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1 Introduction

Deep neural network can extract a hierarchy of relevant features from the
data, that can be used both for classification and generation task [8][7]. These
models have state-of-the-art performance in object/speech recognition and
language translation [6]. However, many characteristics of the way the net-
work processes the information and the reason why they work so well is still
unclear. In this work we analyze some features of a deep belief network during
training across different layers in an unsupervised setting.

First of all, we study how the plasticity varies across the network’s layers.
To do this we compute the variation of the architecture’s weights when the
dataset to be learned is changed. We observe an increasing behaviour of the
plasticity across layers, meaning that the features learned in deeper layers
are more dataset dependent, instead the shallow ones are more generic.

Then we analyze some features of the internal representation of the hidden
layers, that is the probability distribution learned over the hidden nodes of
each layer. We find that shallow layers are well described by a pairwise model,
while in deep layers, higher order interactions seem to be more present. This
could be related with the hierarchical extraction of features performed by the
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network.

Finally, we observe that the representations across the layers become
close to the hierarchical feature model [9], a theoretical model describing
the internal representation of a learning machine that is consistent with
the principles of maximal a priori ignorance and of maximal relevance, that
depends on 1 parameter.

2 Plasticity and Internal Representation

2.1 Deep belief network

A deep belief networks (DBN) consists of restricted boltzmann machines
(RBM) stacked one on top of the other. Each RBM is a Markov random field
with pairwise interactions defined on a bipartite graph of two non interacting
layers of variables: visible variables v = (v1, .., vN ) representing the data, and
hidden variables h = (h1, ..., hM) that are the latent representation of the
data. The mesure of a single RBM is (repeated indices are summed):

p(x,h|W, c,b) =
1

Z
exp (Wijxihj + xkck + hlbl). (1)

The entire DBN has the top two layers with undirected connections
between them while lower layers receive top-down, directed connections from
the layer above (see figure 1).

The difference between directed and undirected graphical model of random
variables relies on the factorization of the joint distribution of the nodes and
in the way we can sample from it. In an undirected model the full probability
distribution can be factorized over the cliques (a fully connected subset
of nodes) of the graph. Given a set of random variables X = (X1, .., Xn)
represented with an undirected graphical model G:

p(X) =
∏

C∈cl(G)

ϕC(XC) (2)

where cl(G) is the set of cliques of G, and ϕC(XC) are functions that depends
only on the set of nodes that belong to the clique C. In a directed model
G = (V,E), each edge E is represented with an arrow, and for each node
v ∈ V we can define the set of parents of v: pa(v) as those vertices pointing
directly to v. The full probability distribution can be factorized as product
of single node marginal, conditioned on the parents node:

p(V ) =
∏
v∈V

p(v|pa(v)). (3)
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Figure 1: A three layer Deep Belief Network

In our case, the practical consequences of deal with a directed model is in the
way we sample from it. To obtain a sample from a DBN we can use Gibbs
sampling to sample the equilibrium of the RBM on the top pRBM(hn,hn−1),
and then using this data to sample from the hidden nodes directly connected
to hn−1 using only the marginal p(hn−2|hn−1), then propagate the signal till
the visible layer using the marginal distributions p(hl|hl−1). Instead if it
were an undirected model (deep Boltzmann machine), to sample from an
intermediate layer we would have needed the signal from both the top and
the down layer connected to the intermediate one.

The reason why our architecture is a DBN is a consequence of the way we
train it. We learn the weights one layer at a time, following the prescription of
Hinton [5]. It consists of training the first RBM on the data, then propagate
the input {vµ}Lµ=1 data forward to the first hidden layer, obtain the hidden
states {hµ}Lµ=1 and use them as input for training the second hidden layer.
This type of training procedure was proven [5] to increase a variational lower
bound for the log likelihood of the data set (more information about the
architecture and the training procedure are given in A.1). So at the first step
we learn a RBM: p(v,h1) = p(v|h1)p(h1), then we substitute the model for
p(h1) =

∑
v

p(v,h1) with another model coming from a second RBM trained

on a sample from p(h1), obtaining in the end:

p(v,h1,h2) = p(v|h1)p(h1,h2). (4)

Then repeating this procedure till layer n. So now to sample from an inter-
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mediate layer we just need the signal coming from the layer above.

2.2 Plasticity of the architecture

To study the plasticity in function of the layers of this architecture we first
train it using hand-written digits data set (MNIST) and learn a set of param-
eters {Wµ

1}lµ=1 for each layer. Then we use the same architecture to learn
Zalando’s article images (fashion MNIST) and obtain some new parameters
{Wµ

2}lµ=1 (using {Wµ
1}lµ=1 as initial condition of the training). Finally, we

compute the L2 norm of the difference between each set of parameters for each
layer, and in figure 2 you can see the results also for DBN trained first with
FMNIST and then with MNIST, and from EMNIST (hand-written letters)
to MNIST.

Figure 2: difference of the weights in function of layer after training the same
architecture with two different data sets. The error bars on mnist-fmnist
curve were calculated from 10 simulations.

We can see how shallow layers’ weights change less with respect to deep
layers. Probably the weights of the first layers are very generic, they do not
capture specific features of the dataset. Instead the deep layers have a more
specific representations, and the weights are more data dependent. This result
seems coherent with the observation that convolutional deep belief network
can extract a hierarchical representation of data: learning some oriented,
localized edge filter for the first layers’ weights, while more high level feature
were learned by the deep layers [7].
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2.3 Feature of Internal Representation: order of inter-
actions

The internal representation of the network is the probability distribution
learned over the hidden layers: pl(h). Loosely speaking, it gives us informa-
tion on how the network organize the feature space. An interesting observable
that can be measured, to understand some features of the internal represen-
tations, is the pairwise-ness. This may be defined as the Kullback-Leibler
distance between the internal representation and the best pairwise model:
DKL(pl||p(2)l ), where:

p
(2)
l (σ) =

1

Z
exp

(∑
i<j

J l
ijσiσj +

∑
i

hl
iσi

)
(5)

and Z is the partition function and the parameters J and h are estimated
using maximum likelihood (more information are given in A.2). The results of
the DKL for different layers is showed in figure 3, for 3 different DBN trained
with MNIST, FMNIST and EMNSIT dataset.

Figure 3: DKL between the internal representation of each layer and the best
pairwise model describing that representation, normalized with the number
of nodes of each layer. It is estimated from the sample {hµ

l }Nµ=1. The DBN
was trained with mnist, fmnsit and emnist dataset.

First layers are more dominated by pairwise statistics than deep layers,
and this could be related to the hierarchical feature extraction done by the
deep network. The features learned in the first layers are simple localized
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and oriented edges, with low correlations between them. Instead the rep-
resentations of the deep layers carry information about high level features
-obtained as a combination of the simple one- and the resulting internal
representation has a rich dependencies among the nodes. This doesn’t mean
that the deep layers are described by more complex model (in terms of the
number of parameters), but only that higher order interactions are more
present. In fact, as we will see, deep layers are better described by a simple
model, with just 1 parameter, containing all order of interactions. Instead,
shallow layers are better described by a more complex (with more parameters)
pairwise model. This seems also coherent with the behavior of the intrinsic
dimensionality of the internal representation in function of layer of a DNN
showed in [2], suggesting that more complex models are learned in shallow
layers’ representations.

The information about the order of interaction in pl(h) can be obtained
in another way. First, we need to translate binary variable hi = 1, 0 into spin
variable σ = 2si − 1. Next, we can use that every function p : {−1, 1}N −→ R
can be decompose in the following way:

p(σ) =
1

Z
e
∑

µ gµϕµ(σ) (6)

with:
ϕµ =

∏
i∈µ

σi (7)

and we can compute gµ as:

gµ = 2−n
∑
σ

ϕµ(σ) log(p(σ)). (8)

We can estimate it using our sample {hµ
l }Nµ=1 for each layer.

The strength of a certain order k of interaction for a given layer can be
calculated as:

Gl
k =

√
1(
n
k

) ∑
µ:|µ|=k

(gµl )
2 (9)

with n the number of nodes of that hidden layer. In figure 4 you can see Gl
k

in function of layer for different order of interactions. Because these quantities
are estimated using a sample, for wide layers they have large variance, so to
deal with this problem we calculate them over 10 randomly selected nodes,
for 20 times and take an average.

Consistently with what observed using the DKL with the Ising model,
higher order statistics are more present in deep layers.
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Figure 4: Strength of the normalized conjugate parameters, in function of
layers for different orders of interactions. We calculate them over 10 randomly
selected spins per each layer, for 20 times and then we take an average.

3 Emergence of hierarchical structure

3.1 Hierarchical feature model

The hierarchical feature model (HFM) is a model for the internal represen-
tation of a system. It is consistent with the principles of maximal a priori
ignorance (if the latent representation h has feature k, no information on
whether feature i < k is present or not is available, a priori: p(hi|hk = 1)
is uniform over hi) and maximal relevance, defined as the entropy of the
frequency distribution [9].

Given a sample {hN
µ=1} from the internal representation of a layer, the

probability of the frequency is: p(k) = mkk/N where mk is the degenaracy
of frequency k, then the relavance is defined as:

H[k] =
∑
k

mkk

N
log

(
mkk

N

)
. (10)

In a work by prof. Marsili et al. [3] this quantity is argued to provide a
quantitative measure to the useful information content that a certain repre-
sentation has on its own generative process. It is also argued that maximally
informative representations should maximize the relevance at fixed level of
resolution (defined as the entropy H[h] of the sample {hN

µ=1}). Another
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work [8] showed that the internal representation of this architecture seems to
respect this principle of maximal relevance.

The principle of a priori ignorance implies that p(h) must be a function
of the largest index i for which hi = 1, i.e. it must be a function of

mh = max{i : hi = 1}. (11)

The principle of maximal relevance implies that this function must be an
exponential, as shown in [3], so:

p(h) =
1

Z
e−gH(h), H(h) = max{mh − 1, 0} (12)

where the partition function is:

Z =
∑
h

e−gH(h) = 1 +
ξn − 1

ξ − 1
, ξ = 2e−g. (13)

In the limit n −→ ∞ the model exhibits a phase transition at gc = log 2,
signalled by a divergence of the variance of the energy (specific heat). For
value of g < gc the model describes a representation that spans an extensive
number of features (the Es[H] is extensive), while for g > gc the Es[H] is of
order one.

This model describes an internal representation that learns a hierarchy of
features: the first features are more generic and can describe many different
elements in the dataset, while later features add more specific details to
the representation. Indeed both the magnetization ⟨hi⟩ and the single node
entropy H[hi] are decreasing along the hierarchy.

3.2 Feature of Internal Representation: Hierarchical
structure

To see if the internal representation of this DBN has an organization of feature
space similar to the HFM, we calculate the single node magnetization and
entropy of the internal representation of a DBN trained on MNIST dataset,
and we sort them in decreasing order. The results are in figure 5 and 6, you
can see how these quantities decrease along the hierarchy as in the HFM,
however we will see that only the deep layers’ hierarchy is close to the HFM.

First, we calculate the parameter g∗ of the HFM that best fits the data
of a particular layer. Because the HFM is an energy based model, we just

8



Figure 5: Hl[hi] in function of the nodes for each layer. The nodes are sorted
so that the entropy is decreasing.

Figure 6: ⟨hi⟩ in function of the nodes for each layer. The nodes are sorted
so that the magnetization is decreasing.

need to find the g∗ such that the energy average over the model matches the
empirical one:

⟨H(h)⟩D ≡ 1

M

M∑
n=1

max{mhn−1, 0} =
∑
h∈S

max{mh−1, 0}PHFM(h) ≡ ⟨H(h)⟩PHFM
.

(14)
Knowing that the average of a HFM’s energy of n nodes is:

⟨H(h)⟩PHFM
= ξ

(
nξn − 1

ξn +−2
− 1

ξ − 1

)
, ξ = 2e−g. (15)

In figure 7 you can see the value of g∗ for each layer of the DBN trained
with mnist.

Then, we calculated the magnetization in function of the node position in
the hierarchy, for a HFM with a parameter equal to the g∗ of figure 7 that best
fits each DBN’s layer. The formula for the magnetization is easy to obtain
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Figure 7: g∗ that solves equation 14 for the activations of each layer of a
DBN trained with mnist dataset.

conditioning on the energy. For this purpose let’s define Sk = {s : ms = k}
the set of stats with the last spin up being the kth one, then:

E[si] = p(si = 1) =
n∑

k=0

p(si = 1|s ∈ Sk)p(s ∈ Sk) =
ξn + ξi − 2ξi−1

2(ξn + ξ − 2)
. (16)

If we compare these magnetizations with the one that we found for the
DBN’s layers, we can see that only deep layers are well described by the HFM.
You can see in figure 8 and 9 these plots for the first two and the last two layers.

Another feature of the internal representation learned by the DBN, that
is not immediately clear from figure 7, is that deep layers’ representations are
getting closer to the one of a HFM at the critical value gc = log 2. From a
coding theory prospective, it is an efficient way of using the feature, because
the number of bits we need to code for a data grows linearly with its number
of feature. At criticality the probability of having the last feature at position
m p(m) is uniform: − log p(m) = −(m − 1) log 2 − log p(s|m) = const. So
− log p(s|m) ∼ (m− 1) log 2. You need m− 1 bits to describe an object with
m feature, (that is precisely the number of bits you need to distinguish it
from the other 2m−1 different objects with the same number of features).

To see why deep layers are more critical we need to remember that the
max likelihood estimator T (g) of the parameter g has its own variance. For
Cramer-Rao bound we know that the variance of this estimator has as lower
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Figure 8: magnetization in function of nodes for the first two layers of a DBN
trained with mnist dataset and the corresponding magnetization of the HFM
with the parameter g that best fits the layers’ activations. They are not well
described by a HFM.

Figure 9: magnetization in function of nodes for the last two layers of a DBN
trained with mnist dataset and the corresponding magnetization of the HFM
with the parameter g that best fits the layers’ activations. They are better
described by a HFM than shallow layers.

bound the inverse of the Fisher information:

V[T (g)] ≥ 1

MJ(g)
(17)

where M is the number of samples used to estimate g and J(g) is the Fisher
information, defined as:

J(g) =

∫
dsp(s|g)

[
∂

∂g
p(s|g)

]2
. (18)

For an exponential family the Fisher information of gc is the variance of the
conjugate observable, in our case for a HFM with n nodes:

J(gc) = V[Hgc ] =
n(n− 1)[n(n+ 5)− 2]

12(n+ 1)2
. (19)
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So to see how really each layer representation is close to criticality we can
plot the ratio between the deviation from the critical value and the standard
deviation around it in function of layer: (gc − g∗)/δg =

√
⟨δE2⟩(gc − g∗). As

you can see in figure 10, this quantity decreases over layer suggesting that
the model learned in deep layers is getting close to the critical HFM.

Figure 10: Ratio between the deviation from the critical value gc and the
standard deviation of the estimator in function of layers. Again g∗ is the value
that solves equation 14 for each layer of a DBN trained with mnist dataset.

Finally, to measure how much the internal representation of each layer
is close to the hierarchical feature model, we compute the DKL(pl||pHFM)
between pl(h) and the HFM pHFM(h) that best fits the data of each layer
(again this is estimated using a sample {hN

µ=1}). In figure 11 you can see
the results for 3 DBN trained on MNIST, FMNIST and EMNIST dataset.
In all these cases the DKL decreases along the layers, again suggesting that
representations in deep layers are getting closer to this simple model (with
just 1 parameter), but with a richer structure.
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Figure 11: DKL between the internal representation of each layer and the
best-fit HFM, normalized to the number of nodes of each layer for 3 different
datasets.

4 Conclusion

The main results that we obtain in this work concern the behavior of the
plasticity across different layers of a DBN in an unsupervised setting, and the
characterization of some features of the internal representations of different
DBN’s layers.

First, we observe an increasing behaviour of the plasticity (defined as the
amount of change of the weights when the dataset to be learned is changed)
across the layers. It suggests that the features learned in the shallow layers
are more generic and simple, and for this reason they are able to describe
different dataset without changing much. Instead, the high level features,
learned in deep layers, capture more specific characteristics of a particular
dataset. This is coherent with what was found in [7].

Then, we analyze the internal representation of the DBN after training
with different datasets and what we observe is that shallow layers’ representa-
tions can be described by a pairwise model. It suggests that the simple feature
of the data, learned in the firsts layers, are just pairwise correlated. Instead
deep layers, that contain information on high level feature of the data, seem to
learn representation where high order interactions are present. Furthermore,
these representations become close to a theoretical model (HFM) describing
an organization of feature space consistent with the principles of maximal a
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priori ignorance and maximal relevance.

For future works it would be interesting to see how general are these
conclusions about the plasticity and the internal representation -for example
trying to extend them to different deep neural networks like convolutional
neural network in an unsupervised setting, or variational autoencoder.
It is also interesting to see whether these models are able to describe the
way in which certain brain areas (e.g. the ventral stream) elaborate external
stimuli and learn from them. Searching similarities between the structure, the
internal representation and the plasticity of both the natural and the artificial
architecture could be a starting point to find some common principles in the
way they elaborate the information, in order to perform complex cognitive
function.

A Simulation details

A.1 Training of DBN

The DBN used in our experiment has a visible layer with 784 nodes and 10
hidden layers with the following number of nodes: 500-250-120-60-30-25-20-
15-10-5. To train this architecture we used the algorithm proposed by Hinton
[5]. It consists in training the architecture layer by layer, using the hidden
layer of an RBM as the visible of the following RBM. In this way, we can learn
the weights one layer at a time with a guarantee of improving a variational
lower bound of the log likelihood of the data under the full generative model,
as was shown in [5]. This allows us to use approximated training methods like
contrastive divergence (CD) and still being able to obtain a good generative
model.

To learn the parameters of a single RBM we used a stochastic gradient
ascent of the log-likelihood of the training datasets D = {v1, ...,vM}. The
measure of an RBM is given by equation 1 and the log-likelihood is defined
as:

L(W,b, c|D) =
1

M

M∑
m=1

ln p(v = vm|W,b, c)

=
1

M

M∑
m=1

ln
∑
{h}

e−E(vm,h|W,b,c) − lnZ

(20)
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knowing the energy to be:

E(v,h|W,b, c) = −
∑
ij

viWijhj −
∑
i

civi −
∑
k

bkhk (21)

the components of the gradient are:

∂L
∂Wij

= ⟨vihj⟩D − ⟨vihj⟩p (22)

∂L
∂bk

= ⟨hk⟩D − ⟨hk⟩p (23)

∂L
∂ci

= ⟨vi⟩D − ⟨vi⟩p (24)

where ⟨f(v,h)⟩D = M−1
∑

m

∑
h f(v

m,h)p(h|vm) is the average over the
dataset, and ⟨f(v,h)⟩p is the average over the measure of equation 1.

The components of the gradient are computed at each epoch over a batch
of size 64, to introduce stochasticity and reduce the likelihood of being trapped
in local minima. In theory, one can evaluate the average over the model
⟨f(v,h)⟩p using parallel Monte Carlo Markov chains (MCMC), with a large
number of steps to ensure a sampling of the equilibrium distribution for each
epoch. In practice some approximation schemes are used. For example in
Contrastive Divergence-k (CD-k), the Markov chains are initialized inside the
batch used to compute the gradient and k Monte Carlo steps are performed
-the idea is that the dataset is a good approximation of the equilibrium sam-
ples of a well trained RBM. In Persistent Contrastive Divergence-k (PCD-k)
the MCMC is initialized in the configuration of the previous epoch, with a
random initialization for the first epoch -the idea is that if the parameters of
the distribution change slowly, than also the equilibrium distribution doesn’t
change much, so the chain of the previous step could be a good initialization
for the current epoch.

The consequences of these approximations are not well understood. From
an analytical point of view, Decelle et al. [4] [1] proved that the equilibrium
distribution learned by an RBM trained with CD-10 was not able to capture
the statistics of the dataset, but it can be a good generative model if it were
sampled out of equilibrium. Instead they observed that PCD-10 was able to
learn a good equilibrium distribution.

To the best of our knowledge we don’t have analytical proof of the
consequences of these approximation scheme in deep architectures, however
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the layer by layer training improve the full generative model [5], and the
results of our experiments are independent from the approximation scheme
used.

A.2 Boltzmann learning of Ising model

The Ising model can be seen as a max entropy model, where one looks for
the most uniform probability distribution that satisfies some constraints.
The constraints are such that, given a set of observables fi(s) : S −→ R, with
i = 1, .., p, their model average needs to match the empirical one:

⟨fi⟩D ≡ 1

M

M∑
n=1

fi(sn) =
∑
s∈S

fi(s)P (s) ≡ ⟨fi⟩P (25)

with M the number of data. If we choose as observables the single node
magnetization fi(s) = si and the two points correlation fij(s) = sisj, we can
introducee a set of Lagrange multipliers {hi, Ji,j} to enforce each constraints,
and the resulting max entropy model will be an Ising model:

p(s|h,J) = 1

Z
exp

∑
i,j

Jijsisj +
∑
i

hisi. (26)

It is known that, for an exponential family, finding the Lagrange multipliers
that satisfied the constraints is the same as maximizing the log-likelihood
L(J,h|D) of the empirical data, whose gradient components are:

∂L
∂Jij

= ⟨sisj⟩D − ⟨sisj⟩p (27)

∂L
∂hi

= ⟨si⟩D − ⟨si⟩p . (28)

To find the parameters we perform a gradient ascent of the log likelihood.
We use PCD to evaluate the average over the model, using 64 parallel Markov
chain of length 10 · n, with n the total number of spins in the chain, for ∼ 103

epochs.
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[4] Auré lien Decelle, Cyril Furtlehner, and Beatriz Seoane. “Equilibrium
and non-equilibrium regimes in the learning of restricted Boltzmann
machines∗”. In: Journal of Statistical Mechanics: Theory and Experiment
2022.11 (Nov. 2022), p. 114009. doi: 10.1088/1742-5468/ac98a7. url:
https://doi.org/10.1088%2F1742-5468%2Fac98a7.

[5] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. “A Fast
Learning Algorithm for Deep Belief Nets”. In: Neural Computation
18.7 (July 2006), pp. 1527–1554. issn: 0899-7667. doi: 10.1162/neco.
2006.18.7.1527. eprint: https://direct.mit.edu/neco/article-
pdf/18/7/1527/816558/neco.2006.18.7.1527.pdf. url: https:
//doi.org/10.1162/neco.2006.18.7.1527.

[6] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In:
Nature 521.7553 (May 2015), pp. 436–444. doi: 10.1038/nature14539.
url: https://ideas.repec.org/a/nat/nature/v521y2015i7553d10.
1038_nature14539.html.

[7] Honglak Lee et al. “Unsupervised Learning of Hierarchical Representa-
tions with Convolutional Deep Belief Networks”. In: Commun. ACM
54.10 (Oct. 2011), pp. 95–103. issn: 0001-0782. doi: 10.1145/2001269.
2001295. url: https://doi.org/10.1145/2001269.2001295.

[8] Juyong Song, Matteo Marsili, and Junghyo Jo. “Resolution and relevance
trade-offs in deep learning”. In: Journal of Statistical Mechanics: Theory
and Experiment 2018.12 (Dec. 2018), p. 123406. doi: 10.1088/1742-
5468/aaf10f. url: https://dx.doi.org/10.1088/1742- 5468/
aaf10f.

[9] Rongrong Xie and Matteo Marsili. Occam learning. 2022. arXiv: 2210.
13179 [cond-mat.dis-nn].

17

https://arxiv.org/abs/1905.12784
https://doi.org/10.1088/1742-5468/ab16c8
https://dx.doi.org/10.1088/1742-5468/ab16c8
https://doi.org/10.1088/1742-5468/ac98a7
https://doi.org/10.1088%2F1742-5468%2Fac98a7
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.2006.18.7.1527
https://direct.mit.edu/neco/article-pdf/18/7/1527/816558/neco.2006.18.7.1527.pdf
https://direct.mit.edu/neco/article-pdf/18/7/1527/816558/neco.2006.18.7.1527.pdf
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1038/nature14539
https://ideas.repec.org/a/nat/nature/v521y2015i7553d10.1038_nature14539.html
https://ideas.repec.org/a/nat/nature/v521y2015i7553d10.1038_nature14539.html
https://doi.org/10.1145/2001269.2001295
https://doi.org/10.1145/2001269.2001295
https://doi.org/10.1145/2001269.2001295
https://doi.org/10.1088/1742-5468/aaf10f
https://doi.org/10.1088/1742-5468/aaf10f
https://dx.doi.org/10.1088/1742-5468/aaf10f
https://dx.doi.org/10.1088/1742-5468/aaf10f
https://arxiv.org/abs/2210.13179
https://arxiv.org/abs/2210.13179

	Introduction
	Plasticity and Internal Representation
	Deep belief network
	Plasticity of the architecture
	Feature of Internal Representation: order of interactions

	Emergence of hierarchical structure
	Hierarchical feature model
	Feature of Internal Representation: Hierarchical structure

	Conclusion
	Simulation details
	Training of DBN
	Boltzmann learning of Ising model


