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Summary

Spacecraft Simulators allow to emulate the dynamics and/or kinematics of satellites
on the ground, and play a key role in ground testing. In particular, 3-degree-of-
freedom (3-DOF) Spacecraft Kino-Dynamics Simulators with planar air bearings
are used for research and testing in dynamic modeling and guidance, navigation and
control (GNC), performance and steering laws of actuators, and contact mechanics.
This master’s thesis has two main goals. The first is to realize a "miniature" orbital
robotics test-bed, in which a newly designed floating spacecraft simulators (FSS)
can be tested; the second is to design and test a small floating spacecraft simulator
and test a GNC algorithm, which allows the vehicle to perform basic attitude and
position maneuvers.
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Chapter 1

Introduction

This thesis work continues the work on the building of an FSS vehicle. In particular,
a twin of MyDas [1] is built, and a GNC algorithm is tested on it, first at the
Naval Postgraduate School (Monterey), and then in a new test-bed in Politecnico
di Torino. In this chapter a brief overview of the objective and the structure of
this work is showed.

1.1 Objectives
The main objective of the first part of the thesis is to create a Spacecraft Dynamic
Simulator [2], in the footsteps of the one at the Naval Postgraduate School (NPS)
in Monterey. This is a simulator with planar air-bearings technology, with 3-DOF.
Then, the study, research and acquisition of all the necessary laboratory components
are presented: granite table, components of the FSS vehicle, and general laboratory
tools. The guidelines in the selection of the various components of the FSS vehicle
were mainly to search for low-cost off-the-shelf components. On the other hand,
the market investigation of the granite table focused on tables of different sizes and
weights. In addition, the necessary flatness requirements were met.

Writing, validating and testing a GNC algorithm is the second main objective
of this thesis work. This part took place initially at the NPS in Monterey. First,
the integration of the on-board computer with Matlab/Simulink software was
programmed. So, codes for importing position and attitude data from the vehicle
sensors were written. Finally, a PD control algorithm was written and tested in
order to complete attitude and position maneuvers.

1.2 Structure
In this paperwork, 7 chapters will be presented.

1



Introduction

In the Chapter 2, a brief overview of all the types of Spacecraft Simulator will
be exposed. In addition, the market investigation for the granite table will be
shown, as well as the final choice with all the requirements. Chapter 3 wants to
be a brief summary of the previous work for the FSS vehicle. In fact, a twin of
MyDas is built, and only a few change were made. However, the bill of materials
will be presented. In the Chapter 4, the equations of motion for the FSS vehicle
will be written, since they are the basis for generating a digital twin of the vehicle.
Through it, all maneuvers can be simulate, imposing fires duration and thrusters
direction. Matlab/Simulink integration with the on-board computer, sensor data
import and development of the GNC algorithm involve Chapter 5. Chapter 6
discusses the set up for testing the algorithm. The control algorithm parameters,
the mass and inertia features of the vehicle will be showed, as well as the results of
the experiments. Finally, Chapter 7 speaks about the achievement of the goals and
gives some recommendations for the future works.

2



Chapter 2

Spacecraft Simulators

2.1 Introduction
Spacecraft simulators arise from the need to simulate spacecraft proximity maneu-
vers. Wilde et al. in [2] define proximity maneuver as "operation of one orbiting
spacecraft moving in close proximity to another orbiting object." Generally, opera-
tions within 100 m distance between one vehicle and another can be considered
proximity maneuvers. Thus, the requirements of a spacecraft simulator generated
from the particular environment in which such maneuvers take place.

First, proximity maneuvers take place in an accelerated reference system, since
chasers and targets orbit a central mass. So these are subjected to accelerations
and trajectories relative to the central body as well. As example, figure 2.1, shows
the reference frames for a target and a chaser vehicle orbiting the earth.

Figure 2.1: Reference frames for chaser and target orbiting the earth

In addition, the environment in which proximity maneuvers occur is quasi-
frictionless, and spacecraft can move in all 6 degrees of freedom. External and
internal forces also act on them.

3



Spacecraft Simulators

Finally, conditions of strong contrast between light and shadow during the
maneuver must also be considered [3].

2.2 Types and requirements
In order to entirely or partially replicate the conditions listed above, different types
of Spacecraft Simulator were created. The table in figure 2.2 summarizes all types
of spacecraft simulator system. The environment, simulator type, technologies,
and DOFs determine characteristics of the simulator in order to faithfully replicate
various parts of the proximity maneuver.

Figure 2.2: Summary of spacecraft simulator systems [2]

This thesis will not describe all simulator technologies, but it is important to
emphasize the difference between a kinematic and a dynamic simulator.

The former is a system in which the simulator vehicle is not subject to the same
forces and torques that it will experience in the real mission. In fact, motion is
often given by electric motors that replace the spacecraft’s actual thrusters.

The latter, on the other hand, uses forces and torques delivered by real actuators,
which are the same as in the real mission. This results in the need to simulate the

4
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quasi-frictionless space environment.
All these features and peculiarities generate requirements to be followed in the

design of a new spacecraft simulator. The table 2.1, briefly summarizes these
requirements, which will be analyzed in detail in the next section.

Primary requirements Secondary requirements

Mechanics of the simulation Accessibility
Degrees of Freedom Availability

Number of simulated object Endurance
Robustness

Table 2.1: Primary and secondary requirements of spacecraft simulators

2.3 POSEIDYN testbed
As mentioned in Chapter 1, the goal of this work is to create a new, smaller
spacecraft simulator using the same environment, technology and degrees of freedom
as POSEIDYN, which is present at NPS, Monterey. In order to understand the
features of the new testbed, the characteristics of POSEIDYN are analyzed below.

Figure 2.3: POSEIDYIN test-bed at NPS in Monterey [2]

POSEIDYN is a spacecraft dynamics simulator that employs air-bearings tech-
nology to simulate 3-DOF proximity maneuvers [4]. Figure 2.3 shows the main

5
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components of the test-bed.
Actually, all the tests performed in Monterey has been carried out in another

test-bed, smaller than POSEIDYN but with the same characterics. In this work,
when POSEIDYN is mentioned, it is referred to the smaller testbed, shown in
figure 2.4.

Figure 2.4: POSEIDYIN smaller test-bed at NPS in Monterey

This technology uses tables or flat-floors on which special vehicles move. They
are called floating spacecraft simulator (FSS) vehicle. There is a very thin film of
compressed air between such vehicles and the table, so that they can move on it
in a quasi-frictionless environment. POSEIDYN, is an air-bearing simulator with
passive floor system: air is expelled from tanks on the vehicle itself. However, there
are active floor systems, in which air is emitted from small holes in the table. In
order to ensure some stability of the vehicle on the floor, requirements must be met
in terms of floor flatness and leveling accuracy, as well as the choice of air bearings
suitable for the weight of the vehicles.

Vehicles tracking is another important factor in simulator design. A commercial-
of-the-shelf tracking system is used in the POSEIDYN to obtain data on vehicle
position and attitude. In addition, onboard sensors, such as accelerometers and
gyroscopes, are also usually fitted. The integration and use of these sensors will be
discussed in later chapters.

Regarding secondary requirements, air-bearings dynamics simulator systems have
characteristics that make them perform very well in accesibility and availability.
While, kinematic simulator have better characteristics for robustness and endurance.

Accessibility refers to how easily new vehicles can be added to the testbed or
existing ones can be modified. Availability, on the other hand, pertains to the

6
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flexibility of the simulation system in meeting new test requirements.
Robustness and endurance are more vehicle-related requirements that indicate

the risk of collision and the duration of the simulation before a reload, respectively.
The table 2.2 summarizes the features and requirements of POSEIDYIN [4], from

which the research to implement the new testbed at Politecnico di Torino started.
The market survey for purchasing the necessary components will be discussed in
the next section.

Requirements

Simulator type Dynamic
Mechanics of the simulations Decoupling Dynamic from the enviroinment

Deegres of Freedom 2 transl. + 1 rot. = 3
Number of simulated object up to 5-6

Accessibility High
Availability High
Robustness < Kinematic
Endurance hours, depending on the vehicle

Features

Techonlogy Air-berings
Testbed Material Granite

Testbed dimensions [m] 2,4 x 1,8
Table weigth [tons] 15
Air-Bearings gas Compressed Air
Tracking System HTC VIVE system

Table 2.2: POSEIDYN requirements and features

2.4 Granite floor
The main component of this type of simulator is the passive floor (or table). In fact,
this usually represents the largest cost, including transportation and installation.
The main characteristic of a floor is flatness. Flatness defines the permissible
deviation from a perfectly flat surface. It is usually expressed in units of length,
often in micrometers [µm].

For this applications, the requirement for flatness is very stringent: it ranges
from 3 µm to 46 µm. The most commonly used materials for making floors are

7



Spacecraft Simulators

Figure 2.5: Flatness Tolerance

glass, epoxy resin and granite. The first two allow for very large floor dimensions,
but they have smaller flatness tolerances than granite. Since a very large floor size
was not chosen, research immediately focused on granite floors.

In Europe, the DIN 876 standard says that the error of flatness (or tolerance)
is defined as the deviation from an ideal plane equidistant from two parallel
planes touching the highest and the lowest point of the surface of the plane under
examination, as you can see in figure 2.5. This standard defines also five grades of
flatness, which allow calculation of the required flatness tolerance. In table 2.3, the
grades are shown.

Grade Tolerance [µm]

00 2(1 + L
1000)

0 4(1 + L
1000)

1 10(1 + L
1000)

2 20(1 + L
1000)

3 40(1 + L
1000)

L = longest side of the floor in [mm]

Table 2.3: DIN 876 grades of flatness
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In order to achieve a very high level of flatness, research were focused on granite
table with flatness < 12µm, which is the value of POSEIDYN testbed. In addition,
there is another important requirements: the levelling precision. It can be achieved
by the adjusting the levelling feet, supplied with the floor.

The search for the new granite floor started with relatively large floors in order
to make an initial estimate of the cost and weight of the floor. Then smaller floors
were evaluated, and the desired floor was then chosen.

Sizes range from very small tables, 40 × 40cm, to larger, 2 × 2m. A key factor
in the choice is the weight. Granite is a material with very high specific weight,
which is why very large floors mean considerable weights. In addition, high weights
require very high transportation and installation costs, as well as more support
feet. As a result, adjustment becomes much more complicated and unstable. In
addition, very big tables are distant from the goal of this work. In fact, the new
testbed is supposed to be a miniature reproduction of the POSEIDYN, where
initial operation and testing of FSS vehicle components can be carried out. Finally,
the delivery time of the piece was also considered, since long lead times would be
incompatible with the duration of the thesis work.

So the selection process started with the analysis of the requirements and their
constraints, and the final choice fell on granite table No. 4. In table 2.4, all the
requirements and constraints are summarized.

Floor # 4, fully meets all the requirements and related constraints chosen. The
choice of this floor resulted in:

• lowest purchase, transportation and installation costs among all alternatives;

• the best flatness tolerance. This means better test quality and better air-
bearings operation;

• very low weight and minimal number of adjustment feet: the floor is "trans-
portable" and very versatile. In addition, the presence of only 3 leveling feet
allows precise and durable leveling;

• short lead times.
In figure 2.6 - 2.7, the new granite floor and the leveling feet are shown.
The test report according to the reference standard ISO8512-2/00 was carried

out on the table using the "Wyler" measuring instrument. The global flatness is 1.8
µ.

The levelling foot is a tilting plate type with diameter 30 mm and M16x1.5
adjusting screw. In order to ensure correct and durable 3-point leveling, the feet are
positioned as in the figure 2.8, according to guidelines given by the manufacturer.

Finally, to ensure safe use of the floating vehicles, a barrier was built around the
table. A piece was designed to insert 20-cm wood rods with a diameter of 1 cm.
The rods, placed at the vertices of the table, hold the wires that act as guard rails.

9
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Requirements and constrains

Table Weight Flatness n. feet Cost Lead time
# < 2500 kg < 12 µm < 5 < 5000 € < 6 weeks

1 •

2 •

3 • • • •

4 • • • • •

5 • • •

6 • • •

7 • • • •

8 • • • •

• = requirement met

Table 2.4: Requirements and constraints in the choice of granite floor

Figure 2.9 shows the new granite floor with the FSS vehicle, which will be
discussed in detail in the next chapter.
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Figure 2.6: New granite floor

Figure 2.7: Leveling foot
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Figure 2.8: Placement of levelling feet

Figure 2.9: New granite floor with FSS vehicle
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Chapter 3

Floating Spacecraft
Simulator

In this chapter, the main elements and building techniques of floating spacecraft
simulators (FSS) will be presented. The goal of the thesis work is to build a twin of
the MyDas vehicle, built by Kulke in [1]. MyDas was built at NPS, Monterey, and
represents the fifth generation of FSS vehicles of the lab. Since a description of the
individual elements of MyDas is already extensively discussed in [1], this chapter
aims to briefly expose the general operation of the simulator, and also describes
minor modifications made to MyDas2 in order to make it more performing. Bills
of materials to build the vehicle are given in the appendix.

3.1 General requirements
Thanks to the air-bearings located on the Floating Spacecraft Simulators, these
vehicles can move on the floor in a quasi-frictionless environment. Furthermore,
Zapulla et al [4], claim that hardware phenomena like "delays, computational
constraints, actuator response uncertainty, and sensor noise" can be simulate with
this kind of vehicle and test-bed. Thus, FSSs faithfully reproduce the dynamics of
the spacecraft or space object that will maneuver in space.

It is evident from this description that FSSs are complex simulators in which
various subsystems are present. The list below mentions the basic subsystems
required for each vehicle, but more complex simulators with secondary functions
can be developed and other secondary subsystems can be built:

• Pneumatic System consists of hoses, pressure regulators, connectors, and
valves that, fed from the air tank, supply compressed air at the right pressure
to the air bearings and thrusters (if present). The size of the air tank may differ

13
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depending on the size of the vehicle chosen and determines the endurance of
the simulator.

• Electronic System, on the other hand, includes the hardware and software
part of the vehicle. On-board computers, cables, servo motors, actuators and
sensors are included within this subsystem. Depending on the maneuver to be
performed, the complexity of the algorithm and other factors, very different
configurations can be created. For this reason, these simulators possess high
availability.

• Structure needs also to be mentioned, since it is how components stay
connected, and it affects the shape and weight of the vehicles.

As an example, some characteristics of the 4 generations of FSS present at the
NPS are shown (table 3.1).

It is possible to see how these vehicles can come in various configurations.
Different materials can be used for the structure. In recent years the trend is

toward plastic materials, made by additive manufacturing. This saves weight, but
also gives the testbed greater robustness, since any damage can be easily repaired
by printing the damaged part again.

In addition, various actuators can be used: in the four generations at NPS, gas
thrusters have always been present, but this does not preclude configurations with
only reaction wheels could exist. In the next section, MyDas includes only the
presence of vectorable gas thrusters.

As mentioned earlier, sensors play an important role in the testbed, since they
are the interface between the satellite and the external environment. These can
be optical sensors, such as cameras, virtual reality devices that enable tracking,
but also that onboard IMU (inertial measurement unit). Choosing one sensor over
another allows data of a different nature to be collected, which will then be used
by the onboard computer to feed the control algorithms.

Finally, additional subsystems can be included, such as robotic arms or ren-
dezvous & docking (RV&D) devices.

3.2 MyDas2 Vehicle
The goal of this section is to expose all subsystems of the new FSS, built at the
Politecnico di Torino. MyDas2 is a twin of MyDas, to which minor modifications
have been made to make it more efficient. The table 3.2 summarizes the most
important parameters of this vehicle, which will be explained in detail in the
following subsections.
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Gen. #
I II III IV

Structure Aluminium Aluminium PLA PLA

Size [m] 0.4 × 0.4 0.3 × 0.3 unk 0.27 × 0.27
×0.85 ×0.69 ×0.52

Weight 63 26 unk 9.8
[kg]

Pneumatic Air Air Air Air

Actuator Thruster and Thruster and Thruster and Thruster and
RW CMG RW RW

Sensor IMU IMU IMU IMU
Vision Sensor Position Sensor iGPS VICON

Other Capture system Vectorable Robotic
for RV&D thrusters Arm

Reference [5] [6] [7] [8]

Table 3.1: Characteristics of FSS at NPS

3.2.1 Structure
The structure is used to contain the air tank, which is the largest and heaviest
component. It must also ensure the allocation of all other components, and must
provide for connection with the air bearing. To do this, a primary structure is
designed, to which "multipurpose rings" can be connected.

The tank container and multipurpose rings were 3D printed, using polylactic
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Subsystem Characteristic Parameter
Structure Length and width 12 × 12 cm

Height 31.5 cm
Mass (overall) 1.7 kg
Jz (overall) 2.761 × 10−3 kgm2

Propulsion Propellant Air
Equiv. storage cap. 0.7 × 10−3 m3 @ 0.41 MPa
Operating Pressure 0.41 MPa
Thrust (x2) 0.180 N

Flotation Propellant Air
Equiv. storage cap. 0.7 × 10−3 m3 @ 0.41 MPa
Operating Pressure 0.41 MPa
Linear Air Bearing 65 mm diameter
Continuous Operation ∼ 15 min

Electrical & Electronics Battery type Lithium-Polymer (LiPo)
Storage capacity 8 Ah @ 5V
Continuous Operation ∼ 12h
Computer Raspberry Pi 4

Sensor IMU MPU6050
Position sensor HTC VIVE system

Table 3.2: Key parameters of MyDas2

acid (PLA). Such material turns out to be very light and with good capacity in
terms of strength. In addition, it is the most widely used material in 3D printing.

The tank container is a hollow cylinder that houses the tank and allows, thanks
to holes in the bottom, connection with the air bearing. On the outer surface,
the tank container has 72 vertical grooves, so it can accommodate multipurpose
rings. These can be oriented as desired with an angle increment of 5° . This type
of structure gives the FSS a very high availability, since rings can be designed as
needed while maintaining the same central structure.

The current configuration of the MyDas2 involves the use of 12 rings. These
can become up to 15 by increasing the height of the tank container. Below is a list
of the rings used:

• ring for servos (A): is a single ring that allows the two servos to be held.
These are placed 180° apart from each other. It also has two holes to screw
the servos to the ring.

• rings for dovetail (B): with these rings it is possible to dovetail a piece. In
the Mydas2 there are two versions of these: the first has only one seat, while
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the second has two seats placed at 180°. In this vehicle they are used to hold
the battery, on-board computer, and two other electronic components that
will be analyzed later.

• rings for cables (C): allow the placement and management of electrical
cables.

• ring for adjustment (D): this ring does not hold any parts. Instead, it is
useful to align servos. It consists of two fins that allow the two directions to
be identified at 0° and 90°.

• ring for stabilization (E): this ring has two holes to insert the head of the
gas thrusters. Without this ring, the thrusters would only be held by the
servos and would not be stabilized.

• ring for VIVE tracker (F): it holds the VIVE tracker.

Figure 3.1 shows a CAD of the tank container (a) and the multipurpose rings
(b).

(a) (b)

Figure 3.1: Tank container and multipurpose rings [1]
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3.2.2 Pneumatic System
The pneumatic system is a key component for FSSs. In fact, it allows the vehicles
to float on the granite floor and, if present, it feeds the gas thrusters. So part of
the pneumatic system are the air tank, air bearings, and solenoid valves that act
as gas thrusters. In addition, however, other connecting and pressure regulating
devices are included in this subsystem.

Figure 3.2 gives an overview of the operation and components of the pneumatic
system for MyDas2.

Figure 3.2: Scheme of MyDas2 pneumatic system [1]

The air-flow starts with the air tank. In order to miniaturize the vehicle, one
of the smallest refillable air tanks on the market was chosen. It is an HPA (high
pressure air) 13/3000 tank. It operates at 200 bar (3000 psi) and it has a volume
of 0.21 L (13 ci). It also has a built-in regulator that delivers air at a pressure of
60 bar (800 psi).

Since the solenoid valves and air bearings work at operating pressure of 4.1
bar (60 bar), another pressure regulator is needed. The solution is a 90° pressure
regulator by Palmers Pursuit Shop. This regulator produces an adjustable output
pressure from 0 bar to 8.6 bar and can take an input pressure of up to 310 bar.

Now, the air is at the right pressure, but it needs to be delivered to the two
solenoid valves and the air bearing. A system of tubes, connector, manual valve
and intersection pipes allows air to be delivered out of the second pressure regulator
to these components. Figure 3.3 helps to understand all the connections.

The second pressure regulator has two outputs. The first is occupied by a
pressure gauge, which allows adjustment of outlet pressure from the regulator to
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A: Air-tank B: Built-in pressure regulator
C: 90° pressure regulator D: T-intersection pipe
E: Manual valve F: 1/8 NPT to PTC
G: PTC to air-bearings & thrusters H: PTC to thruster 1 & thruster 2
I: Tube OD 6mm - ID 4mm

Figure 3.3: Real pneumatic system of MyDas2

4.1 bar. On the other side, a T-intersection pipe fitting with 1/8 NPT thread
allows the flow to be directed downward. Connected to this is a manual valve,
which allows air flow to be shut off or enabled. From the manual valve , a 1/8 NPT
push-to-connect adapter allows the insertion of an OD 6mm - ID 4mm polyurethane
hose. From this hose, with a series of push-to-connect (PTC) T-connectors, air
reaches the thrusters for propulsion and the air bearing for floating.
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3.2.3 Propulsion and flotation

In MyDas2, the actuators that provide propulsion for the vehicle are two vectorable
gas thrusters. A gas thruster is a type of rocket engine which uses the expansion of
a pressurized gas to generate thrust. V ectorable means that it is possible to direct
the thrust, via dedicated servo motors.

Two solenoid valves act as thrusters in this vehicle. A solenoid valve is an
electromechanical device used to control the flow of fluids or gases. It consists
of a coil (solenoid) of wire and a movable ferromagnetic plunger, known as the
armature, that is connected to a valve mechanism. When an electric current is
passed through the coil, it creates a magnetic field that attracts the armature,
causing it to move and open or close the valve. The valves used in this design are
normally closed (NC). It means that only when the current passes, the valves open.
In figure 3.4, the solenoid valve is shown. It is a cylindrical body, with an inlet
(right) and an outlet port (left). A nozzle is connected to outlet port, to increase
the efficiency of the thruster.

Figure 3.4: Solenoid Valve Figure 3.5: Air-bearing

Air-bearing allows the vehicle to move in a quasi-frictionless environment. In
MyDas2, a flat round air bearing with a diameter of 65 mm is used (figure 3.5).
The flight height for an ideal load of 666 N is 5 µm. Since the weight is much less
than ideal, from the tables provided by the company, a flight height of ∼ 25 µm is
deduced. The current air-bearing can be loaded with a pressure range 0.414 MPa -
0.552 MPa.
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3.2.4 Electronic System
Like the pneumatic system, the electronic system plays a key role in the design and
building of an FSS. In fact, it aims to control propulsion, via servos and solenoid
valves. Also, in the development of GNC algorithms, the on-board computer
gathers data from the sensors, processes it, and uses it to feed the control algorithm.
So the main elements of the electronic system are the onboard computer, batteries,
solenoid valves, and servos. Then there are other secondary components, such as
connecting cables, voltage converters, etc... In this subsection all these components
will be presented.

On-board computer It is used to control propulsion and run GNC algorithms.
In MyDas2, Raspberry Pi 4 is used. Raspberry Pi computers are based on ARM
processors and feature a set of hardware components including a CPU, RAM,
network connectivity, USB ports, HDMI ports, and memory card slots. They are
available in various versions, each with slightly different features and technical
specifications. Raspberry Pi 4 model B (figure 3.6) is the newest version, and it
has better features in terms of processor, Bluetooth connectivity, and WiFi.

Figure 3.6: Raspberry Pi Model 4b

In addition, Matlab/Simulink offers the possibility of downloading Add-Ons for
Raspberry use. Programming control algorithms thus turns out to be easier and
more intuitive for those who already have some knowledge of these software.

Raspberry boards have a grid of physical pins, called GPIO (General Purpose
Input-Output). These pins can be used to read digital inputs from sensors or
switches, or to output digital signals to control actuators or devices. There also
pins to provide a certain voltage to devices. The diagram of all connections will be
presented at the end of this section.
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Power Supply The solution chosen for the power supply of MyDas2 was the
8000 mAh power bank from SBS. It has two 5V outputs via USB type A. One
output provides2.1A, the other 1A. The first is used to power the raspberry, while
the other is used for the voltage converter. To charge the battery, a micro-USB
port is available.

The choice of this type of battery turns out to be the best in terms of weight,
ease of charging, duration of operation, and cost.

Solenoid Valves and Servos Solenoid valves are electronic devices that provide
propulsion to the vehicle. Valves from the company GEMS were chosen for the
MyDas2. These valves consume 2 W at 12 V. Since the raspberry provides only
3.3 V or 5V, a voltage converter is used to increase the voltage from 5 to 12 V, and
a relay to distribute that voltage to the two valves.

Through servo motors, the electrovalves can rotate with a range of 180°. Micro
Servo Motors 9G from RUIZHI were used for this vehicle. The voltage input is
between 4.8 V and 6 V, so they can be powered directly from the raspberry. In
addition, this type of servos has a built-in potentiometer. This feature allows the
motor to know its position along the 180° range. The position is controlled via
Pulse Width Modulation (PWM), which will be explained in the Chapter 5. In
Figure 3.7, the servos are equipped with an arm (a) that via a gear wheel connects
to the shaft (b). This arm is then connected via screws to the solenoid valve. This
connection mechanism was designed by Joseph Kulke in [1].

(a) (b) [1]

Figure 3.7: Servo motors and connection to solenoid valves
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Relay and Voltage Converter The solenoid valves need 12 V to be powered
properly. This voltage is not provided by the Raspberry, nor by the power bank.
So, a voltage converter is necessary. This component receives 5 V voltage from the
power bank, via a customized USB type-B cable, and supplies 12 V. A converter
was chosen for the MyDas2 that has a built-in potentiometer and LCD screen.
The potentiometer allows, if necessary, to set an output voltage ranging from 3.5 V
to 35 V, as long as it is higher than the input voltage. The LCD screen allows the
output voltage to be displayed at the input, and therefore the use of a multimeter
is not necessary. This allows other types of solenoid valves to be used, raising the
availability of the vehicle. Figure 3.8 shows the device chosen for MyDas2.

Figure 3.8: Voltage Converter Figure 3.9: Relay

Since the valves cannot be controlled directly from the Raspberry, it is necessary
to insert a relay. In MyDas2, a two-channel 5V relay module by Pololu is used.
The pins of the relay are shown in figure 3.9. On the left side are the low voltage
pins, then the ones connected to the raspberry. On the right are the high voltage
outputs for the two solenoid valves.

3.2.5 Sensors
Sensors are the devices with which the vehicle communicates with the external
environment, receiving data in terms of position, speed or acceleration. In this
thesis work, collecting data from sensors is crucial, since one of the goals is to test
a GNC algorithm. The fifth generation FSS of the NPS, of which MyDas2 is a
part, uses two types of sensors, which will be presented below.

IMU First sensor is an Inertial Measurement Unit (IMU). This device combines
accelerometer and gyroscope. Accelerometer measures linear acceleration in three
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axes (X, Y, and Z), allowing the determination of changes in velocity or the presence
of external forces. Gyroscope, on the other hand, measure angular rate or rotational
motion around the same axes. By integrating the data from accelerometers and
gyroscopes over time, it is possible to estimate the object’s position, velocity, and
attitude. For MyDas2 an MPU-6050 from Paradisetronic was chosen (figure 3.10).

Figure 3.10: Inertial Measurement Unit (IMU) on MyDas2

This device has a 3-axis accelerometer and a 3-axis gyroscope. The input voltage
can be 3 - 5 V, so the board can be directly connected to raspberry trough specific
jumper cable. It uses the I2C protocol to communicate with the raspberry. The
master-slave architecture is used by the I2C interface, where one device acts as
the master and initiates the communication. The other devices act as slaves and
respond to the master’s commands or requests. The bus and the timing and
sequence of the data transfer are controlled by the master device.

This will be discussed in more detail, along with the integration with the Simulink
model and the code for importing data, in the chapter 5.

HTC VIVE System The second sensor is a tracking sensor. It allows tracking
the position (x,y,z), orientation (θ, ψ, ϕ) and respective velocities of the vehicle.
This is a VIVE tracker by HTC. Since the system is 3-DOF, only x, y, ϕ (rotation
around z-axis) will be considered.

The size and weight of the tracker is very reduced. It also has an internal
rechargeable battery, so it does not require any physical connection with the
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on-board computer.

Figure 3.11: VIVE tracker and base stations [1]

The tracker works together with two Base Stations. They are two devices
that track the position and speed of the tracker in space. The Base Stations are
continuously powered, but they are not located on the vehicle, so this is not a
problem. Once data is obtained from the base stations, the tracker communicates
via Bluetooth with a computer outside the vehicle. Through the Unity and Steam
VR software, data can be collected in real time and sent to the Raspberry via User
Datagram Protocol (UDP).

UDP communication is a network protocol that allows data to be transferred
across a computer network quickly and inexpensively. In the chapter 5, the mode
of connecting and receiving data will be explored in depth.

In figure 3.11, FSS with VIVE tracker and the two base stations is shown. It is
possible to see also the Headset, since it is necessary to complete the set-up.

In figure 3.12, a schematic of all the electronic components of the FSS, including
the UDP connection with the VIVE tracker, is shown. Figure 3.13 shows the fully
assembled vehicle.
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A: Raspberry Pi 4B B: VIVE tracker
C: IMU - MPU 6050 D: Relay
E: Voltage Converter F: Servo motors
G: Solenoid valves H: Power Supply

Figure 3.12: Schematic view of the electronic components
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Figure 3.13: Fully assembled MyDas2
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Chapter 4

Digital Twin

This chapter involves the creation of a digital twin (DT) of MyDas2. Glaessgen
and Stargel in [9] claim that "a Digital Twin is an integrated multiphysics, multi-
scale, probabilistic simulation of an as-built vehicle or system that uses the best
available physical models, sensor updates, fleet history, etc., to mirror the life of its
corresponding flying twin".

The main objective of a digital twin is to understand, monitor, and optimize
[10] the real-word object or system. By the digital twin, simulations of scenarios
can be performed, performance data can be gathered, and analysis of performance
can be conducted. Furthermore, changes and improvements can be tested without
affecting the physical entity.

A digital twin is created by using data from sensors, IoT (internet of things)
devices, and other connected sources related to the real object or system. This
data powers the creation of a real-time virtual version that can be manipulated
and visualized digitally.

For MyDas2, the goal is to create a DT that can simulate maneuvers before
performing them on the physical vehicle. This is useful for choosing the right
thruster angle, or firing duration, in order to perform smoother and more controlled
maneuvers. In addition, the ability to visualize maneuvers actually performed by
the vehicle, through the processing of data received from the sensors, makes the
test-bed even more available and efficient.

First, the equations of motion of the vehicle will be written, in order to create a
physical model. Then, the rotation matrices will be presented to switch between
the moving reference system, centered on the vehicle, and the fixed reference
system of the granite plane and the VIVE tracker. Then the codes written in
Matlab/Simulink to run the simulation will be discussed. Finally, a graphical model
of the vehicle will be presented to visualize the maneuvers performed or simulated.
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4.1 Equations of motion
The dynamics of the vehicles for the two translational and one rotational degrees of
freedom can be described by the Hill-Clohessy-Wiltshire (HCW) equations. These
equations are commonly used to model the relative translational motion between
two spacecraft in near-circular orbits. The spacecraft involved are typically referred
to as the Target and Chaser spacecraft.

In certain scenarios where the maneuver is short compared to the orbital period
and the spacecraft remain in close proximity, the dynamics can be further simplified
to a double-integrator model. This simplification allows for experimental evaluation
of these methods using a ground-based test bed [11]. Recalling that there are
two translational and one rotational degrees of freedom, it is possible to write the
general equations of the dynamics:

ẍ = fx

m
, ÿ = fy

m
, ϕ̈ = τ

Jz

(4.1)

where x and y represent the two direction on the plane; ϕ is the rotation about the
third direction, perpendicular to the plane; fx, fy, τ are respectively the control
forces along x, y and the control torque; m is the mass of the vehicle and Jz is the
inertia about the vertical axis.

Figure 4.1 (from [1]) helps to understand the specific equations for MyDas2.

Figure 4.1: Reference frames for MyDas vehicles

At the bottom left is the fixed reference system, represented by the granite floor.
It is described by the coordinates x, y, z. On the vehicle there is another reference
system, which rotates with it, denoted by the coordinates ξ, η. The coordinate
ϕ indicates the angle of rotation about the vertical axis of the vehicle. The two
arms on the left and right end with the two trhusters present in MyDas2. These
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can rotate by an angle α1 or α2. F1 and F2 represent the forces delivered by the
thrusters. The parameter "l" is the arm of the forces of the thrusters, which generate
momentum around the z-axis.

With this parameters, it is possible to write the dynamics equations proper of
MyDas2:

ξ̈ = F1cosα1 − F2cosα2

m
(4.2)

η̈ = F1sinα1 + F2sinα2

m
(4.3)

ϕ̈ = −F1lsinα1 + F2lsinα2

Jz

(4.4)

4.2 Direction Cosine Matrix
As mentioned above, there are two reference systems: one fixed coincident with
the sides of the granite plane and one centered on the vehicle. The equations of
motion are written in the vehicle-centered reference system, but the data from the
VIVE tracker, are in the fixed global reference system [5]. The control algorithms
will be written in the fixed reference. So, it will be necessary to write a rotation
matrix that allows switching from one reference system to another.

Figure 4.2: Top view of the two reference frames
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The components of the vector R (figure 4.2) can be written in ξ − η plane by
using: C

ξ
η

D
=

C
cos(ϕ) sin(ϕ)

−sin(ϕ) cos(ϕ)

D C
x
y

D

(4.5)

The third dimension along z-axis is always aligned between the two reference
systems, so the Direction Cosine Matrix is a 2 × 2 for x− y to ξ − η. It is possible,
also, to obtain the vector R in x− y plane by inverting the rotation matrix.

4.3 Matlab implementation
In order to solve the equations of motion, a code was written on Matlab that will
be fully reported in the Appendix. This section sets out the steps and functions
used to integrate these equations.

In Matlab there is a command, called "lsim" which plots the time response of a
dynamic system to the input signal described by a command force and by the time.
The dynamic system must be written in terms of state space equations. Thus, the
first step is to write of the second-order equation as a set of first-order equations.
Below is the example for the first equation in ξ, but the logic can be extended to
the other two equations.

The state variables are written:

x(t) =
C
x1(t)
x2(t)

D
=

C
ξ(t)
ξ̇(t)

D
(4.6)

So it is possible to write the first-order system of state equation:

ẋ(t) =
C
ẋ1(t)
ẋ2(t)

D
=

C
x2(t)
Fξ(t)

m

D
(4.7)

and the output equation:

y(t) = x1(t) (4.8)

Now, writing the matrix representations of the linear system is easy:

ẋ(t) =
C

0 1
0 0

D C
x1(t)
x2(t)

D
+

C
0
1
m

D
Fξ(t) (4.9)
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y(t) =
è

1 0
é C

x1(t)
x2(t)

D
+ [0] · Fξ(t) (4.10)

Now, the matrix A, B, C, D can be define as follow:

A =
C

0 1
0 0

D
B =

C
0
1
m

D
C =

è
1 0

é
D = [0] (4.11)

It possible to define the state and the input variables (4.12) and the matrices
(4.13) for the 3-DOF case:

x(t) =



x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
x6(t)


=



ξ(t)
ξ̇(t)
η(t)
η̇(t)
ϕ(t)
ϕ̇(t)


F =

 Fξ(t)
Fη(t)
Fϕ(t)

 (4.12)

A =



0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0


B =



0 0 0
1
m

0 0
0 0 0
0 1

m
0

0 0 0
0 0 1

Jz



C =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


D =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0



(4.13)

The first-order linear system in matrix form is:

ẋ(t) = [A] · x(t) + [B] · [F ] (4.14)

y(t) = [C] · x(t) + [D] · [F ] (4.15)

The "lsim" command takes as input:

• The dynamic system formed by the matrices A, B, C, D;
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• The matrix F, which represents the input of the system: in the case of MyDas:

F =

 Fξ(t)
Fη(t)
Fϕ(t)

 =

 F1(t)cosα1(t) − F2(t)cosα2(t)
F1(t)sinα1(t) + F2(t)sinα2(t)

−F1(t)lsinα1(t) + F2(t)lsinα2(t)

 (4.16)

• The simulation time "T", intended as a vector expressed in the time units of
the system and consisting of regularly spaced time samples.

• The initial conditions of the state vector "x0".

Once all the matrices have been defined, the simulation can be run. The output
of the simulation is is a vector with 6 columns, corresponding to the 6 state variables,
and number of rows equal to the duration of the simulation.

4.4 Simulink implementation
Simulink, developed by MathWorks, is a graphical programming environment and
simulation tool. It finds widespread application in modeling, simulating, and
analyzing dynamic systems across various domains, such as control systems, signal
processing, communications, and more.

In Simulink it is possible to model using a block diagram approach; to simulate,
in continuous-time or discrete-time using a variety of solvers; to visualize the results;
to generate codes, to convert the models into executable code for various target
platforms.

Figure 4.3: Dynamics equations block in Simulink
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Simulink, closely integrated with Matlab, enables you to combine the power of
Matlab’s numerical computing capabilities with Simulink’s simulation and modeling
environment.

The steps for solving the equations of motion on Simulink are given below.
The block in figure 4.3 has as input the thrust of the thrusters (in terms of

intensity and duration) and the angles α1 and α2. As outputs, there are the state
variables. At this stage of the modeling, Fthr, α1 and α2 are freely assigned, to
verify that the dynamics is written correctly. Later, instead, they will be the output
of the GNC algorithm that will be written.

Within this main block, all operations are performed to integrate the equations
and obtain the desired variables.

Figure 4.4: Operations to solve equation along ξ-axes

Figure 4.4 shows the double integration of the equation of motion along the ξ
direction. Within the main block (figure 4.3) there are two other processes like
this, one for the η direction, and one for the ϕ rotation.

On the left, the parameters Fthr, α1 and α2 are processed to obtain the force
component Fξ (eq. 4.16). So the parameter Fξ is divided by the mass and integrated
twice via the "integrator" block (1

s
). From the first integration the velocity "ξ̇" is

obtained , with the second the position "ξ". Within the "integrator" block it is
possible to set the initial conditions of integration.

At this point, you can run continuous-time simulations with various solvers and
set any simulation time.

Each arrow connecting the blocks, in Simulink, represents a signal. These signals
can be logged during the simulation and displayed after the simulation, via a "data
inspector". Also, comparing signals between two simulation is possible.

As an example, figure 4.5 shows the results of a simulation with the parameters
in table 4.1.

In this simulation, the vehicle starts from a static condition, with ϕ = 0, so the
two reference systems are aligned. Then, α1 = α2 = 90°, so we expect motion along
η according to the representation in figure 4.1. The thrusters will fire for 1 second
and 10 seconds of time will be simulated.
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Description Parameter Value
Mass m 1.7 kg
Leverage l 0.055 m
Inertia vertical axis Jz 2.761 × 10−3 kgm2

Left valve thrust F1 0.110 N
Right valve thrust F2 0.110 N
Angle of orientation F1 α1 90 °
Angle of orientation F2 α2 90 °
Time of fire tf 1 s
Initial Condition State vector x0 zeros6,1

Time of simulation T 10 s
Solver ode4

Table 4.1: Simulation parameters

Figure 4.5: Simulation results
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The simulation is successful, in fact only motion along η and an increase in
velocity along this axis can be seen. The velocity increases for 1 second (firing
time) and then stabilizes at that value. As mentioned before, the two reference
systems coincide, since ϕ = 0. Therefore x = ξ, y = η.

4.5 Graphics animation
As mentioned at the beginning of this chapter, the goal of a Digital Twin is also
to be able to visualize the actual vehicle digitally. Once the results are obtained
from the simulations via Matlab or Simulink, they can be processed in order to
obtain a graphical animation that makes understanding the results more intuitive
and immediate.

The idea of this project is to visualize MyDas2 moving on the granite floor.
The Matlab code used to create this virtual scene can be found in the appendix.
To make the animation, simplify CAD models of the granite floor and MyDas2
are first realized. So these are imported into Matlab. The "stlread" command is
used to create point triangulations and connectivity matrices. So all points are
assigned positions obtained from the dynamics simulation. Using a "for loop", an
animated plot is created that displays the points for each time instant.

The ability to import external CAD files, greatly increases the availability of
this project. In fact, it is possible to create planes of any size and replace them in
the visualization. In figures 4.6 and 4.7, you can see the MyDas2 on the granite
floor at NPS and the new one in Turin.
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Figure 4.6: Visualization of FSS moving granite floor of POSEIDYN

Figure 4.7: Visualization of FSS moving granite floor of Politecnico di Torino
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Chapter 5

GNC algorithm
implementation

A guidance, navigation, and control (GNC) algorithm is a set of procedures and
instructions to control spacecraft behavior. These algorithms are designed to
enable a vehicle to reach a specific destination, avoid obstacles, maintain a desired
trajectory, and respond to various operating conditions. In this project, the
algorithm will be used to perform an attitude maneuver, i.e. reaching a specific
attitude angle ϕ, and a position maneuver, i.e. reaching a position in space x, y.

The guidance algorithm focuses on planning the optimal route and determining
the necessary actions to guide the vehicle from its current position to the desired
destination.

The navigation algorithm is responsible for accurately determining the vehicle’s
position within its surroundings. This is achieved by using sensors such as GPS,
IMU, cameras, lidar, and radar, which collect data on the vehicle’s position and
orientation. The onboard computer processes this data to estimate the current
position and correct any accumulated errors over time.

The control algorithm manages the vehicle’s propulsion and control systems to
execute the required actions for maintaining the desired trajectory and ensuring
a safe and efficient journey. This algorithm takes into account various factors,
including vehicle dynamics, motion physics, and operational constraints, in order
to generate appropriate control signals for the vehicle’s motors, brakes, steering,
and other actuators.

In summary, the GNC algorithm integrates route planning, navigation, and
vehicle control into a cohesive system that enables autonomous movement, obstacle
avoidance, and reliable achievement of the desired objectives.

To better understand how the various parts of a GNC algorithm integrate with
each other, it is useful to refer to a block diagram like the one in Figure 5.1.
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Figure 5.1: Generic GNC block diagram

Starting from the left, there is the guidance algorithm. The goal of the guidance
algorithm is to provide a reference vector (xdes), that is, to provide a desired position
and velocity (linear or angular). There are various types of these algorithms. There
are "on-line" and "off-line." The former, take as input the vehicle’s actual state
vector and return an acceleration that must be impressed on the vehicle to reach
a desired position and/or velocity. The output then varies during the maneuver.
The latter, merely give the desired position and velocity of the vehicle, and these
remain constant throughout the maneuver.

Further down, there is the Navigation algorithm. This is used to provide the
on-board computer with the current position of the vehicle. This takes as input
data from the sensors (xmeas) often subject to noise and, integrating it with data
from vehicle dynamics, returns an estimated value (xext).

With the estimated and desired state vector, the error on position and velocity
can be calculated. This is what "feeds" the control algorithm. In fact, starting
from the error, the algorithm returns a Control Force (Fcontr). This force will be
modulated by a modulator (Fthr), and it will allow the vehicle to reach the desired
position and velocity. There are many types of control algorithms, more or less
efficient and more or less computationally expensive.

The rest of the block diagram, together with the GNC forms what is commonly
called the Attitude and Orbit Control System (AOCS) for spacecraft, but for this
project it may be called the Attitude and Position Control System (APCS). In
other words, it is a system that also includes the presence of the sensors, thrusters,
and any other control laws of the vehicle, which is intended to maneuver the vehicle.

Obviously, each APCS is specific to each type of vehicle. In the next section,
the APCS for MyDas2 will be shown and discussed.
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5.1 Attitude and Position Control System

Figure 5.2: Attitude and Position Control System for MyDas2

Figure 5.2 shows the APCS block diagram for MyDas2. The diagram is divided
into two parts: at the top is the part that controls attitude; down, there is position
control. Given the nature of the dynamic system, attitude dynamics is decoupled
from position dynamics. The reverse is not true, as will be seen later. It is therefore
possible to perform isolated attitude maneuvers, but not position maneuvers. An
overview of the parts is given below. In the next section all the parts will be
discussed in detail with the integration in Simulink.

• Guidance In this project, the guidance is "off-line." This means that the
vehicle’s trajectory will not be calculated instant by instant, but position or
attitude coordinates will be imposed, and these will remain constant over
time during the maneuver. Actually, when position and attitude control are
run together, an algorithm gives to the vehicle the right attitude angle to be
achieved to reach the desired position. In the next section, this part will be
discussed.

• Control Proportional Derivative (PD) controller, Pulse-Width Pulse-Frequency
Modulator (PWPFM) and Steering Law control the propulsion of the vehicle.
There are two different control algorithms, one for the attitude and another
for the position control. Since the thrusters are vectorable, a steering law is
necessary to choose the angles of the thrusters. The law for the attitude is
different from the law of the position. The PWPFM is an algorithm used
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to generate a square wave output signal, where the duration of the pulse is
modulated based on the control signal of the PD controller.

• Motion Dynamics This block receive data from the "Steering Law" block
and from the PWPFM. Basically, the two blocks provide F1, F2, α1, α2 of the
eq. 4.2 - 4.4. The double integrator gives the state vector in terms of position
and speed.

• Sensor IMU and VIVE tracker provide the vehicle with data on its position
in space. Codes will be needed to import the data correctly, and to allow
the onboard computer to process it. This data, along with data from vehicle
dynamics, will be corrected by a Kalman Filter to obtain an accurate estimate.

The schematic of this block diagram will be reproduced on Simulink. Each
block will be considered a "subsystem," within which all the operations necessary
to manipulate data and send information to the vehicle will be performed.

The interface between Simulink and Raspberry will be analyzed in the next
section.

5.2 Simulink Integration

5.2.1 Support Package
First, the support package that allows Simulink and Raspberry to communicate
must be downloaded and installed. Once done, The support package allows you to
run algorithms written in Simulink standalone on the Raspberry Pi. In addition,
the support package extends Simulink with blocks to drive Raspberry Pi digital
I/O and read and write data from them.

After downloading the package, Simulink gives the option of updating the
operating system already on the Raspberry, or installing a new one. When installing
the new operating system, an SD card must be inserted into the master PC. On
this SD card, the operating system will be installed, and once it is inserted inside
the Raspberry, it will automatically connect to the Wi-Fi network that was inserted
when the new operating system was installed. In addition to the Raspbian operating
system, the libraries needed to read and convert code written in Simulink are also
downloaded and installed. The steps to install the support package are summarized
in figure 5.3.

Once the package is installed, the project can be started on Simulink. Here, the
"Hardware" item must be selected in the menu, and the "hardware settings" must
be checked (figure 5.4).
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Figure 5.3: Steps to install the Support Package

Figure 5.4: Configuration Parameter for the Simulink model

In this menu, the hardware board has to be chosen, by selecting the type, and
also adding the "Device Address", username and password. In this menu, it is also
possible to set all the parameters concerning the External Mode.
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The External Mode is the way in which Simulink communicate with the Rasp-
berry board. The simulation can be run in two way:

• Run on board (External Mode): for this project, this way is chosen. In
this way, the code is run by the board and the simulation become a Real-time
Simulation.

• Connected I/O (Inputs/Outputs mode): in this way the Simulink code
is run by the master computer, which only communicates with the Pins I/O
of the Raspberry. This is a useful methods to check if all the connections
are well done, but this is not a Real-Time Simulation, since the time of the
Simulink model is different from the real-time.

Then, the new blocks available with the package can be visualized in the Simulink
library. Some examples are shown in figure 5.5.

Figure 5.5: Simulink blocks library for Raspberry
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5.2.2 Guidance

As mentioned before, the guidance of this GNC algorithm will be of an "offline"
type. A position (or velocity) or attitude angle ( or angular velocity) is set and this
remains constant throughout the maneuver. The desired position or attitude values
are set as variables on a Matlab file. On Simulink, on the other hand, the "constant"
block is used, where these values are called from Matlab. With this block, Simulink
provides the value every iteration, based on the sample time selected.

The desired position-velocity vector is provided to the vehicle in the fixed
external reference system. The strategy for reaching the desired point in space is to
perform an initial attitude maneuver to rotate the vehicle so that it points toward
the desired position. This strategy, is dictated by the fact that the two thrusters
are vectorizable, but have an angle range of 180° (from 0 to 180°). Therefore, this
configuration does not allow a point in space to be reached without first making
an attitude rotation.

Figure 5.6: Strategy not permitted due to the thruster configuration

In figure 5.6 is represented the position maneuver without initial attitude
maneuver. It is possible to see that α1 > 180 °. So the thrust T1 can not be
delivered.

The only way to complete this maneuver is to perform an attitude maneuver, in
order to align the η − axis with the conjunction of the start and end points.

The configuration in figure 5.7 shows the vehicle which has completed the
attitude maneuver. So, the guidance algorithm for the attitude must calculate the
right angle ϕ to align η − axis to the conjunction.
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Figure 5.7: Correct strategy with attitude maneuver before position maneuver

By performing some trigonometric calculations, it is possible to write:

ϕ = arctan
(xdes − x)
(ydes − y) + π (5.1)

To solve this equation "atan2" command is used. This command in Matlab returns
the angle in radians between the positive y-axis and a specified point in the xy-plane.
Unlike the "atan" function, which only takes the x/y ratio, the "atan2" command
allows determining the correct angle even for values of x that are negative or zero.
It also avoids division by zero issues.

In the situation described in figure 5.7, the command "atan2" would return a
negative angle. Since an angle between 0 and 360° is needed to calculate the error
and feed the control algorithm, a Matlab Function is inserted to correct the data.
Essentially, if the calculated angle is negative, the value of 2π will be added to it,
if not it is left unchanged. The Matlab code is given in appendix.

At this point, the guidance algorithm for the attitude maneuver provides an
angle ϕdes.

After the attitude maneuver is completed, it can be seen that the vehicle can
move straight in the direction of the desired point. In this way α1 = α2 = 0, so the
maneuver is feasible.

So, the guidance algorithm is "off-line" in the sense that desired position and
attitude is constant during the maneuver. Actually, due to the configuration of
the thrusters, an "on-line" guidance algorithm is needed to perform correctly the
position maneuver.

Figure 5.8 shows the Simulink blocks used to obtain the right ϕ angle.
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Figure 5.8: Guidance algorithm to obtain ϕdes

The block "DESIRED-VEC" takes the position vector (x, y) from Matlab main
and keeps it constant during the simulation. X and Y are data from the sensor
and represent the actual position of the vehicle.

5.2.3 Importing sensor data
The control algorithm is fed by the error on the position and velocity of the vehicle.
As mentioned before, this error is generated between the state vector provided
by the guidance algorithm (xdes), and that obtained from reading data from the
sensors (xact). In this subsection, the method of data gathering from the sensors is
exposed.

IMU The Inertial Measurement Unit (IMU) provides linear acceleration and
angular velocity of the vehicle. Figure 5.9 shows the pins used to connect the
device.

Figure 5.9: Schematic diagram of the MPU-6050 connection

This IMU device uses a I2C protocol to communicate with the on-board com-
puter.
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The SDA (Serial Data) and SCL (Serial Clock) pins are two pins used in this
type of communication. The SDA pin is used to transmit bidirectional data between
the MPU-6050 and the Raspberry.

The SCL pin is used to provide a synchronization clock for I2C communication.
This clock signal is generated by the master device and is used to synchronize the
data transmission on the SDA pin. The SCL signal determines the timing of the
I2C communication.

The other two pins are "VCC" and "GND." The former provides 3.3 V to the
device, and the latter is the connection to ground.

Once the device is connected to the OBC, code must be written to modify
the raw data. First, the I2C protocol must be enabled in Matlab. Matlab has a
library which allow the communication with the MPU-6050. After the code is run
(appendix A) , the I2C protocol is enable and Master and Slave devices are defined
(figure 5.10).

Figure 5.10: I2C protocol enabled by a Matlab command

Then, Simulink code can be written. In the figure 5.11, there is the subsystem
created to import data from IMU.

Figure 5.11: Simulink subsystems for IMU data import

47



GNC algorithm implementation

After the I2C protocol has been enabled, a block from the Raspberry library is
used. The block is called "I2C master read." As the description says, this block
"read data from an I2C slave device or an I2C slave device register" and "the block
outputs the values received as an [Nx1] array." From the data-sheet [12] of the
MPU-6050, we can read that the device provides a vector containing 7 parameters
(3 linear accelerations + 3 angular velocities + 1 sample time). The Sample Time
is set equal to -1, which means it is equal to the one set for the whole model. "Slave
address" and "Slave register address" are taken from the data-sheet.

Then, this block reads the data from the device and provides it to the on-
board computer. Now, this data needs to be further corrected. First, the linear
acceleration and angular velocity data, must be corrected, dividing the measured
values by a certain Sensitivity Scale Factor, based on the selected Full Scale Factor.

For the accelerometer, the standard Full Scale Factor is 2 g. With this value,
it is necessary to divide the measured values by the factor q = 16384. For the
gyroscope, the Full Scale Factor is 250 °/s which implies a factor p = 131, to be
divided by the measured value.

After this initial correction, further adjustment of the data is necessary. In fact,
in these IMU platforms there is often a constant offset on the measured data. A test
is then performed, with the device kept stationary, and the data for accelerations
along x− y and angular velocity around the z axis are measured.

Being stationary, it is expected that the average of the measured values will
be as close to zero as possible. In figure 5.12 - 5.13 it is possible to observe the
measured data raw and corrected.

Figure 5.12: Correction of offset error for x-y linear acceleration

Then, after performing the test, data are collected for each axis and the values
are mean averaged. At the next test, the average obtained is added to the new
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Figure 5.13: Correction of offset error for ϕ̇ angular velocity

measured values. As you can see, the average value of the measurement is brought
to the value 0. The table below shows the precise readings obtained.

Raw mean Corrected mean

ẍ 0.0357 -3.1252e-04

ÿ -0.1144 -3.9727e-04

ϕ̇ -0.0058 -9.0058e-06

Table 5.1: Accelerometer and gyroscope correction

It can be seen that the acceleration value along y is the one with the most
offset, this is because the acceleration of gravity acts along that axis and disturbs
can disturb the measurement. However, after correction this turns out to have a
comparable mean value with that along x. Angular velocity values, on the other
hand, turn out to be less subject to offset, by two orders of magnitude. This may
be because in general IMU sensors, have higher sensitivity for angular velocity, and
in any case this is not affected in any way by gravity acceleration. After correction,
the value of angular acceleration turns out to be the most accurate.

In this way, this code provides ẍ, ÿ and ϕ̇ to the guidance algorithm. Actually,
the control algorithm need also to be fed by the linear velocity. One way to obtain
linear velocity measurements from accelerations is to integrate the calculated
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acceleration values. The problem is that IMU platforms usually have very large
integration errors (accelerometer bias), which must be corrected with Kalman
Filters. In Figure 5.14 are measurements for velocities ẋ and ẏ using the Simulink
"integrator" block. The results show a cumulative error over time. The test was
carried out with the IMU board static on a flat floor.

Figure 5.14: Accelerometers Bias

HTC VIVE tracker The HTC Vive Tracker is an accessory developed by HTC
for use with the HTC Vive virtual reality (VR) system. It is a small, puck-shaped
device that can be attached to physical objects, such as game controllers, props, or
even human body, to track their movement and bring them into the virtual world.
It works in conjunction with two Base Station and the Vive Pro VR.

The tracker communicates with Base Stations, which provide the location in
space to the tracker. This sends the data, via Bluetooth, to a device, connected
via USB to a master computer. The master computer is not the vehicle’s onboard
computer. On the master computer, the data is processed by Unity software, which
extracts the data from Steam VR and sends it, via a UDP communication to the
onboard computer. Figure 5.15, shows the architecture just described.

Unity sends data to the onboard computer via UDP communication. UDP (User
Datagram Protocol) is a communication protocol that operates at the transport
layer of the Internet Protocol Suite. It is a connectionless protocol, which means
it does not establish a dedicated and reliable connection between the sender and
receiver before sending data.

Unlike TCP (Transmission Control Protocol), which provides reliable and ordered
data transmission, UDP focuses on simplicity and efficiency. It offers a "best-effort"
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Figure 5.15: Hardware and software architecture for VIVE tracker

delivery mechanism, where packets, called datagrams, are sent from the sender to
the receiver without any guarantee of delivery or order.

Here are some key characteristics of the UDP:

• Connectionless: UDP does not require a handshake or connection setup
before transmitting data. Each UDP datagram is treated independently and
can be sent without prior coordination.

• Unreliable: UDP does not provide acknowledgment of packet delivery, re-
transmission of lost packets, or error checking. If a UDP datagram is lost or
damaged during transmission, it will not be automatically recovered.

• Low overhead: UDP has a smaller header size compared to TCP, which
reduces the amount of additional data sent over the network.

• Fast transmission: Due to its simplicity, UDP has less processing overhead,
making it faster than TCP in terms of data transmission speed.

UDP turns out to be very useful for this project, since a real-time communication
and low latency are more important than reliable data delivery.

To send data from Unity, a C code was written. It is given in the Appendix A.
This code, send a vector of 7 elements: 3 position along the axis, 3 rotation around
the axis, and sample time. On-board computer will take only 2 position (x, y) and
1 rotation (ϕ). The code packs the data and each elements is sent as a "dobule".
A "double" is a data type used to represent floating-point numbers with double
precision. Each element "double" is represented using 8 bytes, so a total of 56 bites
packed are sent by the Unity code.

Then, a code in Simulink to receive data is written 5.16.
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Figure 5.16: Simulink subsystem for HTC tracker data import

A first block, called "UDP receiver" is used to enable the UDP communication
on the Raspberry. Master computer and onboard computer must be connected to
same network. In the Unity code, the IP address of the Raspberry is selected and
also a "local IP port". This number must be used in the "UDP receive" block and
also the number of elements to be received is entered. Now, the data are received
packed from the Unity code. A "byte unpack" block is used to unpack the data
and to put them in a vector with 7 elements.

Actually, the position along x and y must be correct, since the tracker is not
located exactly in the center of the vehicle (figure 5.17). Therefore, a function is
implemented in Matlab (given in the Appendix), which, taken as input x, y and ϕ,
returns the correct (x,y) position. Mathematically it is written:

xcorr = x− Lcos(ϕ)
ycorr = y − Lsin(ϕ) (5.2)

Basically, when the vehicle performs an attitude maneuver, position x and y
must be constant. Some tests were carried out to verify the correctness of the
code. The vehicle performs a 360° rotation maneuver, and x and y data were then
collected before and after the correction. Figure 5.18, shows the results.

It can be seen that before the correction, during a rotation, x and y varied about
8 cm from the actual position. After correction, the total variation over the 360°
rotation is only 1 cm. The calculated x and y positions are therefore much more
accurate.

Finally, x, y and ϕ are ready to be used by the control algorithm to generate
the control force.
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Figure 5.17: Position of the tracker relative to the geometric center of the vehicle

Figure 5.18: Experimental results for x and y position correction
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5.2.4 PD controller
At this point, the on-board computer receives data from the sensors, which provide
the current position (and velocity) of the vehicle. Guidance, on the other hand,
provides the desired position ( and velocity). By performing the difference between
these two vectors, the error vector is obtained. This vector will be the input to the
control algorithm.

For this project, a Proportional Derivative (PD) type controller was developed.
Such a controller, is a type of Proportional Integrative Derivative (PID), in which
there is no Integrative.

PID controllers are the first control algorithms made. The first example of
PID-type was developed in 1911, while the first theoretical publication occurred in
1922. PID control is based on past error (integrative), present error (proportional)
and prediction of future error (derivative). In general PD controllers follow this
equation:

u(t) = KP e(t) +KDė(t) (5.3)
where:

• u(t) is the control variable, i.e. the output of the control algorithm; for this
project, the control variable is the thrust of the thruster:

u(t) = F (t) (5.4)

• e(t) is the actual error vector (position) and ė(t) is the derivative of the error
vector (velocity). So:

e(t) =

 xe

ye

ϕe

 ė(t) =

 ẋe

ẏe

ϕ̇e

 (5.5)

• KP, KD are the gains. By varying these parameters, the time response of the
system changes, as the force u(t) changes. Referring to the figure 5.19, the
table 5.2 how the response changes according to KP and KD.

tr Ov ts es

Increasing KP decrease increase small increase decrease
Increasing KD small decrease decrease decrease minor change

Table 5.2: Response characteristics according to KP and KD adjustment

The adjustment of this parameters is the tuning of PD controller. Initially,
the tuning is reach by trial and error, until the closed loop system performs
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tr : time response ts : settling time
Ov : overshoot es : steady state error

Figure 5.19: Key characteristics of a dynamics system time response

as desire. There are also mathematical models to tune the control algorithm.
These models are used when the plant is complex and it is difficult to obtain
mathematical model of the system.

In the Simulink code, there are two blocks for the PD controller. One is for the
attitude control, the other one is for the position control, since the two maneuvers
happen in different time.

The block for the attitude maneuver takes as input the vector:

ϕerr =
C
ϕ

ϕ̇

D
(5.6)

and gives as output the force Fcommand.
The code is very simple, as well as the equation 5.3. A "demux" block takes the

single element of the vector (5.6) and, with the block "gain", these elements are
multiplied one by the KP and one by the KD constant. Then there is the sum. In
this way, the control force is obtained, as it possible to see in figure 5.20.

For the Position Control, the scheme is the same, but the input vector is:

xerr =


ξ

ξ̇
η
η̇

 (5.7)
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Figure 5.20: Simulink block for PD controller

and the output is Fcommand.

5.2.5 Steering Law
Steering law refers to the series of operations aimed at correctly directing the
thrusters to obtain thrust in the correct direction. The direction of the thrusters is
controlled by servos. The servos allow 180° rotation to the thrusters. Since there
are only two thrusters and they have this range of motion, they will always act
simultaneously. In fact, the use of only one thruster would result in too great a
misalignment from the center of mass and thus in uncontrollability of the vehicle.
The steering law takes as input data from the Control Law and outputs two
angles. The angles then enter the block of the equations of motion, to simulate the
maneuver, or force the servos to reach those angles to perform the actual maneuver.

Figure 5.21 helps to understand the steering law logic.
There are different steering laws for attitude maneuvering and position maneu-

vering. The basic logic on which they are based is the same, but the resulting
angles will be different.

On the left, there are two situations that may arise during the position maneuver,
while on the right it relates to the attitude maneuver. On the left, based on the
position of the vehicle relative to the desired position, the control algorithm returns
a positive or negative Fcommand value. The steering law investigates the sign of
Fcommand and returns angles as in the figure, to deliver thrust in a given direction.
T1 and T2 represent the thrust delivered by the thrusters, and always have the same
value between them. It is possible to see, that in the position maneuver, the angles
α1 and α2 always have the same value to each other. On the right, in contrast,
there is the attitude maneuver. As mentioned above, the logic is the same as in
the position maneuver: the steering law investigates the sign of Fcommand, which
depends on the difference between ϕ0 and ϕdes. In this case, however, in order to

56



GNC algorithm implementation

obtain pure rotation, the angles α1 and α2 are opposite to each other.

Figure 5.21: Steering Law logic scheme

Theoretically, in this way, the maneuvers are decoupled. Mathematically, for
position control it is:

α1 =
I

0° if Fcomm > 0
180° if Fcomm < 0 = α2 (5.8)

For attitude control it is:

α1 =
I

180° if Fcomm > 0
0° if Fcomm < 0 α2 =

I
0° if Fcomm > 0

180° if Fcomm < 0 (5.9)

In Simulink the code is shown in figure 5.22. The block "sign", takes as input
the Fcommand and outputs 1 for positive input, -1 for negative input, and 0 for 0
input. As it possible to notice, the angles α1 and α2 do not vary between 0° and
180°, but between −π/4 and π/4. This happens for two reasons. The first, is that
the equation of motions need a range from −π

2 and π
2 , where −π

2 = 0° and π
2 = 180°

referring to figure 5.21. This value will be corrected to enter the communication
block with the servos, which need an angle between 0° and 180°. The second
concerns the thrust provided by thrusters. After initial tests, in fact, it was noticed
that the thrust was oversized for the weight of the vehicle. In order to achieve
smoother maneuvers, therefore, it was chosen to direct the thrust at smaller angles,
so as to have less effective thrust during maneuvers. Clearly, this is not the optimal
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choice in terms of propellant consumption, but for an initial control test it can be
accepted.

Figure 5.22: Simulink blocks for steering law

Only the Simulink block for the attitude maneuver is shown in the figure 5.22.
For the position maneuver, the logic is the same. It is important to note that the
position maneuver occurs only along the η axis of the vehicle. This is because, as
mentioned at the beginning of the chapter, the position maneuver occurs after the
vehicle has performed the rotation maneuver and aligned η to the conjunction with
the desired point.

5.2.6 Thrust Modulation
The control algorithm outputs a force that varies continuously over time. Thrusters,
however, take on only two discrete states: on or off. To use the thrusters, the
continuous force then must be modulated [13]. The Schmitt trigger is one of
the simplest thruster control method, often described as a relay with hysteresis
and a deadband. It establishes its minimum pulse-width based on the changing
inertia of the spacecraft [14]. Although not classified as a pulse modulator, this
control technique can be extended using the pulse-width pulse-frequency modulator
(PWPFM). The PWPFM and derived-rate modulator incorporate a first-order lag
filter in either the feedforward or feedback paths, respectively. Another alternative
is the pulse-width modulator (PWM), which exhibits similar behavior to a PWPFM
but is simpler in construction. Unlike the Schmitt trigger, the static characteristics
of the PWM, PWPFM, and derived-rate modulator are not influenced by the
spacecraft inertia, making them advantageous options. Consequently, the PWM,
PWPFM, and derived-rate modulator have found widespread use in spacecraft
thruster modulation. In this work, a PWPF modulator will be used.
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Figure 5.23: Simulink block for PWPFM

The main element of this modulator is the Schmitt Trigger, which consist of
a double relay with hysteresis, separated by a dead band. In order to provide a
quasi-linear steady-state response, a low pass filter is add. The input of the filter
is the difference between the control signal and the modulator output, and it is
represented by a first order system ( Kf

τs+1). The output of the signal is the Schmitt
Trigger activation signal. The output of the modulator remains zero until this
signal remains below the activation threshold Uon. If the signal exceed this value,
the relay is on and gives 1 as output. The relay stays on until the input drops
below the value of the switch off point, Uoff . When the relay is off, it gives 0 as
output.

Figure 5.24: Example of filtered and modulated signal

Figure 5.24 shows an example of modulation of a sinusoidal signal. In red, it is
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possible to see the signal modulated. It fluctuates between set values. In this way,
a discrete value can be provided to the thrusters. In this work, that value oscillates
between 0 and 1, which results in on or off for the solenoid valves.

So, the PWPF modulator parameters to be defined are:

• Uon,Uoff , τ,Kf are respectively activation threshold, deactivation threshold
and low pass filter first order system parameters.

• Dead band: it is defined as:

edb = Uon

Kf

(5.10)

this parameters is useful for some measured tag values which can fluctuate
rapidly above and below a critical threshold. The dead band is a buffer to
prevent this fluctuations.

• ∆ton = toff − ton is the fire duration of the thruster. It can be defined also
as:

∆ton = −τ · ln(1 − Uon − Uoff

UmaxKf

) (5.11)

In the next chapter, the values of all these parameters will be given.

5.2.7 Link with On-board Computer
Now that the GNC algorithm is complete, it is necessary to enable communication
with the propulsion components. This involves then imposing a desired angle on
the servos, and indicating values 1 and 0 (on or off) to the solenoid valves. As
mentioned earlier, the support package enables communication directly with the
PINs on the raspberry.

The block in Simulink takes as input α1, α2 and Fthr both for position and
attitude maneuver. This block does not have any output, since it communicates
with the Raspberry. Each PIN in the Raspberry, has a corresponding number that
identifies it. For solenoid valves, the corresponding numbers for GPIOs are 20 and
21. For servos, the PINs are 17 and 18. Using the blocks in figure 5.25, the GPIO
pin number can be entered. The input signal will then be sent to the chosen PIN.

For the thrusters, the signal is 1 or 0, which means valves opened or closed. For
the servos it is different. The position of the servos is controlled via PWM (Pulse
Width Modulation). The basic principle of PWM for servo motor control involves
sending a series of pulses with varying widths to the servo motor. The width of each
pulse determines the position of the servo motor’s shaft. The SG90 motors chosen
for the MyDas2 work with a control signal whose pulse width varies between 1 to
2 milliseconds (ms) [15]. The control signal consists of a series of pulses that are

60



GNC algorithm implementation

Figure 5.25: Simulink blocks for OBC communication

repeated at a fixed frequency. For SG90 the frequency is 50 Hz, which means that
the pulses repeat every 20 milliseconds. The pulse width determines the position
of the servo motor. For example, if the pulse width is 1 ms, the servo motor will
rotate to its minimum angle (0°), while a pulse width of 2 ms will rotate it to its
maximum angle (180°). Intermediate pulse widths will correspond to positions
between the minimum and maximum angles. In PWM, the duty cycle (figure 5.26)
is used to control the position of the servo motor. The duty cycle represents the
percentage of time the signal is "high" (on) within one control cycle.

Figure 5.26: Example of duty cycle for SG90 servo motors [15]
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The block "standard servo write" takes as input the angle in degrees and creates
a duty cycle. The minimum and maximum pulse width duration has to be entered.
For SG90 the minimum pulse duration is 0.5 milliseconds and the maximum is 2.5
milliseconds.
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Chapter 6

Hardware-in-the-loop
experiments

This chapter will present all the tests performed with the MyDas vehicle, using
the code described in the previous chapter. The tests were conducted in Monterey,
at the Naval Postgraduate School.

First, the "static" tests, which had already been carried out by Josef Kulke in
[1], were reproduced. These tests aimed to evaluate the endurance of the vehicle
after nearly 7 months of inactivity. First, endurance was evaluated with the use
of air bearings only, then also with active thrusters. Next, tests were performed
to perform attitude maneuvers. Finally, tests were performed to do attitude and
position maneuvers simultaneously.

6.1 Static experiments

6.1.1 Floating without thruster
The first test that was performed was the floating duration test without the
thrusters. It is used to evaluate the proper functioning of the air bearings and to
assess leaks in the tube-bearing connection. During this test, no sensors are active,
nor is the on-board computer turned on. Essentially, the air tank is filled to 2800
psi, the vehicle is placed on the granite floor, and the manual valve is opened. The
thrusters have a "normally closed" operation, so they do not interfere with the test,
and the compressed air only feeds the air bearing. The vehicle is allowed to float,
and the time between when the valve is opened and when the vehicle stops floating
is measured. To properly estimate the time when the vehicle is actually "stopped"
on the plane, throughout the test the vehicle is kept moving on the floor.

The table 6.1 shows the results obtained and compares them with those obtained
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Figure 6.1: Static test for floating without thrusters

by Kulke in [1]. The average floating duration obtained in the previous tests, was
measured with a different procedure: the measurement was made between the
pressure 2500 psi and 1000 psi and then the result was multiplied by 2 to obtain a
value between 3000 psi and 0. With this procedure, the times are slightly lower.
This discrepancy may be related to the fact that at higher pressures, micro-leaks
are generated that are not present at lower pressures. Thus, the floating time from
1000 to 0 psi is longer than that between 2500 and 1000 psi.

6.1.2 Thrusters opened without floating
The second static test involves the thrusters. This test is much more impactful on
vehicle endurance, since the thrusters consume much more propellant than the air
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Floating time [min]
Run 1 15:12
Run 2 15:03
Run 3 15:17

Average 15:11
Previous Average [1] 13:12

Table 6.1: Experimental floating duration from 2800 psi to 0

bearing. The experimental setup is the same, except that the onboard computer
is on, as it is necessary to control the valves. Again, the air tank filled to 2800
psi. The time between the opening of the solenoid valves and the time when the
measured pressure goes to 0 psi is measured. In this case, the measurement was
made by opening the two valves at the same time. The times are compared again
with the previous times in table 6.2.

Firing time [sec]
Run 1 38
Run 2 38
Run 3 39

Average 38
Previous Average [1] 36

Table 6.2: Experimental thruster firing duration from 2800 psi to 0

The test by Kulke was carried out in the same manner as the floating time.
That is, the time required to go from 2500 psi to 1000 psi was measured, and this
time was multiplied by 2. Again, it can be seen that the times in the new tests are
longer. In fact, in the last test the new and old results are very similar. This can
be explained by the fact that the firing time is an order of magnitude lower than
the floating time, and the effect of micro-leakage is less noticeable.

6.2 Attitude maneuvers
This section describes the experimental setup and test results concerning attitude
maneuvers. The goal of these tests is to verify that the vehicle can reach a certain
angle ϕ. Successful tests will be presented with vehicle rotation of 90°, 180° and
270°, starting from an angle ϕ ∼ 0. It is important to note that a Kalman filter
is not used in these tests, but sensor data are directly used to know the current
position and speed of the vehicle.
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Before running the code on the onboard computer and performing the maneuver,
some steps need to be taken, which are given below:

1. Fill the air tank to a pressure of 2800 psi;

2. Turn on the onboard computer and power the voltage converter connected to
the thruster valves;

3. Connect the base stations to the power supply and turn on the Vive Tracker;

4. Run the code on Unity on the external computer ( this will enable Unity
to enable the UDP protocol to send the Vive Tracker data to the on board
computer);

5. Open manual valve to enable compressed air flow to the air bearings and
solenoid valves;

6. Run the code on Simulink.

Table 6.3 shows the configuration parameters for the attitude control tests.

Description Parameter Value
Spacecraft Mass m 1.7 kg

Leverage l 0.055 m
Inertia vertical axis Jz 2.761 × 10−3 kgm2

PD control Proportional Gain KP 0.3
Derivative Gain KD 0.3

PWPFM Activation Threshold Uon 0.2
Deactivation Threshold Uoff 0.001
Low pass Filter Num Kf 1
Low pass Filter Den τ 0.2885

Guidance Initial Conditions (ϕ0, ϕ̇0) (0 rad, 0 rad/s)
Desired Condition ([ϕdes], ([π

2 ,π,3
2π] rad,

ϕ̇des) 0 °/s)
Simulation Sample time dt 0.01 s

Number of Runs 3

Table 6.3: Parameters for attitude maneuver

Three runs were performed, to reach the angles ϕ = π
2 , π, 3

2π. In figures 6.2, 6.3,
6.4 the test results are shown.

For each test, data are reported for the on/off of the thrusters, the angle α1
(and thus also α2), and the state variables ϕ and ϕ̇.
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Figure 6.2: Experimental results for 90° rotation

Figure 6.3: Experimental results for 180° rotation
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Figure 6.4: Experimental results for 270° rotation

The simulation starts from t=0, but for the first 10 seconds the vehicle does
not perform any maneuvers. This time was needed for the operator to position
the vehicle on the plane and to direct it to ϕ = 0, which is the initial point of the
maneuver.

• 90° rotation: The duration of the maneuver is about 3 seconds. It can be
seen that in the last 3 seconds the angular velocity ϕ̇ oscillates and does not
stabilize. This is due to the fact that the servos, in the last 3 seconds, oscillate
between 45° and 135° abruptly. This oscillation depends on the Fcom varying
between very low values around zero as the position ϕdes has been reached.
Indeed, it can be seen that the thrusters, after 3 seconds, no longer fire. The
response of the system is very satisfying. There is no presence of overshoot,
and the maneuver duration is quite fast but also smooth. The maneuver is
thus successfully completed.

• 180° rotation: The duration is about 4 seconds. Also in this there is
oscillation of angular velocity, for the same reasons as before. The ϕ angle is
correctly achieved, again without overshoot and with a very smooth maneuver.
Thruster modulation performs better, as the thrust is less discontinuous and
fewer shots are fired. The maneuver is therefore successfully completed.
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• 270° rotation: The duration of the maneuver is about 4.5 seconds. In this
maneuver, a higher angular velocity is achieved than previous maneuvers,
and overshoot is also present. The maneuver was performed with the same
parameters as the previous ones for the PD controller and PWPFM, to
simulate a worse maneuver where the vehicle has to perform small or such
large rotations. However, the result remains satisfactory, and the maneuver
can be said to be completed this time as well.

6.3 Position Maneuvers
In this paper, a position maneuver is defined as a maneuver that takes the vehicle
from one point to another in the granite floor. As mentioned in the chapter 5, given
the configuration of the thrusters, the position maneuver also involves an attitude
maneuver, which allows the vehicle to align its η axis with the conjunction to the
desired point. Thus, this type of maneuver is more complex computationally and
in terms of controlling variables than the attitude maneuver. In fact, Position and
Attitude Control must interact with each other in order to complete the maneuver
correctly. In the attitude maneuver presented in the previous section, instead, only
attitude control was active. In the tests that are given below, it was chosen to
perform the maneuver in this way:

1. The position guidance sets a point for the vehicle to reach on the floor. This
point is entered in the main Matlab code;

2. The attitude guidance calculates the angle ϕdes, as described in the equation
5.1;

3. After 10 seconds, necessary for the pseudo-derivative on x and y to converge
to a solution [5], the attitude maneuver begins;

4. As seen in previous tests, the worst attitude maneuver no longer lasts 4.5
to 5 seconds. Therefore, a time of 6 seconds is set to perform the attitude
maneuver. After 6 seconds, the conjunction between the starting point (x0,
y0) and the desired point (xdes, ydes) is aligned with the η axis of the vehicle.
Then the position maneuver can start, which controls the vehicle along the
η axis only, since the error on ξ is reduced to 0 due to the rotation. Thus,
on the x-y plane, the vehicle controls the position along x and y, while on its
reference system, only along the η axis.

Also in these tests, there is no Kalman Filter, but data from the sensors are
used as the current position and velocity of the vehicle. In this case, however, the
position control algorithm needs the velocities along x and y of the vehicle. This
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data, is not directly provided by any of the sensors placed on the vehicle, so it must
be calculated. As shown in figure 5.14, integrating the data from the accelerometer
is not possible, if the bias is not corrected precisely by a Kalman Filter.

The second strategy would be to perform the pseudo-derivative of the position
provided by the VIVE tracker, and thus obtain an estimate on the vehicle speed.
The problem is that this data is very subject to noise, so it is necessary to insert a
filter that mitigates the effect of noise. The filter is a "Low Pass Filter" type, while
the pseudo derivative is calculated simply as:

ẋ = (xk − xk−1)
dt

(6.1)

where xk is the x position received in the instant t and xk−1 is the x position
received in the instant t− dt.

In this section, results from 3 runs of position maneuver will be presented, and
all the critical aspects of the maneuver will be discussed. Table 6.4 shows the
configuration parameters for the attitude control tests.

Description Parameter Value
Spacecraft Mass m 1.7 kg

Leverage l 0.055 m
Inertia vertical axis Jz 2.761 × 10−3 kgm2

PD control Proportional Gain KP 0.3
attitude Derivative Gain KD 0.3
PD control Proportional Gain KP −pos 0.2
position Derivative Gain KD−pos 0.95
PWPFM Activation Threshold Uon 0.2

Deactivation Threshold Uoff 0.001
Low pass Filter Num Kf 1
Low pass Filter Den τ 0.2885

Guidance Initial Conditions (x0, ẋ0) (-0.27 m, 0 m/s)
(y0, ẏ0) (1.6 m, 0 m/s)
(ϕ0, ϕ̇0) (π

4 rad, 0 rad/s)
Desired Condition (xdes, ẋdes) (-0.27 m, 0 m/s)

(ydes, ẏdes) (1.2 m, 0 m/s)
Simulation Sample time dt 0.01 s

Pseudo-derivative time 10 s
Attitude Maneuver time 6 s
Number of Runs 3

Table 6.4: Parameters for position maneuver
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Figure 6.5: Experimental results from run # 1 for position maneuver

Figure 6.6: Experimental results from run # 2 for position maneuver

Results on the main parameters of the dynamical system have been reported
in figure 6.5, 6.6, 6.7. These are 3 runs, in which the vehicle, starting from a
position on the plane (x0, y0) = (−0.27m, 1.6m), intends to reach the position
(xdes, ydes) = (−0.27m, 1.2m). Basically, the maneuver involves a displacement
of 40 cm along the Y axis of the granite floor reference system. The vehicle is
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positioned at the point x0, y0 with an angle ϕ = 45°. As mentioned before, the first
maneuver involves pure rotation to point toward the desired point.

It can be seen from the results how the first 10 seconds are needed to converge
the pseudo-derivative ẋ, ẏ to 0. So, after 10 seconds, the rotation maneuver starts.
After another 6 seconds, the rotation maneuver is concluded, and the position
maneuver begins. The first two maneuvers are concluded after about 15 seconds,
and the results are satisfactory. The maneuver is not very precise, but it shows
how the steering law, PWPFM and PD control work. The run #3 is a little bit
different from the first two. It lasts 45 seconds, so it is a slower maneuver, and the
starting point and final point are different. Also this maneuver can be considered
completed. The data of the maneuvers are shown in the table 6.5.

Figure 6.7: Experimental results from run # 3 for position maneuver

Parameter Run 1 Run 2 Run 3
Duration 25 s 25 s 41 s
Starting Point (x, y) (−0.27, 1.59) (−0.27, 1.62) (−0.25, 1.40)
Final Point (x, y) (−0.222, 1.3) (−0.26, 1.06) (−0.27, 0.94)
Attitude Thruster ON 1.12 s 1.55 s 1.11 s
Position Thruster ON 4.67 s 6.22 s 10.09 s

Table 6.5: Results of position maneuvers

The maneuvers have been completed. In the graphs, position values along x-y
(top left), velocities (bottom left), thruster ignition (top right), and values of α1
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and α2 (bottom right) are shown.

Run 1 For run 1 the vehicle starts from position (x, y) = (−0.27, 1.59) m. The
desired point is (−0.27, 1.2) m. In the velocity graph, it can be seen that the
low-pass filter is acting to correct the error on the pseudo-derivative calculation.
After 10 seconds, the attitude maneuver begins. This can be seen from the thrusters
graph and the angles α1 and α2. It is possible to see that the range of servos
varies between attitude and position maneuvering. In fact, in the former case the
range varies between 135° and 45°, in the latter case between 150° and 30°. As
described in the previous chapter, angles different from 180° and 0° were chosen in
order to have more control and smoother maneuvers. After several trials, these
values were the appropriate ones to perform the two maneuvers. Moreover, the
values of α1 and α2 seem to contradict the steering law described in figures 5.21.
In fact, during position maneuvering it should be α1 = α2 and not vice versa. This
discrepancy stands in the fact that the servos are specularly mounted in the vehicle,
and therefore it is necessary to provide these angles as input to obtain the logic
described in figure 5.21.

After another 6 seconds, the attitude one begins. Indeed, it is possible to see
how the vehicle moves toward the desired point, from the attitude graph along x
and y. After about 25 seconds, the maneuver is completed and the vehicle is at
position x = −0.22 and y = 1.3 m. There is an error of 5 cm along x and 10 cm
along y.

Run 2 Run 2 is almost a copy of run 1. Starting from a position (x, y) =
(−0.27, 1.62) m, the vehicle reaches position (−0.26, 1.03) m. The error on x
decreased (1 cm), while the error along y remained almost unchanged (11 cm).

Run 3 Run 3 is different from the first two. The vehicle starts from (x, y) =
(−0.25, 1.4) m and the desired point is (−0.27, 1) m. The maneuver is performed
more slowly by changing the constants of the PD controller. Specifically, KP = 0.2
and KD = 1.2. Therefore, the parameter KD is larger compared to the previous
runs. Therefore, the vehicle will have a longer settling time. In fact, the maneuver
is completed in about 40 seconds. The endpoint is (−0.27, 0.94) m obtaining an
error of 0 on x and only 6 cm on y.
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Conclusion

The goals of this thesis work were achieved. The first was to design and build a
small-scale Floating Spacecraft Simulator. The design was taken from Josef Kulke’s
design, making modifications to some electronic components. The weight and size
of the vehicle is reduced compared to the older generations of FSS present at the
Monterey NPS. This drastic reduction in weight and size is part of the project
of miniaturization of satellite components. A testbed was also set up to test the
vehicles. A granite plane, also small in size, was purchased. A laboratory was set
up to acquire data from the position tracker. The electronics of the new vehicle
have been tested and it is working properly. The vehicle can also be controlled
with an XBOX controller. The pneumatic connections were tested and showed that
the vehicle does not have any kind of pressure loss and is ready to start floating
on the granite plane. The vehicle could not be tested on the new granite plane in
Turin due to delays on the delivery of the suitable compressor.

Before a GNC algorithm was implemented, a digital twin of the vehicle was
created to simulate maneuvers and estimate simulation parameters. In addition, a
code was also written that allows the vehicle’s maneuvers on the granite plane to
be displayed on the screen, knowing the vehicle’s position moment by moment.

Thus, a GNC algorithm was tested for the first time on this type of FSS. This
included writing guidance, data acquisition and control algorithms. The data
acquisition part from the VIVE tracker in on-line mode had never been tested
before, and it produced very satisfactory results. Basic position and attitude
maneuvers were performed, with appreciable results even considering the short
time available to perform the tests. The maneuvers performed returned useful
data to evaluate the effective maneuverability of the vehicle. In fact, the only two
steerable thrusters offer an excellent solution in terms of weight and complexity,
but they represent an obstacle to the vehicle’s maneuverability. The maneuvers,
however, are to be considered successful.
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7.1 Future Works
Regarding the design and integration of the FSS, the goal is to make the vehicle
smaller and lighter. Researching a lighter material for the structure could be one
solution. But also look for lighter electronic and pneumatic parts. In addition,
designing a different structure, perhaps not involving rings, could also lead to
making the structure lighter. In addition, a docking mechanism could be added, to
maneuver with multiple satellites together.

The digital twin represents a prototype and can be improved in many aspects.
One of these could be the introduction of a mass ejection law from the vehicle that
would improve the accuracy in calculating state variables. In addition, the testbed
is quasi-frictionless type. Some residual accelerations are always present. One
idea would be to compute and include these external disturbances in the motion
equations to get a simulation as close to the reality as possible. Finally, a more
user-friendly interface could be designed, allowing more immediate management of
firing duration and servo angles.

The GNC algorithm can certainly be improved. The first improvement is
definitely to include a Kalman Filter, to get sensor data less susceptible to error.
Then, other guidance and control algorithms can be added, such as Artificial
Potential Field (APF) or Sliding Mode. This is to be able to perform even more
complex maneuvers, for example, with collision avoidance. All the work done so
far is "open source," so it will be made available to make changes and improve the
project.
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Appendix

A.1 Listings

1 c l e a r a l l
2 c l c
3

4 % Spacec ra f t data
5 m=1.533; %mass [ kg ]
6 l =0.055; %l e v e r a g e o f the thrus t [m]
7 Jz =2.761e −3; %z ax i s i n e r t i a [ kgm^2]
8

9 %Thrust data
10 T1=0.110; %Thruster 1 [N]
11 T2=0.110;
12 F=T1 ;
13

14

15 % out=sim ( ’ un t i t l ed ’ )
16

17 %PID CONTROllER
18 vett_des1 =[−0.27 1 0 0 ] ; % x , y , x_dot , y_dot
19 vett_des2 =[−0.27 1 ] ; % x , y
20 vett_des =[3/2∗ pi 0 ] ; % theta , theta_dot
21

22 %i n i t i a l c ond i t i on
23 x0=0;
24 y0=0;
25 phi0 =0;
26 x_dot0=0;
27 y_dot0=0;
28 phi_dot0=0;
29
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30 %PD CONTROL x−y
31 Kp=0.2;
32 Kd=0.95;
33

34 %PD CONTROL phi
35 Kp_p=0.3;
36 Kd_d=0.3;
37

38 %PWPM x−y
39 Uon=0.02;
40 Uoff =0.001;
41 Kf=1;
42 tau =0.2885;
43

44 %PWPM phi
45 Uon_phi =0.02;
46 Uoff_phi =0.001;
47 Kf_phi=1;
48 tau_phi =0.2885;

Listing A.1: Main Matlab Code
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1 c l e a r a l l
2 c l c
3

4 % Spacec ra f t data
5 m=1.533;

%mass [ kg ]
6 L=0.055;

%l e v e r a g e o f the thrus t [m]
7 Jz =2.761e −3;

%z ax i s i n e r t i a [ kgm^2]
8

9 %Simulat ion
10 t_end=6;
11 dt =0.05;

%sample time
12 T=(0: dt : t_end ) ’ ;

%Simulat ion time [ s ]
13

14 %Thrust data
15 alpha_1=l i n s p a c e (−pi /2,− pi /2 , l ength (T) ) ;

%angle o f o r i e n t a t i o n F1 [ rad ]
16 alpha_2=l i n s p a c e (−pi /2,− pi /2 , l ength (T) ) ;

%angle o f o r i e n t a t i o n F2 [ rad ]
17 T1=0.126;

%Thruster 1 [N]
18 T2=0.126;

%Trhuster 2 [N]
19

20

21 % External Forces ( f i r e o f 1 s from t0=0)
22 t f =1;

%time o f f i r i n g [ s ]
23 F1=ze ro s (1 , l ength (T) ) ;
24 F1 ( 1 : t f /dt +1)=T1 ;
25 %F1( t f /dt +1 + 1/ dt : t f /dt +1 + 1/ dt+t f /dt )=−T1 ;
26

27 F2=ze ro s (1 , l ength (T) ) ;
28 F2 ( 1 : t f /dt +1)=T2 ;
29 %F2( t f /dt +1 + 1/ dt : t f /dt +1 + 1/ dt+t f /dt )=−T1 ;
30

31 %% State space system
32 A=[0 1 0 0 0 0
33 0 0 0 0 0 0
34 0 0 0 1 0 0
35 0 0 0 0 0 0
36 0 0 0 0 0 1
37 0 0 0 0 0 0 ] ;
38
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39 B= [ 0 0 0
40 1/m 0 0
41 0 0 0
42 0 1/m 0
43 0 0 0
44 0 0 1/ Jz ] ;
45

46 C=eye (6 ) ;
47 D= ze ro s (6 , 3 ) ;
48

49

50 F1_z=F1 . ∗ s i n ( alpha_1 ) . ∗L ;
51 F2_z=F2 . ∗ s i n ( alpha_2 ) . ∗L ;
52

53 U_z=−F1_z+F2_z ;
%c o n t r o l vec to r z

54

55

56 F1_x=F1 . ∗ cos ( alpha_1 ) ;
57 F2_x=F2 . ∗ cos ( alpha_2 ) ;
58

59

60 U_x=F1_x−F2_x ;
%c o n t r o l vec to r x

61

62 F1_y=F1 . ∗ s i n ( alpha_1 ) ;
63 F2_y=F2 . ∗ s i n ( alpha_2 ) ;
64

65 U_y=F1_y+F2_y ;
%c o n t r o l vec to r y

66

67 F= [U_x;U_y;U_z ] ;
68

69 x0=ze ro s (6 , 1 ) ;
%i n i t i a l c ond i t i on

70

71 S=ss (A,B,C,D) ;
72

73 X=ls im (S , F ,T, x0 ) ;

Listing A.2: Digital Twin Main code
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1 c l e a r a l l
2 c l c
3 %data import
4 load ( " s imu l_tes i . mat " ) ;
5 Dati=extractTimetab le ( data ) ;
6

7 %%
8 % phi=−Dati . phi_measured ;
9 % T=Dati . Time ;

10 phi=Dati . phi ;
11 T=Dati . Time ;
12 % x=Dati . Data_7 ∗1000 ;
13 % y=Dati . Data_8 ∗1000 ;
14 % z=ze ro s . ∗ x ;
15 x=Dati . x ∗1000 ;
16 y=Dati . y ∗1000 ;
17 z=ze ro s . ∗ x ;
18

19 % % g r a n i t e t ab l e Torino
20 %
21 % g r a n i t e=s t l r e a d ( " gran i t e_tab le_tor ino . s t l " ) ;
22 % P_g = g r a n i t e . Points ; %acc e s s the ver tex data from

t r i a n g u l a t i o n
23 % C_g = g r a n i t e . Connec t i v i t yL i s t ; %acc e s s the c o n n e c t i v i t y data

from t r i a n g u l a t i o n
24 % P_g( : , 1 ) = P_g( : , 1 ) − (630/2) ; %add to each vertex ’ s x value
25 % P_g( : , 2 ) = P_g( : , 2 ) − (400/2) ;
26 % P_g( : , 3 ) = P_g( : , 3 ) − 85 ;
27 % fv_g = t r i a n g u l a t i o n (C_g, P_g) ; %Combine both components back

in to a t r i a n g u l a t i o n v a r i a b l e
28 % anim_2=tr imesh ( fv_g , ’ FaceColor ’ , ’ k ’ , ’ EdgeColor ’ , ’ k ’ , ’ FaceAlpha

’ , ’ 0 . 5 ’ , ’ EdgeAlpha ’ , ’ 0 . 5 ’ ) ;
29 %
30 % xlim ( [ −300 ,300 ] )
31 % ylim ( [ −300 ,300 ] )
32 % zl im ( [ −100 ,500 ] )
33 % hold on
34

35 % g r a n i t e t ab l e Monterey
36 g r a n i t e=s t l r e a d ( " granite_table_Monterey . s t l " ) ;
37 P_g = g r a n i t e . Points ; %acc e s s the ver tex data from t r i a n g u l a t i o n
38 C_g = g r a n i t e . Connec t i v i t yL i s t ; %acc e s s the c o n n e c t i v i t y data

from t r i a n g u l a t i o n
39 P_g( : , 1 ) = P_g( : , 1 ) − (1600) ; %add to each vertex ’ s x value
40 P_g( : , 2 ) = P_g( : , 2 ) + (200) ;
41 P_g( : , 3 ) = P_g( : , 3 ) − 200 ;
42 fv_g = t r i a n g u l a t i o n (C_g, P_g) ; %Combine both components back

in to a t r i a n g u l a t i o n v a r i a b l e
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43 anim_2=tr imesh ( fv_g , ’ FaceColor ’ , ’ k ’ , ’ EdgeColor ’ , ’ k ’ , ’ FaceAlpha ’ , ’
0 . 5 ’ , ’ EdgeAlpha ’ , ’ 0 . 2 ’ ) ;

44

45 xlim ( [ −2000 ,1000 ] )
46 ylim ( [ −400 ,2600 ] )
47 z l im ( [ −200 ,1000 ] )
48

49 x l a b e l ( ’ x ’ )
50 y l a b e l ( ’ y ’ )
51 z l a b e l ( ’ z ’ )
52 hold on
53

54 %FSS
55 fv=s t l r e a d ( " fss_3 . s t l " ) ;
56 P = fv . Points ; %acc e s s the ver tex data from t r i a n g u l a t i o n
57 C = fv . Connec t i v i t yL i s t ; %acc e s s the c o n n e c t i v i t y data from

t r i a n g u l a t i o n
58

59 % phi=l i n s p a c e (0 , p i /2 ,1000) ;
60 pos=[x , y , z ] ;
61

62 %ANIMATION
63 f o r i =1:1 : l ength (T)
64 P_n=P;
65 %modifca Z
66 P_n( : , 3 ) = P( : , 3 ) − min(P( : , 3 ) ) ;%add to each vertex ’ s x value
67

68 %modi f i ca x−y
69 R=[ cos ( phi ( i ) ) −s i n ( phi ( i ) ) 0
70 s i n ( phi ( i ) ) cos ( phi ( i ) ) 0
71 0 0 1 ] ;
72 P_xy=(R∗(P_n) ’ ) ’ + pos ( i , : ) ;
73

74

75 fv = t r i a n g u l a t i o n (C, P_xy) ; %Combine both components back in to a
t r i a n g u l a t i o n v a r i a b l e

76 anim=tr imesh ( fv , ’ FaceColor ’ , ’ c ’ , ’ EdgeColor ’ , ’ k ’ , ’ EdgeAlpha ’ , ’ 0 . 1 ’ ) ;
77 pause ( 0 . 1 )
78 d e l e t e ( anim )
79

80 t i t l e ( " time=" + s t r i n g (T( i ) ) + " s " + ’ ’ + "\ phi = " + . . .
81 round ( rad2deg ( phi ( i ) ) , 0 ) + " " )
82 % + ’ ’ + " x =" + round (X( i ) , 3 ) + "m"+ ’ ’ + " y =" + round (Y

( i ) , 3 ) + "m" )
83 end

Listing A.3: Digital Twin graphics animation code
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1 us ing UnityEngine ;
2 us ing System . Net . Sockets ;
3 us ing System ;
4 us ing System . IO ;
5 us ing System . Text ;
6

7

8 pub l i c c l a s s Socket : MonoBehaviour
9 {

10 // Use t h i s f o r i n i t i a l i z a t i o n
11

12 i n t e r n a l Boolean socketReady = f a l s e ;
13 NetworkStream theStream ;
14 StreamWriter theWriter ;
15 StreamReader theReader ;
16

17

18

19 void FixedUpdate ( )
20 {
21

22 setupSocket ( ) ;
23 Debug . Log ( " socke t i s s e t up " ) ;
24

25 }
26

27

28 pub l i c void setupSocket ( )
29 {
30 s t r i n g se rve r IP = " 192 . 168 . 16 . 163 " ;
31 i n t port = 5500 ;
32

33 t ry
34 {
35 double [ ] va lue s = new double [ ] { trans form . p o s i t i o n . x ,

trans form . p o s i t i o n . y , trans form . p o s i t i o n . z , t rans form . eu l e rAng l e s .
x , trans form . eu l e rAng l e s . y , trans form . eu l e rAng l e s . z , Time . time } ;

36 byte [ ] sendBytes = new byte [ va lue s . Length ∗ s i z e o f ( double
) ] ;

37

38 f o r ( i n t i = 0 ; i < va lue s . Length ; i++)
39 {
40 byte [ ] bytes = BitConverter . GetBytes ( va lue s [ i ] ) ;
41 bytes . CopyTo( sendBytes , i ∗ s i z e o f ( double ) ) ;
42 }
43

44 UdpClient udpClient = new UdpClient ( ) ;
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45 udpClient . Send ( sendBytes , sendBytes . Length , serverIP ,
port ) ;

46 }
47 catch ( Exception e )
48 {
49 Console . WriteLine ( e . ToString ( ) ) ;
50 }
51 }

Listing A.4: C# code for sending data from Unity to Raspberry via UDP
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A.2 Bill of Materials

Product Description Vendor Price
Amount

Jumper cables M-F 3” Polulu 3,20 €
black Pack of 10

Jumper cables M-M 3” Polulu 3,20 €
black Pack of 10

Jumper cables F-F 3” Polulu 3,20 €
black Pack of 10

USB cable Type A to micro Amazon 1,99 €
1

USB cable type A to VCC/GND Amazon 1,99 €
1

Servo Micro Servo Motors Amazon 7,12 €
180° range 2

Relay 2-Channel SPDT Polulu 10,04 €
Relay Carrier 1

Voltage Converter from 3-35 VDC Amazon 7,99 €
to 3-35 VDC 1

Raspberry Pi4 On board computer Kubi 104,96 €
2 GB RAM 1

Micro SD Flash Memory RS Components 13,05 €
32 GB 1

Power Bank Power Supply Amazon 31,86 €
8000 mAh 1

IMU Sensor 3 axis accelerometers Amazon 11,80 €
3-axis gyroscope 1

Tracker VIVE Tracker 3.0 HTC 163,48 €
1

Base Station Vive Base station HTC 485,02 €
2

VR Vive Pro 2 HTC 1.023,95 €
1

Total 1872,85 €

Table A.1: Electronic Parts
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Product Description Vendor Price
Amount

Air tank Field Tank 0.21L-13ci Paintball Shop 44,95 €
1

Air Bearings Air bearing flat New Way 279 €
65mm diam. 1

Pressure regulator 90° Boulder Palmer 127,95 €
Air Pneumatic Regulator Pursuit Shop 1

Solenoid Valve 24 V RS Components 44,23 €
normally closed Components 2

Manometer 0-200 psi range Amazon 18,52 €
1/8 NPT 1

Air Fitting Adapter Amazon 10,20 €
1/8 NPT M-M 2

Air Fitting 1/8 NPT F Amazon 15,15 €
T intersection Pack of 2

Manual Valve 2-Way Brass Tameson 6,06 €
Mini BallValve 1

Air tube OD 6mm - ID 4mm Amazon 11,99 €
10 mt 1

Air Fitting Brass Elbow HoseBarb Tameson 13,18 €
4 mm - G1/4”Rotable 2

Air Fitting Brass Elbow Hose Barb Tameson 10,64 €
4 mm - M5 Rotable Pack of 2

Air Fitting Push-in Fitting Tameson 7,45 €
6mm x G1/8” Pack of 5

Total 589,32 €

Table A.2: Pneumatic Parts
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