
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering
(Cybersecurity)

Master’s Degree Thesis

Ensuring integrity of MUD-enabled
plug-ins for Smart Home Gateways

Supervisors

Prof. Fulvio CORNO

Dr. Luca MANNELLA

Candidate

Daniele DI BATTISTA

July 2023

Summary

Smart homes, equipped with various home automation systems, have gained
popularity but also face significant cybersecurity challenges. To address these
concerns, the Internet Engineering Task Force (IETF) introduced a new standard,
Manufacturer Usage Description (MUD), which employs a white-list approach to
enhance IoT security. This standard requires IoT device manufacturers to provide
MUD files specifying the allowed communication endpoints, effectively mitigating
the risk of unauthorized access and Distributed Denial of Service (DDoS) attacks.

One critical aspect of ensuring the security of smart home environments lies in
the authentication of plug-ins and the associated MUD files. The authentication
process plays a pivotal role in verifying the legitimacy of the plug-ins and the
communication endpoints specified within the MUD files. However, this aspect is
often overlooked or not given sufficient attention in existing research.

In order to enhance the authentication processes within smart home environ-
ments, the proposed solution will leverage the Codenotary Community Attestation
service (CAS). CAS is a robust and reliable platform that provides attestation
services for software artifacts, ensuring their integrity and authenticity.

By integrating CAS into the authentication framework, the master thesis aims to
establish a trusted and verifiable chain of custody for plug-ins and their associated
MUD files. CAS will generate cryptographic proofs, such as digital signatures to
attest the authenticity and integrity of the submitted artifacts.

These cryptographic proofs will serve as evidence that the plug-ins and MUD
files have not been tampered with or modified during transmission or storage. The
smart home gateway can then verify the validity of these proofs. This process
ensures that only authenticated and unaltered plugin-ins are accepted and processed
by the gateway.

By leveraging CAS, the authentication framework adds an additional layer of
trust and confidence to the authentication process. Plug-ins developers and smart
home users can have increased assurance that the plug-ins and their associated
MUD files are genuine, reducing the risk of unauthorized access or compromised
security within the smart home environment.

By addressing the authentication challenges in the context of smart home

ii

gateways and MUD-enabled plug-ins, this research not only contributes to the
overall security of smart homes but also establishes a foundation for trustworthy
and secure interactions between different IoT devices and their associated plug-ins.

iii

Acknowledgements

I take this opportunity to express my deepest gratitude to the individuals who
have played a significant role in the completion of my Master’s thesis. Their

support has been instrumental in shaping this work.
First and foremost, I extend my heartfelt appreciation to Professor Fulvio Corno,

who gives me the opportunity to participate in this work under his mentorship.
I like to extend my sincere thanks to Dr. Luca Mannella, my co-relator, for his

valuable advice and for the time he dedicated to me.
I am grateful to my family. Their unconditional love, support and belief in my

abilities have been a constant source of strength throughout my academic journey.
I am particularly grateful to my mother, Cinzia Persia, for her unwavering

dedication in supporting me at every step of my studies. From assisting me with
exams to helping me understand complex courses, her presence and guidance have

been a source of reassurance and motivation.
Daniele Di Battista

iv

Table of Contents

List of Tables viii

List of Figures ix

Glossary xi

1 Introduction 1

2 Background 4
2.1 Home Assistant . 4

2.1.1 Home Assistant architecture 5
2.1.2 Installation . 6
2.1.3 Concepts and Terminology 7
2.1.4 Security Considerations . 8
2.1.5 Community and Ecosystem 9
2.1.6 Use Cases and Real-World Examples 9
2.1.7 Home Assistant Community Store (HACS) 11

2.2 The Manufacturer Usage Description 13
2.2.1 MUD Architecture and Components 14
2.2.2 Structure of a MUD file . 15
2.2.3 Security Considerations . 18

2.3 State of the Art Authentication Mechanisms 19
2.3.1 Existing Authentication Solutions 20
2.3.2 Codenotary Community Attestation Service (CAS) 22
2.3.3 Notarization and Verification process using CAS Executable 25

3 Integrating MUD in Home Assistant 27
3.1 MUD Generator Integration . 27

3.1.1 MUD Snippets . 28
3.2 Extended MUD Architecture . 29

vi

4 Authenticating Integrations and MUD Snippets 31
4.1 Introduction . 31
4.2 Integration Notarization with CAS 32
4.3 Integration Authenticity Check . 32
4.4 Severity Levels . 33
4.5 Expanding the MUD Integration 34

4.5.1 Functionalities Overview . 34
4.5.2 Integrity Check Implementation 37

4.6 Use Case Examples for the MUD Generator Integration 41
4.6.1 Integrity Check at Download Time: 41
4.6.2 Integrity Check at Startup Time: 42
4.6.3 Integrity Check at Runtime: 44

4.7 Experimental Results . 47
4.7.1 Experimental Setup . 47
4.7.2 Results . 48

5 Conclusions 50
5.1 Future works . 51

5.1.1 Identity Registration Service 51
5.1.2 Vulnerability analysis of integrations 52

Bibliography 54

vii

List of Tables

4.1 Severity levels and related behaviour 34
4.2 Home Assistant Startup Times . 48

viii

List of Figures

2.1 Architecture diagram of Home Assistant. 5
2.2 Architecture diagram of MUD. 15
2.3 How CAS is secured . 24

3.1 Extended MUD Architecture . 29

4.1 Authentication implementation diagram 35
4.2 Use Case 1 diagram . 42
4.3 Use Case 2 diagram . 43
4.4 Use Case 3 diagram . 44
4.5 Use Case 4 diagram . 46
4.6 Conceptual Network Architecture 47

ix

Glossary

Home Assistant
Home Assistant is an open-source home automation platform that allows
users to control and automate various smart devices and services within their
homes. It provides a centralized hub for managing and integrating different
IoT devices, enabling users to create customized automation routines and
control their smart home environment.

plug-ins
In Home Assistant, the term “plug-in” encompasses two distinct categories:
integrations and add-ons. The focus of this thesis is specifically on integrations.

integrations
Integrations in Home Assistant refer to software components or plugins that
facilitate seamless communication and control between Home Assistant and
specific devices, services, or platforms. These integrations serve as bridges
that enable Home Assistant to interact with and manage various devices and
services within a smart home setup. Examples of integrations include lights,
thermostats, door locks, cameras, sensors, and more.

HACS
HACS (Home Assistant Community Store) is a community-driven extension
and plugin store for Home Assistant. It provides a platform for users to
discover, install and manage custom components, integrations, themes and
other community-contributed extensions to enhance the functionality and
capabilities of Home Assistant.

MUD
MUD is a standardized framework that describes the expected network behav-
ior and communication requirements of an Internet of Things (IoT) device. It
defines the types of network connections an IoT device should establish and
the associated security policies.

xi

MUD Snippet
A MUD snippet is a small portion of the MUD file or description that contains
specific rules and policies for network communication. It represents a subset of
the complete MUD description and is typically associated with an individual
IoT device or integration.

MUD Manager
MUD Manager is a software component or system responsible for managing
the integration of MUD files or snippets into a network infrastructure. It
handles tasks such as validating and applying MUD policies and ensuring the
network’s security and compliance.

Notarization
Notarization is the process of verifying and confirming the authenticity and
integrity of software or digital artifacts. It involves obtaining a cryptographic
signature or certificate from a trusted authority to ensure that the software or
artifact has not been tampered with and can be trusted.

CAS
Codenotary CAS (Community Attestation Service) is a solution that provides
cryptographic notarization services for software and code artifacts. It ensures
the immutability and integrity of code by using cryptographic proofs, allowing
organizations to verify the integrity of code and detect any unauthorized
changes.

xii

Chapter 1

Introduction

In today’s rapidly advancing technological landscape, smart homes have become
increasingly prevalent. These homes are equipped with various Internet of Things
(IoT) devices that offer convenience and automation. From voice-activated assistants
to automated lighting and temperature control, smart homes provide enhanced
comfort and control for users. However, the widespread adoption of connected
devices also brings significant security concerns.

Malicious attacks on smart home systems can compromise user privacy, disrupt
daily routines and even pose physical risks. Intruders gaining unauthorized access
to smart home devices can eavesdrop on conversations, manipulate security cameras
or even tamper with critical systems such as locks and alarms. With the growing
dependence on smart home technology, it is crucial to develop robust security
mechanisms to protect these environments and ensure the safety of their occupants.

In the context of smart homes, the Home Assistant platform has emerged
as a popular open-source home automation platform. It provides users with a
centralized hub for controlling and monitoring various smart devices within their
homes. Through the inclusion of integrations developed by a diverse communities of
developers, Home Assistant offers an extensive range of features and functionalities,
enabling users to customize and extend the capabilities of their smart home setups.

However, the flexibility and openness of the Home Assistant platform also
introduce security challenges. One of the key concerns is the trustworthiness and
integrity of the integrations included into the system. Third-party integrations,
although providing additional functionality, can potentially introduce vulnerabilities
or malicious code that compromise the security of the overall smart home system.
Therefore, it is essential to develop an authentication and verification mechanism
that ensures the trustworthiness and reliability of these integrations.

To address this challenge, the objective of this Master Thesis is to introduce an
authentication and verification mechanism for the integrations in Home Assistant.
The aim is to provide a reliable and secure approach to validate and verify the

1

Introduction

authenticity of integrations, allowing users to confidently incorporate third-party
integrations into their smart home setups, knowing that they meet the required
security standards.

To achieve this objective, this thesis builds upon a pre-existing work that explores
the concept of Manufacturer Usage Description (MUD) as a promising approach
in the field of smart home security. MUD enables devices to communicate their
intended behavior and network access requirements, enabling network administra-
tors to effectively enforce security policies. This pre-existing work has laid the
foundation for enhancing the security of smart home systems by leveraging the
insights and lessons learned from MUD.

Additionally, we investigate authentication mechanisms that can ensure the
trustworthiness of integrations included into Home Assistant. One such mechanism
we explore is the Codenotary Community Attestation Service (CAS). CAS is a
trusted and reliable service that verifies the integrity and origin of digital assets,
ensuring their trustworthiness and authenticity. By incorporating CAS into the
authentication process, we can enhance the security and reliability of Home Assistant
by ensuring that only validated and trusted integrations are utilized in the system.

In summary, this Master Thesis aims to enhance the security and reliability of
smart home systems by introducing an authentication and verification mechanism
for integrations in the Home Assistant platform in order to establish a trusted
environment, enabling users to confidently incorporate third-party integrations into
their smart home setups while maintaining the required security standards.

The remainder of this Thesis is organized as follows:

• Chapter 2: Background provides an overview of the relevant concepts
and technologies in the field of smart home security, including a discussion
on the Home Assistant platform, on the recent emergence of Manufacturer
Usage Description (MUD) as a promising approach and existing solutions for
authentication and verification mechanisms are also examined.

• Chapter 3: Integrating MUD in Home Assistant serves as the starting
point for this thesis by presenting an extended MUD architecture specifically
developed for Home Assistant. It provides a detailed exploration of the
integration process, communication restrictions, and highlights the role of the
MUD Generator integration.

• Chapter 4: Authenticating integrations and MUD Snippets delves
into the core of the Thesis, presenting the authentication mechanism for
integrations and MUD snippets in Home Assistant. It explores the integra-
tion notarization process, authenticity checks and introduces the use of the
CodeNotary Community Attestation Service (CAS). CAS is a trusted and
reliable service that verifies the integrity and origin of digital assets, ensuring

2

Introduction

their trustworthiness and authenticity. By incorporating CAS into the au-
thentication process, the Thesis enhances the security and reliability of Home
Assistant by ensuring that only validated and trusted integrations are utilized
in the system.

• Chapter 6: Conclusions summarizes the contributions of this Thesis and
outlines potential avenues for future research and improvement.

3

Chapter 2

Background

In this chapter we delve into the foundational aspects that form the basis of our
research. We begin by exploring the concept of Home Assistant, a popular open-
source platform that enables users to integrate and control smart devices within
their homes. Next, we delve into the Manufacturer Usage Description (MUD), a
standardized framework that aims to enhance the security of Internet of Things
(IoT) devices by specifying their intended behavior and communication patterns. We
then turn our attention to the state of the art authentication mechanisms employed
in IoT systems, examining various approaches and highlighting their strengths
and weaknesses. Lastly, we discuss the concept of notarization, an emerging
technique that can be leveraged to ensure the integrity and authenticity of IoT
device software. By comprehensively analyzing these topics, we lay the groundwork
for our subsequent research and contribute to the broader understanding of secure
and reliable IoT ecosystems.

2.1 Home Assistant
Home Assistant is an open-source home automation platform that offers users a
comprehensive solution for controlling and monitoring smart devices within their
homes. With its user-friendly interface and wide range of supported devices and
protocols, Home Assistant has gained popularity among homeowners seeking to
create a centralized automation system.

At its core, Home Assistant aims to simplify the management and integration
of various smart home technologies. It provides a unified platform where users can
configure and control their devices from a single interface, regardless of the brand or
communication protocol. By bringing together devices such as lights, thermostats,
sensors and security systems, Home Assistant empowers users to create personalized
automations and routines. One of the key features of Home Assistant is its flexibility

4

Background

and extensibility. It supports a wide range of platforms, allowing users to connect
and control devices from various ecosystems. Additionally, Home Assistant has a
vibrant community that actively contributes to the development of new plug-ins
and provides support to users. Specifically, Home Assistant encompasses two
distinct “plug-in categories": integrations and add-ons. Both categories facilitate
communication and control between Home Assistant and specific devices, services
or platforms. While add-ons are basically Docker containers managed by Home
Assistant, integrations are closer to the traditional plug-in concept — and for this
reason they are the focus of this work.

2.1.1 Home Assistant architecture

Figure 2.1: Architecture diagram of Home Assistant.

The architecture of Home Assistant is designed to provide a flexible and scalable
framework for home automation. At its core, Home Assistant consists of several

5

Background

key components that work together to create a centralized and unified platform for
controlling and managing smart devices.

The central component of Home Assistant is the Home Assistant Core. This
component handles the core functionalities of the platform, such as processing
automation rules, managing states and handling user interactions. It acts as the
central hub for data flow, ensuring that information from various devices and
integrations is properly processed and coordinated.

Another important component is the Home Assistant Supervisor. This layer
serves as a management interface for Home Assistant, offering functionalities such
as add-on management, system updates and advanced deployment options. The
Supervisor ensures the reliability and stability of the platform, simplifying the
installation and maintenance processes for users.

To provide a consistent and optimized environment for running Home Assistant,
the Home Assistant Operating System (HassOS) is available for installation on
supported devices. HassOS is a minimal, lightweight operating system that is
specifically designed to run Home Assistant. It allows for efficient resource utilization
and provides a reliable foundation for the platform.

Overall, the architecture of Home Assistant is designed to be modular and
extensible, allowing users to tailor the platform to their specific needs.

2.1.2 Installation

Home Assistant offers four different installation methods. The last two installation
methods are the ones recommended by the Home Assistant developers.

Home Assistant Core: This method entails a manual installation that utilizes
a Python virtual environment. It offers advanced flexibility for expert users.

Home Assistant Container: This method allows for an independent installa-
tion of Home Assistant Core using containerization technology such as Docker.

Home Assistant Supervised: This method involves a manual installation of
the Supervisor. It provides a greater level of control and customization.

Home Assistant Operating System: This method involves deploying a
minimal operating system specifically optimized for powering Home Assistant.
It includes the Supervisor, which efficiently manages Home Assistant Core and
Add-ons.

The appropriate installation method can be selected based on the specific device
and platform being utilized. This ensures compatibility and optimal performance
for your Home Assistant setup.

6

Background

2.1.3 Concepts and Terminology
To better understand Home Assistant, let’s explore some key concepts and termi-
nology:

• Integration: An integration is a software component that enables Home
Assistant to connect and communicate with other software, platforms or
hardware controllers. Integrations serve as bridges between Home Assistant
and external systems, allowing seamless interoperability and control. For
example, the Philips Hue integration enables Home Assistant to communicate
with the Hue Bridge, which acts as the hardware controller for Philips Hue
smart devices. By integrating the Hue Bridge, all connected and Home
Assistant compatible devices associated with it, such as smart bulbs or sensors,
can be discovered and managed within Home Assistant. Integrations provide
specific functionality and APIs to establish the connection and facilitate the
exchange of data, enabling users to monitor, control, and automate their
devices and services through the unified Home Assistant interface.

• Dashboard: A dashboard in Home Assistant is a user interface that provides
an overview of the smart home’s status and allows users to interact with their
devices. It typically displays relevant information, such as sensor readings,
device states and active automations. Dashboards can be accessed via the
Home Assistant web interface or through dedicated mobile apps.

• Devices and Entities: Devices and entities refer to physical or virtual objects
within the smart home environment that can be controlled or monitored. A
device represents a specific physical device, such as a smart bulb or a smart
lock. An entity, on the other hand, represents a specific aspect or attribute of a
device, such as the brightness of a bulb or the locked status of a lock. Entities
allow fine-grained control and automation of individual device features.

• Automations: Automations in Home Assistant are rules or routines that
define actions to be performed automatically based on specific triggers or
conditions. For example, an automation can be set up to turn on the lights
when motion is detected or to adjust the thermostat based on the time of
day. Automations enable the creation of personalized and intelligent behaviors
within the smart home.

• Scenes: Scenes in Home Assistant allow users to capture and replicate specific
states of multiple devices or entities. By defining a scene, users can easily
restore a desired combination of device settings or create ambiance with a
single command or trigger. For instance, a "Movie Night" scene can dim the
lights, lower the blinds and turn on the TV.

7

Background

• Scripts: Scripts in Home Assistant are sequences of predefined actions that
can be executed on demand or as part of an automation. Scripts allow users
to create custom sequences of commands or interactions with multiple devices
or services. They offer flexibility and customization for specific scenarios or
user preferences.

• Add-ons: Add-ons are optional packages or extensions that can be installed
in Home Assistant to enhance its functionality. Add-ons can provide additional
integrations, services or tools to expand the capabilities of Home Assistant.
For example, there are add-ons for data analytics, voice assistants or advanced
automation engines.

2.1.4 Security Considerations
Ensuring the security of Home Assistant and the connected IoT devices is crucial
for maintaining a safe and protected smart home environment. In this subsection,
we will explore important security considerations related to Home Assistant.

By addressing these security considerations and adopting security best practices,
Home Assistant can provide a secure foundation for managing and controlling the
IoT devices within a smart home environment.

Secure Communication Protocols

Home Assistant supports various communication protocols to interact with IoT
devices and services. It is essential to prioritize secure protocols, such as Hypertext
Transfer Protocol Secure (HTTPS) [1], Message Queues Telemetry Transport
(MQTT) [2] with Transport Layer Security (TLS) [3], or Z-Wave Security [4],
for encrypted and authenticated communication. By utilizing secure protocols,
sensitive data transmission can be safeguarded from eavesdropping and tampering.

Authentication and Authorization

Strong authentication mechanisms are vital to prevent unauthorized access to Home
Assistant. It is recommended to enable two-factor authentication (2FA) to add
an extra layer of security to user accounts. Additionally, Home Assistant provides
granular access control through user roles and permissions. Administrators should
carefully manage user accounts and assign appropriate permissions to ensure that
only authorized individuals can access and modify the system.

Regular Updates and Patching

To mitigate security vulnerabilities, it is essential to keep Home Assistant and its
dependencies up to date by applying regular updates and patches. Home Assistant

8

Background

provides automatic update mechanisms, which should be enabled to ensure that the
latest security fixes and enhancements are promptly installed. Regularly reviewing
the release notes and security advisories is recommended to stay informed about
any vulnerabilities or updates affecting the system. However, it is equally important
to verify that these updates do not conflict with or compromise the functionality
of components developed by individual developers. To maintain stability and
avoid potential disruptions, developers are encouraged to rigorously test updates
in a controlled environment that mimics their production setup. This verification
process allows for early detection of any issues or incompatibilities that may arise
due to the updates.

Network Segmentation

Segregating the smart home network can enhance security. Consider creating
separate network segments or VLANs for IoT devices, isolating them from critical
network infrastructure.

Third-Party Integrations and Add-Ons

When utilizing third-party integrations or add-ons, exercise caution and ensure they
come from trusted sources. Verify that the integrations have undergone security
assessments, have a reliable update process and have a strong community following.
Regularly review and update third-party integrations and add-ons to benefit from
the latest security enhancements.

2.1.5 Community and Ecosystem
Home Assistant benefits from a vibrant community that actively contributes to
its development and support. The community-driven nature of Home Assistant
has resulted in a wide range of add-ons, integrations and custom components.
These community contributions expand the platform’s capabilities, allowing users
to enhance their smart home experience and address specific security requirements.

Furthermore, the Home Assistant community emphasizes security and actively
collaborates to improve the platform’s security posture. Regular security audits, bug
bounty programs and continuous development efforts ensure that Home Assistant
evolves to meet the growing security challenges in the IoT landscape.

2.1.6 Use Cases and Real-World Examples
Home Assistant offers a wide range of use cases and has been adopted in various
real-world scenarios. In this subsection, we will explore some common use cases
and provide real-world examples of how Home Assistant is being utilized.

9

Background

1. Smart Home Automation

Home Assistant excels in creating a comprehensive and automated smart home
experience. Users can integrate different smart devices, such as lights, thermostats,
sensors and cameras into Home Assistant. This allows for centralized control,
scheduling and automation of various home functions. For example, Home Assistant
can automatically adjust the lighting based on occupancy, regulate the thermostat
based on weather conditions or send notifications when unexpected events occur.

2. Energy Management and Efficiency

Home Assistant provides tools and integrations to monitor and manage energy
consumption in a smart home. By connecting to smart meters, energy monitors
or smart plugs, users can track energy usage, identify energy-hungry devices
and implement energy-saving strategies. Home Assistant can analyze energy
data, provide insights and trigger actions to optimize energy efficiency, such as
automatically turning off standby devices or adjusting thermostat settings.

3. Security and Surveillance

Home Assistant can serve as a robust security and surveillance system. By inte-
grating security cameras, motion sensors, door/window sensors and alarm systems,
users can monitor their home’s security status in real-time. Home Assistant can
send instant alerts and notifications when security events occur, allowing users to
take immediate action. Additionally, Home Assistant’s automation capabilities
can simulate occupancy by controlling lights and media devices, enhancing home
security when residents are away.

4. Environmental Monitoring and Control

Home Assistant supports various environmental sensors and weather services,
enabling users to monitor and control environmental conditions. For example, users
can integrate air quality sensors, humidity sensors or weather services to receive
real-time data and take appropriate actions. Home Assistant can automatically
adjust ventilation systems, notify users of poor air quality or activate irrigation
systems based on weather forecasts, ensuring a comfortable and healthy living
environment.

Real-World Examples

Numerous users have deployed Home Assistant in their smart homes, showcasing
its versatility and effectiveness. Some real-world examples include:

10

Background

• Ubiquiti: Ubiquiti, a renowned networking and surveillance solutions provider
has integrated Home Assistant into their UniFi Protect ecosystem[5]. This
integration allows users to manage and monitor their Ubiquiti surveillance
cameras, access points and network devices through Home Assistant’s unified
interface.

• IKEA: IKEA, the multinational home furnishings retailer has partnered with
Home Assistant to enable seamless integration with their smart home products.
This integration allows users to control and automate IKEA’s TRÅDFRI[6]
line of smart lighting products, including bulbs, controllers and motion sensors
through Home Assistant.

• Google: Home Assistant has integration with Google Assistant[7], allowing
users to control their Home Assistant-powered smart home devices using voice
commands through Google Home devices or the Google Assistant app.

• Philips: Home Assistant supports integration with Philips Hue[8] smart
lighting products. Users can connect their Hue lights to Home Assistant and
have full control over their lighting, including adjusting colors, brightness and
creating custom lighting automations.

These real-world examples demonstrate the versatility and practicality of Home
Assistant in various contexts. Home Assistant’s flexibility and extensive integrations
enable users to customize and tailor their smart home experience to their specific
needs.

2.1.7 Home Assistant Community Store (HACS)
The Home Assistant Community Store, commonly referred to as HACS, is an
integral part of the Home Assistant ecosystem. It is a user-driven repository of
custom integrations and add-ons created by the Home Assistant community. In
this subchapter, we will explore the features and benefits of the Home Assistant
Community Store.

1. Community-Driven Contributions

The Home Assistant Community Store serves as an invaluable addition to the
Home Assistant ecosystem, complementing its inherent expandability through
community-driven contributions. While Home Assistant itself offers the ability for
users to extend its functionality, the community store provides distinct advantages
and differences compared to submitting a integration into the regular ecosystem.

Firstly, the community store offers a dedicated platform specifically designed
for users to share their custom integrations and add-ons with others. It serves as a

11

Background

centralized hub, consolidating the collective knowledge and expertise of the vibrant
Home Assistant community. By leveraging the community store, users gain access
to a wide set of extensions created and maintained by community members. This
diversity enriches the ecosystem, offering users an extensive range of options to
enhance their Home Assistant setup.

Furthermore, the community store facilitates seamless discovery and installation
of community-developed extensions. It simplifies the process for users to explore,
evaluate, and integrate new functionalities into their Home Assistant environment.
Through the store’s user-friendly interface and efficient installation mechanisms,
users can effortlessly enhance their smart home setup with the contributions of
fellow community members.

Additionally, the community store fosters collaboration and encourages active
participation within the Home Assistant community. By providing a platform for
developers to showcase their creations, it promotes engagement and knowledge-
sharing among community members. Users can benefit from the collective expertise
and continuous development efforts, as well as receive support and feedback from
the community.

2. Extended Functionality

By utilizing the Home Assistant Community Store, users can extend the capabilities
of their Home Assistant installation. They can discover and install custom integra-
tions that are not available in the official Home Assistant repositories. These custom
components enable integration with specific devices, services or platforms that are
not natively supported by Home Assistant, broadening the range of compatible
devices and expanding the integration possibilities.

3. User-Friendly Interface

The Home Assistant Community Store provides a user-friendly interface within the
Home Assistant web interface. Users can browse through the available integrations
and add-ons, read descriptions, view ratings and access documentation. The
interface also allows for easy installation, configuration and updates, providing a
seamless and streamlined experience for users.

4. Community Support and Collaboration

The Home Assistant Community Store fosters a spirit of collaboration and support
within the Home Assistant community. Users can actively engage with the devel-
opers and other community members through forums, chat platforms and GitHub
repositories. This open and collaborative environment promotes knowledge sharing,
troubleshooting and the continuous improvement of community-driven extensions.

12

Background

5. Customization and Personalization

With the Home Assistant Community Store, users have the freedom to customize
and personalize their Home Assistant installation according to their preferences
and requirements. They can choose from a vast array of community-developed
themes, frontend customizations and additional functionality, allowing them to
create a unique and tailored smart home experience.

While the Home Assistant Community Store offers numerous advantages, it
is important to acknowledge that integrations available in HACS are generally
less controlled compared to the official integrations present in the Home Assistant
release. Since HACS relies on community contributions, there may be variations
in the quality, reliability and compatibility of the available integrations. This
lack of control has inspired the objective of my thesis that is to implement an
authentication and verification mechanism for community developed integrations.
By introducing such a mechanism, it aims to enhance the security and reliability of
the community-driven integrations, providing users with a more trusted and curated
selection of integrations. This authentication and verification mechanism will enable
users to have greater confidence when selecting and installing integrations from the
community store, mitigating potential risks associated with unverified or malicious
ones.

In conclusion, the Home Assistant Community Store is a valuable resource that
empowers users to enhance and customize their Home Assistant installations. It
fosters community collaboration, provides extended functionality through custom
integrations and add-ons and offers a user-friendly interface for easy discovery,
installation and updates.

2.2 The Manufacturer Usage Description
The Manufacturer Usage Description (MUD) is a component-based architecture
that plays a crucial role in enhancing the security and access control of Internet of
Things (IoT) devices. MUD provides a standardized mechanism for end devices to
communicate their access and network requirements to the network infrastructure.
By doing so, MUD enables network administrators to enforce device-specific access
policies and improve the overall security posture of the IoT ecosystem.

The goal of MUD, as specified in RFC 8520 [9], is to enable end devices to
signal to the network what sort of access and network functionality they require
to properly function. Initially focused on access control, MUD offers a versatile
framework that can be extended to cover other aspects as well. RFC 8520 defines
the MUD architecture and specifies the necessary components, including MUD
files, network enforcement points and MUD managers.

13

Background

MUD leverages standardized protocols and formats, such as Yet Another Next
Generation (YANG) [10] modules, Dynamic Host Configuration Protocol (DHCP)
[11] options, Link Layer Discovery Protocol (LLDP) [12], Uniform Resource Locators
(URLs) [13], X.509 [14] certificate extensions and signing mechanisms, to facilitate
the exchange of device requirements and enable seamless integration with network
infrastructure. By employing MUD, network administrators gain granular control
over device access permissions, reducing the attack surface and minimizing the risk
of unauthorized access.

2.2.1 MUD Architecture and Components
The Manufacturer Usage Description (MUD) architecture, as defined in RFC
8520 [9], encompasses several key components that work together to enable the
enforcement of device-specific access policies. These components play a vital role in
ensuring that IoT devices can effectively and securely communicate their network
requirements.

The main components of the MUD architecture, as depicted in the RFC 8520
diagram, include:

• MUD Files: MUD files are JSON-based documents that contain detailed
descriptions of the behavior, capabilities and network requirements of IoT
devices. Device manufacturers provide these files specifying the access policies
that should be enforced for each device. MUD files follow a standardized format
and include information such as device classes, required network protocols
and allowed network services.

• MUD Manager: The MUD Manager acts as the central coordinating entity
in the MUD ecosystem. It manages the distribution and storage of MUD files,
ensuring their availability to network enforcement points. The MUD Manager
interacts with device manufacturers to retrieve MUD files and maintains a
repository of these files. It facilitates secure and efficient MUD file exchange
between manufacturers, network administrators and other MUD components.

• MUD File Server: The MUD File server is responsible for hosting and
serving MUD files. It provides a reliable and accessible location where MUD
files can be retrieved by network enforcement points. The MUD File server,
often maintained by the manufacturer or a trusted third party, ensures the
integrity and availability of MUD files.

• Policy Enforcement Point: Policy Enforcement Points (PEPs), represented
by routers or switches in the MUD architecture, play a crucial role in enforcing
access policies based on the information provided in MUD files. As stated in

14

Background

the RFC 2753 [15], a PEP is the point where the policy decisions are actually
enforced. PEPs examine network traffic and make access control decisions to
ensure that IoT devices have appropriate network access. By referring to MUD
files, PEPs enforce device-specific access policies and prevent unauthorized or
malicious activities.

• Thing: The Thing refers to the IoT devices themselves, such as sensors,
actuators or smart appliances. These devices connect to the network and
communicate their network requirements using MUD. By incorporating MUD
support, IoT devices can convey their intended behavior, required network
services and access constraints to the network infrastructure.

Figure 2.2: Architecture diagram of MUD.

In the context of Home Assistant, the integration of MUD brings significant
benefits. It allows for improved security by defining and enforcing access poli-
cies tailored to individual devices, mitigating the risks associated with untrusted
or compromised devices. Furthermore, MUD simplifies device management by
providing automated configuration and identification, reducing the manual effort
required for secure device onboarding. By leveraging these components, the MUD
architecture provides a standardized framework for device manufacturers, network
administrators and home automation systems to collaborate effectively in enforcing
access control policies.

2.2.2 Structure of a MUD file
The MUD file is a critical component of the MUD framework and serves as the
authoritative source for describing a device’s behavior within a network. It contains
the necessary information for smart home gateways to make informed decisions
about network access controls and security policies. The MUD file adheres to a

15

Background

specific structure and includes various sections, each capturing essential aspects of
the device’s behavior.

The sections typically found in a MUD file include:

1. Manufacturer Information: This section provides details about the device
manufacturer or vendor, such as the manufacturer name, the manufacturer’s
domain and contact information.

2. Device Information: This section contains specific details about the device
itself, including the device name, model name or identifier and firmware
version.

3. MUD URL: The MUD URL section specifies the location from which the
MUD file can be retrieved. It includes the scheme (e.g., HTTP or HTTPS),
authority (e.g., domain name or IP address), path and optional query parame-
ters.

4. MUD Rules: This section defines the network communication and behavior of
the device. It includes Access Control Lists (ACLs) which specify the permitted
inbound and outbound network traffic and may incorporate information about
local network traffic, external network traffic, supported protocols, port ranges
and any URLs associated with the device.

The content within the MUD file is typically written using a specialized syntax
defined by the MUD specification. This syntax enables the concise and standardized
representation of the device’s behavior and requirements.

By examining the components and sections within the MUD file, smart home
gateways can effectively enforce network security policies, allowing devices to
operate securely within the smart home ecosystem.

The following is an example of a possible MUD file. This example contains two
access lists that are intended to provide outbound access to a cloud service on TCP
port 443.

In this example, two policies are declared: one from the Thing and the other
to the Thing. Each policy names an access list that applies to the Thing and
one that applies from the Thing. Within each access list, access is permitted to
packets flowing to or from the Thing that can be mapped to the domain name
of service.bms.example.com. For each access list, the enforcement point should
expect that the Thing initiated the connection.

Listing 2.1: MUD Snippet example
1 {
2 " i e t f −mud:mud " : {
3 "mud−ve r s i on " : 1 ,

16

Background

4 "mud−u r l " : " https : // l i g h t i n g . example . com/ l i gh tbu lb2000 " ,
5 " l a s t −update " : "2019−01−28T11 :20 : 51+01 :00 " ,
6 " cache−v a l i d i t y " : 48 ,
7 " i s −supported " : true ,
8 " sys temin fo " : "The BMS Example Light Bulb " ,
9 " from−device−p o l i c y " : {

10 " acces s − l i s t s " : {
11 " acces s − l i s t " : [
12 {
13 "name " : "mud−76100−V6fr "
14 }
15]
16 }
17 } ,
18 " to−device−p o l i c y " : {
19 " acces s − l i s t s " : {
20 " acces s − l i s t " : [
21 {
22 "name " : "mud−76100−v6to "
23 }
24]
25 }
26 }
27 } ,
28 " i e t f −access −cont ro l − l i s t : a c l s " : {
29 " a c l " : [
30 {
31 "name " : "mud−76100−v6to " ,
32 " type " : " ipv6−ac l −type " ,
33 " aces " : {
34 " ace " : [
35 {
36 "name " : " c10−todev " ,
37 " matches " : {
38 " ipv6 " : {
39 " i e t f −ac ldns : src−dnsname " : " t ex t . example . com " ,
40 " p ro to co l " : 6
41 } ,
42 " tcp " : {
43 " i e t f −mud: d i r e c t i o n − i n i t i a t e d " : " from−dev i ce " ,
44 " source−port " : {
45 " operator " : " eq " ,
46 " port " : 443
47 }
48 }
49 } ,
50 " a c t i o n s " : {
51 " forward ing " : " accept "
52 }

17

Background

53 }
54]
55 }
56 }
57]
58 }
59 }

2.2.3 Security Considerations
In this subsection, we will discuss security considerations related to the deployment
of the Manufacturer Usage Description (MUD) framework as outlined in RFC 8520.

Trustworthiness of MUD Files

To support the security of the MUD ecosystem, robust measures are in place to
ensure the trustworthiness of MUD files. As stated in the RFC 8520, manufacturers
and distributors employ secure mechanisms to sign MUD files, guaranteeing the
integrity and authenticity of these files. By utilizing cryptographic signatures,
devices and MUD managers can verify the legitimacy of MUD files before enforcing
access control policies. Furthermore, the transmission of MUD files occurs through
secure channels, predominantly using HTTPS, to safeguard against unauthorized
modifications.

Mitigating MUD-Related Attacks

The adoption of MUD introduces potential attack surfaces and associated vulnera-
bilities. However, effective countermeasures have been implemented to mitigate
MUD-related attacks. These measures include protecting against forged or mali-
cious MUD files through the implementation of cryptographic signatures. Secure
mechanisms are established for retrieving MUD files, employing encrypted commu-
nication channels such as HTTPS. Additionally, continuous monitoring and analysis
of MUD-enforced access control decisions are conducted to detect and respond
to any anomalous behavior promptly. These measures collectively contribute to
maintaining a robust security posture within the MUD ecosystem.

Privacy Considerations

MUD deployment may involve sharing device-specific information with the MUD
manager for access control enforcement. Privacy considerations should include
defining appropriate data protection measures, ensuring compliance with rele-
vant privacy regulations and minimizing the collection and storage of sensitive
information.

18

Background

Operational Security

Maintaining the operational security of MUD components is crucial. Considera-
tions should include secure management of MUD managers, protection against
unauthorized access or tampering with MUD-related configurations and monitoring
for potential security incidents or anomalies in MUD enforcement.

Transmission of MUD URLs

The transmission of MUD URLs presents a critical point in the security of the MUD
framework. When using protocols like DHCP[11] or LLDP[12], the transmission of
MUD URLs remains vulnerable to potential security risks.

In the case of DHCP, where devices automatically obtain network configurations,
including MUD URLs, the transmission of this information can be intercepted or
manipulated by malicious actors. Unauthorized modification of the MUD URL
could lead to devices receiving incorrect or malicious MUD files compromising the
integrity and security of the access control enforcement.

Similarly, when utilizing LLDP for MUD URL transmission, the information
can be exposed to eavesdropping or tampering during network discovery. Malicious
actors can intercept or modify the MUD URLs, potentially leading to unauthorized
or compromised access control policies.

To mitigate these vulnerabilities, it is crucial to employ additional security
measures when transmitting MUD URLs. IEEE proposed to use 802.1AR[16]
protocol, which, accoring to RFC 8520[9], provides a certificate-based approach to
communicate device characteristics. Implementing secure communication channels
such as HTTPS for the retrieval of MUD files further enhances the security posture
and safeguards against unauthorized modifications.

By addressing the vulnerability in the transmission of MUD URLs, the overall
security of the MUD ecosystem can be strengthened, ensuring the reliable and
secure enforcement of access control policies for IoT devices.

2.3 State of the Art Authentication Mechanisms

Authentication mechanisms play a crucial role in ensuring data integrity, source
verification and protection against data poisoning attacks. In this section, we will
briefly explore different authentication solutions adopted by well-known companies
and propose the adoption of Codenotary Community Attestation Service (CAS)
for its unique features and advantages.

19

Background

2.3.1 Existing Authentication Solutions
Android Ecosystem

The Play Integrity Application Programming Interface (API) authentication mech-
anism plays a crucial role in ensuring the security and integrity of data transmitted
between applications and the Google Play Store. This authentication process is
designed to verify the authenticity of requests made to the Play Integrity API,
thus preventing unauthorized access and protecting against potential fraudulent
activities.

At its core, the Play Integrity API authentication mechanism utilizes a combina-
tion of cryptographic techniques and secure communication protocols to establish
a secure connection between the client application and the Google Play Store
servers. The primary goal is to validate the identity of the client application and
ensure that the data exchanged during the communication remains confidential
and tamper-proof.

To initiate the authentication process, the client application needs to obtain
an API key from the Google Play Developer Console. This API key serves as a
unique identifier for the application and acts as a secret token that authenticates
the requests sent to the Play Integrity API. The API key must be securely stored
within the client application, as its compromise could lead to unauthorized access
or misuse.

Once the client application has acquired the API key, it includes this key in
the requests it sends to the Play Integrity API. These requests are typically made
using secure communication protocols such as HTTPS to encrypt the data and
establish a secure channel between the client and the server.

Upon receiving a request, the Play Integrity API verifies the authenticity of the
client application by validating the API key included in the request. This validation
process involves cryptographic algorithms and server-side checks to ensure that the
provided API key matches the one associated with the client application.

If the API key is successfully validated, the Play Integrity API proceeds to
process the request and perform the requested integrity checks on the data provided
by the client application. These integrity checks may include verifying the digital
signatures of the application packages, validating the Android Application Package
(APK) files and ensuring that the application adheres to Google Play policies and
guidelines.

In the event of a failed authentication attempt, the Play Integrity API rejects the
request indicating that the client application’s identity could not be verified. This
rejection helps protect against malicious or unauthorized applications attempting
to manipulate or exploit the Play Store’s integrity system.

Overall, the Play Integrity API authentication mechanism is a vital component
in maintaining the security and integrity of the Google Play ecosystem. By

20

Background

securely authenticating client applications and validating the data they provide,
this mechanism helps ensure that only legitimate and trusted applications are
available to users, fostering a safer and more reliable app ecosystem.

Apple Ecosystem

The Apple ecosystem incorporates a robust set of security mechanisms to ensure
the integrity and trustworthiness of code and applications running on their devices.
By employing a combination of system security, app security and certification
processes, Apple strives to provide a secure environment for its users.

A fundamental component of Apple’s security architecture is the secure boot
chain. During the startup process, each stage of the boot chain is cryptographically
signed, ensuring that only trusted code is executed. This chain of trust begins with
the device’s hardware and firmware, progressing through each layer of the operating
system until the user interface is loaded. By verifying the integrity of software
components at startup, Apple mitigates the risk of unauthorized modifications and
safeguards against malicious code execution.

To further support security, Apple employs a multi-layered approach when it
comes to app security. Before an application can run on Apple devices, it undergoes
a thorough review and approval process. This process involves stringent guidelines
and checks to identify any potential security vulnerabilities or violations. By
scrutinizing apps prior to their inclusion in the App Store, Apple aims to protect
users from harmful or malicious software.

In addition to the app review process, Apple’s notarization system plays a
crucial role in enhancing security for macOS users. Notarization is a process
where developers submit their apps to Apple for a comprehensive security scan.
This scan examines the app for any malicious code, ensuring that it adheres to
Apple’s security standards. Notarized apps receive a digital signature from Apple,
indicating that they have undergone this verification process, thereby boosting user
confidence in the app’s integrity.

Moreover, Apple’s ecosystem includes built-in antivirus protection for macOS.
This antivirus feature constantly monitors and scans files on the system, including
those downloaded from the internet. It actively detects and neutralizes known
malware threats reducing the risk of infection and enhancing overall system security.

By combining secure boot chain mechanisms, app security reviews, notarization
processes and built-in antivirus protection, Apple has created a comprehensive
security framework for its ecosystem. These measures work in unison to ensure
that only trusted code and applications are allowed to run on Apple devices. As a
result, users can confidently download and use apps from the App Store or other
trusted sources, knowing that their devices are protected against potential security
risks.

21

Background

Microsoft Ecosystem

Within the Microsoft ecosystem, a range of security measures are employed to
prioritize publisher verification and trust validation, ensuring the integrity and
safety of software, including macros, ActiveX controls and add-ins. Microsoft places
emphasis on enabling users to verify the identity and credentials of publishers
before trusting their code, mitigating potential security risks.

One key aspect of Microsoft’s approach to security is the emphasis on publisher
verification. Users are encouraged to exercise caution and diligence when interacting
with software components such as macros, ActiveX controls or add-ins. Before
executing or enabling these components, users are advised to verify the identity
and credibility of the publisher. This verification process helps establish trust
in the origin and integrity of the code, reducing the likelihood of malicious or
unauthorized activity.

To further reinforce security, Microsoft has implemented the Microsoft 365 App
Compliance Program, which offers a layered approach to app security and certifica-
tion. This program aims to enhance user confidence in the applications utilized
within organizations. Through the program, Microsoft provides a comprehensive
set of security checks and validation processes for apps seeking certification. These
checks encompass various aspects, including data handling, privacy compliance,
security protocols, and adherence to industry best practices. By undergoing this
rigorous certification process, apps can demonstrate their commitment to security
and establish themselves as trusted solutions within the Microsoft ecosystem.

Microsoft’s multifaceted approach to security not only emphasizes publisher
verification but also fosters a proactive stance in promoting secure software practices.
By encouraging users to verify publishers and establishing a comprehensive app
compliance program, Microsoft prioritizes the protection of user data and system
integrity. These measures collectively contribute to creating a secure ecosystem
that empowers users to make informed decisions about the software they trust and
use, thereby mitigating potential security risks.

2.3.2 Codenotary Community Attestation Service (CAS)
CAS is a notable example of notarization service. Notarization is a process that
provides integrity and authenticity assurance for digital assets. It involves creating
a tamper-evident record, commonly referred to as a notarized proof that can be
used to verify the integrity and origin of the asset at a later time.

It utilizes blockchain principles with the underlying technology of immudb[17]
to create an immutable and transparent record of the digital asset.

Blockchain[18] is a decentralized and distributed digital ledger technology[19]
that records transactions or data across multiple computers. It operates on a peer-
to-peer network where each participant maintains a copy of the entire blockchain.

22

Background

This decentralized nature ensures transparency, immutability and trust in the
recorded data.

Immudb is an open-source immutable database built using blockchain principles.
It utilizes cryptographic hashing and merkle tree structures (a Merkle tree structure
is a hierarchical data structure used in cryptography and computer science to
efficiently verify the integrity and authenticity of data) to ensure data integrity
and tamper-evidence. Immudb’s design guarantees that once data is recorded, it
cannot be modified without detection. This makes immudb an ideal solution for
applications that require verifiable and tamper-proof data storage.

CAS Overview

CAS offers a comprehensive solution to give digital assets a meaningful, globally-
unique and immutable identity. It ensures authenticity, verifiability and traceability
from anywhere. It provides the ability to attest digital assets, adding a chosen
trust level, custom attributes and meaningful status.

The key features and benefits of Codenotary CAS for notarization include:

• Notarization Process: CAS enables notarization by calculating the Secure
Hash Algorithm 256-bit (SHA-256) [20] hash of digital assets and crypto-
graphically signing the hash, status and trust level. This process creates a
tamper-proof record that binds the asset’s information together.

• Immutability and Tamper-Evidence: By leveraging immudb’s blockchain-
based technology, Codenotary CAS achieves immutability and tamper-evidence.
Once a asset’s hash or fingerprint is recorded in immudb, it becomes immutable
and resistant to tampering. Any attempts to modify or tamper with the asset
will be immediately detected, ensuring the integrity and authenticity of the
notarized asset.

• Decentralization and Trustworthiness: The decentralized nature of im-
mudb’s distributed network of nodes adds an additional layer of trust and
reliability to Codenotary CAS. Unlike centralized systems, which rely on a
single authority, the decentralized nature of immudb ensures that verification
is not dependent on a single point of failure. This decentralization enhances
trustworthiness by eliminating the risk of manipulation or compromise by a
single entity.

• Verifiability: The integrity and authenticity of the notarized proofs can be
easily verified by comparing them against the original digital assets. This
transparency allows developers and code consumers to independently verify
the authenticity and integrity of the notarized assets.

23

Background

• Efficient and Lightweight Storage: Immudb, the underlying technology
used by Codenotary CAS, is designed to be lightweight and efficient. It provides
a scalable storage solution that can handle large volumes of hashes without
compromising performance. This efficiency ensures a seamless notarization
process, enabling developers to quickly and reliably notarize their assets while
maintaining optimal system performance.

• Flexibility and Integration: CAS can be seamlessly integrated into ex-
isting workflows and systems. It provides developers with a Command-Line
Interface (CLI) for easy integration but unfortunately it doesn’t offer APIs
for programmatic access.

• Open-Source and Community Support: Both Codenotary CAS and
Immudb are open-source projects, fostering collaboration and community sup-
port. The open-source nature allows developers to contribute, audit the code,
and participate in the evolution of the technology. This collaborative approach
ensures continuous improvements, security enhancements and innovation in
the notarization and blockchain space.

Figure 2.3: How CAS is secured

By leveraging Codenotary CAS, we can address the challenges of data poisoning,
data integrity and source verification effectively. Its robust features and integration
capabilities make it a suitable choice for ensuring the authenticity and integrity of
digital assets in our environment.

In the next subsection, we will delve into the technical implementation details
and further explore the benefits and potential use cases of Codenotary CAS Service.

24

Background

2.3.3 Notarization and Verification process using CAS Ex-
ecutable

In this subsection, we will describe the process of notarizing and verifying a digital
asset using the Codenotary CAS executable. Codenotary CAS is a decentralized,
tamper-evident notarization service that utilizes blockchain technology. Its pur-
pose is to ensure the integrity and immutability of digital assets, enabling secure
verification.

The notarization process involves the following steps:

Preparation

Before notarizing a digital asset, it is necessary to create your identity and obtain
an API-KEY from the free cloud service, CAS Cloud, provided by Codenotary.
Additionally, you will need to download the CAS executable, which is available for
both Unix and Windows operating systems. Once the executable is downloaded,
you can proceed to log in to the attestation service using your API key.

Notarization

To notarize a digital asset using Codenotary CAS, follow these steps:

1. Launch the Codenotary CAS executable on your system.

2. Initiate the notarization process by executing the following command: cas
notarize <file>.

3. Codenotary CAS will calculate a unique cryptographic hash (e.g., using SHA-
256) of the asset and record it on the connected blockchain network. This
cryptographic hash serves as a digital fingerprint that uniquely identifies the
asset.

4. The blockchain network will reach a consensus on the validity of the notariza-
tion, ensuring its immutability and tamper-evident nature.

5. Once the notarization process is completed, Codenotary CAS will provide a
receipt or proof of notarization. This receipt includes the cryptographic hash
of the asset and other relevant metadata. It serves as evidence of the asset’s
integrity and can be used for future verification purposes.

Verification

To verify a notarized digital asset using Codenotary CAS, follow these steps:

25

Background

1. Launch the Codenotary CAS executable on your system.

2. Provide the receipt or proof of notarization generated during the notarization
process.

3. Initiate the verification process by submitting the receipt for verification. You
can use the command: cas inspect <file>.

4. Codenotary CAS will retrieve the original cryptographic hash of the asset
from the connected blockchain network using the provided receipt.

5. The retrieved hash is then compared to a newly calculated hash of the asset
(either the file or the data).

6. If the two hashes match, the asset is considered verified, ensuring that it has
not been tampered with since the notarization. Conversely, if the hashes do
not match, it indicates that the asset has been altered or tampered with.

By following these steps, you can utilize Codenotary CAS to notarize and verify
digital assets, guaranteeing their integrity and immutability through the utilization
of blockchain-based technology.

26

Chapter 3

Integrating MUD in Home
Assistant

In this chapter we explore the integration of MUD into Home Assistant which
serves as the starting point for our discussion and the focus lies in presenting an
extended version of the MUD architecture as stated in [21].

Developers are empowered to specify the endpoints required for their integrations
which in turn contribute to the generation of a consolidated gateway-level MUD file.
This unique approach enables non-MUD-enabled devices, but in general all kind
of plug-ins even the ones that offer only software functionalities, to benefit from
MUD compliance when integrated through compatible integrations, all without
necessitating modifications to the devices themselves.

3.1 MUD Generator Integration
Despite the absence of native MUD support in Home Assistant, an integration called
MUD Generator has been developed to address this limitation. The MUD Generator
integration simplifies the process of generating a MUD file by utilizing a provided
template. The MUD Generator scans various integrations to identify specific MUD
"snippets" associated with each integration. To define their requirements, each
integration provides a dedicated JSON file. The MUD integration collects these
requirements and combines them into a local MUD file, utilizing a predefined
template. This generated MUD file is then signed using the smart home gateway’s
private key. Once signed, the MUD Generator stores the file in a designated folder
accessible through the Home Assistant web server and it also notifies the MUD
manager. The MUD Generator Integration plays a vital role in merging MUD
snippets contributed by integration developers into a consolidated gateway-level
MUD file. This section provides a concise and precise overview of the MUD

27

Integrating MUD in Home Assistant

Generator Integration, highlighting its key functionality and significance within
the Home Assistant ecosystem. The MUD Generator Integration acts as a pivotal
link between integration developers and the Home Assistant platform. Its primary
objective is to facilitate the submission of MUD snippets, written in a MUD-like
format that accurately describe the behavior and requirements of various devices
and protocols within a home network. These snippets are then combined to generate
a comprehensive MUD file.

3.1.1 MUD Snippets
To ensure consistency and interoperability, integration developers must adhere to a
MUD-compliant format when providing MUD snippets. These snippets encapsulate
specific rules and characteristics associated with individual devices or protocols,
thus enhancing the device security and network access control capabilities of Home
Assistant.

We will now discuss the implementation details of the MUD generation func-
tionality in the MUD Generator integration. The code provided is responsible
for setting up the MUD Generator platform and creating a button entity that
can recreate and expose the MUD file each time it is pressed. This represents a
testing version of the MUD Generator integration, designed to facilitate debugging
during the development phase. It is important to note that in the definitive version,
the MUD Generator will generate the MUD file automatically each time a new
integration is added.

The MUD generation implementation starts with the validation of the user’s
configuration. The PLATFORM_SCHEMA defines the expected configuration schema, in-
cluding optional parameters such as name, network interface and deployment. This
schema ensures that the provided configuration is valid and meets the requirements.

The setup_platform function is called when setting up the platform. It takes
the Home Assistant instance, the configuration, the add_entities callback function
and the discovery information as input. Inside this function, the configuration
parameters are extracted and assigned to the params dictionary. If any of the
optional parameters are missing from the configuration, default values are set.

The MUDGeneratorButton class is defined as a button entity that represents the
MUD generator. It takes the Home Assistant instance and the params dictionary
as input. The __init__ method initializes the MUD generator button by setting
various attributes such as the name, deployment, unique ID and network interface.
It also creates an instance of the MUDGenerator class.

The generate_mud_file method in the MUDGenerator class is responsible for
generating the MUD file based on a template. It takes the integration list and
sign parameters as input. Inside this method, the MUD draft is loaded from a file
and MUD rules are added. The MUD file is then checked for changes and if any

28

Integrating MUD in Home Assistant

changes are detected, the last-update timestamp is updated and the MUD file is
written.

The _add_mud_rules method in the MUDGenerator class adds ACLs (Access
Control Lists) to the MUD object. It takes the integration list as input and retrieves
MUD snippets from the manifest of each integration. It also traverses the custom
components and default components — which are the ones officially present in the
Home Assistant release — directories to find MUD snippets and adds them to the
MUD object. Searching among default components was implemented considering
a future full compatibility of Home Assistant with MUD. In this way, even MUD
snippets of these default components will be included in the generated MUD file.

The _add_rules_to_draft method in the MUDGenerator class adds the ex-
tracted MUD rules from a snippet file to the MUD draft. It parses the snippet
file, extracts the necessary rules, and adds them to the appropriate sections of the
MUD draft, such as the from-device policy, to-device policy, and ACLs.

Overall, the MUD Generator implementation allows the user to configure the
MUD generator integration and generate the MUD file based on the provided
configuration. The integration automatically updates the MUD file periodically
and exposes it through the specified interface. The MUD rules are extracted from
mud-snippets files present in the integrations manifest, ensuring that the generated
MUD file contains the necessary rules to enforce network security policies for IoT
devices.

3.2 Extended MUD Architecture

Figure 3.1: Extended MUD Architecture

In this section we aim to describe the extended MUD architecture, which will
enable plug-in developers to define a set of MUD-compliant requirements. Its

29

Integrating MUD in Home Assistant

components are described in detail in Chapter 2.2.
The primary objective of this extended architecture is to allow plug-in develop-

ers to specify a comprehensive set of MUD requirements enanching the original
idea of MUD files which are provided by the device manufacturers itself. These
requirements will then be utilized by the Smart Home Gateway to automatically
generate a gateway-level MUD file.

This architecture leverages various components. It employs an OpenWrt [22]
router running osMUD [23], an open-source MUD manager. The osMUD component
only supports DHCP [11] as the notification approach specified in the MUD RFC.
The Home Assistant (Hass) component plays a crucial role in sending DHCP
requests to the router, including the appropriate MUD URL. This URL points
to the Hass instance, which hosts a web server capable of exposing the generated
MUD file, along with the Hass dashboard.

Once osMUD retrieves the MUD file, it verifies the associated signature and
enforces the specified policies by configuring the OpenWrt firewall using iptables.
This ensures that the communication rules and security policies remain up-to-date.

To keep the MUD file current with all available MUD-enabled integrations,
the process is repeated whenever users add new integrations to Home Assistant.
This involves restarting the SHG to activate the new integrations, prompting the
retrieval of an updated MUD file. When osMUD obtains the new file, it removes
the old firewall rules and applies the new policies accordingly.

In the context of this gateway-based MUD architecture, collaboration among
developers is crucial. Developers are responsible for specifying the endpoints
required for their integrations and adhering to the MUD standard by creating
MUD-compliant files for each integration. For developers who may not possess
an in-depth understanding of these standards, tools like MUD Maker[24] can be
utilized to simplify the creation of MUD snippets.

It is important to note that this architecture assumes that every smart home
gateway plug-in can benefit from MUD, even if the plugin integrates only new
software functionalities. This inclusive approach aims to enhance the overall security
of the SHG and, consequently, the entire smart home system. Additionally, by
enabling plug-in developers to act on behalf of device manufacturers, the number
of MUD-compliant devices supported within a smart home environment can be
increased.

By embracing this collaborative architecture, users of Home Assistant can
enhance their security and enforce communication restrictions based on MUD files
provided by integration developers. The close cooperation between developers and
the MUD manager ensures a more secure and controlled smart home environment.

30

Chapter 4

Authenticating Integrations
and MUD Snippets

In this chapter we will discuss the authentication mechanism implemented in
the MUD Generator integration, which significantly enhances the reliability and
trustworthiness of the architecture described in Chapter 3. The authentication
mechanism provides an additional layer of assurance by verifying the integrity
and origin of integrations (and their corresponding MUD snippets) present in
Home Assistant. This ensures that only trusted and authenticated integrations
are utilized within the system thereby increasing the overall security of the smart
home environment.

4.1 Introduction
The Home Assistant platform’s flexibility and openness introduce potential security
vulnerabilities, particularly in relation to third-party plug-ins. These plug-ins,
available through platforms like Home Assistant Community Store (HACS) or
directly from the Internet, can pose risks such as the inclusion of malicious code
or vulnerabilities that compromise the overall security of the smart home system.
To address these security concerns, the goal of this thesis is to introduce in this
architecture an authentication and verification mechanism specifically tailored for
the MUD snippets and their associated integrations within the Home Assistant
system. This process plays a crucial role in maintaining the integrity and security
of the generated MUD file.

This chapter explores the integration notarization process using the CodeNo-
tary CAS service and the subsequent authenticity check performed by the MUD
Generator integration. We will also discuss the severity levels associated with the
authenticity check and their corresponding actions. Through these mechanisms,

31

Authenticating Integrations and MUD Snippets

Home Assistant ensures the trustworthiness and integrity of integrations, thereby
enhancing the reliability and security of the smart home system.

4.2 Integration Notarization with CAS
As explained in Section 2.3.3, integration developers are required to notarize
their integrations using the CodeNotary CAS service. This notarization process
ensures that the MUD snippet and its associated integration remain unchanged
and authentic over time. By notarizing the integration, a unique cryptographic
hash is generated and associated with it.

The integration notarization process involves the following steps:

1. The integration developer, after obtaining its private API-KEY from CAS,
must login into the CAS service.

2. The integration developer submits the MUD snippet and its associated inte-
gration to the CodeNotary CAS service.

3. The CAS service calculates the cryptographic hash value of the submitted
code and configuration.

4. The CAS service associates the generated hash value with the integration,
establishing a verifiable link between the code and its hash.

By performing this notarization step, the authenticity and integrity of the
integration are ensured. The unique hash value serves as a digital fingerprint that
can be used for subsequent verification.

4.3 Integration Authenticity Check
The MUD Generator integration provides users with the option to perform authen-
ticity checks on the integrations present in Home Assistant. These checks verify
the authenticity and integrity of the integrations, ensuring that they have not been
tampered with or modified maliciously. The severity level for the authenticity check
is selected by the user, giving them control over how the security mechanism of
authentication is handled. This allows users to customize the level of strictness
according to their preferences and requirements, providing flexibility in aligning
the security posture of their Home Assistant system.

This authentication process serves multiple purposes:

• MUD Snippet Integrity Check: Similarly, the CAS service verifies the
integrity of the MUD snippets, guaranteeing their authenticity and preventing
the inclusion of tampered or malicious snippets.

32

Authenticating Integrations and MUD Snippets

• Integrity Check: The CAS service validates the integrity and reliability of
the submitted integrations, ensuring that they have not been tampered with
or modified maliciously.

• Binding Verification: The authentication check also includes verifying that
each integration is correctly associated with its appropriate MUD snippet.
This verification step safeguards against the inclusion of misconfigured or
unauthorized snippets.

4.4 Severity Levels
The authenticity check in the MUD Generator integration operates based on severity
levels. These levels determine the strictness of the check and the corresponding
actions taken when an integration fails the check. The severity levels and their
associated actions are as follows:

• High Severity: Integrations failing the authenticity check with high severity
are disabled within Home Assistant. Additionally, their MUD snippets are not
considered valid and the associated communication rules are disregarded. This
level ensures a strict security posture by completely disabling integrations that
fail the authenticity check. Users are immediately notified about the failed
check and the resulting action indicating that the integration is no longer
trusted and should be investigated further.

• Medium Severity: Integrations failing the authenticity check with medium
severity are not disabled. However, the MUD snippet associated with these in-
tegrations is not considered valid, and the communication rules specified within
it are ignored. This level ensures that potentially compromised integrations
do not open any network communication based on a potentially untrustworthy
MUD snippet. Users are notified about the failed check, emphasizing the
importance of investigating and resolving the integrity issue.

• Low Severity: Integrations failing the authenticity check with low severity
remain enabled within Home Assistant. The associated MUD snippet is still
considered valid and the communication rules specified within it are enforced.
This level provides a more lenient approach, allowing integrations to continue
functioning even if their authenticity is in question. However, users are notified
about the failed check, providing transparency and awareness regarding the
integrity of the integration.

The selected severity level applies to all integrations within Home Assistant and
determines the level of strictness in the authenticity check. It is important to note

33

Authenticating Integrations and MUD Snippets

that these severity levels are configurable by the user, allowing for flexibility in
aligning the security posture with individual preferences and requirements.

Table 4.1 summarizes the expected behaviour of the MUD Integration according
to the chosen severity level.

Table 4.1: Severity levels and related behaviour

Severity Level Plugin Status MUD Snippet
Low Enabled Enabled
Medium Enabled Disabled
High Disabled Disabled

In the next section, we will delve into the implementation details of the authen-
tication mechanism employed by the MUD Generator integration, exploring its
working mechanisms and how it integrates with other components within the Home
Assistant ecosystem.

4.5 Expanding the MUD Integration
In this section, we will delve into the implementation details of the MUD Generator
Integration, providing a comprehensive explanation of the underlying code and its
functionality.

The MUD Generator Integration follows a modular and extensible code architec-
ture, making use of the Home Assistant framework’s capabilities. The integration
code is organized into separate modules and files, each serving a specific purpose
and contributing to the overall functionality.

4.5.1 Functionalities Overview
The authentication implementation diagram in Figure 4.1 provides an overview of
the authentication flow and the relevant components involved.

Setup Function

The async_setup function is responsible for setting up the integration within the
Home Assistant framework. It takes two parameters: hass, which represents the
Home Assistant instance, and config, which holds the configuration data.

Inside the async_setup function, the severity level is determined based on the
configuration provided in the config parameter. As previously explained, severity
level determines how the integration will respond to certain events and conditions.

34

Authenticating Integrations and MUD Snippets

Figure 4.1: Authentication implementation diagram

Download Time

One aspect of the integration is monitoring the download time when a user down-
loads an integration from the Home Assistant Community Store (HACS). To handle
this, a partial callback function, check_download_from_hacs, is defined. It takes
the Home Assistant instance, hass, as a parameter.

The partial callback function is connected to the hacs_dispatch_repository
event using async_dispatcher_connect. This allows the function to be called
whenever a download event occurs in HACS.

Within the check_download_from_hacs function, the data associated with the
download event is extracted and processed. If the the action is an installation, the
authenticity check is performed.

Startup Time

Another aspect of the integration involves monitoring the startup time of Home
Assistant. This is done by listening to the EVENT_HOMEASSISTANT_START event.
When this event occurs, the check_on_hass_start function is called.

The check_on_hass_start function takes the Home Assistant instance, hass,
and the severity level as parameters. It retrieves the list of custom components
and excludes the MUD Generator integration and the HACS integration.

Each integration in the list is then checked using the check_integration func-
tion. If an integration fails the check, the severity level determines the appropriate
action to be taken. For high severity, the integration is disabled, while for low or
medium severity, a notification is sent to the user.

35

Authenticating Integrations and MUD Snippets

Runtime Integration Addition

Furthermore, the MUD Generator provides support for detecting and handling run-
time additions of integrations via the web GUI. This is accomplished by listening to
the EVENT_STATE_CHANGED event and calling the handle_config_entry_discovered
function.

The handle_config_entry_discovered function takes the Home Assistant
instance, hass, the severity level, and the event data as parameters. It extracts
the domain and integration information from the event data and performs checks
using the check_integration function.

Based on the severity level, the integration is either disabled or a notification is
sent to the user if it fails the check.

Periodic check at runtime

The periodic check at runtime is another important aspect of the MUD Generator
integration. It involves performing periodic checks on the integrations running in
the system to ensure they have not been tampered at runtime. This periodic check
is implemented through a scheduled task that runs at regular intervals.

The scheduled task, named perform_periodic_check, is registered using Home
Assistant’s scheduler. It is configured to execute every X minutes, where X is a
configurable parameter set by the user.

Within the perform_periodic_check function, the integration retrieves the
list of active integrations in Home Assistant. For each integration in the list, the
function calls the check_integration function to evaluate its current state and
compliance with the predefined criteria.

If an integration fails the check, the severity level determines the appropriate
action to be taken. For high severity, the integration is disabled to prevent further
issues or potential system instability. For low or medium severity, a notification
is sent to the user, providing information about the specific integration and the
nature of the issue encountered.

After evaluating all active integrations, the perform_periodic_check function
completes its execution. The scheduler ensures that the function will be called again
at the next scheduled interval, allowing for continuous monitoring and maintenance
of the integrations during runtime.

By implementing the periodic check at runtime, the integration provides a
proactive approach to ensure the stability and reliability of the integrations running
within the Home Assistant system, helping users identify and resolve potential
issues in a timely manner.

36

Authenticating Integrations and MUD Snippets

4.5.2 Integrity Check Implementation
The integrity check plays a crucial role in ensuring the trustworthiness and reliability
of software systems. In the context of home assistant integrations, integrity checks
are used to verify the authenticity and integrity of the integration’s files. By
performing integrity checks, Home Assistant can ensure that the integration’s files
have not been tampered with and that they are genuine.

The three functions we will discuss are part of an integrity checking mechanism
for home assistant integrations. These functions provide an alternative method for
performing integrity checks and rely on the SHA-256 [20] hashing algorithm and
the CAS Codenotary tool.

Function: check_integration

The check_integration function serves as the entry method for performing an
integrity check on a Home Assistant integration.
It takes two parameters: integration_name, which is the name of the integration
and files_to_be_verified, which is a list of file names to be verified (default
is None). The files_to_be_verified parameter allows flexibility for integration
developers who may want to specify a subset of files within their integration that
need to be checked for integrity rather than performing the check on all files by
default.

The function first calls the hash_folder function to calculate the SHA-256
hash value of the integration. This hash value is then passed to the verify_hash
function to check if it was notarized.

Listing 4.1: Function: check_integration
1 de f check_integrat ion (integration_name , f i l e s_to_be_ve r i f i e d) :
2 " " "
3 Function to perform i n t e g r i t y check .
4 " " "
5 hash_value = hash_folder (integration_name , f i l e s_to_be_ve r i f i e d)
6 re turn ver i fy_hash (hash_value)

Function: hash_folder

The hash_folder function calculates the SHA-256 hash value of a folder or a
specific set of files within the integration.
It takes two parameters which are the same as the function above.

The function starts by constructing the path to the integration using the
integration_name parameter. It then initializes a SHA-256 hash object.

If no specific files are specified (i.e., files_to_be_verified is None or an empty
list), the function recursively walks through all the files in the integration folder.

37

Authenticating Integrations and MUD Snippets

For each file, it opens the file in binary mode, reads its contents, and updates the
hash object with the file contents.

If specific files are provided, the function searches for each file recursively within
the integration folder. Once a file is found, it reads its contents and updates the
hash object. If a file is not found, a FileNotFoundError is raised.

Finally, the function returns the hexadecimal representation of the hash value.

Listing 4.2: Function: hash_folder
1 de f hash_folder (integration_name , f i l e s_to_be_ve r i f i e d=None) :
2 " " "
3 argument :
4 integration_name : Name o f the i n t e g r a t i o n
5 f i l e s_to_be_ve r i f i e d : L i s t o f f i l e names to be v e r i f i e d ,

d e f a u l t i s None
6 This func t i on bu i l d s a SHA−256 hash ob j e c t which accumulates
7 the hash va lues o f a l l the f i l e contents in the l i s t o f f i l e s

provided ,
8 r e s u l t i n g in a hash value that i s a func t i on o f the binary

contents o f those f i l e s .
9 " " "

10

11 in tegrat ion_path = os . path . j o i n (REAL_CUSTOM_COMPONENT_DIR,
integration_name)

12

13 sha256 = hash l i b . sha256 ()
14

15 # I f no f i l e s are s p e c i f i e d , hash a l l f i l e s in the f o l d e r
16 i f f i l e s_to_be_ve r i f i e d i s None or f i l e s_to_be_ve r i f i ed == [] :
17 # Walk through a l l the f i l e s and s u b f o l d e r s in the g iven

f o l d e r
18 f o r root , _, f i l e s in os . walk (integrat ion_path) :
19 f o r f i l e in f i l e s :
20 # Get the f u l l path o f the f i l e
21 f i l e_path = os . path . j o i n (root , f i l e)
22

23 # Read the f i l e content s and update the hash
24 with open (f i l e_path , " rb ") as f i l e :
25 sha256 . update (f i l e . read ())
26 e l s e :
27 # Hash only the s p e c i f i e d f i l e s , s ea r ch ing r e c u r s i v e l y

through s u b f o l d e r s
28 f o r f i l e in f i l e s_to_be_ve r i f i e d :
29 # Find the f i l e by r e c u r s i v e l y s ea r ch ing through a l l

s u b d i r e c t o r i e s
30 f o r root , _, f i l e s in os . walk (integrat ion_path) :
31 i f f i l e in f i l e s :
32 # Get the f u l l path o f the f i l e
33 f i l e_path = os . path . j o i n (root , f i l e)

38

Authenticating Integrations and MUD Snippets

34

35 # Read the f i l e content s and update the hash
36 with open (f i l e_path , " rb ") as f i l e :
37 sha256 . update (f i l e . read ())
38 break
39 e l s e :
40 # I f the f i l e i s not found , r a i s e an e r r o r
41 r a i s e FileNotFoundError (
42 f " F i l e ’{ f i l e } ’ not found in f o l d e r ’{

integration_name } ’ "
43)
44

45 # Return the hash value
46 re turn sha256 . hexd ige s t ()

Function: verify_hash

The verify_hash function executes the CAS Codenotary executable to inspect
the given hash value and determine if it was notarized.
It takes a single parameter, hash_value, which is the hash value of the integration.
The function first logs in to the CAS Codenotary. If the login is successful, it logs
the message "Logged In!". Otherwise, it logs an error message. Next, it executes
the CAS Codenotary inspect command with the provided API key and the given
hash_value. The function captures the output and checks if there was any error.
If there was no error, it processes the output to determine the verification status
and the signer ID. If the verification status is "TRUSTED", the function logs the
signer ID and the status as verified. Otherwise, it logs the signer ID and the status
as not verified. If there was an error in the execution of the CAS command or
the hash value was not notarized, the function logs an appropriate error message.
Finally, the function returns True if the integration is verified and False otherwise.

Listing 4.3: Function: verify_hash
1 de f ver i fy_hash (hash_value) :
2 " " "
3 argument : hash o f the i n t e g r a t i o n (the hash value , which i s

notar i zed , could be i n s e r t e d in the mani f e s t . j s on)
4 This func t i on j u s t execute s the CAS Codenotary executab l e to

i n s p e c t the hash and see i f i t was no ta r i z ed .
5 " " "
6

7 proce s s = subproces s . run (
8 [
9 "/ c o n f i g /custom_components/mud−generato r / cas " ,

10 " l o g i n " ,
11 "−−api−key " ,

39

Authenticating Integrations and MUD Snippets

12 f "{CAS_API_KEY}"
13] ,
14 capture_output=True ,
15 check=False ,
16)
17

18 s t d e r r = proce s s . s t d e r r . decode ()
19 i f s t d e r r == " " :
20 l o gg ing . i n f o (" Logged In ! ")
21 e l s e :
22 l o gg ing . i n f o ("ERRORE = %s " , s t d e r r)
23

24

25 proce s s = subproces s . run (
26 [
27 "/ c o n f i g /custom_components/mud−generato r / cas " ,
28 "−−api−key " ,
29 f "{CAS_API_KEY}" ,
30 " i n s p e c t " ,
31 "−−hash " ,
32 f "{ hash_value } " ,
33] ,
34 capture_output=True ,
35 check=False ,
36)
37

38 s t d e r r = proce s s . s t d e r r . decode ()
39 l o gg ing . i n f o (s t d e r r)
40

41 i f s t d e r r == " " :
42 stdout = proce s s . s tdout . decode ()
43 i f "0 n o t a r i z a t i o n s found " in stdout :
44 l o gg ing . i n f o (
45 "%s \033[31m : not v e r i f i e d ! (0 n o t a r i z a t i o n s found

) \033 [0m\n " ,
46 hash_value ,
47)
48 re turn Fal se
49 e l s e :
50 matched_lines = [l i n e f o r l i n e in stdout . s p l i t (" \ n ") i f "

Status " in l i n e]
51 s t a tu s = matched_lines [0] . r e p l a c e ("\ t " , " ") . s p l i t (" : ") [1]
52 matched_lines = [l i n e f o r l i n e in stdout . s p l i t (" \ n ") i f "

SignerID " in l i n e]
53 s igner id_encoded = matched_lines [0] . r e p l a c e ("\ t " , " ") .

s p l i t (" : ") [1]
54 decoded_bytes = base64 . b64decode (s igner id_encoded)
55 s igner id_decoded = decoded_bytes . decode (" utf −8")

40

Authenticating Integrations and MUD Snippets

56 l o gg ing . i n f o (" SignerID : \033[34m %s \033[0m" ,
s igner id_decoded)

57 l o gg ing . i n f o (" Status : \033[32m %s \033[0m" , s t a tu s)
58 i f s t a tu s == "TRUSTED" :
59 l o gg ing . i n f o ("% s \033[32m : v e r i f i e d ! \033 [0m\n " ,

hash_value)
60 re turn True
61 e l s e :
62 l o gg ing . i n f o ("% s \033[31m : not v e r i f i e d ! \033 [0m\n " ,

hash_value)
63 re turn Fal se
64 e l s e :
65 i f " not no ta r i z ed " in s t d e r r :
66 l o gg ing . i n f o (" \033 [31m : not v e r i f i e d ! \033 [0m")
67 re turn Fal se
68 e l s e :
69 l o gg ing . i n f o (" Error in the execut ion o f CAS command ! ")
70 re turn Fal se

By using the check_integration function, you can perform an integrity check
on your Home Assistant integration and verify if it was notarized using the CAS
Codenotary tool.

In conclusion, the integration authentication mechanism described in this section
provides essential functionalities to maintain the integrity and reliability of inte-
grated components within the Home Assistant framework. By monitoring download
time, startup time, runtime integration addition and conducting periodic checks at
runtime, the mechanism ensures ongoing verification and proactive management of
the integrations.

If you are interested in exploring the detailed code implementation, you can
find it on GitLab[25]. Please note that the repository is currently private.

4.6 Use Case Examples for the MUD Generator
Integration

Here are some possible use case examples for the MUD Generator integration
considering the different integrity check points and severity levels. These examples
highlight the behavior of the integration and its impact on the system’s security.

4.6.1 Integrity Check at Download Time:
Use Case 1:

1. The user downloads an integration from HACS.

41

Authenticating Integrations and MUD Snippets

Figure 4.2: Use Case 1 diagram

2. The MUD Generator integration performs an integrity check on the downloaded
integration.

3. If the check fails:

(a) The user is unable to add the integration to Home Assistant.
(b) A notification is displayed to inform the user about the failed check.

4. If the check succeeds:

(a) The integration is added to the system.
(b) The MUD snippet associated with the integration is considered.

4.6.2 Integrity Check at Startup Time:
Use Case 2:

1. The user starts Home Assistant.

2. The MUD Generator integration performs integrity checks on all the integra-
tions in the custom_components directory.

42

Authenticating Integrations and MUD Snippets

Figure 4.3: Use Case 2 diagram

3. If an integration fails the check:

(a) If the severity level is set to "Low":
i. A notification is displayed to inform the user about the failed check.
ii. The integration is not disabled.
iii. The MUD snippet associated with the integration is considered.

(b) If the severity level is set to "Medium":
i. A notification is displayed to inform the user about the failed check.
ii. The integration is not disabled.
iii. The MUD snippet associated with the integration is not considered.

(c) If the severity level is set to "High":
i. A notification is displayed to inform the user about the failed check.
ii. The integration is disabled.
iii. The MUD snippet associated with the integration is not considered.

4. Home Assistant is fully initialized after all integrity checks are completed.

43

Authenticating Integrations and MUD Snippets

4.6.3 Integrity Check at Runtime:
Use Case 3:

Figure 4.4: Use Case 3 diagram

1. Home Assistant is running.

2. The user adds an integration via the web GUI.

3. The MUD Generator integration performs an integrity check on the integration
to be added.

44

Authenticating Integrations and MUD Snippets

4. If the check fails:

(a) If the severity level is set to "Low":
i. A notification is displayed to inform the user about the failed check.
ii. The integration is not disabled.
iii. The MUD snippet associated with the integration is considered.

(b) If the severity level is set to "Medium":
i. A notification is displayed to inform the user about the failed check.
ii. The integration is not disabled.
iii. The MUD snippet associated with the integration is not considered.

(c) If the severity level is set to "High":
i. A notification is displayed to inform the user about the failed check.
ii. The integration is disabled.
iii. The MUD snippet associated with the integration is not considered.

5. If the check succeeds:

(a) The integration is added to the system.
(b) The MUD snippet associated with the integration is considered.

Use Case 4:

1. Home Assistant is running.

2. The MUD Generator integration periodically performs integrity checks on all
active integrations.

3. If an integration fails the check:

(a) If the severity level is set to "Low":
i. A notification is displayed to inform the user about the failed check.
ii. The integration is not disabled.
iii. The MUD snippet associated with the integration is considered.

(b) If the severity level is set to "Medium":
i. A notification is displayed to inform the user about the failed check.
ii. The integration is not disabled.
iii. The MUD snippet associated with the integration is not considered.

(c) If the severity level is set to "High":

45

Authenticating Integrations and MUD Snippets

Figure 4.5: Use Case 4 diagram

i. A notification is displayed to inform the user about the failed check.
ii. The integration is disabled.
iii. The MUD snippet associated with the integration is not considered.

4. The periodic integrity checks ensure that the system remains secure even
during runtime.

These use cases showcase the behavior of the MUD Generator integration in
different scenarios, considering the integrity checks at download time, startup time,
and runtime. The severity level determines the actions taken when an integration
fails the check, such as disabling the integration and excluding the associated MUD
snippet.

46

Authenticating Integrations and MUD Snippets

4.7 Experimental Results

4.7.1 Experimental Setup

The experimental setup involved evaluating the performance impact of incorpo-
rating an authentication mechanism into Home Assistant for authentication and
verification of integrations. The experiment was conducted using specific hardware
and software configurations. Specifically, Home Assistant OS (version 2023.7.1)
was installed on a Raspberry Pi 3B, configured with a set of 23 integrations (70%
of them were notarized by hypothetical developers), the previously presented MUD
Generator integration, HACS version 1.32.1 and Codenotary CAS version 1.0.3.
Alongside the first Raspberry, there was another one acting as a router equipped
with OpenWrt 17.01.6. On the same device, was also installed the Open Source
MUD Manager (osMUD).

The experiment aimed to measure the startup time of Home Assistant with and
without the integration of the authentication mechanism. We recorded the time it
took for Home Assistant to start up under both conditions. The measurements
were taken using a stopwatch and each condition was repeated multiple times for
accuracy. At the end we computed the average.

Figure 4.6: Conceptual Network Architecture

47

Authenticating Integrations and MUD Snippets

Router (OpenWrt + osMUD + dhcpmasq)

One of the Raspberry Pi devices is configured as a router, utilizing the OpenWrt
operating system. It is connected to the Polytechnic University of Turin Ethernet
network via an Ethernet cable and it expose a public IP address. This setup
establishes internet connectivity for the network. The router also provides a Wi-Fi
network named "OpenWrtNet". By connecting to this network, users gain access to
the router’s dashboard and the Home Assistant dashboard.

The router is equipped with osMUD, a MUD Manager and a modified version
of dnsmasq, which serves as a DHCP server required by osMUD to analyze DHCP
requests.

Smart Home Gateway

The second Raspberry Pi hosts the latest version of Home Assistant OS.
Within Home Assistant OS, along with a few test integrations and the integration

of new physical devices it consists also of the MUD Generator integration that
was implemented to enable MUD-based device management and integrations/mud
authentication.

It is important to note that while the network architecture presented various
physical devices, the majority of these devices have not been physically integrated
with Home Assistant. However, this is not so important because the focus of this
thesis lies in the notarization of integration software rather than of the devices
themselves.

4.7.2 Results
The experimental results revealed that the integration of the authentication mecha-
nism increased the startup time of Home Assistant. Without it, Home Assistant
took an average of 5 minutes and 1 seconds to start up. However, with the integra-
tion of the authentication mechanism, the startup time increased to an average of
7 minutes and 22 seconds.

Table 4.2: Home Assistant Startup Times

Authentication Fastest Run Slowest Run Average (minutes)
Disabled 04:26 04:28 04:45 05:29 06:01 05:01
Enabled 06:49 07:00 07:26 07:43 07:54 07:22

The results showed that the integration of the authentication mechanism in-
creased the startup time of Home Assistant by approximately 46.52% (from an
average of 5 minutes and 1 second to 7 minutes and 22 seconds). A comparison of

48

Authenticating Integrations and MUD Snippets

the startup times highlighted the impact on performance, with the authentication
mechanism adding an additional 2 minutes and 21 seconds to the startup time.
The observed increase in startup time was attributed to factors such as network
latency, computational overhead for authentication and verification processes and
the time taken to perform checks on available integrations. However, during the
normal execution of Home Assistant, the MUD Generator integration does not
noticeably impact performance.

It is important to note the limitations of the experiment, including the specific
hardware configuration used and the dataset of integrations, which may not rep-
resent all possible scenarios. It should be acknowledged that utilizing hardware
such as the Raspberry Pi 4, as suggested by Home Assistant, could potentially
yield better performance results. Additionally, it is crucial to consider the dataset
of integrations, as the number of integrations present within the platform directly
impacts the number of checks that need to be performed, potentially affecting
performance.

Fortunately, in the case of a smart home gateway, it is not frequently neces-
sary to reboot the system. Therefore, the longer startup time observed during the
experiment does not significantly impact the overall performance of the gateway
during regular operation. Once the system is up and running, the increased startup
time becomes less relevant in the context of continuous usage or in a stable opera-
tional state.

Overall, the experiment provided insights into the performance impact of in-
corporating an authentication mechanism into Home Assistant and highlighted the
trade-off between enhanced security benefits and increased startup time.

49

Chapter 5

Conclusions

Based on the foundation of the MUD-based architecture in Home Assistant, this
Master’s thesis has made significant advancements by introducing an authentication
and verification mechanism specifically tailored for MUD snippets and their associ-
ated integrations. This work aims to address the potential security vulnerabilities
that arise from the platform’s flexibility and openness, particularly concerning
third-party plug-ins.

The MUD-based architecture in Home Assistant serves as the starting point for
our research. It leverages the concept of MUD files which describe the behavior
and requirements of devices and protocols within a home network. By integrating
MUD into Home Assistant, developers can specify the necessary endpoints for
their integrations, leading to the generation of a consolidated gateway-level MUD
file. This unique approach allows non-MUD-enabled devices and various plug-
ins, including those offering only software functionalities, to benefit from MUD
compliance without requiring modifications to the devices themselves.

However, the Home Assistant platform’s openness also introduces potential
security vulnerabilities, particularly when it comes to third-party plug-ins. These
plug-ins, available through platforms like Home Assistant Community Store (HACS)
or directly from the Internet, can pose risks such as the inclusion of malicious code
or vulnerabilities that compromise the overall security of the smart home system.

To address these security concerns, our thesis introduces an authentication
and verification mechanism specifically tailored for the MUD snippets and their
associated integrations within the Home Assistant system. This mechanism plays
a crucial role in maintaining the integrity and security of the generated MUD file.

The authentication and verification mechanism is incorporated within the Home
Assistant framework and continuously monitors the environment at different stages,
such as download time and startup time. It ensures continuous verification, proac-
tive management, and timely resolution of potential security issues within the
integrations during runtime.

50

Conclusions

By developing this authentication and verification mechanism for Home Assistant
plug-ins, this thesis significantly enhances the security and reliability of smart home
systems. Users can confidently incorporate third-party plug-ins into their setups,
knowing that only validated and trusted plug-ins are utilized, thereby maintaining
the required security standards.

In conclusion, this work builds upon the foundation of the MUD-based ar-
chitecture in Home Assistant and introduces an authentication and verification
mechanism to enhance the overall security and reliability of smart home systems.
By addressing the security concerns related to third-party plug-ins, we provide
users with a more secure environment for managing their smart homes. The suc-
cessful implementation of this mechanism opens up avenues for further exploration
and innovation, ultimately leading to safer and more trustworthy smart home
ecosystems.

5.1 Future works
5.1.1 Identity Registration Service
In order to enhance the overall functionality and security of the system, a potential
avenue for future development is the implementation of an Identity Registration
System for developers. This system aims to provide developers with the ability to
create their own unique identities which can be utilized for various purposes within
the ecosystem.

To facilitate this idea, a dedicated "Registration Service" can be established. The
primary objective of this service is to allow developers to create their identities while
incorporating varying levels of authentication to validate their trustworthiness.

The proposed "Registration Service" will offer developers a comprehensive regis-
tration process, allowing them to provide essential information such as their name,
surname, email, and phone number. Additionally, the service can offer various
authentication mechanisms, including strong identification options such as identity
document verification.

During registration, developers can opt for different authentication levels based
on the provided information. For example, providing basic details like name,
surname, email, and phone number can be considered a standard authentication
level. However, if developers choose to include a scan of their identity document,
such as an identity card or driver’s license, this can be regarded as a higher
authentication level due to the increased assurance of their identity.

Upon successful registration, the CAS API-KEY will be sent to their registered
email address. Once developers have obtained their API-KEY, they can proceed to
utilize the CAS functionalities as previously described. However, the key distinction
now is that our service will have access to the developer’s identity information.

51

Conclusions

This added knowledge allows for enhanced verification and validation processes
within the ecosystem.

For instance, the MUD Manager can cross-reference the SignerID in the received
Snippets with our service’s database. If a Snippet is notarized but the associated
SignerID is not present in our service’s records it indicates that the asset was
notarized by a third party who has not registered with our service. This additional
layer of identity verification can further strengthen the overall security and trust
within the system.

By implementing an Identity Registration System for developers, we can enhance
the accountability and transparency of the ecosystem. This system provides
a clear link between developers, their identities and their actions within the
platform. Furthermore, it allows for more comprehensive tracking and management
of developer interactions fostering a secure and trustworthy environment for all
participants involved.

5.1.2 Vulnerability analysis of integrations
Another area of potential future work involves implementing a vulnerability scanning
mechanism for added Home Assistant integrations. This mechanism aims to
proactively identify and address security vulnerabilities within integrations, ensuring
a safer and more secure environment for users.

The proposed scanning process would involve regularly analyzing the code and
configurations of newly added Home Assistant integrations. This analysis would
be performed using a combination of static code analysis, dynamic code testing,
and vulnerability database lookups.

Static code analysis involves examining the integration’s source code without
executing it. This analysis can identify potential security flaws, such as insecure
coding practices, injection vulnerabilities, or improper access control mechanisms.
By analyzing the code before deployment, many vulnerabilities can be detected
and mitigated early in the development process.

Dynamic code testing involves executing the integration in a controlled environ-
ment to observe its behavior and interactions. This testing can reveal vulnerabilities
that are only apparent during runtime, such as insecure data transmission or im-
proper input validation. By subjecting integrations to dynamic testing, potential
vulnerabilities that may not be evident in static analysis can be identified and
addressed.

Additionally, the vulnerability scanning mechanism can leverage databases that
contain information about known vulnerabilities and security issues. By comparing
integration code and configurations against these databases, the system can identify
instances where integrations are utilizing outdated or insecure libraries, frameworks,
or methodologies. This allows for timely updates and patches to be applied,

52

Conclusions

minimizing the risk of exploitation.
To implement this scanning mechanism, a dedicated infrastructure and tooling

need to be developed. This infrastructure would include an automated scanning
system that integrates with the Home Assistant ecosystem, continuously monitoring
and scanning newly added integrations. The scanning results would be reported to
developers, allowing them to address any identified vulnerabilities promptly.

Furthermore, the integration scanning process can be complemented by establish-
ing guidelines and best practices for developers to follow when creating integrations.
These guidelines can include security recommendations, coding standards, and
secure communication practices. By promoting secure development practices, the
overall quality and security of Home Assistant integrations can be significantly
improved.

By introducing a vulnerability scanning mechanism and supporting developers
with security guidelines, the Home Assistant ecosystem can ensure a more secure
and robust environment. Users can have greater confidence in the integrations
they add, knowing that potential vulnerabilities are being actively identified and
addressed. This proactive approach to security strengthens the overall resilience of
the system and enhances the protection of user data and privacy.

53

Bibliography

[1] Eric Rescorla. HTTP Over TLS. RFC 2818. May 2000. doi: 10.17487/
RFC2818. url: https://www.rfc-editor.org/info/rfc2818 (cit. on p. 8).

[2] Silvio Quincozes, Tubino Emilio, and Juliano Kazienko. «MQTT Protocol:
Fundamentals, Tools and Future Directions». In: IEEE Latin America Trans-
actions 17.09 (2019), pp. 1439–1448. doi: 10.1109/TLA.2019.8931137 (cit.
on p. 8).

[3] Eric Rescorla and Tim Dierks. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246. Aug. 2008. doi: 10.17487/RFC5246. url: https:
//www.rfc-editor.org/info/rfc5246 (cit. on p. 8).

[4] Christopher W. Badenhop, Scott R. Graham, Benjamin W. Ramsey, Barry E.
Mullins, and Logan O. Mailloux. «The Z-Wave routing protocol and its security
implications». In: Computers & Security 68 (2017), pp. 112–129. issn: 0167-
4048. doi: https://doi.org/10.1016/j.cose.2017.04.004. url: https:
//www.sciencedirect.com/science/article/pii/S0167404817300792
(cit. on p. 8).

[5] Unifi Protect. url: https://www.home- assistant.io/integrations/
unifi/ (visited on 07/13/2023) (cit. on p. 11).

[6] IKEA’s TRÅDFRI. url: https://www.home-assistant.io/integration
s/tradfri/ (visited on 07/13/2023) (cit. on p. 11).

[7] Google Assistant. url: https://www.home-assistant.io/integrations/
google_assistant/ (visited on 07/13/2023) (cit. on p. 11).

[8] Philips Hue. url: https://www.home-assistant.io/integrations/hue/
(visited on 07/13/2023) (cit. on p. 11).

[9] Eliot Lear, Ralph Droms, and Dan Romascanu. Manufacturer Usage De-
scription Specification. RFC 8520. Mar. 2019. doi: 10.17487/RFC8520. url:
https://www.rfc-editor.org/info/rfc8520 (cit. on pp. 13, 14, 19).

[10] Martin Björklund. The YANG 1.1 Data Modeling Language. RFC 7950. Aug.
2016. doi: 10.17487/RFC7950. url: https://www.rfc-editor.org/info/
rfc7950 (cit. on p. 14).

54

https://doi.org/10.17487/RFC2818
https://doi.org/10.17487/RFC2818
https://www.rfc-editor.org/info/rfc2818
https://doi.org/10.1109/TLA.2019.8931137
https://doi.org/10.17487/RFC5246
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://doi.org/https://doi.org/10.1016/j.cose.2017.04.004
https://www.sciencedirect.com/science/article/pii/S0167404817300792
https://www.sciencedirect.com/science/article/pii/S0167404817300792
https://www.home-assistant.io/integrations/unifi/
https://www.home-assistant.io/integrations/unifi/
https://www.home-assistant.io/integrations/tradfri/
https://www.home-assistant.io/integrations/tradfri/
https://www.home-assistant.io/integrations/google_assistant/
https://www.home-assistant.io/integrations/google_assistant/
https://www.home-assistant.io/integrations/hue/
https://doi.org/10.17487/RFC8520
https://www.rfc-editor.org/info/rfc8520
https://doi.org/10.17487/RFC7950
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc7950

BIBLIOGRAPHY

[11] Ralph Droms. Dynamic Host Configuration Protocol. RFC 2131. Mar. 1997.
doi: 10.17487/RFC2131. url: https://www.rfc- editor.org/info/
rfc2131 (cit. on pp. 14, 19, 30).

[12] Suresh Krishnan, Siva Veerepalli, Eric Njedjou, Alper E. Yegin, and Nico-
las Montavont. Link-Layer Event Notifications for Detecting Network At-
tachments. RFC 4957. Aug. 2007. doi: 10.17487/RFC4957. url: https:
//www.rfc-editor.org/info/rfc4957 (cit. on pp. 14, 19).

[13] Tim Berners-Lee, Larry M Masinter, and Mark P. McCahill. Uniform Resource
Locators (URL). RFC 1738. Dec. 1994. doi: 10.17487/RFC1738. url: https:
//www.rfc-editor.org/info/rfc1738 (cit. on p. 14).

[14] Sharon Boeyen, Stefan Santesson, Tim Polk, Russ Housley, Stephen Farrell,
and David Cooper. Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile. RFC 5280. May 2008. doi:
10.17487/RFC5280. url: https://www.rfc-editor.org/info/rfc5280
(cit. on p. 14).

[15] Dimitrios Pendarakis, Dr. Raj Yavatkar, and Dr. Roch Guerin. A Framework
for Policy-based Admission Control. RFC 2753. Jan. 2000. doi: 10.17487/
RFC2753. url: https://www.rfc- editor.org/info/rfc2753 (cit. on
p. 15).

[16] «IEEE Standard for Local and Metropolitan Area Networks - Secure Device
Identity». In: IEEE Std 802.1AR-2018 (Revision of IEEE Std 802.1AR-2009)
(2018), pp. 1–73. doi: 10.1109/IEEESTD.2018.8423794 (cit. on p. 19).

[17] Michael Paik, Jerónimo Irazábal, Dennis Zimmer, Michele Meloni, and
Valentin Padurean. immudb: A Lightweight, Performant Immutable Database.
2020 (cit. on p. 22).

[18] Pinyaphat Tasatanattakool and Chian Techapanupreeda. «Blockchain: Chal-
lenges and applications». In: 2018 International Conference on Information
Networking (ICOIN). 2018, pp. 473–475. doi: 10.1109/ICOIN.2018.8343163
(cit. on p. 22).

[19] Ali Sunyaev. «Distributed Ledger Technology». In: Internet Computing:
Principles of Distributed Systems and Emerging Internet-Based Technologies.
Cham: Springer International Publishing, 2020, pp. 265–299. isbn: 978-3-030-
34957-8. doi: 10.1007/978-3-030-34957-8_9. url: https://doi.org/10.
1007/978-3-030-34957-8_9 (cit. on p. 22).

[20] Tony Hansen and Donald E. Eastlake 3rd. US Secure Hash Algorithms (SHA
and SHA-based HMAC and HKDF). RFC 6234. May 2011. doi: 10.17487/
RFC6234. url: https://www.rfc- editor.org/info/rfc6234 (cit. on
pp. 23, 37).

55

https://doi.org/10.17487/RFC2131
https://www.rfc-editor.org/info/rfc2131
https://www.rfc-editor.org/info/rfc2131
https://doi.org/10.17487/RFC4957
https://www.rfc-editor.org/info/rfc4957
https://www.rfc-editor.org/info/rfc4957
https://doi.org/10.17487/RFC1738
https://www.rfc-editor.org/info/rfc1738
https://www.rfc-editor.org/info/rfc1738
https://doi.org/10.17487/RFC5280
https://www.rfc-editor.org/info/rfc5280
https://doi.org/10.17487/RFC2753
https://doi.org/10.17487/RFC2753
https://www.rfc-editor.org/info/rfc2753
https://doi.org/10.1109/IEEESTD.2018.8423794
https://doi.org/10.1109/ICOIN.2018.8343163
https://doi.org/10.1007/978-3-030-34957-8_9
https://doi.org/10.1007/978-3-030-34957-8_9
https://doi.org/10.1007/978-3-030-34957-8_9
https://doi.org/10.17487/RFC6234
https://doi.org/10.17487/RFC6234
https://www.rfc-editor.org/info/rfc6234

BIBLIOGRAPHY

[21] Fulvio Corno, Luca Mannella, et al. «A Gateway-based MUD Architecture
to Enhance Smart Home Security». In: Proceedings of the 8th International
Conference on Smart and Sustainable Technologies–SpliTech 2023. Institute
of Electrical and Electronics Engineers (IEEE). 2023, pp. 1–6 (cit. on p. 27).

[22] Root Dir. «OpenWrt Development Guide». In: (2012) (cit. on p. 30).
[23] Kevin Yeich. «osMUD-Open Source MUD Manager». In: Available on: https://github.

com/osmud/osmud (2019) (cit. on p. 30).
[24] MUD Maker. url: https://mudmaker.org/ (visited on 07/13/2023) (cit. on

p. 30).
[25] MUD Generator. url: https://git.elite.polito.it/security/mud-

generator (visited on 07/13/2023) (cit. on p. 41).

56

https://mudmaker.org/
https://git.elite.polito.it/security/mud-generator
https://git.elite.polito.it/security/mud-generator

	List of Tables
	List of Figures
	Glossary
	Introduction
	Background
	Home Assistant
	Home Assistant architecture
	Installation
	Concepts and Terminology
	Security Considerations
	Community and Ecosystem
	Use Cases and Real-World Examples
	Home Assistant Community Store (HACS)

	The Manufacturer Usage Description
	MUD Architecture and Components
	Structure of a MUD file
	Security Considerations

	State of the Art Authentication Mechanisms
	Existing Authentication Solutions
	Codenotary Community Attestation Service (CAS)
	Notarization and Verification process using CAS Executable

	Integrating MUD in Home Assistant
	MUD Generator Integration
	MUD Snippets

	Extended MUD Architecture

	Authenticating Integrations and MUD Snippets
	Introduction
	Integration Notarization with CAS
	Integration Authenticity Check
	Severity Levels
	Expanding the MUD Integration
	Functionalities Overview
	Integrity Check Implementation

	Use Case Examples for the MUD Generator Integration
	Integrity Check at Download Time:
	Integrity Check at Startup Time:
	Integrity Check at Runtime:

	Experimental Results
	Experimental Setup
	Results

	Conclusions
	Future works
	Identity Registration Service
	Vulnerability analysis of integrations

	Bibliography

