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SUMMARY

In this thesis we are going to propose efficient algorithms and data structures to handle

similarity join queries over any number of constant relations in the dynamic setting with delay

guarantees. We provide a lower bound complexity proof for the dynamic case, in which points

are inserted and deleted after an initial preprocessing phase where all the needed data structures

are created. We analyze special cases in which constraints allow us to efficiently answer a

similarity join query exactly. Then, we design a grid-based approximation data structure for

any dynamic similarity join query proving delay guarantees. A reduction to equi-joins is also

provided. Finally an implementation of similarity join approximation algorithm with tests on

different use cases is added at the end in appendices section.

vii



CHAPTER 1

INTRODUCTION

Similarity join is a fundamental operator in databases [1] with many applications in data

integration, data cleaning, bioinformatics, and pattern recognition. Similarity joins can be used

in large databases to find similar products, or to identify relations between different points in

a given dataset, which is a useful task for machine learning and data analysis purposes. There

are multiple algorithms that have been proposed for similarity or the more general intersection

join queries. In its most common form, we are given two sets of objects A,B and the problem

is to report all pairs of objects (a, b) ∈ A × B such that ϕ(a, b) ≤ r, where ϕ(·) is a distance

function and r is a distance threshold. In databases, we assume two relations R1, R2 and the

goal is to report pairs of tuples (p1, p2) ∈ R1×R2. The relations R1, R2 might contain any type

of data, for example numerical attributes, geometric objects, strings, images etc.

In the era of big data, similarity join has become a crucial technique for effectively correlating

data. This importance has led to its widespread adoption in various industries. For instance,

Google employs both approximate and exact similarity join to identify near-duplicate web

pages [2], mine query logs, and facilitate collaborative filtering [3]. Similarly, Microsoft has

introduced the SSJoin primitive operator [4] to support similarity join, which has been utilized

in the Data Debugger project [5].

In this project we assume that each relation contains a set of tuples, where each tuple has

d numerical attributes. Equivalently, we can assume that each relation contains a set of points
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in Rd and the goal is to find pairs of points from different relations that are within distance r.

Notice that if the distance function ϕ is the ℓ∞ (resp. ℓ2) norm then an equivalent representation

is that each relation contains a set of boxes (resp. balls), of side-length (resp. radius) r/2 and

the goal is to find all pairs of boxes (resp. balls) from different relations that intersect. In the

next sections we use both representations, using points and geometric objects, depending on

what representation makes the problem easier to handle.

Most of previous works on designing algorithms for similarity join queries focus on two

relations R1, R2. In this project we consider any number of constant relations that can be

joined with any possible way. More specifically, we consider k = O(1) relations R1, . . . , Rk

where each of them contains O(n) points/tuples in Rd. If two relations Ri, Rj are joined we

use the notation Ri ⋊⋉ Rj . Hence, in addition to the relations and the sets of points we are also

given a join graph GJ that defines the similarity joins between the different relations. Handling

multiple relations in similarity join queries is critical because modern databases often have

complex data models that require joining more than two tables to retrieve meaningful results.

For example, databases in E-commerce websites, Healthcare systems, and financial applications

should join multiple relevant tables/relations.

While most of previous works consider the static case, we are interested in the dynamic

case with delay guarantees. Due to streaming applications, and data integration from different

sources, supporting dynamic updates is a key tool in database applications. For example,

social media platforms such as Facebook and Twitter use dynamic updates to enable real-time

updates of user feeds. We aim to construct a dynamic data structure that can be updated
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efficiently under points’ insertions or deletions. The data structure should support efficient

enumeration of all similarity join results with delay guarantees. In general, delay guarantees in

enumeration algorithms are important because they help ensure that the database is responsive

to user queries. A delay guarantee specifies a maximum amount of time that an enumeration

algorithm will take to return results. This allows users to specify a timeout period for their

queries, so they do not have to wait indefinitely for a response. Formally speaking, for any

function g(·), a delay guarantee of O(g(n)) is defined as a bound in the interval of time from

the start of the enumeration to the first output, from one output to the next one and from last

result to the end of the process.

Problem definition. Let R1, . . . , Rk be k = O(1) relations, and let GJ(V,E) be the join

graph. For each relation Ri we have a node vi ∈ V and two nodes are connected (vi, vj) ∈ E if

R1 should be joined with R2, i.e., Ri ⋊⋉ Rj . Overall, GJ has k = O(1) nodes and O(k2) = O(1)

edges. Each Ri contains a set Pi of O(n) points. Let P =
⋃

i Pi. Let ϕ(·, ·) be a distance

function. In this project, we focus on ℓα norms as the distance function. We mostly consider

the ℓ2 and the ℓ∞ norm. Finally, let r > 0 be a distance threshold. Most of the times we

assume that r = 1.

The exact r-enumeration problem asks to construct a data structure to support the following

operations.

• Update: When a new point is inserted in any of the k relations, update the data structure.

Similarly, when a point is deleted from any of the k relations, update the data structure.
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• Enumeration: When an enumeration query is received, all results (p1, . . . , pk) ∈ P1× . . .×

Pk should be enumerated with delay guarantees, such that for any (vi, vj) ∈ E, it should

hold that ϕ(pi, pj) ≤ r.

We also study the approximation version of the same problem. In particular, if the enu-

meration returns all r-similarity join results along with some (p′1, . . . , p
′
k) ∈ P1 × . . .× Pk such

that for any (vi, vj) ∈ E, ϕ(pi, pj) ≤ (1 + ε)r, then we say that the data structure supports

ε-approximate r-enumeration. If r is clear from the context or r = 1, we skip it and we call

them exact enumeration and ε-approximate enumeration.

Our Results. Using geometric algorithms along with techniques from database theory we

show the following results:

• We show a conditional lower bound on the exact r-enumeration problem in 3 dimensions.

In particular, we use the OuMV conjecture to reduce a modified version of the Online

Matrix-Vector Multiplication problem to the exact r-enumeration problem for the line–3

similarity join R1 ⋊⋉ R2 ⋊⋉ R3. The reduction is correct assuming that cos functions can

be computed exactly.

• Even though the exact r-enumeration for the line–3 similarity join is expensive to solve,

we show an efficient data structure that supports exact r–enumeration for line–3 similarity

join in ℓ∞ norm, when either R1 or R3 is static (for examples no updates are allowed in

R3). Furthermore, we show that if the points in R2 have integer coordinates then there

is an efficient dynamic data structure that supports exact r–enumeration for the line–3

similarity join in ℓ∞ norm.
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• We show a grid-based data structure of O(n) space, that can be updated in O(ε−kd log n)

time and supports ε-approximate enumeration with O(ε−kd log n) delay guarantee.

• Next we show how we can map general similarity join queries to a set of equi-join queries.

• We implement our new data structure that supports ε-approximate enumeration and run

experiments on real and synthetic data testing the efficiency and efficacy of our methods.

Finally, we conclude with concluding remarks and future work.



CHAPTER 2

BACKGROUND

In this chapter we are going to explain some basic definitions, so that the reader is able to

understand the thesis content.

Databases are fundamental entities used to store data on a long-term memory like an hard-disk.

The way such entities store data must be well organized, so that looking for specific information

inside it will take very little time. This process is called ”data retrieval” and it is performed

upon a request called ”query”. A query can be more or less complex based on the type of

information we want to retrieve, the number of operations the system handling the database

has to perform and other factors. Let’s make an example to make the concept more clear. Let’s

assume we have a set of US cities whose coordinates in latitude and longitude are stored in our

database like shown in Table I. An example of query would be: ”Find all cities within 170

miles each other that form a triangle”. Using the formula1 to calculate the distance between 2

points on Earth, whose radius is 6371 km

arccos (sin(lat1) ∗ sin(lat2) + cos(lat1) ∗ cos(lat2) ∗ cos(lon2− lon1)) ∗ 6371 (2.1)

it’s easy to see that all possible solutions in our database are:

1https://www.movable-type.co.uk/scripts/latlong.html

6



7

TABLE I: US CITIES DATABASE EXAMPLE

Name Latitude Longitude

Los Angeles 34.0207305 -118.6919154
Tuscaloosa 33.2131155 -87.5368466
Chicago 41.8339037 -87.8720468
New York 40.6976637 -74.119764
Dallas 32.8208751 -96.8716362
Miami 25.7825453 -80.2994984
Boston 42.3144556 -71.0403236
Worcester 42.2754254 -71.8777776
Hartford 41.7657462 -72.7151063

• New York - Boston - Hartford

• New York - Boston - Worcester

• New York - Hartford - Worcester

• Boston - Worcester - Hartford

This kind of query, where a list of all the results is given as output, is called enumeration or

reporting query. Queries, where just the existence of data satisfying a particular condition is

asked, are called Boolean queries. Moreover counting queries are queries where the number of

tuples satisfying a given condition is reported.

Let’s add to our database some additional information like the state of each city, like shown

in Table III. The query that we are going to perform on such database is similar to the

previous one: ”Find all cities belonging to different states within 170 miles each other that form

a triangle”. Given that Boston and Worcester are in the same state, the output is the following

one:

• New York - Boston - Hartford

• New York - Hartford - Worcester
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TABLE III: US CITIES DATABASE EXAMPLE WITH STATES

Name State Latitude Longitude

Los Angeles California 34.0207305 -118.6919154
Tuscaloosa Alabama 33.2131155 -87.5368466
Chicago Illinois 41.8339037 -87.8720468
New York New York 40.6976637 -74.119764
Dallas Texas 32.8208751 -96.8716362
Miami Florida 25.7825453 -80.2994984
Boston Massachusetts 42.3144556 -71.0403236
Worcester Massachusetts 42.2754254 -71.8777776
Hartford Connecticut 41.7657462 -72.7151063

This final example allows us to introduce similarity joins. A similarity join is a particular

query where, given a dataset made of m different sets of d-dimensional points, the goal is to find

points in each set such that a certain shape and distance between points belonging to different

sets is satisfied. Moreover ”join” is a common operation on databases and it could be of different

types. For example in this thesis we will mention equi-joins, where the condition is expressed

by equalities among attributes of different relations (sets of points), and interval joins, where

data is represented by a set of segments and the condition is that they must overlap.

Another important idea is related to graphs. According to Wikipedia:

”A graph is a structure amounting to a set of objects in which some pairs of the

objects are in some sense ”related”. The objects correspond to mathematical ab-

stractions called vertices (also called nodes or points) and each of the related pairs

of vertices is called an edge (also called link or line)”
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Graphs are going to be used to describe the similarity join shape.



CHAPTER 3

PREVIOUS WORK

The problem of reporting pairs or different shapes of points within a certain distance is a

well known problem in database theory and computational geometry and it has different practi-

cal applications. Different papers have been written on the topic; paper [6], for example, shows

two randomized solutions for a slightly modified version of our problem where just one set is

taken into account, one metric (the Euclidean one) and pairs of points only. Both algorithms

have delay guarantees, in particular the problem can be solved in C(d)(n+ k) log n, where d is

data dimensionality, k the output size and n the input size. C(d) is a constant dependant on

d. One of the techniques used in the paper to handle high dimensional data (LSH) is used in

the paper described in next section and extended to three points sets and triangles.

Another example taken from the literature is paper [7] where similarity joins are described

according to 2013 implementation and used in relational databases. In particular the paper

focuses mainly on string similarity.

The use of this kind of join is common for data cleaning purposes as highlighted in [8].

The thesis is based mainly on the work previously done on dynamic similarity joins[9]. Specif-

ically the paper is about dynamic solutions for similarity joins using different metrics and

techniques. To summarize, the paper shows both exact solutions for similarity joins and ap-

proximated solutions for joins which can’t be solved efficiently and exactly. The metric used for

10
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distances is fundamental because it changes the problem complexity; three metrics are analyzed

in particular:

• l∞ defined as mini∈[0,d)|xi − yi|

• l1 defined as
∑d

i=1|xi − yi|

• l2 defined as
√∑

i∈[0,d)(xi − yi)2

Fixing r and using l1 and l∞ metrics is possible to solve the problem efficiently and exactly, while

the use of l2 metric leads to efficient solutions for low dimensions only, that’s why approximated

solutions are developed for this metric, moreover for high dimensions an LSH approach is used.

3.1 Exact Enumeration

3.1.1 l∞ metric

Let A and B be two point sets in Rd with |A|+ |B| = n. For a point p ∈ Rd, let B(p) = {x ∈

Rd|∥p−x∥∞ ≤ 1} be the hypercube of side length 2. We wish to enumerate pairs (a, b) ∈ A×B

such that a ∈ B(b).

Data structure. d-dimensional dynamic range tree on points of A with O(n logd−1 n) space

and O(n logd n) building time.

Update and Enumerate. Amortize update time for points in A: O(log2d n), for points in B:

O(logd+1 n). Enumerate: O(logd n).

3.1.2 l1 metric

l1 metric is similar to l∞ metric and it can be easily reduced to 2d (d + 1)-dimensional

rectangle containment problems, obtaining the following results: Õ(n) space, Õ(n) building
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time, Õ(1) amortized update time and Õ(1)-delay enumeration. The procedure is described in

detail in [9].

3.1.3 l2 metric

In this case the similarity join problem has been reduced to halfspace-containment problem

in Rd+1.

The overall structure of the data structure is the same as the one used for l1 metric, but

instead of using a range tree, a dynamic partition tree is used for points in A. This structure

of size Õ(n) allows us to have Õ(n2− 1
d+1 ) building time, Õ(n1− 1

d+1 ) amortized updating time

and Õ(n1− 1
d+1 )-delay enumeration of similarity join under the l2 metric.

3.2 Approximate Enumeration

Approximate solutions work on any metrics and they report all pairs of (a, b) ∈ A×B with

ϕ(a, b) ≤ r, along with (potentially) some pairs of (a′, b′) with ϕ(a′, b′) ≤ r+ ϵ, but no pair with

ϕ(a, b) > r + ϵ.

The paper focuses on both variable distance threshold and fixed distance threshold. Focusing

in particular on the last case we are going to introduce a grid-based data structure.

Data structure. The grid that we are going to define is used to split Rd space into cells of

dimensions ϵ
2
√
d
whose diameter is ϵ

2 . The distance between two cells c and c′ is defined as:

ϕ(c, c′) = minp∈c,q∈c′ ϕ(p, q). Each grid cell stores two sets Ac = A ∩ c and Bc = B ∩ c and a

value mc =
∑

c′:ϕ(c,c′)≤1|Bc′ | as the number of points in B that lie in a cell c′ within distance 1

from cell c.

The only cells that are going to be stored are the non-empty ones, so the cells with one or more
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elements. Moreover we introduce the notion of active cells; a cell is defined as active if and only

if Ac ̸= ∅ and mc > 0. All active cells are stored in a balanced search tree, so that whether a

cell c is stored can be answered in O(log n) time, similarly we store in a balanced search tree

the set of non-empty cells.

Update. Let’s assume that point a ∈ A is inserted into cell c. If c is already non-empty then

add a to Ac. Otherwise, we store c with Ac = {a} and update mc as follows. We visit each

non-empty cell c′ with ϕ(c, c′) ≤ 1 and add |Bc′ | to mc. If a point a ∈ A is deleted the procedure

is almost the same. Let’s assume now point b ∈ B is inserted into cell c. As in the previous

case if c was empty we store it with Bc = {b}, if not we insert it into Bc and we visit all cells

c′ such that ϕ(c, c′) ≤ 1 and we increase mc′ by 1 and we store c into the active cells tree if c′

turns from inactive to active. Similarly for b deletion. Overall the procedure is Õ(ϵ−d).

Enumeration. For each active cell c, we visit each non-empty cell c′ within distance 1. If

Bc′ ̸= ∅, we report all pairs of points in Ac × Bc′ . The procedure has O(ϵ−d log n) delay

reporting one solution to the next one. For more details on the uniqueness of each pair of

points in the enumeration phase see [9].

Another important paper, we are going to use later in ”Reduction to equi-join” chapter, is

[10]. In this section we are going to describe in more details the reduction they applies to

intersection joins to make them equi joins. Given an intersection join, we build a segment tree

on each common relation attribute and we encode each node as a bitstring: the empty string

represents the root, the strings ”0” and ”1” represent the left and right child respectively, the

string ”00” and ”01” represent the left and right child of the ”0” respectively, and so on. Such
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encoded nodes will be the tuples for the equi join queries we are going to create. Indeed each

equi join query is meant to capture a different relation between nodes in the tree throught their

bitstrings. Given two nodes n1 and n2, where n1 is an ancestor of n2, the bitstring for n1 is then

a prefix of that for n2. To capture this relationship in a query, we can use a variable A1 for n1

bitstring and n2 bitstring prefix and A2 for the rest of n2 bitstring. Each query will represent

a single permutation among all the possibles taking into account all common variables. It’s

important to find such relations in the tree because of the major property of a segment tree:

every interval stored in a node intersects all the intervals stored in children nodes. In order to

better understand the reduction, we refer the reader to [10].



CHAPTER 4

LOWER BOUND COMPLEXITY

In this section we are going to prove, using the OuMv-conjecture, a lower bound for similarity

joins. The OuMv conjecture is defined as follows. Given a Boolean matrix M of size n × n

and a series of n pairs of vectors (ui, vi) provided dynamically, answering uTi Mvi before getting

(ui+1, vi+1) can’t be done by any algorithm with total running time O(n3−ϵ), where ϵ ∈ R+.

The reduction can’t be done in 2 dimensions given that we need, with at most n insertions or

deletions for each pair, to select one row or column with just one point.

4.1 Reduction

The reduction is done in 3 dimensions. Each point M [i][j] of the matrix, where i, j ∈

N ∧ i, j < n, is mapped to a point on a cylinder surface with the following coordinates if and

only if M [i][j] = 1. 

x = r cos 2π
n i

y = r sin 2π
n i

z = − π
n4 + 2π

n5 j

(4.1)

r is the radius of the cylinder and r ∈

(√
1−

(
2π
n5

)2
, 1

]
. Using the square root Taylor series we

can write r without using the square root as r ∈

[
1
2 + 1

2

(
1−

(
2π
n5

)2)
, 1

]
. Such interval allows

us to make sure, as we will describe in more details later, that each ball used for selecting the

15
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matrix columns and placed in the center of the cylinder is not going to select other points in

adjacent columns. Moreover the use of Taylor series allows us to get ride of the computational

complexity of the square root and of any other function we are going to use the series on.

Applying Taylor series on cosines and sines we get:



x = r

(
1− 1

2

(
2π
n i
)2

+
(
2π
n i
)4)

y = r

(
2π
n i− 1

6

(
2π
n i
)3

+ 1
120

(
2π
n i
)5)

z = − π
n4 + 2π

n5 j

(4.2)

Vectors u and v are used for selecting rows and columns respectively. Starting with v, if v[j] = 1

a point in the center of the cylinder is placed, so that its coordinates are equal to



x = 0

y = 0

z = − π
n4 + 2π

n5 j

(4.3)
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and the ball of radius 1 centered in the point inserted selects the j-th column.

In contrast if u[i] = 1 we place a point on a circle on the xy plane of radius 2 cos 2π
n with the

following coordinates: 

x = 2 cos 2π
n cos 2π

n i

y = 2 cos 2π
n sin 2π

n i

z = 0

(4.4)

and using Taylor series:



x = 2

(
1− 1

2

(
2π
n

)2
+
(
2π
n

)4)(
1− 1

2

(
2π
n i
)2

+
(
2π
n i
)4)

y = 2

(
1− 1

2

(
2π
n

)2
+
(
2π
n

)4)(
2π
n i− 1

6

(
2π
n i
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Such point is used for selecting the rows. A visual example with n = 3 of how the cylinder and

the spheres are placed can be seen in Figure 1 and Figure 2. Whenever we apply Taylor series

on cosines and sines we change i and j definitions so that we can have a better approximation

of the value. Indeed we move the interval to
[
−n

2 ,
n
2

)
and i, j ∈ Z. This is because all the series

are centered in x = 0, so the approximation is almost perfect slightly around x = 0 and the

further we go, the higher the approximation error will be.

Given that calculating a cosine or a sine value efficiently is always related with an error using

a computer, we are limited in the value of n. Indeed for very high values of n each row can be

so close that the approximation used for each cosine and sine values could lead the outer ball
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Figure 1: Cylinder and sphere used to select columns.

to intersect multiple rows.

In the end assuming exact values of cosines and sines and placing the point in the way just

described allows us to state the following theorem.

Theorem 4.1.1 Let be ϵ > 0. If a dynamic algorithm with tu = n1−ϵ update time able to solve

a similarity join in time ts = n2−ϵ on databases of size n exists, then OuMv can be solved in

time O(n3−ϵ).
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Figure 2: Cylinder and spheres used to select rows.



CHAPTER 5

EXACT SOLUTIONS FOR SPECIAL CASES OF LINE-3 SIMILARITY

JOIN

In this chapter we are going to describe some special cases of line-3 similarity join in which

can be solved efficiently. In all cases, let R1, R2, R3 be three relations where each of them

contains O(n) tuples, or points in Rd. We consider the line-3 join so we are interested in the

schema R1 ⋊⋉ R2 ⋊⋉ R3. The join graph looks like the next Figure:

1 2 3

Given a query, the goal is to report all results (p, q, s) ∈ P1 × P2 × P3 such that ϕ(p, q) ≤ r,

for a parameter r. In this section we consider that ϕ(p, q) = ||p− q||∞.

5.1 Not everything is dynamic

We assume that either R1 or R3 is fixed. Without loss of generality, we consider that R3

is fixed so we allow updates only in R1 and R2. We are going to map our problem to the

problem of dynamic similarity join with delay guarantees for two relations. If R′
1 ⋊⋉ R′

2 are the

two relations to join, it is known from [9] how to solve the dynamic similarity join with delay

guarantees problem efficiently.

Let DS be the data structure used in [9]. Let insert(p,R′
j) be the procedure in [9] that

inserts point p in R′
j (and DS) for j ∈ {1, 2}. Similarly, let delete(p,R′

j) be the procedure in

20
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[9] that deletes point p from R′
j (and DS) for j ∈ {1, 2}. Finally, let query() be the procedure

that reports all durable similarity joins in R′
1 ⋊⋉ R′

2 with delay guarantees.

In our case, we start initializing the empty data structure DS. Furthermore, we construct

a range tree T on the set of (fixed) points P3.

Assume that a new point p is inserted in R1. We simply call insert(p,R1). Next, assume

that a new point p is deleted from R1. We simply call delete(p,R1). Similarly, let p be a new

point that is inserted in R2. We define the square □p,r with center p and radius r (so the side-

length of □p,r is 2r. We run an emptiness query on T with query range □p,r. If □p,r ∩ P3 = ∅

we skip p and we end the update. Otherwise, we call insert(p,R2). Finally, if p is deleted from

R2, we simply call delete(p,R2). Using the results in [9], we have that the update operation

takes O(log2d n) amortized time.

After number of updates, assume that we receive a query. We run query(). For each pair

(p, q) ∈ P1 × P2 we receive, we define the square □p,r and run a reporting query on T . For

each s ∈ P3 is returned, we report (p, q, s). The query() procedure in [9] has O(logd n) delay

guarantee. We also need to run another reporting query on T , so the overall delay is O(log2d n).

Putting everything together, we have:

Theorem 5.1.1 Let R1, R2, R3 be three relations and P1, P2, P3 their corresponding sets of

points in Rd with |Pi| = O(n) for each i ≤ 3. Let R3 be a fixed relation meaning that no

insertions or deletions are allowed in R3. Let r be a given distance threshold. There exists a

data structure of O(n logd−1 n) space that can be updated in O(log2d n) amortized time, while

supporting exact r-enumeration of the similarity line–3 join with O(log2d n) delay.
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5.2 Integer coordinates

In this section we assume that the coordinates of the points in R2 are integers.

We construct the grid over Rd where each grid cell has side-length 1. In particular, we only

store in an AVL tree the grid vertices that contain at least one point from P2. For each grid

vertex v we store a hash-map or a search binary tree Tv that stores the points from R2 that lie

on v. Let v.c1 be a counter that stores the number of points from P1 within distance r from v.

Similarly, let v.c3 be a counter that stores the number of points from P3 within distance r from

v. A vertex v in the grid is active if and only if i) there is a point p2 ∈ P2 such that p2 ∈ Tv,

ii)v.c1 > 0, and iii) v.c3 > 0. Let vb be a boolean variable vb which is 1 if v is active and 0 if it

is not active. Let Ta be a search binary tree that stores the active grid vertices. Let T1 and T3

be two dynamic range trees built on P1 and P3, respectively. The overall data structure can be

constructed has space O(n logd−1 n).

We consider all the different cases. For any point p, let □p,x be a box with center p and

radius x.

If a point p1 is inserted in P1, we insert it in T1, and we use the AVL tree to identify all

grid vertices in □p1,r, called Vp1 . For each v ∈ Vp1 , we increase v.c1 ← v.c1 + 1. If vb = 0 and

v.c2 > 0 we set vb = 1 and we insert v in Ta. Next, assume that we remove a point p1 ∈ P1.

We remove it from T1 and we use the AVL tree to identify all grid vertices in □p1,r, called Vp1 .

For each v ∈ Vp1 , we decrease v.c1 ← v.c1 − 1. If vb = 1 and v.c1 = 0 we set vb = 0 and we

remove v from Ta. Similarly, we can handle insertion and deletion from P3.
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If point p2 is inserted in P2, we use the AVL tree and find its grid vertex. If it does not

exist, we create it. Let v be its grid vertex. We add p2 in Tv. If Tv contains only one point

(the new point p2 we inserted) we run a count query in T1 with query range □v,r. Let c1 be the

result of the count query. We update v.c1 = c1. Furthermore, we run a count query in T3 with

query range □v,r. Let c3 be the result of the count query. We update v.c3 = c3. If vb = 0 and

v.c1 > 0, v.c2 > 0 we set vb = 1 and we insert v in Ta. Finally, if we delete point p2 from P2,

we use the AVL tree and find its grid vertex v. We remove p2 from Tv. If Tv = ∅, we remove

v from Ta and we remove v from the AVL tree.

Next, we describe the enumeration procedure. For each v ∈ Ta, we run a reporting query in

T1 and a reporting query in T3 with query range □v,r. Let A = P1∩□v,r, B = Tv, C = P3∩□v,r

found by T1, Tv, T3, respectively. In particular, we do not report the results A or C when we

run the reporting query. Instead we find the canonical nodes in the trees. Then, we report

A×B × C.

Even though the algorithm we describe supports exact r–enumeration, the correctness of all

the procedure follow using similar arguments with our new grid-based approximation algorithm

in the next section.

In order to handle updates in P1, P3 we need O(rd + logd n) time because we update the

dynamic tree T1 and the size of Vp1 is at most O(rd). In order to handle updates in P2 we need

O(logd n) time because we run two queries in range trees T1 and T3. All operations in the AVL

tree and Ta, Tv can be executed in O(log n). Finally, the enumeration procedure has O(logd n)

delay because it runs range queries in T1, T3. These procedures dominate the time.
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Overall, putting everything together, we get the following result.

Theorem 5.2.1 Let R1, R2, R3 be three relations and P1, P2, P3 their corresponding sets of

points in Rd with |Pi| = O(n) for each i ≤ 3. Assume that all coordinates of all points in P2

are integers. Let r be a given distance threshold. There exists a data structure of O(n logd−1 n)

space that can be updated in O(rd + logd n) time, while supporting exact r-enumeration of the

similarity line–3 join with O(logd n) delay.



CHAPTER 6

ANY SHAPE SIMILARITY JOIN

Using the same approach based on the grid method explained before we can solve any kind

of similarity join, no matter the number of relations and the shape of the join. In order to

achieve such result we just need to slightly modify the update process and some definitions.

6.1 Approximation algorithm

Let R1, . . . , Rk be k = O(1) relations, and let GJ(V,E) be the join graph with k nodes and

O(k2) = O(1) edges. Each Ri contains a set Pi of O(n) points. Let P =
⋃

i Pi. The goal is

to report all similarity join results with respect to GJ with O(ε−kd log n) delay. In particular,

report pi ∈ Pi for each i if and only if for every (vj , vh) ∈ E, ||pj − ph|| ≤ 1. If for some (or all)

edges (vj , vh) ∈ E it holds that 1 ≤ ||pj−ph|| ≤ 1+ε then we say that we have an ε-approximate

enumeration of similarity join GJ . The goal is to construct an index that supports the following

operations.

• We insert a point p in Ri (for any i) in O(ε−kd log n) time.

• We remove a point p ∈ Ri (for any i) in O(ε−kd log n) time.

• Supports ε-approximate enumeration of similarity join GJ with O(ε−kd log n) delay.

6.1.1 Index description.

We construct a grid G in Rd such that the grid cell diagonal is ε/2. We place the grid cells

in a AVL tree T . Without loss of generality, let R1 be the key relation. For each cell c ∈ G and

25
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each i ≤ k we store P c
i = Pi ∩ c, mc

i = |P c
i |. For each cell c ∈ G s.t mc

1 > 0, we store an integer

value mc which represents the number of similarity join results with respect to GJ with c as

the key cell. Each cell c s.t. mc > 0 is also stored in another AVL tree called active cells tree.

6.1.2 Point insertion.

Let pj be a new point that we insert in Pj . Using the AVL tree we check whether the grid

cell that pj belongs to, exists. If not, we construct it. Let c ∈ G be the cell such that pj ∈ c.

We add pj ∈ P c
j , we set mc

j = mc
j + 1 and we update mc accordingly.

In this paragraph, we describe a procedure to find the cells that contain a point from P1 that

are affected by the insertion of pj . We start from the cell c of G. In a high level, the algorithm

is a recursive approach running a BFS to the graph GJ starting from node vj . Each node

v ∈ V is associated with a list of cells from G which represents all possible cells assignments

for node v in the current iteration. Initially each vi is associated with ∅, except vj which is

associated with c. Let each cell c contained in vj list be c′. Assign c′ in the final solution fs.

Let (vj , vh) ∈ E and the algorithm has visited vh in a previous iteration and has assigned a cell

ĉ to vh in fs1. We check whether ||c′ − ĉ|| ≤ 1. If not, then we skip cell c′ from vh list, erasing

any previous assignment to neighbor nodes both in fs and neighbors’ lists. On the other hand,

let (vj , vh) ∈ E and the algorithm has not visited vh. We consider all cells in G around c′ within

distance 1, i.e. ||c′ − c̄|| ≤ 1. For each such cell c̄ we check whether mc̄
h > 0. If yes, we insert

1Notice that we do not simply run a BFS. Instead we visit the nodes of the graph in a BFS manner
assigning a cell to each node. So we might visit a node multiple times checking on whether or not the
assigned cell is valid.
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c̄ into vh list. If vh list is empty, we skip cell c′ from vj list, erasing any previous assignment

to neighbor nodes both in fs and neighbors’ lists. If vh list is not empty and we were able to

assign to each non-visited vj neighbor some cells, then we push each non-visited neighbor in

the queue, we mark it as visited and we recur. When the queue is empty we know for sure that

a valid solution has been found, so we push fs into a list of solutions.

Let c1, . . . , ck be an element of the final list of solutions. Without loss of generality assume

that ci is assigned to vi. We set mc1
c =

∏k
i=1mi and, given that at this point at least one

solution exists, we are sure that mc1
c > 0, so we add c1 to active cells tree.

For each node we consider O(ε−d) cells around it. There are k nodes so in total we visit

O(ε−kd) cells. Each time we need O(log n) time to check if a cell exists in grid G. The insertion

is executed in O(ε−kd log n) time.

6.1.3 Point deletion.

The deletion procedure is similar to the insertion but there are a couple of key differences.

When we delete a point pj ∈ P c
j from cell c we update P c

j = P c
j \ {pj} and mc

j = mc
j − 1. Next

we have to update mc of cells c1 that belong to some similarity join result. Following the same

procedure described for the insertion case we find c1, . . . , ck, we set mc1
c =

∏k
i=1mi. If mc1

c is

exactly zero then we delete c1 from active cells tree. Finally, if c is empty we delete it from

cells tree. The deletion is executed in O(ε−kd log n) time.
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Algorithm 1: Point Insertion Algorithm

input: similarity join graph GJ , point pj
Set c ∈ G s.t. pj ∈ c
set P c

j = P c
j ∪ {pj}

mc
j = mc

j + 1
Let Q be a queue
Let vj be the vertex associated to pj relation
foreach Vertex v in GJ do

Assign an empty list of cells
end
Set vj list to [c]
Mark vj as visited
Push vj into Q
Point Insertion Algorithm Recursive(Q, GJ , all vertices lists)
if a valid solution has been found then

Set mc1
c =

∏k
i=1mi

Add c1 to active cells tree
end

6.1.4 Query procedure

We visit each cell c of active cells tree. For each such cell, we run an algorithm related to

the point insertion algorithm. In particular, we mimic the algorithm assuming that we added

the first point P c
q in c (given that the other point pre-existed). While the BFS is running, let

c1, . . . , ck be the cells associated with the k nodes. We report P c1
1 ×. . .×P

ck
k . It is straightforward

to see that the described procedure executes an ε-approximate enumeration of GJ .

Proof. Let’s assume that a point p ∈ P1 lies on the left edge of cell c and that the similarity

join distance is 1. Be c′ a cell whose distance from c left edge is 1. In this case such cell, as well

as all points stored in it, will be taken into account in the enumeration phase. Let’s assume
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Algorithm 2: Point Insertion Algorithm Recursive

input: Queue Q, similarity join graph GJ , all possible cell assignments by vertex
if Q is empty then

Save current solution
end
Pop Q into vj
foreach cell c′ ∈ vj list do

Assign c′ to final solution
foreach neighbor vh of vj do

if vh visited then
if vh has a cell assigned in the final solution then

Let c̄ be the cell assigned to vh in the final solution
if ||c′ − c̄|| > 1 then

Erase all previously assigned non-visited node lists
Skip c′

end

end

end
else

foreach cell c̄ s.t. mc̄
h > 0 ∧ ||c′ − c̄|| ≤ 1 do

Add c̄ to vh list
end
if vh list is empty then

Erase all previously assigned non-visited node lists
Skip c′

end

end

end
foreach non-visited neighbor vh do

Mark vh as visited
Push vh into Q

end
Point Insertion Algorithm Recursive(Q, GJ , all vertices lists)
foreach non-visited neighbor vh do

Mark vh as not visited
Pop Q
Erase vh list

end
Remove c′ from final solution

end
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that point p1 ∈ c′ lies on the right edge, it’s easy to see that ||p− p1|| ≤ (1 + ϵ) and that every

other point p2 with ||p− p2|| > (1 + ϵ) will be stored in cells nearby, so it won’t be reported.

Following the analysis we had before, we get that the delay guarantee is O(ε−kd log n).

Theorem 6.1.1 Let R1, . . . , Rk be k = O(1) relations with join graph GJ , and P1, . . . , Pk

their corresponding sets of points in Rd with |Pi| = O(n) for each i ≤ k. There exists a

data structure of O(n) space that can be updated in O(ε−kd log n) time, while supporting ε-

approximate enumeration of the similarity join GJ with O(ε−kd log n) delay.



CHAPTER 7

REDUCTION TO EQUI-JOIN

Every similarity join can be reduced to an equi join through a previous reduction to inter-

section joins. In this chapter we are going to show how the reduction works.

7.1 Static case.

The reduction from an intersection join to an equi join has already been studied in paper

[10]. Overall the process relies on the construction of segments trees on common interval at-

tributes, encoding each tree node using bitstrings which will be stored in the final equi join

relations.

Specifically given a shape for the similarity join, encoded as a graph with |V | vertices and |E|

edges, and d the data dimension, running algorithm 3 allows us to create all needed relations

where [A1] , . . . , [Ad] is the set of intervals delimited by point p coordinates ± similarityJoinDistance
2

for each dimension. Having half of the similarity join distance is fundamental because the

concept of intersecting intervals has to be mapped to the concept of centers distance being at

most the similarity join distance. In this way we are sure that extreme cases like two squares

sharing an edge are covered by our reduction.
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Algorithm 3: FromSimilarityToIntersection

input: graph G
for edge e ∈ E do

Assign a new set of [A1] , . . . , [Ad] to e
end
i = 0
for vertex v ∈ V do

Create relation Ri

for edge e s.t. v ∈ e do
Add to Ri as attributes all [A1] , . . . , [Ad] assigned to e

end
i += 1

end
return All relations Ri

To better explain the reduction we describe the following example, where, for simplicity, the

relations’ names are already written in the center of each vertex, even if for similarity joins we

don’t exactly have relations, but d-dimensional points sets.

R1

R2

R3

R4

Assuming d = 2 algorithm 3 would return:

R1 ([A1] , [A2] , [A5] , [A6] , [A7] , [A8]) , R2 ([A1] , [A2] , [A3] , [A4]) , R3 ([A7] , [A8])

R4 ([A3] , [A4] , [A5] , [A6])

Using paper [10] we can build the corresponding equi join. The way the reduction is done allows

us to state the following theorem.
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Theorem 7.1.1 Given a graph G representing the similarity join shape, if G is acyclic, the

intersection join obtained using algorithm 3 with hypergraph Hi will be ι-acyclic, so the final

equi join hypergraph He will be α-acyclic as well.

Moreover if d ≥ 2 and the number of points’ sets is greater or equal than two for similarity

joins, then the reduction will lead to non q-hierarchical queries. According to paper [11]:

”

A conjunctive query ϕ is q-hierarchical if for any two variables x, y ∈ vars(ϕ) the

following conditions are satisfied:

• atoms(x) ⊆ atoms(y) or atoms(x) ⊇ atoms(y) or atoms(x) ∩ atoms(y) = ∅

• if atoms(x) ⊊ atoms(y) and x ∈ free(ϕ), then y ∈ free(ϕ)

”

Where free(ϕ) is the set of variables that appears in all atoms and that are not used as projection

variables. Given that variables can be easily considered intervals, such definition can be ex-

tended to intersection joins too. Moreover the reduction to equi join doesn’t change the overall

query structure and the attributes are just substituted with different [A1] , . . . , [Ad] according

to the permutations, a more detailed proof will follow the theorem.

Theorem 7.1.2 Given a graph G representing the similarity join shape with d ≥ 2 and the

number of points’ sets > 2, the intersection join obtained using algorithm 3 will be non q-

hierarchical, so the final equi join will be non q-hierarchical as well.



34

In particular let’s assume d = 2, the number of relations equal to 3 and the following shape:

R1 R2 R3

As we did before, running algorithm 3 we get:

R1 ([A1] , [A2]) , R2 ([A1] , [A2] , [A3] , [A4]) , R3 ([A3] , [A4])

It’s easy to see how condition one of q-hierarchical queries doesn’t hold in this case.

Moreover the full reduction to equi join queries leads to 16 different permutations that are

reported with a little change of variable names for readability:

Q̃1 = R̃1 (A11, B11) , R̃2 (A11, A12, B11, B12, A21, B21) , R̃3 (A21, A22, B21, B22)

Q̃2 = R̃1 (A11, B11) , R̃2 (A11, A12, B11, B12, A21, B21, B22) , R̃3 (A21, A22, B21)

Q̃3 = R̃1 (A11, B11) , R̃2 (A11, A12, B11, B12, A21, A22, B21) , R̃3 (A21, B21, B22)

Q̃4 = R̃1 (A11) , R̃2 (A11, A12, B11, B12, A21, A22, B21, B22) , R̃3 (A21, B21)

Q̃5 = R̃1 (A11, B11, B12) , R̃2 (A11, A12, B11, A21, B21) , R̃3 (A21, A22, B21, B22)

Q̃6 = R̃1 (A11, B11, B12) , R̃2 (A11, A12, B11, A21, B21, B22) , R̃3 (A21, A22, B21)

Q̃7 = R̃1 (A11, B11, B12) , R̃2 (A11, A12, B11, A21, A22, B21) , R̃3 (A21, B21, B22)

Q̃8 = R̃1 (A11, B11, B12) , R̃2 (A11, A12, B11, A21, A22, B21, B22) , R̃3 (A21, B21)

Q̃9 = R̃1 (A11, A12, B11) , R̃2 (A11, B11, B12, A21, B21) , R̃3 (A21, A22, B21, B22)

Q̃10 = R̃1 (A11, A12, B11) , R̃2 (A11, B11, B12, A21, B21, B22) , R̃3 (A21, A22, B21)

Q̃11 = R̃1 (A11, A12, B11) , R̃2 (A11, B11, B12, A21, A22, B21) , R̃3 (A21, B21, B22)

Q̃12 = R̃1 (A11, A12, B11) , R̃2 (A11, B11, B12, A21, A22, B21, B22) , R̃3 (A21, B21)

Q̃13 = R̃1 (A11, A12, B11, B12) , R̃2 (A11, B11, A21, B21) , R̃3 (A21, A22, B21, B22)
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Q̃14 = R̃1 (A11, A12, B11, B12) , R̃2 (A11, B11, A21, B21, B22) , R̃3 (A21, A22, B21)

Q̃15 = R̃1 (A11, A12, B11, B12) , R̃2 (A11, B11, A21, A22, B21) , R̃3 (A21, B21, B22)

Q̃16 = R̃1 (A11, A12, B11, B12) , R̃2 (A11, B11, A21, A22, B21, B22) , R̃3 (A21, B21)

We can easily verify that each query is non q-hierarchical. This implies that the overall reduction

leads to non q-hierarchical queries and, given that the example above is based on the simplest

version of similarity join with d ≥ 2 and the number of points’ sets > 2 and that it can be

found as a subcase in any other more complicated version, the previous theorem is proved.

7.2 Dynamic case.

In this section we are going to analyze the impact that inserting a point into or deleting a

point from the original similarity join dataset have on the reduction. Assuming data dimen-

sionality d, inserting a point in any points’ set means inserting in the intersection join obtained

using algorithm 3 a new tuple made of the intervals described in the previous section. Accord-

ing to [10], we have then to insert such intervals into some segments trees in order to get the

corresponding bitstring, which will be inserted in the equi join database D̃[X], using the cited

paper notation.



CHAPTER 8

EXPERIMENTS

8.1 Triangle similarity join - ϵ approximation implementation

We provide an implementation of the grid method for similarity join approximation de-

scribed in [9] applied to triangle shapes and mainly two dimensions. All code can be found in

the following link: https://github.com/Simone99/Any-shape-similarity-join-approx

The repository is organized as described in Table V.

Different experiments have been made using different datasets uniformly and randomly gener-

ated with values between 0 and 10 and all of them have been run on a 11th Gen Intel® Core™

i7-11390H machine with 16GB of RAM.

The parameters which have been modified during the tests are:

• R. The similarity join distance.

• #dimensions. Data dimensionality.

• ϵ. Distance approximation.

The abbreviations used in Table VII headers are:

• # for the number of dimensions.

• GCT for grid creation time. It includes initialization time as well.

• QT for query time.
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TABLE V: GITHUB REPOSITORY STRUCTURE

AvlTree.hpp Contains all the code needed to
implement a self-balancing binary
search tree which is used to store
all non-empty and active cells

Database.cpp/Database.hpp Contains all the code to randomly
generate or read from a file data
points. Each point is stored in

different sets which will be used to
create the grid and answer the

queries

Grid.cpp/Grid.hpp Contains all the code to create the
grid with ϵ radius cells. Moreover
it contains all the logic related to

dynamic database updates,
covering insertion and deletion

with mc update.

main.cpp Contains the overall program logic.
It creates the database, the grid
and it performs measurements on
the algorithm performance in

different scenarios.

Makefile File used to compile the program
successfully.

plot points.py Python script used to visualize the
query result.
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• RT for real triangles, so triangles with edges long less than or at most the similarity join

distance.

• AT for approximated triangles, so triangles with edges long more than the similarity join

distance.

• AR for approximation ratio.

TABLE VII: TEST RESULTS FOR TRIANGLE SIMILARITY JOIN

R # ϵ GCT[s] QT[s] RT AT AR

3000 points

1.5 2 0.1 10.159 19.344 2419786 53876 1.02226

1.0 2 0.1 3.716 5.85 508706 17738 1.03487

0.5 2 0.1 1.948 2.134 32597 2600 1.07976

2.0 2 0.1 26.775 53.949 7143080 118996 1.01666

4.0 2 0.1 276.562 610.736 85937029 629818 1.00733

1.5 2 0.1 10.343 20.004 2419786 53876 1.02226

1.5 2 0.35 13.489 30.955 2419786 1478590 1.61104

1.5 2 0.065 10.345 19.566 2419786 17457 1.00721

1.5 2 1.0 3.253 67.073 2419786 16789486 7.93842

1.5 2 0.01 10.082 19.104 2419786 39 1.00002

1.5 7 0.1 1.036 0.0 0 0 1.0
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1.5 3 0.1 1.989 2.284 71797 33 1.00046

1.5 4 0.1 1.602 1.049 1742 0 1.0

1.5 2 0.1 11.161 20.062 2394802 59500 1.02485

300 points

1.5 2 0.1 0.033 0.044 2628 11 1.00419

1.0 2 0.1 0.026 0.023 533 7 1.01313

0.5 2 0.1 0.02 0.008 30 0 1.0

2.0 2 0.1 0.055 0.113 7783 11 1.00141

4.0 2 0.1 0.301 0.58 91166 155 1.0017

1.5 2 0.1 0.038 0.042 2628 11 1.00419

1.5 2 0.35 0.038 0.049 2628 291 1.11073

1.5 2 0.065 0.036 0.042 2628 3 1.00114

1.5 2 1.0 0.061 0.1 2628 6061 3.30632

1.5 2 0.01 0.035 0.04 2628 0 1.0

1.5 7 0.1 0.015 0.0 0 0 1.0

1.5 3 0.1 0.022 0.005 60 0 1.0

1.5 4 0.1 0.016 0.0 0 0 1.0

1.5 2 0.1 0.032 0.039 2025 6 1.00296

150 points

1.5 2 0.1 0.007 0.008 282 4 1.01418
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1.0 2 0.1 0.008 0.003 63 0 1.0

0.5 2 0.1 0.006 0.0 7 0 1.0

2.0 2 0.1 0.012 0.013 858 0 1.0

4.0 2 0.1 0.046 0.083 10029 0 1.0

1.5 2 0.1 0.007 0.007 282 4 1.01418

1.5 2 0.35 0.007 0.009 282 19 1.06738

1.5 2 0.065 0.007 0.008 282 0 1.0

1.5 2 1.0 0.012 0.014 282 401 2.42199

1.5 2 0.01 0.007 0.008 282 0 1.0

1.5 7 0.1 0.004 0.0 0 0 1.0

1.5 3 0.1 0.006 0.0 3 0 1.0

1.5 4 0.1 0.004 0.0 1 0 1.0

1.5 2 0.1 0.009 0.006 288 0 1.0

As we can see from Table VII the smaller the radius R, the less time is needed in order to

answer the query. Given that we used the same dataset to run all the experiments with same

data dimensionality, a ball with radius R centered in the same point will contain less points if

the radius R decreases in size, so the experiment confirms the theoretical results: enumeration

complexity is dependant on the output size. Same reasoning applies to ϵ, a larger ϵ can increase

the output size and accordingly the running time. Finally, in each case taken into account in

this paper d was a constant, so some experiments have been made to show how data dimension-
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ality affects query time. In general if d is not a constant, the query time should increase, but

the experiments highlight a different phenomenon: Curse of dimensionality. According to this

phenomenon, as data dimensionality increases, data becomes more sparse, which means that is

more difficult to find points at a distance less than R, so less points have to be reported. In

some cases, when the dataset is small, the query time is 0s, so no results have to be reported

or the number of triangles to report is very tiny. Moreover we can see how the choice of ϵ is

going to influence the number of approximated triangles, indeed the worst approximation ratio

is obtained by setting ϵ to 1. Unfortunately the approximation algorithm described in [9], as

the tests confirm, doesn’t provide a bounded approximation ratio.

In Figure 3 we can see an example of output of a triangle similarity join on a small dataset.

8.2 Any shape similarity join - ϵ approximation implementation

The code showed in previous chapter has been extended to execute and run all tests with

different shapes according to the algorithm explained in this paper. All code is stored in branch

”general shape” whose structure is equal to the previous one except for minor changes.

An undirected graph is used to describe the similarity join shape, in particular ”input graph.txt”

has the following structure: first line is the number of vertices, second line the number of edges

and all following lines represent a list of edges.
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Figure 3: Triangle similarity join output.



43

8.3 First experiments

Using the same tests set used in previous section and a clique-4 shape, we report all the

results in Table VIII, where RS is real shapes and AS is approximated shapes. Given the

incredibly high number of solutions found by the algorithm on a dataset of 4000 points, we

decided to skip the tests on such dataset.

TABLE VIII: TEST RESULTS FOR CLIQUE-4 SIMILARITY JOIN

R # ϵ GCT[s] QT[s] RS AS AR

400 points

1.5 2 0.1 0.087 0.105 8358 72 1.00861

1.0 2 0.1 0.04 0.032 711 10 1.01406

0.5 2 0.1 0.03 0.0 4 0 1.0

2.0 2 0.1 0.299 0.452 44471 126 1.00283

4.0 2 0.1 8.694 17.333 1977686 5396 1.00273

1.5 2 0.1 0.094 0.119 8358 72 1.00861

1.5 2 0.35 0.113 0.162 8358 2356 1.28189

1.5 2 0.065 0.093 0.128 8358 6 1.00072

1.5 2 1.0 0.392 0.783 8358 67242 9.04523

1.5 2 0.01 0.091 0.134 8358 0 1.0

1.5 7 0.1 0.022 0.0 0 0 1.0

1.5 3 0.1 0.031 0.003 41 0 1.0
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1.5 4 0.1 0.02 0.0 0 0 1.0

1.5 2 0.1 0.099 0.138 9075 15 1.00165

200 points

1.5 2 0.1 0.014 0.016 470 4 1.00851

1.0 2 0.1 0.01 0.003 47 0 1.0

0.5 2 0.1 0.008 0.0 1 0 1.0

2.0 2 0.1 0.033 0.044 2479 11 1.00444

4.0 2 0.1 0.519 0.969 109987 0 1.0

1.5 2 0.1 0.015 0.015 470 4 1.00851

1.5 2 0.35 0.017 0.017 470 60 1.12766

1.5 2 0.065 0.014 0.015 470 0 1.0

1.5 2 1.0 0.038 0.053 470 1829 4.89149

1.5 2 0.01 0.014 0.014 470 0 1.0

1.5 7 0.1 0.006 0.0 0 0 1.0

1.5 3 0.1 0.008 0.0 2 0 1.0

1.5 4 0.1 0.006 0.0 0 0 1.0

1.5 2 0.1 0.017 0.014 490 0 1.0

8.4 Second experiments

After the initial set of experiments, all the code has been updated to introduce another set

of experiments more focused on the dynamic behavior of the algorithm, specifically a triangle
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Figure 4: Clique-4 similarity join output.
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similarity join has been run. Indeed a synthetic dataset, generated uniformly at random, and

a real dataset have been used. In particular for the first one a dataset of 3000 2-dimensional

points with coordinates from 0 to 10 have been used, while for the second one El-Nino tornado

dataset1 has been used.

The test set consists of the grid initialization with init p% of the original number of points;

measurements on the update time and the query time follow. step% of the remaining points

are added each step to the original dataset until all points are added. Each time we collect data

about the query time and the update time, which is defined as the time to insert a single point

into the current dataset.

8.5 Uniform dataset

As we can see from Figure 5, time needed to insert a point is increasing due to the fact that

each time the algorithm has to work with an increasing number of cells. If all the cells available

in the grid had been created, the update time would have been constant.

From Figure 6 and Figure 7 we can see how the query time is related to the output size, the

more triangles are found the longer it takes to answer a query. Moreover in Figure 6 we can

see some fluctuations given by internal factors of the system on which all the tests have been

run. In Figure 7 the number of approximated triangles is always 0, because ϵ was set to a very

small number.

1https://archive.ics.uci.edu/ml/datasets/El+Nino
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Figure 5: Update time graph for uniform dataset.
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Figure 6: Query time graph for uniform dataset.
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Figure 7: Real and approximated triangles graph for uniform dataset.
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8.6 El-Nino dataset

The dataset contains the following attributes:

• year

• month

• day

• date

• latitude

• longitude

• zon.winds : zonal winds (west<0, east>0)

• mer.winds : meridional winds (south<0, north>0)

• humidity

• air temp.

• s.s.temp. : sea surface temperature

In the preprocessing phase all the years have been divided into three different intervals, which

have been mapped to three different relations. Latitude and longitude of each record have

been later inserted in the corresponding interval removing duplicates. Given that for attributes

”year”, ”latitude” and ”longitude” there are no missing values, the database for our algorithm

is now ready to be processed, in Figure 8 an image of the processed dataset can be seen. If

missing values are found, using different combinations of other attributes, we suggest to get ride
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Figure 8: El-Nino Earth points by year intervals

of them with the minimum value of the same attribute among all the tuples. Finally a new

boolean variable GEO has been added to Database.hpp file in order to switch from euclidean

distance to the distance formula reported in the introduction to calculate the distance on Earth

between two points described by latitude and longitude. Another script, plot points geo.py, has

been added in order to plot in 3D space the points.

ϵ in this case is an approximation on latitude and longitude, which means that the approxima-

tion on the actual distance, using the previously described formula, will be at most:

π
180ϵ ∗ 6371
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Figure 9: Update time graph for El-Nino dataset.

for both latitude and longitude, given that they are expressed in degrees. Indeed the worst case

is represented by all cells lying on the equator, which are the biggest ones among all the others.

Running a similarity join on such database allows us to find locations close each other on

Earth that have been exposed to tornadoes multiple times, so that we are able to find the most

in danger areas.
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Figure 10: Query time graph for El-Nino dataset.
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Figure 11: Real and approximated triangles graph for El-Nino dataset.
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Figure 12: Locations on Earth with high tornado risk.

As in the uniform dataset case, we can see in Figure 9 how the update time is increasing.

It means that after each update the algorithm has to work on a different number of cells that

have been created in the previous update.

From Figure 10 and Figure 11 we can see, as in the previous case, that the query time depends

on the output size, so the number of triangles that have to be reported, and that sometimes

internal factors influence the algorithm running time.

Finally in Figure 12 we can see the locations on Earth that our algorithm found and whose

population is very likely to be in danger for a tornado.
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8.7 ϵ meaning in different metrics

As it has been highlighted in previous section, the approximation on the distance between

each point is not always ϵ, but it depends on the distance metric used. Let’s assume that the

input space is represented by 2D euclidean space, that the output space is 2D euclidean space

as well and that the distance metric used it l2. Assuming each grid cell has diameter ϵ, without

loss of generality, measuring the distance between (0, 0) and (ϵ,0) or (0,ϵ) leads to:

√
(0− ϵ)2 + (0− 0)2 = ϵ

In general, given an input space X where the grid is built, an output space Y where distances

are measured, ϵ an approximation constant in X and a distance metric F(a, b) between d-

dimensional points a and b, the approximation δ on distance between points a and a + ϵ for

each dimension in Y is given by:

F((a1, . . . , ad), (a1 + ϵ, a2, . . . , ad)) : for d1

F((a1, . . . , ad), (a1, a2 + ϵ, . . . , ad)) : for d2

F((a1, . . . , ad), (a1, . . . , ad + ϵ)) : for dd

In order to better understand let’s make an example related to the previously used dataset.

On El-Nino dataset a grid with ϵ approximation has been built on 2-dimensional points repre-

sented by latitude and longitude. Such grid in X space, leads to cells with different shapes and

dimensions in Y. In Figure 131, we can see the cells mapped to Y.

1https://commons.wikimedia.org/wiki/File:Division_of_the_Earth_into_Gauss-Krueger_

zones_-_Globe.svg
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Figure 13: Grid generated on Earth for El-Nino dataset.



CHAPTER 9

CONCLUSION

In this project we study the family of similarity join queries under any number of constant

relations. In articular we show a conditional lower bound for the line–3 join in 3 dimensions,

some conditions where line–3 join can indeed be solved exactly, a grid based data structure that

works for any join graph and supports ε-approximate enumeration, and a reduction from simi-

larity join to a set of equi-join queries. Finally, we implemented the grid-based data structure

and we run experiments on synthetic and real datasets checking the efficiency and efficacy of

our methods.

There are a lot of interesting open problems we are planning to work. It would be interesting

to have a lower bound even when we cannot compute cos functions exactly. Geometrically, we

are planning to study how close to the surface of the unit ball we can place points so that our

reduction holds. Currently, our reduction consider the ℓ2 distance. Another open problem is

if the exact enumeration problem is expensive to solve for the ℓ∞ distance. In particular, we

would like to have a reduction where instead of balls we use squares to perform a reduction

using the OuMv conjecture. Interestingly, it is known how to use the OuMv conjecture to show

that the exact enumeration problem under intersection joins (general rectangles) is expensive to

solve, however nothing is known about similarity joins under the ℓ∞ norms (squares). Another

interesting problem is to study the exact enumeration problem when the distance threshold r is

58
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not known upfront, instead it is part of the query. Ideally, we would like to construct a dynamic

data structure that can support ε-approximate r-enumeration for any arbitrary parameter r.
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