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Abstract

The present work aims to provide a framework using software tools that enable
the global-local, finite element analysis of Variable Angle Tow composites. The
workflow proposes using 2D plate elements for a global simulation, and the sub-
sequent use of a local analysis to obtain accurate results in the thickness of the
material. The global model has its foundation in Equivalent Single layer and Plate
Theory adapted for VAT laminates. It is built with square finite elements with four
nodes and one Gaussian point in its center, where the tow angle and its general
properties are calculated. The local model is instead based on the Carrera Unified
Formulation and uses third-degree Lagrangian polynomial to interpolate the dis-
placements and rotations of the global model. This type of analysis is implemented
using the commercial software FEMAP/NASTRAN for the computations on the
global model and the in-house software MUL2@GL plug-in developed by the MUL2
lab of Politecnico di Torino for the local one. The capabilities of the workflow are
put into test analyzing a thin and a thick plate under bending and a third thin one
under stretching. The final computation of the laminar and interlaminar stresses is
compared to results in the literature and other Layerwise models to validate the
global-local workflow.

Keywords: VAT; Global-Local analysis; Carrera Unified Formulation.
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Chapter 1

Introduction

The composites material industry has been growing rapidly. According to [1] the
global market is expected to surpass US$128.82 billion in 2028, a growth of 78% in
comparison to 2020. This is due to the broad variety of industries investing in this
sector. Automotive, transportation, wind energy, aerospace, and defense industries
are the main players driving its rapid growth. Special attention must be paid to
the aerospace industry, which is one that has had a huge increase in its investments
on composites, as can be seen in Figure 1.1. This figure shows the percentage of
of composite components in function of the time in years and it becomes evident
that the usage of composite materials in an aircraft has followed an exponential
rise since the secong half of the last century, which went from around 3% in 1975
to 23% with the Boeing A380 in 2004 and quickly more than doubled to 48% in a
matter of 4 years with the construction of the Boeing 787.

Figure 1.1: Share of composite components in aircraft

Source: [2]

A more updated study on the composites market size was conducted in 2020 by
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Introduction

[3]. This study corroborates the expectations of [1] that this industry is quickly
growing, despite the negative effects of the pandemic. Figure 1.2 shows the Asia
Pacific market size of composites in the study period of 2016 to 2027, using 2019
as the reference year. It is possible to see that until the pandemic this market
was under fast growth from 2016 to 2019 and suffered from a significant dip of
around 20% in a single year, but the estimates show a full recovery in a matter of 5
years and in 2026 the composite market will have outgrown 2019. This represents
the continuity and resilience of composites in the Asia Pacific market, which is
representative of the general tendencies in the world.

Figure 1.2: Asia Pacific market size

Source: [3]

Once again, in this research, the main players considered in the composite market
are the automotive and aviation sectors, which account for more than 50% of the
whole market. Figure 1.3 shows the market share of composites by application.
Two main conclusions can be drawn from these few studies, the composite materials

Figure 1.3: Market composition by application

Source: [3]

market is under growth and is expected to continue like this for the next decade.
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Within it, the aviation sector is its biggest supporter.
Upon further inspection of aviation tendencies, according to [4] the single largest

cost for most aircraft operators, both military and commercial, is fuel. In Europe,
for the year 2017, the average fuel consumption per passenger was 24% lower than
in 2005, but the total air traffic grew by almost 60% for this period leading to
an increase in total CO2 emissions of 16%. Furthermore, this scenario is likely
to continue, as Figure 1.4 estimates that the number of flights should increase
by 68% optimistically, by 42% on a realistic basis, and by 5.6% in a worst case
scenario from 2017 until 2040. It is worth mentioning that this forecast was done
prior to the pandemic, but the general increase in air traffic should still happen.
As Europe’s 2030 agenda for sustainable development directly depend on carbon

Figure 1.4: Forecast of the number of flights from 2017 to 2040

Source: [4]

dioxide emissions, more technological develpments must be achieved to guarantee
an improvement in aircrafts’s fuel economy so that a significant increase in number
of flights does not cause a simultaneous rise of emissions.

1.1 Classical Composites
From an engineering point of view, the composite material class is second only to
the steel class, when it comes to industrial significance and range of applications.
According to [5], which is due to the versatility of mechanical properties that this
class possesses. The main reason composite materials receive so much attention
is on account of their higher Young’s modulus, higher tensile strength, and lower
density when compared to some steel alloys. Even though the data are only
approximate, Figure 1.5 shows the benefits that carbon fiber composites may have
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with respect to mild steel, at least when it comes to higher Young’s modulus
and lower density. This potential of producing stiff and lightweight structures is
what aircraft and automotive manufacturers try to exploit to achieve optimal and
fuel-efficient vehicles.

Figure 1.5: Mechanical properties of mild steel compared to composites

Source: [5]

Composite materials are usually categorized accordingly to the type of their
reinforcements, [6]:

• Fibrous: the reinforcement has the shape of fibers, which can be long, having
a very high length-to-diameter ratio, or short (whiskers), with a length-to-
diameter ratio between 5 and 1000.

• Particulate: the reinforcements may be of any shape or configuration. Partic-
ulate reinforcements are divided into flakes and filled.

Within these two types of reinforcements, it is also possible for them to be
produced in various manners, which alter their mechanical properties, possibly
making them isotropic, anisotropic, or orthotropic. Fibrous reinforcements can be
discontinuous or continuous and continuous fibrous reinforcements can be single-
layered, multilayered, or even have random or biased orientation, as shown in Figure
1.6. Particulate composites, on the other hand, are usually randomly dispersed
in the matrix, constituting isotropic composites. Figure 1.7 shows the types of
particulate reinforcements:

4
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Figure 1.6: Fiber reinforced composite types

Source: [6]

Figure 1.7: Particulate reinforced composite types

Source: [6]

1.2 Variable Stiffness Laminates
The most recent developments in technology and manufacturing show a tendency
towards the study of variable stiffness laminates. This is not by chance, in practical
applications, VS laminates are an optimized version of traditional fiber-reinforced
composites. As the name suggests, their distinct characteristic is the local variation
of their stiffness, which allows manufacturers to choose which regions of the
material should be stiffer or more compliant according to their project’s design and
requirements, which makes it possible to build even lighter parts while maintaining
its structural integrity. Currently, there are many ways to make a laminate have
inhomogeneous stiffness:

• Variation of the fiber volume fraction, as presented in the work of [7]

• Local variation of the number of plies in the laminate, as described by [8]

• Variation of the path of fibers in the matrix, as studied by [9]

Out of those methods, the one that is the most interesting is the third. Laminates
that have a variable fiber path, as opposed to straight, are called Variable Angle
Tow (VAT). Figure 1.8 shows the fiber paths of a classical laminate on the left and
the similar fiber paths on a VAT on the right.

5
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Figure 1.8: Classical 45° straight fiber vs VAT laminate

Source: [10]

This capability of customizing the stiffness of your base material by producing
fiber paths that follow curvilinear trajectories brings many new challenges to
structural analysis and manufacturing and currently, there are many works that
are aimed toward a better comprehension of these structures’ behavior such as the
work of [11] that uses a Rayleigh-Ritz approach to determine the prebuckling load
distributions and critical buckling load of VAT plates providing a more efficient
way to evaluate the buckling load of VAT laminates when compared to other
numerical solutions as well as the work of [12] that uses the Hellinger-Reissner
principle to obtain a mixed quadrilateral 3D finite element that can better simulate
the buckling behavior of VAT. The work of [13] complements the previous one by
adding a semi-analytical formulation based on a variational approach to solve the
post-buckling problem in VAT plates. Then[14] adds to the instability problem by
using Bolotin’s method to study the influences of the fiber towpath and periodical
compressive loads.

Some works also introduce manufacturing defects in their simulations. The work
of [15] developed a computer-aided modeling tool for VAT laminates manufactured
by the CTS technique to provide a convenient way to create an ABAQUS finite
element model of this type of composite with non-linear fiber angle variation that
cannot be formulated mathematically. Then there is the article o f[16], which
uses higher-order shear deformation theories on moderately-thick plates laminates
that present gaps and overlaps due to the AFP process. To complement the
numerical simulations of defects, the work of [10] introduces a stochastic approach
to study the influence of misalignments in fiber placement and analyze the stress
and failure indexes distribution caused by random defects on VAT laminates. Then
[17] investigates the uncertainty of the winding angle in cylindrical shells while also
considering the thickness variation due to overlaps.

Another set of studies worth mentioning is those that use the Carrera Unified
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Formulation (CUF). The work of [18] proposes an improvement on the dynamic
response of complex aeronautical structures composed by VAT laminates through
the use of the Carrera Unified Formulation and refined kinematic structural models.
This study also investigates the effect of different fiber paths on the performance of
wing structures. Complementing his own work, [19] presents a refined beam model
based on CUF to analyze the free vibration of VAT laminates. Another interesting
numerical approach similar to the one developed in this thesis is the work of [20]
that uses CUF to determine the buckling loads and natural frequencies in VAT
square plates by using the layerwise theory. Then it runs a genetic algorithm
optimization method to maximize the first critical buckling load and the first
natural frequency using the definition of linear fiber orientation angles.

Furthermore, there are works that consider hygrothermal loads, such as the
work of [21] proposes a novel semi-analytical methodology to conduct hygro-
thermomechanical analysis on thin to relatively-thick fiber-steered conical and
cylindrical composite panels. Also, [22] studies the thermal flutter characteristics
of an infinitely long VAT composite curved panel in supersonic airflow.

1.3 Global-local Method
When it comes to simulation, the Finite Element Analysis is one of the most
used tools to evaluate structural integrity and a component’s characteristics, but
depending on the geometrical or material characteristics of each analysis, it can
require large amounts of computational time and effort. This is especially true
regarding VAT components because their plate geometry is such that their length
and width are usually 100 times larger than their thickness, which requires a very
fine mesh to obtain accurate results. To put things into perspective, composite
plates usually need very few 2D elements for buckling and modal analyses, which
is highly computationally affordable, but this type of elements does not allow the
computation of zig-zag and free-edge effects, which would require the use of 3D
elements as they need a tridimensional stress state to be calculated. According
to [23], a 1-meter length square plate would require around 109 elements to be
correctly discretized as at least 3 elements are necessary along the thickness of the
plate.

This is where the Global-Local (GL) method becomes most useful. It saves
computational effort by making the heaviest calculations only at the desired
locations, usually near cutouts, contacts, corners, or virtually any regions that have
a steep stress gradient and require finer meshes. Currently, there are 3 main forms
through which this method is applied:

1. Local mesh refinement. The global model is composed of a coarse mesh
and, for the critical regions, a much finer mesh is used. In Figure 1.9 a global
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model of a rectangular-shaped plate with a small hole in its center can be seen
as well as two types of local refinement, a square local model on the left and a
circular one on the right.

2. Multi-model. As the name suggests, this method takes advantage of different
mathematical models for each region of interest. It requires special attention
to the displacement and stresses coupling at the interface of the models.

3. Superelements. It is a grouping of finite elements that meet certain criteria
and, when assembled, can be regarded as one for computational purposes
([24]).

Figure 1.9: Local models for a plate with a cutout

Source: [25]

In this work, the second method is chosen as it is particularly interesting for
calculating the interlaminar stresses in VAT components because it completely
avoids them in unnecessary regions.

1.4 Motivation
The motivation for the development of this work needs to be explained from a
big picture. Shortly put, composite materials, especially laminates have a huge
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potential in comparison to the traditional metallics. As technology and science
improves, manufacturing methods follow, enabling the usage of better and lighter
materials. The economic tendencies show that, in general, automotive and aircraft
industries are driving the growth of the composites industry to improve their own
products. This drives the development of scientific publications and studies in this
sector. This paper lies within this general context.

In a more focused academic picture, there are many works that have been
published that study the behavior of VAT laminates and many works that use the
Global-Local analysis to obtain precise results while maintaining computational
efforts at a reasonable threshold, however to the best of the author’s knowledge,
there aren’t papers that propose a global-local analysis of VAT composites. The
vast majority of studies that propose a method to analyze the behavior of VAT
laminates use 3D elements to obtain their results, which may become quite time-
consuming for large or more complex multiple-layered structures. For this reason,
this work proposes a simplified approach that does not compromise the accuracy.
By using the GL method to evaluate the regions of interest in a 2D VAT panel
a lot of computational effort might be saved. The main idea is that the Global
model is made using 2D elements and for the more critical regions of the laminate,
a Local model can be made to evaluate the through-the-thickness stresses, making
more optimized use of computational effort.
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Chapter 2

Variable Angle Tow
Laminates

In general, the mechanical behavior of materials display a depency on their man-
ufacturing process. This is specially true when dealing with Variable Angle Tow
laminates. As its name makes it clear, these are composites that have their fibers
aligned upon a custom path, enabling the designers to tailor components for each
engineering scenario. This high level of parts customization creates a necessity to
understand and control the manufacturing of VAT laminates in a way that their
mechanical properties can be consistently maintained through production.

This chapter presents a description of how VAT laminates are manufactured
and then simulated. A presentation of the main processes is necessary, since the
mechanical performance of VAT panels also depends on the type of process chosen
and the techniques adopted within it.

2.1 Manufacturing
Historically, manufacturing technologies are what limit the production of any
component or structure. It is one challenge to conceive a new type of material and
produce a functioning prototype, but it is another one to mass produce and make it
available to an entire industry. This has been no different for VAT laminates. Even
though carbon fiber tapes and meshes have been available for commercial use since
1966 ([26]), the automation and the capability of having fibers follow a custom
curvilinear path within the matrix material have significantly matured in recent
years with the advent of robot-assisted composite manufacturing that enabled the
steering of fibers in the lamina plane. These relatively new technologies are capable
of fabricating high-quality large composite components with point-wise variations
in stiffness using continuously varying fiber angles, which allow the fabrication of
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VAT laminates.
Currently, there are three main manufacturing technologies for fiber placement:

1. Tailored Fiber Placement (TFP);

2. Automated Fiber Placement (AFP);

3. Continuous Tow Placement (CTS).

Each with its own specific models and defects.

2.1.1 Tailored Fiber Placement (TFP)
Tailored Fiber Placement is an embroidery-based tow-steering process that sews
a single continuous fiber roving onto a flat textile base material with a stitching
yarn. Figure 2.1 shows a sketch of the TFP process and Figure 2.2 shows the real
machine while it sews the roving in a zig-zag-like pattern.

Figure 2.1: Sketch of the TFP process

Source: [27]

Usually, this technique is referred to as dry tow placement due to the non-
impregnated placement of the fibers. Only after the preformed has taken shape, it
is impregnated with resin to form the final component, which has the advantage of
being very close to its final form. Before the use of dry fibers, many techniques used
pre-impregnated fiber bundles, but it required the use of tape to fix the bundles
in place, which led to a decreased flexibility of design. Figure 2.3 shows the final
impregnated component sewed in Figure 2.2.

According to [27], TFP has several advantages over AFP and CTS:

1. Possibility to deposit the fiber roving with small radii;

2. Considerable design freedom in terms of the towpath;
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Figure 2.2: TFP machine sewing the roving of carbon fiber

Source: [28]

Figure 2.3: Final TFP component after impregnation

Source: [28]

3. Outstanding out-of-plane mechanical performance;

4. Higher tow deposition speed.

[29] also estimated through the use of Finite Element Analysis that the ultimate load
was 55% higher for TFP-manufactured VAT plates in comparison to unidirectional
notched ones. This result was later validated by tensile loading tests.

The main defects present in TFP technologies are related to their manufacturing
peculiarities. For instance, if the tension of the stitching yarn is too high, the tows
will suffer from out-of-plane bucking, or if the tension is too low the fibers will not
be correctly restrained against the subtract, and they may move. The defect that
may happen more frequently is resin gaps, which are primarily due to the pulling
of the tow towards the origin of the curvature. To avoid this defect manufacturers
must include a slight overlap of rovings when preparing the machine.
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2.1.2 Automated Fiber Placement (AFP)
Automatic Fiber Placement is the most studied method out of the main three. It
combines the advantages of tape laying with filament winding to produce high-
quality fiber-steered structures with customized local stiffness variations. Also
known as Automated Fiber Placement (ATP), it is capable of placing quite wide
fiber tows of around 3 to 13 millimeters, continuously, while varying the fiber angles.
Its development started around the decade 1980, but it has only significantly
matured in recent years, more specifically when the airplane industry started to
invest in this technology. The recent developments in AFP techniques show that it
has a very high potential for improvement, hence this method is adressed in this
work.

AFP composite manufacturing is usually done with the use of a kind of robotic
arm, in which the end effector handles and places the tape on the surface of the
mold, which may be flat or a complex geometry with curvatures. Fundamentally,
the AFP head pulls the tow from a dry material spool and, with the help of a
compaction roller, glues it by pressing onto the mold, while heating it. A simplified
sketch of this process can be viewed in Figure 2.4.

Figure 2.4: Simplified sketch of an AFP head working

Source: [30]

The flexibility of the robotic arms makes this technology easy to be implemented
in the production of components of very different geometries, for example, on the
left side of Figure 2.5 a cryogenic tank is being played, and on the right, a blended
wing body.

Every manufacturing process has its defects and AFP is no different. According
to [27], it has a few design constraints that weigh on the manufacturability and the
quality of the final parts. The most important factors that need to be taken into
account are:
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Figure 2.5: Layup of a cryogenic tank and a blended wing body

Source: [31]

1. Minimum cut length. It is the distance between the contact point to the
tow-cutter. Failing to acknowledge its proper design may lead to undesirable
gaps in the laminate or ar ply boundaries.

2. Gaps and overlaps. The fiber steering procedure itself is prone to gaps,
hence to err on the side of caution, manufacturers tend to favor overlaps of
tows in the design of their components as they tend to increase the mechanical
performance.

3. Minimum turning radius. Shown in Figure 2.6. This is essential to take
into account. A small turning radius will cause tows to suffer in-plane bending
deformations, such as local buckling and thickness change in the inner edge
of the tow, which may lead to unpredicted failure. If the turning radius is
even smaller, the tow might undergo wrinkling, decreasing even further the
strength of the laminate.

4. Fiber bridging. If the designer is not careful with the tensile forces pulling
the tow, it might detach from the mold surface forming a gap that resembles
a bridge.

To avoid these problems, there are some design considerations that can be made,
according to the literature:

1. Tow-overlap. This technique proposes that a portion of each tow should
overlap its neighboring tows to increase the rigidity of the component. This
technique has been studied by [11], who found that it increased the buckling
load 5 times with respect to a normal straight-fiber composite panel.

14



Variable Angle Tow Laminates

Figure 2.6: Gaps and overlaps due to small turning radius

Source: [27]

2. Tow-drop. The AFP machine is capable of cutting the tow and restarting
its placement at another location. Considering this capability, it is possible
to program the machine to cut the tow at intersections, creating a constant
thickness component. Nevertheless, this generates another problem, in the
zones where the tow is cut, there is the formation of small fiber-less regions,
which are prone to form resin-rich areas that in turn are critical failure points
to consider, as the mechanical properties in this region are much worse.

3. Ply staggering. It is very similar to the previous method, it also creates
fiber-free regions, but keeps the thickness constant. Its main idea is shifting
the path of each ply by a small distance so they do not overlap. This process
is better seen in Figure 2.7.

The manufacturing of VAT panels is especially process dependent, the mechanical
properties of the final component depend directly on the quality of the methods
adopted to lay it. For this reason, many studies also aim to complement their
numerical simulations by adding the influence of these process-induced defects.
To mention a few, the work of [10] takes into account the inaccuracies of the
fiber angles by introducing a stochastic field in them and [32] tries to predict the
influence of the tow-drop method, by taking into account resin-rich areas.

2.1.3 Continuous Tow Shearing (CTS)
The Continuous Tow Shearing process was first developed by [33] with the aim
of using the shear deformation characteristic of dry tow rather than the in-plane
bending deformation used in AFP manufacturing. The first prototype tests showed
that this novel method could reduce the process-induced defects of:
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Figure 2.7: Ply staggering sketch

Source: [27]

• Fiber wrinkling, also known as waviness. Represented in Figure 2.8;

• Resin rich areas, shown in Figure 2.9;

• Fiber discontinuities, shown in Figure 2.10.

Figure 2.8: Wrinkling caused in TFP process

Source: [34]

All these benefits arise from the key characteristics of CTS. In this technique, the
fiber placement head applies in-plane shear deformation to the dry-tows while they
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Figure 2.9: Resin rich area in laminate

Source: [35]

Figure 2.10: Fiber discontinuity caused during AFP process

Source: [36]

are placed. To solve the problem of fiber splitting, CTS makes in-situ impregnation,
which can eradicate tow gaps or overlaps that appear in the AFP method during
the in-plane bending of the tow. This rather novel technology works by pressing a
tow of fibers onto a mold surface through the use of a roller and a gripping device
that pinches the tow and a compaction shoe that presses it. In Figure 2.11 it is
possible to see precisely how the tow undergoes shear deformation right before
being attached to the mold.

Even though CTS has some advantages over TFP and AFP methods, it is
relatively immature. While these other technologies have had more than 20 years
to evolve, CTS has just over a decade of development. Although there are studies
of its behavior, the vast majority of publications still only concern AFP technology.
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Figure 2.11: Sketch of a CTS machine head placing a tow

Source: [33]
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Chapter 3

Unified Finite Elements

Structural analysis is a field of study in engineering that evaluates the behavior
of a solid for a given set of constraints and external loads. Its main objective is
usually finding the displacements or the stress state of the structure under review
or construction, to estimate whether it can maintain its mechanical integrity during
its use. To achieve this objective, an engineer needs to create a model capable of
accurately representing the real structure.

All models are always a simplification of reality aiming to simulate the behavior
of a structure. They can be often be categorized into two types, analytical or
numerical. The first type, albeit able to provide an exact solution to the problem,
is impractical for most scenarios. It requires exhaustive mathematical formulation,
which often proves to be quite time consuming. Even the representation of a simple
two-dimensional plate can prove a challenge in the analytical realm. The latter,
numerical models, are built approximately, and can be directly implemented on a
computer. These models have the advantage of being versatile, but at the expense
of computational effort. Basically, they breakdown a bigger problem into small
manageable problems that can be quickly solved by a machine. The most common
numerical modeling technique is the Finite Element Method.

The purpose of this chapter is to provide the mathematical premises used in the
structural analyses performed in the whole work. It aims to detail the theory behind
the construction of the global model and the subsequent local model. It begins
by introducing the models that govern the structural behavior of VAT composite
plates, which starts with the definition of the coordinate system necessary to define
the variable fiber orientation within the material, then it presents the equilibrium
equations satisfied for any point in the domain as well as the constitutive equations
specific for VAT composites. Next, the governing equations are derived using
the Principle of Virtual Displacements (PDV) in its strong form, which is then
manipulated to obtain its weak form. Finally, from the previous formulations, it is
possible to write the Finite Element Method (FEM) for plates.
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The penultimate section of the chapter presents an overview of the two most
common methods commercial software use to evaluate layered materials, the Equiv-
alent Single Layer, and the Layerwise methods. Lastly, the final section presents
the development of the local model, in which the Carrera Unified Formulation
(CUF) is derived from the previously developed PVD to facilitate the coupling
between the 2D global model and the 3D local one.

3.1 Reference Systems
A reference system is used to define where a body is located in space. The proper
definition of this system becomes necessary as composite laminates are often
orthotropic or anisotropic, meaning that their mechanical properties are not the
same for every direction and therefore the wronf definition of the reference can
cause problems in any structural analysis of composites. Furthermore, VAT panels
have curvilinear fiber orientation for each of their plies. This arises the need to
have not only a global coordinate to determine the position of the plate in space,
but also a second one that defines the orientation of its fibers within the plate itself.

3.1.1 Global Reference System
In a given Cartesian orthogonal system with axes x, y and z, a body in space is
considered as a tridimensional mass D of volume V and surface S. It is constrained
on a portion of its surface and submitted to concentrated loads Pi, linear loads q,
surface loads p, and volumetric loads g as illustrated in Figure 3.1.

Figure 3.1: Representation of a generic 3D body

Source: [23]
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For any given point in this generic solid, its 3D tension state can be described
as a 3x3 tensor TTT in 3.1, which components are expressed in terms of σij, where
i and j represent the direction alongside the stress, and the direction normal to
the face in which the stress is applied, respectively. Figure 3.2 shows a graphical
representation of this second-order Cauchy stress tensor.

TTT =

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 (3.1)

Figure 3.2: Graphical representation of Cauchy’s second-order stress tensor

Source: [23]

Fortunately, according to Cauchy’s Reciprocal Theorem, the tensor can be
reduced to only six terms, due to the rotation equilibrium present in this problem.


σxy = σyx = τxy

σxz = σzx = τxz

σzy = σyz = τyz

(3.2)

3.1.2 Fiber Reference System
For a given point in the laminate material it is possible to describe a local reference
system able to describe the orientation of the fiber θ(x′). To avoid any confusion,
the local axes are x′, y′, and z′. Where z′ lies alongside the thickness.

Usually, VAT laminae are represented by polynomials or splines. In this work,
the curvilinear path for the k-th lamina is defined accordingly to [9] in Equation
3.3, within the fiber reference frame shown in Figure 3.3.
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Figure 3.3: Reference system used in a VAT laminate path

Source: [10]

θk(x′) = ϕk + T k
0 + (T k

1 − T i
0) |x′|

d
(3.3)

Where ϕk, T k
0 , T k

1 and d are the inclination angle, the fiber angle at x = 0, the
fiber angle at x = d, and the characteristic distance on the x′ axis, respectively. In
most scenarios, ϕ = 0° or ϕ = 90°, which means that the reference system of the
fibers is either parallel or perpedicular to the global reference system, respectively.

3.2 Geometrical Relations
When addressing displacements, stresses, and strains, the global coordinate system
is used. Recalling the simplification done in Equation 3.2, these vectors uuu, σσσ, and ϵϵϵ
can all be written in Equations 3.4, 3.5, and 3.6, respectively.

uuuT (x, y, z) =
î
ux uy uz

ï
(3.4)

σσσT =
î
σxx σyy σzz τxz τyz τxy

ï
(3.5)

ϵϵϵT =
î
ϵxx ϵyy ϵzz γxz γyz γxy

ï
(3.6)

Where the superscript T denotes transposition. For the purposes of this work, it
is possible to consider the Infinitesimal Strain Theory, which assumes that the
displacements of the material particles of the body are much smaller than any of
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its dimensions. This assumption implies that the geometry of the initial body is
unchanged by the deformation inflicted on it, consequently making the equations
of continuum mechanics much simpler. Equation 3.7

ϵxx = ∂ux

∂x
= ux,x

ϵyy = ∂uy

∂y
= uy,y

ϵzz = ∂uz

∂z
= uz,z

γxz = ∂ux

∂z
+ ∂uz

∂x
= ux,z + uz,x

γyz = ∂uy

∂z
+ ∂uz

∂y
= uy,z + uz,y

γxy = ∂ux

∂y
+ ∂uy

∂x
= ux,y + uy,x

(3.7)

In matrix notation, the previous equation becomes:

ϵϵϵ = bbbuuu (3.8)

bbb =



∂
∂x

0 0
0 ∂

∂y
0

0 0 ∂
∂z

∂
∂z

0 ∂
∂x

0 ∂
∂z

∂
∂y

∂
∂y

∂
∂x

0


(3.9)

3.3 Equilibrium Equations
To be considered in equilibrium, the aforementioned body of mass M and volume
V must satisfy the Equations in 3.10.

∂σxx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
= gx

∂τxy

∂x
+ ∂σyy

∂y
+ ∂τyz

∂z
= gy

∂τxz

∂x
+ ∂τyz

∂y
+ ∂σzz

∂z
= gz

(3.10)

Where gx, gy, and gz are the unit body forces, such as inertia and weight. In a
more compact form they can be written in the form of vectors.
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bbbTσσσ = ggg (3.11)

Where bbb is the differential operator defined in Equation 3.9 and ggg is:

gggT =
î
gx gy gz

ï
(3.12)

3.4 Boundary Conditions
When regarding the generic body previously described, it is possible to define two
types of boundary conditions, those that constrain its mechanical characteristics
and those that constrain the geometrical ones. As these conditions are applied on
the surface S of the body, it is convenient to divide it into two regions Sm and Sg,
which refer to the mechanical BC and geometrical ones. Therefore, it is possible
to define equations for both surfaces. In the case of surface Sm, the mechanical
boundaries are: 

σxxnx + τxyny + τxznz = px

τxynx + σyyny + τyznz = px

τxznx + τyzny + σzznz = px

(3.13)

Where nnn = (nx, ny, nz) is the normal vector of surface Sm and ppp = (px, py, pz) is
the unit force vector also relative to Sm. In the case of surface Sg the geometrical
boundaries are: 

ux = ux

uy = uy

uz = uz

(3.14)

Where ux, uy, uz are the displacements set at the geometrical boundary. These
equations can also be written in compact form as:

uuu = uuu (3.15)

3.5 Constitutive Equations
In the field of engineering, a constitutive equation is a relation between two physical
quantities. For structural analysis is very important to define how mechanical
stress connects to strain. From the previous assumptions of small displacements,
it is also possible to use Hooke’s law to build a linear relattionship between these
physical quantities.
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σxx

σyy

σzz

σxz

σyz

σxy


=



C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66





ϵxx

ϵyy

ϵzz

γxz

γyz

γxy


(3.16)

Where CCC is the stiffness matrix for an orthotropic material, which is the case for
composites. Hooke’s Law can also be written in a more compact form as:

σσσ = CCCϵϵϵ (3.17)
In some cases it is also important to build the inverse of the stiffness matrix, the
flexbility matrix. As both of them are simmetric, they have the same non-zero
elements, as one can see on Equation 3.18.

C−1C−1C−1 = SSS =



S11 S12 S13 0 0 0
S12 S22 S23 0 0 0
S13 S23 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S55 0
0 0 0 0 0 S66


(3.18)

Furthermore, the flexibility terms of this matrix can be written explicitely in
function of moduli of Young Ei, moduli of shear Gij, and Poisson coefficients
νij. Once again, the inherent symmetry of this matrix makes it possible to have
Equation 3.19.

νij

Ei

= νji

Ej

(i, j = 1,2,3) (3.19)

Which finally results in the explicit flexibility matrix 3.20.

SSS =



1
E1

−ν12
E1

−ν13
E1

0 0 0
−ν12

E1
− 1

E2
−ν23

E2
0 0 0

−ν13
E1

−ν23
E2

− 1
E3

0 0 0
0 0 0 1

G23
0 0

0 0 0 0 1
G13

0
0 0 0 0 0 1

G12


(3.20)

Nevertheless, the stiffness matrix in Equation 3.16 is built considering a material
reference system. For this work it would be desirable to write it in the global
reference system. Hence, according to [37] to convert CCC into the global reference
system, it is conveniently rotated around the out-of-plane axis of the laminate, the
z axis. Equation 3.21 shows the final result.
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CCCglobal



C11 C12 C13 0 0 C16
C12 C22 C23 0 0 C26
C13 C23 C33 0 0 C36
0 0 0 C44 C45 0
0 0 0 C45 C55 0
C16 C26 C36 0 0 C66


(3.21)

Where the terms C16, C26, and C36 introduce a coupling bending and in-plane loads,
which means that these loads can generate a moment of forces. Still, Equation
3.21 is not sufficient to describe the behavior of a VAT laminate. It is necessary to
recall that the fibers have a variable orientation defined in its own reference system,
which implies that CCCglobal depends on the position where it is being calculated, it
depends on the cartesian in-plane coordinates x and y. Hence, the new stiffness
matrix C̃̃C̃C(x, y) is computed as in Equation 3.22.

C̃̃C̃C(x, y) = TTT (x, y)CCC(TTT (x, y))T (3.22)

Where TTT (x, y) is the rotation matrix that converts CCCglobal from global coordi-
nates to C̃̃C̃C(x, y) with fiber coordinates:

TTT (x, y) =


cos2 θ(x,y) sin2 θ(x,y) 0 0 0 sin 2θ(x,y)
sin2 θ(x,y) cos2 θ(x,y) 0 0 0 − sin 2θ(x,y)

0 0 1 0 0 0
0 0 0 cos θ(x,y) − sin θ(x,y) 0
0 0 0 − sin θ(x,y) cos θ(x,y) 0

sin θ(x,y) cos θ(x,y) − sin θ(x,y) cos θ(x,y) 0 0 0 cos2 θ(x,y)−sin2 θ(x,y)


(3.23)

And the final form of the Hooke’s Law in compact vector form becomes:

σσσ = C̃̃C̃C(x, y)ϵϵϵ (3.24)

3.6 Governing Equations

Until the present section, all the work developed was to define the problem of VAT
laminates. In summary, there are a total of 15 unknowns, 6 stress components, 6
strain components and 3 displacement components, for 15 equations, the equilibrium,
the boundary conditions, the geometrical relations and Hooke’s Law. A common
way to approach the solution of all these equations is by making substitutions to
express them solely in terms of the displacements uuu.
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3.6.1 Principle of Virtual Displacements: Strong Form
To begin the solution of this problem the Principle of Virtual Work (PVW) is used.
The PVW enounces that if a mechanical system is in equilibrium considering all
the loads and all of its constraints, then the sum of all the virtual work of the forces
applied to it are zero. In the specific case that the elastic problem is written in terms
of the displacements, the PVW is called Principle of the Virtual Displacements
(PVD). In this work, only static cases shall be contemplated, meaning that body
forces such as inertia should be disconsidered, resulting in Equation 3.25.

δLint = δLext (3.25)
Where δLint and δLext represent the internal elastic work done by external forces,
respectively. The δ is used to indicate an infinitesimal variation, or rather, a virtual
variation of the physical quantity. Developing even further, the internal work can
be expressed as sum of all the stress components multiplied by their corresponding
virtual strain and integrated over the mechanical body of volume V .

δLint =
Ú

V
(σxxδϵxx + σyyδϵyy + σzzδϵzz + τxzδγxz + τyzδγyz + τxyδγxy) dV (3.26)

Which in compact vector form becomes:

δLint =
Ú

V
δϵϵϵTσσσ dV (3.27)

Substituting Equation 3.7 into Equation 3.27 it is possible to obtain the internal
work in terms of the displacements vector uuu.

δLint =
Ú

V
δ(bububu)Tσσσ dV =

Ú
V
δ(uuuTbbbT )σσσ dV (3.28)

Next, it is necessary to obtain the integral form of elastic problem, also know as
the strong form. So, integrating the right hand side of Equation 3.28 by parts.Ú

V
δ(uuuTbbbT )σσσ dV = −

Ú
V
δuuuT (bbbTσσσ) dV +

Ú
S
δuuuT (InInIn

Tσσσ) dS (3.29)

Where InInIn is the direction cosine matrix that transforms σσσ into a reference frame
normal to the surface S at a generic point P. It can be explicitely written as:

InInIn =



nx 0 0
0 ny 0
0 0 nz

nz 0 nx

0 nz nx

ny nx 0


(3.30)
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As the internal work has been fully developed and expressed in terms of uuu, it
is now necessary to develop a similar procedure for the external work δLext. It is
defined as the sum of the volume forces ggg, the surface forces ppp, the linear loads
qqq and the puctual loads PPP , which all respectively act over the generic geometries
volume V , surface S, line L, and point Q of the mechanical body in question.
Hence, it is possible to write:

δLext =
Ú

V
δuuuTggg dV +

Ú
S
δuuuTppp dS +

Ú
L
δuuuTqqq dy + δuuuT

QPPP (3.31)

Inserting the definitions of the internal work in Equations 3.28 and 3.29, and
the definition of external work in Equation 3.31 into the initial definition of the
PVD in Equation 3.31, the following is obtained:

−
Ú

V
δuuuT (bbbTσσσ) dV +

Ú
S
δuuuT (InInIn

Tσσσ) dS =

=
Ú

V
δuuuTggg dV +

Ú
S
δuuuTppp dS +

Ú
L
δuuuTqqq dy + δuuuT

QPPP

(3.32)

Nevertheless, Equation 3.32 needs to be adjusted in such a way that all the
integrals are over the same domain. To achieve this, the equilibrium equation is
recalled. For a generic point P internal to the generic volume V :

bbbTσσσ = ggg (3.33)

Considering next the surface integral, the boundary conditions provide:

InInIn
Tσσσ = ppp (3.34)

Combining Equations 3.33, 3.34, and Hooke’s Law from Equation 3.17, it is possible
to write the differential matrix bbb, the unit body forces vector ggg, and the stiffness
matrix in fiber coordinates in terms of the unknown displacements uuu.

−bbbT C̃̃C̃Cbbbuuu = ggg (3.35)

Which can be conveniently written as a linear system of equations:

kkkuuu = ggg (3.36)

Where the new 3x3 matrix kkk is:

kkk = −bbbT C̃̃C̃Cbbb (3.37)
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kkk =

kxx kxy kxz

kyx kyy kyz

kzx kzy kzz

 (3.38)

This means that if the coefficients of matrix C̃̃C̃C are known, the linear system is
"strong", meaning its solution may be calculated in every point of the domain, or
rather, in every point of the body of mass M and volume V . But this poses the
disadvantage of only being valid when the body is continuous, which is not the case
for most real applications. Hence, an approximate solution known as the "weak"
form is developed.

3.6.2 Principle of Virtual Displacements: Weak Form
The weak form of the PVD can be obtained by approximating the generic body
into points connected by lines, or rather, nodes and edges. So the body instead of
being continuous, is discretely composed by a finite number of shapes built by these
so called nodes and edges. The first consequence of this discretization becomes
evident when defining the new vector of displacements, which can be rewritten as:

uuu = NNNUUU (3.39)

Where NNN is the matrix of shape funtions and UUU is the vector of nodal displacements.
This means that the displacement of the whole body can be approximated by the
displacement multiplied by a function that describes how one node is connected to
another. If the shape functions are chosen wisely, then by increasing the amount of
nodes representing the body, the displacements will tend towards the exact ones.
With Equation 3.39, it is possible to derive the defintion of the virtual external
work.

δLext = δUUUTPPP (3.40)

Where PPP is the vector of nodal forces.

PPP T =
î
Px1 Py1 Pz1 Px1 Py1 Pz1 ... PxNE PyNE PzNE

ï
(3.41)

And UUU is similarly written as:

UUUT =
î
ux1 uy1 uz1 ux1 uy1 uz1 ... uxNE uyNE uzNE

ï
(3.42)

Both vectors have a total of 3 × NNE components (3 times the total amount of
nodes). Furthermore, Equations 3.8 and 3.17 can be brought back with:
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ϵϵϵ = bbbuuu = bbbNNNUUU = BBBUUU (3.43)

σσσ‘ = CCCϵϵϵ = CCCBBBUUU (3.44)

Where matrixBBB is readily obtained by applying the differential vector bbb to the shape
function matrix NNN . It is also possible to apply the concept of virtual variations to
Equation 3.39, resulting in:

δuuu = NNNδUUU (3.45)

And defining the internal virtual work with these new discrete equations:

δLint = δUUUT
3Ú

V
BBBTCCCBBB dV

4
UUU = δUUUTKKKUUU (3.46)

Where the stiffness matrix KKK is:

KKK =
Ú

V
BBBTCCCBBB dV (3.47)

Once again with the principle of PVD from Equation 3.25, which equalizes the
internal and external works from 3.46 and 3.40, respectively:

δUUUTKKKUUU = δUUUTPPP (3.48)

Which can be convenintly simplified into the linear system:

KKKUUU = PPP (3.49)

Which represents the weak form of the equilibrium equation for a discrete solid
body.

3.7 Introduction to FEM
To simulate complex problems involving VAT plates, numerical methods such as
the Finite Element Method (FEM) become a necessity. Currently, it is the main
instrument used to approach structural analysis because it can be readily imple-
mented into the software. According to [38] the FEM is based on the subdivision
of the structure of interest in a finite number of simplified subdomains known as
elements, which are attached to each other through nodes. The main idea of this
discretization method is to solve the problem in every node of the domain. In
the field of structural mechanics, the displacement field is coupled to the nodal
displacements through the shape function, which is usually an algebraic polynomial.
Figure 3.4 shows a plane domain that has been discretized into triangular elements.
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Figure 3.4: Plane domain discretized into triangular elements

Source: [23]

As any other discrete method, the discretization of the domain done in the FEM
causes two main types of approximation errors:

1. Discretization. It is the error due to the finite subdivision of the domain,
which results in parts of it not being properly represented. As it can be seen in
Figure 3.4, not every single point of the plane domain is contemplated by the
tringular elements. But, intuitevely, by using smaller and smaller elements it
is possible to obtain a mesh so fine that it represents the domain with enough
precision.

2. Approximation. It is due to the simplifications introduced by the shape
function. As each of them merely attempts to approximate the interaction
between two nodes there comes an error associated to its order. This error
can hence be reduced by increasing the order of the functions used.

3.8 Equivalent Single Layer and Layerwise Meth-
ods

Before all the formulation for the Finite Element (FE) problem is presented it
is worth mantioning that in the literature there are 2 main approaches used to
analyze laminated structures, Equivalent Single Layer (ESL) and Layerwise (LW).
The first uses a technique that merges all the layers of the composite together,
adding their contributions when building the stiffness matrix. In this way, the
properties of every lamina are viewed as one. The clear disadvantage of this method
is that it is incapable of accurately representing the effects of the individual layers
at their interfaces. Contrary to this method, LW considers the effects of each
layer separately and guarantees the displacement coupling at their interfaces when
forming the stiffness matrix. Obviously, this method requires more computational
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effort as the resulting matrix is bigger. Figure 3.5 shows a sketch of the assembly
procedure of the stiffness matrix of the two methods.

Figure 3.5: Comparison between the stiffness matrices of ESL and LW methods

Source: [10]

This work instead proposes a different approach. It takes advantage of the
simplicity of the ESL theory to calculate global results and builds a refined 3D
local model to more carefully evaluate regions of interest, namely free-edges, or any
other low-safety-margin parts of the component.

3.9 Global Model FEM
In this work, the global model is built according to two theories, the Equivalent
Single Layer (ESL) and the Classical Laminate Plate (CLPT). The first simplifies
the problem by reducing a heterogeneous laminate composite into a statically
equivalent single-layer one, making the problem 2D. The second is an extension
of the Kirchhoff-Love plate theory used for thin-layer shells, which neglects the
influence of transverse shear stresses and deformations. The two of them combined
make computational analyses much more lightweight.

3.9.1 Governing Equations for Thin Plates under Bending

On the previous sections, the governing equations were presented in a general form,
able to describe the behavior of a generic VAT laminate. In this subsection, the
problem is specifically described for thin VAT plates, which is the case for the
global model. CLPT and ESL imply that at any given point of a thin plate the x
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and y displacements can be written as:

ux = −z∂uz

∂x
(3.50)

uy = −z∂uz

∂y
(3.51)

Where uz is also known as the plate deflection. The curvatures are given as the
rate of change of angular displacements:

κx = −∂2uz

∂x2 (3.52)

κy = −∂2uz

∂x2 (3.53)

κxy = −2 ∂
2uz

∂x∂y
(3.54)

In this theory it is particularly convenient to write the strain definitions in terms
of uz:

ϵx = ∂ux

∂x
= −z∂

2uz

∂x2 (3.55)

ϵy = ∂uy

∂y
= −z∂

2uz

∂y2 (3.56)

γxy = ∂ux

∂x
+ ∂uy

∂y
= −2z ∂

2uz

∂x∂y
(3.57)

Recalling the stress-strain relationship from the previous section it can be written
that: 

σx

σy

τxy

 =

C̃11 C̃12 C̃16
C̃12 C̃22 C̃26
C̃16 C̃26 C̃66



ϵx

ϵy

τxy

 (3.58)

Where C̃ij is the previously defined material matrix. Next, the bending moments
are presented as:

Mx =
Ú t/2

−t/2
zσx dz (3.59)

My =
Ú t/2

−t/2
zσy dz (3.60)

Mxy =
Ú t/2

−t/2
zτxy dz (3.61)
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Where t is the thickness of the plate. The governing equations may then be written
as: 

∂Qx

∂x
+ ∂Qy

∂y
+ q = 0

∂Mx

∂x
+ ∂Mxy

∂y
−Qx = 0

∂Mxy

∂x
+ ∂My

∂y
−Qy = 0

(3.62)

Where q is a transverse distributed load and Qx and Qy are transverse shear line
loads. Using all of the previous equation, it is possible to write all of the governing
ones in terms of the out-of-plane displacement uz.

3.9.2 FEM for Thin Plates under Bending
The most common type of element for this case is the rectangular, 12-degree-of-
freedom one. As the name suggests, it is a 2D rectangle with 4 nodes, each having
3 DoF, the vertical displacement and the rotations on x and y.

uuuT =
î
uzi θxi θyi

ï
(3.63)

Where the rotations are defined as:

θx = ∂uz

∂y
(3.64)

θy = −∂uz

∂x
(3.65)

As the plate element under development had 12-dof, a corresponding 12-term
polynomial needs to be selected as the displacement function that approximates
the uz in function of x and y:

uz(x, y) = a1 + a2x+ a3y + a4x
2 + a5xy + a6y

2 + a7x
3 + a8x

2y+
+a9xy

2 + a10y
3 + a11x

3y + a12xy
3 (3.66)

Where the constants aj are determined through specific boundary conditions of
each problem. The previous equation can also be expressed in matrix form as:


uz
∂uz

∂y

−∂uz

∂x

 =
C

1 x y x2 xy y2 x3 x2y xy2 y3 x3y xy3

0 0 1 0 x 2y 0 x2 2xy 3y2 x3 3xy2

0 −1 0 −2x −y 0 −3x2 −2xy −y2 0 −3x2y −y3

D


a1
a2
a3
...
a12


(3.67)
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Or rather in compact form:
ψψψ = PPPaaa (3.68)

Once the boundary conditions have been applied, and the constants aaa found, it is
possible to calculate the displacements UUU for every node with:

uz1
θx1
θy1
...

uzN

θxN

θyN


=


1 x1 y1 x2

1 x1y1 y2
1 x3

1 x2
1y x1y2

1 y3
1 x3

1y x1y3
1

...
0 −1 0 −2xN −yN 0 −3x2

N −2xN yN −y2
N 0 −3x2

N yN −y3
N




a1
a2
a3
...
a12


(3.69)

Which can be more easily written as:

aaa = DfDfDf
−1UUU (3.70)

Substituting Equation 3.70 into Equation 3.68:

ψψψ = PPPDfDfDf
−1UUU (3.71)

ψψψ = NNNUUU (3.72)
Where NNN = PPPDfDfDf

−1 is the shape function matrix. The last step is building the
stiffness matrix of the problem. This is achieved by defining the curvature matrix
QQQ:


κx

κy

κxy

 =
5 0 0 0 −2 0 0 −6x −2y 0 0 −6xy 0

0 0 0 0 0 −2 0 0 −2x −6y 0 −6xy
0 0 0 0 −2 0 0 −4x −4y 0 −6x2 −6y2

6


a1
a2
a3
...
a12


(3.73)

From the definition of aaa in Equation 3.70 it is derived:

κκκ = QQQDfDfDf
−1UUU (3.74)

κκκ = BBBUUU (3.75)
Where:

BBB = QQQDfDfDf
−1 (3.76)

Furthermore, from the moment-curvature relation comes:
Mx

My

Mxy

 = DDDBBBUUU (3.77)
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Where DDD is an orthotropic material matrix. Then finally the stiffness matrix can
be found with:

KKK =
Ú

S
BBBTDDDBBB dS (3.78)

As discussed in the previous development of the PVD, it can be written that:

KKKUUU = FFF (3.79)

FFF T =
î
fwi fθxi fθyi

ï
(3.80)

Where FFF is the vector of the nodal force and the x and y moments.

3.10 Local Model FEM
The formulation for the local model differs from the global one. It is much more
sophisticated as it takes the displacements computed in the global model and uses
them as inputs to calculate interlaminar stresses and strains. For this reason,
ESL and CLPT can no longer be used. Hence the Carrera Unified Formulation is
adopted as the foundation for the local element.

The local CUF element built using cubic interpolations (also called LD3), which
means that, for a single layer, it has 16 in-plane nodes and 4 out-of-plane ones,
reaching a total of 64. Figure 3.6 brings a graphical representation of this element,
where the blue nodes are the local in-plane ones, the red are thickness ones, and
the green ones are the ones from the global mesh (nodes 1, 4, 7, and 10). The
details of the LD3 interpolations are explicitely described in Appendix A, according
to the natural reference system r - s - z. It is important to notice that only one

Figure 3.6: Graphical Representation of the local CUF element

Source: [23]
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layer of in-plane elements are drawn to keep this sketch less polluted. In reality
there would be four layers of blue nodes. The coupling between the global and the
local models is done by retrieving the displacements and rotations from the global
nodes and using them as inputs to the cubic interpolation that builds the local
CUF element. Figure 3.7 shows how a 2D CQUAD square laminate plate element
with 2 layers is transformed into a 5 × 5 × 2 local mesh. Once again, the green
dots A and B represent the nodes coming from the global mesh.

Figure 3.7: Graphical Representation of the local CUF element

Source: [23]

3.10.1 Carrera Unified Formulation
The Carrera Unified Formulation (CUF) is a multi-model technique that allows
the assembly of the stiffness matrices of single elements through the use of the
fundamental nuclei ([39]). This method has an advantage in comparison to others,
because of its compatibility with a large class of models, such as an equivalent
single layer, layer-wise, and mixed formulation in a unified manner, which makes it
effective in a number of different analyses. According to the CUF, it is possible
to express the equation of the displacement field uuu(x, y, z) and express it as an
expansion of the primary unknowns, ([40]):

uuu(x, y, z) = Fτ (z)uuuτ (x, y) , τ = 1,2, ...,M (3.81)

Where uuuτ , M and Fτ (z) are the vectors of general displacements, the number of
the expansion terms, and the arbitrary cross-section depending on x and z. In
this work, the Fτ (z) adopts the format of the Lagrange Expansions for CUF-based
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models. For high-order models, the formulation of the N-th expansion takes the
form of:

uuu = F1uuu1 + F2uuu2 + F3uuu3 + ...+ FNuuuN (3.82)

Where:

Fτ = 1
4(r2 + rrτ )(s2 + ssτ ) if τ = 1,3,5,7, ...

Fτ = 1
2s

2
τ (s2 − ssτ ) + 1

2r
2
τ (r2 − rrτ )(1 − s2) if τ = 2,4,6,8, ...

Fτ = (1 − r2)(1 − s2) if τ = N

(3.83)

Where r and s range from -1 to +1 and rτ and sτ are the locations of he roots.
In this particular case, it is useful to write the displacements in terms of the top
and bottom surfaces as uuut = uuu1 and uuub = uuuN . Figure 3.8 shows the notations used
for referencing the top and bottom surfaces of a generic plate of thickness h, with
respect to the reference plane.

Figure 3.8: Notation used to define the top and bottom surfaces of a plate

Source: [41]

The introduction of this top and bottom notation into Equation 3.81 results in:

uuu = Ftuuut + Fτuuuτ + Fbuuub τ = 2,3, ..., N − 1 (3.84)

Where:

Ft = F1; Fτ = Fτ ; Fb = FN ; uuut = uuu1; uuub = uuun (3.85)
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3.10.2 Local FEM with CUF

It is now possible to bring the concepts developed by the PVD along the new
definition for the displacements from CUF, in order to obtain the FEM using CUF.
So, as usual, the generalized displacements are defined as functions of the nodal
vectors and their corresponding shape functions:

uuuτ (x, y) = Ni(x, y)uuuτi ; i = 1,2, ..., Nelem (3.86)

To obtain the general displacements in light of the previous discretization, Equation
3.86 is substituted back into Equation 3.81:

uuu(x, y, z) = Fτ (z)Ni(x, y)uuuτi ; τ = 1,2, ...,M ; i = 1,2, ..., Nelem (3.87)

Once again, the concept the PVD can be used to write the virtual displacements
as:

δuuu = Fτ (z)Ni(x, y)δuuuτi (3.88)

By substituting the geometrical relations previously developed, it is possible to
write the strain and stress vectors:

ϵϵϵ(x, y, z) = bbbNi(x, y)Fτ (z)uuuτi (3.89)

δϵϵϵ(x, y, z) = bbbNj(x, y)Fs(z)uuusi (3.90)

σσσ(x, y, z) = CCCNi(x, y)Fτ (z)uuuτi (3.91)

The stiffness matrix KKKT is then found by substituting the CUF and FEM approx-
imations defined in Equation 3.87 and the constitutive law of VAT laminates in
Equation 3.3 into Equation 3.92:

δ(Lint) =
Ú

V
δ(δϵTσσσϵTσσσϵTσσσ) dV = δqqqT

sjKKK
ijτsqqqτi (3.92)

Where V is the volume of the local model and KKKijτs is the stiffness matrix in the
form of a 3 × 3 fundamental nucleus. For clarity purposes, the terms kkkijτs

xx and
kkkijτs

xy are described as:
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kîjτs
xx = C11

Ú
t
FτFs dz

Ú
Ω
Ni,xNj,x dΩ + C44

Ú
t
Fτ,zFs,z dz

Ú
Ω
NiNj dΩ+

+C66

Ú
t
FτFs dz

Ú
Ω
Ni,yNj,y dΩ + C16

Ú
t
FτFs dz

Ú
Ω
Ni,xNj,y dΩ+

+C16

Ú
t
FτFs dz

Ú
Ω
Ni,yNj,x dΩ

(3.93)

kîjτs
yy = C12

Ú
t
FτFs dz

Ú
Ω
Ni,yNj,x dΩ + C66

Ú
t
Fτ,zFs,z dz

Ú
Ω
Ni,xNj,y dΩ+

+C45

Ú
t
Fτ,zFs,z dz

Ú
Ω
NiNj dΩ + C26

Ú
t
FτFs dz

Ú
Ω
Ni,yNj,y dΩ+

+C16

Ú
t
FτFs dz

Ú
Ω
Ni,xNj,x dΩ

(3.94)
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Chapter 4

Global-Local Approach

The groundwork that supports all the analyses performed has now been explained
and it is now possible to begin the real implementation of the theories presented.

This chapter shall present how the global model is built using software and
its results exported so that the local model finishes the interlaminar stress-strain
analyses. This process is presented in the form of a workflow for simulating VAT
laminates in FEMAP. The assembly of the global model is presented in two different
ways:

1. The splines method. It explains the current form through which a user can
use Femap to make analyses using Femap and the MUL@GL plug-in;

2. The API. It shows the development of an Application Program Interface
script (API) that overcomes the limitations of the Splines Method and enables
the simulation of VAT laminates.

Conversely, the local model is formulated exclusively via one method, which is
applied by the MUL2@GL plug-in.

4.1 Global-Local Methodology
The global-local strategy proposed in this paper roughly consists in two steps:

1. Global Analysis. The global model is built within the FEMAP Graphic
User Interface (GUI) considering NASTRAN’s laminated plate elements, then
it is solved for given boundary and loading conditions.

2. Local Analysis. The global results are collected and a plug-in known as
MUL2@GL developed by the MUL2 lab from Politecnico di Torino runs the
local analysis for the desired elements.

This two-step workflow can be broken down into a diagram, Figure ??:
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Figure 4.1: Global-Local methodology diagram

Source: The author

4.2 The splines method
The current way in which it is possible to generate the Global model of a VAT
laminate in FEMAP is by creating splines on top of your desired surface and having
the material orientation of its elements follow them. FEMAP cannot natively
receive variable angle fiber inputs for each individual layer of a laminate. For
example, if a user wants to create a simple model of a 1-meter length square plate
with only one layer oriented accordingly to Equation 4.1.

θ1
(x,y) = −45|x| + 90° (4.1)

The geometry is then created in FEMAP’s graphic environment. As in Figure
4.2. As Equation 4.1 cannot be directly input into FEMAP, it needs to be first
transformed into a parametric spline through the method of the Least Squares.
The equation that best approximates the desired orientation is found through the
Leist Squares Method for a third degree polynomial and is represented in Equation
4.2.

θ1
(x,y,z) ≈ −1.44x3 + 0.842x (4.2)

Having the spline equation, it can be loaded into FEMAP, and then the mesh is
created with two-dimensional square elements that have their material orientation
set accordingly to the approximated spline. Figure 4.3 shows the spline created in
the same plane as the plate and Figure 4.4 shows the meshed surface with square
elements and their material orientation is shown in the form arrows.
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Figure 4.2: Square plate with 1-meter side

Source: The author

Figure 4.3: Spline definition for the fiber orientation

Source: The author

4.2.1 Limitations
This method is limited in two ways, the approximation of the splines introduces
an additional error to the calculations; and with FEMAP’s interface alone, a user
cannot define an individual material orientation for each layer of a laminate.

By plotting both the exact angular function in Equation 4.1 and its approxima-
tion in Equation 4.2 it is possible to see in Figure 4.5 that despite being visually
similar, the functions produce a very significant error. The error represented in
bars is multiplied by a factor of 8, to improve its visualization. The most significant
one is at the boundary of the function, where the it can reach up to 4%. While
this is not an unacceptable error for the calculation of displacements, this might
propagate and generate larger errors in the calculation of stresses. It is worth
mentioning that this error might be even higher for other functions.
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Figure 4.4: Square plate with 1-meter side

Source: The author

Figure 4.5: Approximation error of the splines

Source: The author

Furthermore, as FEMAP uses NASTRAN as its solver, it is limited to the
PCOMP property card, which is used to define the property of laminate plate
elements. This card defines within itself; the material; the thickness; the fiber
angle; and the failure theory for each ply of the element. In particular, the fiber
orientation is set for each ply as a constant rotation from the material orientation of
the element, which means that each layer cannot have an individual angle function.

Hence, this issue can only be solved by creating an individual property card for
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each element of the structure and setting the stacking sequence for each element,
which is not feasible.

4.3 The API program

4.3.1 Introduction to the API
The aforementioned limitations can be readily overcome with an Application
Programming Interface (API) script. As FEMAP has its own library of API
commands, it is possible to write a script that can automatically create individual
property cards for each element, allowing the assignment of any fiber orientation for
any ply. Before writing the API script, it should be emphasized that the program
must be compatible with the MUL2@GL plug-in, which in practice means that 2D
square laminate plate elements should be used.

4.3.2 Breakdown of the program
The API program is able to automatically generate a PCOMP card for each
element by following user inputs. From a big-picture perspective the program can
be summarized by the following steps, which are also summarized in Figure 4.6:

• Step 1 - Collection of user inputs. The program prompts the user to
input the quantity, the material ID, the thickness, the angular orientation of
each ply, as well as, the mesh size.

• Step 2 - Surfaces selection. The program prompts the user to select the
surfaces to mesh.

• Step 3 - Surface Meshing. The program meshes the surface.

• Steps 4, 5, 6 - Element Loop. The program runs through all the elements
present in the surfaces that have been meshed and calculate the fiber orientation
in its geometrical center. After these calculations are done, the program creates
a property card for the element and assigns it.

As the element used in the mesh is a four-node square element, it does not
possess a central node. Hence, the material properties are calculated at its center
as it is shown in 4.7, which means that the fiber orientation of the laminate is
obtained through Equations 4.3 and 4.4.

Pcenter = G1,(x,y) +G3,(x,y)

2 (4.3)
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Figure 4.6: Diagram of the whole API program

Source: The author

θx,y = kxx+ kyy + k (4.4)

Where Gi are the coordinates of two opposing nodes and kx, ky and k are the
coefficients of the angular function. Figure 4.7 shows the element and its G1 and
G3 nodes as well as its orientation calculated at its center.

Figure 4.7: CQUAD4 element nodes indexing

Source: The author

4.4 The Local Model
The local model is built using the MUL2@GL tool developed by the MUL2 lab
from Politecnico di Torino. This tool uses two main files as inputs, the bulk file
which contains the NASTRAN cards which build the mesh, defining its material,
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properties, nodes, elements, boundary conditions loading conditions, load cases
and analysis types, and the results files, which basically contain the displacements.
Once the desired element for the analysis is selected, these entries are internally
treated in the MUL2@GL tool and the final outputs are the displacements, stresses,
and strains of each ply for that specific element.
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Chapter 5

Numerical Results

This chapter implements the theoretical formulations developed in the previous
ones into software applications. The main goal is to validate the global-local
workflow by comparing it to the results of other software and to other works in
the literature. The implementation of the global model takes place in the FEMAP
interface through the API program. Its nodal displacements and rotations are
obtained with NASTRAN and are fed to the local model, which is created in the
MUL2@GL plug-in. There are 3 case studies present, a thin plate under constant
pressure, whose results are compared to those of an in-house 3D Layerwise program,
a thick plate under the same loading condition, which is compared to the works
of Demasi, and a thin plate under stretching, which is again compared to the LW
software.

5.1 Thin Plate Bending

This section presents a simple case of a thin plate under bending. It is a starting
point for the analysis of a VAT plate, because it has the least amount of complica-
tions as it is thin, only has two layers, one mechanical load, and a simple geometry
with no stress concentrators. Its results are also very well know and behaved as it
possesses an analytical solution. Therefore, it is a adequate first step for measuring
the capabilities of the global-local workflow.

From a broad perspective, the analysis begins with a mesh convergence test to
determine the refinement of the global and local meshes that produces the closest
results to the benchmark. Once the mesh configuration is chosen, the next step is
to plot the final interlaminar stresses and compare them to an in-house software
that runs a full 3D layerwise model to get accurate results.
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5.1.1 FEM Model
Starting with the description of the model, it consists in a thin plate with aspect
ratio equals to 100. It is a 1 m square plate with 0.1 m thickness composed of 2
layers of a composite material, whose properties are shown in Figure 5.3. The fiber
orientation, or rather, the lamination used in the plate is shown in Equation 5.1.
The plate is clamped on all of its sides as represented by the letter C and subjected
to a constant pressure of 10 kPa applied uniformly throughout its top surface.
Figure 5.1 shows a sketch of the plate as well as its dimensions. The local results
will be measured on point Q = (−0.25,−0.25) m, and at point C = (0.0, 0.0) with
reference to the global coordinate system placed at the center of the plate.

Figure 5.1: Thin Plate under Bending

Source: The author
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(5.1)

Where the upper indexes T k indicate the layer number and d refers to the half-
length of the plate. The thickness is represented by h = 0.01 [m], the length is
a = 1 [m], and the width is b = 1 [m]. A visual representation of this layup can
be seen in Figure 5.2, where the orientation of the fibers for each layer is plotted
on the plate. It is worth specifying that, T 1

0 = 90° refers to the fiber orientation
at x = 0 of the plate for the first ply, and T 1

1 = 45° is the fiber orientation at
x = d = 0.05m. The same reasoning applies to T 2

0 and T 2
1 .
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Figure 5.2: Thin Plate layup and fiber orientation

Source: [41]

Figure 5.3: Thin Plate Bending - General material properties

Source: [41]

5.1.2 Mesh Convergences

In a mesh convergence analysis, the main objective is to find a refinement more
adequate for the study, which translates to finding an element size that provides
accurate results in a manageable amount of time. This balance is usually found
by solving the problem multiple times for increasingly finer mesh sizes to discover
the sensibility of the results in relation to the refinement. This problem often
proves to be rather difficult as the "true" results are not known. For this matter,
there are various methods in the literature that propose stopping criteria for mesh
convergences to help determine when the accuracy of the results is sufficient. In
this work, the results are considered acceptable when the relative error goes below
a certain threshold, which indicates that the physical quantity under evaluation
is converging to a certain value. For a global-local approach, there are 3 ways in
which the mesh can be refined, globally, locally in-plane, and locally out-of-plane.
Hence, the strategy developed is to run a global convergence to determine the more
adequate mesh and then proceed to the evaluation of the local one, in which the
in-plane and the out-of-plane components are evaluated.
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The global convergence is measured using the vertical displacement at Q =
(−0.25,−0.25) with a square mesh with increasing refinements ranging from 14×14
elements to as fine as 110×110. Figure 5.4 shows uz in function of the mesh sizes
on the primary axis and the percentual relative error in logarithmic scale on the
secondary axis. Its curves clearly show that the vertical displacement is tending to
a certain value and at around 50×50 the error falls below 0.1%. Then at 110×110
the error is down to 0.02%, indicating that the value of uz barely changed from the
previous refinement and hence convergence is achieved. The next step is to find the

Figure 5.4: Thin Plate Bending - Global Convergence uz

Source: The author

most appropriate size for the local mesh. Differently from the global one, the local
is only tested for 3 distinct sizes, 5×5, 7×7, and 9×9 as further refinements could
introduce problems that are discussed later in this work. The physical quantity
chosen this time is the out-of-plane stress σxz as this type of stress is the main
focus of the global-local approach. It was found that the results barely change in
this analysis, hence instead of plotting the mesh convergence, Figure 5.5 shows a
comparison between the σxz stresses for each of the refinements and it also plots
the benchmark of the in-house Layerwise software. The vertical axis is the stress
given in MPa and the x-axis is the normalized thickness of the plate 2z

h
. As can be

seen, the three curves overlap each other, indicating that the results have already
converged for the 5×5 size and further increments do not improve the results in a
reasonable sense. It is also noted that the global-local curves are close to the LW
ones.

The final test is to refine the out-of-plane mesh by using more LD3, which
means using more interpolation points in the thickness, or rather more nodes. It is
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Figure 5.5: Thin Plate Bending - Local In-plane Convergence Comparison

Source: The author

highlighted that 1xLD3 is the minimum value for the analysis and that it already
uses the best global mesh of 110×110 and the best local in-plane one of 9×9. Figure

Figure 5.6: Thin Plate Bending - Local Out-of-plane Convergence Comparison

Source: The author

5.6 shows a comparison between the different number of through-the-thickness LD3
for σxz. As can be seen, the increase in interpolation nodes makes the curves look
smoother, and more continuous. It is necessary to remark that this increase in
discretization does not significantly improve the values of σxz at the middle of the
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layers, but it provides a much better approximation to the layerwise benchmark
at the ply’s interfaces at 2z

h
= 0 and at the boundaries |2z|

h
= 1, as the nodal

computations are able to get closer to the boundary and represent its effects.
In summary, the configuration that yields the best results is the one that has

110×110 global mesh and 9×9×6LD3 local one and hence should be used in the
general computation of the results comparison of the stress field.

5.1.3 Results Comparison
In this section, the results are compared to those computed by an in-house program,
which uses 3D-elements for the calculation of the strain-stress field in all of the
thin plate’s domain using a Layerwise approach. This software is more accurate
than the global-local approach proposed at the expense of longer computational
times as it computes the interlaminar stresses for every element in the domain.

This comparison is carried out in two distinct points, Q = (−0.25,−0.25) [m]
and C = (0.0, 0.0). Figures 5.7, 5.8, and 5.9 show the in-plane stress components
in [MPa] at Q in function of the normalized thickness.

As can be seen, the results are quite close to the Layerwise ones. They are able
to replicate the layer change at 2z

h
= 0., but suffer from a distortion in shape and

at the boundaries. This effect is more pronounced in Figures 5.7 and 5.8 where
the global-local curves diverge from curvilinear Layerwise ones especially at the
top and bottom boundaries, |2z|

h
= 1.0. These differences are discussed further in

the chapter. The computation of in-plane shear σxy yields the best results as it
overlaps the benchmark in its completeness.

The out-of-plane stresses are then represented by Figures 5.10 and 5.11. These
results seem to replicate the general parabolic shape of the Layerwise ones as well
as the discontinuity at the layer change. It is worth mentioning that differently
from the in-plane results in Figures 5.7 and 5.8, the boundaries |2z|

h
= 1. now

match the benchmark, which was already expected, because in thin plates the
through-the-thickness stress components, should be theoretically nill at the outer
surfaces of the plate. Once more, the layer change at 2z

h
= 0. is replicated, even

though the general shape of the global-local is wider than the LW benchmark.
It is also necessary to notice that the normal stress component σzz has not been

provided because it is very prone to numerical errors. This is due to the fact that
for the specific case of a thin plate under pure bending σzz is analytically nill for all
points in the thickness, which causes the software computations to get very close
to zero and to plot curves with lots of distortions, and no physical meaning.

Now that the results of point Q = (−0.25,−0.25) have been discussed, it is
important to check whether the global-local model is also compatible with other
points in the plate, such as the one at the center of the plate, C = (0.0, 0.0). It
should be reminded that the numerical results in the plug-in are only calculated at
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the very center of the element because it is the only Gaussian point for the chosen
square element with 4 nodes. For this reason, the global mesh becomes 111×111
so that the center of the element matches exactly with point C. Figures 5.12, 5.13,
and 5.14.

Differently from the results from point Q, in C there are no shape distortions for
the in-plane stresses of Figures 5.12 or 5.13, only in the shear component 5.14 it is
possible to observe a difference at the boundaries. Also, at the center of the plate
the z-axis stresses σxz, σyz, and σzz are not shown for the same reason as before.
For a thin plate, these stresses should be nill at the plate center, as the plate
undergoes pure 2D tension at this point, making the computation of out-of-plane
components very prone to numerical errors and non-physical distortions.

Figure 5.7: EW Stress σxx at Q Figure 5.8: EW Stress σyy at Q

Figure 5.9: EW Stress σxy at Q
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Figure 5.10: EW Stress σxz at Q Figure 5.11: EW Stress σyz at Q

Figure 5.12: EW Stress σxx at C Figure 5.13: EW Stress σyy at C

Figure 5.14: EW Stress σxy at C
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5.1.4 Patch-wise Improvement
As could be seen in the previous section, the results are able to approximate the
general shape of the Layerwise benchmark and are numerically close to them,
but they still have room for improvement. The differences from the global-local
results could be attributed to the fact that the interpolation of the local element
does not have enough input data. It relies solely on the nodal displacements and
rotations collected at the 4 interface nodes. To improve the results, it is possible
to collect more information from the neighboring elements of the global model,
or rather a patch of neighbor elements. In this way, the interpolation would have
more parameters to work with and consequently the results would be improved,
especially at the boundaries |2z|

h
= 1.. This new approach is implemented by using

a patch of 9 global elements, the center one being the one of interest, and the
remaining 8 of its edge-sharing neighbors. Figures 5.15, 5.16, 5.17, 5.19, 5.18 show
the new results with the Patch-wise (PW) approach while comparing them to the
previous Element-wise (EW) as well as the Layerwise (LW) benchmarks.

It can be seen that the PW analysis is more accurate, as it superposes the LW
approach even at the boundaries of the in-plane stresses, fixing the EW problems.
Also, for the out-of-plane stresses the wider shape of the EW approach is narrowed
with PW almost matching the LW curves.

This comparison is also repeated for point C in Figures 5.20, 5.21, and 5.22,
where once again the PW results match the LW ones. The only component that
has not overlapped its respective LW curve is σxy, but the overall second-degree
behavior present in the EW curve is correctly fixed by PW, which is now linear like
the PW stress. The results from the out-of-plane components of stress are once
more not shown as they are too influenced by numerical errors as they approximate
zero for every node along the thickness of the plate at point C.
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Figure 5.15: PW Stress σxx at Q Figure 5.16: PW Stress σyy at Q

Figure 5.17: PW Stress σxy at Q

Figure 5.18: PW Stress σxz at Q Figure 5.19: PW Stress σyz at Q
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Figure 5.20: PW Stress σxx at C Figure 5.21: PW Stress σyy at C

Figure 5.22: PW Stress σxy at C
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5.1.5 Summary of the Thin Plate Bending
The conclusion is that the PW approach is able to achieve better results, which are
not only numerically closer to LW, but also shape-wise. The addition of more global
elements in the interpolation of the local ones did not make significant increases in
the computation time but enabled the calculation of more accurate results, which
is in line with the objective of this work. Both the EW and PW approaches are
currently unable to replicate the PW benchmarks when regarding σzz for points Q
and C as these values are very close to zero, although it is reminded that because
these results are nill, they would not be of interest in real engineering applications.
Regarding σxz and σyz at point C, the results are simply not shown due to their
proximity to zero and respective numerical errors. It is possible to affirm that the
global-local model is capable of computing the interlaminar stresses of a thin VAT
plate under static bending.

5.2 Thick Plate Bending
It would be desirable that the global-local workflow under development were able
to also work for thick VAT plates, meaning for plates with an aspect ratio of more
than 100 or at least close to 10. In this section, the boundaries to which the
workflow can correctly model VAT plates are tested by introducing a plate very
similar to the previous one to maintain a basis of comparison. The whole analysis
procedure remains the same as for the thin plate, firstly a mesh convergence is
performed to determine the best size configurations in terms of computational
time and accuracy and secondly a comparison is made. It is remarked that the
benchmark this time is not the in-house LW software, but the results from the
work of [41].

5.2.1 FEM Model
The thick plate in this case is exactly the same as the thin one, with the exception
of the thickness, which is 10 times higher. The material, lamination, loading, and
boundary conditions remain the same. Hence, the model consists in a thick plate
with aspect ratio equals 10, instead of the thin plate’s 100. It is a 1 m square plate
with 0.1 m thickness made of 2 layers of the same composite material. Its properties
are repeated in Figure 5.25. The fiber orientation, or rather, the lamination used
in the plate is shown in Equation 5.2 and does not differ from the thin one. The
plate is clamped on all of its sides as represented by the letter C and subjected
to a constant pressure of 10 kPa applied on its top surface. Figure 5.23 shows a
sketch of the plate as well as its dimensions. The results will be measured on point
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Q = (−0.25,−0.25) m, and at point C = (0.0, 0.0) with reference to the global
coordinate system placed at the center of the plate.

Figure 5.23: Thick Plate under Bending

Source: [41]
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Where the upper indexes T k indicate the layer number and d refers to the half-
length of the plate. The result of this layup can be seen in Figure 5.24, where
the orientation of the fibers is plotted on the plate. It is worth specifying that,
T 1

0 = 90° refers to the fiber orientation at x = 0 of the plate for the first ply, and
T 1

1 = 45° is the fiber orientation at x = d = 0.05m. The same reasoning applies to
T 2

0 and T 2
1 .

5.2.2 Mesh Convergences
To keep the similarities between the models of the thin plate and the thick one, most
of the mesh convergences are maintained. The first step is the global convergence
done by measuring the vertical displacement, the second step is to analyze the best
in-plane local mesh, and the final step is to verify the ideal number of LD3 in the
thickness.
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Figure 5.24: Thick Plate layup and fiber orientation

Source: [41]

Figure 5.25: General material properties of the Thick Plate

Source: [41]

Starting the battery of analyses, the global convergence measures the vertical
displacement at Q = (−0.25,−0.25) with a square mesh with increasing refinements
ranging from 14×14 elements to as fine as 110×110. Figure 5.4 shows uz in function
of the mesh sizes on the primary axis and the relative error in percentages on
the secondary axis. The curves clearly show that the vertical displacement is
converging to a certain value and at around 50×50 the error falls below 0.1% and
at 110×110 the error is down to 0.008%, indicating that the value of uz barely
changed from the previous refinement and indeed the mesh has converged. This
global convergence is notably similar to the thin plate one. The next step is to find
the most appropriate size for the local mesh. Differently from the global one, the
local is only tested for 3 sizes, 5×5, 7×7, and 9×9, as further refinements could
introduce some problems which are discussed later. The physical quantity chosen
this time is the out-of-plane stress σxz as this type of stress is the main focus of
the global-local approach.

To maintain the similarities of the thin plate analysis, Figure 5.27 shows the of
σxz for all the sizes in comparison to the in-house Layerwise software. The vertical
axis is the stress given in [MPa] and the x-axis is the normalized thickness of the
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Figure 5.26: Thick Plate Bending - Global Convergence

Source: The author

plate 2z
h

. This time, the results are very poor. Even though the global mesh showed

Figure 5.27: Thick Plate Bending - Local In-plane Convergence Comparison

Source: The author

convergence, the local mesh provided results that do not appear to converge. In
fact, the 5×5 mesh and the 7×7 one look flat and do not follow the parabolic
curvature of the LW results. The only similarity between any of the different curves
seems to be the discontinuity present at the layer change.

Upon further investigation, the poor quality of the results is attributed to the
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aspect ratio of the local element. Having a thicker plate, but using the same global
mesh means that the local element would have a thickness much higher than its
characteristic length, which would violate any premises of a thin or thick plate
theory. In fact, the aspect ratio of the local element in the thin plate case for a
110×110 global mesh and 9×9 local one would be given by Equation 5.3:

tthin

hthin

= 0.01
1

110·9
= 9.9 (5.3)

And the aspect ratio for the thick plate in the same conditions would be given by
Equation 5.4:

tthick

hthick

= 0.1
1

110·9
= 99 (5.4)

Which is indeed 10 times higher than the thin plate’s one. In light of this information,
another mesh convergence analysis is performed, but instead of considering the
vertical displacement uz, the σxz stress component is directly used, in order to
understand the sensibility of the stress component against the global mesh. Figure
5.28 shows the convergence analysis for increasing refinements of the global mesh
from 14×14 to 110×110 for σxz.

Figure 5.28: Thick Plate Bending - Local In-plane Convergence

Source: The author

Once again the results seem to converge for the more refined meshes, such as
86×86 and 110×110, but as has been previously observed, the comparison to LW
in Figure 5.27 shows that the stress plot is not good. Hence, another comparison
is made. The comparison done in Figure 5.29 uses a 14×14 mesh, to attempt to
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match the aspect ratio of the thin plate from Equation 5.3. Using this refinement
yields a much closer aspect ratio of t

h
= 13.6.

Figure 5.29: Thick Plate Bending - Local Convergence Comparison

Source: The author

From Figure 5.29 it is observed that the 14×14 mesh is indeed the closest to LW
and the finer ones are worse and worse. With this comparison it becomes clear that
very high aspect ratios originating from finer meshes such as 62×62 and 110×110
drive the calculations out of the scope of the theoretical premises, resulting in
poor quality results. Using a 14×14 mesh it is possible to repeat the test from
5.27. Figure 5.30 shows the local in-plane mesh comparison for the coarser mesh of
14×14.

Hence, it is found that the most suitable local in-plane mesh should be 9×9. It
is worth mentioning that the σxz already converges for 7×7, but 9×9 is chosen to
maintain some parallelism with the thin plate case and the computational time
was not increased significantly.

The final test is to refine the out-of-plane mesh by using more LD3, which means
using more interpolation points in the thickness per layer. It is worth mentioning
that 1LD3 is the default value for the analysis and that the analysis incorporates
the best global mesh of 14×14 and the best local in-plane one of 9×9.

Just like for the thin plate of Figure 5.6, Figure 5.31 shows a comparison between
the different refinements for σxz. The increase in interpolation nodes makes the
curves look smoother, more continuous. It is necessary to remark that the values
of σxz do not change much in the middle of the layers, they show a much better
approximation to the layerwise benchmark at the plies’ interfaces at 2z

h
= 0, and at

the boundaries |2z|
h

= 1.
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Figure 5.30: Thick Plate Bending - Local Convergence Comparison

Source: The author

Figure 5.31: Thin Plate Bending - Local Out-of-plane Convergence Comparison

Source: The author

In summary, the configuration that yields the best results is the one that has
14×14 global mesh and 9×9×6xLD3 local one and hence should be used in the
general computation in the results comparison of the stress field. It must also be
noted that by using a 14×14 global mesh, the results are no longer as accurate as
if a 110×110 were used and as Figure 5.28 shows, the coarser mesh has a difference
in σxz of around 13% in comparison to the finer one.
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5.2.3 Results Comparison
In this section, the results are compared to those computed by [41], who uses 3D
elements for the calculation of the strain-stress field in all of the thick plate using
a PVD approach. The results are compared only in point Q = (−0.25,−0.25)
m. The first comparison is done for the vertical displacements in Figure 5.32,
whose benchmark results are from [41] that compares LD2, LD3 and high-order
3D elements for the global mesh. Where the LD2 results are of second-order 3D

Figure 5.32: Comparison of vertical displacements

Source: The author

elements, LD3 results are of third-order 3D elements and Demasi’s results are
of high-order 3D elements, while the NASTRAN results only used first-order 2D
elements. As the comparison shows, the vertical displacements from NASTRAN’s
global model are very similar to those found in the reference as the highest relative
difference is at 4.6% in comparison to a high-order model. It is worth mentioning
that although the NASTRAN results come from a relatively coarse 14×14 mesh
the results are still quite good and this relative difference would be even lower if
the global mesh used were 110×110. Figures 5.33, 5.34, and 5.35 show the in-plane
stress components in [MPa] at Q in function of the normalized thickness. As can
be seen, the results are not so close to the Layerwise ones. Despite having the same
order of magnitude, they show the same problem as in the thin plate results. The
global-local curves are distorted at the boundaries. Furthermore, 5.34 does not
match LW in regards to the layer discontinuity. This problem is addressed further
in this chapter with the PW improvement. Next, Figures 5.36 and 5.37 represent
the out-of-plane stresses.

The results here are better than the in-plane ones and seem to replicate the
general parabolic shape of the Layerwise ones, but still show some degree of
distortion. It is worth mentioning that differently from the in-plane results the
boundaries |2z|

h
= 1. now match the benchmark, which was already expected,

because in plates the through-the-thickness stress components, meaning the stresses
on the outer surfaces, should be nill. Once again, the layer change at 2z

h
= 0. is

replicated, even though the general shape of the global-local is wider than the
benchmark. It is also necessary to notice that the normal stress component σzz has
not been provided again, because it was very prone to numerical errors. This is
due to the fact that for the specific case of a thin plate under pure bending σzz is
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Figure 5.33: EW Stress σxx at Q Figure 5.34: EW Stress σyy at Q

Figure 5.35: EW Stress σxy at Q Figure 5.36: EW Stress σxz at Q

Figure 5.37: EW Stress σyz at Q
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analytically nill, which causes the software computations to get very close to zero
and to plot curves with lots of distortions, and hence no physical meaning.

5.2.4 Patchwise Improvement
In the same manner, as for the thin plate, the results are able to approximate
the general shape of the Layerwise benchmark and are numerically close to them,
but they still have room for improvement. The differences from the global-local
results could be attributed to the fact that the interpolation of the local element
does not have enough input data. It relies solely on the nodal displacements and
rotations collected at the 4 interface nodes. To improve the results, the Patch-wise
analysis is repeated for the thick plate. In this way, the interpolation would have
more parameters to work with and consequently improve the results, especially
at the boundaries |2z|

h
= 1.. This approach is implemented by using a patch of 9

global elements, the center one being the one of interest, and the remaining 8 its
edge-sharing neighbors. It is worth mentioning that these 9 elements are further
divided into 9×9 local elements. Figures 5.38, 5.39, 5.40, 5.42, 5.41 show the new
results with the Patch-wise (PW) approach while comparing them to the previous
Element-wise (EW) and the Layerwise (LW) benchmarks.

As can be seen, the PW analysis is more accurate, it superposes the LW approach
even at the boundaries, especially for the in-plane stresses. Also, for the out-of-plane
stresses the general wider shape of the EW approach is fixed with PW, it resembles
the LW benchmark more closely. Furthermore, even the out-of-plane stress σzz can
now be accurately represented, confirming that the PW results indeed produce
better results.

5.2.5 Summary of the Thick Plate Bending
Unlike the thin plate, the thick plate under bending requires a better understanding
of the sensibility of the mesh size. The results are improved by further refinements
of the global mesh, but a lot of attention must be paid to the aspect ratio of the
local element, as a small element with a correlated high aspect ratio can introduce
border effects that distort the stress curves and are dominated by numerical errors.
Better quality results are obtained by maintaining the aspect ratio close to 10,
matching the one from the thin plate. The results closest to the reference are
obtained with a global mesh of 14×14 and a local one of 9×9×6LD3 with the use
of the PW approach.

68



Numerical Results

Figure 5.38: PW Stress σxx at Q Figure 5.39: PW Stress σyy at Q

Figure 5.40: PW Stress σxy at Q Figure 5.41: PW Stress σxz at Q

Figure 5.42: PW Stress σyz at Q Figure 5.43: PW Stress σzz at Q
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5.3 Thin Plate Stretching
In this section, some alterations are made to allow the computation and further
comparison of free-edge stresses. This type of analysis is of interest because
anisotropic laminates that are subject to humidity, temperature, or mechanical
loads develop a distinct form of failure that is characterized by a severe strain
concentration at a narrow boundary region nearing their free-edge, which usually
leads to the delamination and further failure of the composite. This problem
is quite complex and many commercial software are not able to compute them.
NASTRAN for example does not take free-edge stresses into account when dealing
with laminates, but the MUL2@GL plug-in does.

5.3.1 FEM Model
As the previous thin and thick plates were both clamped on all of its edges there
were no free-edge effects, so in this example, the plate is clamped only on its left
edge and pulled with a constant displacement of ux = 0.0125 [m] on its right edge.
Also, the lamination is changed to a symmetric one described by Equation 5.5 to
further test the global-local workflow. The only detail that remains unchanged from
the two previous plate examples is the material properties table, in Figure 5.45.
Two points are chosen for the analysis, point C = (0.0, 0.0) at the plate’s center
and E = (0, 0.125) at the top edge. The first is used as means to check whether
the MUL2@GL plug-in works for this new configuration of geometry, load case,
and lamination. The latter is where the free-edge effects are prominent and should
be computed. Figure 5.44 shows a brief sketch of the thin plate under stretching
and its computation points, as well as details of its lamination. Where a, b, h, and

Figure 5.44: Thin Plate under Stretching model

Source: The author

tply are the length, width, thickness, and ply thickness of the plate, respectively.

70



Numerical Results

Figure 5.45: Material properties of the Thin Plate under Stretching

Source: The author
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It is worth highlighting that the laminate in question is symmetric as the first
and fourth layers have the same fiber orientation as well as the second and third,
which means that the in-plane stresses computed later in the section should all be
symmetric in respect to the midplane of the plate.

5.3.2 Mesh Convergences
As usual, the mesh convergences are composed of three consecutive parts, a global
one, a local in-plane one, and a local out-of-plane one. As this model does not
possess vertical displacements, due to the nature of the loading cases and boundary
conditions, the first convergence is measured with the in-plane displacements ux

and uy to guarantee the accuracy of the global model. As the main objective here
is to compute the free-edge stresses, the mesh convergence is measured at point
E = (0.0, 0.125) [m] rather than any other point in the plate.

As depicted in Figure 5.46, the x-displacement already shows relative errors
in the order of 0.02% in the very first refinement from 15×15 to 27×27 and it
continues to decrease until 0.002% for the 111×111 mesh. The usual inverse
negative exponential curve of ux alongside the decreasing relative error indicates
that global convergence has been reached. In the same way as ux, uy also shows a
convergent pattern. Figure 5.47 shows that the secondary axis displacement has a
1% relative error for the first iteration at 27×27, which further decreases to 0.01%)
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Figure 5.46: Thin Plate Stretching - Global Convergence ux

Source: The author

at the 111×111 global mesh. The displacement curve also has the exponential
pattern which indicates convergence. As the relative error is low for both in-plane
displacements ux and uy even for the very first mesh refinements, it is possible to
say that any mesh within the considered range of 15×15 to 111×111 may produce
acceptable results from a global perspective. As previously observed in the thick

Figure 5.47: Thin Plate Stretching - Global Convergence uy

Source: The author

plate section, the achievement of global convergence in the model is not enough to
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guarantee acceptable results, as a too-refined model results in local elements with
aspect ratios outside the domain of plate theory. For the free-edge the local in-plane
convergence also shows a very high sensibility to alterations in the refinement,
meaning that the usual 5×5, 7×7, and 9×9 local meshes provided very inconsistent
results. For this reason, this analysis is not shown. Conversely, the out-of-plane
convergence in Figure 5.48 shows results consistent with previous sections. As

Figure 5.48: Thin Plate Stretching - Global Convergence uy

Source: The author

can be seen on Figure 5.48, the increasing number of LD3 used in the thickness
provides smoother curves, which also begin to reveal a peak in σxz stress as the
computational nodes approach the layer transition in 2z

h
= −0.5 and in 2z

h
= 0.5

as the out-of-plane nodes are computed closer to the boundaries for an increasing
number of LD3 in the model.

5.3.3 Results Comparison
In this section, the results are once again compared to the in-house LW software,
the same used for the thin plate under bending case. As has been previously
mentioned, mesh convergence for the local element is particularly difficult to find,
because the local mesh is very influential in these computations, therefore many
configurations of global and local refinements are tested and among these many
ones, the 13×13 global mesh and 5×5×2LD3 local one provide the results closest to
the LW benchmark for point C, but for the free-edge point E, the best combination
was 63×63 global mesh and 7×7×2LD3 local. This indicates that the free-edge
effects need a more refined global mesh to correctly calculate its effects. It is
important to highlight that the 2LD3 configuration is chosen because more LD3 per
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layer would pollute the graphics with too many points, making them harder to read,
also it is found that the use of 6LD3 for this scenario would only make the curves
smoother and not produce a significant improvement in the stress computations.

Figures 5.49, 5.50, and 5.51 show the in-plane stresses calculated at point
C = (0.0, 0.0) in function of the normalized thickness. The out-of-plane stresses
are not shown, because they all tend to zero and hence are subject to numerical
errors and possess little to no physical relevance.

It is possible to see that Figures 5.49 and 5.50 are quite flat, indicating that the
stress distribution along the thickness of the plate is approximately constant, which
was expected since a unidirectional edge pull should produce a rather uniform
tension among the cross-section of a thin plate. Nevertheless, the tensions σxx and
σxy are not perfectly constant through the thickness as there are discontinuities
at the layer transitions at |2z|

h
= 0.5. Figure 5.51 accurately depicts the effect of

the symmetric layup as σxy is positive in the first and last layers, which share the
same fiber orientation, and negative for the middle layers. It is further remarked
that there is no noticeable transition at 2z

h
= 0.0, because the fibers have the same

orientation in the third and second layers.
Next, the computations are made at the free-edge point E = (0.0, 0.125). Figures

5.52, 5.53, and 5.54 show the in-plane stresses for this point in function of the
normalized thickness. It is noted that for the out-of-plane stresses σxz and σyz

become significant in the free edge and are therefore evaluated.
In Figures 5.52, 5.53, and 5.54 it is possible to observe that the global-local

plug-in produces results quite close to those of the benchmark, especially for the
shear stress σxy. When it comes to σxx and σyy the global-local curves seem to
represent the general shape of the LW software, except for the middle part |2z|

h
≤ 0.5,

where they have opposing curvature. It is highlighted that even though σyy is 2
orders of magnitude lower than the other in-plane components σxx and σxy, its
global-local curve visually approximates the LW benchmark, albeit with a high
relative error.

Next, Figures 5.55 and 5.56 present the out-of-plane stresses. Once again, it
is reminded that the σzz is not shown because its values approach zero and the
computations are heavily affected by numerical errors.

Upon observation, the out-of-plane stresses from Figures 5.55 and 5.56 do not
match their respective benchmarks. The differences in the σyz stress component
could be attributed to numerical errors since it is orders of magnitude lower than
the ones, but the same can not be said about σxz, which appears to be flat in
comparison to the benchmark and does not seem to have a similar shape in the
sense that the noticeable layer transition present in the LW benchmark is not seen
in the global-local curve.
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Figure 5.49: EW Stress σxx at C Figure 5.50: EW Stress σyy at C

Figure 5.51: EW Stress σxy at C
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Figure 5.52: EW Stress σxx at E Figure 5.53: EW Stress σyy at E

Figure 5.54: EW Stress σxy at E

Figure 5.55: EW Stress σxz at E Figure 5.56: EW Stress σyz at E
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5.3.4 Patch-wise Improvement
Given the dissimilarities from the out-of-plane stresses with their respective bench-
marks, the Patch-wise approach aims to introduce more input points to the local
model and therefore to improve the numerical interpolation within the local model.
Figures 5.57, 5.58, and 5.59 compare the PW stresses with the EW ones for point
C. It is found, albeit not shown, that the PW results for a 13×13 global mesh
are not satisfactory, instead, the stresses computation works best for a PW with a
global mesh of 63×63 and 5×5×2LD3, which is put in direct comparison to the
EW 13×13 and 5×5×2LD3 mesh results.

As can be seen in the EW-PW comparison, the results of the latter do not show
the same significant improvement that is observed for the thin and thick plates
under bending. While there is an improvement in the computation of σyy, there is
a deterioration in both σxx and σxy, therefore it is concluded that the PW approach
has not been fruitful for the stress computations at point C.

At the free edge, the results have also not improved by a significant margin.
Figures 5.60, 5.61, and 5.62 show the in-plane stresses at the free-edge.

As the graphics show, the PW approach has also not improved the computations,
in fact, all three σxx, σyy, and σxy have moved farther away from the benchmark,
especially σyy in Figure 5.61. Lastly, the out-of-plane stresses are computed in
Figures 5.63 and 5.64.

Once again, the PW does not show signs of improvement. In Figure 5.64 the
order of magnitude of σyz is significantly lowered from EW to PW, but it is still
drastically different from the benchmark. In Figure 5.63 the results are also not
improved.
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Figure 5.57: PW Stress σxx at C Figure 5.58: PW Stress σyy at C

Figure 5.59: PW Stress σxy at C
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Figure 5.60: PW Stress σxx at E Figure 5.61: PW Stress σyy at E

Figure 5.62: PW Stress σxy at E

Figure 5.63: PW Stress σxz at E Figure 5.64: PW Stress σyz at E
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5.3.5 Summary of the Thin Plate Stretching
In summary, the thin plate under stretching proved to have a much higher sensitivity
to the mesh size than the thin and thick plates under bending. Even though global
convergence is found with the ux and uy displacements, this does not guarantee
good local results, in fact, for all the σij stresses computed the best results are
found by searching for the combination of global and local meshes concurrently.
Nevertheless, the thickness local convergence found that an increasing number of
interpolation nodes results in smoother stress curves and more accurate results at
layer transitions and boundaries. When it comes to the EW results at point C,
it can be said that even though the stress curves do not overlap their respective
benchmarks, the global-local curves calculated by the plug-in are still numerically
close to them, but the same can not be affirmed of the stresses at the free-edge.
Unlike the previous plates, the PW approach does not bring any benefits in terms
of numerical results for any of the points under evaluation, C or E. In some cases
it provided improvements, but in others, it moved stress curves farther away from
the LW benchmark.

The main hypothesis to explain the reason behind the discrepancy in results is
the difference in orders of magnitude of the stresses. Generally speaking, any x-axis
stress component, meaning σxx, σxy, and σxz is much higher than the other ones σyy,
σyz, and σzz, which is expected since the plate is stretched along x. This difference
could be introducing numerical errors in the calculations of the global-local plug-in,
but nevertheless, further work is necessary to investigate and improve the free-edge
calculations of the global-local workflow.
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Conclusions

The objective of this work was to develop a workflow that made the global-local
analysis of VAT composite laminates possible. To this extent, an API script was
written to automatically build global models through NASTRAN cards. This
workflow consisted in the creation of a global model, whose simulation results were
input into a local one for the computation of the laminar stresses. The global
models were built within the FEMAP environment using two different techniques,
the Splines Method and the API script. The first was incapable of correctly
modeling the curvilinear paths inherent to VAT laminates, hence the possibility of
its implementation was disregarded completely. The latter, which required more
time and effort to be developed, was proven to build an accurate global model with
the correct tow path approximated for each element. The local model was assembled
within the MUL2@GL plug-in of the MUL2 lab of Politecnico di Torino. This
in-house tool produced high-order, local, 2D laminate plate, CUF elements that
interpolated the vertical displacement fields from the global model with Lagrange
Expansions to accurately compute the interlaminar stresses. Finally, this workflow
was tested against three different scenarios, a thin plate under bending, a thick
plate under bending, and a thin plate under stretching. The first was a basic
example to check whether the global model was able to work in combination with
the local one. The second tested the limits of the local model by checking whether
the workflow was able to work with thick plates. In this example, it was also found
that the quality of the local model is very sensitive to the element size. The third
and last case intended to test the workflow for the computation of free-edge results.
In summary, the global-local workflow was able to replicate the results of the thin
plate under bending, especially when the Patch-wise approach was introduced.
For this case, both laminar and interlaminar stresses matched with the Layerwise
benchmark used for comparison. The stress distributions calculated for the thick
plate under bending also matched the ones from its respective benchmark, the
results of the work from Demasi. With this example, it was found that the local
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element must respect an aspect ratio threshold to produce accurate results, as a
mesh that is too refined might output accurate global results, but the computation
of the local model deteriorates as its elements become too relatively thick and
plate theory begins to fail to lead to numerical errors and results that no longer
represent the actual physical behavior of the material. The workflow was finally
challenged with a thin plate under stretching. The results at the center of the plate
proved to match the Layerwise benchmark, but the computations at the free edge
did not as the interlaminar stresses shared little to no resemblance with the LW
stress curves. The main explanation for these differences could be that the orders
of magnitude of the stress components were very distinct, for instance, σxx and
σxy were often times 100 times higher than other components such as σyy and σyz.
These discrepancies could have led to significant numerical errors, which nullified
the results. Upon further investigations, it was also found that even the Patch-wise
approach that had improved the results of the previous plates was also ineffective
as it did not approximate the stress computations to the benchmark. Further work
needs to be conducted in order to understand and correctly model the effects of
the free edge in VAT laminate plates.
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Appendix A

Cubic Interpolations of the
Local CUF Element

Regarding the natural reference system on Figure 3.6 the cubic interpolation for
the thickness domain z is:

l1 = − 9
16z

3 + 9
16z

2 + 1
16z − 1

16
l2 = +27

16z
3 − 9

16z
2 − 27

16z + 9
16

l3 = −27
16z

3 − 9
16z

2 + 27
16z + 9

16
l4 = + 9

16z
3 + 9

16z
2 − 1

16z − 1
16

(A.1)
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Cubic Interpolations of the Local CUF Element

Where the indexes li refer to the number of the node on z. The in-plane cubic
interpolation is based on a 16-node Lagrange polynomial:

L1 = (r − 1)(1 − 9r2)
16

(s− 1)(1 − 9s2)
16

L2 = 9(1 − r2)(1 − 3r)
16

(s− 1)(1 − 9s2)
16

L3 = 9(1 − r2)(1 + 3r)
16

(s− 1)(1 − 9s2)
16

L4 = (r + 1)(9r2 − 1)
16

(s− 1)(1 − 9s2)
16

L5 = (r + 1)(9r2 − 1)
16

9(1 − s2)(1 − 3s)
16

L6 = (r + 1)(9r2 − 1)
16

9(1 − s2)(1 + 3s)
16

L7 = (r + 1)(9r2 − 1)
16

(s+ 1)(9s2 − 1)
16

L8 = 9(1 − r2)(1 + 3r)
16

(s+ 1)(9s2 − 1)
16

L9 = 9(1 − r2)(1 + 3r)
16

(s+ 1)(9s2 − 1)
16

L10 = (r − 1)(1 − 9r2)
16

(s+ 1)(9s2 − 1)
16

L11 = (r − 1)(1 − 9r2)
16

9(1 − s2)(1 − 3s)
16

L12 = (r − 1)(1 − 9r2)
16

9(1 − s2)(1 − 3s)
16

L13 = 9(1 − r2)(1 − 3r)
16

9(1 − s2)(1 − 3s)
16

L14 = 9(1 − r2)(1 + 3r)
16

9(1 − s2)(1 − 3s)
16

L15 = 9(1 − r2)(1 + 3r)
16

9(1 − s2)(1 + 3s)
16

L16 = 9(1 − r2)(1 − 3r)
16

9(1 − s2)(1 + 3s)
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(A.2)
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