2, random_state=42) 
# Define the objective function to optimize 
def objective(trial, X, y): 
    n_estimators = trial.suggest_int('n_estimators', 50, 200) 
    max_depth = trial.suggest_int('max_depth', 10, 50) 
    min_samples_split = trial.suggest_int('min_samples_split', 2, 10) 
    min_samples_leaf = trial.suggest_int('min_samples_leaf', 1, 8) 
    rf = RandomForestClassifier( 
        n_estimators=n_estimators, 
        max_depth=max_depth, 
        min_samples_split=min_samples_split, 
        min_samples_leaf=min_samples_leaf, 
        random_state=42 
    ) 
    return np.mean(cross_val_score(rf, X, y, n_jobs=-1, cv=3, scoring='accuracy')) 
# Create an Optuna study 
study = optuna.create_study(direction='maximize') 
# Optimize the study 
study.optimize(lambda trial: objective(trial, X_train, y_train), n_trials=55, n_jobs=-1) 
# Get the best parameters from the study 
best_params = study.best_params 
# Create the final random forest classifier with the best parameters 
best_rf = RandomForestClassifier( 
    n_estimators=best_params['n_estimators'], 
    max_depth=best_params['max_depth'], 
    min_samples_split=best_params['min_samples_split'], 
    min_samples_leaf=best_params['min_samples_leaf'], 
    random_state=42 
) 
# Fit the final model on the training data 
best_rf.fit(X_train, y_train) 
# Make predictions 
y_pred = best_rf.predict(X_test) 
# Calculate accuracy, F1-score, and ROC-AUC 
accuracy = accuracy_score(y_test, y_pred) 
f1 = f1_score(y_test, y_pred) 
roc_auc = roc_auc_score(y_test, y_pred) 
# Print best parameters, cross-validation results, and evaluation metrics 
print("Best Parameters:") 
for param, value in best_params.items(): 
    print(f"{param}: {value}") 
print("Cross-Validation Results:") 
cv_results = study.trials_dataframe() 
print(cv_results) 
print(f"Accuracy: {accuracy:.2f}") 
print(f"F1-score: {f1:.2f}") 
print(f"ROC-AUC: {roc_auc:.2f}") 
PyDev console: starting. 
Python 3.11.4 (tags/v3.11.4:d2340ef, Jun  7 2023, 05:45:37) [MSC v.1934 64 bit (AMD64)] on win32 
[I 2023-08-17 10:50:50,948] A new study created in memory with name: no-name-c655009b-c4f9-4c27-bde9-a9feec4b767c 
[I 2023-08-17 10:50:53,300] Trial 7 finished with value: 0.75 and parameters: {'n_estimators': 59, 'max_depth': 13, 'min_samples_split': 9, 'min_samples_leaf': 3}. Best is 
trial 7 with value: 0.75. 
[I 2023-08-17 10:50:53,499] Trial 1 finished with value: 0.75 and parameters: {'n_estimators': 64, 'max_depth': 21, 'min_samples_split': 10, 'min_samples_leaf': 3}. Best is 
trial 7 with value: 0.75. 
[I 2023-08-17 10:50:53,583] Trial 2 finished with value: 0.75 and parameters: {'n_estimators': 142, 'max_depth': 33, 'min_samples_split': 9, 'min_samples_leaf': 7}. Best is 
trial 7 with value: 0.75. 
[I 2023-08-17 10:50:53,781] Trial 6 finished with value: 0.75 and parameters: {'n_estimators': 93, 'max_depth': 16, 'min_samples_split': 7, 'min_samples_leaf': 8}. Best is 
trial 7 with value: 0.75. 
[I 2023-08-17 10:50:53,873] Trial 5 finished with value: 0.75 and parameters: {'n_estimators': 198, 'max_depth': 34, 'min_samples_split': 4, 'min_samples_leaf': 7}. Best is 
trial 7 with value: 0.75. 
[I 2023-08-17 10:50:53,889] Trial 3 finished with value: 0.75 and parameters: {'n_estimators': 75, 'max_depth': 22, 'min_samples_split': 9, 'min_samples_leaf': 8}. Best is 
trial 7 with value: 0.75. 
[I 2023-08-17 10:50:54,149] Trial 0 finished with value: 0.75 and parameters: {'n_estimators': 121, 'max_depth': 44, 'min_samples_split': 6, 'min_samples_leaf': 4}. Best is 
trial 7 with value: 0.75. 
[I 2023-08-17 10:50:54,201] Trial 4 finished with value: 0.75 and parameters: {'n_estimators': 164, 'max_depth': 38, 'min_samples_split': 7, 'min_samples_leaf': 3}. Best is 
trial 7 with value: 0.75. 
[I 2023-08-17 10:50:54,311] Trial 8 finished with value: 0.75 and parameters: {'n_estimators': 145, 'max_depth': 28, 'min_samples_split': 10, 'min_samples_leaf': 5}. Best 
is trial 7 with value: 0.75. 
[I 2023-08-17 10:50:54,579] Trial 9 finished with value: 0.75 and parameters: {'n_estimators': 133, 'max_depth': 39, 'min_samples_split': 10, 'min_samples_leaf': 6}. Best 
is trial 7 with value: 0.75. 
[I 2023-08-17 10:50:54,624] Trial 11 finished with value: 0.75 and parameters: {'n_estimators': 111, 'max_depth': 41, 'min_samples_split': 6, 'min_samples_leaf': 6}. Best 
is trial 7 with value: 0.75. 
[I 2023-08-17 10:50:54,660] Trial 10 finished with value: 0.75 and parameters: {'n_estimators': 170, 'max_depth': 20, 'min_samples_split': 5, 'min_samples_leaf': 7}. Best 
is trial 7 with value: 0.75. 
[I 2023-08-17 10:50:55,002] Trial 13 finished with value: 0.75 and parameters: {'n_estimators': 100, 'max_depth': 42, 'min_samples_split': 8, 'min_samples_leaf': 3}. Best 
is trial 7 with value: 0.75. 
[I 2023-08-17 10:50:55,064] Trial 12 finished with value: 0.75 and parameters: {'n_estimators': 173, 'max_depth': 48, 'min_samples_split': 9, 'min_samples_leaf': 3}. Best 
is trial 7 with value: 0.75. 
[I 2023-08-17 10:50:55,373] Trial 16 finished with value: 0.75 and parameters: {'n_estimators': 73, 'max_depth': 45, 'min_samples_split': 2, 'min_samples_leaf': 7}. Best is 
trial 7 with value: 0.75. 
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[I 2023-08-17 10:50:55,408] Trial 14 finished with value: 0.75 and parameters: {'n_estimators': 146, 'max_depth': 29, 'min_samples_split': 6, 'min_samples_leaf': 2}. Best 
is trial 7 with value: 0.75. 
[I 2023-08-17 10:50:55,446] Trial 15 finished with value: 0.75 and parameters: {'n_estimators': 195, 'max_depth': 14, 'min_samples_split': 9, 'min_samples_leaf': 4}. Best 
is trial 7 with value: 0.75. 
[I 2023-08-17 10:50:55,583] Trial 17 finished with value: 0.6666666666666666 and parameters: {'n_estimators': 104, 'max_depth': 49, 'min_samples_split': 2, 
'min_samples_leaf': 1}. Best is trial 7 with value: 0.75. 
[I 2023-08-17 10:50:55,870] Trial 18 finished with value: 0.6666666666666666 and parameters: {'n_estimators': 99, 'max_depth': 48, 'min_samples_split': 2, 
'min_samples_leaf': 2}. Best is trial 7 with value: 0.75. 
[I 2023-08-17 10:50:55,948] Trial 19 finished with value: 0.6666666666666666 and parameters: {'n_estimators': 54, 'max_depth': 50, 'min_samples_split': 2, 
'min_samples_leaf': 1}. Best is trial 7 with value: 0.75. 
[I 2023-08-17 10:50:55,980] Trial 21 finished with value: 0.6666666666666666 and parameters: {'n_estimators': 53, 'max_depth': 26, 'min_samples_split': 2, 
'min_samples_leaf': 1}. Best is trial 7 with value: 0.75. 
[I 2023-08-17 10:50:56,026] Trial 20 finished with value: 0.6666666666666666 and parameters: {'n_estimators': 54, 'max_depth': 49, 'min_samples_split': 2, 
'min_samples_leaf': 2}. Best is trial 7 with value: 0.75. 
[I 2023-08-17 10:50:56,213] Trial 22 finished with value: 0.6666666666666666 and parameters: {'n_estimators': 56, 'max_depth': 26, 'min_samples_split': 4, 
'min_samples_leaf': 1}. Best is trial 7 with value: 0.75. 
[I 2023-08-17 10:50:56,251] Trial 23 finished with value: 0.6666666666666666 and parameters: {'n_estimators': 50, 'max_depth': 23, 'min_samples_split': 4, 
'min_samples_leaf': 1}. Best is trial 7 with value: 0.75. 
[I 2023-08-17 10:50:56,384] Trial 25 finished with value: 0.75 and parameters: {'n_estimators': 53, 'max_depth': 24, 'min_samples_split': 4, 'min_samples_leaf': 4}. Best is 
trial 7 with value: 0.75. 
[I 2023-08-17 10:50:56,523] Trial 26 finished with value: 0.75 and parameters: {'n_estimators': 56, 'max_depth': 23, 'min_samples_split': 4, 'min_samples_leaf': 4}. Best is 
trial 7 with value: 0.75. 
[I 2023-08-17 10:50:56,614] Trial 24 finished with value: 0.6666666666666666 and parameters: {'n_estimators': 118, 'max_depth': 23, 'min_samples_split': 4, 
'min_samples_leaf': 1}. Best is trial 7 with value: 0.75. 
[I 2023-08-17 10:50:56,706] Trial 27 finished with value: 0.75 and parameters: {'n_estimators': 118, 'max_depth': 23, 'min_samples_split': 4, 'min_samples_leaf': 4}. Best 
is trial 7 with value: 0.75. 
[I 2023-08-17 10:50:56,934] Trial 28 finished with value: 0.75 and parameters: {'n_estimators': 126, 'max_depth': 33, 'min_samples_split': 4, 'min_samples_leaf': 5}. Best 
is trial 7 with value: 0.75. 
[I 2023-08-17 10:50:57,091] Trial 29 finished with value: 0.75 and parameters: {'n_estimators': 123, 'max_depth': 33, 'min_samples_split': 4, 'min_samples_leaf': 4}. Best 
is trial 7 with value: 0.75. 
[I 2023-08-17 10:50:57,171] Trial 30 finished with value: 0.75 and parameters: {'n_estimators': 133, 'max_depth': 34, 'min_samples_split': 8, 'min_samples_leaf': 4}. Best 
is trial 7 with value: 0.75. 
[I 2023-08-17 10:50:57,347] Trial 31 finished with value: 0.75 and parameters: {'n_estimators': 126, 'max_depth': 10, 'min_samples_split': 8, 'min_samples_leaf': 4}. Best 
is trial 7 with value: 0.75. 
[I 2023-08-17 10:50:57,498] Trial 32 finished with value: 0.75 and parameters: {'n_estimators': 120, 'max_depth': 35, 'min_samples_split': 8, 'min_samples_leaf': 5}. Best 
is trial 7 with value: 0.75. 
[I 2023-08-17 10:50:57,648] Trial 33 finished with value: 0.75 and parameters: {'n_estimators': 123, 'max_depth': 32, 'min_samples_split': 8, 'min_samples_leaf': 5}. Best 
is trial 7 with value: 0.75. 
[I 2023-08-17 10:50:57,806] Trial 34 finished with value: 0.75 and parameters: {'n_estimators': 132, 'max_depth': 33, 'min_samples_split': 8, 'min_samples_leaf': 5}. Best 
is trial 7 with value: 0.75. 
[I 2023-08-17 10:50:57,841] Trial 35 finished with value: 0.75 and parameters: {'n_estimators': 135, 'max_depth': 31, 'min_samples_split': 8, 'min_samples_leaf': 5}. Best 
is trial 7 with value: 0.75. 
[I 2023-08-17 10:50:57,857] Trial 36 finished with value: 0.75 and parameters: {'n_estimators': 84, 'max_depth': 33, 'min_samples_split': 8, 'min_samples_leaf': 5}. Best is 
trial 7 with value: 0.75. 
[I 2023-08-17 10:50:58,074] Trial 37 finished with value: 0.75 and parameters: {'n_estimators': 83, 'max_depth': 19, 'min_samples_split': 8, 'min_samples_leaf': 5}. Best is 
trial 7 with value: 0.75. 
[I 2023-08-17 10:50:58,179] Trial 38 finished with value: 0.75 and parameters: {'n_estimators': 77, 'max_depth': 18, 'min_samples_split': 8, 'min_samples_leaf': 8}. Best is 
trial 7 with value: 0.75. 
[I 2023-08-17 10:50:58,265] Trial 39 finished with value: 0.75 and parameters: {'n_estimators': 74, 'max_depth': 19, 'min_samples_split': 7, 'min_samples_leaf': 8}. Best is 
trial 7 with value: 0.75. 
[I 2023-08-17 10:50:58,299] Trial 40 finished with value: 0.75 and parameters: {'n_estimators': 75, 'max_depth': 19, 'min_samples_split': 7, 'min_samples_leaf': 8}. Best is 
trial 7 with value: 0.75. 
[I 2023-08-17 10:50:58,496] Trial 41 finished with value: 0.75 and parameters: {'n_estimators': 80, 'max_depth': 18, 'min_samples_split': 7, 'min_samples_leaf': 8}. Best is 
trial 7 with value: 0.75. 
[I 2023-08-17 10:50:58,590] Trial 42 finished with value: 0.75 and parameters: {'n_estimators': 82, 'max_depth': 17, 'min_samples_split': 7, 'min_samples_leaf': 8}. Best is 
trial 7 with value: 0.75. 
[I 2023-08-17 10:50:58,670] Trial 44 finished with value: 0.75 and parameters: {'n_estimators': 75, 'max_depth': 19, 'min_samples_split': 10, 'min_samples_leaf': 8}. Best 
is trial 7 with value: 0.75. 
[I 2023-08-17 10:50:58,712] Trial 45 finished with value: 0.75 and parameters: {'n_estimators': 65, 'max_depth': 17, 'min_samples_split': 10, 'min_samples_leaf': 8}. Best 
is trial 7 with value: 0.75. 
[I 2023-08-17 10:50:58,784] Trial 43 finished with value: 0.75 and parameters: {'n_estimators': 82, 'max_depth': 20, 'min_samples_split': 10, 'min_samples_leaf': 8}. Best 
is trial 7 with value: 0.75. 
[I 2023-08-17 10:50:58,812] Trial 46 finished with value: 0.75 and parameters: {'n_estimators': 69, 'max_depth': 38, 'min_samples_split': 10, 'min_samples_leaf': 8}. Best 
is trial 7 with value: 0.75. 
[I 2023-08-17 10:50:58,897] Trial 47 finished with value: 0.75 and parameters: {'n_estimators': 66, 'max_depth': 37, 'min_samples_split': 10, 'min_samples_leaf': 6}. Best 
is trial 7 with value: 0.75. 
[I 2023-08-17 10:50:59,356] Trial 48 finished with value: 0.75 and parameters: {'n_estimators': 162, 'max_depth': 37, 'min_samples_split': 10, 'min_samples_leaf': 7}. Best 
is trial 7 with value: 0.75. 
[I 2023-08-17 10:50:59,441] Trial 49 finished with value: 0.75 and parameters: {'n_estimators': 159, 'max_depth': 37, 'min_samples_split': 10, 'min_samples_leaf': 7}. Best 
is trial 7 with value: 0.75. 
[I 2023-08-17 10:50:59,768] Trial 50 finished with value: 0.75 and parameters: {'n_estimators': 163, 'max_depth': 37, 'min_samples_split': 10, 'min_samples_leaf': 7}. Best 
is trial 7 with value: 0.75. 
[I 2023-08-17 10:50:59,843] Trial 51 finished with value: 0.75 and parameters: {'n_estimators': 162, 'max_depth': 37, 'min_samples_split': 9, 'min_samples_leaf': 7}. Best 
is trial 7 with value: 0.75. 
[I 2023-08-17 10:50:59,913] Trial 52 finished with value: 0.75 and parameters: {'n_estimators': 160, 'max_depth': 38, 'min_samples_split': 9, 'min_samples_leaf': 3}. Best 
is trial 7 with value: 0.75. 
[I 2023-08-17 10:51:00,193] Trial 53 finished with value: 0.75 and parameters: {'n_estimators': 156, 'max_depth': 38, 'min_samples_split': 9, 'min_samples_leaf': 3}. Best 
is trial 7 with value: 0.75. 
[I 2023-08-17 10:51:00,225] Trial 54 finished with value: 0.75 and parameters: {'n_estimators': 154, 'max_depth': 42, 'min_samples_split': 9, 'min_samples_leaf': 3}. Best 
is trial 7 with value: 0.75. 
Best Parameters: 
n_estimators: 59 
max_depth: 13 
min_samples_split: 9 
min_samples_leaf: 3 
Cross-Validation Results: 
    number     value  ... params_n_estimators     state 
0        0  0.750000  ...                 121  COMPLETE 
1        1  0.750000  ...                  64  COMPLETE 
2        2  0.750000  ...                 142  COMPLETE 
3        3  0.750000  ...                  75  COMPLETE 
4        4  0.750000  ...                 164  COMPLETE 
5        5  0.750000  ...                 198  COMPLETE 
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6        6  0.750000  ...                  93  COMPLETE 
7        7  0.750000  ...                  59  COMPLETE 
8        8  0.750000  ...                 145  COMPLETE 
9        9  0.750000  ...                 133  COMPLETE 
10      10  0.750000  ...                 170  COMPLETE 
11      11  0.750000  ...                 111  COMPLETE 
12      12  0.750000  ...                 173  COMPLETE 
13      13  0.750000  ...                 100  COMPLETE 
14      14  0.750000  ...                 146  COMPLETE 
15      15  0.750000  ...                 195  COMPLETE 
16      16  0.750000  ...                  73  COMPLETE 
17      17  0.666667  ...                 104  COMPLETE 
18      18  0.666667  ...                  99  COMPLETE 
19      19  0.666667  ...                  54  COMPLETE 
20      20  0.666667  ...                  54  COMPLETE 
21      21  0.666667  ...                  53  COMPLETE 
22      22  0.666667  ...                  56  COMPLETE 
23      23  0.666667  ...                  50  COMPLETE 
24      24  0.666667  ...                 118  COMPLETE 
25      25  0.750000  ...                  53  COMPLETE 
26      26  0.750000  ...                  56  COMPLETE 
27      27  0.750000  ...                 118  COMPLETE 
28      28  0.750000  ...                 126  COMPLETE 
29      29  0.750000  ...                 123  COMPLETE 
30      30  0.750000  ...                 133  COMPLETE 
31      31  0.750000  ...                 126  COMPLETE 
32      32  0.750000  ...                 120  COMPLETE 
33      33  0.750000  ...                 123  COMPLETE 
34      34  0.750000  ...                 132  COMPLETE 
35      35  0.750000  ...                 135  COMPLETE 
36      36  0.750000  ...                  84  COMPLETE 
37      37  0.750000  ...                  83  COMPLETE 
38      38  0.750000  ...                  77  COMPLETE 
39      39  0.750000  ...                  74  COMPLETE 
40      40  0.750000  ...                  75  COMPLETE 
41      41  0.750000  ...                  80  COMPLETE 
42      42  0.750000  ...                  82  COMPLETE 
43      43  0.750000  ...                  82  COMPLETE 
44      44  0.750000  ...                  75  COMPLETE 
45      45  0.750000  ...                  65  COMPLETE 
46      46  0.750000  ...                  69  COMPLETE 
47      47  0.750000  ...                  66  COMPLETE 
48      48  0.750000  ...                 162  COMPLETE 
49      49  0.750000  ...                 159  COMPLETE 
50      50  0.750000  ...                 163  COMPLETE 
51      51  0.750000  ...                 162  COMPLETE 
52      52  0.750000  ...                 160  COMPLETE 
53      53  0.750000  ...                 156  COMPLETE 
54      54  0.750000  ...                 154  COMPLETE 
[55 rows x 10 columns] 
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Hyper parameter tuning (Winter 2000)*Change parameters (blu 
part) 
C:\Users\aless\AppData\Local\Programs\Python\Python311\python.exe "C:/Program Files/JetBrains/DataSpell 2023.2/plugins/python-ce/helpers/pydev/pydevconsole.py" -
-mode=client --host=127.0.0.1 --port=64124  
import sys; print('Python %s on %s' % (sys.version, sys.platform)) 
sys.path.extend(['C:\\Users\\aless\\Dropbox (Politecnico Di Torino Studenti)\\Tesi_HUI\\1_PARTE_OPERATIVA\\1 - MODELLO', 'C:\\Users\\aless\\Dropbox 
(Politecnico Di Torino Studenti)\\Tesi_HUI\\1_PARTE_OPERATIVA\\1 - MODELLO\\Python all var', 'C:\\Users\\aless\\Downloads']) 
import numpy as np 
from sklearn.model_selection import train_test_split, cross_val_score 
from sklearn.ensemble import RandomForestClassifier 
from sklearn.metrics import accuracy_score, f1_score, roc_auc_score 
import rasterio 
import optuna 
# List of raster file paths 
raster_paths = [ 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2001/LANDSAT 7/CALCOLI Dicembre 
2000/0_CROP/NDWI_TO.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2001/LANDSAT 7/CALCOLI Dicembre 
2000/0_CROP/NDMI_TO.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1_BANCA DATI 
METEREOLOGICA/2000_12_18/Turin_Tiff/0_RASTER_TIFF/humidity.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2001/LANDSAT 7/CALCOLI Dicembre 
2000/0_CROP/EMISSIVITY_TO.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1 - MODELLO/DTM.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1_BANCA DATI 
METEREOLOGICA/2000_12_18/Turin_Tiff/0_RASTER_TIFF/wind_sector.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2001/LANDSAT 7/CALCOLI Dicembre 
2000/0_CROP/ALBEDO_TO.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1_BANCA DATI 
METEREOLOGICA/2000_12_18/Turin_Tiff/0_RASTER_TIFF/temperature.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2001/LANDSAT 7/CALCOLI Dicembre 
2000/0_CROP/NDVI_TO.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2001/LANDSAT 7/CALCOLI Dicembre 
2000/0_CROP/SRI_TO.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1_BANCA DATI 
METEREOLOGICA/2000_12_18/Turin_Tiff/0_RASTER_TIFF/wind_speed.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1_BANCA DATI 
METEREOLOGICA/2000_12_18/Turin_Tiff/0_RASTER_TIFF/sol_rad.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2001/LANDSAT 7/CALCOLI Dicembre 
2000/0_CROP/NDBI_TO.tif' 
] 
reference_raster_path = 'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2001/LANDSAT 
7/LE07_L1TP_195029_20001218_20211122_02_T1/CALCULATION_NEW/UHI/UHI_TO_2000_12_18.tif' 
# Load reference raster using rasterio 
with rasterio.open(reference_raster_path) as ref_src: 
    reference_raster = ref_src.read(1)  # Read the first band 
# Initialize an empty array to hold all the raster data 
raster_data_list = [] 
from rasterio.warp import reproject, Resampling 
# Loop through raster paths and load data into the list 
for path in raster_paths: 
    with rasterio.open(path) as src: 
        raster_data = src.read(1)  # Read the first band 
        # Reproject the raster data to match the reference raster 
        resampled_raster = np.empty_like(reference_raster) 
        reproject( 
            source=raster_data, 
            destination=resampled_raster, 
            src_transform=src.transform, 
            src_crs=src.crs, 
            dst_transform=ref_src.transform, 
            dst_crs=ref_src.crs, 
            resampling=Resampling.bilinear 
        ) 
        raster_data_list.append(resampled_raster.flatten()) 
# Combine all raster data into a single array 
raster_data_array = np.array(raster_data_list) 
# Generate synthetic labels for demonstration purposes (replace with your actual labels) 
labels = np.random.randint(0, 2, size=raster_data_array.shape[0]) 
# Split the data into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(raster_data_array, labels, test_size=0.2, random_state=42) 
# Define the objective function to optimize 
def objective(trial, X, y): 
    n_estimators = trial.suggest_int('n_estimators', 50, 200) 
    max_depth = trial.suggest_int('max_depth', 10, 50) 
    min_samples_split = trial.suggest_int('min_samples_split', 2, 10) 
    min_samples_leaf = trial.suggest_int('min_samples_leaf', 1, 8) 
    rf = RandomForestClassifier( 
        n_estimators=n_estimators, 
        max_depth=max_depth, 
        min_samples_split=min_samples_split, 
        min_samples_leaf=min_samples_leaf, 
        random_state=42 
    ) 
    return np.mean(cross_val_score(rf, X, y, n_jobs=-1, cv=3, scoring='accuracy')) 
# Create an Optuna study 
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study = optuna.create_study(direction='maximize') 
# Optimize the study 
study.optimize(lambda trial: objective(trial, X_train, y_train), n_trials=33, n_jobs=-1) 
# Get the best parameters from the study 
best_params = study.best_params 
# Create the final random forest classifier with the best parameters 
best_rf = RandomForestClassifier( 
    n_estimators=best_params['n_estimators'], 
    max_depth=best_params['max_depth'], 
    min_samples_split=best_params['min_samples_split'], 
    min_samples_leaf=best_params['min_samples_leaf'], 
    random_state=42 
) 
# Fit the final model on the training data 
best_rf.fit(X_train, y_train) 
# Make predictions 
y_pred = best_rf.predict(X_test) 
# Calculate accuracy, F1-score, and ROC-AUC 
accuracy = accuracy_score(y_test, y_pred) 
f1 = f1_score(y_test, y_pred) 
roc_auc = roc_auc_score(y_test, y_pred) 
# Print best parameters, cross-validation results, and evaluation metrics 
print("Best Parameters:") 
for param, value in best_params.items(): 
    print(f"{param}: {value}") 
print("Cross-Validation Results:") 
cv_results = study.trials_dataframe() 
print(cv_results) 
print(f"Accuracy: {accuracy:.2f}") 
print(f"F1-score: {f1:.2f}") 
print(f"ROC-AUC: {roc_auc:.2f}") 
PyDev console: starting. 
Python 3.11.4 (tags/v3.11.4:d2340ef, Jun  7 2023, 05:45:37) [MSC v.1934 64 bit (AMD64)] on win32 
[I 2023-08-17 17:19:00,516] A new study created in memory with name: no-name-ab1139e6-2f89-406b-960e-970a8c92271d 
[I 2023-08-17 17:19:03,594] Trial 2 finished with value: 0.611111111111111 and parameters: {'n_estimators': 158, 'max_depth': 11, 'min_samples_split': 6, 
'min_samples_leaf': 1}. Best is trial 2 with value: 0.611111111111111. 
[I 2023-08-17 17:19:03,733] Trial 6 finished with value: 0.611111111111111 and parameters: {'n_estimators': 178, 'max_depth': 13, 'min_samples_split': 6, 
'min_samples_leaf': 4}. Best is trial 2 with value: 0.611111111111111. 
[I 2023-08-17 17:19:03,787] Trial 1 finished with value: 0.611111111111111 and parameters: {'n_estimators': 146, 'max_depth': 18, 'min_samples_split': 6, 
'min_samples_leaf': 8}. Best is trial 2 with value: 0.611111111111111. 
[I 2023-08-17 17:19:03,936] Trial 0 finished with value: 0.611111111111111 and parameters: {'n_estimators': 130, 'max_depth': 47, 'min_samples_split': 9, 
'min_samples_leaf': 7}. Best is trial 2 with value: 0.611111111111111. 
[I 2023-08-17 17:19:04,260] Trial 3 finished with value: 0.611111111111111 and parameters: {'n_estimators': 79, 'max_depth': 18, 'min_samples_split': 3, 
'min_samples_leaf': 4}. Best is trial 2 with value: 0.611111111111111. 
[I 2023-08-17 17:19:04,408] Trial 5 finished with value: 0.611111111111111 and parameters: {'n_estimators': 163, 'max_depth': 36, 'min_samples_split': 3, 
'min_samples_leaf': 6}. Best is trial 2 with value: 0.611111111111111. 
[I 2023-08-17 17:19:04,434] Trial 7 finished with value: 0.611111111111111 and parameters: {'n_estimators': 68, 'max_depth': 38, 'min_samples_split': 6, 
'min_samples_leaf': 4}. Best is trial 2 with value: 0.611111111111111. 
[I 2023-08-17 17:19:04,460] Trial 4 finished with value: 0.611111111111111 and parameters: {'n_estimators': 78, 'max_depth': 34, 'min_samples_split': 8, 
'min_samples_leaf': 3}. Best is trial 2 with value: 0.611111111111111. 
[I 2023-08-17 17:19:04,623] Trial 9 finished with value: 0.611111111111111 and parameters: {'n_estimators': 54, 'max_depth': 45, 'min_samples_split': 7, 
'min_samples_leaf': 8}. Best is trial 2 with value: 0.611111111111111. 
[I 2023-08-17 17:19:05,107] Trial 10 finished with value: 0.611111111111111 and parameters: {'n_estimators': 122, 'max_depth': 48, 'min_samples_split': 7, 
'min_samples_leaf': 1}. Best is trial 2 with value: 0.611111111111111. 
[I 2023-08-17 17:19:05,247] Trial 8 finished with value: 0.611111111111111 and parameters: {'n_estimators': 198, 'max_depth': 50, 'min_samples_split': 9, 
'min_samples_leaf': 6}. Best is trial 2 with value: 0.611111111111111. 
[I 2023-08-17 17:19:05,322] Trial 11 finished with value: 0.611111111111111 and parameters: {'n_estimators': 77, 'max_depth': 21, 'min_samples_split': 8, 
'min_samples_leaf': 1}. Best is trial 2 with value: 0.611111111111111. 
[I 2023-08-17 17:19:05,777] Trial 12 finished with value: 0.611111111111111 and parameters: {'n_estimators': 156, 'max_depth': 42, 'min_samples_split': 10, 
'min_samples_leaf': 7}. Best is trial 2 with value: 0.611111111111111. 
[I 2023-08-17 17:19:05,778] Trial 13 finished with value: 0.611111111111111 and parameters: {'n_estimators': 131, 'max_depth': 34, 'min_samples_split': 6, 
'min_samples_leaf': 8}. Best is trial 2 with value: 0.611111111111111. 
[I 2023-08-17 17:19:06,009] Trial 14 finished with value: 0.611111111111111 and parameters: {'n_estimators': 63, 'max_depth': 12, 'min_samples_split': 4, 
'min_samples_leaf': 4}. Best is trial 2 with value: 0.611111111111111. 
[I 2023-08-17 17:19:06,125] Trial 15 finished with value: 0.611111111111111 and parameters: {'n_estimators': 108, 'max_depth': 27, 'min_samples_split': 3, 
'min_samples_leaf': 3}. Best is trial 2 with value: 0.611111111111111. 
[I 2023-08-17 17:19:06,400] Trial 16 finished with value: 0.611111111111111 and parameters: {'n_estimators': 145, 'max_depth': 37, 'min_samples_split': 3, 
'min_samples_leaf': 5}. Best is trial 2 with value: 0.611111111111111. 
[I 2023-08-17 17:19:06,690] Trial 17 finished with value: 0.611111111111111 and parameters: {'n_estimators': 112, 'max_depth': 28, 'min_samples_split': 10, 
'min_samples_leaf': 6}. Best is trial 2 with value: 0.611111111111111. 
[I 2023-08-17 17:19:06,794] Trial 18 finished with value: 0.611111111111111 and parameters: {'n_estimators': 124, 'max_depth': 23, 'min_samples_split': 10, 
'min_samples_leaf': 8}. Best is trial 2 with value: 0.611111111111111. 
[I 2023-08-17 17:19:07,422] Trial 19 finished with value: 0.611111111111111 and parameters: {'n_estimators': 122, 'max_depth': 25, 'min_samples_split': 10, 
'min_samples_leaf': 8}. Best is trial 2 with value: 0.611111111111111. 
[I 2023-08-17 17:19:07,457] Trial 21 finished with value: 0.611111111111111 and parameters: {'n_estimators': 115, 'max_depth': 28, 'min_samples_split': 4, 
'min_samples_leaf': 6}. Best is trial 2 with value: 0.611111111111111. 
[I 2023-08-17 17:19:07,833] Trial 20 finished with value: 0.611111111111111 and parameters: {'n_estimators': 121, 'max_depth': 27, 'min_samples_split': 4, 
'min_samples_leaf': 6}. Best is trial 2 with value: 0.611111111111111. 
[I 2023-08-17 17:19:07,976] Trial 22 finished with value: 0.611111111111111 and parameters: {'n_estimators': 116, 'max_depth': 27, 'min_samples_split': 4, 
'min_samples_leaf': 6}. Best is trial 2 with value: 0.611111111111111. 
[I 2023-08-17 17:19:08,183] Trial 23 finished with value: 0.611111111111111 and parameters: {'n_estimators': 137, 'max_depth': 26, 'min_samples_split': 10, 
'min_samples_leaf': 6}. Best is trial 2 with value: 0.611111111111111. 
[I 2023-08-17 17:19:08,245] Trial 24 finished with value: 0.611111111111111 and parameters: {'n_estimators': 102, 'max_depth': 28, 'min_samples_split': 10, 
'min_samples_leaf': 7}. Best is trial 2 with value: 0.611111111111111. 
[I 2023-08-17 17:19:08,612] Trial 26 finished with value: 0.611111111111111 and parameters: {'n_estimators': 95, 'max_depth': 17, 'min_samples_split': 5, 
'min_samples_leaf': 7}. Best is trial 2 with value: 0.611111111111111. 
[I 2023-08-17 17:19:08,644] Trial 25 finished with value: 0.611111111111111 and parameters: {'n_estimators': 138, 'max_depth': 20, 'min_samples_split': 5, 
'min_samples_leaf': 7}. Best is trial 2 with value: 0.611111111111111. 
[I 2023-08-17 17:19:08,935] Trial 27 finished with value: 0.611111111111111 and parameters: {'n_estimators': 91, 'max_depth': 17, 'min_samples_split': 5, 
'min_samples_leaf': 7}. Best is trial 2 with value: 0.611111111111111. 
[I 2023-08-17 17:19:09,430] Trial 28 finished with value: 0.611111111111111 and parameters: {'n_estimators': 141, 'max_depth': 16, 'min_samples_split': 5, 
'min_samples_leaf': 7}. Best is trial 2 with value: 0.611111111111111. 
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[I 2023-08-17 17:19:09,493] Trial 29 finished with value: 0.611111111111111 and parameters: {'n_estimators': 144, 'max_depth': 16, 'min_samples_split': 5, 
'min_samples_leaf': 7}. Best is trial 2 with value: 0.611111111111111. 
[I 2023-08-17 17:19:09,669] Trial 30 finished with value: 0.611111111111111 and parameters: {'n_estimators': 141, 'max_depth': 17, 'min_samples_split': 7, 
'min_samples_leaf': 2}. Best is trial 2 with value: 0.611111111111111. 
[I 2023-08-17 17:19:09,783] Trial 31 finished with value: 0.7222222222222222 and parameters: {'n_estimators': 97, 'max_depth': 16, 'min_samples_split': 5, 
'min_samples_leaf': 2}. Best is trial 31 with value: 0.7222222222222222. 
[I 2023-08-17 17:19:10,229] Trial 32 finished with value: 0.7222222222222222 and parameters: {'n_estimators': 176, 'max_depth': 16, 'min_samples_split': 5, 
'min_samples_leaf': 2}. Best is trial 31 with value: 0.7222222222222222. 
Best Parameters: 
n_estimators: 97 
max_depth: 16 
min_samples_split: 5 
min_samples_leaf: 2 
Cross-Validation Results: 
    number     value  ... params_n_estimators     state 
0        0  0.611111  ...                 130  COMPLETE 
1        1  0.611111  ...                 146  COMPLETE 
2        2  0.611111  ...                 158  COMPLETE 
3        3  0.611111  ...                  79  COMPLETE 
4        4  0.611111  ...                  78  COMPLETE 
5        5  0.611111  ...                 163  COMPLETE 
6        6  0.611111  ...                 178  COMPLETE 
7        7  0.611111  ...                  68  COMPLETE 
8        8  0.611111  ...                 198  COMPLETE 
9        9  0.611111  ...                  54  COMPLETE 
10      10  0.611111  ...                 122  COMPLETE 
11      11  0.611111  ...                  77  COMPLETE 
12      12  0.611111  ...                 156  COMPLETE 
13      13  0.611111  ...                 131  COMPLETE 
14      14  0.611111  ...                  63  COMPLETE 
15      15  0.611111  ...                 108  COMPLETE 
16      16  0.611111  ...                 145  COMPLETE 
17      17  0.611111  ...                 112  COMPLETE 
18      18  0.611111  ...                 124  COMPLETE 
19      19  0.611111  ...                 122  COMPLETE 
20      20  0.611111  ...                 121  COMPLETE 
21      21  0.611111  ...                 115  COMPLETE 
22      22  0.611111  ...                 116  COMPLETE 
23      23  0.611111  ...                 137  COMPLETE 
24      24  0.611111  ...                 102  COMPLETE 
25      25  0.611111  ...                 138  COMPLETE 
26      26  0.611111  ...                  95  COMPLETE 
27      27  0.611111  ...                  91  COMPLETE 
28      28  0.611111  ...                 141  COMPLETE 
29      29  0.611111  ...                 144  COMPLETE 
30      30  0.611111  ...                 141  COMPLETE 
31      31  0.722222  ...                  97  COMPLETE 
32      32  0.722222  ...                 176  COMPLETE 
[33 rows x 10 columns] 
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Hyper parameter tuning (Summer 2001)*Change parameters (blu 
part) 
C:\Users\aless\AppData\Local\Programs\Python\Python311\python.exe "C:/Program Files/JetBrains/DataSpell 2023.2/plugins/python-ce/helpers/pydev/pydevconsole.py" -
-mode=client --host=127.0.0.1 --port=63390  
import sys; print('Python %s on %s' % (sys.version, sys.platform)) 
sys.path.extend(['C:\\Users\\aless\\Dropbox (Politecnico Di Torino Studenti)\\Tesi_HUI\\1_PARTE_OPERATIVA\\1 - MODELLO', 'C:\\Users\\aless\\Dropbox 
(Politecnico Di Torino Studenti)\\Tesi_HUI\\1_PARTE_OPERATIVA\\1 - MODELLO\\Python all var', 'C:\\Users\\aless\\Downloads']) 
>>> import numpy as np 
... from sklearn.model_selection import train_test_split, cross_val_score 
... from sklearn.ensemble import RandomForestClassifier 
... from sklearn.metrics import accuracy_score, f1_score, roc_auc_score 
... import rasterio 
... import optuna 
...  
... # List of raster file paths 
... raster_paths = [ 
...     'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2001/LANDSAT 7/CALCOLI Agosto 
2001/0_CROP/NDWI.tif', 
...     'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2001/LANDSAT 7/CALCOLI Agosto 
2001/0_CROP/NDMI.tif', 
...     'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1_BANCA DATI 
METEREOLOGICA/2001_08_24/Turin_Tiff/0_RASTER_TIFF/humidity.tif', 
...     'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2001/LANDSAT 7/CALCOLI Agosto 
2001/0_CROP/EMISSIVITY.tif', 
...     'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1 - MODELLO/DTM.tif', 
...     'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1_BANCA DATI 
METEREOLOGICA/2001_08_24/Turin_Tiff/0_RASTER_TIFF/wind_sector.tif', 
...     'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2001/LANDSAT 7/CALCOLI Agosto 
2001/0_CROP/ALBEDO.tif', 
...     'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1_BANCA DATI 
METEREOLOGICA/2001_08_24/Turin_Tiff/0_RASTER_TIFF/temperature.tif', 
...     'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2001/LANDSAT 7/CALCOLI Agosto 
2001/0_CROP/NDVI.tif', 
...     'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2001/LANDSAT 7/CALCOLI Agosto 
2001/0_CROP/SRI.tif', 
...     'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1_BANCA DATI 
METEREOLOGICA/2001_08_24/Turin_Tiff/0_RASTER_TIFF/wind_speed.tif', 
...     'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1_BANCA DATI 
METEREOLOGICA/2001_08_24/Turin_Tiff/0_RASTER_TIFF/solar_rad.tif', 
...     'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2001/LANDSAT 7/CALCOLI Agosto 
2001/0_CROP/NDBI.tif' 
... ] 
...  
... reference_raster_path = 'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2001/LANDSAT 
7/LE07_L1TP_194029_20010824_20200917_02_T1/CALCULATIONS - NEW/UHI/UHI_TO_24_08_2001.tif' 
...  
... # Load reference raster using rasterio 
... with rasterio.open(reference_raster_path) as ref_src: 
...     reference_raster = ref_src.read(1)  # Read the first band 
...  
... # Initialize an empty array to hold all the raster data 
... raster_data_list = [] 
...  
... from rasterio.warp import reproject, Resampling 
...  
... # Loop through raster paths and load data into the list 
... for path in raster_paths: 
...     with rasterio.open(path) as src: 
...         raster_data = src.read(1)  # Read the first band 
...         # Reproject the raster data to match the reference raster 
...         resampled_raster = np.empty_like(reference_raster) 
...         reproject( 
...             source=raster_data, 
...             destination=resampled_raster, 
...             src_transform=src.transform, 
...             src_crs=src.crs, 
...             dst_transform=ref_src.transform, 
...             dst_crs=ref_src.crs, 
...             resampling=Resampling.bilinear 
...         ) 
...         raster_data_list.append(resampled_raster.flatten()) 
...  
... # Combine all raster data into a single array 
... raster_data_array = np.array(raster_data_list) 
...  
... # Generate synthetic labels for demonstration purposes (replace with your actual labels) 
... labels = np.random.randint(0, 2, size=raster_data_array.shape[0]) 
...  
... # Split the data into training and testing sets 
... X_train, X_test, y_train, y_test = train_test_split(raster_data_array, labels, test_size=0.2, random_state=42) 
...  
... # Define the objective function to optimize 
... def objective(trial, X, y): 
...     n_estimators = trial.suggest_int('n_estimators', 50, 200) 
...     max_depth = trial.suggest_int('max_depth', 10, 50) 
...     min_samples_split = trial.suggest_int('min_samples_split', 2, 10) 
...     min_samples_leaf = trial.suggest_int('min_samples_leaf', 1, 8) 
...  
...     rf = RandomForestClassifier( 
...         n_estimators=n_estimators, 
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...         max_depth=max_depth, 

...         min_samples_split=min_samples_split, 

...         min_samples_leaf=min_samples_leaf, 

...         random_state=42 

...     ) 

...  

...     return np.mean(cross_val_score(rf, X, y, n_jobs=-1, cv=3, scoring='accuracy')) 

...  

... # Create an Optuna study 

... study = optuna.create_study(direction='maximize') 

...  

... # Optimize the study 

... study.optimize(lambda trial: objective(trial, X_train, y_train), n_trials=30, n_jobs=-1) 

...  

...  

... # Get the best parameters from the study 

... best_params = study.best_params 

...  

... # Create the final random forest classifier with the best parameters 

... best_rf = RandomForestClassifier( 

...     n_estimators=best_params['n_estimators'], 

...     max_depth=best_params['max_depth'], 

...     min_samples_split=best_params['min_samples_split'], 

...     min_samples_leaf=best_params['min_samples_leaf'], 

...     random_state=42 

... ) 

...  

... # Fit the final model on the training data 

... best_rf.fit(X_train, y_train) 

...  

... # Make predictions 

... y_pred = best_rf.predict(X_test) 

...  

... # Calculate accuracy, F1-score, and ROC-AUC 

... accuracy = accuracy_score(y_test, y_pred) 

... f1 = f1_score(y_test, y_pred) 

... roc_auc = roc_auc_score(y_test, y_pred) 

...  

... # Print best parameters, cross-validation results, and evaluation metrics 

... print("Best Parameters:") 

... for param, value in best_params.items(): 

...     print(f"{param}: {value}") 

...  

... print("Cross-Validation Results:") 

... cv_results = study.trials_dataframe() 

... print(cv_results) 

...  

... print(f"Accuracy: {accuracy:.2f}") 

... print(f"F1-score: {f1:.2f}") 

... print(f"ROC-AUC: {roc_auc:.2f}") 

...  
>>>  
>>>  
>>>  
PyDev console: starting. 
Python 3.11.4 (tags/v3.11.4:d2340ef, Jun  7 2023, 05:45:37) [MSC v.1934 64 bit (AMD64)] on win32 
[I 2023-08-18 09:01:37,130] A new study created in memory with name: no-name-a88d15ca-ef09-46ff-826b-c304150a433a 
[I 2023-08-18 09:01:39,769] Trial 6 finished with value: 0.8055555555555555 and parameters: {'n_estimators': 59, 'max_depth': 50, 'min_samples_split': 4, 
'min_samples_leaf': 1}. Best is trial 6 with value: 0.8055555555555555. 
[I 2023-08-18 09:01:39,907] Trial 0 finished with value: 0.6944444444444443 and parameters: {'n_estimators': 64, 'max_depth': 33, 'min_samples_split': 2, 
'min_samples_leaf': 6}. Best is trial 6 with value: 0.8055555555555555. 
[I 2023-08-18 09:01:39,935] Trial 5 finished with value: 0.6944444444444443 and parameters: {'n_estimators': 165, 'max_depth': 39, 'min_samples_split': 2, 
'min_samples_leaf': 3}. Best is trial 6 with value: 0.8055555555555555. 
[I 2023-08-18 09:01:40,041] Trial 4 finished with value: 0.6944444444444443 and parameters: {'n_estimators': 93, 'max_depth': 50, 'min_samples_split': 4, 
'min_samples_leaf': 2}. Best is trial 6 with value: 0.8055555555555555. 
[I 2023-08-18 09:01:40,541] Trial 1 finished with value: 0.6944444444444443 and parameters: {'n_estimators': 145, 'max_depth': 21, 'min_samples_split': 5, 
'min_samples_leaf': 2}. Best is trial 6 with value: 0.8055555555555555. 
[I 2023-08-18 09:01:40,645] Trial 2 finished with value: 0.6944444444444443 and parameters: {'n_estimators': 183, 'max_depth': 46, 'min_samples_split': 7, 
'min_samples_leaf': 5}. Best is trial 6 with value: 0.8055555555555555. 
[I 2023-08-18 09:01:41,110] Trial 7 finished with value: 0.6944444444444443 and parameters: {'n_estimators': 100, 'max_depth': 18, 'min_samples_split': 10, 
'min_samples_leaf': 8}. Best is trial 6 with value: 0.8055555555555555. 
[I 2023-08-18 09:01:41,157] Trial 3 finished with value: 0.6944444444444443 and parameters: {'n_estimators': 164, 'max_depth': 19, 'min_samples_split': 7, 
'min_samples_leaf': 2}. Best is trial 6 with value: 0.8055555555555555. 
[I 2023-08-18 09:01:41,184] Trial 8 finished with value: 0.6944444444444443 and parameters: {'n_estimators': 111, 'max_depth': 20, 'min_samples_split': 8, 
'min_samples_leaf': 3}. Best is trial 6 with value: 0.8055555555555555. 
[I 2023-08-18 09:01:41,412] Trial 10 finished with value: 0.6944444444444443 and parameters: {'n_estimators': 67, 'max_depth': 21, 'min_samples_split': 6, 
'min_samples_leaf': 3}. Best is trial 6 with value: 0.8055555555555555. 
[I 2023-08-18 09:01:41,678] Trial 12 finished with value: 0.6944444444444443 and parameters: {'n_estimators': 72, 'max_depth': 16, 'min_samples_split': 9, 
'min_samples_leaf': 2}. Best is trial 6 with value: 0.8055555555555555. 
[I 2023-08-18 09:01:41,780] Trial 9 finished with value: 0.6944444444444443 and parameters: {'n_estimators': 191, 'max_depth': 38, 'min_samples_split': 4, 
'min_samples_leaf': 8}. Best is trial 6 with value: 0.8055555555555555. 
[I 2023-08-18 09:01:42,106] Trial 11 finished with value: 0.6944444444444443 and parameters: {'n_estimators': 191, 'max_depth': 12, 'min_samples_split': 7, 
'min_samples_leaf': 5}. Best is trial 6 with value: 0.8055555555555555. 
[I 2023-08-18 09:01:42,299] Trial 13 finished with value: 0.6944444444444443 and parameters: {'n_estimators': 132, 'max_depth': 12, 'min_samples_split': 8, 
'min_samples_leaf': 7}. Best is trial 6 with value: 0.8055555555555555. 
[I 2023-08-18 09:01:42,365] Trial 14 finished with value: 0.6944444444444443 and parameters: {'n_estimators': 115, 'max_depth': 36, 'min_samples_split': 7, 
'min_samples_leaf': 5}. Best is trial 6 with value: 0.8055555555555555. 
[I 2023-08-18 09:01:42,824] Trial 15 finished with value: 0.6944444444444443 and parameters: {'n_estimators': 135, 'max_depth': 23, 'min_samples_split': 5, 
'min_samples_leaf': 4}. Best is trial 6 with value: 0.8055555555555555. 
[I 2023-08-18 09:01:42,885] Trial 18 finished with value: 0.6944444444444443 and parameters: {'n_estimators': 51, 'max_depth': 32, 'min_samples_split': 2, 
'min_samples_leaf': 6}. Best is trial 6 with value: 0.8055555555555555. 
[I 2023-08-18 09:01:42,939] Trial 17 finished with value: 0.8055555555555555 and parameters: {'n_estimators': 56, 'max_depth': 40, 'min_samples_split': 4, 
'min_samples_leaf': 1}. Best is trial 6 with value: 0.8055555555555555. 



Analysing Urban Heat Island Dynamics in Turin: A Machine Learning-based Investigation of Climate 

Changes and Intervention Effects | A. Scalise, X. Sufa 

Supervisor Professor G. Mutani  

Politecnico di Torino, 2023 

 

 
219 

 

[I 2023-08-18 09:01:42,976] Trial 16 finished with value: 0.6944444444444443 and parameters: {'n_estimators': 166, 'max_depth': 29, 'min_samples_split': 7, 
'min_samples_leaf': 2}. Best is trial 6 with value: 0.8055555555555555. 
[I 2023-08-18 09:01:43,241] Trial 19 finished with value: 0.6944444444444443 and parameters: {'n_estimators': 53, 'max_depth': 30, 'min_samples_split': 2, 
'min_samples_leaf': 6}. Best is trial 6 with value: 0.8055555555555555. 
[I 2023-08-18 09:01:43,311] Trial 20 finished with value: 0.6944444444444443 and parameters: {'n_estimators': 50, 'max_depth': 30, 'min_samples_split': 2, 
'min_samples_leaf': 6}. Best is trial 6 with value: 0.8055555555555555. 
[I 2023-08-18 09:01:43,350] Trial 21 finished with value: 0.6944444444444443 and parameters: {'n_estimators': 52, 'max_depth': 29, 'min_samples_split': 2, 
'min_samples_leaf': 6}. Best is trial 6 with value: 0.8055555555555555. 
[I 2023-08-18 09:01:43,545] Trial 22 finished with value: 0.6944444444444443 and parameters: {'n_estimators': 50, 'max_depth': 32, 'min_samples_split': 2, 
'min_samples_leaf': 6}. Best is trial 6 with value: 0.8055555555555555. 
[I 2023-08-18 09:01:43,702] Trial 23 finished with value: 0.6944444444444443 and parameters: {'n_estimators': 50, 'max_depth': 29, 'min_samples_split': 2, 
'min_samples_leaf': 6}. Best is trial 6 with value: 0.8055555555555555. 
[I 2023-08-18 09:01:44,011] Trial 24 finished with value: 0.8055555555555555 and parameters: {'n_estimators': 78, 'max_depth': 27, 'min_samples_split': 3, 
'min_samples_leaf': 1}. Best is trial 6 with value: 0.8055555555555555. 
[I 2023-08-18 09:01:44,121] Trial 25 finished with value: 0.8055555555555555 and parameters: {'n_estimators': 88, 'max_depth': 44, 'min_samples_split': 3, 
'min_samples_leaf': 1}. Best is trial 6 with value: 0.8055555555555555. 
[I 2023-08-18 09:01:44,251] Trial 26 finished with value: 0.8055555555555555 and parameters: {'n_estimators': 83, 'max_depth': 44, 'min_samples_split': 3, 
'min_samples_leaf': 1}. Best is trial 6 with value: 0.8055555555555555. 
[I 2023-08-18 09:01:44,345] Trial 29 finished with value: 0.6944444444444443 and parameters: {'n_estimators': 78, 'max_depth': 43, 'min_samples_split': 3, 
'min_samples_leaf': 4}. Best is trial 6 with value: 0.8055555555555555. 
[I 2023-08-18 09:01:44,396] Trial 27 finished with value: 0.8055555555555555 and parameters: {'n_estimators': 83, 'max_depth': 43, 'min_samples_split': 4, 
'min_samples_leaf': 1}. Best is trial 6 with value: 0.8055555555555555. 
[I 2023-08-18 09:01:44,559] Trial 28 finished with value: 0.8055555555555555 and parameters: {'n_estimators': 80, 'max_depth': 45, 'min_samples_split': 3, 
'min_samples_leaf': 1}. Best is trial 6 with value: 0.8055555555555555. 
Best Parameters: 
n_estimators: 59 
max_depth: 50 
min_samples_split: 4 
min_samples_leaf: 1 
Cross-Validation Results: 
    number     value  ... params_n_estimators     state 
0        0  0.694444  ...                  64  COMPLETE 
1        1  0.694444  ...                 145  COMPLETE 
2        2  0.694444  ...                 183  COMPLETE 
3        3  0.694444  ...                 164  COMPLETE 
4        4  0.694444  ...                  93  COMPLETE 
5        5  0.694444  ...                 165  COMPLETE 
6        6  0.805556  ...                  59  COMPLETE 
7        7  0.694444  ...                 100  COMPLETE 
8        8  0.694444  ...                 111  COMPLETE 
9        9  0.694444  ...                 191  COMPLETE 
10      10  0.694444  ...                  67  COMPLETE 
11      11  0.694444  ...                 191  COMPLETE 
12      12  0.694444  ...                  72  COMPLETE 
13      13  0.694444  ...                 132  COMPLETE 
14      14  0.694444  ...                 115  COMPLETE 
15      15  0.694444  ...                 135  COMPLETE 
16      16  0.694444  ...                 166  COMPLETE 
17      17  0.805556  ...                  56  COMPLETE 
18      18  0.694444  ...                  51  COMPLETE 
19      19  0.694444  ...                  53  COMPLETE 
20      20  0.694444  ...                  50  COMPLETE 
21      21  0.694444  ...                  52  COMPLETE 
22      22  0.694444  ...                  50  COMPLETE 
23      23  0.694444  ...                  50  COMPLETE 
24      24  0.805556  ...                  78  COMPLETE 
25      25  0.805556  ...                  88  COMPLETE 
26      26  0.805556  ...                  83  COMPLETE 
27      27  0.805556  ...                  83  COMPLETE 
28      28  0.805556  ...                  80  COMPLETE 
29      29  0.694444  ...                  78  COMPLETE 
[30 rows x 10 columns] 
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Hyper parameter tuning (Mid-season 2001)*Change parameters 
(blu part) 
C:\Users\aless\AppData\Local\Programs\Python\Python311\python.exe "C:/Program Files/JetBrains/DataSpell 2023.2/plugins/python-ce/helpers/pydev/pydevconsole.py" -
-mode=client --host=127.0.0.1 --port=62412  
import sys; print('Python %s on %s' % (sys.version, sys.platform)) 
sys.path.extend(['C:\\Users\\aless\\Dropbox (Politecnico Di Torino Studenti)\\Tesi_HUI\\1_PARTE_OPERATIVA\\1 - MODELLO', 'C:\\Users\\aless\\Dropbox 
(Politecnico Di Torino Studenti)\\Tesi_HUI\\1_PARTE_OPERATIVA\\1 - MODELLO\\Python all var', 'C:\\Users\\aless\\Downloads']) 
import numpy as np 
from sklearn.model_selection import train_test_split, cross_val_score 
from sklearn.ensemble import RandomForestClassifier 
from sklearn.metrics import accuracy_score, f1_score, roc_auc_score 
import rasterio 
import optuna 
# List of raster file paths 
raster_paths = [ 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2001/LANDSAT 7/CALCOLI Maggio 
2001/0_CROP/NDWI_TO.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2001/LANDSAT 7/CALCOLI Maggio 
2001/0_CROP/NDMI_TO.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1_BANCA DATI 
METEREOLOGICA/2001_05_27/Turin_Tiff/0_RASTER_TIFF/humidity.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2001/LANDSAT 7/CALCOLI Maggio 
2001/0_CROP/EMISSIVITY_TO.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1 - MODELLO/DTM.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1_BANCA DATI 
METEREOLOGICA/2001_05_27/Turin_Tiff/0_RASTER_TIFF/wind_sector.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2001/LANDSAT 7/CALCOLI Maggio 
2001/0_CROP/ALBEDO_TO.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1_BANCA DATI 
METEREOLOGICA/2001_05_27/Turin_Tiff/0_RASTER_TIFF/temperature.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2001/LANDSAT 7/CALCOLI Maggio 
2001/0_CROP/NDVI_TO.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2001/LANDSAT 7/CALCOLI Maggio 
2001/0_CROP/SRI_TO.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1_BANCA DATI 
METEREOLOGICA/2001_05_27/Turin_Tiff/0_RASTER_TIFF/wind_speed.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/1_BANCA DATI 
METEREOLOGICA/2001_05_27/Turin_Tiff/0_RASTER_TIFF/solar_rad.tif', 
    'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2001/LANDSAT 7/CALCOLI Maggio 
2001/0_CROP/NDBI_TO.tif', 
] 
reference_raster_path = 'C:/Users/aless/Dropbox (Politecnico Di Torino Studenti)/Tesi_HUI/1_PARTE_OPERATIVA/4_IMMAGINI TERMICHE/2001/LANDSAT 
7/LE07_L1TP_195029_20010527_20200917_02_T1/CALCULATION_NEW/UHI/UHI_TO_27_05_2001.tif' 
# Load reference raster using rasterio 
with rasterio.open(reference_raster_path) as ref_src: 
    reference_raster = ref_src.read(1)  # Read the first band 
# Initialize an empty array to hold all the raster data 
raster_data_list = [] 
from rasterio.warp import reproject, Resampling 
# Loop through raster paths and load data into the list 
for path in raster_paths: 
    with rasterio.open(path) as src: 
        raster_data = src.read(1)  # Read the first band 
        # Reproject the raster data to match the reference raster 
        resampled_raster = np.empty_like(reference_raster) 
        reproject( 
            source=raster_data, 
            destination=resampled_raster, 
            src_transform=src.transform, 
            src_crs=src.crs, 
            dst_transform=ref_src.transform, 
            dst_crs=ref_src.crs, 
            resampling=Resampling.bilinear 
        ) 
        raster_data_list.append(resampled_raster.flatten()) 
# Combine all raster data into a single array 
raster_data_array = np.array(raster_data_list) 
# Generate synthetic labels for demonstration purposes (replace with your actual labels) 
labels = np.random.randint(0, 2, size=raster_data_array.shape[0]) 
# Split the data into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(raster_data_array, labels, test_size=0.2, random_state=42) 
# Define the objective function to optimize 
def objective(trial, X, y): 
    n_estimators = trial.suggest_int('n_estimators', 50, 200) 
    max_depth = trial.suggest_int('max_depth', 10, 50) 
    min_samples_split = trial.suggest_int('min_samples_split', 2, 10) 
    min_samples_leaf = trial.suggest_int('min_samples_leaf', 1, 8) 
    rf = RandomForestClassifier( 
        n_estimators=n_estimators, 
        max_depth=max_depth, 
        min_samples_split=min_samples_split, 
        min_samples_leaf=min_samples_leaf, 
        random_state=42 
    ) 
    return np.mean(cross_val_score(rf, X, y, n_jobs=-1, cv=3, scoring='accuracy')) 
# Create an Optuna study 
study = optuna.create_study(direction='maximize') 
# Optimize the study 
study.optimize(lambda trial: objective(trial, X_train, y_train), n_trials=15, n_jobs=-1) 
# Get the best parameters from the study 
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best_params = study.best_params 
# Create the final random forest classifier with the best parameters 
best_rf = RandomForestClassifier( 
    n_estimators=best_params['n_estimators'], 
    max_depth=best_params['max_depth'], 
    min_samples_split=best_params['min_samples_split'], 
    min_samples_leaf=best_params['min_samples_leaf'], 
    random_state=42 
) 
# Fit the final model on the training data 
best_rf.fit(X_train, y_train) 
# Make predictions 
y_pred = best_rf.predict(X_test) 
# Calculate accuracy, F1-score, and ROC-AUC 
accuracy = accuracy_score(y_test, y_pred) 
f1 = f1_score(y_test, y_pred) 
roc_auc = roc_auc_score(y_test, y_pred) 
# Print best parameters, cross-validation results, and evaluation metrics 
print("Best Parameters:") 
for param, value in best_params.items(): 
    print(f"{param}: {value}") 
print("Cross-Validation Results:") 
cv_results = study.trials_dataframe() 
print(cv_results) 
print(f"Accuracy: {accuracy:.2f}") 
print(f"F1-score: {f1:.2f}") 
print(f"ROC-AUC: {roc_auc:.2f}") 
PyDev console: starting. 
Python 3.11.4 (tags/v3.11.4:d2340ef, Jun  7 2023, 05:45:37) [MSC v.1934 64 bit (AMD64)] on win32 
[I 2023-08-17 16:14:39,241] A new study created in memory with name: no-name-478c75d7-cb45-4959-be51-794700609c01 
[I 2023-08-17 16:14:42,370] Trial 1 finished with value: 0.38888888888888884 and parameters: {'n_estimators': 98, 'max_depth': 23, 'min_samples_split': 3, 
'min_samples_leaf': 5}. Best is trial 1 with value: 0.38888888888888884. 
[I 2023-08-17 16:14:42,793] Trial 0 finished with value: 0.38888888888888884 and parameters: {'n_estimators': 109, 'max_depth': 45, 'min_samples_split': 5, 
'min_samples_leaf': 5}. Best is trial 1 with value: 0.38888888888888884. 
[I 2023-08-17 16:14:43,587] Trial 2 finished with value: 0.38888888888888884 and parameters: {'n_estimators': 120, 'max_depth': 14, 'min_samples_split': 7, 
'min_samples_leaf': 3}. Best is trial 1 with value: 0.38888888888888884. 
[I 2023-08-17 16:14:43,611] Trial 3 finished with value: 0.38888888888888884 and parameters: {'n_estimators': 121, 'max_depth': 48, 'min_samples_split': 8, 
'min_samples_leaf': 5}. Best is trial 1 with value: 0.38888888888888884. 
[I 2023-08-17 16:14:43,615] Trial 5 finished with value: 0.38888888888888884 and parameters: {'n_estimators': 177, 'max_depth': 45, 'min_samples_split': 5, 
'min_samples_leaf': 4}. Best is trial 1 with value: 0.38888888888888884. 
[I 2023-08-17 16:14:43,851] Trial 4 finished with value: 0.38888888888888884 and parameters: {'n_estimators': 117, 'max_depth': 30, 'min_samples_split': 2, 
'min_samples_leaf': 7}. Best is trial 1 with value: 0.38888888888888884. 
[I 2023-08-17 16:14:44,050] Trial 6 finished with value: 0.8888888888888888 and parameters: {'n_estimators': 164, 'max_depth': 44, 'min_samples_split': 4, 
'min_samples_leaf': 1}. Best is trial 6 with value: 0.8888888888888888. 
[I 2023-08-17 16:14:44,233] Trial 7 finished with value: 0.38888888888888884 and parameters: {'n_estimators': 189, 'max_depth': 35, 'min_samples_split': 8, 
'min_samples_leaf': 3}. Best is trial 6 with value: 0.8888888888888888. 
[I 2023-08-17 16:14:44,351] Trial 8 finished with value: 0.38888888888888884 and parameters: {'n_estimators': 189, 'max_depth': 32, 'min_samples_split': 4, 
'min_samples_leaf': 6}. Best is trial 6 with value: 0.8888888888888888. 
[I 2023-08-17 16:14:44,616] Trial 10 finished with value: 0.7777777777777777 and parameters: {'n_estimators': 70, 'max_depth': 11, 'min_samples_split': 4, 
'min_samples_leaf': 2}. Best is trial 6 with value: 0.8888888888888888. 
[I 2023-08-17 16:14:44,711] Trial 9 finished with value: 0.38888888888888884 and parameters: {'n_estimators': 184, 'max_depth': 10, 'min_samples_split': 7, 
'min_samples_leaf': 5}. Best is trial 6 with value: 0.8888888888888888. 
[I 2023-08-17 16:14:45,312] Trial 11 finished with value: 0.7777777777777777 and parameters: {'n_estimators': 161, 'max_depth': 43, 'min_samples_split': 2, 
'min_samples_leaf': 2}. Best is trial 6 with value: 0.8888888888888888. 
[I 2023-08-17 16:14:45,426] Trial 12 finished with value: 0.38888888888888884 and parameters: {'n_estimators': 193, 'max_depth': 47, 'min_samples_split': 9, 
'min_samples_leaf': 2}. Best is trial 6 with value: 0.8888888888888888. 
[I 2023-08-17 16:14:45,447] Trial 14 finished with value: 0.38888888888888884 and parameters: {'n_estimators': 99, 'max_depth': 30, 'min_samples_split': 6, 
'min_samples_leaf': 4}. Best is trial 6 with value: 0.8888888888888888. 
[I 2023-08-17 16:14:45,517] Trial 13 finished with value: 0.8888888888888888 and parameters: {'n_estimators': 78, 'max_depth': 41, 'min_samples_split': 2, 
'min_samples_leaf': 1}. Best is trial 6 with value: 0.8888888888888888. 
Best Parameters: 
n_estimators: 164 
max_depth: 44 
min_samples_split: 4 
min_samples_leaf: 1 
Cross-Validation Results: 
    number     value  ... params_n_estimators     state 
0        0  0.388889  ...                 109  COMPLETE 
1        1  0.388889  ...                  98  COMPLETE 
2        2  0.388889  ...                 120  COMPLETE 
3        3  0.388889  ...                 121  COMPLETE 
4        4  0.388889  ...                 117  COMPLETE 
5        5  0.388889  ...                 177  COMPLETE 
6        6  0.888889  ...                 164  COMPLETE 
7        7  0.388889  ...                 189  COMPLETE 
8        8  0.388889  ...                 189  COMPLETE 
9        9  0.388889  ...                 184  COMPLETE 
10      10  0.777778  ...                  70  COMPLETE 
11      11  0.777778  ...                 161  COMPLETE 
12      12  0.388889  ...                 193  COMPLETE 
13      13  0.888889  ...                  78  COMPLETE 
14      14  0.388889  ...                  99  COMPLETE 
[15 rows x 10 columns] 
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