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Abstract

We define Kelly’s strategy for the horse race model, describing the concept of
growth rate. We outline an adaptive strategy from Despons et al. (1), in which
the gambler uses Bayesian inference to try and learn the win probabilities of the
horses. We implement a modified version of this strategy, using our knowledge of
the payoffs. Moreover, we use a Bayesian model selection approach to the problem,
in the framework of Haimovici et al. (2). Lastly, we go back to the modified
Bayesian inference approach and devise a strategy that aims at maximizing a linear
combination of the expected value and the variance of the growth rate.
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Introduction

In 1956 Kelly published a research based on the application of the concepts of
information theory to gambling (3). Although these fields seem to be unrelated, the
model he developed showed otherwise. Indeed, in the so called “Horse race model”
there is a strong connection between the optimal growth rate of the player’s wealth
and the entropy of the underlying horses win probability distribution.
This study had a massive impact in finance, since the idea contributed to explain
the usefulness of diversification in repeated investments (4). Over the years Kelly’s
strategy has been extended to the management of portfolio investments and has
become an important tool in finance (5).
The approach differs from the one of standard portfolio theory, which treats invest-
ments as a single-period problem. In this case, one is left only with the problem of
picking the best portfolio for a given level of risk, evaluating the probability and the
outcome of a series of possible investments. In this framework, as a general principle,
one should follow the proverb “don’t put all your eggs in one basket”, diversifying in
order to avoid volatility: the implicit assumptions are that the investment horizon
is known and that the investment is final. Understandably, this is not the case when
one considers multi-period investment problems: the horse race is a special case of
these kind of investments in the stock market (6).

Kelly’s horse race model is a standard betting model where the player is asked
to distribute his gamble on a batch of horses. Then the race takes place and one
horse comes out victorious with a certain probability which is fixed in time. In the
end, the gambler receives what he bet on the winning horse times its payoff, which
is set before the race and remains also constant over time. The game is repeated
indefinitely, therefore the gambler wishes to maximize the asymptotic behaviour of
his capital or growth rate.
We will first describe the details of the model and then show the optimal solution in
the standard case where both the win probabilities of the horses and their payoffs
are known. In the case of no track -take, i.e. when the sum of the inverse of the
payoffs is 1, Kelly himself demonstrated that the optimal growth rate is achieved
betting proportionally to the win probabilities, thus disregarding the values of the
payoffs.
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We will focus on the case of unknown probabilities but known payoffs, which reflects
a more realistic setting. Then, to play optimally, one needs to learn the probabilities
and for this we will resort to Bayesian inference. The adaptation procedures we
present allow to estimate the probabilities that are necessary to bet proportional-
ly. First, we describe an estimator based on Laplace rule of succession, that is,
calculated as the expected value of the posterior distribution of the probabilities,
as in (1). We continue analysing an improved version of this estimator, obtained
integrating as prior information the knowledge of the payoffs. On top of that, we
build a slightly different strategy, based on the learning time estimate. Since it is
very likely to observe a loss phase in the beginning, we wonder if a more cautious
approach yields a better result.
Furthermore, we consider a Bayesian model selection approach, in the framework of
Haimovici et al. (2). Instead of estimating from the beginning a number of parame-
ter corresponding to the number of horses, to avoid fitting noise we produce only
a small number of estimators. Horses with similar frequencies will see themselves
being assigned the same probability parameter, thus being betted the same amount
on. This procedure should in principle grant a better statistical relevance.
At last, we use a mean-variance approach, which is a standard method of portfolio
theory (6). It consists in making the bet according to the estimator that maximises
a utility function properly constructed, using the first two moments of the growth
rate calculated on the posterior distribution of the p vector.
Clearly, the expected value measures the payoff of the race. Risk, instead, is con-
sidered through a measure of dispersion (variance). If offered several strategies
with the same risk, a greedy player should prefer the one with the highest payoff.
Similarly, among several strategies with the same expected value, a risk averse agent
prefers the one with the lowest variance. Thus, a greedy and risk averse agent has
preferences represented by a functional, which we will try to maximize.

There exist an interesting parallel, although with its limitations, between the
natural selection of bacterial populations in varying environments and this model
of financial investment, as pointed out by many studies (7)(8). Indeed, there is an
analogy between the capital in Kelly’s model, which is invested on different assets,
and the bacteria population in the biological model, which is distributed among
different phenotypes that may respond differently if subject to perturbations.
Kussell and Leibler managed to show that in bacterial growth in a fluctuating
environment, organisms can adopt a bet-hedging strategy, investing their resources to
produce a variety of phenotypes. In oscillating conditions bacteria must constantly
adapt to survive and this may be achieved through sensing their surroundings.
However, maintaining an active sensory machinery has a cost, therefore a mechanism
of stochastic phenotype switching can be preferred: the result will be a heterogeneous
population that has better chance at survival. The information is conveyed, rather
than directly as in the sensing case, indirectly to the organism via natural selection,
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but it grants nonetheless the whole system some knowledge of the environment.
A broader research on the value of the information for populations in varying
environment was conducted by Rivoire et al., who studied the the problem of treating
a quantitative measure of information for populations in varying environment. In
his work another Kelly’s bound plays a crucial role. It is the equality between
the maximum increase in growth rate caused by some side information Y on the
environment X and the mutual information between X and Y . The possibility of
measuring the gathered information and how this reflects on the growth rate is
another question that motivates this study.
An interesting extension of this work is the study of the case of where both the
probabilities and the payoffs are unknown (to a certain degree). This reflects both
Shannon work on communication channels, where it is possible to have transmission
errors, and also a real scenario like population growth in a varying environment.
The question to answer in this case would be what strategy is optimal when the
actual returns the background provides are perceived in a distorted way or perceived
poorly (or not at all).
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1

Definition of the model

Consider a race that involves M horses. The ith horse wins with probability pi and
its payoff is oi for each unit invested. Let us call r the inverse odd vector, defining
R =

∑
x

1
ox

and ri =
1

Roi
so that r is always normalized. The gambler distributes

all of his wealth across the horses: let bi be the fraction of the gambler’s wealth
invested in horse i, where bi ≥ 0 ∀i and B =

∑
i bi = 1. Hence if horse i wins the

race, the gambler will receive bioi whereas all the other bets will be lost. Thus, at
the end of the race, the gambler will have multiplied his wealth by a factor bxox
having horse x won, which happens with probability px. Thus, it is possible to write:

Wt+1 =
bxt+1

rxt+1

Wt = Sxt+1Wt (1.1)

Where Wt is the wealth at time t and Sxt+1 is defined as the wealth relative, i.e. the
factor by which the gambler’s wealth grows if horse x wins the race.

Since xt is a random variable, then also the wealth at the end of the race is a
random variable, and the gambler wishes to maximize its value. The naive strategy
consists in betting everything on the horse that has the maximum expected return
(i.e., the one with the maximum pioi). However, given that one is dealing with
multiperiod investments, it is obvious that the player will eventually lose all its
money.
Instead, looking closely at equation 1.1 one can notice that it is possible to write

Wn

W0

=
n∏

i=1

Sxi

(
log

Wn

W0

) 1
n

=
1

n

n∑
i=1

logSxi

n→∞
= m (1.2)

Where we defined m = E [logSxn ], which will later on be referred at as doubling
rate or growth rate. The last equality follows from the law of large numbers since
all Sx are independent and identically distributed. This implies that Wt grows
asymptotically to W02

mt. Thus the problem of maximizing the exponential growth
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Definition of the model

of Wt is analogous to finding the strategy that maximizes the expected value of the
utility function U(x) = log x. Note that the reason why we proceed in this way has
nothing to do with a choice based on finance principles of the utility function to
attach to the gambler’s money, but merely with the fact that it is the logarithm
which is additive in repeated races and to which the law of large numbers applies (3).
In this way, one is able to treat the problem similarly to a single-period problem:
with an individual race perspective and considering this utility function one is
guaranteed the maximum growth rate in the long-run1.

1.0.1 The optimal doubling rate

The doubling rate is a function of p and b. That is, m depends on both the
probability distribution and the portfolio allocation. To find the best strategy one
has to maximize m(p,b) with respect to p, constrained to B =

∑
x bx = 1. In order

to do this, we write a functional using Lagrange multipliers

L =
∑
i

pi log (bioi)− ν

(∑
i

bi − 1

)
(1.3)

∂L
∂bx

=
px
bx

− ν = 0 ⇒ px = νbx (1.4)

∀ x = 1, ...,M . The initial constraint and p normalization imposes ν = 1. Therefore
one can conclude that b = p is a stationary point. To check whether or not it is
also a maximum one can observe the following

m(p,b) =
∑
i

pi log(bioi) =
∑
i

pi log

(
pi
pi
bioi

)
=

=
∑
i

pi log oi −H(p)−DKL(p∥b) ≤
∑
i

pi log oi −H(p) (1.5)

Where DKL(p∥b) is the Kullback-Leibler divergence which is always ≥ 0. The equa-
lity is satisfied if and only if b = p since this is the only case where DKL(p∥b) = 0.
Therefore proportional betting is log-optimal for a sequence of independent horse
races if the gambler reinvests all of his wealth at each step (i.e. B = 1), inde-
pendently of R. We identify with m∗(p) the doubling rate yielded by the best
strategy. The counter-intuitive lesson that one can learn from this calculation is
that in this particular case of

∑
x bx = 1 the strategy does not depend on the payoffs.

1This paragraph is adapted from “Elements of Information Theory”(9)
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Definition of the model

In the special case when R = 1, i.e. there is no track -take from the bookmakers,
one has that

m(p,b) =
∑
i

pi log

(
pi
pi

bi
ri

)
= DKL(p∥r)−DKL(p∥b) (1.6)

From this equation it is possible to get another interpretation for the doubling rate,
as the difference between the distance of the bookmaker estimate from p and the
distance of the gambler’s estimate from p: the gambler can make money only if his
estimate is better than the one of the bookmaker. Notice also that it is possible to
employ another strategy, imposing b = r. This strategy will be referred as the null
strategy because it yields a null growth rate and thus keeps the wealth constant.

1.0.2 The case B≤ 1

In general the strategy of investing the whole capital every time is not always
optimal. To see this, we consider the same minimization problem as before but with
the constraint

∑
i bi = B ≤ 1 . The functional then becomes

L =
∑
i

pi log (1−B + bioi)− ν

(∑
i

bi −B

)
(1.7)

Following the same steps as before (we refer the reader to Appendix A for the
calculations) one gets

b∗x = [(1−B)R +B] px −
1−B

ox
(1.8)

m∗(p) = log

(
1−B +

B

R

)
+DKL(p∥r) (1.9)

Thus, it is possible to identify three cases, based on the value of R.

Fair game, R=1

One has that m∗(p) = DKL(p∥r), therefore the optimal strategy does not depend
on B, as long as every b∗x is non negative. The choice B = 1 yields the best growth
rate possible along with proportional gambling.

Favourable game, R<1

Here m∗(p) = log
[
1 +B

(
1
R
− 1
)]

+DKL(p∥r), which is an increasing function of
B. Again, B = 1 and proportional betting are optimal.
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Definition of the model

Unfavourable game, R>1

In this case the doubling rate is a decreasing function of B. The optimal result is
achieved when B is equal to the smallest possible result that keeps every bx non
negative

b∗x = pxR− 1

ox
+B

(
px(1−R) +

1

ox

)
≥ 0 (1.10)

B ≥ 1− oxpxR

oxpx(1−R) + 1
(1.11)

This is a decreasing function of oxpx so the relevant quantity is minx oxpx = k/R.

B∗ =
R(1− k)

R(1− k) + k
(1.12)

This solution yields W ∗(p) = DKL(p||r)− log (R(1− k) + k), which becomes nega-

tive if R > R̄ = eDKL(p∥r)−k
1−k

. Therefore, the best strategy is to play the modified

strategy b∗ if 1 < R < R̄ and to not play at all if R > R̄.
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2

Learning to play

A common practice in finance is to use fractional Kelly’s strategies, betting only
a part of the available capital and not the whole sum even when the odds would
suggest so. This is due to the fact that the pure Kelly is considered to be unsafe (5),
whereas fractional Kelly reduces risk, although at the price of a non optimal growth
rate. This observation suggests that there exists a trade-off between the risk the
gambler is ready to take and the growth rate of his capital. This problem occurs
particularly in the case where the probabilities px are unknown. The gambler needs
then to resort to some adaptation mechanisms to learn progressively the underlying
distribution. Following the steps of Despons et al. (1), we devise a way to use
Bayesian inference to learn the probabilities.
The method that will be presented qualifies as universal because no foreknowledge
of the distribution p is needed; in economics such a strategy is known as universal
portfolio. The relevance of this strategy resides in the fact that it performs asymp-
totically as well as the best constant balanced portfolios (10).
As stated previously, in the following it will be assumed that the payoffs are known
and for simplicity we also consider the case where R = 1 and the gambler invests
all of his capital at each step.

2.1 Bayesian inference Strategy

2.1.1 Laplace Strategy

Since proportional betting requires the gambler to know the probability vector,
we start building an adaptive strategy to learn p using Bayesian inference. When
no previous information on p is available, the prior distribution can be assumed
uniform. To obtain an estimator for the probabilities one can therefore take the
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Learning to play

expected value on the posterior distribution, which takes the form of

P [p|nt] ∝
M∏
i=1

p
nt
i

i δ

(∑
x

px − 1

)
(2.1)

Where nt is the vector that encodes the history of the races. This means that nt
i is

equal to the times horse i won the race up to time t and that
∑

x n
t
x = t. Notice that

in equation 2.1 the delta comes from the prior, imposing normalization, whereas
the likelihood takes the form of a multinomial distribution.
The expectation value on this distribution produces Laplace’s estimator

p̂LAP,t+1
x =

nt
x + 1

t+M
(2.2)

The strategy then consists in allocating a fraction p̂x on horse x and, after the race,
updating the estimator according to the result. It is possible to check that Laplace
estimator becomes unbiased for large t. To see this, as pointed out in (1), it is
sufficient to calculate the Kullback-Leibler divergence between p and p̂LAP

x and
show that it behaves as M−1

2t
.

Although one could in principle consider the estimator given by the maximum of the
posterior, it is possible to observe that Laplace estimator performs better specially
when some of the pi are very small with respect to 1

M
(1). Indeed, the estimator

from equation 2.2 yields a non zero value even for unobserved events. Furthermore,
at t = 0 the wealth allocation with this estimator is uniform, which is what one
should expect with no prior information.

The average result obtained for the logarithm of the wealth (this is the self
averaging quantity hence the one it is preferable to look at) by following Laplace’s
strategy has to be compared with the optimal one, given by proportional betting.
Their difference is also referred as “Gambler’s regret”, since it quantifies the wealth
lost by not playing accordingly to the real probabilities.
As shown before, the expected behaviour for logW when using Kelly’s strategy is
linear in time, with a slope equal to DKL(p∥r); this result is matched numerically
as shown in figure 2.1. Instead, for Laplace’s strategy the same displays a burn-in
phase, in which the gambler loses capital at short times because of his poor know-
ledge of the distribution p. Then for large t the optimal growth rate is recovered
together with the linear behaviour.

In (1) it is presented a way to quantify the time up until one loses wealth if
he plays following Laplace’s strategy. This time, which we will refer to as t∗ or
learning time, represents the time it takes to learn the probabilities better than the
bookmaker. Qualitatively, one expects this time to depend on the distance between
the inverse of the payoffs and the probabilities: if r is similar to p, it will take
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Learning to play

much more time to learn the probabilities well enough to get an actual gain than if
the two distributions are far apart. Indeed, one can prove that t∗LAP ≃ M−1

2DKL(p∥r)
(1). Note that this formula depends on p, hence it is not possible to know the
learning time exactly (otherwise it would be straightforward to wait up until t∗

before betting to have a better strategy), but an estimate will be given in section
2.1.3. In order to get a better understanding of the meaning of distance between r
and p, a particular definition for the inverse odd vector or rates will be used. We
introduce the parameter ε and a random vector η independent from p and also
uniformly distributed, just like p. One can then set

r = (1− ε)p+ εη (2.3)

This definition, although it is a strong assumption on the payoffs, will be used for
the numerical simulations.

Figure 2.1. Comparison between Kelly’s and Laplace strategy. The initial loss
phase of Laplace strategy lasts up until the learning time. The time unit is one
race, after which is possible to update the estimator. The parameters used are
ε = 0.3, M=10 and the average are performed over 1000 trials

2.1.2 Modified Laplace Strategy

A question worth asking is how does the estimator change if one implements some
prior information in equation 2.1. Using as a conjugate prior again a multinomial
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Learning to play

distribution, the posterior becomes then

P [p|nt] ∝
M∏
i=1

p
nt
i+aτi

i δ

(∑
x

px − 1

)
(2.4)

Where the elements aτx encode the prior information. The estimator is therefore
obtained by taking the expected value of px over this distribution

p̂LAP,t+1
x =

nt
x + aτx + 1

t+ τ +M
(2.5)

Where τ =
∑

x ax. At this point, one should use the information in his possession
to set the values of the ax. At t = 0, the estimator, which is none other than E[px]
calculated on equation 2.4, is aτx+1

τ+M
; it is then reasonable to assert that E[px] = rx,

since in principle there is ignorance about the payoff distribution. Note that this is
not the correct assumption if one knows that the payoffs are defined as in equation
2.3. In this case, a better way of setting the ax is given in Appendix B. However, in
both cases τ is left as a free parameter.
One has then aτx + 1 = rx(τ +M) and thus

p̂LAP,t
x =

nt
x + rx(τ +M)

t+ τ +M
(2.6)

This is the same estimator one would get if t+ τ +M race were observed, being that
the first τ +M races yield an estimator equal to rx. The parameter τ has then the
meaning of the number of races the bookmaker saw before establishing the payoff
using Bayesian inference.
The Modified Laplace strategy may yield a burn-in phase too, depending on how
close r and p are, as shown in figure 2.6. If it is so, all conditions being equal, it
allows to get a smaller t∗ than plain Laplace. Moreover, if this learning time is large
enough for the Central Limit Theorem to work and if the assumption in equation
2.3 holds, it is possible to find a close formula for it

t∗MLAP =
M − 1

2DKL(p∥r)
− 2τ (2.7)

Details about the calculation are given in Appendix C. It is worth noticing that a
low t∗ does not necessary imply that the strategy is overall better. The quantity to
consider is instead the gambler’s regret.

lim
t→∞

(
logWKELLY

t − logW
MLAP/LAP
t

)
(2.8)

Any strategy minimizing this difference will maximize the capital at large t. This is
the reason why in the Modified Laplace method an high value of τ is not always
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Learning to play

preferable to a low value although the first yields a lower t∗ than the second, as
equation 2.7 shows. Rather, to determine the optimal fixed τ for each case numerical
analysis was employed.

Even if it would seem like the Modified Laplace strategy is always preferable to
plain Laplace, this is not the case when the inverse odd vector is distant enough
from the probability vector, as shown in figure 2.6.

Figure 2.2. ε = 0.01 Figure 2.3. ε = 0.1

Figure 2.4. ε = 0.3 Figure 2.5. ε = 0.5

Figure 2.6. Numerical simulations comparison for different ε values. ML
shows a burn-in phase only in the case ε = 0.01 whereas L shows a burn-in
phase always. In the case ε = 0.5 L is preferable to ML whereas in all other
cases the opposite is true.
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2.1.3 Learning time estimate

As stated previously, using

t∗LAP ≃ M − 1

2DKL(p∥r)
(2.9)

it is possible to get an estimate of the learning time in the Laplace method. If one
also considers true equation 2.3 it is possible to derive

t∗MLAP ≃ M − 1

2DKL(p∥r)
− 2τ (2.10)

It is then worth asking how well does perform a strategy in which the gambler
calculates t∗, using his best knowledge of the p, and waits up until that time before
he starts playing. To see this, a numerical approach was adopted for both L and ML.
Clearly, one expects this method to work only in the cases where one has no burn-in
phase, since in that case betting immediately is surely advantageous and waiting
to play is pointless. Of course, in principle one does not know if there is going to
be such a phase, so also the cases of no burn-in phase for ML will be analyzed. It
is possible to consider three situations: the case where L is preferable to ML and
ML doesn’t have a burn-in phase, the case where ML is preferable to L and ML
doesn’t have a burn-in phase and the case where ML is preferable to L and ML has
a burn-in phase; note that L shows always a burn-in phase.

From figures 2.7, 2.8 and 2.9 it is possible to observe that for both L, ML the
strategies that impose to wait, for large times, perform in the same way as the ones
that establish to play from the start. Even if at small times the strategy of waiting
may lead to better results, eventually the curve matches the result of the strategy
where ones doesn’t wait, both for ML and L. As figure 2.7 shows, this is not due to
the fact that the t∗ are estimated poorly. Both on average but also on the single
run, by the time that t∗ occurs the estimate is already pretty good. The analogy
between the two approaches instead must be ascribed to the fact that by waiting,
one secures no initial loss but also avoids all the highly profitable runs. It is however
a safer way to proceed if one wishes to ensure in a single run a gain closer to the
average.
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Figure 2.7. Numerical simulations for ε = 0.1. L shows a burn-in phase
whereas ML doesn’t; also, ML is preferable to L. The first graph represents the
logW obtained with the different strategies which are: betting proportionally,
using ML from the start, using ML after t̂∗MLAP and analogously for L. The
second graph shows the behaviour of the average estimated DKL using L
estimator (orange) and using ML estimator (blue). In green it is highlighted
t∗LAP . The third graph shows a comparison between the DKL average and the
DKL estimate in three different runs
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Figure 2.8. ε = 0.03

Figure 2.9. ε = 0.5

Figure 2.10. The two graphs represents the logW obtained with the different
strategies, the same as above. ML shows a burn-in phase only in the case ε = 0.03
whereas L shows a burn-in phase always. In the case ε = 0.5 L is preferable to ML
whereas in the other case the opposite is true.
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2.2 Bayesian Model Selection Strategy

We now analyze a Bayesian model selection approach to the problem, using the
framework of (2). The idea that motivates the need for such a method is that
for small t Laplace estimator can be largely affected by the result of the first
few runs. To avoid the problem of fitting noise, it is then worth asking if, for a
given sample size, all the states observed in the sample should be distinguished.
Instead, only a partition of the sampled states can be resolved, but each of these
partitions corresponds to a different model. Using Bayesian model selection it will
be possible to identify the partition that maximizes the posterior. This argument
should obviously only be applied in an under-sampling regime, whereas out of this
case one expects to recover the standard estimator found previously.
Qualitatively one expects this classification of states to be finer and finer as time
goes on, up until the sample has enough statistical relevance to justify the distinction
of every state. In practice this means that in order for different outcomes to be
assigned different probabilities, the frequency with which they occur in the sample
must be sufficiently different.

2.2.1 Definition of the model

We define ŝ = (s(1), ..., s(t)) as the dataset of t observations of the state s of the
system up until time t, where s(i) is the configuration of the system at time i. The
number of possible different states is equal to the possible outcomes so it’s equal to
M ; this set will be referred as S. We restrict to the case where t is not too much
larger than M to fall in the case of under-sampling.
Then, we define a partition Q of the states as follows

Q = (Q1, ...,QN)
N⋃
q=1

Qq = S (2.11)

Whereas before M sets each one of cardinality one were considered, now with this
model in a single set there can be more states: even if they have different frequencies
in the analyzed sample, they may still be associated to the same set and therefore to
the same probability parameter µ. Calling mq = |Qq| i.e. the number of states in Qq,

the normalization constraint is now
∑N

q=1mqµq = 1. It is also possible to include
states that have not yet been sampled. Notice that the most refined partition that
is possible to obtain is one in which states with the same frequency have the same
probability, just like for Laplace estimator. We will refer to this partition as the K
partition.
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As stated before, each partition identifies a model. Defining the frequency of
each state ks =

∑t
i=1 δs,s(i) and the overall frequency of the set

Kq =
∑
s∈Qq

ks
∑
q

Kq = t (2.12)

one is able to write the likelihood of each partition for the dataset

P (ŝ|Q) =

∫
dµ⃗
∏
q

µKqP
(Q)
0 (µ⃗) (2.13)

where P
(Q)
0 (µ⃗) is the prior distribution of the parameters given the partition Q

P
(Q)
0 (µ⃗) = Γ(aN)

∏
q

ma
q

Γ(a)
µa−1δ

(∑
q

mqµq − 1

)
(2.14)

Therefore one has

P (ŝ|Q) =
Γ(aN)

Γ(t+ aN)

∏
q

Γ(Kq + a)

m
Kq
q Γ(a)

(2.15)

Then, it is possible to make the choice of a uniform prior, since all the models
are considered a-priori equally likely. Therefore, one gets the posterior probability
P (Q|ŝ). The optimal partition, which will be called Q∗, is then given by the
maximization of this posterior, which is analogous to the maximization of the
likelihood

Q∗ = argmax
Q

P (ŝ|Q) (2.16)

Once this partition is found, the estimator of the probabilities is straightforward
to compute. As seen previously in equation 2.1, one has a Dirichlet prior and a
multinomial likelihood. The posterior is again

P
(Q)
1 (µ⃗|ŝ) = Γ(t+ aN)

∏
q

m
Kq+a
q

Γ(Kq + a)
µKq+a−1δ

(∑
q

mqµq − 1

)
(2.17)

The expected value taken on this distribution yields

µq =
1

mq

Kq + a

t+ aN
(2.18)

as an estimator for the probability of the state s ∈ Qq.
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2.2.2 Algorithm to find Q∗

To find more easily the optimal partition, one assumes that partitions that put
together states with adjacent frequencies are preferable to those that merge states
with non adjacent frequencies. Therefore, it is enough to consider models where
all the states in the set Qq have frequency which is larger than the frequency of
any state belonging to the set Qq′ with q′ < q. Then, it is possible to devise an
algorithm to compute the optimal partition of the sample

• Start from the Q = K partition

• For each q = 1, ..., NQ − 1 define a new partition obtained by merging the sets
Qq and Qq+1 and compute the changes in the log-likelihood

• If the largest of this changes is positive and happens merging q and q + 1,
update the partition merging the q and the q+1 sets; then repeat the previous
steps

• If the largest of this changes is negative the current partition is the optimal one

Figure 2.11. Comparison between Kelly’s, Laplace, Modified Laplace and
Bayesian Model selection strategy. The initial loss phase of BMS is the largest
one and affects the large time value of the log-capital. Changing the parameter
ε does not influence this behaviour.
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In figure 2.11 one can observe the performance of such strategy. It is clear that
despite the model selected maximizes the likelihood, it does not grant the best
gain for large times. This is due to the fact that learning the probabilities and
maximizing the growth rate are two distinct concepts: being able to do well for the
first one does not imply the same for the second one. The numerical simulations
have been performed with ε = 0.01 and M = 10, although changing these values
does not affect visibly the large time behaviour of the log-wealth.

2.3 Mean-variance approach

It is possible to device yet another strategy based on the Modified Laplace setting.
Instead of being fixed, τ (from equation 2.6) can change over time. Indeed, one
expects that an high value of τ is to be preferred for small t, whereas as time goes
on and the probabilities are learnt more accurately, one wants to remove the portion
that is bet proportionally to the inverse odd vector, so τ will be small.
If one bets following Modified Laplace, the doubling rate that will be obtained is

m(p, p̂) =
∑
x

px log

(
p̂x
rx

)
(2.19)

Using the posterior 2.4 one gets

E [m(p, p̂)] =
∑
x

p̂x log

(
p̂x
rx

)
(2.20)

One can try and maximise numerically with respect to τ the expected value of
such quantity. This kind of analysis yields the result that the best τ is 0 at every
time. However, if one compares E [m(p, p̂)] and m(p, p̂) using τ = 0 a substantial
difference will be observed, as in figure 2.12: the expected value of the doubling rate
is far from its actual value. Therefore, since it is clear that the wrong quantity is
being maximized, another approach will be followed.

This strategy yields a bad result because it is too risky to bet proportionally
when the probabilities haven’t been learned yet. Thus, one may think to use a
mean-variance approach (6): since the actual utility function is unknown, one
approximates it using its first two moments.
Making use of such a method is justified by the fact that in classical finance risk
is associated with the statistical uncertainty on the final outcome (11). Therefore,
taking into account both the expected value and the variance has the meaning of
maximizing the gain and simultaneously reducing the risk.
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Figure 2.12. Comparison between the best estimated doubling rate and the
actual one. The simulations have been performed with M = 10, ε = 0.03
and averaged over 500 trials.

It is thus reasonable to try and find the optimal τ maximizing a linear combination
of the expected value of the doubling rate and its variance

M-V [m(p, p̂, b)] = E [m(p, p̂)]− bV [m(p, p̂)] =

=
∑
x

p̂x log

(
p̂x
rx

)
− b

t+ τ +M + 1

[∑
x

p̂x log
2

(
p̂x
rx

)
−
∑
x,x′

p̂xp̂x′ log

(
p̂x
rx

)
log

(
p̂x′

rx′

)]
(2.21)

In this formula b is a positive parameter since one tries to avoid risk.
Again, one tries to find the optimal τ numerically and at each step uses this result
to bet as in equation 2.6. To avoid fitting noise, one introduces a memory parameter
λ so that

τ ∗t = λτ ∗t−1 + (1− λ)max
τ

(M-V [m(p, p̂), b]) (2.22)

This method has been studied for different values of ε, using the optimal para-
meters b and λ in each case. The optimal parameters were determined heuristically.

It is possible to notice from figure 2.13 that only in the first case, with ε1 = 0.02,
the strategy is better than the best Modified Laplace. Note that both the best ML
strategy and the parameter b and λ have been determined heuristically since we
have found no way to determine them analytically.
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Figure 2.13. Numerical simulations for ε1 = 0.02, ε2 = 0.1, ε3 = 0.3, ε4 = 0.5.
The strategy is preferable to the best ML only in the first case, i.e. when the
bookmaker’s knowledge of the probabilities is very accurate. The optimal parameter
were b1 = 0.4, b2 = 0.3, b3 = 0.1, b4 = 0.05, λ1 = 0.5, λ2 = 0.5, λ3 = 0.5, λ4 = 0.5.
The results have been obtained averaging over 2000 trials.
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Conclusions

So far we have described an adaptive version of Kelly’s horse race model based on
Bayesian inference and we have analysed the loss phase such strategy yields. Indeed,
both Laplace and Modified Laplace methods are affected by a considerable decrease
of the gambler’s capital at the early stages, decrease which is reduced in the second
method if the distribution of the odds is informative enough. The portion of the
capital that is invested proportionally to the inverse odd vector depends on the
parameter τ . An high value of this parameter forces the gambler to play carefully
at the beginning, avoiding big losses, but incurring in the risk of missing potential
gains when Laplace’s estimator starts being accurate. Thus, there exists a trade-off
between playing safely and missing revenues and this guarantees the existence of a
τbest. However, we were not able to compute analytically this optimal parameter
and resorted to heuristic methods to determine it.
This trade-off appeared also in the learning time estimate method, in which the
player waited until the estimated t∗, which is the time up until the gambler loses, and
then played following Laplace/ Modified Laplace. Quite remarkably this strategy
performs identically as plain Laplace and plain Modified Laplace. This indicates
that these two strategies are indeed the same, since they make use of the same
knowledge and operate in the same framework of Bayesian inference.
Subsequently we tried and built an adaptive strategy based on Bayesian Model
selection, without any remarkable result. Although it should be an optimal ap-
proach to learn the probabilities, clearly the parameter grouping procedure causes
inaccuracies that lead to a conspicuous loss. The same happens if one increases M
to higher values (more horses): being able to avoid fitting noise in an early phase
does not compensate for the intrinsic capital drop of this method.
The mean variance approach is motivated by what is stated above: a big value of τ
is to be preferred when the probabilities are still unknown but after the probabilities
are learnt a small value of τ should be preferred. It seems logical to try and find a
time dependent τ , but in doing so one faces another problem, that is finding the
optimal function to minimize in order to obtain this parameter. In order to overcome
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this obstacle, we defined a functional that depends on the first two moments of the
growth rate, at the cost of introducing a new parameter b. To avoid fitting noise
too much, a memory effect was inserted, at the cost of another parameter λ. With
this prescription, in the case of inverse odd vector highly faithful to the original
probability vector, it was possible to get an improved result with respect to the
best Modified Laplace. However, also in this case the maximization on b and λ
was performed heuristically. Furthermore, we were not able to supply these two
parameters with any physical meaning.

Ultimately, it is possible to observe that, although the problem faced was simple,
we failed in finding an equally simple and elegant solution. We were unsuccessful in
fulfilling the initial aim at quantifying the value of the information learned and its
relation with the growth rate, as this concept seems to be elusive with this Bayesian
inference framework.
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Appendix A

General solution of Kelly’s Game

The functional to perform the maximization on is

L =
∑
i

pi log
(
1−B + bioi

)
− ν

(∑
i

bi −B

)
(A.1)

Thus, for x = 1, ...,M , one has

∂L
∂bx

=
pxox

1−B + bxox
− ν = 0 (A.2)

px − ν
1−B

ox
= νbx (A.3)

The equation for ν then becomes

1− ν(1−B)R = νB

ν =
1

B +R−BR

Inserting back in A.3 one gets

bx = [(1−B)R +B] px −
1−B

ox
(A.4)

Therefore the doubling rate becomes

m∗(p) =
∑
i

pi log
(
[(1−B)R +B] pioi

)
= log

(
1−B +

B

R

)
+DKL(p∥r) (A.5)

25



Appendix B

Prior setting in Modified Laplace

strategy

In order to assign the proper value to the ax’s, we take into account the form of
equation B.1. Using also the fact that the inverse odd vector is known, it is possible
to write what follows.

r = (1− ε)p+ εη (B.1)

The prior on p can also be expressed as

P (p) ∝
∏
k

p
aτk
k δ

(∑
i

pi − 1

)∏
k

θ(pk)θ(1− pk) (B.2)

Where θ(pk) is the Heavyside step function. From here on we will refer to
∏

k θ(pk)
as θ(p). As done previously, we set

ax + 1

τ +M
= E[px] (B.3)

The expected value has to be taken over the posterior B.4. The likelihood in this
case is none other than the distribution of η

P (p|r) ∝ P (r|p)P (p) = P

(
η =

r

ε
− 1− ε

ε
p

)
P (p) (B.4)

Since η has to be included in [0,1], the deltas in equation B.4 provide another
condition for p (the first is given by the step functions in B.2). The posterior
therefore becomes

P (p|r) ∝ δ

(∑
i

pi − 1

)
θ(p)θ(1− p)θ

(
r

ε
− 1− ε

ε
p

)
θ

(
1− r

ε
+

1− ε

ε
p

)
=

= δ

(∑
i

pi − 1

)
θ(p)θ

(
p− r− ε

1− ε

)
θ(1− p)θ

(
r

1− ε
− p

)
(B.5)
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Prior setting in Modified Laplace strategy

The meaning of these steps is that knowing r tells a lot about p and one can’t say
anymore its distribution is uniform. Using B.5, one has

E[px] = N

∏
i

∫
min (1,

ri
1−ε

)

max (0,
ri−ε

1−ε
)

dpi

 pxδ

(∑
j

pj − 1

)
(B.6)

where

1

N
=

∏
i

∫
min (1,

ri
1−ε

)

max (0,
ri−ε

1−ε
)

dpi

 δ

(∑
j

pj − 1

)
(B.7)

This are incomplete multivaried beta functions. It is however possible to compute
this integrals when ε is small enough to guarantee, for all i’s, that

vi =
ri

1− ε
< 1 ui =

ri − ε

1− ε
> 0 (B.8)

In this case the integral becomes

1

N
=

∏
i

∫
vi

ui

dpi

 δ

(∑
j

pj − 1

)
(B.9)

Now consider the following: if M−1 variables take the value of the upper extreme of
integration, the last can take the value of the lower extreme and the delta constraint
will be fulfilled; the opposite however is not true. The equation B.9 then becomes

1

N
=

∫
v1

1−
∑M

i=2 vi

dp1

∫
v2

1−
∑M

i=3 vi−p1

dp2...

∫
vM−1

1−
∑M−2

i=1 pi−vM

dpM−1

∫
vM

1−
∑M−1

i=1 pi

dpMδ

(∑
j

pj − 1

)
(B.10)

It is then easy to obtain

N = (M − 1)!

(
1− ε

ε

)M−1

(B.11)

and

E[px] =
rx − ε

M

1− ε
≃ rx + ε

(
rx −

1

M

)
(B.12)
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Appendix C

Learning time of Modified Laplace

The starting point is

pMLAP,t+1
x =

nt
x + rx(τ +M)

t+ τ +M
(C.1)

For large t the CLT holds and one can write

nx ≈
t→∞

pxt+
√
tσxzt (C.2)

Where zt has distribution N (0,1). We consider rates that are “close” to the p’s,
meaning that

rx = px(1− ε) + εηx (C.3)

with ε small. We thus define εx through

rx
px

= 1 + εx (C.4)

1 + εx =
rx
px

=
px(1− ε) + εηx

px
= 1− ε+ ε

ηx
px

(C.5)

εx = ε

(
ηx
px

− 1

)
(C.6)

⟨εx⟩ = ε

(〈ηx
px

〉
− 1

)
= ε

(∑
x

px
ηx
px

− 1

)
= 0 (C.7)
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⟨ε2x⟩ = ε2
(〈η2x

p2x

〉
− 2
〈ηx
px

〉
+ 1

)
= ε2

(∑
x

η2x
px

− 1

)
(C.8)

These averages are not taken on the distributions p and η but are just averages
over the possible outcomes of a race.

log bMLAP,t+1
x ≈ log

(
pxt+

√
tσxzt + rx(τ +M)

)
− log (t+ τ +M) =

= log px + log (t+ τ)− log (t+ τ)− log
(
1 +

M

t+ τ

)
+ log

(
t

t+ τ
+

√
tσxzt

px(t+ τ)
+

+

1+εx︷︸︸︷
rx
px

(τ +M

t+ τ

))
≈ log px−

M

t+ τ
+log

(
1 +

√
tσxzt

px(t+ τ)
+
((1 + εx)M

t+ τ

)
+

εxτ

t+ τ

)
≈

≈ log px −
M

t+ τ
+

√
tσxzt

px(t+ τ)
− 1

2

( √
tσxzt

px(t+ τ)

)2

+
M

t+ τ
+

εxτ

t+ τ
− 1

2

(
εxτ

t+ τ

)2

+

− τ
√
tσxzt

px(t+ τ)2
εx ≈ log px+

√
tσxzt

px(t+ τ)
−1

2

t(1− px)z
2
t

px(t+ τ)2
+

εxτ

t+ τ
−1

2

ε2xτ
2

(t+ τ)2
− τ

√
tσxzt

px(t+ τ)2
εx

(C.9)

We have expanded up to second order in εx and up to first order in 1
t+τ

. The
averages considered in the following have to be intended as averages first over zt
and then over x.

⟨log px − log btx⟩ ≈ −
〈

τ
√
tσxzt

px(t+ τ)2
εx

〉
︸ ︷︷ ︸

=0

−
〈 √

tσxzt
px(t+ τ)

〉
︸ ︷︷ ︸

=0

+

〈
1

2

t(1− px)z
2
t

px(t+ τ)2

〉
+

−
〈

εxτ

t+ τ

〉
︸ ︷︷ ︸

=0

+

〈
1

2

ε2xτ
2

(t+ τ)2

〉
=

M − 1

2

t

(t+ τ)2
+

τ 2

2(t+ τ)2
ε2
(∑

x

η2x
px

− 1

)
(C.10)

We use this result to calculate the log capital, since ⟨logCt⟩ = DKL(p||r)t− ⟨∆(t)⟩
where ∆(t) is the regret up to time t.

⟨∆(t)⟩ = ⟨∆(t0)⟩+

〈
t∑

i=t0+1

log px − log bix

〉
(C.11)
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Now, having two series in the regret, one can approximate them in the following
way

t∑
i=t0+1

i

(i+ τ)2
=

t+τ∑
j=t0+1+τ

j − τ

j2
=

t+τ∑
j=t0+1+τ

1

j
−

t+τ∑
j=t0+1+τ

τ

j2
≈

≈ log
t+ τ

t0 + 1 + τ
− τ

(
1

t0 + 1 + τ
− 1

t+ τ

)
(C.12)

t∑
i=t0+1

τ 2

(i+ τ)2
=

t+τ∑
j=t0+1+τ

τ 2

j2
≈ τ 2

(
1

t0 + 1 + τ
− 1

t+ τ

)
(C.13)

⟨∆(t)⟩ = ⟨∆(t0)⟩+
M − 1

2

[
log

t+ τ

t0 + 1 + τ
− τ

(
1

t0 + 1 + τ
− 1

t+ τ

)]
+

+ τ 2
(

1

t0 + 1 + τ
− 1

t+ τ

)
ε2

2

(∑
x

η2x
px

− 1

)
(C.14)

This expression is still dependent on ε. Luckily this dependence can be removed
using the following relation

DKL(p||r) =
∑
x

px log

(
px
rx

)
= −H(p)−

∑
x

px log ((1− ε)px + εηx) =

= −
∑
x

px log

(
1− ε+ ε

ηx
px

)
≈ −

∑
x

pxε

(
ηx
px

− 1

)
+
1

2

∑
x

pxε
2

(
η2x
p2x

− 2
ηx
px

+ 1

)
=

=
ε2

2

(∑
x

η2x
px

− 1

)
(C.15)

This yields the following expression for the average of the log capital:

⟨logCt⟩ = DKL(p||r)t− ⟨∆(t)⟩ = DKL(p||r)t− ⟨∆(t0)⟩+

−M − 1

2

[
log

t+ τ

t0 + 1 + τ
− τ

(
1

t0 + 1 + τ
− 1

t+ τ

)]
−τ 2

(
1

t0 + 1 + τ
− 1

t+ τ

)
DKL(p||r)

(C.16)

To find the learning time t∗, as shown in the article by Despons et al., we consider

0 =
∂⟨logCt⟩

∂t
= DKL(p||r)−

M − 1

2

(
1

t+ τ
− τ

(t+ τ)2

)
− τ 2

(t+ τ)2
DKL(p||r)

(C.17)
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⇒ DKL(p||r)−
M − 1

2(t+ τ)
+

τ

(t+ τ)2

(
M − 1

2
− τDKL(p||r)

)
︸ ︷︷ ︸

=const×DKL(p||r)

= 0 (C.18)

t+ τ = k, we solve for k

k2 − k
M − 1

2DKL(p||r)
+ τ × const = 0 (C.19)

k∗ =
M − 1

4DKL(p||r)
±

√(
M − 1

4DKL(p||r)

)2

− τ × const (C.20)

t∗ =
M − 1

2DKL(p||r)
− 2τ (C.21)

This result goes along with the simulations.

Figure C.1. Plot of log-capital as a function of time for L, ML. The vertical lines
represent the two different t∗
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