
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Cybersecurity Track

Master’s Degree Thesis

Validating a Threat Model for
Smart Home Gateways

Supervisors

Prof. Fulvio CORNO

Dott. Luca MANNELLA

Candidate

Antonino SANTA ROSA

JULY 2023

Summary

The Internet of Things (IoT) is an interconnected network of devices that com-
municate and share data with each other over the internet. Among them, Smart
Home systems give users the possibility to connect and control, within a residential
environment, connected devices like smart bulbs, plugs, sensors, and more.

This master’s thesis focuses on the validation of a threat model that applies
to add-ons for Smart Home Gateways that are extensible through add-ons. A
Smart Home Gateway is a device, or a software solution, used to control the
Smart Home and its smart devices. The Smart Home Gateway investigated in
this document is WebThings. It is an open-source project that was incubated at
Mozilla for four years and then spun out as an independent project.

The starting point of this work is an already existing threat model that high-
lights some possible threats that can be introduced into a Smart Home Gateway
by add-ons developed for it. To demonstrate that such threats can happen even on
WebThings, a set of Proofs of Concept (PoCs) add-ons were produced.

Moreover, to demonstrate that those PoCs can also be the outcome of an in-
experienced or careless programmer, they were validated through two different
surveys. The first one, involves a team of experts, while the second one involves a
larger population of users. The goal of the first survey was to evaluate whether
the developed Proofs of Concept can reasonably be considered not malicious by
design. In this regard, only the PoCs considered reasonable by the experts were
then further validated through the second survey.

Thanks to this second survey, we collected some insights useful to understand
whether these malfunctioning inside the developed code were easy to spot and/or
consider accidental. Therefore, the preliminary results confirm that some of the
presented threats can occur even if the programmer has no malicious intent.

ii

Table of Contents

List of Tables vi

List of Figures vii

Glossary x

Acronyms xi

1 Introduction 1

2 Background 4
2.1 Smart Home Gateways . 4

2.1.1 Web Things . 4
2.1.1.1 Gateway . 5
2.1.1.2 Framework . 7
2.1.1.3 Cloud . 7

2.1.2 Gateway Architecture . 7
2.1.2.1 Server Side Components 7
2.1.2.2 Client Side Components 8

2.1.3 Add-ons . 9
2.1.3.1 Adapter add-on . 9
2.1.3.2 Notifier add-on . 9
2.1.3.3 Extension add-on 10

2.2 Threat Modeling . 10

3 Developed Proofs of Concept 13
3.1 Reference Threat Model . 13

3.1.1 Confidentiality . 13
3.1.2 Integrity . 14
3.1.3 Availability . 14
3.1.4 Authentication . 15

iv

3.1.5 Authorization . 15
3.1.6 Non-repudiation . 15

3.2 Proofs of Concept . 16
3.2.1 Premise . 16
3.2.2 T1 & T2 - weather-adapter 17

3.2.2.1 T1 - Demonstration 18
3.2.2.2 T2 - Demonstration 20

3.2.3 T3 - lights-off-extension 21
3.2.4 T4 - smart-plugs-adapter 23
3.2.5 T5 - things-off-extension 25
3.2.6 T6-v1 - power-cons-extension 27
3.2.7 T6-v2 - plug-smart-adapter 28
3.2.8 T7 - things-off-extension 31
3.2.9 T8 - smart-plug-adapter 32

3.3 Limitations . 34
3.3.1 T9, T10, T11 . 34
3.3.2 Devices . 35

3.4 Designing a new threat . 35

4 Case Studies 37
4.1 Experts Survey . 37

4.1.1 Results . 38
4.1.1.1 Comments . 38
4.1.1.2 Other Proofs of Concept 39

4.2 User Surveys . 39
4.2.1 Results . 40

5 Conclusions 45
5.1 Future Works . 46

Bibliography 47

v

List of Tables

3.1 Exploited threats . 34

4.1 Experts’ survey result . 38
4.2 Content of the user surveys . 40
4.3 Survey compilations . 41
4.4 User study results . 42
4.5 SHG background statistics . 43
4.6 Participants’ nationality . 43
4.7 Surveys sharing platforms . 44

vi

List of Figures

1.1 Typical IoT Environment . 1
1.2 Estimated connected devices per world population [1] 2
1.3 Smart Home components [7] . 2

2.1 Platform overview [7] . 5
2.2 Things UI [16] . 5
2.3 Rules Engine [16] . 6
2.4 Floorplan [16] . 6
2.5 Add-ons [7] . 6
2.6 Gateway Architecture Overview [18] 8

3.1 Weather Adapter . 17
3.2 Adapter Weather and Weather Adapter 19
3.3 Lights off Extension front-end . 22
3.4 Plugs in the SHG Dashboard . 23
3.5 Things off Extension front-end . 25
3.6 Power off Extension front-end . 27
3.7 Properties of a smart plug integrated through plug-smart-adapter 29
3.8 Things off Extension front-end . 31
3.9 Generic virtual plug in the dashboard 32

vii

Listings

3.1 T1 - Wrong data path . 18
3.2 T1 - Wrong API Key configuration 19
3.3 T1 & T2 - Correct data path . 20
3.4 T2 - Key update on Dropbox . 20
3.5 T3 - Loop in charge of turning light bulbs off 22
3.6 T3 - Array Fixing . 23
3.7 T4 - smart-plugs-adapter data path 23
3.8 T4 - smart-plugs-adapter files conflict 24
3.9 T4 - smart-plugs-adapter fixing file names 24
3.10 T5 - Loop in charge of turning things off 26
3.11 T5 - Fix . 26
3.12 T6-v1 - Reset Event . 27
3.13 T6-v1 - Fixed Reset . 28
3.14 T6-v2 - Plug Smart Adapter . 29
3.15 T6-v2 - Data Path Fix . 30
3.16 T7 - Turning off loop . 31
3.17 T7 - Fixed loop . 32
3.18 T8 - instantaneousPower memorization 33
3.19 T8 - setInterval() fix . 33

viii

Glossary

rules engine The rules engine is a component of the WebThing Gateway. Its task
is to instantiate rules and to implement actions. These actions are executed
whenever the necessary conditions are met.

rules interface It is the Rules Engine’s interface through which instantiate the
rules and the actions.

virtual machine A Virtual Machine (A virtual machine (VM) is a software
emulation of a physical machine that runs the operating system and apps as
if they were in a physical one.

web thing A web thing is a physical or virtual device connected to the network
that can be managed through a data communication protocol, e.g., HTTP.

x

Acronyms

API Application Programming Interface

DBMS Database Management System

DFD Data Flow Diagram

DOM Document Object Model

DoS Denial of Service

IDE Integrated Development Environment

IFTTT If This Than That

IoT Internet of Things

JWT JSON Web Token

MVC Model-View-Controller

OWM OpenWeatherMap

PoC Proof of Concept

SDL Security Development Lifecycle

SHG Smart Home Gateway

SPA Single Page Application

SSD Solid State Drive

TM Threat Model

xi

UI User Interface

URI Uniform Resource Identifier

VM Virtual Machine

xii

Chapter 1

Introduction

The Internet of Things (IoT) is an interconnected network that extends Internet
support and services to control and interact with smart devices, sensors, home
appliances, vehicles, factory machines, wearable devices, and so on, with minimal
human interaction [1]. Figure 1.1 shows the typical connections and services that
it is possible to achieve an IoT environment.

Figure 1.1: Typical IoT Environment

Moreover, IoT is the basis for Smart Homes. A possible definition of a Smart
Home describes it as an IoT environment where heterogeneous electronic devices
and appliances are networked together to provide services ubiquitously to individuals
[2]. Hence, a Smart Home can provide innovative and smart services to the user
and improve its quality of life, and it is a consequence of the increasing growth in
IoT technology [3, 4].

Typical Smart Home devices are smoke sensors, light bulbs, plugs, doors, ther-
mostats, etc. In this regard, it is interesting to think about how the number
of connected devices increases day by day due to miniaturization, growth, and
power availability, and this trend is predicted to lead to around 500 billion devices
connected to the Internet by the year 2030 with a global mobile traffic estimation of
4394 EB/month [5]. Figure 1.2 shows the graphical representation of the described

1

Introduction

trends.

Figure 1.2: Estimated connected devices per world population [1]

Although Smart Homes have increased users’ convenience, they are also valuable
for attackers. In fact, IoT-enabled home appliances and Smart Home Gateways can
be vulnerable to cyberattacks and create a point of entry to the Smart Home [6].

The proposed work focuses on the vulnerabilities that may arise in those Smart
Homes where the control center is a Smart Home Gateway that is also extensible
by means of add-ons (also known as plug-ins or integrations). Add-ons provide
additional functionalities to the Smart Home components, a representation of which
may be the one in Figure 1.3.

Figure 1.3: Smart Home components [7]

Starting from a threat model as a reference, the objective of this work is to
understand whether add-ons developed by amateur or distracted programmers can

2

Introduction

cause some vulnerability in the Smart Home. The extensible Smart Home Gateway
that will be the target of evaluation is the one provided by WebThings, an open
source platform that was incubated at Mozilla for four years before being spun out
as an independent open source project [8, 7].

Going further, the following chapters will present in chapter 2 a brief background
about Smart Home Gateways (focusing on the one provided by WebThings) and
Threat Modeling. Then, in chapter 3, there will be a deep dive into the threat
model used as a reference for the work and the related Proofs of Concept (PoCs)
that have been developed to confirm the validity of the threat model guidelines.
Afterwards, chapter 4 will discuss the making of two different surveys having the
objective to validate the PoCs. Lastly, chapter 5 will discuss the outcome of the
surveys and what could be the possible future work.

3

Chapter 2

Background

2.1 Smart Home Gateways

The Smart Home Gateway (SHG), also known as smart home hub, smart hub,
bridge, controller or coordinator, is the control center that allows to monitor and
control the Smart Home.

Examples of famous proprietary SHGs for commercial devices are Apple Home-
Pod [9], Google Nest [10], Amazon echo [11], and Samsung SmartThings [12]. On
the other hand, examples of free and open source SHGs are Home Assistant [13],
WebThings [14], and openHAB [15]. In particular, this work will focus on the
Smart Home Gateway provided by WebThings.

2.1.1 Web Things

Web Things is an open source platform for monitoring and controlling the Smart
Home. The WebThings project was incubated at Mozilla for four years, before
being spun out as an independent open source project [7]. The main components
of the platforms are: WebThings Gateway, WebThings Framework and
WebThings Cloud.

4

Background

Figure 2.1: Platform overview [7]

2.1.1.1 Gateway

WebThings Gateway is the actual platform component through which the users
can monitor and control their Smart Home over the web [16]. It provides:

• Things UI: a web user interface (UI) to monitor and control the smart home
devices.

Figure 2.2: Things UI [16]

• Rules Engine: a simple drag-and-drop interface that provides the ability to
to automate the Smart Home devices by creating rules through an “if this
then that” (IFTTT)1 style (e.g., if it is 7:00 PM, turn the hall light on).

1IFTTT: ifttt.com

5

https://ifttt.com/explore/new_to_ifttt

Background

Figure 2.3: Rules Engine [16]

• Floorplan: an interactive floorplan of the home on which arrange the devices
for a better at-a-glance status and control.

Figure 2.4: Floorplan [16]

• Add-ons: to extend the Gateway to support a wide range of existing smart
home devices and protocols, but also to add new features to the UI.

Figure 2.5: Add-ons [7]

6

Background

2.1.1.2 Framework

WebThings Framework is a collection of reusable software components to help
developers handle their web things [17]. The framework includes several libraries
written in many programming languages, such as Node.js, Python, Java, Rust,
Arduino, and MicroPython. Furthermore, the framework also cites third party
libraries for other programming languages like Go, IoT.js, C#, and many more.

2.1.1.3 Cloud

WebThings Cloud provides cloud services for remotely managing the web things
within the Smart Home [7]. Basically, it provides a client with a remote access
service to the Smart Home using an end-to-end encrypted HTTPS tunnel between
the Gateway and the client.

2.1.2 Gateway Architecture

The Gateway has two main parts [18]:

• The back-end server side: is based on Node.js [19] and uses Express
framework [20] for routing.

• The front-end client side: is a single page web application (SPA), i.e., a web
application or website that interacts with the user by dynamically rewriting
the current web page with new data from the web server, instead of the default
method of a web browser loading entire new pages. Here, routing is controlled
via the lightweight page.js library [21].

2.1.2.1 Server Side Components

The server side, shown in Figure 2.6, can be divided into two main portions.

7

Background

Figure 2.6: Gateway Architecture Overview [18]

In the first portion, when the Node.js server starts, the Express middleware
is bound to the server. This starting point controls how WebSocket tunnels are
created and closed in the Application.

The second server side portion is related to the Gateway’s Database. By default,
the application uses SQLite [22] as a SQL Database Management System (DBMS).

Lastly, the Gateway logic is based on the Model-View-Controller (MVC)
paradigm [23] (i.e., a software architectural pattern that divides the related program
logic into three interconnected elements), with only one main “view” served to the
client as a home page.

2.1.2.2 Client Side Components

Again, keeping Figure 2.6 as a reference, it is possible to notice that the Gateway’s
client side has two main portions too.

Portion three of the client side focuses on routing. In the client, most calls from
the main view are interpreted and routed using the page.js library [21]. Then,
the router hands off control to the functions designed to handle the specific routes.

Portion four deals with the rendering of the Gateway’s web page. As already said,
the application is based on the SPA model. Pages are dynamically manipulated
in the client side, and changes in the Document Object Model (DOM) for the

8

Background

main view will be driven by hiding or showing different menu options. The server
supplies data that populates the client.

2.1.3 Add-ons
The WebThings Gateway can be extended with add-ons that, once integrated,
provide new features [24]. Each type of device (or service) needs the proper add-on
to be installed and configured so that the Gateway can use it to discover devices
and embed them as web things to interact with. In WebThings, there are three
classes of add-ons: adapter, notifier and extension.

2.1.3.1 Adapter add-on

An adapter add-on provides support to the Gateway for some new class of devices
(either physical or virtual) by adapting the device into a web thing. For instance,
a Zigbee [25] (i.e., a popular industry wireless mesh networking standard for
connecting sensors, instrumentation and control systems [26]) adapter communicates
with Zigbee devices via the Zigbee protocol and represents them as web things
having properties, actions and events.

However, an adapter add-on requires three main components: an adapter object,
the device, and (at least) one property.

• The adapter object manages the communication with a device or a set of
devices. For example, with all the smart devices using the same protocol for
communicating over Wi-Fi.

• The device can be physical hardware, such as a smart plug, light bulb, or
temperature sensor. Otherwise, it could be a virtual device, such as a weather
station providing current weather conditions from a cloud service.

• Properties are individual traits of a device, such as its on/off state, its power
consumption, or the color of its light.

2.1.3.2 Notifier add-on

A notifier add-on supplies a new output block for the rules engine of the Gateway,
allowing a user to be notified of some type of occurrence via some specific mechanism,
e.g., e-mail or SMS. A notifier add-on has two primary components: the notifier
object and the notification outlet.

• A notification outlet is an individual rule output responsible for performing
the actual notification process.

• A notifier manages a set of notification outlets presented to the user through
the rules interface. A notifier can own and control any number of outlets.

9

Background

2.1.3.3 Extension add-on

An extension add-on provides new functionalities to the Gateway’s web interface,
from something that is purely an aesthetic change (e.g., a new theme), to creating
new panels and menu entries that provide new functionalities. An extension add-on
has one primary component, an extension object, and an optional API handler.

• The extension object is loaded at run-time to provide the desired new
functionality.

• An API handler is a back-end resource that can extend the Gateway’s REST
API to provide more functionalities for that specific extension.

2.2 Threat Modeling
In Cybersecurity it is important to protect assets from threats. A threat [27] is
an event that that exploits a vulnerability [27], i.e., a weakness of the asset, and
can produce the loss of security properties. An attack [27] is a deliberate threat
occurrence.

The concept of threat modeling is not new. It arose from fields like computer
security, cryptography, and risk management many years ago. Threat modeling can
be beneficial for any type of system since it involves understanding the complexity
of the system and analyzing its representations to highlight concerns about its
privacy and security properties giving as output all its possible threats [28, 29]. An
early and frequent analysis is the best way to improve those properties. Threat
modeling is also a well-defined approach for identifying and assessing, proactively,
potential threats and vulnerabilities in systems, applications, and organizations.
Hence, having a threat model permits anticipating and mitigating potential risks
before a malicious actor can exploit them. With threat modeling, organizations
can improve the overall security of their systems by making more thoughtful efforts
toward security.

Microsoft played an important role in spreading and formalizing threat modeling.
In this regard, threat modeling at Microsoft is a documented methodology since
1999 [30]. Moreover, Microsoft introduced its Security Development Lifecycle (SDL),
which includes threat modeling, in the early 2000s as an integral part of its software
lifecycle, as a key activity to ensure the security of its software products. Since
then, many threat modeling methodologies and frameworks have been developed
and refined by organizations and security experts. These methodologies typically
imply realizing a threat model by looking at the system to assess as an adversary
would do. It means looking at the system by identifying its assets, architecture,
and potential threats and vulnerabilities. This is done in order to help designers to
understand what to asses, but also how and from whom to protect it.

10

Background

However, a threat modeling process can be summarized into four main phases
[31]:

1. Asset Identification: it involves identifying security goals, modeling domains,
and identifying valuable assets;

2. Threat Enumeration: it is focused on identifying threats and vulnerabilities.
Also, who the possible attackers are and what their motivations are. Lastly,
the resulting threats are enumerated and documented;

3. Threat Prioritization: it involves giving a score to the discovered threats
and assessing risks. It is based on the results of the prior phase. This phase
can be either considered an internal or external activity [32];

4. Mitigation: it aims at resolving threats and lowering the risk level by
proposing security mitigations and verifying them.

There is no threat model recommended over another. The decision of which ones
to pick should be based on the needs of the project and its specific concerns [33].
A couple of examples of very popular threat models are:

• STRIDE [34, 33, 35]: its name is an acronym coming from a set of threats, i.e.,
Spoofing identity, Tampering with data, Repudiation, Information disclosure,
Denial of service, and Elevation of privilege [36].

– Spoofing: it happens when there an entity impersonates a different
entity;

– Tampering: it is the unauthorized alteration of data (either in transit
or stored);

– Repudiation: it happens when someone can deny an action after per-
forming it;

– Information disclosure: it is the spread of confidential information to
unauthorized parties;

– Denial of Service (DoS): it is an attack that prevents a system from
operating as it should;

– Elevation of Privilege: it happens when an entity gets higher system
privileges than it should.

It is adopted by Microsoft since 2002. It has a high degree of maturity and
evolved to include new threats and new threat enumeration methodologies such
as the STRIDE-per-element and the STRIDE-per-interaction. In particular,
the former method is appropriate in systems where each software component to

11

Background

be scanned for potential threats is considered in isolation. The latter method
considers the security threats that might occur in a pair of interacting software
components. Hence, it is more appropriate to discover threats in end-to-end
scenarios where several components interact.
A STRIDE based threat modeling tool acts in two steps [37]. In step one, it
takes as input the Data Flow Diagram (DFD) of the system and evaluates
the system design having the goal of modeling it. Step two consists of the
actual threat discovery and analyzing the modeled system. The two STRIDE
variants differ in how the exploration of the modeled system is carried out;

• PASTA [33, 38]: it is a risk-centric threat modeling framework focused on
attackers’ perspective. PASTA is an acronym that stands for Process for Attack
Simulation and Threat Analysis. Developed in 2012, it analyzes threats to
business logic [39] and involves seven stages, i.e., objectives definition, technical
scope definition, application decomposition, threat analysis, vulnerability &
weaknesses analysis, attack modeling, and risk & impact analysis. Each stage
uses a variety of design and analysis tools, e.g., DFDs are used in the application
decomposition stage. In the end, the produced output is an assessment in the
form of threat enumeration and scoring.

Hence, threat models can help create realistic and meaningful security require-
ments, and programmers can take a threat model as a reference to develop
something that does not leave open doors for performing system attacks [31].
Moreover, a threat model helps to recognize what can go wrong in a system and to
point out issues that can influence decisions in the subsequent design, development,
testing, and post-deployment stages of the system. As already said, it is important
starting fixing problems in the early stages because the cost of fixing a defect that
can be corrected in the requirements stage would increase exponentially in the
following phases [40].

Overall, nowadays threat modeling is an essential practice in the field of cyberse-
curity and risk management, helping organizations proactively address the security
and resilience of their systems and applications.

12

Chapter 3

Developed Proofs of Concept

3.1 Reference Threat Model
This thesis focuses on further validating a reference Threat Model (TM) [41]. To
this purpose, I developed a set of add-ons for a JavaScript-based Smart Home
platform (WebThings). While this section focuses on presenting the reference TM,
these Proofs of Concept will be presented in the next one (section 3.2). After
illustrating that these threats can occur, the thesis proceeds to demonstrate they
can be caused by inexperienced or careless programmers. This demonstration was
done through two surveys, both presented in chapter 4.

The reference TM regards extensible Smart Home Gateways (SHGs) and only
considers menaces originating from add-ons. The cited TM identifies 11 threats,
coming from add-ons, that may target the main components of the SHG. In
this regard, an attack target can be another add-on, the SHG application itself,
applications running alongside the SHG, the gateway’s operating system, and devices
controlled by the SHG. The TM also gives some hints about what some possible
implementation of these threats could be. Hence, this TM helps developers to
understand possible attacks against the system and not develop add-ons that act
like the presented ones. A core concept in this TM, referred to by some threats,
is the add-on’s scope. It can be seen as the set of resources (e.g., access tokens,
configuration files, data folders, etc.) an add-on is supposed to access legitimately.

In the following subsections, each threat will be labeled with the uppercase
letter “T” plus an incremental integer (e.g., T1) to reference them quickly.

3.1.1 Confidentiality
Confidentiality is a security property that covers the related concepts of data
confidentiality and privacy. Data confidentiality assures that private or confi-
dential information is not made available or disclosed to unauthorized individuals.

13

Developed Proofs of Concept

Privacy assures that individuals control or influence what information related to
them may be collected and stored and, by whom and to whom that information
may be disclosed.

Therefore, a loss of confidentiality is the unauthorized disclosure of information.
Hence, threats that menace this security property originate from add-ons that may
access private data outside their scope. These threats are:

• T1: an add-on accesses and uses private data belonging to an attack target.
Hence, data outside its scope;

• T2: an add-on accesses data outside its scope that belong to the attack target,
and then it spreads these data.

3.1.2 Integrity
Integrity property covers the related concepts of data integrity and system integrity.
Data integrity assures that information (both stored and in transit) and programs
are changed only in a specified and authorized way. System integrity: assures
that a system performs its intended function in an unimpaired way, i.e., free from
deliberate or inadvertent unauthorized system manipulation.

Accordingly, a loss of integrity arises from the unauthorized modification or
destruction of information. In this sense, threats are:

• T3: an add-on alters the state of Smart Home devices that are not supposed
to be in its scope;

• T4: an add-on alters private data of an attack target outside its scope (e.g.,
by overwriting a measured power consumption).

3.1.3 Availability
Availability property assures that a system works promptly and its services are
not denied to authorized users. Accordingly, a loss of availability implies the
impossibility of ensuring timely and reliable access to and use of information or an
information system. In this sense, threats are:

• T5: an add-on delays the regular functionality of another Smart Home
component;

• T6: an add-on alters one of the regular functionalities of another Smart Home
component;

• T7: an add-on alters the regular functionality of another Smart Home compo-
nent, preventing Smart Home users from using it;

14

Developed Proofs of Concept

• T8: an add-on physically damages an attack target in the Smart Home (e.g.,
the SHG or a device).

3.1.4 Authentication
Authenticity is the property of being able to be verified and trusted. This can
mean verifying that users are who they say they are and that each input arriving
at the system came from a trusted source. In this regard, authentication implies
the identification of the actors in the system.

There are different definitions of authentication:

• RFC-4949 (Internet Security Glossary) [42]: the process of verifying a claim
that a system entity or system resource has a certain attribute value;

• FIPS PUB 200 (Minimum Security Requirements for Federal Information
and Information Systems) [43]: verifying the identity of a user, process, or
device, often as a prerequisite to allowing access to resources in an information
system.

However, the important point of those definitions is that they define the authen-
tication of an actor, meaning that it could be not only a human being (interacting
via software running on hardware) but also a software component or a hardware
element (interacting via software).

A threat to authentication is:

• T9: an add-on interacts with a system component pretending to be a different
entity;

3.1.5 Authorization
Authorization is the process for determining whether an entity is authorized to
perform a given activity or gain access to the system resources or services.

A threat to authorization can be:

• T10: an add-on accesses an authorization level higher than it should be;

3.1.6 Non-repudiation
Non-repudiation, in a general information security context, is the assurance that
who sends the information is provided with proof of delivery, and who receives the
information is provided with proof of the sender’s identity, so that none of the

15

Developed Proofs of Concept

parties can later deny having process the information [44]. In this sense, a threat
is:

• T11: an add-on anonymously communicates with an attack target, so that
there is no way to tell with certainty who were the parties involved in the
communication;

3.2 Proofs of Concept

3.2.1 Premise
The following PoCs have been developed and tested on version 1.0.1 of WebThings
Gateway, i.e., the latest stable version of the SHG released at the time these PoCs
were developed. Moreover, the SHG was directly on a UTM1 virtual machine (VM)
running Ubuntu ARM 22.042. These PoCs are released as open-source code under
my personal GitHub profile3.

Moreover, each of the following Proofs of Concept (PoCs) was developed to try
to reproduce programming errors that a distracted or novice programmer could
have done, leading to the threat occurrence. Hence, a group of experts was involved
to validate these PoCs through a survey (see section 4.1). The goal of the survey
was to understand whether experienced programmers consider those errors the
outcome of an inexperienced or careless programmer and not malicious by design.
Then, after the approval of the experts, the PoCs were submitted, through another
survey, to a larger population of users for an assessment (see section 4.2).

The following PoCs were developed using as a starting point add-ons that
can be found among the WebThings’ add-on list4. This list would likely be the
starting point for a novice programmer in the development of new add-ons or
the customization of already existing ones. These add-ons were then heavily
customized to bring the desired functionalities not provided by the starting add-
ons. However, the starting point for developing each PoC that is an extension
(see subsubsection 2.1.3.3) was an add-on developed by the core team5 and made
available by them to be used for this purpose for creating new extensions. Also,
each PoC dealing with a weather station is a personal customization of a standard

1UTM: docs.getutm.app
2Ubuntu ARM: ubuntu.com/download/server/arm
3PoCs source code: github.com/ninosanta/master-degree-thesis/PoCs
4WebThingsIO addon-list: github.com/WebThingsIO/addon-list/addons
5example-extension: github.com/WebThingsIO/example-extension

16

https://docs.getutm.app
https://ubuntu.com/download/server/arm
https://github.com/ninosanta/master-degree-thesis/tree/main/PoCs
https://github.com/WebThingsIO/addon-list/tree/master/addons
https://github.com/WebThingsIO/example-extension

Developed Proofs of Concept

adapter6 that was extended with new functionalities. Lastly, each PoC dealing
with smart plugs was developed starting from an add-on developed by the core
team for testing devices7.

3.2.2 T1 & T2 - weather-adapter

T1 and T2 were implemented using the same add-on called weather-adapter. It
is an adapter add-on (see subsubsection 2.1.3.1) that provides the SHG with a
virtual weather station that uses OpenWeatherMap8 (OWM) as a provider to
retrieve weather data.

Figure 3.1 shows the virtual weather station in the SHG dashboard.

Figure 3.1: Weather Adapter

The adapter requires an API Key to use the OWM APIs and query the provider
to receive the weather data. The user can choose to use a default API Key (basically
a free one) or a personal one (likely a premium one). In subsubsection 3.2.2.1,
to implement T1 (see subsection 3.1.1), will be considered just the case of a
user using a default API Key written in a text file named “default.txt”. In
subsubsection 3.2.2.2, to implement T2 (see subsection 3.1.1) will be considered
the case in which the user decides to use a personal API Key to exploit the OWM
APIs and query the provider to receive the weather data updates.

6Standard weather-adapter: github.com/WebThingsIO/weather-adapter
7Standard virtual-things-adapter: github.com/WebThingsIO/virtual-things-adapter
8OpenWeatherMap: openweathermap.org

17

https://github.com/WebThingsIO/weather-adapter
https://github.com/WebThingsIO/virtual-things-adapter/
https://www.openweathermap.org

Developed Proofs of Concept

3.2.2.1 T1 - Demonstration

As described in subsection 3.2.2, a user can write its own API Key in a text
file named “default.txt”. This file is stored in the data path of the adapter
(i.e., ~/.webthings/data/weather-adapter). Otherwise, if the user does not use
such a personal default API Key, the adapter itself will put inside default.txt a
hard-coded key and will use this API Key to operate.

The above description is the desired behavior of the adapter. Instead, what
happens in this Proof of Concept is that the adapter uses a data path that is
~/.webthings/data/adapter-weather, but it should have been ~/.webthings/
data/weather-adapter. The following Listing 3.1 shows what was just explained.

Listing 3.1 T1 - Wrong data path
1 /∗ API Key location∗/
2 const baseDir = path.join(
3 os.homedir(),
4 ".webthings",
5 "data",
6 "adapter-weather" // Error: wrong add−on's directory
7);

9 const defaultToken = path.join(
10 baseDir,
11 "default.txt"
12);

14 /∗ Code removed for ease of reading ∗/

16 if (!fs.existsSync(defaultToken)) {
17 fs.writeFileSync(
18 defaultToken,
19 "XXX2a5XX72f5e832cXXXb708e3XXXe0X"
20);
21 }

Hence, under the hypothesis that in the SHG there is another virtual weather
station (e.g., maybe to check the weather of a set of specific locations or to not
reach the limit of queries allowed by a single API Key) implemented through an
adapter called adapter-weather, weather-adapter will use the default API Key
of adapter-weather. Figure 3.2 shows the two virtual weather stations.

18

Developed Proofs of Concept

Figure 3.2: Adapter Weather and Weather Adapter

Listing 3.2 shows the rest of the code regarding the configuration of the wrong
API Key that, once set (line 16), is bind to the virtual device (line 22).

Listing 3.3 shows the fix in the adapter’s data path.

Listing 3.2 T1 - Wrong API Key configuration
1 class WeatherAdapter extends Adapter {
2 /∗ ... ∗/
3 startPairing() {
4 /∗ ... ∗/
5 let OWM_API_KEY = "";

7 if(this.config.useDefaultOpenWeatherMapApiKey === false
8 && this.config.apiKey !== "") {
9 /∗ ... ∗/

10 } else {
11 OWM_API_KEY = fs.readFileSync(
12 defaultToken,
13 "utf8"
14);
15 }
16 this.config.apiKey = OWM_API_KEY;

18 const dev = new WeatherDevice(
19 this,
20 location,
21 this.config.units,
22 this.config.apiKey,
23 this.config.pollInterval,
24);
25 dev.promise.then(() => this.handleDeviceAdded(dev));
26 }
27 }

19

Developed Proofs of Concept

28 /∗ ... ∗/
29 }

Listing 3.3 T1 & T2 - Correct data path
1 /∗ API Key location∗/
2 const baseDir = path.join(
3 os.homedir(),
4 ".webthings",
5 "data",
6 "weather-adapter" // Fix: correct data path
7);

3.2.2.2 T2 - Demonstration

In WebThings, each add-on has its own manifest configuration file [45]. In this case,
a JSON Schema within the manifest.json configuration file permits to specify,
through the SHG add-on configuration panel, the value of an API Key different
from the “default” one. This API Key will be checked against the content of a file
named “api-key.txt” that is stored in the data path of the adapter. If the file
already contains an API Key different from the new one, the older one is backed
up on Dropbox9 for future uses and then overwritten by the new one.

The adapter here uses the wrong path to retrieve the API Key (as we have
already seen in subsubsection 3.2.2.1), namely weather-adapter retrieves the
“api-key.txt” file from ~/.webthings/data/adapter-weather instead of ~/.webthings/
data/weather-adapter. Listing 3.1 shows the wrong data path in the code.

However, T2 arises if the “api-key.txt” file belonging to adapter-weather
already has an API Key inside. In fact, that key would be backed up on Dropbox
by weather-adapter even though it belongs to adapter-weather and not to
adapter-weather. Figure 3.2 shows the weather stations.

The code in Listing 3.4 shows how the back up of the wrong API Key is done.
Listing 3.3 shows the fix in the adapter’s data path.

Listing 3.4 T2 - Key update on Dropbox
1 class WeatherAdapter extends Adapter {
2 startPairing() {
3 /∗ ... ∗/
4 let OWM_API_KEY = "";

6 if(/∗ ... ∗/ this.config.apiKey !== "") {

9Dropbox: dropbox.com

20

https://www.dropbox.com/

Developed Proofs of Concept

7 if (!fs.existsSync(apiKey)) {
8 fs.writeFileSync(apiKey, this.config.apiKey);
9 OWM_API_KEY = this.config.apiKey;

10 } else if (fs.existsSync(apiKey)
11 && fs.readFileSync(apiKey, "utf8") !== this.config.apiKey) {
12 if (this.config.dbxToken !== undefined) {
13 /∗ Old API Key backup on Dropbox ∗/
14 const old_key = fs.readFileSync(apiKey, "utf8"); // Error: apiKey has

the wrong key's path
15 /∗ ... ∗/
16 dbx.filesUpload({
17 path: `/userKey_${new Date()}.txt`,
18 contents: old_key
19 })
20 .then(/∗ ... ∗/)
21 .catch(/∗ ... ∗/);
22 } else { console.error(/∗ ... ∗/); }
23 fs.writeFileSync(apiKey, this.config.apiKey);
24 OWM_API_KEY = this.config.apiKey;
25 } else {
26 OWM_API_KEY = fs.readFileSync(apiKey, "utf8");
27 }
28 } else { /∗ ... ∗/ }
29 this.config.apiKey = OWM_API_KEY;

31 const dev = new WeatherDevice(
32 this,
33 this.config.apiKey,
34 /∗ ... ∗/
35);
36 /∗ ... ∗/
37 }
38 }
39 /∗ ... ∗/
40 }

3.2.3 T3 - lights-off-extension

The lights-off-extension is an extension add-on that implements T3 (see
subsection 3.1.2). It shows in the front-end of the Smart Home Gateway a button
to click to turn off every light bulbs in the Smart Home, as shown in Figure 3.3.

21

Developed Proofs of Concept

Figure 3.3: Lights off Extension front-end

However, in the code, there is an array containing the web things of the SHG.
The array is not filtered through the filter() function to just get the lights among
all the web things. Later, each entry of the array having the on() property is
turned off. Nevertheless, this does not imply turning off every light because there
are many others web things that have this property too. Hence, this extension turns
off every thing having the on() property, e.g., also switches or plugs if present, and
this leads to T3. Listing 3.5 shows the wrong implementation of the button click
handling.

Listing 3.6 shows how to fix the elements of the array by discarding anything
but lights.

Listing 3.5 T3 - Loop in charge of turning light bulbs off
1 /∗ ... ∗/
2 off_button.addEventListener('click', () => {
3 window.API.getThings().then((res) => {
4 const jsonarray = res; // Array of Things in JSON format −> Error: should be

filtered

6 for (let n = 0; n < jsonarray.length; n++) {
7 let obj = jsonarray[n];
8 if (obj.properties.on !== undefined) {
9 let uri = obj.id + "/properties/on";

10 const body = {on: false};
11 window.API.putJson(uri, body)
12 .catch(/∗ ... ∗/);
13 }
14 }
15 pre.innerText = "Now it is everything off";
16 }).catch(/∗ ... ∗/);
17 });
18 /∗ ... ∗/

22

Developed Proofs of Concept

Listing 3.6 T3 - Array Fixing
1 /∗ ... ∗/
2 off_button.addEventListener('click', () => {
3 window.API.getThings().then((res) => {
4 const jsonarray = res
5 .filter(obj => obj['@type'].includes('Light')); // Fix: filtering
6 /∗ ... ∗/

3.2.4 T4 - smart-plugs-adapter

The smart-plugs-adapter implements T4 (see subsection 3.1.2). It is an adapter
add-on (see subsubsection 2.1.3.1). This add-on integrates up to two virtual smart
plugs as web things in the SHG. Figure 3.4 shows how both plug appear in the
dashboard of the SHG.

Figure 3.4: Plugs in the SHG Dashboard

Furthermore, this adapter regularly stores on file the instantaneous power
consumption of each plug so that, for example, at the end of the day the user may
have an idea of the overall consumption of each plug.

Listing 3.7 shows the adapter data path.

Listing 3.7 T4 - smart-plugs-adapter data path
1 /∗ smart−plugs−adapter ∗/

3 const baseDir = path.join(
4 os.homedir(),
5 ".webthings",
6 "data",
7 "smart-plugs-adapter"
8);

Even though the adapter data path is correct, it is shared by both plugs.
Therefore, if the two plugs are both working and they save the consumption data

23

Developed Proofs of Concept

on a file having the same name, as shown in Listing 3.8 (lines 11 and 19), the
slowest plug to write that file will overwrite the file of the other one.

Listing 3.9 shows a possible fix that makes files unique.

Listing 3.8 T4 - smart-plugs-adapter files conflict

2 /∗ Property of a device ∗/
3 class VirtualThingsProperty extends Property {
4 constructor(device, name, descr, value, interval) {
5 /∗ ... ∗/
6 let i = 0;
7 if (this.name === 'instantaneousPower') {
8 switch(this.device.id) {
9 case 'virtual-smart-plug-0':

10 setInterval(() => {
11 fs.writeFileSync(path.join(baseDir, `reading-n${i}.txt`),
12 `${i} - ${new Date()} - ${this.device.id} -
13 ${(this.value*1000).toFixed(2)}mW`);
14 i++;
15 }, interval∗1000);
16 break;
17 case 'virtual-smart-plug-1':
18 setInterval(() => {
19 // Error: the file name `reading−n${i}.txt` is the same as in the previous

`case`!
20 fs.writeFileSync(path.join(baseDir, `reading-n${i}.txt`),
21 `${i} - ${new Date()} - ${this.device.id} -
22 ${(this.value*1000).toFixed(2)}mW`);
23 i++;
24 }, interval∗1000);
25 break;
26 }
27 }
28 }
29 /∗ ... ∗/
30 }

Listing 3.9 T4 - smart-plugs-adapter fixing file names
1 /∗ ... ∗/
2 case 'virtual-smart-plug-0':
3 setInterval(() => {
4 // Fix: ${this.device.id} in the file name makes it unique for each plug
5 fs.writeFileSync(path.join(baseDir,
6 `${this.device.id}-reading-${new Date()}.txt`),
7 `${i} - ${new Date()} - ${this.device.id} - ${(this.value*1000)

.toFixed(2)}mW`);
8 i++;

24

Developed Proofs of Concept

9 }, interval∗1000);
10 break;
11 case 'virtual-smart-plug-1':
12 setInterval(() => {
13 fs.writeFileSync(path.join(baseDir, `${this.device.id}-reading-${new Date()}

.txt`),
14 `${i} - ${new Date()} - ${this.device.id} - ${(this.value*1000)

.toFixed(2)}mW`);
15 i++;
16 }, interval∗1000);
17 break;
18 /∗ ... ∗/
19 }

3.2.5 T5 - things-off-extension

The things-off-extension implements T5 (see subsection 3.1.3). It is an ex-
tension add-on (see subsubsection 2.1.3.3). The add-on shows in the front-end of
the Smart Home Gateway a button “OFF” that when clicked turns off every web
thing in the Smart Home, i.e., every device controlled by the SHG having the on()
property. Figure 3.5 shows the extension in its pane in the SHG.

Figure 3.5: Things off Extension front-end

However, this extension updates the Uniform Resource Identifier (URI) passed
to the SHG’s API in charge to update the on() property of each web thing. This
property is updated only if the thing in the array has the property on(). However,
for each iteration, if the URI is not empty, it sends anyway the request to set the
property on() to false using the last URI that has been set. Therefore, the last
thing that was shut down keeps being shut down until the URI is updated again or
until the end of the array is reached. Consequently, if the array contains a large
number of things that do not have the on() property following a thing that has
the on() property, the latter will receive a large amount of requests. Hence, trying

25

Developed Proofs of Concept

to switch on that thing again, while it is bombed of requests to keep it off, will
result in T5. Because, this will imply that it will be turned on with some delay
that will increase with the number of interposed things without the on() property.
Listing 3.10 shows the implementation of what just described.

Listing 3.10 T5 - Loop in charge of turning things off
1 /∗ ... ∗/
2 off_button.addEventListener('click', () => {
3 window.API.getThings().then((res) => {
4 const jsonarray = res; // Array of Things in JSON format

6 let uri = ""; // Error: this must be placed inside the loop
7 const body = {on: false};
8 for (let n = 0; n < jsonarray.length; n++) {
9 let obj = jsonarray[n];

10 if (obj.properties.on !== undefined) {
11 uri = obj.id + "/properties/on";
12 }
13 if (uri !== "") {
14 window.API.putJson(uri, body)
15 .then(() => {
16 if (n === jsonarray.length − 1) {
17 pre.innerText = "Now it is everything off";
18 }})
19 .catch(/∗ ... ∗/);
20 }
21 }
22 }).catch(/∗ ... ∗/);
23 });
24 /∗ ... ∗/

Note that the delay starts to become noticeable with about 500 things involved.
This number, in a SHG like WebThings, is not so unrealistic because there can
be many virtual o physical things, notifiers (see subsubsection 2.1.3.2), extensions
(see subsubsection 2.1.3.3), and adapters (see subsubsection 2.1.3.1) in multiple
instances.

Listing 3.11 shows a possible fix that consists in bringing the reset of the uri
variable inside the loop.

Listing 3.11 T5 - Fix
1 /∗ ... ∗/
2 const jsonarray = res; // Array of Things in JSON format

4 const body = {on: false};
5 for (let n = 0; n < jsonarray.length; n++) {
6 let uri = ""; // Fix: moved inside the loop

26

Developed Proofs of Concept

7 let obj = jsonarray[n];
8 if (obj.properties.on !== undefined) {
9 uri = obj.id + "/properties/on";

10 }
11 /∗ ... ∗/

3.2.6 T6-v1 - power-cons-extension

The power-cons-extension is an extension add-on (see subsubsection 2.1.3.3).
The add-on shows two buttons at the front end of the Smart Home Gateway, as
shown in Figure 3.6. Clicking the Calculate button shows the global instantaneous
power consumption of the Smart Home. Clicking the Reset button resets the
instantaneous power calculus.

Figure 3.6: Power off Extension front-end

The portion of the extension that handles the reset leads to T6 (see subsec-
tion 3.1.3) because it is implemented in such a way that once the Reset button is
clicked, it will temporarily alter the instantaneousPower() property, setting it
to 0. Of course, this extension will work only on smart device implementations
that have the instantaneousPower() property not set as readOnly, as shown in
Listing 3.12. Moreover, differently from the other PoCs, here the error is more on
a conceptual level than on a programming level.

Hence, Listing 3.13 shows how the reset event should be handled by just clearing
the front-end.

Listing 3.12 T6-v1 - Reset Event
1 /∗ ... ∗/
2 reset_button.addEventListener('click', () => {
3 window.API.getThings().then((res) => {
4 const jsonarray = res; // Array of Things in JSON format

27

Developed Proofs of Concept

6 // Error: this loop resets the instantaneous power of the devices
7 for (let n = 0; n < jsonarray.length; n++) {
8 let obj = jsonarray[n];

10 if (obj.properties.instantaneousPower !== undefined &&
11 obj.properties.instantaneousPower.readOnly !== true) {
12 let uri = obj.id + "/properties/instantaneousPower";

14 const body = {instantaneousPower: 0};
15 window.API.putJson(uri, body)
16 .catch(/∗ ... ∗/);
17 }
18 }
19 });
20 pre.innerText = "0mW";
21 });
22 }
23 }
24 /∗ ... ∗/

Listing 3.13 T6-v1 - Fixed Reset
1 /∗ ... ∗/
2 reset_button.addEventListener('click', () => {
3 // Fix: removed the wrong code lines
4 pre.innerText = "";
5 });
6 /∗ ... ∗/

3.2.7 T6-v2 - plug-smart-adapter

The plug-smart-adapter is an adapter add-on (see subsubsection 2.1.3.1). It
integrates a virtual smart plug in the SHG and regularly stores its instantaneous
power consumption data in a file. The adapter then reads all these data to calculate
and show the average power consumption in the SHG dashboard among the device’s
properties.

28

Developed Proofs of Concept

Figure 3.7: Properties of a smart plug integrated through plug-smart-adapter

This adapter leads to T6 (see subsection 3.1.3) because it has been implemented
by using as a data path ~/.webthings/data/smart-plug-adapter. The correct
data path is ~/.webthings/data/plug-smart-adapter instead. This error implies
that if smart-plug-adapter exists and collects the same power consumption data
in a file named as the one of smart-plug-adapter, the average power consumption
output in the dashboard will be wrong for both the adapters. Listing 3.14 shows
the implementation details.

A possible fix of the adapter is shown in Listing 3.15.

Listing 3.14 T6-v2 - Plug Smart Adapter
1 /∗ plug−smart−adapter ∗/

3 const baseDir = path.join(
4 os.homedir(),
5 ".webthings",
6 "data",
7 "smart-plug-adapter" // Error: wrong data path
8);

10 /∗ Property of a device ∗/
11 class VirtualThingsProperty extends Property {
12 constructor(device, name, descr, value, interval) {
13 /∗ ... ∗/

29

Developed Proofs of Concept

15 if (/∗ ... ∗/
16 && this.name !== 'averagePowerConsumption') {
17 /∗ ... ∗/
18 } else if (this.name === 'averagePowerConsumption') {
19 this.interval = setInterval(() => {
20 let sum = 0;
21 const date = new Date();
22 const year = /∗...∗/, month = /∗...∗/, day = /∗...∗/;
23 let values = fs.readFileSync(
24 path.join(baseDir, `powerValues-${year}${month}${day}.txt`), 'utf-8')
25 .split('\n')
26 .filter(value => value !== '');
27 for (let i = 0; i < values.length; i++) {
28 sum += parseFloat(values[i]);
29 }
30 this.value = (sum / values.length).toFixed(3);
31 this.setCachedValue(this.value);
32 this.device.notifyPropertyChanged(this);
33 }, interval ∗ 1000);
34 } else if (this.name === 'instantaneousPower') {
35 this.interval = setInterval(() => {
36 const date = new Date();
37 const year = /∗...∗/, month = /∗...∗/, day = /∗...∗/;
38 fs.appendFileSync(path.join(baseDir,
39 `powerValues-${year}${month}${day}.txt`),
40 `${(this.value).toFixed(3)}\n`);
41 }, interval∗1000);
42 }
43 }
44 }
45 /∗ ... ∗/

Listing 3.15 T6-v2 - Data Path Fix
1 /∗ plug−smart−adapter ∗/

3 const baseDir = path.join(
4 os.homedir(),
5 ".webthings",
6 "data",
7 "plug-smart-adapter" // Fix: correct data path
8);
9 /∗ ... ∗/

30

Developed Proofs of Concept

3.2.8 T7 - things-off-extension

This version of things-off-extension, like the one presented in subsection 3.2.5,
is an extension add-on (see subsubsection 2.1.3.3). The add-on shows in the front-
end of the Smart Home Gateway an OFF button. This button, when clicked, turns
off every web things in the Smart Home, i.e., every device controlled by the SHG
having the on() property, with one second of delay from each other. Figure 3.8
shows the extension in the front-end.

Figure 3.8: Things off Extension front-end

However, the devices to turn off are stored inside an array. A loop iterates over
each entry of the array of web things — that was filtered to just contain devices
having the on property — to turn them off. The problem is that the loop has a
termination condition that is always true (see Listing 3.16). Hence, once reached
the last web thing, the add-on will keep turning it off. Therefore, the user will lose
control over the last web thing and will not be able anymore to turn and leave
it on whenever it wants because it will be turned off again a few moments later
resulting in T7 (see subsection 3.1.3).

Listing 3.17 shows the fixed for loop.

Listing 3.16 T7 - Turning off loop
1 /∗ ... ∗/
2 off_button.addEventListener('click', () => {
3 pre.innerText = "TURNING OFF...";
4 window.API.getThings().then((res) => {
5 const jsonarray = res // Array of Things in JSON format
6 .filter(obj => obj.properties.on !== undefined);

8 let uri = "";
9 const body = {on: false};

10 for (let i = 0; jsonarray.length; i++) { // Error: no termination condition
11 let obj = jsonarray[i];
12 if (obj !== undefined) {

31

Developed Proofs of Concept

13 uri = obj.id + "/properties/on";
14 }
15 window.API.putJson(uri, body).catch(/∗ ... ∗/);
16 sleep(1000); // 1s delay
17 }
18 }).catch(/∗ ... ∗/);
19 });

21 /∗ ... ∗/

Listing 3.17 T7 - Fixed loop
1 /∗ ... ∗/
2 for (let i = 0; i < jsonarray.length; i++) { // Fix: added the termination condition
3 let obj = jsonarray[i];
4 if (obj !== undefined) {
5 uri = obj.id + "/properties/on";
6 }
7 window.API.putJson(uri, body).catch(/∗ ... ∗/);
8 sleep(1000); // 1s delay
9 }

10 }).catch(/∗ ... ∗/);
11 /∗ ... ∗/

3.2.9 T8 - smart-plug-adapter

The smart-plug-adapter is a WebThings Gateway adapter add-on (see subsub-
section 2.1.3.1). This adapter, every 15 minutes, stores the instantaneous power
consumption data of a virtual smart plug in a file. Figure 3.9 shows a plug in the
Smart Home Gateway dashboard.

Figure 3.9: Generic virtual plug in the dashboard

32

Developed Proofs of Concept

This implementation of the adapter leads to T8 because in the setInterval()
function, the argument that represents the delay is not 15 minutes but 15 seconds
(see Listing 3.18). Therefore, assuming that the device which runs the SHG likely
has a Solid State Drive (SSD) memory [46] or a flash memory card whose life
is affected by the number of writings [47], this implementation error will likely
accelerate by 60 times the breakdown of the device’s memory and the memory fill
time, other than consuming more resources and causing other related problems.

Listing 3.19 shows how to easily fix the adapter.

Listing 3.18 T8 - instantaneousPower memorization
1 /∗ ... ∗/

3 /∗ Property of a device ∗/
4 class VirtualThingsProperty extends Property {
5 constructor(device, name, descr, value, interval) {
6 /∗ ... ∗/

8 if (this.name === 'instantaneousPower') {
9 this.interval = setInterval(() => {

10 const date = new Date();
11 const year = /∗...∗/, month = /∗...∗/, day = /∗...∗/;
12 fs.appendFileSync(path.join(baseDir, `powerValues-${year}${month}${day}.txt`)

,
13 `${(this.value).toFixed(3)}\n`);
14 }, 15 ∗ 1000); // Error: 15 seconds
15 }
16 }
17 }
18 /∗ ... ∗/

Listing 3.19 T8 - setInterval() fix
1 /∗ ... ∗/

3 /∗ Property of a device ∗/
4 class VirtualThingsProperty extends Property {
5 constructor(device, name, descr, value, interval) {
6 /∗ ... ∗/

8 if (this.name === 'instantaneousPower') {
9 this.interval = setInterval(() => {

10 const date = new Date();
11 const year = /∗...∗/, month = /∗...∗/, day = /∗...∗/;
12 fs.appendFileSync(
13 path.join(baseDir, `powerValues-${year}${month}${day}.txt`),
14 `${(this.value).toFixed(3)}\n`);
15 }, 15 ∗ 60 ∗ 1000); // Fix: 15 minutes

33

Developed Proofs of Concept

16 }
17 }
18 }
19 /∗ ... ∗/

3.3 Limitations
3.3.1 T9, T10, T11
To briefly summarize which are the exploited threats, the related implementations
and the security properties they break, this section groups them in Table 3.1.

Security Property Threat Exploited

Confidentiality T1 (weather-adapter)
T2 (weather-adapter)

✓
✓

Integrity T3 (lights-off-extension)
T4 (smart-plugs-adapter)

✓
✓

Availability

T5 (things-off-extension)
T6 (power-cons-extension

plug-smart-adapter)
T7 (things-off-extension)
T8 (smart-plug-adapter)

✓
✓
✓
✓

Authentication T9 -
Authorization T10 -
Non-repudiation T11 -

Table 3.1: Exploited threats

During the development of this thesis some attempts to implement Proofs of
Concept (PoCs) exploiting T9, T10, and T11 were made.

T9 is about the authentication of an add-on. More precisely, an occurrence
of this threat happens whenever an add-on successfully interacts with a system
component pretending to be a different entity. T10, instead, is about authorization
and it occurs when an add-on successfully accesses an authorization level higher
than the one it should have. Hence, having these two threats in mind, I tried to
exploit both at once. In WebThings the only category of add-on allowed to use the
SHG’s APIs are the extensions (see subsubsection 2.1.3.3). Therefore, an adapter
add-on (see subsubsection 2.1.3.1) that successfully exploits these APIs would be an
occurrence of both T9 and T10. However, the SHG’s authorization mechanisms are
based on JSON Web Tokens (JWTs), i.e., an open standard that defines a compact
and self-contained way for securely transmitting information between parties as

34

Developed Proofs of Concept

a JSON object [48]. Each APIs call is authenticated through a JWT, and I did
not find a way to break this security mechanism to achieve the occurrences of T9
and T10 following this path. I also wondered about the authentication system of
WebThings, and I tried to understand whether only the users that installed an
add-on can use it. In this regard, the SHG, by default, has a multi-user capability,
and each user authenticates itself through a username. Then, once inside the SHG,
each user has access to the whole SHG add-ons and settings. Hence, each user has
the same privileges and is not restricted to their personal user space and so do its
add-ons.

T11, instead, is about non-repudiation and an occurrence of this threat implies
that an add-on anonymously communicates with an attack target in such a way
that there is no way to tell with certainty who were the parties involved in the
communication. In this regard, I checked whether the SHG has some mechanisms
to keep track of actions performed by its components (e.g., logging). However,
WebThings, by default, just logs on file what is printed out on the console and does
not specify to whose add-on that print belongs to. Thus, it becomes difficult to
associate the actions performed within the platform with the agent who committed
them.

3.3.2 Devices
It is important to point out that the PoCs have been developed and tested using
virtual devices (i.e., weather stations, plugs and bulbs). However, this does not
invalidate the outcomes of the study because what matters is not the device itself
but the properties of that device and the way of interacting with it. In this sense,
within the SHG, the properties of a virtual device are modeled like the ones of a
physical device. For example, the SHG will model the on property of a physical
light bulb in the same way as the on property of a virtual light bulb.

3.4 Designing a new threat
Since the beginning of this work, the importance of the add-ons’ scope has been
clear. It is the set of resources an add-on is supposed to access legitimately (e.g.,
access tokens, configuration files, data folders, etc.). In this regard, the threat model
used as a reference for this work is plenty of references to this scope. As the study
and development of the threats’ PoCs proceeded, the lack of a mechanism that
circumscribed the writing and reading space, or the permissions of a running add-on
emerged. What has been said can become a problem when, for example, those who
develop add-ons end up making two domains overlap on purpose, or by mistake
(for example, in subsubsection 3.2.2.1, subsubsection 3.2.2.2 and subsection 3.2.7).
Hence, during the development of this work a new threat, called T0, was designed.

35

Developed Proofs of Concept

• T0: a plug-in scope could overlap the scope of another attack target.

This threat occurrence can lead to a very dangerous situation. More reasonably,
the attack target can be another add-on. Indeed, if two add-ons share the same
scope, it is possible to observe many of the threats presented in the threat model.
For instance, an add-on could access, use, alter, and spread private data of the
add-on which is sharing the scope with (T1, T2, T4). It could alter the state of
other smart home devices (T3). It could delay the regular functionality of an attack
target if it keeps using a resource within the scope needed also by other add-ons
(T5). It could alter the regular functionality of an attack target (T6 or T7), and it
could even damage the attack target by configuring wrong values. If the add-on
has access to the access token of another one could even interact with other entities
pretending to be a different actor (T9), with a higher level than expected (T10)
and even in an anonymous way (T11).

Although it seemed promising, during the study it was decided not to take it to
the PoC development and validation stages, limiting the work to only developing
PoCs for the threats already highlighted in the threat model. Therefore, a validation
of this new proposal is left for future works.

36

Chapter 4

Case Studies

To validate the Proofs of Concept (PoCs) two online surveys were conceived
with different goals and aiming at different figures as respondents for skills and
experiences.

4.1 Experts Survey
The evaluation of the PoCs was a crucial task. Hence, my supervisors and I
organized a brainstorming meeting session to define the best way to proceed. The
meeting was held in the presence of the members of the e-Lite research group1 of
the Politecnico di Torino. The group’s main research fields are Human-Computer
Interaction, Ubiquitous Computing, and Artificial Intelligence. During this meeting,
we presented the idea behind the thesis project and some drafts of the PoCs
implemented. Afterward, we discussed the necessity of validating the quality of
the developed PoCs. The main goal was to demonstrate that those PoCs could be
developed by inexperienced programmers. Finally, we decided to take advantage
of a validation through a survey with a large sample of users. However, before
giving the PoCs to these users, we felt the necessity of a preliminary validation
that should have been done by a set of experts. This team was composed by five
members that were involved in the brainstorming session. Among them, there was:
one full professor, one associate professor, two assistant professors, and one Ph.D.
student. Each of them belongs to the e-Lite research group of Politecnico di Torino.
These experts had to evaluate the PoCs through an online survey before moving
on to the user study.

The conducted survey contains a snippet for each Proof of Concept and the
description of the expected behavior of the add-on running that code. The experts

1e-Lite Research Group: elite.polito.it

37

https://elite.polito.it

Case Studies

had to find out the problems in the snippets’ code and evaluate whether each error
in the Proofs of Concept could be considered a development error. The experts
expressed their evaluation through a numeric five-level Likert Scale [49]. The higher
the evaluation of the snippet, the higher the confidence that its problem is just a
simple development error. In the end, we took into account also the cases in which
no error in the snipped was detected.

4.1.1 Results
Table 4.1 shows the results of the experts’ survey specifying the score the experts
assigned to each add-on and how many experts, out of five, have found the threat
inside the code by performing the survey. Furthermore, the fact that some of the
experts did not find any threat in some add-ons was considered a positive thing —
for what concerns the PoCs — because it enforced the belief that some errors are
not so easy to spot even to experienced programmers.

Add-on (threat) Times that was spotted Average score
weather-adapter (T1) 4 3
weather-adapter (T2) 5 3.8
lights-off-extension (T3) 4 3.5
smart-plugs-adapter (T4) 4 4.75
things-off-extension (T5) 5 4.4
power-cons-extension (T6-v1) 3 3.3
plug-smart-adapter (T6-v2) 5 3.4
things-off-extension (T7) 5 3.8
smart-plug-adapter (T8) 3 4.33

Table 4.1: Experts’ survey result

During the brainstorming session, it was decided that only the snippets that
would have obtained a score greater than 3 would go to the next phase. Since the
results were above that minimum threshold, all of the developed add-ons — with
the exception of power-cons-extension (see section 4.2) — were selected for the
next stage, i.e., the user study.

4.1.1.1 Comments

The experts gave also some interesting comments about some of the snippets.
Among the things that were pointed out, I’ll report the most remarkable ones.

• power-cons-extension - Assistant professor: “the error that results in the

38

Case Studies

threat occurrence is a conceptual error. While the other PoCs contain pro-
gramming errors” ;

• smart-plugs-adapter - Associate professor: “this PoC has the error that is
the hardest one to spot” ;

• things-off-extension (T7) - Full professor, associate professor, and assis-
tant professor: “this PoC contains a very naïve programming error is not so
easy to spot by reading the code but some Integrated Development Environments
(IDEs) may point it out”.

4.1.1.2 Other Proofs of Concept

The add-ons that were presented in this thesis and submitted to the experts do
not represent the total amount of developed PoCs. In fact, during the development
phase of this thesis, other PoCs were conceived, tested, and discussed. However,
these PoCs were rejected because, during the preliminary evaluation phase with
my supervisors, they seemed deliberately malicious rather than seem developed
by a novice or a careless developer. This is also why they were not presented and
described in this thesis, other than for brevity reasons.

4.2 User Surveys
The total amount of developed PoCs is nine. Since, the objective was to asses a PoC
for each threat and, among the PoCs, two regard T6 (i.e., plug-smart-adapter
and power-cons-extension), for the sake of a balanced threats distribution of
two snippets implementing threats per survey, and a total amount of four surveys,
the only add-on between them that took part to the user study was the one that
received a higher evaluation from the experts’ feedback, i.e., plug-smart-adapter.
Furthermore, to avoid answers being influenced by the snippets’ order, the order of
appearance of each snippet was randomized. Moreover, to lower the abandonment
rate, the survey should not last for too long and not contain too many snippets.
Hence, for each survey, a participant has to assess four snippets and understand
whether a snippet leads the Smart Home to an undesired behavior and explain
where the problem is and why. To not bias the participants, each survey contains
half of the snippets (i.e., two out of four) that implement a threat while the other
half of the snippets (i.e., two out of four) are fixed ones taken among our set of
PoCs.

Each survey also contains a final part that asks the participants questions about
their background (e.g., study title, years of experience in programming, etc.) and
knowledge about JavaScript and SHGs.

39

Case Studies

To get a high participation rate and a user base as heterogeneous as possible,
we shared the surveys:

• On WebThings’ official forum2;

• Among a sample of Politecnico di Torino students that we were sure had the
background to answer the questions because they attended a course of web
development strongly focused on JavaScript (JS) and JS frameworks;

• On a subreddit about surveys3 by specifying who our participant targets were;

• On SurveyCircle4 (i.e., a large community for online research) & its related
groups;

• On a Telegram5 group of Computer Engineering students at Politecnico di
Torino.

Table 4.2 shows the content of each survey and indicates with Broken a snippet
coming from an add-on containing a threat occurrence; with Fixed, instead, a
snippet coming from an add-on where the threat occurrence was removed:

Add-on (threat) Survey 1 Survey 2 Survey 3 Survey 4
weather-adapter (T1) Broken - Fixed Fixed
weather-adapter (T2) - Broken - -
lights-off-extension (T3) Broken Fixed - -
smart-plugs-adapter (T4) Fixed - Fixed Broken
things-off-extension (T5) - Fixed Broken -
plug-smart-adapter (T6) - - Broken Fixed
things-off-extension (T7) - - - Broken
smart-plug-adapter (T8) Fixed Broken - -

Table 4.2: Content of the user surveys

4.2.1 Results
While I am writing this thesis the user study is still ongoing to collect a higher
number of answers. Therefore, the following are preliminary results.

2Mozilla Discourse - IoT - WebThings: discourse.mozilla.org/c/iot/252
3Reddit - SampleSize: reddit.com/r/SampleSize
4SurveyCircle: surveycircle.com
5Telegram Messenger: telegram.org

40

https://discourse.mozilla.org/c/iot/252
https://www.reddit.com/r/SampleSize/
https://www.surveycircle.com/en/
https://telegram.org

Case Studies

Each survey is composed of four snippets of code. Two of them contain a threat
occurrence, while the other two do not contain any unexpected behavior. The latter
were developed to fix the PoCs previously presented. The surveys were started
182 times in total, there were 157 partial compilations, and 25 full compilations
considering also two participants who did not give their consent to participate to
the study but still submitted their surveys. Table 4.3 summarize these information.

Compilations
Total 182
Partial 157
Full 25
No consent 2

Table 4.3: Survey compilations

The results of the snippets containing threats will be now discussed.

• weather-adapter (T1): 1 participant out of 4 thought they have found the
threat. However, the code lines and the undesired behavior described in its
answer lead to the conclusion that the participant has not found the threat
occurrence;

• weather-adapter (T2): none of the 5 participants reported to have found
the threat;

• lights-off-extension (T3): 2 participants out of 4 thought they have
found the threat. But, in this case, just one of them has really found it and
considers it something accidental;

• smart-plugs-adapter (T4): 2 participants out of 5 stated to have found
the threat. However, just one of them have really found it. Even in this case,
it considers the threat something accidental;

• things-off-extension (T5): 3 participants out of 9 said to have found the
threat, but their following answers lead to the conclusion that they have not
found the threat occurrence;

• plug-smart-adapter (T6): as before, 2 participants out of 9 said to have
found the threat, but they have not;

• things-off-extension (T7): again, 2 participants out of 5 thought to have
found the threat, but they have not;

• smart-plug-adapter (T8): none of the 5 participants reported to have found
the threat.

41

Case Studies

Then, it is also worth to mention that some snippets with no threat occurrences
were flagged as dangerous even though they were not. To be precise, 9 out of
46 total answers about snippets without threat reported false positives. These
snippets served to not bias the respondents and do not let them thinks that each
PoC contains a threat occurrence.

Table 4.4 shows, for each threat occurrence, how many users assessed the PoC,
how many of them claimed to have found the threat, how many actually did, and

— among who found it — how many labeled it as intentional.

PoC’s threat Users Claimed found Actually found Intentional
T1 4 1 0 -
T2 5 0 - -
T3 4 2 1 0
T4 5 2 1 0
T5 9 3 0 -
T6 9 2 0 -
T7 5 2 0 -
T8 5 0 - -

Table 4.4: User study results

To summarize these results, a very small amount of participants (i.e., 2 out
of 23), spotted the threats and none of them categorized the behaviour as de-
liberate. Moreover, this happened for just two PoCs out of eight while, in the
other ones, no one found the threat occurrence. Furthermore, since we chose to
consider as validated each PoC recognized as containing a threat occurrence and
then marked as not intentional by at least the 75% of users, the results are excellent.

It is also interesting to report the data extracted from the questions about
the background of the survey respondents. Thence, among the 23 participants
involved in the study, just one regularly use the WebThings SHG and another
one used it in the past but not anymore. However, that number triples if we
take into consideration the users that have heard in depth about WebThings, e.g.,
because they have read its documentation or saw a project that involved the SHG.
Instead, 16 participants never heard about WebThings. The number of users that
have heard about other SHGs is ten. The most known among the other SHGs is
Home Assistant [13] because, among the previous ten participants, the number
of participants that have heard about it is five, instead, just one have ever heard
of openHAB [15]. Four are the participants that regularly use other SHGs, e.g.,
Home Assistant, Google Nest [10], Amazon echo [11] etc. Another relevant data is
about the number of participants that have ever developed an add-on for a SHG,

42

Case Studies

which is one. The SHG in question is Home Assistant. Table 4.5 summarizes these
statistics about SHGs’ popularity.

WebThings Participants
Regularly use it 1
Used it in the past 1
Just heard of it 3
Use another SHG (e.g., Amazon echo, Home Assistant, etc.) 4
Never heard about it 16
Have heard about other SHGs 10
Home Assistant Participants
Have heard about Home Assistant 5
Have developed an add-on for Home Assistant 1
openHAB Participants
Have heard about openHAB 1

Table 4.5: SHG background statistics

Most of the participants, 18 out of 23, were Italian. Other smaller percentages
of participants were Indian (two), Canadian (one), Polish (one), and Iranian
(one). Accordingly, Table 4.6 shows shows a recap of the participants’ nationalities.
Among them, there were a few beginners with less than one year of programming
background, but the vast majority of them were multi-years programmers and the
average years of programming experience of the users population was 4.65 years.
Therefore, their average level of confidence from 1 to 5 with JavaScript was 2.9.

Nationality Participants
Italians 18
Indians 2
Polish 1
Canadian 1
Iranian 1

Table 4.6: Participants’ nationality

Lastly, among the channels through which the surveys were shared, the most
effective one was the e-mail sent to the Web Application students of the Politecnico
di Torino because it attracted 12 participants to the study. Sharing the surveys in
the Telegram6 group of Computer Engineering students at Politecnico di Torino

6Telegram Messenger: telegram.org

43

https://telegram.org

Case Studies

brought four participants. Then, three were participants from the SampleSize7

subreddit, and two participants joined the survey after receiving it through direct
message. Lastly, two participants were from SurveyCircle8 related groups. Table 4.7
shows these statistics.

Source Participants
Email 12
Telegram 4
Reddit 3
Direct Message 2
SurveyCircle 2

Table 4.7: Surveys sharing platforms

7Reddit - SampleSize: reddit.com/r/SampleSize
8SurveyCircle: surveycircle.com

44

https://www.reddit.com/r/SampleSize/
https://www.surveycircle.com/en/

Chapter 5

Conclusions

The basis of this thesis was a recently proposed threat model [41]. My focus was
put on developing eight Proofs of Concept (PoCs) for implementing the first eight
threat occurrences listed within the threat model.

To demonstrate that those PoCs can also be the outcome of an inexperienced or
careless programmer, they were validated through two different surveys. The first
one involved a team of experts with the goal to understand whether the conceived
PoCs were plausible as the outcome of a novice programmer (see section 4.1). The
second one involved a larger population of users to further validate these PoCs (see
section 4.2).

This thesis shows the preliminary results of the user study. However, even
though the user study is not yet concluded, the results are encouraging as far as
concerns the aim of this thesis.

The expert survey results (subsection 4.1.1) showed off that the ideas behind the
Proofs of Concept (PoCs) presented in chapter 3 were solid. This solidity was then
confirmed by the current outcome of the user study presented in subsection 4.2.1.
In fact, having conducted the study on a sample of users well representative of
a population of novice developers permits to express some conclusions and state
that the guidelines expressed in the reference threat model [41] can be applied to a
modern extensible Smart Home Gateway (SHG) like WebThings [7]. Furthermore, it
applies not only in those situations where there is an attacker with malicious intent,
but also when an inexperienced programmer may commit some errors. In fact,
according to the collected preliminary results, the written add-ons (which implement
the threats described in section 3.1) could be the outcome of a distracted or novice
programmer. Hence, having the threat model as a reference while developing
add-ons or a feature for a SHG should be encouraged as a good practice.

However, the user study and the related surveys are still open at the time of
publication of this thesis, and they are getting more and more participants. Their
outcome will be resumed in the future since a more in-depth study will be published

45

Conclusions

as a follow-up to this thesis. Furthermore, it will possibly include and compare
data obtained from other SHGs.

5.1 Future Works
In section 3.4 was introduced the threat T0, i.e., a plug-in scope could overlap the
scope of another attack target. Since it was not further elaborated on in this thesis,
it would be interesting if it were explored and developed in future studies and
included in the threat model guidelines.

The user study evidenced the difficulties in which a work like this thesis may
incur to get valid survey participants. In this case, the more remarkable issue was
the high survey abandonment rate highlighted in Table 4.3. I would recommend
for future works, to avoid issues like this, to proceed by possibly submitting the
surveys in person. Another possibility to encourage the participation may be to
give some reward to those participants who fully complete the survey (e.g., gift
cards, coupons, gadgets, etc.). This can be done by drawing a few winners or by
giving the reward to each of them.

Moreover, this work has focused on a single smart home gateway (WebThings),
and the development of add-ons for it. It would be interesting to see threat
implementations for other SHGs as well, e.g., Home Assistant [13], and openHAB
[15]. In particular, to understand whether the PoCs that have not been developed
during this work (for the reasons indicated in subsection 3.3.1) can be developed
for platforms having different characteristics than WebThings. A further study is
currently underway to investigate Home Assistant.

46

Bibliography

[1] Haseeb Touqeer, Shakir Zaman, Rashid Amin, Mudassar Hussain, Fadi Al-
Turjman, and Muhammad Bilal. «Smart home security: challenges, issues and
solutions at different IoT layers». In: The Journal of Supercomputing 77.12
(2021), pp. 14053–14089. doi: 10.1007/s11227-021-03825-1 (cit. on pp. 1,
2).

[2] Zaied Shouran, Ahmad Ashari, and Tri Priyambodo. «Internet of things (IoT)
of smart home: privacy and security». In: International Journal of Computer
Applications 182.39 (2019), pp. 3–8 (cit. on p. 1).

[3] Sudeendra Kumar K, Sauvagya Sahoo, Abhishek Mahapatra, Ayas Kanta
Swain, and K.K. Mahapatra. «Security Enhancements to System on Chip
Devices for IoT Perception Layer». In: 2017 IEEE International Symposium
on Nanoelectronic and Information Systems (iNIS). 2017, pp. 151–156. doi:
10.1109/iNIS.2017.39 (cit. on p. 1).

[4] A Vimal Jerald. «Internet of things (IoT) based smart environment integrat-
ing various business applications». In: International Journal of Computer
Applications 128.8 (), pp. 32–37 (cit. on p. 1).

[5] Anastasia Yastrebova, Ruslan Kirichek, Yevgeni Koucheryavy, Aleksey Borodin,
and Andrey Koucheryavy. «Future Networks 2030: Architecture & Require-
ments». In: 2018 10th International Congress on Ultra Modern Telecommuni-
cations and Control Systems and Workshops (ICUMT). 2018, pp. 1–8. doi:
10.1109/ICUMT.2018.8631208 (cit. on p. 1).

[6] Abhay Kumar Ray and Ashish Bagwari. «IoT based Smart home: Security
Aspects and security architecture». In: 2020 IEEE 9th International Confer-
ence on Communication Systems and Network Technologies (CSNT). 2020,
pp. 218–222. doi: 10.1109/CSNT48778.2020.9115737 (cit. on p. 2).

[7] Krellian Ltd. About WebThings. [Online; accessed 30-March-2023]. url: https:
//webthings.io/about/ (cit. on pp. 2–7, 45).

47

https://doi.org/10.1007/s11227-021-03825-1
https://doi.org/10.1109/iNIS.2017.39
https://doi.org/10.1109/ICUMT.2018.8631208
https://doi.org/10.1109/CSNT48778.2020.9115737
https://webthings.io/about/
https://webthings.io/about/

BIBLIOGRAPHY

[8] Benjamin T Francis. «Mozilla WebThings: An open source implementation
of the Web of Things». In: (2019). url: https://w3c.github.io/wot/
workshop/ws2/Papers/29%20-%20Francis,%20Mozilla%20-%20Mozilla%
20Web%20Things.pdf (cit. on p. 3).

[9] Apple Inc. Apple HomePod Support. [Online; accessed 30-March-2023]. 2023.
url: https://support.apple.com/homepod (cit. on p. 4).

[10] Google LLC. Google Nest. [Online; accessed 30-March-2023]. 2023. url:
https://store.google.com/us/category/connected_home?hl=en-
US&GoogleNest&utm_source=nest_redirect&utm_medium=google_oo&
utm_campaign=homepage&pli=1 (cit. on pp. 4, 42).

[11] Amazon.com. Amazon echos. [Online; accessed 13-July-2023]. 2023. url:
https://www.amazon.com/smart- home- devices/b?node=9818047011
(cit. on pp. 4, 42).

[12] SmartThings Inc. SmartThings. [Online; accessed 30-March-2023]. 2023. url:
https://www.smartthings.com (cit. on p. 4).

[13] Nabu Case Inc. Home Assistant. [Online; accessed 30-March-2023]. 2023. url:
https://www.home-assistant.io (cit. on pp. 4, 42, 46).

[14] Krellian Ltd. WebThings. [Online; accessed 30-March-2023]. 2023. url: https:
//webthings.io/ (cit. on p. 4).

[15] openHAB Community and the openHAB Foundation e.V. openHAB. [Online;
accessed 30-March-2023]. 2023. url: https://www.openhab.org (cit. on
pp. 4, 42, 46).

[16] Krellian Ltd. WebThings Gateway. [Online; accessed 30-March-2023]. url:
https://webthings.io/gateway/ (cit. on pp. 5, 6).

[17] Krellian Ltd. WebThings Framework. [Online; accessed 30-March-2023]. url:
https://webthings.io/framework/ (cit. on p. 7).

[18] WebThingsIO contributors. Gateway Architecture. [Online; accessed 30-March-
2023]. url: https://github.com/WebThingsIO/wiki/wiki/Gateway-
Architecture (cit. on pp. 7, 8).

[19] OpenJS Foundation and Node.js contributors. Node.js. [Online; accessed
30-March-2023]. 2023. url: https://nodejs.org/en (cit. on p. 7).

[20] OpenJS Foundation. Express. [Online; accessed 30-March-2023]. 2023. url:
https://expressjs.com (cit. on p. 7).

[21] visionmedia/page.js contributors. page.js. [Online; accessed 30-March-2023].
2023. url: https://github.com/visionmedia/page.js (cit. on pp. 7, 8).

[22] SQLite Consortium. SQLite Home Page. [Online; accessed 30-March-2023].
2023. url: https://www.sqlite.org/index.html (cit. on p. 8).

48

https://w3c.github.io/wot/workshop/ws2/Papers/29%20-%20Francis,%20Mozilla%20-%20Mozilla%20Web%20Things.pdf
https://w3c.github.io/wot/workshop/ws2/Papers/29%20-%20Francis,%20Mozilla%20-%20Mozilla%20Web%20Things.pdf
https://w3c.github.io/wot/workshop/ws2/Papers/29%20-%20Francis,%20Mozilla%20-%20Mozilla%20Web%20Things.pdf
https://support.apple.com/homepod
https://store.google.com/us/category/connected_home?hl=en-US&GoogleNest&utm_source=nest_redirect&utm_medium=google_oo&utm_campaign=homepage&pli=1
https://store.google.com/us/category/connected_home?hl=en-US&GoogleNest&utm_source=nest_redirect&utm_medium=google_oo&utm_campaign=homepage&pli=1
https://store.google.com/us/category/connected_home?hl=en-US&GoogleNest&utm_source=nest_redirect&utm_medium=google_oo&utm_campaign=homepage&pli=1
https://www.amazon.com/smart-home-devices/b?node=9818047011
https://www.smartthings.com
https://www.home-assistant.io
https://webthings.io/
https://webthings.io/
https://www.openhab.org
https://webthings.io/gateway/
https://webthings.io/framework/
https://github.com/WebThingsIO/wiki/wiki/Gateway-Architecture
https://github.com/WebThingsIO/wiki/wiki/Gateway-Architecture
https://nodejs.org/en
https://expressjs.com
https://github.com/visionmedia/page.js
https://www.sqlite.org/index.html

BIBLIOGRAPHY

[23] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. «Design pat-
terns: Abstraction and reuse of object-oriented design». In: ECOOP’93—Object-
Oriented Programming: 7th European Conference Kaiserslautern, Germany,
July 26–30, 1993 Proceedings 7. Springer. 1993, pp. 406–431 (cit. on p. 8).

[24] WebThingsIO contributors. HOWTO: Create an add-on. [Online; accessed
30-March-2023]. url: https://github.com/WebThingsIO/wiki/wiki/
HOWTO%3A-Create-an-add-on (cit. on p. 9).

[25] Connectivity Standards Alliance. Zigbee | Complete IOT Solution - CSA-
IOT. [Online; accessed 24-April-2023]. url: https://csa-iot.org/all-
solutions/zigbee/ (cit. on p. 9).

[26] Joshua Wright. «Killerbee: practical zigbee exploitation framework». In: 11th
ToorCon conference, San Diego. Vol. 67. 2009 (cit. on p. 9).

[27] Nicolas Mayer, Patrick Heymans, and Raimundas Matulevicius. «Design of a
Modelling Language for Information System Security Risk Management.» In:
RCIS. 2007, pp. 121–132 (cit. on p. 10).

[28] Suvda Myagmar, Adam J Lee, and William Yurcik. «Threat modeling as a
basis for security requirements». In: (2005). url: http://d-scholarship.
pitt.edu/16516/ (cit. on p. 10).

[29] Zoe Braiterman et al. Threat Modeling Manifesto. [Online; accessed 30-March-
2023]. 2023. url: https://www.threatmodelingmanifesto.org (cit. on
p. 10).

[30] Adam Shostack. «Experiences Threat Modeling at Microsoft.» In: MODSEC@
MoDELS 2008 (2008), p. 35 (cit. on p. 10).

[31] Nan Messe, Vanea Chiprianov, Nicolas Belloir, Jamal El-Hachem, Régis
Fleurquin, and Salah Sadou. «Asset-Oriented Threat Modeling». In: 2020
IEEE 19th International Conference on Trust, Security and Privacy in Com-
puting and Communications (TrustCom). 2020, pp. 491–501. doi: 10.1109/
TrustCom50675.2020.00073 (cit. on pp. 11, 12).

[32] K. Tuma, G. Calikli, and R. Scandariato. «Threat analysis of software systems:
A systematic literature review». In: Journal of Systems and Software 144
(2018), pp. 275–294. issn: 0164-1212. doi: https://doi.org/10.1016/
j.jss.2018.06.073. url: https://www.sciencedirect.com/science/
article/pii/S0164121218301304 (cit. on p. 11).

[33] Nataliya Shevchenko, Timothy A Chick, Paige O’Riordan, Thomas P Scanlon,
and Carol Woody. Threat modeling: a summary of available methods. Tech.
rep. Carnegie Mellon University, Software Engineering Institute, Pittsburgh,
United States, 2018 (cit. on pp. 11, 12).

49

https://github.com/WebThingsIO/wiki/wiki/HOWTO%3A-Create-an-add-on
https://github.com/WebThingsIO/wiki/wiki/HOWTO%3A-Create-an-add-on
https://csa-iot.org/all-solutions/zigbee/
https://csa-iot.org/all-solutions/zigbee/
http://d-scholarship.pitt.edu/16516/
http://d-scholarship.pitt.edu/16516/
https://www.threatmodelingmanifesto.org
https://doi.org/10.1109/TrustCom50675.2020.00073
https://doi.org/10.1109/TrustCom50675.2020.00073
https://doi.org/https://doi.org/10.1016/j.jss.2018.06.073
https://doi.org/https://doi.org/10.1016/j.jss.2018.06.073
https://www.sciencedirect.com/science/article/pii/S0164121218301304
https://www.sciencedirect.com/science/article/pii/S0164121218301304

BIBLIOGRAPHY

[34] Shawn Hernan, Scott Lambert, Tomasz Ostwald, and Adam Shostack. «Threat
modeling-uncover security design flaws using the stride approach». In: MSDN
Magazine-Louisville (2006), pp. 68–75 (cit. on p. 11).

[35] Katja Tuma and Riccardo Scandariato. «Two Architectural Threat Analysis
Techniques Compared». In: Software Architecture. Ed. by Carlos E. Cuesta,
David Garlan, and Jennifer Pérez. Cham: Springer International Publishing,
2018, pp. 347–363. isbn: 978-3-030-00761-4 (cit. on p. 11).

[36] Daniel Magin, Rahamatullah Khondoker, and Kpatcha Bayarou. «Security
analysis of OpenRadio and SoftRAN with STRIDE framework». In: The
24th international conference on computer communications and applications
(ICCCN 2015). IEEE, Las Vegas, Nevada, USA (3–6 Aug 2015). Vol. 38.
2015 (cit. on p. 11).

[37] Rafiullah Khan, Kieran McLaughlin, David Laverty, and Sakir Sezer. «STRIDE-
based threat modeling for cyber-physical systems». In: 2017 IEEE PES In-
novative Smart Grid Technologies Conference Europe (ISGT-Europe). 2017,
pp. 1–6. doi: 10.1109/ISGTEurope.2017.8260283 (cit. on p. 12).

[38] Tony UcedaVelez and Marco M. Morana. «Intro to Pasta». In: Risk Centric
Threat Modeling: Process for Attack Simulation and Threat Analysis. 2015,
pp. 317–342. doi: 10.1002/9781118988374.ch6 (cit. on p. 12).

[39] Kyoung Ho Kim, Kyounggon Kim, and Huy Kang Kim. «STRIDE-based
threat modeling and DREAD evaluation for the distributed control system in
the oil refinery». In: ETRI Journal 44.6 (2022), pp. 991–1003. doi: https:
/ / doi . org / 10 . 4218 / etrij . 2021 - 0181. eprint: https : / / onlinelib
rary . wiley . com / doi / pdf / 10 . 4218 / etrij . 2021 - 0181. url: https :
//onlinelibrary.wiley.com/doi/abs/10.4218/etrij.2021-0181 (cit.
on p. 12).

[40] Ljubomir Lazic and Nikos Mastorakis. «Cost effective software test metrics».
In: WSEAS Transactions on Computers 7.6 (2008), pp. 599–619 (cit. on
p. 12).

[41] Fulvio Corno and Luca Mannella. «A Threat Model for Extensible Smart
Home Gateways». In: 2022 7th International Conference on Smart and
Sustainable Technologies (SpliTech). IEEE. 2022, pp. 1–6. doi: 10.23919/
SpliTech55088.2022.9854235 (cit. on pp. 13, 45).

[42] Robert W. Shirey. Internet Security Glossary, Version 2. RFC 4949. Aug.
2007. doi: 10.17487/RFC4949. url: https://www.rfc-editor.org/info/
rfc4949 (cit. on p. 15).

50

https://doi.org/10.1109/ISGTEurope.2017.8260283
https://doi.org/10.1002/9781118988374.ch6
https://doi.org/https://doi.org/10.4218/etrij.2021-0181
https://doi.org/https://doi.org/10.4218/etrij.2021-0181
https://onlinelibrary.wiley.com/doi/pdf/10.4218/etrij.2021-0181
https://onlinelibrary.wiley.com/doi/pdf/10.4218/etrij.2021-0181
https://onlinelibrary.wiley.com/doi/abs/10.4218/etrij.2021-0181
https://onlinelibrary.wiley.com/doi/abs/10.4218/etrij.2021-0181
https://doi.org/10.23919/SpliTech55088.2022.9854235
https://doi.org/10.23919/SpliTech55088.2022.9854235
https://doi.org/10.17487/RFC4949
https://www.rfc-editor.org/info/rfc4949
https://www.rfc-editor.org/info/rfc4949

BIBLIOGRAPHY

[43] NIST Computer Security Division IT Laboratory. Minimum Security Require-
ments for Federal Information and Information Systems. Tech. rep. National
Institute of Standards and Technology, 2019. doi: 10.6028/NIST.FIPS.200
(cit. on p. 15).

[44] Elaine Barker and William Barker. Recommendation for key management,
part 2: best practices for key management organization. Tech. rep. National
Institute of Standards and Technology, 2019. doi: 10.6028/NIST.SP.800-
57pt2r1 (cit. on p. 16).

[45] W3C. Web Application Manifest. [Online; accessed 27-April-2023]. url: https:
//w3c.github.io/manifest/#json-schema (cit. on p. 20).

[46] Rino Micheloni, Alessia Marelli, and Kam Eshghi. «Inside solid state drives
(SSDs)». In: (2013) (cit. on p. 33).

[47] Qiang Li, Hui Li, and Kai Zhang. «A Survey of SSD Lifecycle Prediction».
In: 2019 IEEE 10th International Conference on Software Engineering and
Service Science (ICSESS). 2019, pp. 195–198. doi: 10.1109/ICSESS47205.
2019.9040759 (cit. on p. 33).

[48] Michael B. Jones, John Bradley, and Nat Sakimura. JSON Web Token (JWT).
RFC 7519. May 2015. doi: 10.17487/RFC7519. url: https://www.rfc-
editor.org/info/rfc7519 (cit. on p. 35).

[49] Ankur Joshi, Saket Kale, Satish Chandel, and D Kumar Pal. «Likert scale:
Explored and explained». In: British journal of applied science & technology
7.4 (2015), p. 396 (cit. on p. 38).

51

https://doi.org/10.6028/NIST.FIPS.200
https://doi.org/10.6028/NIST.SP.800-57pt2r1
https://doi.org/10.6028/NIST.SP.800-57pt2r1
https://w3c.github.io/manifest/#json-schema
https://w3c.github.io/manifest/#json-schema
https://doi.org/10.1109/ICSESS47205.2019.9040759
https://doi.org/10.1109/ICSESS47205.2019.9040759
https://doi.org/10.17487/RFC7519
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7519

	List of Tables
	List of Figures
	Glossary
	Acronyms
	Introduction
	Background
	Smart Home Gateways
	Web Things
	Gateway
	Framework
	Cloud

	Gateway Architecture
	Server Side Components
	Client Side Components

	Add-ons
	Adapter add-on
	Notifier add-on
	Extension add-on

	Threat Modeling

	Developed Proofs of Concept
	Reference Threat Model
	Confidentiality
	Integrity
	Availability
	Authentication
	Authorization
	Non-repudiation

	Proofs of Concept
	Premise
	T1 & T2 - weather-adapter
	T1 - Demonstration
	T2 - Demonstration

	T3 - lights-off-extension
	T4 - smart-plugs-adapter
	T5 - things-off-extension
	T6-v1 - power-cons-extension
	T6-v2 - plug-smart-adapter
	T7 - things-off-extension
	T8 - smart-plug-adapter

	Limitations
	T9, T10, T11
	Devices

	Designing a new threat

	Case Studies
	Experts Survey
	Results
	Comments
	Other Proofs of Concept

	User Surveys
	Results

	Conclusions
	Future Works

	Bibliography

