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Chapter 1

Introduction

Proteins are fundamental macro-molecules that are involved in a variety of vital
functions in living organisms. They primarily consist of a linear amino-acid sequence,
which allows the molecule to fold into a 3D structure and perform its function
thanks to its chemical and physical properties. In this work, we are interested in
understanding the sequence statistics and its evolution over different timescales.
An interplay of mutations and selection shapes the amino-acid variety over the
course of history. Understanding the stochastic dynamics of protein evolution is
essential to the comprehension of the diversification of life and the emergence of
new protein functions. Recently, the use of data-driven fitness landscapes and
statistical physics methods to create a quantitative theory of protein evolution has
gained more and more importance, leading to promising results [1, 2, 3].
Our aim is to numerically simulate protein evolution and compare the results with
different experimental [4, 5] and natural data features, such as Hamming distance,
contact prediction, and several orders of correlation statistics.
A Markov chain is used to describe the mutational dynamics, and a "sequence
landscape" constructed from naturally occurring sequence variants is used to model
the selection. The simulations start with a specific wild type protein and new
proteins are designed using previously learned parameters to reproduce different
stages of natural and in vitro evolution, which include experimental evolution at
different rounds (10% of sequence mutations), and natural evolution observed in
homologous sequences (70− 80% of sequence variation).
After having confirmed the validity of our generative model both locally and globally,
we search for emergence of epistatic signals at intermediate scales trying to give an
intuition of the important timescales that rule the dynamics.
In conclusion, this project aims to provide relevant insights on the stochastic
dynamics of protein evolution, which is essential to understanding the diversity of
life.
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Introduction

1.1 A brief reminder on essential biology con-
cepts

The following sections shortly introduce some key topics in biology, preparing the
path for the core of our analysis.

Proteins
Proteins are large biomolecules composed of amino acids; they play a crucial role
in biological processes such as catalysis, regulation, and structure.
Each protein can be depicted as a unidimensional polymer chain of amino-acids that
folds into a three-dimensional convoluted structure (known as "tertiary structure")
by varying the distances of different amino-acid sites. Such structure is closely
correlated with the function performed in the cell, hence it is necessary to deepen
our knowledge on the former to get more information on the latter. This connection
is what made researchers suppose long time ago that the structure solely depends
on the small building blocks composing the chain [6].
We can represent such relation in a simple way by saying that the information on
the folding of a protein is hidden by a single phrase written in a 20-letter alphabet:
the amino-acid sequence.

Figure 1.1: A schematic wheel representation of the genetic code: the three inner
circles represent first, second and third nucleotide in the codon triplet.

Genetic code
What is the relation between protein and DNA? To answer this question we must
talk about the set of rules by which the information encoded in DNA is translated
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into the sequence of amino acids that make up a protein: the genetic code. The
relationship between nucleotides and amino acids in this code is that specific codons,
made up of three nucleotides, correspond to specific amino acids. In the standard
genetic code, there are 64 possible codons, but they code for only 20 amino-acid as
we can see in Fig. 1.1. Hence it is common to say that genetic code is "redundant":
different codons can lead to the same amino-acid. The codons are read starting
from a fixed point on the DNA molecule called the start codon and continuing
until a stop codon is encountered.

Figure 1.2: Pictorial representation of a phylogenetic tree.

Phylogenetics and protein families
Phylogenetics is a key field that uses inference methods, including traits like mor-
phology, DNA, and protein sequences, to reconstruct the evolutionary relationships
between species over time [7]. The resulting representation is known as a phylo-
genetic tree (Fig. 1.2), where nodes represent species or hypothetical ancestors,
and branches represent genetic connections. Proteins also undergo mutation and
can be organized into phylogenetic trees, referred to as protein families. Sequences
within the same family are termed "homologs" and are believed to share a com-
mon evolutionary ancestry. The growing availability of labeled protein databases,
driven by advances in sequencing techniques, provides a wealth of information for
data-driven modeling and analysis.

Natural Protein Evolution
Biological evolution is a complex process which is yet to be completely understood.
However, from an effective point of view it can be efficiently described as a highly
stochastic process in a fitness landscape acting on populations. Mutations in
DNA lead to changes in protein sequences, which, along with selective pressures,
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determine the survival and reproduction of organisms. Most mutations decrease
fitness, while some others are beneficial and confer a fitness advantage when under
selective pressure. In an equilibrium between the two, protein evolution can be
viewed effectively as a neutral walk on the fitness landscape. Proteins serve as
an excellent proxy for studying evolution due to their robustness to mutations
and sensitivity to even slight amino acid substitutions for what regards their
functionality. Furthermore, proteins exhibit slow changes over time and their
structure are highly conserved across species, making them valuable for studying
evolutionary relationships.

Experimental Protein Evolution
To carry on our review on evolution, we now ask if it is possible not only to
look at long time scales by collecting data from different species, but also to try
to reproduce the stochastic dynamics of evolution at shorter time frames. One
powerful approach is directed evolution, which involves introducing mutations into
a protein sequence and then selecting for variants that exhibit a desired function or
property. Experiments involve several steps, beginning with the creation of a library
of variant proteins. This library is usually generated by introducing mutations
into the gene encoding a target protein, either randomly or at specific positions
using techniques like error-prone PCR or site-directed mutagenesis. The resulting
variants are then screened or selected for the desired function or property.
Screening involves testing each variant individually for the desired function or
property, while selection involves subjecting the entire library to selective pressure
(e.g. growth in a specific environment) and isolating the variants that exhibit the
desired phenotype. Variants that pass the screening or selection step are then
characterized further to understand the mechanisms underlying their improved
performance.
This process of screening, selection, and characterization is typically repeated over
many rounds, with each one involving further mutation and selection of the most
promising variants.

Epistasis
When talking about mutational effects on protein sequences, it is necessary to
discuss about epistasis. Briefly speaking, this concepts refers to mutations involving
interactions between different protein sites. Contrary to what one normally should
expect, the outcomes of mutations are not additive. Epistasis is related to a non-
linearity in the mapping from sequence to biological property and it can restrict
the trajectories available to an evolving protein or open new paths to sequences
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and functions that would otherwise have been inaccessible. We can talk about
negative or positive epistasis whether the effect of a pair of mutations results in a
larger or smaller phenotype given by the sum of the two single mutations. Actually,
characterizing such phenomena is a difficult task and its precise role in protein
evolution is hardly understood. This work aims to contribute to a quantitative
theory of epistasis, adding to different studies such as [8, 9, 10].

Betalactamase family
Before going on with the description of protein evolution experiments, it is necessary
to introduce the protein family that has been taken under our lens and show why
it is crucial to understand its characteristics.
The beta-lactamase family is a group of enzymes that are commonly found in
bacteria and are responsible for conferring resistance to β-lactam antibiotics,
such as penicillin and cephalosporins. Antibiotics all have a common element in
their molecular structure: a four-atom ring known as a beta-lactam (β-lactam)
ring. Through hydrolysis, the enzyme lactamase breaks the β-lactam ring open,
deactivating the molecule’s antibacterial properties.
In the following experiments [5, 4] two particular proteins belonging to this family
were used: TEM-1 and PSE-1. They are two prominent members of this family
that have been extensively studied. TEM-1 was the first beta-lactamase enzyme
to be characterized and is still one of the most widely distributed beta-lactamase
enzymes in bacterial pathogens. On the other hand, PSE-1 is a broad-spectrum beta-
lactamase that is capable of hydrolyzing a wide range of beta-lactam antibiotics.
Studying beta-lactamase enzymes is crucial for combating antibiotic resistance,
developing new antibiotics, and understanding mechanisms of resistance in bacterial
pathogens, thereby safeguarding public health.
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Chapter 2

Data and Methods

In the following chapter we will deal with the data-sets utilized for our study and
we will address Direct Coupling Analysis, a powerful statistical-physics inspired
tool used to infer precious information regarding protein and DNA evolution. Such
method aims at learning from the large protein databases a probability distribution
of the sequence in a Boltzmann-like fashion. This probabilistic model assigns an
energy landscape that characterizes how probable is to observe each sequence; it
can provide further insights on biological features such as residue-residue contact
prediction or the effect of mutations on fitness landscape.
Furthermore, the same distribution can be subsequently used as a generative model
for artificially sampling proteins that are statistically indistiguishable from the ones
contained in the training set.
Our new contribution will be to provide this static framework with a new mutational
dynamics simulating the evolutionary history of sequences. This process relies
on deep biological concepts which ensure its suitability in mimicking complex
phenomena undergoing at the nucleotide level, while still asymptotically reaching
equilibrium and recovering characteristics of the training set. As an example,
mutation, insertion and deletion mechanisms should be considered at the level of
DNA, taking into account the genetic code.

2.1 Experimental datasets

Stiffler Experiment
We discuss an experiment [4] realized by Stiffler et al. in 2020. They concentrated
on two proteins, Betalactamase PSE-1 and aminoglycoside acetyltransferase AAC6,
that share the antibiotic resistant feature. We will just focus on the first one
because we want to keep our analysis confined to the Betalactamase family.
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Data and Methods

Figure 2.1: Schematic representation of Stiffler experiment taken by [4].

A pictorial view of the workflow of the experiment is shown in Fig.2.1. In order
to facilitate differentiation, error-prone PCR was used with a high-mutation rate
followed by selection of functionality through external pressure realized by 6mg/mL
ampicillin. This dose corresponds to low selection: not only the best proteins survive.
Therefore, the experiment explores the neutral space, but it does not optimize for
resistance. The process was iterated 20 times by taking the survived proteins of a
round as the input sequences for diversification in the next one. The sequencing
was performed at 10th and 20th round resulting in two diversified MSAs. These
latter ones were then used to learn a Potts model leading to satisfactory contact
prediction results.
Stiffler’s experiment managed to gather significantly more sequences (≃ 465000).
A small caveat must be made on this number: it was initially reduced down to
≃ 165000 because of a strong cleaning performed by Stiffler et al., but we choose
to use the complete data-set (with some standard pre-processing) for our analysis.

Fantini Experiment
A very similar experiment has been carried out by Fantini et al. [5]. After processing
the data, the researchers were able to create a highly diversified library of 105

sequences at a distance of nearly 10% from the TEM-1 wildtype belonging to
Betalactamase family. Finally, the data was used for the main scope of this paper,
which was to predict residue-residue contacts. The results were significantly worse
with respect to those of Stiffler.

2.2 Direct Coupling Analysis
DCA is based on two main evidences regarding a single protein family: all sequences
share the same 3-D structure and they have high intra-family variability at the
level of amino-acids. The similar function operated by these proteins in the cell
suggests that during evolution some common features have been preserved. Such
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characteristics might be identified as constraints under which the folding in a three-
dimensional structure takes place. It is precisely these last ones that are usually
statistically inferred by exploiting the huge amount of sequences and intra-data
variability that can be found in protein databases. More precisely, constraints

Figure 2.2: Schematic illustration of the relation between three-dimensional
structure and sequence variability in protein evolution, taken by [3].

can be both local (linked to functionality and binding) or global (associated to
stability and folding). Along evolution, we might have amino-acid specific residues
that never mutate (i.e. the blue-dotted site in Fig. 2.2). Nevertheless, we can also
have couples of amino-acids that variate accordingly (i.e. the red-dotted residue
in Fig. 2.2). This can be easily addressed as a co-evolutionary effect related to
residue-residue contacts: a pair of amino-acids in contact in the folded state must
have correlated mutations over evolutionary timescales in order to maintain the
necessary stability [11, 12].

Multiple Sequence Alignments
The starting point of DCA is the building of a good data-set on which we perform
our inverse statistical physics procedure. The approach is to take the protein family
from the database and organize it into a matrix of M × N dimension in which
each row is a protein and each column is a residue site. We will then depict each
element/amino-acid of the MSA as am

i (with m = 1, ..., M and i = 1, ..., N) taking
21 possible symbols that represents the typical letters of the amino-acids plus a gap
′−′. As a matter of fact, during evolution events such as insertion or deletion of
single sites cause the alignments to have some holes or extra tails. In order to take
account of this, tools like the hmmsearch command from the HMMer software suite
build the MSA directly from the protein database by using scores of most probable
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alignments [13]. This task is not easy at all and we might see some references to
these procedure in the following chapters.
To get acquainted with the scales we are exploring, we can safely consider the
range of M to be up to 106 and the number of sites N from 50 to 500 in the case
of PFAM domain family [14]. The amino-acid letters can be respectively encoded
as integer numbers or as "one-hot" sequences where each letter is mapped into a
unit 20-dimensional sparse vector of all 0’s and just a 1 (with the gap being a null
vector). The first encoding is more practical, whereas the second might be useful
in cases in which we want all amino-acids to be equally distant like in Principal
Component Analysis.
Observing this data-set, we can notice statistical features among columns and rows.
The simplest empirical measures we can look at are:

• single-site frequencies fi(a) = 1
M

q
m δa,am

i

• double-site frequencies fij(b, c) = 1
M

q
m δb,am

i
δc,am

j

The two quantities can be easily understood in terms of biology. One-point
frequencies fi(a) depict the process of conservation in evolution. If a specific site
plays a crucial role in functionality, such as binding to a particular substrate or
having specific biochemical properties, then a mutation affecting this site would
likely have negative consequences. As a result, that site would be conserved within
the family. On the other hand, two-point frequencies fij(b, c), when fij(b, c) /=
fi(b)fj(c) demonstrate the phenomenon of coevolution. If two sites are in contact
in the folded state of the molecule, then changes in one site due to a mutation may
require changes in the other site in order to preserve the ability to form the bond.
It is common to exploit highly amino-acid dependent sites to build correctly aligned
MSA of proteins belonging to the same family. Their strong conservation suggests
that they might have an essential role in making the protein fold or perform its
function in the correct way.

Statistical Modelling
As we underlined in the previous paragraph, coevolution is evident through corre-
lated occurrences of amino acids in different positions within a protein. Utilizing
these correlations to predict the protein’s three-dimensional structure and contact
map has been a longstanding approach [15, 16]. However, it is challenging because
correlations and mutual information in a multiple-sequence alignment do not di-
rectly represent amino acids in direct contact. Indirect correlations can arise when
pair of positions are in contact with others, complicating the analysis.

The key assumption of this inverse statistical physics problem is to admit that
proteins of same family (i.e. the rows of the MSA) can be considered as (not
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necessarily i.i.d.) samples from a probability distribution [17, 3, 18] that takes the
following Boltzmann-like expression:

P (a1, ..., aN) = e−H(a1,...,aN )

Z
(2.1)

where N is the length of the sequence, the inverse temperature β has been absorbed
in the Hamiltonian H(a1, ..., aN) and Z = q

a1,...,aN
e−H(a1,...,aN ) is the partition

function commonly encountered in statistical physics. The interpretation of the
"energy" H(a1, ..., aN) is quite easy: sequences with a lower energy will have a
higher probability, hence they will be more frequently sampled, resulting in a
statistical predominance in the alignment. In this sense, the Hamiltonian provides
a high-dimensional landscape in which rarely observed sequences correspond to
peaks, whereas functional frequently selected sequences populate the valleys.
One could argue whether this assumption is robust and acceptable, considering the
complexity of the subject of our study. Regarding this, we refer to the brilliant
work of Jaynes [19] where he explains how statistical mechanics approaches can be
recovered starting from the information theory-based Maximum Entropy Principle.
Indeed Jaynes showed that if we want to infer probability distributions that match
specific empirical observables of a data-set, then the Boltzmann distribution is the
least-biased one (i.e. the one with highest entropy) among them.

Potts model
The model we will consider when building an energy function for our sequences is
the Potts Model:

H(a1, ..., aN) = −
Ø

i

hi(ai)−
Ø
i<j

Jij(ai, aj) (2.2)

.It consists of "local fields" hi(ai) modelling the amino-acid conservation at spe-
cific sites and "couplings" Jij(ai, aj) which should account for the description of
co-evolutionary residues. The latter term is of fundamental importance when
trying to predict residue-residue contacts. The inference of couplings is a complex
computational problem as it involves calculating thermodynamic averages, which
have to be in line with empirical values, from an exponentially large sequence space
in a disordered model without any prior symmetry. In the context of Potts models,
the effect of mutations can be analyzed easily by computing the energy difference

∆E(ai → c) = H(a1, ..., ai−1, c, ai−1, ..., aN)−H(a1, ..., ai−1, ai, ai−1, ..., aN). (2.3)

A negative ∆E accounts for beneficial mutations, whereas a positive one might
describe deleterious changes in the amino-acid sequence. It is noteworthy that the
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use of pairwise Potts Hamiltonians has previously been explored in the context of
protein design [20, 21] to understand the distribution of sequences that fold into a
known structure.

The parameters of the model are inferred from a training data-set through Max-
imum Entropy Principle (MEP) [19]: we choose a set of observables Oα(a1, ..., aN)
of the data-set that we want to reproduce with our probabilistic model, constrain
the parameters to reproduce such observables and select those that maximize the
entropy of the distribution. In our specific case we decide only to impose:

• one-point frequencies fi(a) =< δa,ai
>P

• two-point frequencies fij(a, b) =< δa,ai
δb,aj

>P

for every possible i, j, a, b. For a precise justification and analysis of the learning
procedure, please check Appendix A.

2.3 Generating artificial sequences
One of the most powerful features of DCA framework is the possibility of using
the learned model parameters to sample yet unknown functional sequences of
amino-acid. This aspect is quite remarkable given that only a very small subset of
the enormous sample space (≃ 20L, where L is the number of amino-acids) results
into working proteins. It has been shown [22, 23, 24] that through Boltzmann
sampling from the learned probability distribution, it is possible to obtain new
functional proteins that are highly different in terms of Hamming distance from
the known ones. It is noticeable that such a fine-tuned quality like functionality
can be almost recovered just by fitting one and two point frequencies.
There are several procedures that can be used to sample our new sequences from
the known distribution, the most used one is Markov Chain Monte Carlo, which
iteratively generates samples from a distribution of interest.

Sampling sequences
Once the parameters are correctly estimated and regularized, we are provided with
a Boltzmann probability characterizing each sequence with a score. This can be
used to recover functional protein sequences from an i.i.d. equilibrium sample and
predict mutational effects. In this sense it helps to understand how selection acts
on proteins in natural evolution. One novel introduction we made with respect to
previous works is the choice of a new Hamiltonian (and consequently of probability
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distribution to be sampled)

H(B) = H[A(B)] + T logB(A(B)) = H[A(B)] + T
LØ

i=1
logB[ai(B)] (2.4)

where we call B(A) = |{B : A(B) = A}| the number of nucleotide sequences B that
correspond to the same aminoacidic sequence A. Because each codon independently
codes for an amino acid, we have

B(A) =
LÙ

i=1
B(ai) , (2.5)

where B(ai) is the number of codons that code for amino-acid ai.
This takes into account the fact that different codons can code the same amino-

acids and favors with a higher probability/lower energy the sequences that have a
low degeneracy, i.e. that can be coded by just a few combinations of nucleotides.
Instead, amino-acids that have a high genetic redundancy are more rarely sampled.
In this way, probability is correctly distributed among all possible codons. One
assumption is that we do not have codon biases: the energy is defined only on
amino-acid, it is blind to synonymous codons that are translated into the same
amino-acid.
Regarding the sampling procedure, a challenge arises in maintaining detailed
balance, which ensures that at equilibrium each process is in equilibrium with its
reverse process. A Markov chain satisfying detailed balance is called "reversible"
Markov chain and it must converge to an equilibrium distribution. In other words, if
our algorithm satisfies detailed balance, we can use it not only to sample short-term
evolution experiments, but we can directly recover natural evolution by reaching
equilibrium. This means that the same model can safely and correctly describe a
local fitness landscape in the vicinity of TEM-1 and PSE-1, but also reproduce the
enormous global variability of the entire betalactamase family.
However, what about the stochastic evolutionary dynamics? This theoretical
framework must be completed with a suitable mutational process which both reflects
known evolutionary biological phenomena and ensures that we are asymptotically
reaching the prefixed stationary distribution learnt on the training set of natural
sequences. Our major contribution in this work is to develop such dynamics. Firstly,
we have already seen from the definition of the Hamiltonian that we managed to
take into account evolution at the level of nucleotides through the genetic code
without introducing codon biases. In addition, we should introduce in our stochastic
dynamics two other evolutionary phenomena:

• single-nucleotide mutations → one nucleotide is replaced by another

• deletions → an entire codon is replaced by a gap (3 nucleotides get deleted)
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• insertions → an entire codon is replaced by a gap (3 nucleotides get inserted)

where gaps are positions in a protein sequence where one amino acid is missing.
They can occur due to various reasons, such as insertions or deletions in the DNA
coding sequence, or during the process of sequence alignment.
We see that one process happens at the level of a single nucleotide, whereas another
acts on triplets, making the satisfiability of detailed balance (necessary to recover
the stationary distribution) not trivially compatible with simple dynamic rules
currently used in MCMC simulations.
Here we propose the following solution with a more detailed derivation presented
in the appendix B.

We choose to work with Gibbs and Metropolis sampling, combined with Markov
Chain Monte Carlo (MCMC). In Gibbs sampling, variables are sampled iteratively
from their conditional distributions, considering the current values of other variables.
This enables sampling from the joint distribution of all variables, even when
obtaining the joint distribution analytically is not feasible or computationally
expensive. On the other hand, Metropolis sampling consists of proposing changes
in the studied configuration and accepting them through a precise score based on
the effect of the move on the model energy. For our purposes, we develop a mixed
sampler that proceeds in the following way:

• start with a protein sequence

• with probability p do a Metropolis move modelling insertion/deletion of a
codon

• with probability 1− p do a Gibbs move modelling single-nucleotide mutations

• iterate the process with the updated sequence as input.

The Gibbs move proceeds in the following way:

• Choose a nucleotide position ik at random (considering non-gapped positions
only)

• Compute the probability of all possible mutations in that position P (b′
ik
|B−ik

)

• Sample the new nucleotide b′
ik

according to the probability density P (b′
ik
|B−ik

)

where P (bik
|B−ik

) is the probability of a single nucleotide mutation, conditional to
all other nucleotides.
Contrarily, the Metropolis move works on the codon space in the following way:

• Choose a codon b = (b1, b2, b3) at random

• Propose a move b→ b′ to a new state through a proposal matrix Ω(b→ b′)

13
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• Accept the move according to the probability p(b→ b′)

where p(b→ b′) = min
1
1, e−β[H(B′)−H(B)]

2
= min

1
1, B(A(B))

B(A(B′))e
−β[H[A(B′)]−H[A(B)]]

2
.

The proposal matrix is the following

Ω(b→ b′) =


α, if b, b′ = G

β, if b = G, b′ = Ci or b = Ci, b′ = G

γ, if b = b′ = Ci

0, if b = Ci and b′ = Cj with i /= j

where G is a gap and Ci is one among the possible 64-codons observed in nature.
This matrix has been constructed in order to admit insertion and deletions, disallow
substitutions of codons (Ci → Cj), while still being normalized and symmetric.
From an efficiency standpoint, one could argue that the non-null diagonal makes
the algorithm quite slow since it proposes useless moves that don’t change the
sequences. Unfortunately α and γ are necessary for normalization, still they can
be reduced by maximizing insertion/deletion proposals choosing β = 1

64 , which
consequently imposes γ = 63

64 and α = 0.
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Chapter 3

Results

3.1 Short term sampling
Here we want to show that our model using the previously described mixed sampling
that respects detailed balance is able to reproduce the statistics of experiments
on protein evolution with a sequence variability of around 10%. Indeed, it has
already been shown recently by Bisardi et al. [25] that with a slightly different
(non-satisfying detailed balance) sampling technique, it is possible to recover results
of two important protein evolution experiments [5, 4].
Our aim is to use parameters learned on the beta-lactamase family of natural
sequences and ensure that the new sampling procedure manages to predict the
short-term evolution features of the two cited experiments. For the following
analysis we will set p = 0 in the sampler, so using only Gibbs moves. This choice
is motivated by the fact that gapped sequences have been cleaned away in the
experimental data-sets.

Tuning hyperparameters
The first thing that we should take care of when trying to reproduce the statistics
of in-vitro protein evolution is linking our model parameters to features of the
experiment and correctly tune them. Here, we consider the sequencing rounds
and the selective pressure previously described. We can associate the first with
the amount of steps performed in our MCMC dynamics and the second with an
effective temperature used for computing the Boltzmann probability acceptance in
the simulation. Obviously, more steps imply a bigger distance from the original
sequence and high temperature allows all mutations, even highly deleterious ones, to
take place. Unfortunately the two hyperparameters of our dynamics are correlated
and must be tuned together. As a result of this, we decide to perform a grid-search
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in the parameter space using as error score the sum of squared relative errors on the
mean Hamming distance and mean energy between the experimental and artificial
set.

Figure 3.1: Comparison of statistical energies and Hamming distances from
wildtype for in vitro and in silico alignments: (A) Artificial and experimental Ham-
ming distance distribution for Stiffler (round 20), (B) Artificial and experimental
energy distribution for Stiffler (round 20), (C) Artificial and experimental Hamming
distance distribution for Fantini (round 12), (D) Artificial and experimental energy
distribution for Fantini (round 12).

As we can see in Fig. 3.1 the distributions of statistical energies and Hamming
distances from wildtype are quite accurately recovered by the artificial sequences.
It is important to notice that the model fits extremely well the variance of such
quantities even if the grid-search is performed only taking into account the first
moments of the distributions.

Features comparison
Now that we have correctly linked the mutational artificial dynamics to the param-
eters of the experiment, we move on with our comparison between the in-vitro and
in-silico data-sets.
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One-point frequency

Figure 3.2: Comparison of first order statistics between in-vitro and in-silico
alignments: (A) Scatter plot of artificial and experimental one-point frequencies
for Stiffler (round 20), (B) Scatter plot of artificial and experimental one-point
frequencies for Fantini (round 12).

Firstly, we look at 1-point frequencies. As it is evident in Fig. 3.2, we have an
extremely high Spearman correlation considering that our Potts model was learned
on distantly diverged sequences, while the simulation correctly reproduces sequences
that are closer to the wildtype than to any other protein in the training data. This
correlation results to be higher for PSE due to the size of the alignment being one
order of magnitude bigger than that of TEM. As a matter of fact, exploring more
extensively the sequence space allows to more easily sample even rare combinations
of amino-acids.
We can dig in these plots a bit more, questioning if our sampling model is performing
better than the one developed by Bisardi et al.[25] that does not employ detailed
balance. We concentrate on the clusters on the top right corners of Fig. 3.2 which
is filled by the most conserved amino-acids.

Despite not seeing a major difference in the case of Stiffler round 20, the increase
in correlation for TEM is quite remarkable from Fig. 3.3. From a visual inspection
it is quite clear that there is a lower bound for the artificial sequences from Bisardi
et al., resulting into a rigid cut of the scatter plot. Fortunately the issue is just
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Figure 3.3: Comparison of first order statistics between in-vitro/in-silico align-
ments and detailed balance/non-detailed balance sampling technique: (A) Zoom of
scatter plot of artificial (realized with detailed balance) and experimental one-point
frequencies for Stiffler (round 20), by taking a subset of 10K proteins, (B) Scatter
plot of artificial (realized from Bisardi et al.) and experimental one-point frequen-
cies for Stiffler (round 20), by taking a subset of 10K proteins, (C) Scatter plot of
artificial (realized with detailed balance) and experimental one-point frequencies
for Fantini (round 12), (D) Scatter plot of artificial (realized from Bisardi et al.)
and experimental one-point frequencies for Fantini (round 12).

related to intermediate frequencies. Instead, the new model appears to sample the
site variability in a more appropriate way, with points closer to the ideal bisecting
line.
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Site entropy
A second feature we would like to explore is the site entropy. This is defined as

si = −
20Ø

a=1
fi(a) ln(fi(a)) (3.1)

and it represents the variability of a position. As a matter of fact, esi is the
effective number of observed amino-acids in position i for a given multiple sequence
alignment. To better display our comparison, we perform a scatter plot between
artificial and experimental sequences. A particular distinction has been made
regarding the sites: we call "non-mutated" the positions that share the same amino-
acid between TEM and PSE wildtypes, whereas all the others are denominated as
"mutated". Indeed, around 70% of sites are different between the two wildtypes,
confirming the strong intra-family divergence of natural homologs.

From Fig. 3.4 we realize that entropy of non-mutated positions is definitely
lower than the others as expected. In addition, it is notable that correlations are
quite satisfactory (≃ 0.7/0.8) given that we are using a model that has not been
trained on the data related to the experiments. It is necessary to underline that
we are correctly recovering the results of previous works [25] as the correlations are
comparable. To conclude, we can say that we are able to model the local variability
of protein residues, with a slight improvement with respect to previous analysis.
In conclusion, we see that if the model hyperparameters for the evolutionary time
(number of MCMC steps) and selection (artificial inverse temperature) are correctly
tuned, the model reproduces fine statistical features of the experimental data, like
the site specific probabilities of mutations, without ever having used the data in the
learning procedure. This shows that, at least for short evolutionary times reached
in the experiments, our model allows for quantitative predictions of evolution.

3.2 Long term sampling
In this section, we try to recover the main statistical features of natural evolution
MSAs to further assess the validity and robustness of our generative model. We
take as reference data-set the alignment of the PF13354 used for learning the
Potts model parameters by Bisardi et al. [25]. In addition, we will use our mixed
sampling technique with a p = 1/2 (perfect alternation of Gibbs mutation moves
and Metropolis insertion/deletion ones).

Procedure
Our aim is to sample the global landscape that has been shaped by natural evolution
by starting all our simulations in a local region. This is what proves that our
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Figure 3.4: Comparison of site entropies of in-vitro/in-silico alignments and
detailed balance/non-detailed balance sampling technique (the distinction between
"non-mutated" and "mutated" sites has been done considering mutations between
sequences of PSE-1 and TEM-1 wildtypes): (A) Site entropies of artificial (realized
with detailed balance) and experimental proteins for Stiffler (round 20) , (B) Site
entropies of artificial (realized from Bisardi et al.) and experimental proteins for
Stiffler (round 20), (C) Site entropies of artificial (realized with detailed balance)
and experimental proteins for Fantini (round 12), (D) Site entropies of artificial
(realized from Bisardi et al.) and experimental proteins for Fantini (round 12).

model really can access information on the entire protein family irrespectively of
the initialization of the sampling procedure.
As a matter of fact, we start our Markov chains in a single natural wildtype,
take for example the PSE-1 betalactamase used in Stiffler experiment [4]. The
sampling technique implemented in Appendix B respects detailed balance equations,
hence it assures that after a certain amount of steps we start to sample the
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correct equilibrium distribution, i.e. the natural sequences landscape. However
the threshold after which we are correctly equilibrating is a-priori unknown. To
reach the amino-acid variability of natural sequences we must extend the sampling
procedure described in the previous section on much longer timescales, possibly
raising some questions on the computational feasibility of the task.
To monitor our proximity to equilibration, we keep track of the dynamics realizing
multiple sequence alignments at 112 different time steps chosen according to a
logarithmic time grid and we compare their features with the natural evolution
data-set. Despite being just a check on the evolution of the dynamics of the
simulation, this data reveals to be densely rich in information.

Data-sets comparison
To monitor how well the sampled sequences are reproducing the reference data-set
over time, we check different statistical features.

From Fig. 3.5 we can see that the simulated dynamics correctly reaches the
variability of the natural datasets both for what regards the amino-acid frequencies
and the pairwise Hamming distance distribution. In addition, the gap statistics is
recovered with high correlation.

To assess the ergodicity of our sampling procedure, we show in Fig. 3.6 the
principal component analysis of natural sequences and we project on it the last
step of our simulations. In addition, we plot the trajectory of one sequence and
highlight that it is correctly visiting the natural clusters. In conclusion, high
statistical correlations saturating in time and ergodic exploration of the sequence
space confirm the generative power of our model.

3.3 Emergence of epistasis at intermediate scales
After having validated our model against data from short and long-term evolution
we can also explore all intermediate scales, where no experimental data are available.
Before showing our results on epistatic signals, we must introduce a crucial definition
that will be used in the analysis. Regarding epistasis, it is important to underline
that the rejection/fixation of mutations at a specific site is strongly affected by the
aminoacid present in the others. A good metric of how much a position is "bound"
to its background is the context-dependent entropy

si,CDE = −
20Ø

a=1
pi(a|A−i) ln(pi(a|A−i)) (3.2)

that is basically the standard (context-independent) entropy where we substituted
the simple frequencies with the probabilities pi(a|A−i) of aminoacids at site i given
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Figure 3.5: Comparison of statistical features for natural and simulated alignments:
(A) Evolution of the mean pairwise distance among the simulated alignment at
different times compared to the reference value of the natural alignment, (B)
Distribution of pairwise distances for the natural alignment and the last simulation
step, (C) Evolution of correlation (spearman/pearson) for one point frequencies
between the natural dataset and the simulated one, (D) Artificial (last step) and
natural gap distribution over sites.

a background Ai.
The dynamics of pairwise distance in Fig. 3.5 (A) shows that sequences have a lag
time to escape the original PSE-1 background.

In this spirit, we can try to classify each site according to its local (CDE) and
global (CIE) variability. For the context-dependent entropy we use our model with
a PSE-1 background, whereas for context-independent entropy we just compute
site entropies of the natural alignment. From Fig. 3.7 (A-B) we see that we can
identify three relevant subcategories

• Variable sites (high CIE & CDE) that quickly mutate as they are not con-
strained by the background

• Conserved sites (low CIE & CDE) that hardly mutate as they are conserved
also in the total alignment
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Figure 3.6: Principal component analysis of natural and simulated sequences: (A)
Natural sequences compared to the last step of the simulated sequences in their
two principal components, (B) comparison of natural sequences (grey) and the
trajectoryies of one Markov chain (orange) along the simulation.

• Epistatic sites (high CIE & CDE) which are locally conserved when the context
is almost fixed, but as soon as the background moves away from PSE-1 they
escape trying to reach their high global variability.

In Fig. 3.7 (C-D) we show the entropy of all sites with a color gradient referring
respectively to CDE and CIE. The main trend is that only globally-variable sites
rapidly mutate, whereas only highly-conserved positions remain fixed. In addition,
in Fig. 3.7 (E) the color gradient relates to |CIE-CDE|, showing that only epistatic
sites have a different behaviour with a local and a global regime.
These analysis proves the existence of different timescales related to the cluster
exploration. As a matter of fact, the longer timescale that is observed both in
variable and conserved sites as a final jump to equilibrium values temporally
coincides to the jump of sequences in the PCA space from the cluster of PSE-1 to
the other two conglomerations.
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Figure 3.7: Epistatic signals at intermediate scales: (A) Classification of sites
in variable, conserved and epistatic according to their CIE (context-independent
entropy) and CDE (context-dependent entropy), (B) Evolution of entropies for 12
sites of each category as a function of simulation steps, (C) Evolution of entropies for
all sites (color gradient for each site is red/blue for high/low CDE), (D) Evolution
of entropies for all sites (color gradient for each site is red/blue for high/low CIE),
(E) Evolution of entropies for all sites (color gradient for each site is red/blue for
high/low |CIE-CDE|).
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Chapter 4

Conclusion

Protein evolution is a complex phenomenon that is driven by several constraints
and still needs to be quantitatively explored. This report tried to investigate the
topic under the lens of statistical physics inspired data-driven modelling.
The use of computational simulations in the form of a Markov chain occurring in a
specific sequence landscape, built from natural homologous protein variants, served
as an efficient proxy for describing the mutation-selection dynamics.
The effects of mutations are translated into changes in energy and the selective
pressure was modeled through an artificial temperature, with the possibility of
reproducing different experimental and environmental conditions.
The sequence alignments produced by sampling the inferred model have effectively
captured different stages of natural and in-vitro evolution, encompassing experi-
mental evolution at varying rounds and natural evolution observed in homologous
sequences. W are able to connect timescales from few mutations (≃ 1 year, i.e. the
spread of SARS-CoV2) up to distant homology (≃ 1 billion year, i.e. the timescale
of life on earth) in a quantitative way based on distinct kinds of biological data. It
is important to underline that the correlation with experimental results is far from
obvious and the model had an unexpected high degree of correlation considering
that the landscape was learned only on natural sequences that were sufficiently
distant from the proteins used in the experiments.
Furthermore, the thesis has explored the emergence of epistatic signals at interme-
diate scales, providing valuable insights into the important timescales governing
the evolutionary dynamics.
A model capturing such fine-scale features in completely different contexts is quite
rare: actually all phylogeny and ancestral sequence reconstruction algorithms are
based on independent site evolution and therefore neglect epistasis. Our findings
contribute to a deeper understanding of the interplay between mutations and
selection in shaping protein diversity and the emergence of new protein functions.
Further improvements might consider a more systematic investigation of important
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phenomena related to epistasis such as contingency and entrenchment. As a matter
of fact, the huge variety of temporal data coming from the simulation dynamics
could provide relevant insights about how permissive/restrictive mutations might
open/close paths in the evolutionary history.
In addition, the study has highlighted that sites have different dynamics according
to their local/global variability. Improvements should look at the dependence of
such phenomena on the background initialization.
Moreover, clusters in principal component analysis are related to different protein
function: investigating transition paths among subfamilies could help to shed light
on emergence of new protein function.
Overall, the development of a quantitative theory of protein evolution could help
us to make significant progress in several important tasks such as ancestral se-
quence reconstruction or protein design and could certainly assist in navigating
the immense protein sequence space with a more informed perspective.
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Appendix A

Technical details of Direct
Coupling Analysis

A.1 Learning Procedure
As we previously highlighted, we aim to learn the probability distribution of the
sequence, which translates into quantitatively infer the "fields" hi(ai) and the
"couplings" Jij(ai, aj). Following Maximum Entropy Principle (MEP) [19], we
choose a set of observables Oα(a1, ..., aN ) of the data-set that we want to reproduce
with our probabilistic model, that is to say we want:

< Oα(a1, ..., aN) >P =
Ø

a1,...,aN

P (a1, ..., aN)Oα(a1, ..., aN) =< Oα >Data (A.1)

These observables will act as constraints on our functional entropy maximization,
leading to an expression for the p.d.f. that resembles the common Boltzmann
distribution of equilibrium statistical physics.
In our specific case we decide only to impose:

• one-point frequencies fi(a) =< δa,ai
>P

• two-point frequencies fij(a, b) =< δa,ai
δb,aj

>P

for every possible i, j, a, b. The justification of such assumption is that we can
find several examples in the literature [26, 24, 27] which show that one-site and
double-site statistics is sufficient at reproducing higher-order quantities and that
the models learned on these two features manage to generate functional sequences.
As a matter of fact, it is tempting to add another constraint for example on third-
order fijk(ai, aj, ak) but this is quite risky. If we do some counting, these are 125
terms. The length of the database must be much higher in order to have sufficient
statistics, hence introducing such constraint will only make our model learn the
noise contained in the data and loose generative power.
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A.2 Likelihood maximization
Now that we fixed our starting point, we can show how the algorithm works.
Maximizing the entropy of the probability distribution is equal to finding the
maximum of the Likelihood in a Bayesian context. As a matter of fact we can
exploit Bayes’ theorem and write the probability of parameters conditioned to the
data as

P
1
{h, J} |

î
aj
ï2

=
P
1î

aj
ï
| {h, J}

2
P0({h, J})

P ({aj}) , (A.2)

where P0({h, J}) is understood as the prior distribution of the parameters. We
can easily implement a gradient ascent on the log-likelihood were the parameters
are updated as

hi(a)← hi(a) + ϵ(fi(a)− < δa,ai
>P )

Jij(a, b)← Jij(a, b) + ϵ(fij(a, b)− < δa,ai
δb,aj

>P ).
(A.3)

Obviously, the exact computation of < δa,ai
>P and < δa,ai

δb,aj
>P is unfeasible

due to the calculation of the partition function. A way out is the approximation of
such quantities via Markov Chain Montecarlo sampling (MCMC) which appears
to be slow, but leading to correct results. This standard procedure is usually
addressed as Boltzmann Machine Learning (bmDCA) [28] and it is currently one
of the most widely used techniques in the context of DCA.
If we look back at Eq. (2.2) we realize that the parameters to be inferred scale
as Npar = N ∗ q + q2 N(N−1)

2 ≃ O((qN)2) where q = 21 is the number of possible
amino-acids symbols (20+"-"). Due to this high computational cost, the search
for different alternatives or faster implementations is almost necessary. We will
investigate possible solutions in the following paragraphs.

A.3 Regularization
The problem that scientists face when studying protein families is that the sequences
within these families often do not adhere to the expected patterns. This is due to
biased data collection, where the aim is not necessarily to fully explore the sequence
space. For example, if researchers are studying a specific protein molecule in birds,
they may only sequence it for several different bird species, leading to a family of
protein sequences that are similar to each other. This could give the illusion that
the probability distribution P (a1, ..., aN) of the sequences is concentrated in that
region, when in reality it is not.
Additionally, the sequences in a protein family are not independent because they
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are linked through their evolutionary history, where mutations have accumulated
over time. This is known as sampling bias and is a crucial issue in bio-informatics.
In this thesis, we have taken a straightforward approach to address the issue of
sampling bias. For the computation of the fi(ai) and fij(ai, aj), we have assigned
weights to the sequences to reduce the impact of overly similar sequences, effectively
addressing the problem of biased data collection:

fi(a) =
q

k
wkδ

a,ak
i

Weff

fij(a, b) =
q

k
wkδ

a,ak
i

δ
b,ak

j

Weff

(A.4)

where Weff = q
k wk and k = 1, ..., M runs over the sequences of the MSA. How

are the weights defined? Since e want to give a smaller importance to sequences
that contain many similar copies in the alignment, we decide to put wk = 1

sk
where

sk are the squences that are close to the k-th one. But what does it mean that two
sequences are similar? To answer quantitatively, we precisely define the Hamming
distance between two sequences a and b:

Dh(a, b) =
Ø

i

(1− δai,bi
) = N −

Ø
i

δai,bi
(A.5)

and we say that sk is the number of sequences b for which Dh(a, b) ≥ 0.8 ∗ N .
This means that we consider two proteins as "close" if they share at least 80% of
their amino-acids.
In addition, we must deal with another problem that we addressed in the previous
section. Since some position in the chain are highly amino-dependent, fi(a) will
be near zero for the majority of amino-acids a. We can notice that almost null
frequencies might result in enormously negative local fields. To avoid this result,
which is highly non-physical, a pseudo-count is introduced [3]. This consists in
adding some constants to empirical one and double point frequencies:

fi(a)← (1− α)fi(a) + α

q

fij(a, b)← (1− α)fij(a, b) + α

q
2 .

(A.6)

This procedure is equivalent to adding to the MSA α/(1 − α) sequences with
residues sampled uniformly. Intuitively, the parameter α should go to zero as the
size of the alignment grows to infinity.
Another form of regularization is the introduction of L1 or L2 penalties [3]. This is
a common practice in the context of machine learning; the former term forces small
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fields and couplings to zero, whereas the latter penalizes large absolute values for
these quantities. The net effect is that much sparser networks have to be inferred
with a huge gain in speed.

A.4 Training dataset
We take the parameters from the work by Bisardi et al.[25], which were learned on
two protein families, PF13354 (Beta-lactamase2) and PF00583 (Acetyltransf1). To
generate the MSAs the authors used the hmmsearch command from the HMMer
software suite to search the UniProt database. The resulting sequences where then
filtered to remove insertions, proteins with more than 10% gaps, and those that were
duplicates or closer than 80% to wildtype TEM-1, PSE-1 to avoid the introduction
of biases during the bmDCA learning process. Ultimately, the resulting MSAs
contained a total of 18,333 homologous and non-identical aligned sequences of
length 202 for PF13354 and 43,576 for PF00583. The parameter inference was then
carried on by using a Potts model with bmDCA [29], that exploits the most precise
DCA models. Our analysis will only limit to the use of the parameters related to
PF13354 family.
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Appendix B

Note on MCMC sampling

B.1 Equilibrium distribution
Consider an amino-acid sequence A = (a1, · · · , aL), with ai ∈ {1, · · · , q = 21}
including gaps, its energy H(A) and a Boltzmann model

P (A) = e−βH(A)

Z
, Z =

Ø
A

e−βH(A) . (B.1)

Now consider a nucleotide sequence B = (b1, · · · , b3L) with bi ∈ {1,2,3,4}, such
that

• each codon codes for an amino acid, e.g. (b1, b2, b3) → a1, etc., with the
exception of the stop codons, which have then to be excluded (see below);

• we call A(B) the amino acid sequence corresponding to B;

• we note that A(B) has no gaps because no codon codes for a gap; if we want to
code for gaps we could add a 5th symbol bi = 5 to the nucleotide alphabet and
assume for example than any codon containing a 5 codes for a gap; however,
we will exclude gaps (see below).

We can now associate the energy H[A(B)] to each sequence, and we call B(A) =
|{B : A(B) = A}| the number of sequences B that correspond to the same A.
Because each codon independently codes for an amino acid, we have

B(A) =
LÙ

i=1
B(ai) , (B.2)

where B(ai) is the number of codons that code for ai. We assign to a nucleotide
sequence the probability

P (B) = 1
B(A(B))

e−βH[A(B)]

Z
= e−βH(B)

Z
, (B.3)
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Note on MCMC sampling

having introduced a modified Hamiltonian

H(B) = H[A(B)] + T logB(A(B)) = H[A(B)] + T
LØ

i=1
logB[ai(B)] . (B.4)

In this way, the probability of a sequence A and the partition function are the
same as that of the original model:

Z =
Ø
B

e−βH(B) =
Ø
A

e−βH(A) Ø
B:A(B)=A

1
B(A(B)) =

Ø
A

e−βH(A) . (B.5)

So, we have a reweighting of nucleotide sequences, with lower weight/higher
energy being assigned to sequences that code for proteins that have more possible
representations in the genetic code. This takes into account the fact that different
codons can code the same aminoacids and favors with a higher probability/lower
energy the sequences that have a low degeneracy, i.e. that can be coded by just
a few combinations of nucleotides. Instead, amino-acids that have a high genetic
redundancy are more rarely sampled. In this way, probability is correctly distributed
among all possible codons. One assumption is that we do not have codon biases:
the energy is defined only on amino-acid, it is blind to synonymous codons that
are translated into the same amino-acid.

B.2 Metropolis sampling
Now, we want to set up a Metropolis sampling on the codon space. We introduce
symmetric transition probabilities for a single codon Ω(b→ b′) = Ω(b′ → b) withq4

b′=1 Ω(b → b′) = 1. We call B the sequence with b and B′ the sequence with
b→ b′. The Metropolis acceptance rate is

p(b→ b′) = min
1
1, e−β[H(B′)−H(B)]

2
= min

A
1,
B(A(B))
B(A(B′))e−β[H[A(B′)]−H[A(B)]]

B
.

(B.6)
The Metropolis algorithm proceed as follows:

• Choose a codon b = (b1, b2, b3) at random.

• Propose a change to a new codon b′ reachable from b through just one aminoacid
substitution with probability Ω(b→ b′).

• Accept the change with probability p(b→ b′).

This process satisfies detailed balance with respect to p(B) because

p(B)Ω(bi → b′
i)p(bi → b′

i) = p(B′)Ω(b′
i → bi)p(b′

i → bi) . (B.7)
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Furthermore, and most importantly, we can restrict the space of possible moves
by setting some of the Ω(bi → b′

i) to zero. The only crucial requirement is that
Ω(b → b′) is symmetric. In our case we chose the following proposal matrix to
model the insertion/deletion process:

Ω(b→ b′) =


0, if b, b′ = G
1
64 , if b = G, b′ = Ciorb = Ci, b′ = G
63
64δij, if b = Ci, b′ = Cj

where G is a gap and Ci is one among the possible 64-codons observed in nature.
If some moves are forbidden, the resulting MC chain is not ergodic, and it will
remain confined in the space of allowed sequences, which we call B. Still the
probability of a sequence in equilibrium is

P (B) = e−βH(B)

Z ′ , (B.8)

with a modified partition function

Z ′ =
Ø

B∈B

e−βH(B) . (B.9)

Let us assume that the forbidden states are chosen carefully in such a way that
for each allowed amino acid sequence A ∈ A we have the same number B(A) of
coding nucleotide sequences. Then we still have

Z ′ =
Ø

B∈B

e−βH(B) =
Ø

A∈A

e−βH(A) Ø
B∈B:A(B)=A

1
B(A(B)) =

Ø
A∈A

e−βH(A) . (B.10)

B.3 Gibbs Sampling
In addition, we can also set up a Gibbs sampling on the nucleotide space.
We define the probability of a single nucleotide mutation, conditional to all other
nucleotides as P (bik

|B−ik
), where

• bik
is the nucleotide in codon i taking position k ∈ {1,2,3}

• B−ik
stands for the sequence with the removal of that specific nucleotide

• b = {A, C, G, T} is the single nucleotide space

This probability can be expressed as:

P (bik
|B−ik

) = P (B)
P (B−ik

) (B.11)
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where P (B) is the usual as in Eq. (B.3) and P (B−ik
) = q

bik
∈b P (B). If we

compute it explicitly we obtain:

P (bik
|B−ik

) =
e−βH[A(B)]

B(A(B))q
bik

∈b
e−βH[A(B)]

B(A(B))

(B.12)

and we see that the advantage of this procedure is that we don’t need anymore the
partition function.
The Gibbs algorithm works iteratively in the following way:

• Choose a nucleotide ik at random among the non-gapped positions

• Compute the probability of all possible mutations in that position P (b′
ik
|B−ik

)

• Sample the new nucleotide b′
i according to the probability density P (b′

ik
|B−ik

)

If we assume our hamiltonian to take the form of a Potts hamiltonian, that is
to say:

H = −
Ø

i

hi(ai)−
Ø
i<j

Jij(ai, aj) (B.13)

with ai the aminoacid coded by the codon i containing bik
, then P (bik

|B−ik
) reads

as follows:

P (bik
|B−ik

) = eβhi(ai)+β
q

j
Jij(ai,aj)(B(ai))−1q

blk
∈b eβhl(al)+β

q
j

Jlj(al,aj)(B(al))−1
(B.14)

with the caveat that the nucleotide dependence is hidden in the aminoacid term
al = al(bl1 , bl2 , bl3). We notice that such probability density is much faster to obtain,
since we reduced the initial intensive computation to just a few terms to evaluate.
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Acronyms

AI
artificial intelligence

DCA
Direct Coupling Analysis

MEP
Maximum Entropy Principle

bmDCA
Boltzmann Machine Direct Coupling Analysis

plmDCA
Pseudo-likelihood Maximization Direct Coupling Analysis
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