
Politecnico di Torino

Dipartimento di Ingegneria Meccanica e Aerospaziale

in collaboration with

Von Karman Institute

Department of Environmental and applied fluid dynamics

Master of Science in Aerospace engineering

Thesis in:

Development of a spectral method code
for simulating liquid films instabilities

in hot dip galvanisation

Supervisor:

Sandra Pieraccini
Miguel Alfonso Mendez

Candidate:

Aleksandr Ferrigno
s288790

academic year 2022 / 2023

Acknowledgements

This work is the conclusion and the culmination of my studies which were characterised

by ups and downs during which I was encouraged by all those people that always believed in

me therefore I sincerely thank them. A special thank goes to my family and my girlfriend who

always supported me with everything needed to produce this master thesis that I hope will

be useful to everybody that will follow my steps. Last but not least I would love to thank my

supervisor Miguel Alfonso Mendez who led me extremely well during my journey making

sure that the work, before being done, was correctly understood.

I

II

Abstract

Hot dip galvanisation is an industrial process of coating iron and steel in zinc. The process

can be optimised with the usage of gas actuators which can reduce the thickness, therefore the

zinc used is less and the cost is reduced, meanwhile improving the homogeneity of the final

coating. This cost-effective technique is known as jet wiping and it is widely used in industrial

processes. However the interaction between the gas accelerated by the jet and the liquid

film produces a wavy final coating films. The aim of the research team of the Von Karman

Institute, in collaboration with ArcelorMittal, is the development of the BLEW (Boundary

LayEr Wiping) software to predict the liquid films dynamic. The aim of this work is to keep

improving the BLEW solver introducing a spectral method needed to reduce the computational

time and numerical diffusion. This thesis presents the spectral method, introduces different

examples used to understand the ins and outs of the scheme and finally shows the application

to the real case study.

III

Contents

Acknowledgements I

Abstract II

Contents IV

1 Introduction 1

1.1 Hot-Dip Galvanisation . 2

2 Spectral Methods 5

2.1 Theory of Spectral Methods . 6

2.1.1 Discrete Fourier Transform . 8

2.1.2 Fast Fourier Transform . 9

2.2 Practical examples . 10

2.2.1 1D Advection Equation . 10

2.2.2 1D Burgers Equation . 15

2.2.3 2D Advection Equation . 19

2.2.4 2D Burgers Equation . 21

3 Jet Wiping Equations 27

3.1 Physical Problem . 28

3.2 Long wave formulation . 30

IV

3.2.1 Scaling laws . 30

3.3 Integral Boundary Layer Models . 32

4 BLEW in Python 37

4.1 General aspects of the BLEW software . 38

4.2 Simplified BLEW equations . 39

4.2.1 Explicit Euler Scheme . 40

4.2.2 Partially Implicit - Explicit Scheme 44

4.2.3 Comparison . 50

5 Conclusions 53

Appendix 55

Bibliography A

V

CHAPTER

1 Introduction

The scope of this master thesis is to present the work done in improving the solver of the

BLEW environment by implementing a spectral scheme instead of the currently used finite

volume scheme which is treated extensively in [2].

This work is the first step taken in the application of spectral methods on the BLEW

environment and has the goal of creating a solid foundation and giving an understandable code

of the first implementation of the scheme.

Therefore, firstly, basic theory of spectral techniques is presented, followed by some

examples; secondly, the BLEW environment is introduced; thirdly, the spectral scheme applied

to simplified BLEW equations is discussed; lastly, conclusions and future development are

projected.

1

1.1 Hot-Dip Galvanisation

Coating techniques are industrial processes based on the deposition of liquid film on solid

surface. The Hot-Dip Galvanisation is one of them, in fact moving steel strips are coated in a

thin layer of fluid zinc which once cooled down is capable of resisting oxidation. However, at

common strip speed, the liquid layer drag is far to thick and uneven which results in high cost

and later structural problems.

To avoid these problems and optimise the process the jet wiping technique, known also

as air-knife coating technique, is used. It utilises high speed gas jet impinging on the liquid

layer which form a run back flow down to the bath reducing the thickness and improving the

homogeneity of the layer itself. Moreover thanks to the development of technologies and the

advancement of computer science it is possible to implement Machine learning algorithms to

control the velocity output of the jet to further improve the final result. The schematic of the

process is shown in figure 1.1.

The moving metal strip passes in the liquid bath in order to be coated in zinc and then

it is pulled upward where thanks to the gravity a part of the coating is removed. However

its thickness is still considerable, therefore the jet-wiping technique is applied which further

decreases the final thickness of the coat. The output of the jet is determined by the controller

which follows policies generated by the Machine Learning algorithm. The part related to the

Machine Learning is presented in [5].

The coating layer, during the process, is divided in two regions: the final coat of thickness

h f and the coat characterised by run back flow of thickness hR caused partially by gravity.

Those two parameters depend on: the velocity U of the metal strip, nozzle gauge pressure ∆Pn,

distance Z between the nozzle and the strip, the nozzle slot width d and the nozzle tilt angle

α as well as liquid properties such as: density ρ , dynamic viscosity µ and surface tension σ .

These are clearly shown in figure 1.2.

2

Figure 1.1: 2D-Schematic of the Jet Wiping Process applied to hot-dip galvanisation

Although the jet wiping technique is a very efficient and profitable coating process, it is

not free from problems. Mainly two: undulation and splashing. The first problem arises in

certain operating conditions where the jet starts to oscillate introducing a wavy pattern in

the final coating, while the second one occurs due to high velocity of the metal strip causing

separation of the liquid film from the substrate in the run back flow. While undulation are

instabilities that compromise just the homogeneity of the final coat the splashing are more dire

film instabilities because they degrade significantly the wiping conditions (pressure gradient

and shear stress at jet impingement), and leads to unstable conditions and to the formation of

zinc droplets which leads to poor wiping efficiency and potentially to the obstruction of the

nozzle due to solidified zinc droplets. Moreover this is concerning for the safety of the worker

3

responsible of the elimination of the layer of oxidised zinc. In addition high production rates

are to be maintained, which is not yet totally accomplished, in order for the process to be

industrially practical. These instabilities are shown in figure 1.2.

Therefore, a predictive model of the instabilities of liquid film is needed in the industrial

lines. While more information on splashing can be found in [3], the undulation problem is

still topic of research.

Figure 1.2: 3D-Schematic of the Jet Wiping Process applied to hot-dip galvanisation

4

CHAPTER

2 Spectral Methods

Spectral methods, together with finite difference methods and finite element methods, are

numerical schemes used in solving Partial Differential Equations, known also as PDEs, and

they are the ”most recently”, 1970s, discovered out of the three schemes.

If one wants to solve Ordinary Differential Equation, for brevity ODEs, or PDEs with high

accuracy on a relatively simple domain and if the data defining the problem are smooth, then

spectral methods are usually the best choice because they can achieve higher accuracy with

respect to other methods.

The last characteristic but not less important is the capacity of these methods to simplify

greatly the application of implicit schemes to complex equations which means less work for

the mathematicians, less code complexity and therefore reduced computational costs. This

aspect will be shown in the practical examples.

This chapter presents the main idea behind the spectral methods and for a deeper under-

standing the reader is referred to [4] and [6]. Afterwards, some examples will be presented.

5

2.1 Theory of Spectral Methods

Spectral Techniques are based on the idea of writing the solution of differential equations as

a sum of basis function where each term is multiplied for certain coefficients. The choice

of these leads to an appropriate representation of the differential equations. For instance the

Fourier transform, FT, of a function u(x), x ∈ R, is the function û(k) defined as

û(k) =
∫ +∞

−∞

e−ikxu(x)dx (2.1)

Where û(k) can be interpreted as the amplitude density of u at the wave number k, therefore,

on one hand, the FT is a transform that converts a function into a form that describes the

frequencies present in the original function. The output of the transform is a complex-valued

function of frequency. On the other hand to reconstruct u, function expressed in the physical

domain, from û, expressed in the frequency domain, the inverse Fourier Transform is needed

to be performed. Therefore

u(x) =
1

2π

∫ +∞

−∞

eikxû(k)dk (2.2)

Since there are equations that can not be solved analytically, for instance the Navier-Stokes

equations, then they are solved by approximations. These are calculated in a discrete space

therefore the wave-number k will no longer range over R, instead the wave-number domain is

a bounded interval of length 2π

h where h is the length of the interval discretization therefore it

should be remembered that k is bounded because x is discrete. Intervals of length different

from 2π are easily handled by a scale factor.

Something that should be paid attention to is the aliasing phenomenon responsible for

the indistinguishability of the signals sampled. This phenomenon is caused by too low sam-

6

ple rate for sampling a particular signal or too high frequencies present in the signal for

a particular sample rate. It is easily understandable from the figure 2.1 below. A way to

mitigate this problem is by applying the The Nyquist-Shannon theorem also known as the

sampling theorem. It states that a periodic signal must be sampled at twice the maximum fre-

quency characterising the data inputted. Otherwise it is possible to filter the higher frequencies.

Another requirement of the spectral methods is the periodicity of the boundary conditions

which at a first glance may suggest that this methods have limited relevance for the practical

problems, however periodic grids are surprisingly useful in practice. In these methods the

periodicity is not explicitly stated, as happens in the other two numerical technique where

boundary conditions are defined, but it is implicit, which means that the function that represents

the initial condition should be periodic in the physical domain. If this condition is not respected

then huge oscillations in the solution are introduced at the boundary of the domain.

Figure 2.1: aliasing phenomenon

7

2.1.1 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is a multiplication operation by which a matrix of

coefficients is multiplied by the sampled data vector. The DFT is therefore the representation

of the frequencies characterising the data vector sampled. The Fourier analysis is widely used

in practical applications and it is performed by applying the DFT which, as stated before, is

the representation of the frequencies characterising the sampled vector. However it is not

an efficient operation since it computational cost is equal to O(n2). The DFT and iDFT are

respectively defined as

ûk =
N

∑
j=1

u je−ikx j , k =−N
2
+1, ...,

N
2

(2.3)

u j =
1

2π

N/2

∑
k=−N/2+1

ûkeikx j , j = 1, ...,N (2.4)

For a more strict demonstration the reader is redirected to [4] and [6].

In addition to the increase in the accuracy and the reduction of the computational cost, as

reported in the practical examples shown below, spectral methods simplify the computation of

derivatives based on the following algorithm:

• Given a function u(x), compute û(k)

• Define ∂ ν û = (ik)ν û

• Compute ∂ νu(x) from ∂ ν û

8

2.1.2 Fast Fourier Transform

The Fast Fourier Transform (FFT) is an algorithm that optimise the Discrete Fourier Transform

operation, or its inverse, iDFT. Fourier analysis converts a signal from its original domain to a

representation in the frequency domain and viceversa. If the DFT and its inverse are computed

following their definition reported respectively in (2.3) and (2.4) then the process is too slow

to be of practical use. However the FFT is extremely ingenious because it allows the reduction

of the computational cost of the DFT from a quadratic order, O(N2), to an almost linear one,

O(NlogN), speeding up the process. This is done by factorising the DFT matrix into a product

of sparse, mostly zero, factors.

The spectral methods relaying on FFT can be summed up as follows:

• Given an initial condition which is a periodic function u(x) expressed on a equally

spaced grid of spacing h

• Determine the wave-numbers which are function of the number of grid points and the

spacing of the grid itself

• Determine û(k) using the FFT, function in the frequency domain

• Compute the necessary derivatives while being in the frequency domain as : ∂ν û =

(ik)ν û

• Switch back to the physical domain utilising the iFFT

• Compute the Right Hand Side of the equation studied

• Integrates in time what was obtained

9

Not only these schemes reduces the computational cost but they also simplify greatly

the mathematical calculations and therefore the code implementation. This is accomplished

thanks to the shift between domains which permit to execute operations between terms that

otherwise could not happen; for instance the product between a variable x and the derivative

of a variable y can be implemented as a product of the variable y times the derivative of the

variable x. This flexibility facilitate the following operations reducing the time spent and the

equation’s complexity, which lead to a mathematically more beautiful relation.

The example from before is explicated below:

x∂xy FFT−−→ x̂ikxŷ = ŷikxx̂ iFFT−−→ y∂xx (2.5)

2.2 Practical examples

This section has the scope to present the application of the spectral methods to a set of different

equations, in particular, they will be presented based on their complexity. These case studies

are : 1-D advection equation, 1-D Burgers equations, 2-D advection equation and finally 2-D

Burgers equation. These examples are realised in python.

2.2.1 1D Advection Equation

∂tu+a∂xu = 0 (2.6)

This equation is a PDE which describes the transportation of substance and its properties

by bulk motion of fluid using some scalar field, u(x, t) unknown, carried along a direction x by

a flow of constant speed a. It requires an initial condition

u(x,0) = u0 (2.7)

10

where u0 is given. Moreover if the transport occurs in a finite domain then boundary

conditions are required. If the wave is moving from left to right in a domain x ∈ [xL;xR] then

the velocity is defined as a > 0 thus the following boundary condition must be given:

u(xL,0) = uL(t) (2.8)

Its solution has the form

u(x, t) = u0(x−at) (2.9)

Therefore the initial profile is simply “swept along” with velocity a. To solve it numerically

two methods are used : Upwind Scheme and Spectral Scheme.

Upwind Scheme

This scheme is used to solve ODEs and PDEs using the upstream variables to compute the

derivatives which are estimated using a set of data points biased to be more ”upwind” of

the query point, with respect to the direction of the flow. This scheme is not the focus of

the thesis work therefore it will not be treated extensively; it is only introduced for comparisons.

The scheme used for the comparison is the simplest and it is first order, moreover, if the

velocity is considered to be positive then the scheme is defined as

un+1
i −uN

i
∆t

+a
un

i −un
i−1

∆x
= 0 (2.10)

This formulation can be written in its matrix form as

ūn+1 =− a
∆x

(FD · ūn) (2.11)

11

where FD is a matrix which stands for First Derivative. Its effect, when multiplied by ū, is

to compute the approximation of the derivative upon division by ∆x.

The upwind scheme is stable if the discretization parameters satisfy the Courant–Friedrichs–Lewy

stability condition (also known as CFL condition). The CFL condition states that ∆t and ∆x

should satisfy (eq. 2.12) and the quantity C = a∆t/∆x is called Courant number.

C = a
∆t
∆x

< 1 (2.12)

The Scheme is presented in the appendix while the numerical solution of the one dimen-

sional advection equation is shown in figure 2.2.

Spectral Scheme

To solve numerically this equation utilising spectral methods it is needed firstly to define the

solution as follows

u(x, t) =
N

∑
n=1

ûn(t)eiknx (2.13)

Then the following algorithm is used to compute the solution:

1. A discrete domain is defined in space and time

2. Initial condition is defined

3. Wave-numbers are calculated

4. FFT of the solution is computed

5. Space derivatives are calculated as : ∂xu = aikû

6. The previous derivatives are transformed back into space domain using the iFFT and all

the terms at the Right Hand Side are computed

12

7. Finally the solution is integrated in time with the Runge-Kutta method used by ”solve

ivp” which is a built in function in python. Then a gif is built to show visually the

results.

The code is presented in the appendix. The results obtained with the algorithm, on the consid-

ered test case, are shown in figure 2.3.

The domain length is 3 with x ∈ [0;3], the number of grid points is equal to 100 and

therefore the grid spacing is given by L/nx, equal to 0.03. The velocity considered is 1 and

the C is equal to 0.8 therefore the time stepping is calculated from its inverse. The duration

of the simulation is 4 second. The initial condition is a Gaussian function with mean value

µ = 0.6 and standard deviation equal to σ = 0.05

Comparison

Figure 2.2 and 2.3 are snapshots of the solution obtained with the two methods. The red line

represents the analytical solution while the blue one is the computed one.

The discretisation characterising the upwind method, shown in figure 2.2, satisfies the

CFL condition but its grid mesh is coarse therefore the numerical dispersion, which is always

present at different magnitudes based on the quality of the numerical scheme, is enormous.

This phenomenon can be seen from the comparison between the analytical solution and the

numerical one. To solve this problem the spatial mesh should be finer.

The solution obtained with spectral scheme, shown in figure 2.3, does not display numerical

dispersion due to its incredible accuracy for smooth functions as reported in [6]. The method

should be way faster than the upwind one but it is not appreciated in this case since the quantity

13

of the data used is not high enough; in fact its true prowess is shown when it works with

billions of data.

Figure 2.2: Upwind scheme applied to the 1D advection equation. The broken red line
represent the initial condition while the continuous blue one represents the solution at different
time steps.

14

Figure 2.3: Spectral scheme applied to the 1D advection equation. The broken red line
represents the initial condition while the continuous blue one represents the solution at
different time steps

2.2.2 1D Burgers Equation

∂tu+u(t,x)∂xu = ν∂xxu (2.14)

This equation is a non linear PDE which combines, on the left, the non linear advective

term and, on the right, the diffusive term. This equation has a certain degree of similarity to

the the Navier-Stokes equations. It is a one dimensional equation describing the motion of a

fluid characterised by non linear advective and diffusive terms with the absence of the driving

force given by the pressure gradient. If the kinetic viscosity tends to zero then the equation

becomes the inviscid Burgers’ equation which can develop shock waves. As in the previous

case an initial condition and a boundary layer condition are set. It should be remembered that

spectral scheme does not require boundary conditions because they are considered implicitly

in the definition of the initial condition which must be periodic.

15

In this case the domain length is 3, the number of grid points is 128 therefore the grid

spacing is 0.023; the number of time steps is 256 for a duration of 4 seconds therefore the time

stepping is 0.016. The initial condition considered is the same used in the previous case. The

physical viscosity considered is ν = 0.1.

Upwind Scheme

As in the previous case the upwind scheme for this equation is :

un+1
i −uN

i
∆t

+un
i

un
i −un

i−1

∆x
= ν

un
i+1 −2un

i +un
i−1

∆x2 (2.15)

and it can be written in its matrix form as

ūn+1 =−ūn(FD · ūn)+ν(SD · ūn) (2.16)

(FD) stands again for First Derivative while (SD) stands for Second Derivative and they

both are matrices representing the multiplying coefficients each term approximating the

respective derivative. The first one is a bi-diagonal matrix characterised by zeros everywhere

except the main and the immediate lower diagonal while the second one is three-diagonal

one characterised by zeros everywhere except the main and the immediate upper and lower

diagonals. Then the coefficients multiplying the boundary conditions are added in their

respective position. Thus the FD matrix has 1 on the main diagonal and −1 on its immediate

lower one, while SD matrix has −2 on its main diagonal and 1 on its immediate upper and

lower co-diagonal. The code is shown in the appendix while the results of the application of

the numerical method is displayed in figure 2.4.

Spectral Scheme

As in the previous case the following solutions is considered:

16

u(t,x) =
N

∑
n=1

ûn(t)eiknx (2.17)

As stated in the algorithm, after performing a FFT the derivatives are calculated in the

frequency domain as follows:

∂xû = ikxû (2.18)

∂xxû = (ikx)
2û (2.19)

After performing the iFFT of the equations above the right hand side is computed as

∂tu =−u∂xu+ν∂xxu (2.20)

Now the integration in time is performed by the ”solve ivp” command which uses the

default Runge-Kutta method. The visual result is shown in the figure 2.5.

Comparison

The solution of the 1D Burgers equation solved with the upwind scheme is diffused way quicker

with respect to the spectral one because the upwind method is characterised by the physical,

ν = 0.1, and numerical diffusion while the spectral scheme is affected by only the physical

one. In order to see the magnitude of the numerical dispersion affecting the upwind scheme the

physical diffusion is considered null while the 1D Burgers equation is solved by the upwind

scheme while it maintain its value, ν = 0.1 when the equation is solved by the spectral scheme.

In figures 2.4 and 2.5 the initial condition, represented by the broken red line, and a

snapshot of the numerical solution, represented by the continuous blue one, after t = 1[s] are

17

shown.

Figure 2.4 shows the behaviour of inviscid Burgers equation which is able, as stated before,

to represent a shock wave. The equation should display the formation of this discontinuity

while moving in the right direction. However the numerical diffusion is considerably high,

therefore while the discontinuity travels it keeps being diffused, decreasing therefore the

accuracy of the numerical solution over time.

Figure 2.5 displays the proper behaviour of the equation 2.14 which accounts for a 0.1

physical diffusion. The scheme is extremely stable and present a high accuracy over time.

Figure 2.4: Upwind scheme applied to the 1D Burgers Equation. Broken red line is the initial
condition while the continuous blue one is the numerical solution at each time step. The
snapshot represent the solution after t = 1[s]

18

Figure 2.5: Spectral Scheme applied to the 1D Burgers Equation. Broken red line is the initial
condition while the continuous blue one is the numerical solution at each time step. The
snapshot represent the solution after t = 1[s]

2.2.3 2D Advection Equation

∂tu+3∂xu+2∂yu = ν(∂xxu+∂yyu) (2.21)

As explained before, this equation represent the transportation of substance and its prop-

erties by bulk motion of a fluid using a two dimensional scalar field u(x,y, t). This equation

and the following ones will not be solved by upwind method but will be solved directly by a

spectral one. Moreover they are implemented with a semi-implicit spectral scheme which will

demonstrate the ease with which the nonlinear equation can be made implicit.

After the definition of space and time domains the initial condition is defined as the

following Gaussian

u(x,y,0) = e−
(x−1)2+(y−1)2

2σ2 (2.22)

19

where σ is equivalent to 0.25.

Here there are two ways of proceeding in solving the PDE: convert the discretized two

dimensional domain into a single vector of ordered grid points and therefore working with

vectors or convert the outputs of the various functions used to arrays. The mode used in this

thesis is the second one because of the suitability of regular domain, their regularity, generality

and clarity of the procedure and the efficiency of the computations involved. The algorithm for

spectral scheme is the same used until now with minor changes due to the increase of degree

of freedom; the code is reported in the appendix.

To resolve in time this equation a partial implicit-explicit time scheme was chosen where

the diffusive term is treated implicitly while the convective one is solved explicitly.

Once the discretisations have been realised, an initial condition has been defined and the

wave numbers has been computed then the cycle iteration starts with a FFT performed on the

initial condition. The solution at the next time step, in the frequency domain, is computed as

stated below:

ûn+1 =
ûn(1

∆t −3 jkx −2 jky)
1
∆t +ν(k2

x + k2
y)

(2.23)

Performing the iFFT gives the solution in the spatial domain which is then displayed and

saved; this end the cyclical iteration. To solve this equation using a partially implicit scheme,

non recurring to spectral methods, a non linear equation, whose formulation is more difficult

that a simple fraction, must be solved at each iteration.

The following figures show the solution of the bi-dimensional advection equation at two

different time steps. The nature of the equation makes the solution translate in the xy direction

while being subjected to diffusion. The nature of the diffusion is only physical. It is clearly

20

shown above as the semi-implicit method is expressed simply as a fraction and therefore it is

extremely easy to implement.

Figure 2.6: Spectral Scheme of the 2D Advection Equation

2.2.4 2D Burgers Equation


∂tu+u∂xu+ v∂yu = ν(∂xxu+∂yyu)

∂tv+u∂xv+ v∂yv = ν(∂xxv+∂yyv)
(2.24)

As stated before this set of equations mimic the Navier-Stokes equations through its

fluidlike expressions for nonlinear advection and diffusion terms. Again, to solve the system

of equations the fundamental algorithm presented above is used. The initial condition used in

this case is the same used in the other cases therefore:

21

Figure 2.7: Spectral Scheme of the 2D Advection Equation


u(x,y,0) = u0(x,y)

v(x,y,0) = v0(x,y)
(2.25)

The main part of the algorithm coded for the computation of this system of equations is

presented in the appendix.

The system is solved using two different methods: a fully explicit and a partially explicit-

implicit method for spatial discretization. Then the solution at the next time step is computed

using Euler explicit method.

22

Explicit Method

Firstly it is needed to define the domain in time and space then the initial condition should

be stated. After that the FFT of the initial condition is performed and wave numbers are

computed. Next the derivatives are calculated in the frequency domain as stated in the

algorithm presented in the section above. Follows the inverse Fast Fourier transformation on

the derivatives calculated before, then the following system is computed:


un+1−un

∆t =−un∂xun − vn∂yun +ν(∂xxun +∂yyun)

vn+1−vn

∆t =−un∂xvn − vn∂yvn +ν(∂xxvn +∂yyvn)

(2.26)

And lastly the next time step is calculated using the Explicit Euler method therefore:


un+1 = un +∆t(−un∂xun − vn∂yun +ν(∂xxun +∂yyun))

vn+1 = vn +∆t(−un∂xvn − vn∂yvn +ν(∂xxvn +∂yyvn))

(2.27)

After 700 time steps the solution has the following form:

23

Figure 2.8: Fully explicit Spectral Scheme of the 2D Burgers Equations

The physical diffusivity considered is 0.01 which is extremely low therefore the system

can be considered inviscid. As it has been seen before the inviscid Burgers equations presents

a shock wave that travels in the xy direction. In fact the time step considered has capture

the instant in which the wave has re-entered the domain; this basically shows that in spectral

schemes the space is infinite.

This method is stable and present a satisfactory accuracy because a suitable time step,

0.005, is considered. It should be remembered that the spectral methods are used because

of their low computational cost therefore in order to take advantage of this strength point a

suitable method for time integration is required. Explicit Euler method is extremely easy to

apply but it is highly unstable and therefore it requires a high temporal accuracy, which means

a smaller time step. Summarising then, the computational cost saved using the spectral method

24

is less effective due to the cost requested for the implementation of Euler explicit method.

Implicit - Explicit Method

This method is different from the algorithm used above only for the discretization of the

system of the equations, in particular, the diffusive term is computed explicitly while the

convective one is computed implicitly.

This is again a practical example of what has been said at the beginning of this chapter,

which is in regard to the easiness of the mathematical treatment needed to be performed in

order to make implicit some term of the non linear equation. It is shown in this test case

where Burgers equations once transformed into the frequency domain by a FFT becomes

easily manageable and the implicitation of the non linear term becomes extremely easy. This

therefore leads to a significant simplification of the final relations.

The system 2.24 is discretized as follows:


∂tu =−un∂xun+1 − vn∂yun+1 +ν(∂xxun +∂yyun)

∂tv =−un∂xvn+1 − vn∂yvn+1 +ν(∂xxvn +∂yyvn)

(2.28)

performing a FFT of the Right Hand Side the system becomes


un+1−un

∆t =−ûnikxûn+1 − v̂nikyûn+1 +ν((ikx)
2ûn +(iky)ûn)

vn+1−vn

∆t =−ûnikxv̂n+1 − v̂nikyv̂n+1 +ν((ikx)
2v̂n +(iky)

2v̂n)

(2.29)

Using the commutative property on the non linear terms, executing an iFFT and re-

arranging the system, it becomes


un+1 (1

∆t +∂xun +∂yvn)= un

∆t +ν(∂xxun +∂yyun)

vn+1 (1
∆t +∂xun +∂yvn)= vn

∆t +ν(∂xxvn +∂yyvn)

(2.30)

25

Therefore the solution of the next time step is:


un+1 =

un
∆t +ν(uxx+uyy)

1
∆t +ux+vy

vn+1 =
vn
∆t +ν(vxx+vyy)

1
∆t +ux+vy

(2.31)

The solution after 700 time steps is shown in the figure 2.9.

The physical diffusivity considered is 0.01 which means that the system can be considered

inviscid. There are no changes in the physical behaviour with respect to the previous case.

The main difference is shown in the numerical method; the partially implicit-explicit

method even though is more complex is more efficient so it is faster even though it is not

appreciable in this particular case because the time integration is still computed utilising Euler

explicit method which present the same problem expressed above.

Figure 2.9: Implicit-Explicit Spectral Scheme of the 2D Burgers Equations

26

CHAPTER

3 Jet Wiping Equations

As presented in the abstract and sub sequentially in the introduction an efficient coating

technique is the jet wiping process which uses impinging gas jet to control the thickness of a

liquid layer dragged along a moving metal strip. However it is affected by instabilities born

from the interaction between the gas jet and the liquid film create wavy pattern in the coating

which results in a worsening homogeneity of the final product.

To understand the dynamic of the wave formation the classic laminar boundary layer

models for falling films are extended to jet wiping problem. The models presented in this

dissertation are known as integral boundary layer models, they are currently used to simulate

the dynamic of the problem and they are extensively treated in [1], however, these are only a

group of models, among others, studied which though resulted appropriate for the physical

representation. Among such other models there are weighted integral boundary layer models

(WIBL) and transition and turbulence boundary layer models (TTBL) used in order to extend

the theory to large Reynolds numbers and analysing the impact of the modelling strategy. The

mathematical theory behind the jet wiping phenomenon is well presented and extensively

treated in [2] therefore hereby it will briefly explained.

27

3.1 Physical Problem

Figure 3.1: Schematic of the jet wiping process

The Jet Wiping Process is presented in the figure 3.1 where a metal strip moving upwards

with constant velocity Up drags a layer of liquid film which is impinged by a gas jet. The

configuration is assumed two-dimensional, with incompressible liquid flow bounded by the

plate at y = 0, and the dynamic liquid interface at y = h(x, t).

As it is shown in the figure 3.1 the nozzle of the gas jet is positioned at x = 0 which

extends downward counter the substrate velocity and along the gravitational acceleration. The

impinging jet flow positioned at a standoff distance Z produces a pressure distribution, pg(x, t),

and shear stress distribution, τg(x, t), that identify three different regions: Wiping region (WR),

the RunBack flow region (RB) and the Final Coating region (FC). In the first region, WR,

the pressure gradient forces part of the liquid film to reverse direction resulting in a wiping

meniscus which then falls downward due to gravitational forces creating then RB region while

28

the thinner liquid film generated by the pressure gradient remain attached to the metal strip

moving upward creating the FC region.

In a one-way coupling formulation, the assumption is that the presence of the liquid film

does not have any impact on the gas jet, whereas the gas jet does affect the liquid film. This

assumption has been extensively verified for predicting the average final coating thickness

(Lacanette et al. 2006; Gosset Buchlin 2007). However, it is not capable of simulating the

intricate interaction between the two flows studied by Gosset et al. (2019) and Mendez et al.

(2019). The presented formulation, thoroughly addressed in reference [1], aims to decouple

the behaviour of the liquid from that of the gas jet. It facilitates the analysis of the liquid

film’s frequency response and potential mechanisms of undulation formation. Under this

formulation, it is assumed that both the pressure and shear stress generated by the jet depend

solely on the nozzle gauge stagnation pressure (∆P), the nozzle opening (d), the discharge

coefficient (Cd), and the standoff distance (Z).

The physical problem of interest in not though two dimensional but three dimensional one

therefore the problem of interest is presented in the figure below

Figure 3.2: 3D Schematic of the jet wiping process

29

3.2 Long wave formulation

The integral models investigated rely on the Navier-Stokes equation, which in case of the jet

wiping process are defined as follows :


∂xu+∂yv = 0

ρl(∂tu+u∂xu+ v∂yu) =−∂x pl +µl(∂xxu+∂yyu)+ρlg

ρl(∂tv+u∂xv+ v∂yv) =−∂y pl +µl(∂xxv+∂yyv)

(3.1)

And they rely on the boundary conditions in the ”long wave” formulation. This formulation

is derived by scaling the cross streamwise direction with a reference length [h], which is much

smaller than the streamwise reference length [x].

3.2.1 Scaling laws

The scaling laws are defined following the physical problem and they transform the the

Navier-Stokes equation into their dimensionless form. This section is discussed in both [1]

and especially well in [7] where two different case are treated, in particular the falling film and

the moving substrate, therefore hereby only the keys concept inherent to the moving substrate,

topic of interest, are reported.

The liquid is assumed to be incompressible with kinematic viscosity ν , density ρ , dynamic

viscosity µ = ρν and surface tension σ . The problem is set as shown in the figure 3.2 where

p denotes the pressure in the liquid while (u,v,w) are the velocity components. The flow is

bounded at the surface of the metal strip while the dynamic liquid interface is at y = h(x,z, t).

The square brackets will denote the reference values while the hat will denote the scaling of a

certain quantity respect its reference value and it is dimensionless, that is to say â = a/[a]. As

30

stated before the substrate is moving at the imposed velocity Up in the opposite direction to the

gravity and therefore it is logical to assume that [u] =Up meanwhile the reference values for

the thickness and the flow rate are respectively: [h] =
√

νUp/g and [q] = [u][h] =
√

νU3
p/g.

Accordingly the Reynolds number is defined as Re = [q]/ν =
√

U3
p/(gν). As requested

from the ”long wave” formulation the x direction should be scaled such that ε = [h]/x << 1

meanwhile the capillary forces, (∼ σ [h]/[x]3), are similar to the gravitational ones, (∼ ρg).

This scaling laws are known as Shkadov’s scaling, leads to

ε = (
[h]2gρ

σ
)1/3 =Ca1/3 (3.2)

where Ca = µUp/σ is the capillary number for the moving substrate. Finally the re-

duced Reynolds number,δ = εRe, and the dimensionless Kaptiza number which weighs

the importance of surface tension over viscosity depending only on the liquid properties ,

Ka = σ/(ρν4/3g1/3), are introduced. For the sake of clarity, simplicity and visibility the

scaling laws are reported in the table below 3.1.

Reference Quantity Definition Expression
[h] (νl[u]/g)1/2 (νlUp/g)1/2

[x] [h]/ε (νlUp/g)1/2Ca−1/3

[u] Up Up

[v] εUp UpCa1/3

[p] ρlg[x] (µlρlgUp)
1/2Ca−1/3

[τ] µl[u]/[h] (µlρlgUp)
1/2

[t] [x]/[u] (νl/Upg)1/2Ca−1/3

Table 3.1: Shkadov’s Scaling laws

31

3.3 Integral Boundary Layer Models

As stated before the integral boundary layer models can be derived from the Navier-Stokes

equations reported in 3.1 scaled accordingly to the scaling laws presented in the previous

section. The boundary layer equations obtained are:

∂x̂û+∂ŷv̂+∂ẑŵ = 0 (3.3)

δ (∂t̂ û+ û∂x̂û+ v̂∂ŷû+ ŵ∂ẑû) =−∂x̂ p̂x +∂
2
ŷyû+1 (3.4)

∂ŷ p̂y = 0 (3.5)

δ (∂t̂ŵ+ û∂x̂ŵ+ v̂∂ŷŵ+ ŵ∂ẑŵ) =−∂ẑ p̂z +∂
2
ŷyŵ (3.6)

Where the equation 3.3 is the continuity equation while the other three, respectively 3.4,3.5

and 3.6, are the (x,y,z) momentum equations. For the sake of completeness below are stated

the boundary conditions, however it is needed to be remembered that the spectral methods do

not require them since they are implicitly verified in the initial condition.

−→̂
v |ŷ=0 = (û, v̂, ŵ)|ŷ=0 = (−1,0,0) (3.7)

v̂|ŷ=h = ∂t̂ ĥ+ û|ŷ=h∂x̂ĥ+ ŵ|ŷ=h∂ẑĥ (3.8)

The dynamic boundary conditions formulating the force balance at the free surface is:

32

p̂|ŷ=ĥ = p̂g − (∂x̂xĥ+∂ẑzĥ) (3.9)

∂ŷû|ŷ=ĥ = τ̂g,x (3.10)

∂ŷŵ|ŷ=ĥ = τ̂g,z (3.11)

where p̂g, τ̂g,x and τ̂g,z are respectively gas pressure and the shear stress components along

x and z respectively, imposed by an external air flow.

To derive the integral model the equations from 3.3 to 3.6 are integrated along y assuming

a self similar parabolic velocity profile for both the streamwise û and spanwise ŵ velocity

components. Using the local flow rate definitions, the substrate motion and the interface shear

stress, the profiles for the MS case read:

û(ĥ, q̂x, q̂z) =
3

4ĥ3
(τ̂g,xĥ2 −2ĥ−2q̂x)ŷ2 +

6ĥ+6q̂x − τ̂g,xĥ2

2ĥ2
ŷ−1 (3.12)

ŵ(ĥ, q̂x, q̂z) =
3

4ĥ3
(τ̂g,zĥ2 −2q̂z)ŷ2 +

6q̂z − τ̂g,zĥ2

2ĥ2
ŷ (3.13)

It is relevant that the balance of the viscosity and gravitational forces are not altered by

inertial and surface tension. The integration results in a system of nonlinear partial differential

equations for the liquid film height ĥ, the streamwise q̂x and spanwise q̂z flow rates. In

conservative form, this reads:

∂t̂Û +▽·F =
−→
S (3.14)

33

where the state vector is defined as Û = (ĥ, q̂x, q̂z)
T , the source vector is

−→
S = (S1,S2,S3)

and F is the rectangular flux matrix of dimension 2X3. In particular The sources terms are

defined as :


S1 = 0

S2 =
1
δ
(ĥ(∂x̂ p̂x +∂ 3

x̂x̂x̂ĥ+∂ 3
x̂ẑẑĥ+1)+∆τ̂x)

S3 =
1
δ
(ĥ(∂ẑ p̂z +∂ 3

ẑẑẑĥ+∂ 3
ẑx̂x̂ĥ)+∆τ̂z)

(3.15)

the third derivatives correspond to capillary pressure gradient while the terms ∆τ̂s are

obtained from the integration of equations 3.4 and 3.6 and they corresponds to the difference

between shear stresses at interface of the liquid film and the shear stresses at the wall. Using the

self similar assumption the shear stresses at the wall are given by the following formulations:


τ̂w,x =

1
2 τ̂g,x −3 q̂x

ĥ2 − 3
ĥ

τ̂w,z =
1
2 τ̂g,z −3 q̂z

ĥ2

(3.16)

meanwhile the flux matrix is

F =

 F11 F12 F13

F21 F22 F23

 (3.17)

where every element it is as follows :

34



F11 = q̂x

F21 = q̂z

F12 =
1

120ĥ
(144q̂2

x +6τ̂g,xĥ2q̂x + τ̂g,xĥ4 +48ĥq̂x +6τ̂g,xĥ3 +24ĥ2)

F22 =
1

120ĥ
(144q̂xq̂z +3τ̂g,xĥ2q̂z +3τ̂g,zĥ2q̂x + τ̂g,xτ̂g,zĥ4 +24ĥq̂z +3τ̂g,zĥ3)

F13 = F22

F23 =
144q̂2

z+3τ̂g,zĥ2q̂z+τ̂2
g,zĥ

2

120ĥ

(3.18)

This concludes the introduction to the integral boundary layer model. For a deeper

understanding the reader is redirected to [7] and [1].

35

36

CHAPTER

4 BLEW in Python

The studies regarding the realisation of a mathematical model that describes the jet wip-

ing process and the formation of instabilities have already taken more that 10 years during

which studies, experiments and general research have been carried out extensively in order to

formulate a numerical model able to predict the thickness of the final coating and control the

generation of instabilities.

The work done until today has culminated in the realisation of the software Boundary

LayEr Wiping, BLEW. Therefore the first phase of the research can be considered finished

since the problem has been understood and model implementation has already been carried out.

Henceforth an optimisation problem shall be resolved since finite volume schemes present

huge computational cost which limits the applicability of the software developed; so in order

to make it industrially practical spectral methods are developed to reduce the time and increase

the accuracy of the model.

37

4.1 General aspects of the BLEW software

Arcelor Mittal more than a decade ago proposed to the Von Karman Institute the study about

an industrial optimisation process since the goal is to understand the dynamic of liquid film

and the arise of instabilities in the coating processes in order to reduce costs and increase the

quality of the goods.

After years of studies and experimentation to get the data needed to implement mathemati-

cal models a software in Python was realised. The software ”BLEW” is a project made of

different ” .py” files; most of them are callable functions used in the main script. The choice

of Python is based on some points which are: the easiness of usage, huge amount of packages

already well developed, algorithms for artificial intelligence already developed, implemented

and well documented and the flexibility given.

Firstly different packages are called and an environment is created then, on company

requests, the inputs are passed by a file Excel linked to the main script. It takes in input three

sheets of parameters respectively: wiping, actuators, numerical and temporal parameters; gas

perturbation and liquid perturbation; and other parameters.

Secondly the interpolation matrix is computed and passed to the liquid perturbation

function. This is based on the scalar laws presented above.

Thirdly the spatial and temporal domain are defined.

Next the solutions are initialised and the Reinforcement Learning algorithm is implemented.

Within the ”RL” algorithm the numerical scheme chosen is applied. The scheme used until

now is the finite volume scheme which is based on the blended Lax-Wendroff (high-order)

and Lax-Friedrichs (low-order) scheme, regulated by a ”limiter” function, on a dimensionless

integral model for a liquid film on a moving substrate developed by Gabriele Gamba and

38

presented in [2]. Immediately afterwards the boundary conditions are defined. Then the gas

perturbations are implemented and used to obtain in return observations and reward.

Finally the environment is reset at the end of the episode.

4.2 Simplified BLEW equations

Since this is the first work of its kind the approach adopted is ”bottom-up” therefore the first

BLEW equations implemented are simplified; they are originated from the equations (3.14),

characterised by (3.15) and (3.18), with the assumption of gas shear stresses, τgx τgz , and

pressure gradient, ∇p, null. If these conditions are applied while making explicit the fluxes

(3.18) the following system of equations is obtained :


∂t ĥ+∂xq̂x +∂yq̂z = 0

∂t q̂x +∂x
144q̂2

x+48ĥq̂x+24ĥ2

120ĥ
+∂z

144q̂xq̂z+24ĥq̂z
120ĥ

= S2

∂t q̂z +∂x
144q̂xq̂z+24ĥq̂z

120ĥ
+∂z

144q̂2
z

120ĥ
= S3

(4.1)

Using the derivative’s properties the system can be re-written as


∂t ĥ+∂xq̂x +∂yq̂z = 0

∂t q̂x +
24

120

(
6∂x

q̂2
x

ĥ
+2∂xq̂x +∂xĥ+6∂z

q̂xq̂z
ĥ

+∂zq̂z

)
= S2

∂t q̂z +
24

144

(
6∂x

q̂xq̂z
ĥ

+∂xq̂z +6∂z
q̂2

z
ĥ

)
= S3

(4.2)

Below are presented two different implementation of the system of equations (4.2): Ex-

plicit Euler, the basic implementation, and an implementation of a partially implicit-explicit

scheme. Those are coded together in the last file presented in the appendix. In that file is also

present an intermediate scheme used to improve the performances of the base solver however

for the sake of clarity and brevity only the best and ultimate result is presented in this thesis

39

work.

To optimise the performance of the solver the Finite Impulse Response, FIR, filter theory

is adopted for a low pass filtering process. In the filtering process some small oscillations are

introduced near the extremes of the range of values filtered and this is done in order to reduce

the numerical oscillations of the final solution.

4.2.1 Explicit Euler Scheme

The Explicit Euler scheme is the easiest scheme to implement and it is to be considered the

base which is stable for dt ≤ dx/500, where 1/500 is the velocity value and it was empirically

obtained. The system of equations reported above becomes:


∂t ĥ =−∂xq̂x −∂zq̂z

∂t q̂x = S2 − 24
120

(
6∂x

q̂2
x

ĥ
+2∂xq̂x +∂xĥ+6∂z

q̂xq̂z
ĥ

+∂zq̂z

)
∂t q̂z = S3 − 24

144

(
6∂x

q̂xq̂z
ĥ

+∂xq̂z +6∂z
q̂2

z
ĥ

) (4.3)

The derivatives are computed as follows

• The Linear term : ∂iq̂ j = iFFT (jki ˆ̂q j) where i, j = (x,z) and ˆ̂q j = FFT (q̂ j)

• The Non Linear term : if a =
q̂2

x
ĥ

, b = q̂xq̂z
ĥ

and c = q̂z
ĥ

then ∂i(a,b,c) = iFFT (jki(â, b̂, ĉ))

in where (â, b̂, ĉ) = FFT ((a,b,c))

• The temporal term : ∂t(ĥ, q̂x, q̂z) =
(ĥ,q̂x,q̂z)

k+1−(ĥ,q̂x,q̂)k

∆t

Therefore the final system to be implemented is

40


ĥk+1 = ĥk −∆t(∂xq̂x +∂zq̂z)

q̂k+1
x = q̂k

x +∆t
(

S2 − 24
120

(
6∂x

q̂2
x

ĥ
+2∂xq̂x +∂xĥ+6∂z

q̂xq̂z
ĥ

+∂zq̂z

))
q̂k+1

z = q̂k
z +∆t

(
S3 − 24

144

(
6∂x

q̂xq̂z
ĥ

+∂xq̂z +6∂z
q̂2

z
ĥ

)) (4.4)

The main problem encountered is related to the definition of a wrong initial condition. The

initial condition used at the beginning was defined as


ĥ = e

(x−x0)
2+(z−z0)

2

2σ2

q̂x =
ĥ3

3 − ĥ

q̂z = 0

(4.5)

This caused immediately the solution to overflow due to the many non linear term divided

by h which was zero almost everywhere.

The problem is solved introducing a base state for the initial film height which basically

avoided the division by zeros thus solving the problem of overflow. The initial condition used

then are defined as :


h = 0.5e

(x−x0)
2+(z−z0)

2

2σ2 +h0 with h0 = 0.1

q̂x =
ĥ3

3 − ĥ

q̂z = 0

(4.6)

Once the problem of overflow was solved different simulation with different spatial

discretisation are done in order to verify the degree of the numerical dispersion and the

computational time of the two schemes depending on the grid refinement.

Figures 4.1, 4.2 and 4.3 show the solution obtained by grid refinement in x and z direction at

sequential times, in particular, at t = 13,26,54 [s]. The grid refinement is defined as : nx =mLx

41

and nz = mLz, where m is a multiplier equal to [1,2,3], while the spatial discretisation is :

dx = Lx/nx and dz = Lz/nz. The physical time is 60 [s]. Increasing the multiplier at each

simulation increases the number of grid points which then reduce the grid spacing creating a

more refined spatial discretisation.

Figure 4.1: Solution of simplified BLEW equations characterised by nx = Lx and nz = Lz at
13 seconds of simulation

Figure 4.1 shows the solution characterised by a multiplier of 1 after 13 [s]. This means

that the number of grid points is equal to the length of the domain in its respective direction. In

order to obtain a simulation of 60 [s] the solver has employed almost 197 [s] of computational

time.

The initial condition is travelling from right, starting at (x,z) = (40,20) which is basically

the center of the spatial domain, to the left and once it leaves the domain from the left edge it

will re-enter from the right one. The waves generated from the moving Gaussian are visual

representation of the numerical dispersion born from a poor spatial discretisation which leads

to an inappropriate approximation of the solution across all the studied field.

Figure 4.2 shows the solution characterised by a multiplier of 2 after 26 [s]. Now the

number of grid points is two times the respective domain’s length. In order to obtain the same

42

Figure 4.2: Solution of simplified BLEW equations characterised by nx = 2Lx and nz = 2Lz at
26 seconds of simulation

60 [s] of simulation the solver has employed almost 806 [s] of computational time. As it was

said before the Gaussian is travelling from left to right but in this case since the grid is refined

then the numerical dispersion, shown as waves propagating from the moving initial condition,

is much less although it is still present and relevant.

Figure 4.3: Solution of simplified BLEW equations characterised by nx = 3Lx and nz = 3Lz at
54 seconds of simulation

43

Lastly figure 4.3 reports the solution characterised by a multiplier of 3 after 54 [s]. This

plot show the most refined grid used for the Explicit Euler scheme in fact the number of grid

points is three times the respective domain’s length. In this case the simulation lasted about

2410 [s] which is basically three times slower that the previous case. Although the solution

is much more accurate with almost no numerical dispersion, almost absolute absence of

travelling waves, the computational time employed is no small amount therefore for practical

uses a trade off needs to be found.

The solver works properly however it is not conveniently applicable to real cases because

of its high computational cost. To improve the solution and reduce the computational cost a

partially implicit-explicit scheme is introduced in the sub-section below.

4.2.2 Partially Implicit - Explicit Scheme

To solve the problem of the high computational cost of the Explicit-Euler scheme a partially

implicit-explicit scheme is introduced. This scheme, as it will be shown below, work properly

for dt = dx/50 which means that it is 10 time faster than the explicit-Euler without relevant

changes in the solution stability.

As stated in the title the partially implicit-explicit scheme computes some terms explicitly

which means it uses the solution of the variable at the current time step, while other are treated

implicitly which means that they are unknown. From the system of equations (4.2) the non

linear terms in the flow rate equations along x and z can be rewritten, using the derivatives’

properties, as

• ∂i
q̂2

j

ĥ
=

2q̂ j

ĥ
∂iq̂ j +

(
q̂ j

ĥ

)2
∂iĥ where i, j = (x,z)

• In case of the flow rate equation along x the non linear term q̂xq̂z
ĥ

can be written as a∗ q̂x

where a = q̂z
ĥ

44

• Meanwhile in case of the flow rate equation along z a new variable, b = q̂x
ĥ

, can be

defined therefore q̂xq̂z
ĥ

= b∗ q̂z.

Hence the system becomes as stated below


∂t ĥ+∂xq̂x +∂yq̂z = 0

∂t q̂x +
24
120

(
6
(
2b∂xq̂x +b2∂xĥ

)
+2∂xq̂x +∂xĥ+6(q̂x∂za+a∂zq̂x)+∂zq̂z

)
= S2

∂t q̂z +
24
120

(
6(q̂z∂xb+b∂xq̂z)+∂xq̂z +6

(
2a∂zq̂z −a2∂zĥ

))
= S3

(4.7)

And then


∂t ĥ+∂xq̂x +∂yq̂z = 0

∂t q̂x +
24
1206(2b∂xq̂x +a∂zq̂x + q̂x∂za) = S2 − 24

120

(
∂xĥ(6b2 +1)+2∂xq̂x +∂zq̂z

)
∂t q̂z +

24
1206(2a∂zq̂z +b∂xq̂z + q̂z∂xb) = S3 +

24
120

(
a2∂zĥ−∂xq̂z

) (4.8)

Now the following procedure can be performed to modify each equation in the most

suitable way :

• Every term should be passed from the spatial domain to the frequency domain using the

FFT.

• Rewrite derivative terms as ∂i(ĥ, q̂ j) = iki(
ˆ̂h, ˆ̂q j) with i, j = (x,z)

• Now that every term is in the frequency domain, the derivatives are written as stated

above then the commutative property can be used on suitable targets. In this case the

variable that will be treated implicitly is the q̂ j of the non linear term of the respective

flow rate equation.

45

This basically means that in case of the x direction the term treated implicitly will be

the variable q̂x being part of a non linear term meanwhile in the z direction it will be q̂z

part of the non linear term. This practically means that :

q̂x∂xa+a∂xq̂x = iFFT (ˆ̂qk+1
x (ikxâk)+ âk(ikx ˆ̂qk+1

x)) = iFFT (2 ˆ̂qk+1
x (ikxâ)) (4.9)

• Finally every term must be switched back to the spatial domain.

As in the previous example the terms that will be switched back are :q̂k+1
x = iFFT (ˆ̂qk+1

x)

and ak = iFFT (ikxâk)

Therefore the final system implemented in the code states



ĥk+1 = ĥk −∆(∂xq̂k
x +∂zq̂k

z)

q̂k+1
x =

S2− 24
120

(
∂x

ˆ
h(6b2k

+1)+2∂xq̂k
x+∂zq̂k

z

)
1
∆t +

12
5 (∂xbk+∂zak)

q̂k+1
z =

S3+
24
120

(
a2k

∂zĥk−∂xq̂k
z

)
∆t+ 12

5 (∂xbk+∂zak)

(4.10)

This practical case is the perfect example of the flexibility of the spectral schemes. In order

to use other implicit schemes a complex system of non linear equations needs to be generated

which then needs to be solved every time step in order to find the solution of the next one;

however the spectral schemes give more freedom in the non linear term management which

then simplify greatly the mathematical treatment which leads to generate easier relations to

implement, in fact what would have been a system of non linear equations become a system of

three fractions with a certain degree of similarity.

Moreover the code shows a third scheme which is however an intermediate step. It is also

a partially implicit-explicit scheme characterised by a different choice of implicit variable.

The implicit variable was chosen based on the flow rate equation that was solved and it was

46

considered only from the non linear term : q̂xq̂z/h.

The implementation of this algorithm is shown in the appendix and it is the last proposed to

the reader while the results are reported in : 4.4, 4.5, 4.6 and 4.7 below. As in the previous cases

the number of grid points is equal to the length of the respective domain times a multiplier

value, m, which is equal to (1,2,3,4,5) therefore it can be summarised that dx = dz = 1/m

thus increasing the multiplier, m, refines the mesh. The physical time is, again, the same

60 [s].

Figure 4.4: Solution of simplified BLEW equations characterised by m = 1 at 13 seconds of
simulation

As in the corresponding Explicit Euler case, here, at the same physical time the figure

4.4 report the solution characterised by a multiplier of one which means that the grid is

extremely coarse and therefore the approximation of the solution at the common surface of

two adjacent cells is inappropriate which is being shown as wave propagation from the moving

Gaussian. Although the solution is affected by high numerical dispersion the computational

time employed by the solver is just 88 [s] which is already faster that the corresponding test

case.

47

Figure 4.5: Solution of simplified BLEW equations characterised by m = 2 at 26 seconds of
simulation

Figure 4.5 represents the solution at a physical time of 26 [s] and a number of grid points

characterised by a multiplier, m = 2, therefore the grid spacing is half of the previous one thus

improving the spatial discretisation. The computational time employed for this simulation is

258 [s]. The numerical dispersion is greatly reduced even though it is still present

Figure 4.6: Solution of simplified BLEW equations characterised by m = 3 at 54 seconds of
simulation

48

The figure 4.6 reports the solution characterised by a multiplier, m, of 3 at the physical

time of 54 [s]. The time employed to realise this simulation is almost 738 [s], three time

slower than the previous case, with a relevant reduction in numerical dispersion. However

increasing the number of the grid points, as shown in figure 4.7 and 4.8, does not reduce

relevantly the numerical dispersion even though the computational time increases respectively

to 1451−2491 [s].

0.5

Figure 4.7: Solution of simplified BLEW equations characterised by m = 4 at 54 seconds of
simulation

0.5

Figure 4.8: Solution of simplified BLEW equations characterised by m = 5 at 54 seconds of
simulation

49

4.2.3 Comparison

This sub-section summarises what reported in the previous two sub-sections. The results are

reported in table 4.1 and are shown in figure 4.9

m Explicit Euler tcomp [s] Partially Implicit Scheme tcomp [s]
1 197 88
2 806 258
3 2410 738
4 − 1451
5 − 2491

Table 4.1: computational cost for different grid spacing

Figure 4.9: Relation between the computational time, seconds, and the grid refinement
expressed in number of grid points by the the multiplier, m.

Figure 4.9 shows the trend for the computational time depending on the grid refinement

expressed by the multiplier, m, recall that dx = Lx/nx = Lx/(mLx) = 1/m.

50

It is clearly shown that the increase in the number of grid points causes a steep increase

in the computational time in both cases however Explicit Euler Scheme has a higher com-

putational cost with respect to the partially implicit scheme. Alternatively with the same

computational time considered the partially implicit scheme allows for a better mesh grid

refinement than the other scheme.

Lastly considering the figures inherent to the explicit Euler scheme and to the partially

implicit scheme it could be said, from a visual interpretation, that although the more refined

grid of the explicit Euler is more accurate with respect to the partially implicit scheme. A good

trade off between accuracy and computational cost is proposed by the other scheme especially

if a finer grid, m = 4, is considered.

51

52

CHAPTER

5 Conclusions

The work done until now and the one presented in this thesis is just a single step towards

the final goal.

This consists in the realisation of a software, backed up by an efficient reinforcement

learning algorithm, able to observe the state of the coating and modifying it by varying the

velocity output of the gas jet. To do this efficiently the software should be able to process a

huge amount of calculations and data while taking the right decisions therefore the goal can

be divided into two main objectives:

• Realisation of an efficient solver which is able to speed up the calculations and therefore

reduce the computational cost without losing accuracy.

• Realisation of a smart Reinforcement Learning algorithm which is able to accomplish

the desired thickness by using the least amount of actuators possible.

Both subjects are being studied and the work is carried forward.

This thesis is the preliminary study of spectral methods and has the goal of presenting to

the readers the rough idea of the inner working of these algorithms in order to gain a quick

53

understanding of the problem and the solution chosen to solve it.

The next step that should be carried out in order to complete the work and create the final

product requested by the company are :

• Development of more computationally efficient spectral schemes.

• Introduction of gas perturbation

• Modification of the solver in order to represent the reality of the phenomenon which

means that the wave should not re-enter from the input.

• Validation of the efficiency of the scheme chosen regarding the new, more completed,

system of equations.

To create an industrially applicable solver the computational cost should be greatly reduced

without incurring in losses of stability and accuracy. To reach this goal semi implicit scheme

could be a great starting point since it gives a certain degree of versatility in mathematical

treatment which could potentially lead to formulate a variety of equations each characterised

by different values of stability and accuracy. Thus a good method could be found with a

reduced computational cost.

54

Appendix

This section presents, in the following order, python codes of : 1D advection equation, 1D

Burgers equation, 2D advection equation and 2D Burgers equations.

In addition a final code containing three different spectral solver of the simplified BLEW

equations is reported in the latest part of the appendix.

55

#!/usr/bin/env	python3
#	-*-	coding:	utf-8	-*-
"""
Created	on	Mon	Jan	30	11:31:32	2023

@author:	aleksandr
"""
#	This	algorithm	solves	1D	advection	equation	with	BC	utilizing	upwind	scheme	whose	matrix	is	sparse	
#	and	spectral	scheme

#%%%	LIBRARIES

import	numpy	as	np
import	matplotlib.pyplot	as	plt
import	os
import	imageio

from	scipy	import	sparse	as	sp
from	scipy.integrate	import	solve_ivp
#from	General_Functions	import	ANIMATE_D

#%%%	NUMERICAL	DOMAIN

L					=	3																									#	Length	of	the	domain		
n_x			=	101																							#	Number	of	grid	points	
x					=	np.linspace(0,L,n_x)						#	Domain	discretization	
dx				=	float(round(L/n_x,3))					#	Space	step	
U					=	1																									#	Flow	velocity	
CFL			=	0.8																							#	CFL	=	U	*	dt	/	dx	condition	
dt				=	CFL	*	dx	/	U														#	Time	step	
t_i			=	0																									#	Initial	time
t_f			=	4																									#	Final	time	
times	=	np.arange(t_i,t_f,dt)					#	Time	discretization	

#%%%	INITIAL	CONDITION

u0	=	np.exp(-(x-0.6)**2/0.05)	

#%%%	UPWIND	SCHEME

FD	=	np.zeros((n_x,n_x))			#	Matrix	of	coefficients	

for	j	in	range(n_x):
				FD[j,j]	=	1
				try:	
								FD[j,j-1]	=	-1
				except:	
								pass

FDs	=	sp.csr_matrix(FD)				#	Sparse	matrix	

def	upwind1D(t,u,FD,dx):
				dudx	=	FD.dot(u)/dx
				return	-dudx

1

sol_upwind	=	solve_ivp(upwind1D,[t_i,t_f],u0,args=(FDs,dx),t_eval=times,dense_output=True)				
Sol_upwind	=	sol_upwind.y

#Y	=	ANIMATE_D(x,times,sol_upwind,'Upwind1D.gif')

#%%%	SPECTRAL	SCHEME

k	=	np.fft.fftfreq(n_x,dx)		#	Wavenumber	

#	dudx	=	-1j	k	u_hat

def	spectral(t,u,k):
				u_hat	=	np.fft.fft(u)
				dudx_hat	=	1j*k*u_hat
				dudx	=	np.real(np.fft.ifft(dudx_hat))
				return	-dudx

sol_spectral	=	solve_ivp(spectral,[t_i,t_f],u0,t_eval=times,args=(k,),dense_output=True)				
Sol_spectral	=	sol_spectral.y
time=sol_spectral.t

#%%%	PLOTTING	

plt.rc('text',	usetex=False)						
plt.rc('font',	family='serif')
plt.rc('xtick',labelsize=16)
plt.rc('ytick',labelsize=16)

def	animate(x,t,Sol,GIFNAME):
				Fol_Out='Video_Images_temp'
				n_t=len(t)
				if	not	os.path.exists(Fol_Out):
								os.mkdir(Fol_Out)
				
				for	k	in	range(1,n_t):
								fig,	ax1	=	plt.subplots(figsize=(8,	5))	#	This	creates	the	figure
								plt.plot(x,Sol[:,k])
								plt.plot(x,Sol[:,0],'r--')	
								ax1.set_xlabel('x',fontsize=14)
								ax1.set_ylabel('u',fontsize=14)
								ax1.set_xlim([0,np.max(x)])
								ax1.set_ylim(-2,2)
								Name=Fol_Out+	os.sep	+'Step_'+str(k)+'.png'
								MEX=	'Exporting	Im	'+	str(k)+'	of	'	+	str(n_t)
								print(MEX)
								plt.savefig(Name,	dpi=50)					
								plt.close()
				
				print('Temporary	images	exported')
				images=[]				

				for	k	in	range(1,n_t,1):

2

								MEX=	'Mounting	Im	'+	str(k)+'	of	'	+	str(n_t)
								print(MEX)
								FIG_NAME=Fol_Out+os.sep+'Step_'+str(k)+'.png'
								images.append(imageio.imread(FIG_NAME))

				imageio.mimsave(GIFNAME,	images,duration=0.05)

				import	shutil		
				shutil.rmtree(Fol_Out)

				MEX='Animation'+GIFNAME+'	Ready'
				print(MEX)
	
				return	MEX

#	Make	the	video	of	the	solutions
animate(x,time,Sol_spectral,'Test_Spectra.gif')

#	Make	the	video	of	the	solutions
animate(x,time,Sol_upwind,'Test_FD.gif')

3

#!/usr/bin/env	python3
#	-*-	coding:	utf-8	-*-
"""
Created	on	Tue	Jan	31	13:42:06	2023

@author:	aleksandr
"""

#	This	script	has	the	goal	of	solving	the	1D	viscous	Burgers	equation
				#	u_t	+	u	*	u_x	=	nu	*	u_xx
#	Upwind	method	and	spectral	method	will	be	used	to	compute	the	equation	

#%%%	LIBRARIES

import	numpy	as	np
import	matplotlib.pyplot	as	plt
import	os
import	imageio

from	scipy	import	sparse	as	sp
from	scipy.integrate	import	solve_ivp
from	scipy.sparse	import	csr_matrix

#%%%	PLOTTING	

plt.rc('text',	usetex=False)						
plt.rc('font',	family='serif')
plt.rc('xtick',labelsize=16)
plt.rc('ytick',labelsize=16)

def	animate(x,t,Sol,GIFNAME):
				Fol_Out='Video_Images_temp'
				n_t=len(t)
				if	not	os.path.exists(Fol_Out):
								os.mkdir(Fol_Out)
				
				for	k	in	range(1,n_t):
								fig,	ax1	=	plt.subplots(figsize=(8,	5))	
								plt.plot(x,Sol[:,k])
								plt.plot(x,Sol[:,0],'r--')	
								ax1.set_xlabel('x',fontsize=14)
								ax1.set_ylabel('u',fontsize=14)
								ax1.set_xlim([0,np.max(x)])
								ax1.set_ylim(-2,2)
								Name=Fol_Out+	os.sep	+'Step_'+str(k)+'.png'
								MEX=	'Exporting	Im	'+	str(k)+'	of	'	+	str(n_t)
								print(MEX)
								plt.savefig(Name,	dpi=50)					
								plt.close()
				
				print('Temporary	images	exported')
				images=[]				

				for	k	in	range(1,n_t,1):
								MEX=	'Mounting	Im	'+	str(k)+'	of	'	+	str(n_t)

1

								print(MEX)
								FIG_NAME=Fol_Out+os.sep+'Step_'+str(k)+'.png'
								images.append(imageio.imread(FIG_NAME))

				imageio.mimsave(GIFNAME,	images,duration=0.01)

				import	shutil		
				shutil.rmtree(Fol_Out)

				MEX='Animation'+GIFNAME+'	Ready'
				print(MEX)
				return	MEX

#%%%	DOMAIN

L					=	3																																		#	Length	of	the	domain		
n_x			=	128																																#	Number	of	grid	points	
dx				=	round(L/(n_x),3)																			#	Space	step	
x					=	np.linspace(0,L,n_x)															#	Domain	discretization	

n_t			=	256																																#	Number	of	temporal	points	
t_i			=	0																																		#	Initial	time
t_f			=	4																																		#	Final	time	
dt				=	round((t_f-t_i)/(n_t),3)											#	Time	step
t					=	np.arange(t_i,t_f,dt)														#	Time	discretization	

nu				=	0.1																																#	Dynamic	viscosity

#%%%	INITIAL	CONDITION	

u0		=	np.exp(-(x-0.6)**2/0.05)													#	Initial	condition	

#%%%	UPWIND	METHOD

#	First	derivative	(u_i-u_(i-1))/dx
FD	=	np.diagflat(np.ones((n_x,1)),0)	+	np.diagflat(-1*np.ones((n_x-1,1)),-1)			
FD[0,-1]	=	-1
FDs	=	sp.csr_matrix(FD)/dx
#if	nu>=.5:
#	Second	derivative	(u_(i+1)-2u_i+u_(i-1))/dx**2
SD	=	np.diagflat(-2*np.ones((n_x,1)),0)	+	np.diagflat(np.ones((n_x-1,1)),-1)	+	np.diagflat(np.ones((n_x-1,1)),1)
SD[0,-1]	=	SD[-1,0]	=	1				
SDs	=	sp.csr_matrix(SD)/dx**2
#	else:
#					SD	=	np.zeros((n_x,n_x))
#					SDs	=	sp.csr_matrix(SD)

def	Burgers1D_UpWind(t,u,FDs,SDs):
				u_t	=	-	u	*	(FDs.dot(u))	+	nu	*	(SDs.dot(u))	
				return	u_t

Sol_UpWind	=	solve_ivp(Burgers1D_UpWind,[t_i,t_f],u0,method='Radau',t_eval=t,dense_output=True,args=(FDs,SDs))				
u_uw	=	Sol_UpWind.y
animate(x,t,u_uw,'Burgers1D_Upwind.gif')
#%%%	SPECTRAL	METHOD

2

k	=	np.fft.fftfreq(n_x,	dx)

def	Burgers1D_SPECtral(t,u,nu,k):
				
				u_hat	=	np.fft.fft(u)
				u_hat_x	=	1j	*	k	*	u_hat	
				u_hat_xx	=	-k**2	*	u_hat
				
				u_x	=	np.real(np.fft.ifft(u_hat_x))
				u_xx	=	np.real(np.fft.ifft(u_hat_xx))
				
				u_t	=	-	u	*	u_x	+	nu	*	u_xx
				return	u_t

Sol_SPECtral	=	solve_ivp(Burgers1D_SPECtral,[t_i,t_f],u0,t_eval=t,args=(nu,k),dense_output=True)
u_spec	=	Sol_SPECtral.y
time_spec	=	Sol_SPECtral.t
animate(x,time_spec,u_spec,'Burgers1D_Spectral.gif')	
			

3

#!/usr/bin/env	python3
#	-*-	coding:	utf-8	-*-
"""
Created	on	Tue	Feb	21	14:43:15	2023

@author:	aleksandr
"""

#	This	script	ha	the	goal	to	solve	the	2D	Advection	equation	with	spectral	methods	
#	u_t	+	3*u_x	+	2*u_y	=	nu	+	(u_xx	+	u_yy)

#%%%	LIBRARIES	

import	numpy	as	np
import	matplotlib.pyplot	as	plt
import	os
import	imageio

from	scipy	import	sparse	as	sp
from	scipy.integrate	import	solve_ivp
from	scipy.sparse	import	csr_matrix

#%%%	DOMAIN	

Lx		=	3
Ly		=	2
ti		=	0
tf		=	5
nx		=	300
ny		=	200
nt		=	600
nu		=	0.1

x0				=	1
y0				=	1
sigma	=	0.25

dx		=	round(Lx/nx,3)
x			=	np.linspace(0,Lx,nx)
dy		=	round(Ly/ny,3)
y			=	np.linspace(0,Ly,ny)
dt		=	round((tf-ti)/nt,3)
t			=	np.linspace(ti,tf,nt)

#%%%	INITIAL	CONDITION	

(xx,yy)	=	np.meshgrid(x,y)
u0	=	np.exp(-((xx-x0)**2	+	(yy-y0)**2)/2/sigma**2)	

plt.ioff()
fig	=	plt.figure(num=1)
ax	=	plt.axes(projection='3d')
ax.contour3D(xx,	yy,	u0,	50,	cmap='binary')
ax.set_xlabel('x')
ax.set_ylabel('y')

1

ax.set_zlabel('u')

#%%%	SPECTRAL	METHOD

kx_vect	=	2*np.pi*np.fft.fftfreq(nx,dx)
ky_vect	=	2*np.pi*np.fft.fftfreq(ny,dy)

kx	=	np.zeros((ny,nx))
ky	=	np.zeros((ny,nx))

for	j	in	range(nx):
				for	i	in	range(ny):
								
								kx[i,j]	=	kx_vect[j]
								ky[i,j]	=	ky_vect[i]

u_hat	=	np.fft.fft2(u0)

Fol_Out='Video_Images_temp'
n_t=len(t)
if	not	os.path.exists(Fol_Out):
			os.mkdir(Fol_Out)
	
for	n	in	range(1,nt):
				
				u_hat	=	u_hat	*	(1/dt	-3j*kx	-2j*ky)
				u_hat	=	u_hat	/	(1/dt	+	nu	*	(kx**2	+	ky**2))
				u	=	np.real(np.fft.ifft2(u_hat))
				u_hat	=	np.fft.fft2(u)
				
				fig	=	plt.figure(num=n)
				ax	=	plt.axes(projection='3d')
				ax.contour3D(xx,	yy,	u,	50,	cmap='binary')
				ax.set_xlabel('x',fontsize=14)
				ax.set_ylabel('y',fontsize=14)
				ax.set_zlabel('u',fontsize=14)
				ax.set_xlim([0,Lx])
				ax.set_ylim([0,Ly])
				Name=Fol_Out+	os.sep	+'Step_'+str(n)+'.png'
				MEX=	'Exporting	Im	'+	str(n)+'	of	'	+	str(nt)
				print(MEX)
				plt.savefig(Name,	dpi=50)					
				plt.close()

print('Temporary	images	exported')
images=[]

GIFNAME	=	'2D_AdvEq.gif'	

for	k	in	range(1,nt,1):
				MEX=	'Mounting	Im	'+	str(k)+'	of	'	+	str(nt)
				print(MEX)
				FIG_NAME=Fol_Out+os.sep+'Step_'+str(k)+'.png'
				images.append(imageio.imread(FIG_NAME))

2

	#	Now	we	can	assembly	the	video
imageio.mimsave(GIFNAME,	images,duration=0.05)

import	shutil		#	nice	and	powerfull	tool	to	delete	a	folder	and	its	content
shutil.rmtree(Fol_Out)

MEX='Animation'+GIFNAME+'	Ready'
print(MEX)

3

#!/usr/bin/env	python3
#	-*-	coding:	utf-8	-*-
"""
Created	on	Thu	Feb	23	13:18:24	2023

@author:	aleksandr
"""

#	This	script	solve	2D	burgers	equation	with	Spectral	Methods
				#	u_t	+	uu_x	+	vu_y	=	nu	*	(u_xx	+	u_yy)	
				#	v_t	+	uv_x	+	vv_y	=	nu	*	(v_xx	+	v_yy)
#	The	non	linear	term	will	be	calculated	implicitly	

#%%%	LIBRARIES	

import	numpy	as	np
import	matplotlib.pyplot	as	plt
import	os
import	imageio.v2	as	imageio
import	time

#%%%	DOMAIN	

Lx		=	3
Ly		=	2
tf		=	5
nx		=	60
ny		=	40
nt		=	5000
nu		=	0.01

x0				=	1
y0				=	1
sigma	=	0.20

dx		=	Lx/nx
dy		=	Ly/ny
dt		=	5e-3

x			=	np.linspace(0,Lx,nx)
y			=	np.linspace(0,Ly,ny)

#%%%	INITIAL	CONDITION	

(xx,yy)	=	np.meshgrid(x,y)
u	=	np.exp(-((xx-x0)**2	+	(yy-y0)**2)/2/sigma**2)	
v	=	np.exp(-((xx-x0)**2	+	(yy-y0)**2)/2/sigma**2)

#	plt.ioff()
#	fig	=	plt.figure(num=1)
#	ax	=	plt.axes(projection='3d')
#	ax.contour3D(xx,yy,u,50,cmap='binary')
#	#ax.contour3D(xx,yy,v,50,cmap='binary')
#	ax.set_xlabel('x')
#	ax.set_ylabel('y')

1

#%%%	SPECTRAL	METHOD

start	=	time.perf_counter()

#	If	it	is	needed	add	to	the	function	input	the	filter	which	then	would	be	used	as	:
#	ux_hat	=	1j	*(kx	*filtr_x)	*u_hat

def	Burgers2D(dt,u,v,kx,ky):
				
				u_hat	=	np.fft.fft2(u)
				v_hat	=	np.fft.fft2(v)
				
				ux		=	np.real(np.fft.ifft2(1j	*kx	*u_hat))
				uy		=	np.real(np.fft.ifft2(1j	*ky	*u_hat))
				uxx	=	np.real(np.fft.ifft2(-kx**2	*u_hat))
				uyy	=	np.real(np.fft.ifft2(-ky**2	*u_hat))
				
				vx		=	np.real(np.fft.ifft2(1j	*kx	*v_hat))
				vy		=	np.real(np.fft.ifft2(1j	*ky	*v_hat))
				vxx	=	np.real(np.fft.ifft2(-kx**2	*v_hat))
				vyy	=	np.real(np.fft.ifft2(-ky**2	*v_hat))
				
				#	Fully	explicit	scheme
				
				RHS_u	=	-u	*	ux	-	v	*uy	+nu	*(uxx	+uyy)
				RHS_v	=	-u	*	vx	-	v	*vy	+nu	*(vxx	+vyy)
				
				#	Partially	explicit-implicit	scheme
				
				#	RHS_u	=	(u/dt	+nu	*(uxx	+	uyy))	/(1/dt	+ux	+vy)
				#	RHS_v	=	(v/dt	+nu	*(vxx	+	vyy))	/(1/dt	+ux	+vy)
				
				return	RHS_u,	RHS_v

def	forward_euler(dt,u,v,RHS_u,RHS_v):
				
				u	=	u	+dt	*RHS_u
				v	=	v	+dt	*RHS_v
				
				return	u,v

kx_vect	=	2*np.pi*np.fft.fftfreq(nx,dx)
ky_vect	=	2*np.pi*np.fft.fftfreq(ny,dy)

kx	=	np.zeros((ny,nx))
ky	=	np.zeros((ny,nx))

for	j	in	range(nx):
				for	i	in	range(ny):
								
								kx[i,j]	=	kx_vect[j]
								ky[i,j]	=	ky_vect[i]

2

#	FILTERING	PROCESS---###

#	filtr_x	=	np.ones_like(kx)
#	filtr_y	=	np.ones_like(ky)
#	max_kx		=	np.max(np.abs(kx[0,:]))
#	max_ky		=	np.max(np.abs(ky[:,0]))
#	filtr_x[np.where(np.abs(kx)>max_kx*2/3)]	=	0
#	filtr_y[np.where(np.abs(ky)>max_ky*2/3)]	=	0

#	--###

plt.ioff()
Fol_Out='Video_Images_temp'

if	not	os.path.exists(Fol_Out):
			os.mkdir(Fol_Out)

for	n	in	range(1,nt+1):
				
				(RHS_u,RHS_v)	=	Burgers2D(dt,	u,	v,	kx,	ky)
				(u,v)	=	forward_euler(dt,	u,	v,	RHS_u,	RHS_v)
				
				#	(u,v)	=	Burgers2D(dt,	u,	v,	kx,	ky)
				
				fig	=	plt.figure()
				ax		=	plt.axes(projection='3d')
				ax.contour3D(xx,	yy,	u,	50,	cmap='binary')
				ax.set_xlabel('x',fontsize=14)
				ax.set_ylabel('y',fontsize=14)
				ax.set_zlabel('u',fontsize=14)
				ax.set_xlim([0,Lx])
				ax.set_ylim([0,Ly])
				Name=Fol_Out+	os.sep	+'Step_'+str(n)+'.png'
				MEX=	'Exporting	Im	'+	str(n)
				print(MEX)
				plt.savefig(Name,	dpi=50)					
				plt.close()

print('Temporary	images	exported')
images=[]

GIFNAME	=	'2D_BurgersEq.gif'	

for	k	in	range(1,nt,1):
				MEX=	'Mounting	Im	'+	str(k)
				print(MEX)
				FIG_NAME=Fol_Out+os.sep+'Step_'+str(k)+'.png'
				images.append(imageio.imread(FIG_NAME))

imageio.mimsave(GIFNAME,	images,duration=0.001)

import	shutil		
shutil.rmtree(Fol_Out)

MEX='Animation'+GIFNAME+'	Ready'

3

print(MEX)

finish	=	time.perf_counter()

print(f'Time	FINISH	:	{finish-start}')

4

#!/usr/bin/env	python3
#	-*-	coding:	utf-8	-*-
"""
Created	on	Wed	May		3	09:59:17	2023

This	code	solve	spectrally	the	following	equations

				\partial_t	h		+	\partial_x	F11	+	\partial_z	F21	=	S1
				\partial_t	qx	+	\partial_x	F12	+	\partial_z	F22	=	S2
				\partial_t	qz	+	\partial_x	F13	+	\partial_z	F23	=	S3

where	h	is	the	coating	thickness	while	qx	and	qz	are	flow	rates.
Fij	are	flux	terms	while	Sij	are	the	source	terms.
			
Hp	:	dpX,dpZ	=	0	&	dtX,dtZ	=	0
				pressure	gradient	&	gas	shear	stress	are	null	therefore	

@author:	aleksandr
"""

#%%	LABRIERIES

import	numpy	as	np
import	matplotlib.pyplot	as	plt
import	os
import	imageio.v2	as	imageio
import	time

#%%	DOMAIN

Lx		=	80																				#	Streamwise	length																			
Lz		=	40																				#	Spanwise	length
tf		=	4																					#	Time	Finish	phenomenon	
nx		=	80																				#	Number	of	streamwise	grid	points
nz		=	40																				#	Number	of	spanwise	grid	points
nt		=	100000																#	Number	of	grid	points	for	time	discretisation	

dx		=	Lx/nx																	#	Grid	Spacing	streawise	
dz		=	Lz/nz																	#	Grid	spacing	spanwise	
dt		=	dx/50																	#	Grid	spacing	for	temporal	discretisation	

x			=	np.linspace(0,Lx,nx)		#	Streawise	spatial	discretisation	
z			=	np.linspace(0,Lz,nz)		#	Spanwise	spatial	discretisation	

x0		=	40																				#	Origin	of	the	Gaussian		
z0		=	20																				#	Origin	of	the	Gaussian

(zz,xx)	=	np.meshgrid(z,x)		#	Matrices	of	coordinate	for	Spatial	Discretisation	

#%%	PARAMETERS	(Zinc	properties)

U_p			=	1																			#	m/s^2	Metal	Strip	Velocity	
rho_l	=	6500																#	kg/m^3	Density
mu_l		=	0.003															#	kg/m/s	Dynamic	viscosity	
nu_l		=	mu_l/rho_l										#	m^2/s	Kinematic	viscosity	

1

g					=	9.8																	#	m/s^2	Gravitational	accelaration	
sigma	=	0.78																#	N/m

#%%	SCALING	LAWS

u						=	2*U_p														#	Wave	travel	speed	(conservative	estimate	for	CFL)
Ca					=	(mu_l*U_p/sigma)											#	Capillary	number	
Re					=	np.sqrt(U_p**3/g/nu_l)					#	Reynolds	number
epsilon	=	Ca**(1/3)																	#	Parameter	given	by	Shkadov’s	scaling

#%%	IC

sig	=	0.5																																						#	variance		
h0=0.1
h	=	0.05*np.exp(-((xx-x0)**2	+	(zz-z0)**2)/2/sig**2)+h0		#	initial	film	hight
qx	=	(1/3)*h**3-h																														#	initial	streamwise	flow	rate
qz	=	np.zeros((nx,nz))																									#	initial	spanwise	flow	rate

fig	=	plt.figure(num=1)
plt.pcolor(xx,zz,h)
plt.axis('equal')
plt.xlabel("x")
plt.ylabel("z")
plt.colorbar()

#%%	EXPLICIT	EULER	Spectral	Scheme	

from	scipy	import	signal

#	Approach	using	FIR	filter	theory
def	low_PASS_H(kx_vect,k_hat_lim=0.8):
				'''create	transfer	function	for	low	pass	filtering'''
				#	Create	the	transfer	function
				kernel	=	signal.firwin(len(kx_vect)//2,	k_hat_lim,	window	=	'hamming')
				#	You	could	the	transfer	function	like	this	if	you	want:
				w,	H_T		=		signal.freqz(kernel,worN=len(kx_vect),whole=True)
				H_z_p=np.conj(H_T)*H_T				
				return	H_z_p
				
kx_vect	=	2*np.pi*np.fft.fftfreq(nx,dx)
kz_vect	=	2*np.pi*np.fft.fftfreq(nz,dz)
#	Grid	of	wave	numbers	
kz,kx=np.meshgrid(kz_vect,kx_vect)					

#	Create	the	filters	along	x	and	z
H_x=np.real(low_PASS_H(kx_vect,k_hat_lim=0.5)).reshape((len(kx_vect),1))		
H_z=np.real(low_PASS_H(kz_vect,k_hat_lim=0.5)).reshape((len(kz_vect),1))		
#	Create	the	full	transfer	function
H_m=H_x.dot(H_z.T)	#	build	the	2D	filter	from	1D	filter

start	=	time.perf_counter()																					#	Start	timing	
					
#	Definition	of	a	function	for	the	spectral	scheme	applied	to	BLEW
#	Spatial	approximation

2

				
def	sources(h,qx,qz):
				
				h_hat	=	np.fft.fft2(h)*H_m				#	(filtered)	film	height	in	frequency	domain	
				
				tau_w_x	=	-3*qx/h**2	-3/h					#	Shear	stress	streamwise	at	the	wall
				tau_w_z	=	-3*qz/h**2										#	Shear	stress	spanwise	at	the	wall
				
								
				#	h_ijk	are	capillary	pressure	gradients	
				
				h_xxx	=	np.real(np.fft.ifft2((1j*kx)**3*h_hat))
				h_xzz	=	np.real(np.fft.ifft2((1j*kx)*(1j*kz)*h_hat))
				
				S2	=	1/epsilon/Re*(h*(h_xxx+h_xzz+1)+tau_w_x)
				
				h_zzz	=		np.real(np.fft.ifft2((1j*kz)**3*h_hat))
				h_xxz	=		np.real(np.fft.ifft2((1j*kx)**2*(1j*kz)*h_hat))
				
				S3	=	1/epsilon/Re*(h*(h_zzz+h_xxz)+tau_w_z)
				
				return	S2,S3

def	fluxes(h,qx,qz):
				
				h_hat	=	np.fft.fft2(h)*H_m		#	Filtered	h	in	freq	domain
				qx_hat	=	np.fft.fft2(qx)*H_m	#	Filtered	qx	in	freq	domain
				qz_hat	=	np.fft.fft2(qz)*H_m		#	Filtered	q_Z	in	freq	domain
				
				#	F11	=	qx
				#	F21	=	qz
				
				F11_x	=	np.real(np.fft.ifft2(1j*kx*qx_hat))
				F21_z	=	np.real(np.fft.ifft2(1j*kz*qz_hat))
								
				#	F12	=	(144*qx**2+48*h*qx+24*h**2)/120/h
				#	F22	=	(144*qx*qz+24*h*qz)/120/h
				
				#	Non	Linear	terms
				a	=	qx**2/h
				b	=	qx*qz/h
				
				a_hat	=	np.fft.fft2(a)*H_m
				b_hat	=	np.fft.fft2(b)*H_m
				
				a_x	=	np.real(np.fft.ifft2(1j*kx*a_hat))
				b_z	=	np.real(np.fft.ifft2(1j*kz*b_hat))
				qx_x	=	np.real(np.fft.ifft2(1j*kx*qx_hat))
				h_x	=	np.real(np.fft.ifft2(1j*kx*h_hat))
				qz_z	=	np.real(np.fft.ifft2(1j*kz*qz_hat))
				
				F12_x	=	1/5*(6*a_x+2*qx_x+h_x)
				F22_z	=	1/5*(6*b_z+qz_z)
				
				#	F13	=	F22

3

				#	F23	=	144*qz**2/120/h
				
				c	=	qz**2/h
				
				c_hat	=	np.fft.fft2(c)*H_m
				
				b_x	=	np.real(np.fft.ifft2(1j*kx*b_hat))
				c_z	=	np.real(np.fft.ifft2(1j*kz*c_hat))
				qz_x	=	np.real(np.fft.ifft2(1j*kx*qz_hat))
				
				F13_x	=	1/5*(6*b_x+qz_x)
				F23_z	=	6/5*c_z
				
				return	F11_x,F21_z,F12_x,F22_z,F13_x,F23_z

def	Explicit_Euler(dt,h,qx,qz,S2,S3,F11_x,F21_z,F12_x,F22_z,F13_x,F23_z):
				
				h	=	h	+dt	*(-F11_x-F21_z)
				qx	=	qx	+dt	*(S2-F12_x-F22_z)
				qz	=	qz	+dt	*(S3-F13_x-F23_z)
				
				return	h,qx,qz

#%%	IMPLICIT	-	EXPLICIT	Spectral	Scheme	:	
				#	(qx*qz/h)	is	the	only	implicit	term	

def	Imp_Exp_SS(dt,h,qx,qz,S2,S3):
				
				qx_hat	=	np.fft.fft2(qx)*H_m		#	Filtered	qx	in	freq	domain
				qz_hat	=	np.fft.fft2(qz)*H_m		#	Filtered	q_Z	in	freq	domain
				
				#	First	equation	:	\partial_t	h		+	\partial_x	F11	+	\partial_z	F21	=	S1
								
				qx_x	=	np.real(np.fft.ifft2(1j*kx*qx_hat))
				qz_z	=	np.real(np.fft.ifft2(1j*kz*qz_hat))
				
				h	=	h	-dt	*(qx_x	+qz_z)
				
				#	Second	equation	:	\partial_t	qx		+	\partial_x	F12	+	\partial_z	F22	=	S2
				
				a	=	qx**2/h
				a_hat	=	np.fft.fft2(a)*H_m
				a_x	=	np.real(np.fft.ifft2(1j*kx*a_hat))
				
				qx	=	(S2+qx/dt-24/120*(6*a_x+2*qx_x+qz_z))/(1/dt+144/120*qz_z/h)
				
				#	Third	equation	:	\partial_t	qz		+	\partial_x	F13	+	\partial_z	F23	=	S3
				
				qz_x	=	np.real(np.fft.ifft2(1j*kx*qz_hat))
				
				b	=	qz**2/h
				b_hat	=	np.fft.fft2(b)*H_m
				b_z	=	np.real(np.fft.ifft2(1j*kz*b_hat))
				
				qz	=	(S3+qz/dt-24/120*(qz_x+6*b_z))/(1/dt+144/120*qx_x/h)

4

				
				return	h,qx,qz

#%%%	IMPLICIT	-	EXPLICIT	Spectral	Scheme	2	:	in	addition	to	the	(qx*qz/h)	the	
				#	following	term	is	treated	implicitly	2*h*qx*qx_x/h**2	
				#	obtained	from	qx**2/h	=	(2*h*qx*qx_x+qx**2h_x)/(h**2)
				
def	Imp_Exp_SS2(dt,h,qx,qz,S2,S3):
				
				h_hat		=	np.fft.fft2(h)*H_m		#	Filtered	h	in	freq	domain
				qx_hat	=	np.fft.fft2(qx)*H_m	#	Filtered	qx	in	freq	domain
				qz_hat	=	np.fft.fft2(qz)*H_m	#	Filtered	qz	in	freq	domain
				
				#	First	equation	
				
				qx_x	=	np.real(np.fft.ifft2(1j*kx*qx_hat))
				qz_z	=	np.real(np.fft.ifft2(1j*kz*qz_hat))
				
				h	=	h	-dt	*(qx_x	+qz_z)																													#	film	height	equation		
				
				#	Second	equation	
				
				a					=	qz/h
				a_hat	=	np.fft.fft2(a)*H_m
				a_z			=	np.real(np.fft.ifft2(1j*kz*a_hat))
				
				b					=	qx/h
				b_hat	=	np.fft.fft2(b)*H_m
				b_x			=	np.real(np.fft.ifft2(1j*kx*b_hat))

				it	=	1/dt+12/5*(b_x+a_z)																												#	Implicit	term	
				
				h_x		=	np.real(np.fft.ifft2(1j*kx*h_hat))
				qx_x	=	np.real(np.fft.ifft2(1j*kx*qx_hat))
				qz_z	=	np.real(np.fft.ifft2(1j*kz*qz_hat))
				
				qx	=	(S2+qx/dt-1/5*(h_x*(6*b**2+1)+2*qx_x+qz_z))/it	#	x-Flow	rate	equation	
				
				#	Third	equation	
				
				h_z	=	np.real(np.fft.ifft2(1j*kz*h_hat))
				qz_x	=	np.real(np.fft.ifft2(1j*kx*qz_hat))
				
				qz	=	(S3+qz/dt+1/5*(a**2*h_z-qz_x))/it														#	z-Flow	rate	equation	
				
				return	h,qx,qz
				
#%%	COMPUTATION

plt.ioff()
Fol_Out='Video_Images_temp'

if	not	os.path.exists(Fol_Out):
			os.mkdir(Fol_Out)

5

X=100

for	n	in	range(1,nt+1):
				
				(S2,S3)	=	sources(h,	qx,	qz)
				#(F11_x,F21_z,F12_x,F22_z,F13_x,F23_z)	=	fluxes(h,	qx,	qz)
				#(h,qx,qz)	=	Explicit_Euler(dt,	h,	qx,	qz,	S2,	S3,	F11_x,	F21_z,	F12_x,
				#																												F22_z,	F13_x,	F23_z)
				#(h,qx,qz)	=	Imp_Exp_SS(dt,	h,	qx,	qz,	S2,	S3)
				(h,qx,qz)	=	Imp_Exp_SS2(dt,	h,	qx,	qz,	S2,	S3)

				if	n%X	==	0:	#	To	speed	up,	save	every	X	steps
					fig	=	plt.figure()
					plt.pcolor(xx,	zz,	h)
					plt.xlabel('x',fontsize=14)
					plt.ylabel('z',fontsize=14)
					plt.axis('equal')
					Name=Fol_Out+	os.sep	+'Step_'+str(n)+'.png'
					MEX=	'Exporting	Im	'+	str(n)
					print(MEX)
					plt.savefig(Name,	dpi=50)					
					plt.close()

print('Temporary	images	exported')
images=[]

GIFNAME	=	'BLEW_Imp_Exp_SS2_dx_SU_50.gif'	

for	k	in	range(1,nt,1):
				if	k%X	==	0:
					MEX=	'Mounting	Im	'+	str(k)
					print(MEX)
					FIG_NAME=Fol_Out+os.sep+'Step_'+str(k)+'.png'
					images.append(imageio.imread(FIG_NAME))

imageio.mimsave(GIFNAME,	images,duration=0.001)

import	shutil		
shutil.rmtree(Fol_Out)

MEX='Animation'+GIFNAME+'	Ready'
print(MEX)

finish	=	time.perf_counter()

print(f'Time	FINISH	:	{finish-start}')

				
				

6

Bibliography

[1] M.A Mendez A. Gosset B. Scheid M. Balabane J.-M. Buchlin. “Dynamics of the Jet

Wiping Process via Integral models”. In: Journal of fluid mechanics (28/04/2020). DOI:

2004.13400.

[2] Gabriele Gamba. “Development of a fine volume code for simulating liquid films insta-

bilities in hot dip galvanisation”. MA thesis. Politecnico di Torino, 2022.

[3] A. Gosset and J. M. Buchlin. “Jet wiping in hot-dip galvanization”. In: journal of Fluids

Engineering 129(4).466 (2007). DOI: 10.1115/1.2436585.

[4] David A. Kopriva. Implementing Spectral Methods for Partial Differential Equations

Algorithms for Scientists and Engineers. Springer Dordrecht, 2009.

[5] Francesco Mancini. “Machine Learning Control of 3D liquid film”. MA thesis. Politec-

nico di Torino, 2023.

[6] Lloyd N. Trefethen. Spectral Methods in Matlab. SIAM, 2020. ISBN: 978-0-89871-465-4.

[7] Benoit Scheid Tsvetelina Ivanova Fabio Pino and Miguel A. Mendez. “Evolution of

waves in liquid films on moving substrates”. In: (19/01/2023). DOI: 2203.08201.

A

https://doi.org/2004.13400
https://doi.org/10.1115/1.2436585
https://doi.org/2203.08201

	Acknowledgements
	Abstract
	Contents
	Introduction
	Hot-Dip Galvanisation

	Spectral Methods
	Theory of Spectral Methods
	Discrete Fourier Transform
	Fast Fourier Transform

	Practical examples
	1D Advection Equation
	1D Burgers Equation
	2D Advection Equation
	2D Burgers Equation

	Jet Wiping Equations
	Physical Problem
	Long wave formulation
	Scaling laws

	Integral Boundary Layer Models

	BLEW in Python
	General aspects of the BLEW software
	Simplified BLEW equations
	Explicit Euler Scheme
	Partially Implicit - Explicit Scheme
	Comparison

	Conclusions
	Appendix
	Bibliography

