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Abstract

This master’s thesis focuses on the Lattice Boltzmann Method, an alternative to
conventional Computational Fluid Dynamics, which provides significant compu-
tational cost savings by employing a regular lattice independent of the geometry
considered instead of a structured or unstructured mesh which itself may prove
to be a labor and CPU-intensive complex task, especially for complex geometries.
The computational efficiency of the LBM, the simplicity of the algorithm, and the
ease with which this method allows complex geometries to be dealt with promise
numerous advantages in complex industrial flow applications even in the supersonic
and hypersonic ranges.

This work is a follow-up of the LBMHYPE project, an ESA TRP research project
involving a partnership between the von Karman Institute for Fluid Dynamics,
École Polytechnique, Université Paris Sud Saclay and CENAERO. The aim of the
LBMHYPE project is to extend LBM to supersonic and hypersonic regimes since,
at the state of the art, LBM has been limited to the incompressible and weakly
compressible range. The major innovation proposed in the LBMHYPE project
to simulate compressible flows is the use of innovative vectorial scheme methods,
in which each conservation equation is solved by a dedicated Lattice Boltzmann
scheme.
A practical challenge encountered in LBM which seriously degraded the solution
was the application of slip-wall boundary conditions to geometries that do not
conform with the Cartesian lattice, such as an arbitrarily inclined wedge surface of
a flow over a wedge.

The contribution of this work involves implementing a new type of LBM boundary
condition, called Bouzidi Bounce Back with Normal, within the Python library
"pylbm" which was developed in the course of the LBMHYPE project.

This type of boundary condition is an extension of the frequently applied Bouzidi-
type LBM boundary condition, which is in turn an extension of the better-known
LBM boundary condition, namely, the Bounce-Back boundary condition by adding
a corrective term, which is a numerical flux, to Bouzidi’s relationships. This
treatment takes into account the normal and tangential directions of the wall
surface and accurately resolves the geometrical orientation of the slip wall and its
normal.

The Bouzidi Bounce Back with Normal boundary conditions successfully solved
the problems faced in the LBMHYPE project regarding the imposition of the slip
condition to non-Cartesian coordinate conforming geometries. The results compare
more favorably with the analytical and US3D code results than the results obtained
in the LBMHYPE project. Furthermore, these conditions have demonstrated good



performance in non-rectilinear geometries. In fact, in the last part of this thesis,
BCs were tested in the classic problem of a compressible flow around a 2D cylinder.

Possible future developments of the present project might involve addressing
the numerical diffusion and extension of the LBM vectorial scheme to the Navier-
Stokes equations. The LBM method development should also target where it is
particularly powerful, in cases involving complex geometries and multiple physics
such as multi-phase flows.
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Chapter 1

Introduction

In many industrial, technical, biological, and environmental processes, an accurate
estimation of the interaction between fluids and structures is crucial. Therefore,
in the past two decades, research has intensified in this field. New progress in
computing power and the creation of new numerical approaches have made it
possible to approach the study of fluid dynamics problems by directly solving
governing equations.

The term Computational Fluid Dynamics (CFD) refers to this subfield of fluid
dynamics. The description of the fluid dynamics system, in this case, is more
detailed than the experimental one because we are capable of estimating approx-
imations of the velocity and pressure at each location in the discretized region.
Also, compared to the empirical technique, studying the fluid dynamics problem
using CFD is definitely less expensive and time-consuming.

Three different points of view can be used to study and analyze CFD. These three
levels are shown in Figure 1.1.

• The Navier-Stokes equations [1], which regulate the fluid at a macroscopic
scale, are solved in the first method, often known as the traditional approach
to CFD. In Figure 1.1, the control volume considered contains a continuum
of particles so a study at this level will give an idea of the average level.

• The Lattice Boltzmann (LB) approach [2], it is based on Boltzmann’s kinetic
equation [3], which has a mesoscopic point of view rather than the Navier-
Stokes continuum assumption. In Figure 1.1, the mesoscopic technique uses a
control volume that is located in the area around x = (x, y, z).
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• The behavior at the macroscopic level is determined by the dynamics of a
system of molecules, which is how the problem is approached at the lowest
level, from a microscopic molecular point of view, as shown in Figure 1.1,

Figure 1.1: An example of the three different scales used to describe matter (i.e.
macroscopic, mesoscopic, and microscopic scales).

For industrial applications, the Lattice Boltzmann Method (LBM) demonstrates
a number of interesting benefits (simple algorithm, simplicity of dealing with
complicated geometries, high parallel processing efficiency, provides for multi-
physics issues, etc.); as a result, it is a potential numerical method for simulating
complex fluid flow. However, most existing LBM applications only apply to
incompressible flows. Since LBM is based on a bottom-up multiscale approach
where the macroscopic quantities and their governing equations do not directly
appear in the LBM scheme 1, this could cause the limitation that occurs at the
state of the art of LBM, although there is no certainty about this yet, so the causes
of the low compressibility limitation are yet unknown.

There have been several methods proposed for the extension of LBM to com-
pressible flows during the past few years. The goal of the ESA TRP research project
LBMHYPE was to determine whether Lattice Boltzmann Methods was practical
for hypersonic applications [4], or even possible. The LBMHYPE initiative con-
ducted additional analysis of the potential and constraints of pure LBM schemes to
model highly compressible flow characteristics. The physics that interact in highly
compressible flows are very complex (shock waves, rarefaction, thermal exchanges,
reactive multi-species, etc.). Even with the most advanced numerical techniques,
simulating such intricately interconnected processes is incredibly difficult. In fact,
this project’s objective was to propose a first tool that can simulate the Euler
equations in the high-Mach range using a Lattice Boltzmann scheme [5].

The proposed hyperbolic LBM schemes in [6] demonstrate promising capabilities
both in terms of accuracy and computational cost. The idea is based on an

1In other words, it requires applying sophisticated mathematical and numerical techniques to
examine the links between the (microscopic) LBM scheme and the (macroscopic) flow behavior.
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innovative vectorial scheme method in which each conservation equation of the
Euler system is solved by a dedicated LB scheme. Once identified and developed in
the first phase of the LBMHYPE project promising 1D and 2D LBM schemes for
highly-compressible inviscid flows, in the second phase of the project, the focus was
on studying the results provided by the LBM, comparing what was obtained with
state-of-the-art CFD methods (US3D) for the defined set of 1D and 2D test cases.

Concerning the 1D tests performed, LBM’s accuracy appears to be comparable
to the majority of the standard CFD methods. It could be improved further by
making specific improvements to locally smooth the spurious oscillations, such as
the non-oscillating LBM system presented in [7].

Dealing with the two-dimensional tests performed, on which we will focus in
this thesis, the LB approach is superior in terms of CPU, programming, and mesh
creation compared to one of the top hypersonic codes in the world. However,
optimal results were only obtained in the supersonic Forward Facing Step test case,
a two-dimensional example introduced by Emery [8], where he examined various
schemes. The best results were obtained among the 2D test cases for this case due
to the fact that the geometry conformed to the Cartesian lattice. A second test
case investigated in the LBMHYPE project was a supersonic wedge flow. Since
the wedge was a slanted surface that did not conform with the Cartesian LBM
lattice, the accuracy of the scheme was degraded. The application of the slip wall
boundary condition on such a slanted surface is the focus of the present work.
Since the scheme that has been explored in-depth, D2Q4444 only takes into account
horizontal and vertical velocities, there is a further difficulty in this case, so the
contributions to the horizontal and vertical velocities must be approximations in
order to account for the slip boundary condition.

In spite of the LBMHYPE project being able to reproduce the shock angle
with a small discrepancy value and the computational time being much quicker
with the LBM technique than with US3D, the absence of non-aligned slip-wall
BC is degrading the solution, hiding the accuracy of the LBM developed in the
project, as we will see in sections 6.4.2 and 7.3.1 of this thesis. The aim of the
work that will be presented in this thesis is to fix the boundary conditions to take
into consideration the geometric inclination of the surfaces, hence improving the
accuracy of the method in a wider range of applications to be more competitive in
industrial applications.
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In developing this master thesis, a great deal of help was given by Prof. Loic
Gouarin of École Polytechnique for the support in developing the new code, and
in understanding the Python package pylbm [4], by Prof. Benjamin Graille of
Université Paris-Saclay, who helped me in the theoretical understanding of the new
boundary conditions implemented in this work and finally Doc. Zuheyr Alsalihi of
von Karman Institute for Fluid Dynamics.

1.1 Conventional CFD
About the conventional method, only a few particular instances allow for the
closed-form solution of the Navier-Stokes equations. In all practical applications,
these equations are mostly solved using finite element (FE) or finite volume (FV)
techniques which are very common but have a number of limitations and there is
one that constitutes the strong point of the LBM: the cost. The major drawback
of the CFD is the cost, due to the following reasons:

• The first aspect that increases the computational cost of a CFD simulation is
certainly the spatial resolution. It turns out to be obvious that higher spatial
resolution requires a finer subdivision of the computational grid, which implies
an increase in the number of computational points. More computational points
imply greater computational complexity and require more computational
resources.

• Similar to the previous point, the temporal resolution also leads to an increase
in computational cost. Some CFD simulations require high temporal resolution
to correctly capture transient or unsteady phenomena. The higher temporal
resolution requires more integration steps over time, i.e., a significant increase
in computational cost.

• Another aspect that increases computational cost may be the physical model.
The use of more complex physical models, such as advanced turbulence models
or real transport models, may require more computational power. These models
often require more complex differential equations to solve, increasing the overall
computational complexity. Without going into complex turbulence models,
since the convective term is non-local and non-linear, every traditional CFD
solver must handle it, which requires a significant amount of computational
work2.

2This term is sometimes ignored, as in the case of the potential flow hypothesis. As is known,
this theory rules the macroscopic behavior of fluids under the assumptions of irrotational flow and
inviscid fluid, which represents an ideal condition that is typically not applicable in real-world
situations.
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• Even in the case of complex geometries, a lot of CPU can be spent. If the ge-
ometry of the simulation domain is complex, for example with intricate shapes
or curved surfaces, it may be necessary to use a more detailed computational
grid to represent it accurately. This increases the number of computational
points and, consequently, the computational cost. Demanding meshes are
required to study the interaction with solid bodies (i.e., prism layer near the
boundary layers), while an even more striking case, and close to what will be
dealt with in this thesis is the mesh refinement, which is necessary in case
of supersonic CFD simulations in the proximity of shock waves, which again
necessitates significant computing costs.

• It is also logical that the size of the simulation domain affects the computational
cost. The number of computational points increases with the size of the domain,
i.e., increasing the computational cost.

• Another aspect is the numerical method to be used, and the order of accuracy
associated with it. More accurate methods require more computational power
to obtain accurate results.

• Finally, the simulation time required also affects CPU hours. If long-term
CFD simulations are to be run or a large number of parametric simulations
are to be performed, this will increase the overall computational cost.

These limitations recommend using a different strategy to solve the CFD challenge.

1.2 Lattice Boltzmann Method
The Lattice Boltzmann Method, a new approach to CFD, has been introduced
and refined during the past 25 years. The Navier-Stokes equations are no longer
the focus of this new theory; instead, the so-called Lattice Boltzmann equation
(LBE), which makes use of statistical particle distribution functions, is the focus.
Macroscopic quantities such as density and momentum can be defined using these
particle distribution functions. It can be demonstrated that in the continuous limit,
these macroscopic quantities satisfy the Navier-Stokes equations [9]. Compared
to the Navier-Stokes equations, the LBM provides a lower scale of description,
but a higher level of description when compared to molecular dynamics, which
directly accounts for particle collisions. Therefore, the Lattice-Boltzmann approach
is referred to as a mesoscopic model to distinguish it from the microscopic size
of molecular dynamics and the macroscopic scale of the Navier-Stokes equations.
The similarity with the kinetic theory leads to the assumption that the numerical
solution approaches the solution of the Navier-Stokes equations when the discrete
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Knudsen number (the ratio of the mesh size over a reference length of the simulation)
decreases to zero.

The Lattice Gas Automata (LGA) [10], [11], [12] developed during the 1970s
and 1980s provided the basis for the LBM in significant part. In 1988, McNamara
& Zanetti [13] developed the first Lattice Boltzmann model to address the LGA’s
primary flaws. Thus, the LGA and LBM both started out with the same concept, if
the system’s domain is discretized with enough symmetry, it is possible to define sim-
plified dynamics that can recover the macroscopic Navier-Stokes in the continuum
limit and only requires that mass and momentum be conserved during the collision.
The Bhatnagar-Gross-Krook (BGK) with just one relaxation parameter, which was
previously used to simulate collision in the Boltzmann Equation (BE) [14], [15], was
the collision term employed in [13]. This is the first indication of a link between the
BE and the LBE. Despite being developed at the particle level, the LBM’s principal
application focuses on macroscopic phenomena. A multi-scale method known as
Chapman-Enskog (CE) [9] expansion is used to get the macroscopic equations.
The study [16] demonstrates how the Euler equations can be reconstructed on a
fast convective time scale according to the Chapman-Enskog expansion. Another
indication of the relationship with the Boltzmann equation is the fact that the
CE approach was initially created to extract the macroscopic equations for the
Boltzmann equation (BE) in [9]. In [17] there is an example of a CE for the LBE.
He and Luo explicitly state this relationship in [18], where they demonstrate how
the LBE can be viewed as a discretization of the BE. Strong theoretical roots for
LBM have been established by this work, which somehow were missing in the first
formulation derived from the LGA. Only historical connections remain between the
LBM and LGA now, and [18]’s interpretation is the one that is most frequently used.

Since its debut, the LBM has been the focus of ongoing study and development.
Its success is primarily due to:

• The amazing computational efficiency

• The ease of managing complex geometry

• The simplicity of the code

• The ease of parallelizing

One disadvantage, however, of the LBM is that it is not simple to control the
simulations and analyze the results.
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Nowadays, research is focusing on the development and understanding of three
LBM-related problems:

• Appropriate boundary conditions

• New more flexible and stable collision terms

• Multi-phase models

In contrast to conventional CFD, in LBM the imposition of the boundary
conditions is carried out directly on the particle distribution functions. The so-
called Bounce-Back technique [19], which is pretty simple and one of the reasons
LBM works well with complex geometries, is typically used to implement the wall
boundary conditions. Bouzidi et al.’s [20] boundary conditions are a generalization of
bounce-back boundary conditions, allowing the placement of the boundary between
two grid layers at any distance, rather than just halfway as in the ’conventional’
Bounce-Back.

However, as we will see in this thesis work, this simple implementation brings
undesirable effects with the scheme that was developed within the LBMHYPE
project. Moreover, more complex schemes have been put out [21]. For pressure and
velocity boundary conditions, several techniques are proposed in [22], [23], [24] and
[25]. The Multiple-Relaxation-Time (MRT) collision model has been developed to
overcome various issues with the BGK collision term [26], [27] [28]. By modifying
the model’s parameters, it is possible to increase stability and get rid of some
undesirable BGK model side effects, like the dependence of the simulation geometry
on the relaxation parameter.

1.3 Contents of each chapter of this thesis
In summary, these are the contents of each chapter of this master’s thesis:

• Chapter 2: In this introductory chapter, the theoretical background necessary
to fully understand LBM is introduced, then the kinetic theory will be discussed,
the particle distribution function will be defined, to finally deal with the
Boltzmann equation and collision operator approximations.

• Chapter 3: In this introductory chapter, LBM is discussed, first introducing
an in-depth theoretical background on LBM, focusing on the compressible
field. From section 3.3, LBM will be treated, with the innovative approach
taken in this thesis, namely Vectorial Schemes, described in section 3.4.
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• Chapter 4: In chapter four the main topic of this master’s thesis, namely
the application of boundary conditions, is introduced. Sections 4.2 and 4.3
discuss both the well-known boundary conditions of Bounce Back and Bouzidi,
which are the foundations of the Bouzidi Bounce Back with Normal boundary
conditions.

• Chapter 5: This is the main chapter of the entire thesis, as it deals with
the newly implemented boundary conditions. After introducing the new
interpretation of particle distribution functions as flux, it is explained how to
add this corrective factor so that at the wall the slip condition is imposed,
regardless of the geometry considered.

• Chapter 6: This is the first chapter in which the results obtained in this thesis
are shown; in fact, the solution obtained with the LBM is shown, imposing
the Bouzidi Bounce Back with Normal condition on the surface of a wedge in
an inviscid supersonic current.

• Chapter 7: The second results chapter deals with the LBM solution of a
cylindrical-nosed body in an inviscid supersonic current. This simulation,
more than showing the accuracy of the method, aims to demonstrate that the
Bouzidi Bounce Back with Normal boundary conditions is also applicable in a
non-rectilinear surface.

• Chapter 8: The concluding chapter summarizes what has been achieved in
this thesis, but more importantly it deals with possible future developments
of the pylbm project.
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Chapter 2

The Boltzmann Equation

Before moving on to LBM, it is essential to be familiar with the terms and ideas of
kinetic theory. According to the kinetic theory of gases, a gas is composed of a lot
of tiny particles (atoms or molecules) moving randomly and interacting consistently
with each other. By taking into account the molecular composition and movement
of gases, the kinetic theory describes the macroscopic characteristics of gases, such
as pressure, temperature, and volume. Boltzmann’s equation is the basis of the
kinetic theory, which will be dealt with following the approach presented in [19].

2.1 Kinetic Theory
The molecules and sub-molecules are the basic elements of all-natural materials.
These molecules can be pictured as solid spheres that are moving randomly in a
free region. Mass, momentum, and energy conservation are satisfied. Thus, it is
possible to use Newton’s second law (on the conservation of momentum), which
establishes that the rate at which momentum changes is equal to the net applied
force.

F = d(mc)
dt

(2.1)

where m is the particle’s mass, c is its velocity vector, t is the time, and F stands
for the intermolecular and external forces.
The equation can be made simpler for a constant mass as follows:

F = m
d(c)
dt

= ma (2.2)

where a is the acceleration vector.

11
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After the application of an external force, F, to a particle of mass m, the
particle’s location changes from r to r + cdt, and its velocity changes from c to
c + Fdt

m . Without an external force, the particle freely moves from one place to
another without modifying its direction or speed, assuming no collision occurs. As
the internal energy of the system rises (for example, by heating the system), the
magnitude of the particle velocity increases and the interaction between the particles
grows. The domain walls are constantly being hit by the particles (molecules). In a
macroscopic sense, pressure is the force these actions produce per unit area. From
this basic framework, we can see that there is a relationship between temperature
and pressure. As temperature rises, which also means molecules’ kinetic energies
rise, we expect that the probability of particles hitting the domain’s wall rises.

Let’s assume that there is a single particle on a box of length L continuously
hitting the box’s wall while moving at a speed of cx (in the x direction). If the
collision is perfectly elastic, the force a particle applies to one end is equal to the
rate of change of the momentum. If ∆t is the time between collisions, knowing
both the size of the box and the velocity of the particle, it is not difficult to estimate
the time between two consecutive collisions in the wall box (∆t = 2L

cx
).

F∆t = mcx − (−mcx) = 2mcx → F = m
c2

x

L
(2.3)

Results are generalizable to N particles. N particles generate a total force that is
proportional to F ∝ Nmc2

L . Typically, c2 = c2
x + c2

y + c2
z ; where cx, cy, and cz are

the respective velocity components in the x, y, and z directions. It is reasonable
to believe that these elements are equal, hence c2 = 3c2

x follows.
Since the definition of pressure is a force per unit area that is perpendicular to

the force vector P = F
A , the pressure that N particles impose on the ends of the

tube is equal to:

P = N
mc2

3LA = N
mc2

3V (2.4)

where V is the volume, which is equal to V = LA.
This easy description of molecular motion connects the kinetic energy to the

macroscopic pressure.

P = N

V

mc2

2
2
3 = 2

3nEK (2.5)

where n is the number of molecules per unit volume and EK is the kinetic energy. We
ignored the effects of molecule interaction and molecular size in this straightforward
model (the ideal gas model). However, the results are surprisingly accurate for gas
at ambient temperature. The particle in real systems has volume, and there is
particle collision.
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Finally, to add the link between pressure and temperature, the following rela-
tionship is well-known for a perfect gas:

PV = nRT (2.6)

where n is number of moles 1 and R is the gas constant. From equation 2.5 and
2.6, introducing Boltzmann constant (k = R

NA
= 1.38 x 10−23 J/K), it is possible

to obtain an expression for the kinetic energy as a function of temperature.

Ek = 3
2kT (2.7)

2.2 Distribution Function
Despite Newton’s second law (i.e. the governing equation) being well-known,
Maxwell (1831–79) observed in 1859 that dealing with a large number of molecules
makes it challenging to formulate an equation. A macroscopic system cannot follow
the path of every molecule, so the concept of averaging was introduced. According
to Maxwell, it is not crucial the knowledge of each molecule’s position and speed
at every moment in time.

The distribution function, which measures the percentage of molecules in a
container with velocities that fall within a certain range at a given instant in time,
is a key factor in evaluating the impact of molecules. When the molecules of a
gas that has a wide range of velocities collide, the fast molecules give the slow
molecules momentum. The collision has the effect of conserving momentum. The
distribution function for gas at thermal equilibrium, when the gas is dispersed
uniformly throughout the domain, is not a function of time; the only unknown is
the velocity distribution function.

In a gas of N particles, the amount of particles with x-direction velocities
between cx and cx + dcx is equal to Nf(cx)dcx, where the percentage of particles
with velocities between cx and cx + dcx in the x-direction is represented by the
function f(cx). The probability distribution function can be defined in a similar
manner for the y and z-direction. Then, the probability for the velocity to lie
down between cx and cx + dcx, cy and cy + dcy and cz and cz + dcz, will be
Nf(cx)f(cy)f(cz)dcxdcydcz

2

As long as any direction can be x, y, or z, the distribution function should depend
only on the particle speed and not on the direction:

f(cx)f(cy)f(cz) = Φ(c2
x + c2

y + c2
z) (2.8)

1n = N/NA, where NA is Avogadro’s number
2It is crucial to note that if that equation is integrated (summed) over all possible values of

the velocities the result will be the total number of particles N.

13



The Boltzmann Equation

where Φ is an unknown function that needs to be found. The distribution function’s
value ought to be positive (between zero and unity) 3.

There are two types of functions that could have the property of equation
2.8: exponential and logarithmic. It could be demonstrated that the distribution
function’s correct form should be such as:

f(cx) = Ae−Bc2
x (2.9)

where A and B are constants.
From the properties of exponential functions, choosing this form for the f-

functions, it follows that the distribution in terms of the particle speed c is obtained
by multiplying the probability distributions for the three directions. It is crucial to
consider how particles are distributed in velocity space, a three-dimensional space
(cx, cy, and cz,), where each particle is represented by a point with coordinates
that match its velocity.

2.2.1 Maxwell distribution function
Since a particle moving at speed c has kinetic energy 1

2mc
2, we may utilize the

probability distribution function to determine the average kinetic energy per particle
by using the following formula:

1
2mc

2 =
s∞

0
1
2mc

2f(c)dcs∞
0 f(c)dc (2.10)

where the total energy is the numerator, while the total number of particles is the
denominator.
When the value of f(c) is substituted according to 2.9 the integrals become:

1
2mc

2 = 3m
4B (2.11)

Since the link between kinetic energy and temperature is known from 2.7:
1
2mc

2 = 3
2kT = 3m

4B (2.12)

Then it is possible to obtain the value of the constant B = m
2kT

. Since we factored out
the number of particles N in our definition of f(c), the constant of proportionality
is obtained by integrating over all speeds and setting the result equal to one.
The final result in terms of the distribution function is:

f(c) = 4π
A

m

2πkT

B3/2

c2e− mc2
2kT (2.13)

3As a result, velocity is squared in 2.8 to prevent negative magnitude
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This equation is the so-called Maxwell-Boltzmann distribution function 2.13, whose
rises parabolically from zero for slow speeds, achieves a maximum value, and then
falls exponentially [29]. As the temperature rises, the maximum’s location moves to
the right (i.e. the number of molecules with high velocities rises as the temperature
rises). The integral of 2.13 from 0 to ∞ is always one, by definition. Since particle
velocities change constantly across a vast range, the probability of finding a particle
that has a specific velocity is zero. Finding the likelihood of a particle or particles
within a range of velocities rather than at a particular velocity is an important
question. The equation 2.13 must therefore be integrated within that range of
velocity. Determining the probability of a particle or particles within a range of
velocities rather than at a particular velocity is an interesting matter, for that
reason 2.13 must be integrated within that range of velocity.

These are some characteristic speeds obtainable from the Maxwell distribution
function 2.13:

• The speed that is most probable is equal toó
2kT
m

(2.14)

This equation can be achieved by setting the distribution function’s derivative
with respect to velocity to zero and then solving for velocity.

• The average speed is equivalent to

< c >=
ó

8kT
πm

(2.15)

This is the average weighted speed. The distribution function can be integrated
from zero to infinity to obtain, as

< c >=
Ú ∞

0
cf(c)dc (2.16)

• The root-mean-average speed is equal to

< c >2=
Ú ∞

0
c2f(c)dc = 3kT

m
(2.17)

The mean average speed is equal to (c2
x + c2

y + c2
z)1/2 and average speed is equal

to c2
x+c2

y+c2
z

3 .
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• The root mean squared speed of a molecule is

< c >=
√
< c >2 =

ó
3kT
m

(2.18)

In general, lighter gases (lower molecular weight) have faster molecular speeds
than heavier gases. The probability function for H2 (2 kg/kmole), N2 (28 kg/kmole),
and CO2 (44 kg/kmole) is shown in Figure 2.2. As we can notice, most N2 molecules
move at around 500 m/s at ambient temperature, while most hydrogen molecules
move at about 1,600 m/s.

Figure 2.1: The probability distribu-
tion function for N2 gas as a function
of molecular velocity, c

Figure 2.2: Distribution function for
N2, H2 and CO2 at room temperature
as a function of molecular velocity, c

2.2.2 Boltzmann Distribution
The theory developed by Ludwig Boltzmann [30], an Austrian physicist of the
19th century, allowed for dealing with the distribution of energy in complex ther-
modynamic systems. Previous to Boltzmann, the distribution of energy in ther-
modynamic systems had been described by James Clerk Maxwell through the
Maxwell-Boltzmann distribution, as just seen in the previous paragraph, but this
description was limited to systems consisting of a few atoms or molecules.

Boltzmann generalized the Maxwell distribution for systems of arbitrary size and
furthermore was the first to realize the deep connection between the thermodynamic
concept of entropy and the statistical analysis of possible states of a large system.
In particular, Boltzmann demonstrated that the increase in entropy of a system
over time is a consequence that the system tends to reach the state of maximum
disorder possible, i.e. the one corresponding to the largest number of possible
microscopic arrangements. In other words, Boltzmann showed that the disorder
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and entropy of a system are closely related to the distribution of energy among
its microscopic components and that the system tends to evolve in such a way as
to maximize the number of possible microscopic configurations, i.e. the state of
maximum disorder possible. This theory is one of the foundations of statistical
physics and has important applications in numerous fields, from thermodynamics to
chemistry to biology. According to Boltzmann, macroscopic values corresponding
to thermal equilibrium have a far higher number of microscopic states available for
a given energy.

By the relation S = klog(W ), Boltzmann presented a link between a system’s
thermodynamic entropy S and the number W of microscopic states that are
available to it at a given energy E.

The probability of being in a specific state for energy E is proportional to e− E
kT

for any system large or small in thermal equilibrium at temperature T, according
to Boltzmann.

f(E) = Ae− E
kT (2.19)

which is the Boltzmann Distribution.

Let us look at the kinetic energy of molecules moving in the x direction:

E = 1
2mc

2
x (2.20)

The probability function integrated for all values of velocity (from minus to plus
infinity) for a normalized probability function should be one.Ú ∞

−∞
Ae− mc2

x
2kT dc = 1 (2.21)

The probability of finding velocity cx is

f(cx) =
ò

m

2πkT e
− mc2

x
2kT (2.22)

The probability of the three-dimensional velocity (c), which is c2 = c2
x + c2

y + c2
z, is

given by the multiple of each function f(ci):

f(c) = f(cx) · f(cy) · f(cz) =
èò m

2πkT
é3
e− mc2

2kT (2.23)

It should be emphasized that the above equation 2.23 ignores that there are nu-
merous ways to increase velocity. This distribution function must be multiplied
by the factor 4πc2 (which is the surface area of a sphere in the phase space) in
order to take into consideration the density of velocity states that are available to
particles when moving from this expression to the Maxwell speed distribution. In
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other words, the Maxwell distribution function 2.13 is included, in fact, equation
2.23 is produced when the Maxwell distribution function 2.13 is integrated across a
sphere’s surface in phase space.
At equilibrium, an ideal gas has a particular distribution function (Maxwell distri-
bution function). Maxwell, however, made no indication of how balance is obtained.
This was one of Boltzmann’s innovative contributions, upon which the LBM is
based.

2.3 The Boltzmann Equation
The development of statistical mechanics explains and makes predictions about
how the microscopic properties influence the macroscopic one, such as viscosity,
thermal conductivity, and diffusion coefficient. That is one of Ludwig Eduard
Boltzmann’s (1844–1906) greatest accomplishments. Instead of tracking every
particle as in molecular dynamic simulations, the distribution function 4 is used in
LBM. The technique significantly reduces the computational load on the CPU.
The next two sections 2.3.1 and 2.3.2, deal with the Boltzmann Equation and the
BGK approximation through the approach presented in [19].

2.3.1 Boltzmann Transport Equation
As indicated in the paragraph 2.2, the distribution function f(r, c, t) can be used
to explain the statistical description of a system. A gas molecule of unit mass will
have its position change from r and r+dr and its velocity change from c and c+dc
in response to an external force F.
If there are no molecular collisions, the number of molecules f(r, c, t), before the
application of the external force is equal to the number of molecules following the
disturbance f(r + c · dt, c + F · dt, t + dt).

f(r + c · dt, c+ F · dt, t+ dt)dr · dc− f(r, c, t)dr · dc = 0 (2.24)

However, there will be a difference in the number of particles in the interval dr·dc
if there are molecular collisions. The collision operator Ω is the rate of change
between the distribution function’s final and starting status.

4Probability of finding particles within a specified range of velocities at a certain location at a
given time, or in other words the number of molecules at time t that are positioned between r
and r+dr and have velocities between c and c+Fdt
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Thus, the following 2.25 is how the equation for the evolution of the number of
molecules can be expressed:

f(r + c · dt, c+ F · dt, t+ dt)dr · dc− f(r, c, t)dr · dc = Ω(f)dr · dc · dt (2.25)

By dividing the previous equation by dt·dr·dc and as dt → 0, the result is the
following:

df

dt
= Ω(f) (2.26)

According to the equation above 2.26, the distribution function’s overall rate of
change is equal to the rate of collision. Considering that f is a function of r, c, and
t, we can expand the total rate of change as:

df
dt

= ∂f
∂r

dr

dt
+ ∂f
∂c

dc

dt
+ ∂f
∂t

= ∂f
∂r
c+ ∂f

∂c
a+ ∂f

∂t
(2.27)

In 2.27 the vector r has been written in the three-dimensional Cartesian coordinate
system as r = x̂i + ŷj + zk̂, where i, j, and k are unit vectors along the x, y, and
z axes, respectively. Furthermore, a is the acceleration and can be linked to force
F through Newton’s second law.
The Boltzmann transport equation 2.26 can be expressed as follows:

∂f
∂t

+ ∂f
∂r

· c+ F

m
· ∂f
∂c

= Ω (2.28)

where, in order to solve, we must identify the Ω, which is a function of f.
The Boltzmann equation for a system with no outside force is expressed as:

∂f
∂t

+ c · ∇f = Ω (2.29)

If Ω is explicitly known, the relation above 2.29 is an advection equation with a
source term (Ω) or an advection equation with a response term, and it can be
solved precisely along the characteristic lines that are tangent to the vector c. The
issue is that 2.29 is an integro-differential equation, which is challenging to solve.
Furthermore, Ω is a function of f.
Following is the relationship between the aforementioned equation 2.29 and macro-
scopic elements like fluid density ρ, fluid velocity vector u, and internal energy e 5,

5The internal energy can be represented using the kinetic theory (2.1) as e = 3
2m kT , i.e. the

mass unit version of the relation 2.7
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i.e the equations of conservation of mass, momentum, and energy.

ρ(r, t) =
s
mf(r, c, t)dc

ρ(r, t)u(r, t) =
s
mcf(r, c, t)dc

ρ(r, t)e(r, t) = 1
2
s
mu2

af(r, c, t)dc

(2.30)

where m is the molecular mass and ua the particle velocity relative to the fluid
velocity (ua = c − u).

2.3.2 The BGK Approximation
The Boltzmann equation is challenging because the collision term is complicated
to compute. It is unlikely that two body crashes will have a significant impact on
the values of many measured quantities [31]. As a result, it is possible to roughly
approximate the collision operator with a simple operator without materially
changing the outcome of the solution. In 1954, Bhatnagar, Gross, and Krook
(BGK) presented a simplified model for the collision operator [32]. The replacement
for the collision operator is the following:

Ω = ω(f eq − f) = 1
τ

(f eq − f) (2.31)

The relaxation factor is τ , and the coefficient ω = 1
τ

is known as the collision
frequency. The Maxwell-Boltzmann distribution function, denoted by feq, stands
for the local equilibrium distribution function. The Boltzmann equation 2.29
(without external forces) can be approximated by the BGK approximation as
follows:

∂f

∂t
+ c · ∇f = 1

τ
(f eq − f) (2.32)

The aforementioned equation 2.32 is discretized and presumed to be true along a
set of directions in the Lattice Boltzmann approach. In light of this, the discrete
Boltzmann equation can be expressed as follows:

∂fi

∂t
+ ci∇fi = 1

τ
(f eq

i − fi) (2.33)

In CFD simulations, the aforementioned equation takes the place of the Navier-
Stokes equation and is the foundation of the lattice Boltzmann method. Boltzmann
equation can be used to derive the Navier-Stokes equation.
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Regarding equation 2.33, we can say the following:

• The equation is a linear partial differential equation

• The equation has a source term and resembles an advection equation

• The advection is represented by the right-hand side of the equation (streaming)

• The collision process, or source term, is represented by the left-hand side

Equation 2.33 can be discretized as follow:

fi(r + ci∆t, t+ ∆t) = fi(r, t) + ∆t
τ

[f eq
i (r, t) − fi(r, t)] (2.34)

The kind of issue that needs to be resolved is determined by the local equilibrium
distribution function with a relaxation time. It is important to mention that by
simply defining a different equilibrium distribution function and source term, this
equation can be used for a variety of physical phenomena, simply by considering
an external force. It is simple to add a source term (force term) to the equation
above.
It is possible to solve the partial differential equation 2.33 by using finite difference
or finite volume. This method was employed by several writers to address fluid
dynamics issues on irregular grids. The solution domain for LBM must be parti-
tioned into lattices. The fictitious particles (i.e. the particle distribution function)
are located at each node of the lattice. Some of these particles move to nearby
nodes in the directions that have been predetermined. The configuration of the
lattice determines the number of directions and linkages.

Despite BGK (Bhatnagar-Gross-Krook) model being the most common way of
discretizing the collision operator 6 in the LBM, this model has certain limitations
due to its approximations, which make it not suitable for supersonic flows:

• Linearization of collision frequencies: in the BGK model, a linear collision fre-
quency is assumed, which can lead to inaccuracies in simulations of supersonic
flows, where collision frequencies can vary substantially.

• Isothermal approximation: the BGK model assumes that the kinetic energy
of particles is isothermally distributed. This approximation may become
inaccurate for supersonic flows, where there may be significant variations in
the local temperature.

6The operator that describes how the probability distributions of particles change due to
interactions between them
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• Numerical stability: the BGK model may suffer from numerical instability
in the presence of supersonic flows, especially when using high-resolution
discretization schemes.

In order to overcome these problems, the Multiple-Relaxation-Time (MRT) method
can be used to discretize the collision operator. The MRT method has certain
advantages over the BGK model, especially for supersonic flows, which will be
analyzed in the following section.

2.3.3 Multi Relaxation Times shemes
The MRT (Multiple-Relaxation-Time) is a multiple-relaxation-time Boltzmann
equation, introduced in [26], and used in [33] to simulate fluid flows in three
dimensions. In comparison to the BGK model, the MRT lattice Boltzmann equation
is a more sophisticated variant of the lattice Boltzmann equation. The MRT model
contains various configurable relaxation times, which gives it additional flexibility in
the creation of equilibrium functions and significantly increases numerical stability.
Certainly, this greater sophistication and flexibility of the method brings some
advantages over the BGK model, especially for supersonic flows:

• Greater control over collision frequencies: the MRT method allows different
collision frequencies to be set for different modes (i.e. for different components
of the particle probability distributions). This allows greater accuracy in
modeling collisions in supersonic flows.

• Better approximation of thermodynamic properties: the MRT method can
better capture local temperature and density variations in supersonic flows,
as it does not rely on the isothermal approximation of the BGK model. In
fact, it overcomes some limitations of the Bhatnagar-Gross-Krook equation,
such as the fixed Prandtl number and the ratio between the kinematic and
bulk viscosities.

• Increased numerical stability: the MRT method tends to be more numerically
stable than the BGK model, especially for supersonic flows and high-resolution
discretization schemes. The higher stability is due to the way the MRT method
allows the different modes to be handled separately, which gives better control
over the numerical dissipation and accuracy of the solution.
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This was the method implemented to deal with the collision operator, and basically
consists of the following three elements:

• A regular D-dimensional lattice and a selection of discrete velocities connecting
each lattice site to some of its neighbors i.e. a discrete phase space. The set
of velocity distribution functions that are defined on each node of the lattice
is the basic component of the theory.

• A collision matrix and the equilibrium distribution functions. The local
conserved quantities are functions of the equilibrium distribution functions.

• The discrete time evolution equation.

This model, described in [26] has been expanded to the family of vectorial schemes
[5] [6] which will be discussed in the next chapter 3.4. This model is easily adaptable
to many sorts of schemes and exhibits surprising features when used in shock wave
tests. The vectorial scheme model will be the one that has been implemented in
the open-source software PyLBM [4], i.e. what will be modified to improve the
handling of boundary conditions.

In conclusion, the MRT method is a better choice than the BGK model for
discretizing the collision operator in the Lattice Boltzmann Method when dealing
with supersonic flows, as it offers greater accuracy, a better approximation of
thermodynamic properties, and greater numerical stability.

23





Chapter 3

Lattice Boltzmann Method

The Lattice Boltzmann Method’s main goal is to establish kinetic models that are as
simple as possible. This simplified model is built so that the macroscopic averaged
characteristics obey the appropriate macroscopic equations, and incorporate the
fundamental physics of microscopic phenomena. This approach is much different
from traditional numerical techniques based on the discretization of mesoscopic
kinetic equations and macroscopic models. The collective movement of several
microscopic particles in a fluid produces its macroscopic dynamics, which are not
susceptible to underline microscopic physics. This is why the simplified kinetic-type
approaches are appropriate for simulating the macroscopic fluid flows. To follow each
fluid particle as in molecular dynamics simulations, the entire Boltzmann equations
need extremely powerful computing power. One can avoid solving challenging
kinetic equations like the full Boltzmann equation by creating a simplified version
of the kinetic equation.

To sum up, the Lattice Boltzmann Method it’s a numerical scheme that is
mimicking somehow the Boltzmann Equation (kinetic equation), but you are not
solving directly the Boltzmann Equation. In fact, the general Boltzmann equation
is one level higher than even Navier-Stokes, as the rarefied effect is taken into
account.

3.1 Literature Review for LBM
The LBM can be interpreted as a finite difference scheme for the discrete velocity
distribution function’s kinetic equation, in fact, it can be seen as a numerical
method that uses pseudo-particles made to move over a cartesian mesh. When
these arrive on a spatial cell, these fictitious particles—which are actually real
numbers—interact with one another locally.
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The first time the concept of simulating fluid flows using the simplified kinetic
equation, in that previous case with just a single particle speed, was in 1964 for the
study of shock structures [34]. The idea of adopting a multispeed discrete particle
velocities model to examine shock-wave structures was in 1990 [35].

As mentioned in the introductory chapter, however, the ancestor of today’s LBM
is the LGA, in which, like each of these first models, space and time were continuous,
despite the particle velocity being discretized in the distribution function. Hardy
& al. proposed the full discrete particle velocity model in 1976 [36] to examine the
transport characteristics of fluids. In this model, space and time are discretized on
a square lattice. Frisch & al. identified the significance of the lattice’s symmetry for
the recovery of the Navier Stokes equation in 1986 [12]. For the first time, they were
able to start with the Lattice Gas Automata on a hexagonal lattice and obtain the
right Navier-Stokes equation. The cellular automaton model [37] [38] and the 3D
model employing the four-dimensional Face Centered Hyper Cubic (FCHC) lattice
[39] are the main ideas in the development of LBM that are contemporaneous with
[12].

The primary characteristic of the LBM is that it ignores individual particle
motion and particle-particle correlations in the kinetic equations [13], replacing the
particle occupation variables 1 with a single particle distribution function, which is
the real variable. By using this method, the LBM’s statistical noise is removed.
The LBM has the advantage of maintaining the locality in the kinetic approach,
which is necessary for parallelism since its kinetic form is still the same as the LGA
form.

In the article [40] of 1989, an important simplification of the LBM is proposed,
in fact, Higuera & Jimenez linearized the collision operator by supposing that
the distribution is fairly close to the local equilibrium state. The same author
also suggested a linearly stable collision operator technique [41]. The relaxation
period towards the local equilibrium is used in a specific simple linearized form
of the collision operator using a single-time relaxation. The already discussed
Bhatnagar-Gross-Krook (BGK) collision operator [42], which was independently
proposed by other authors [43] [44], is the name of the most common relaxation
term. The local equilibrium distribution is used in this Lattice BGK (LBGK) model
to recover the Navier-Stokes macroscopic equations [45] [46]. The computations are
more effective and the transport coefficient can be changed when the lattice BGK
model is used. As already discussed in section 2.3.3, the MRT model will be used
in this thesis to deal with the collision operator, due to the range of advantages it
offers, especially in the range with a Mach number greater than one.

1The LGA uses boolean variables to specify the particle positions.
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3.2 LBM for compressible applications
At SOA, when dealing with flow simulations with high Reynolds numbers and/or
moderate to high Mach numbers, LBM faces stability problems. In order to
extend LBM to the compressible (and eventually thermal) case there are two main
approaches that can be taken:

• The first involves preserving the common "Collide & Stream" algorithm while
expanding the number of free parameters and changing the velocity discretiza-
tion and discrete equilibrium state.

• The second solution focuses on comparing several numerical approaches for
the LBE’s numerical discretization, therefore this approach is based only on a
numerical understanding of stability constraints, assuming that the method
used to obtain the LBE has not much impact on stability problems.

It results in rationally believing that the best approach that can be implemented
is a middle way that combines both solutions. However, the problems faced with
LBM in the compressible range are not only numerical in origin, the set values for
the heat capacity ratio γ and the Prandlt number (Pr = 1) 2 are two additional
non-numerical restrictions that belong to ordinary LBM.

• According to the first restriction, the thermal diffusivity coefficient cannot be
freely set while the dynamic viscosity is fixed, and vice versa.

• The second limitation is closely related to the number of internal degrees of
freedom of gas molecules. Indeed from the γ relationship, if only translational
DOFs are considered, as in the case of conventional LBM, this limits the
field of use of the method, applicable accurately to monoatomic gases only.
Rotational DOFs must be included at least when defining the internal energy
or the total energy in order to reproduce realistic flows, such as air.

It should be emphasized that these restrictions are more related to the future of
the pylbm software [4], as only the Euler equation can be simulated at the moment,
so the literature review on compressible and thermal LBM is done for illustrative
purposes only. Although not strictly related to our test case, based on what was
introduced, three types of LBMs—multispeed (or high-order), double distribution
function, and hybrid LBMs exist in the literature for the simulation of thermal and

2Where γ is defined by the relationship γ = 1 + 2
DOF , where DOF are the number of gas

molecule internal degrees of freedom (i.e. DOF), while as for the Prandtl number, it is the ratio
between dynamic and thermal diffusivity coefficients (i.e. Pr = µCp

k ), where µ is the dynamic
viscosity, Cp is the specific heat at constant pressure, while k is the thermal conductivity
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completely compressible flows with changing Prandtl number and heat capacity
ratio.

The goal of the ESA TRP research project LBMHYPE is to figure out whether
Lattice Boltzmann Methods are practical for applications involving hypersonic
flows. The LBMHYPE work proposes carrying out a more in-depth analysis of
the potential and limits of pure LBM schemes to model highly compressible flow
behaviors. The feasibility study itself — can we utilize LBM to simulate high
compressible flows? — was the focus of the first phase of the project. A review
of the literature was conducted in the first part of the project in order to find
suitable LBM models that could simulate highly compressible flows. The following
section, therefore, aims to show some proposals from the literature for dealing with
the supersonic regime also with the LBM, in particular, the approach of Professor
Benjamin Graille and Professor François Dubois, given in the TN1.1 - Feasibility
Assessment report of the LBMHYPE project was followed.

3.2.1 Finite Difference Lattice Boltzmann Method
The Finite Difference Lattice Boltzmann Method (FDLBM) involves discretizing a
Boltzmann equation. A linear collision operator is used to simplify the Boltzmann
equation in time, space, and velocities. Lastly, the equilibrium distribution function
values are fixed in order to conserve the mass, momentum, and total energy of the
particles.

The streaming operator is discretized using a finite differences scheme (such as
the upwind or 3d-order upwind scheme), which is how it differs from the classical
LBM. The kinetic velocities are fixed as multiples of λ in the LBM streaming
operator, which makes it exact. This approach allows the selection of circular or
spherical stencils, but it also increases errors during the streaming phase and makes
the process tougher.

Single distribution function

An initial example of the application of LBM in the supersonic field was proposed
in [47], [48]. However, a problem with numerical instability prevents FDLBM use
in real systems with a Mach number greater than 1.

A research group created an innovative numerical approach known as the Discrete
Boltzmann Method (DBM). The method used by the researchers to recover the
complete Navier-Stokes equations is to directly approximate the Boltzmann equation
using a simpler collisional operator. In [49], as done in [47], the stability of the
Boltzmann equation’s spatial discretization is examined in order to suggest a discrete
velocity Boltzmann approach. In order to increase the von Neumann stability,
this scheme includes a finite differences scheme with an additional dissipation
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factor. What is crucial, however, as the same idea was then used in developing the
vectorial schemes that were later implemented in pylbm [4], is that the same group
of researchers also proposed an MRT variant of the FDLBM using the conventional
MRT-LBM [50]. This concept was further developed in [51] and [52], which offers a
discussion of the approach and applications that emphasize compressible flows. For
high-speed compressible flows ranging from continuum to transition, always the
same research group offer a generic framework in [53], [54] to develop trans-scale
discrete Boltzmann models (DBMs). Two shock tubes were successfully simulated,
demonstrating the model’s robustness, accuracy, and applicability to compressible
flows with strong shock wave interaction.

Double distribution function

The multispeed method is a direct increase in conventional second-order isothermal
and weakly compressible LBMs. Adding discrete velocities to the LBE and account-
ing for high-order velocity terms for defining the discrete equilibrium state are the
two key elements of this method. Two separate distribution functions are used in
the double distribution function (DDF) technique, one for the temperature field
and the other for the flow field, so through the evolution of a second distribution
function for the energy, the DDF approach seeks to introduce the idea of tempera-
ture fluctuations. This particular type of LBM can thus separate the aerodynamic
and thermodynamic relaxation processes, allowing for the independent selection of
the dynamic and thermal diffusivity coefficients.

In [55], the first DDF model was developed. Since its development, this model
has received a lot of attention due to its exceptional numerical stability and Pr
number independence. This model nevertheless has delicate gradient factors that
involve the temporal and spatial derivatives of the macroscopic flow variables,
which could cause extra mistakes and degrade the numerical stability. In order
to partially solve this problem, a total energy distribution function was added in
[56] to replace the internal energy distribution function in their alternative version.
The flow field is unaffected by the temperature field in this decoupling model.

For the 2D compressible Navier-Stokes equations, the research group in [57]
suggested a coupled finite difference (FD) DDF model with an adaptable specific-
heat ratio and Pr number. In [58] is adopted a D3Q25 DVBE (Double Distribution
Velocity Boltzmann Equation) model to solve the Sod shock tube and a regular
shock reflection.
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3.2.2 Finite Volume Methods & Lattice Boltzmann
During the literature analysis carried out, the following approaches were found,
which are two finite volumes techniques that include kinetic aspects: the first
approximation Riemann solver uses a one-dimensional lattice Boltzmann solver,
while the second discretizes the velocity space.

Lattice Boltzmann Flux Solver

This approach that will be discussed in this section, as well as citing some in-
teresting results in the supersonic field with the LBM, will offer insight into the
implementation of boundary conditions in section 5.1, the focus of this thesis.

The lattice Boltzmann method has been developed for compressible applications
by an Asian research team. They focused on new lattice Boltzmann schemes in
[59], which are based on a new equilibrium distribution function that imitates
the Maxwellian equilibrium with internal degrees of freedom. The Boltzmann
equation’s discretization, specifically the equilibrium distribution function, is the
main foundation of the methodology. The proposed test case is a simulation of the
Sod tube. The Asian research team then took another way adopting an LBM-based
flux solver (finite volumes approach), as the method is founded on the creation of a
circular equilibrium distribution function. Article [60] summarizes all of their work
in this field. By simulating inviscid compressible flows with test problems in 1D
and 3D, they compare the results of three LBM-based flux solvers. These proposals
accomplish effectively, particularly for the Sod tube, the Shu-Osher shock tube,
supersonic flow via a channel with a ramp segment, and the forward-facing step.
This team’s most recent contribution in this field is [61]. In this study, a stable
Lattice Boltzmann Flux Solver (LBFS) has been proposed for the simulation of
complicated hypersonic fluxes. In LBFS, the Navier-Stokes equations are solved
using the finite volume method. The viscous flux is solved using the central
difference approach, while the inviscid flux across the cell interface is reconstructed
using the one-dimensional Lattice Boltzmann (D1Q4) model. Li et al. provide
the WENO-LBFS method’s results for compressible flows in [62], in which they
evaluate various approaches and suggest a hybrid one that can efficiently capture
shock waves without oscillations and calculate the solution of smooth regions with
accuracy.

Unified Gas-Kinetic Scheme

This approach was presented in 2001 [63], and it uses discrete particle simulations
when the flow is rarefied and it is based on a finite volume discretization. It appears
to be a significant alternative to the Direct Simulation Monte Carlo (DSMC)
approach, especially when a transitional regime is located close to another section
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of the flow where the thermodynamical equilibrium is established. Using a unified
gas kinetic scheme, in [64] is shown a study on the Knudsen number around a
reentry vehicle with wings (M = 4, Re = 6 · 104). Using conventional high-order
interpolation (Weighted Essentially Non Oscillatory methods), this method can
be expanded to higher precision. The authors of [65] present a wide range of test
cases, in which this method is tested. More theoretical research and numerical
analysis are the main topics of other contributions [66] [67] [68].

3.2.3 Implicit Lattice Boltzmann Methods
The entropic lattice Boltzmann method is an implicit Lattice Boltzmann technique
that involves the minimization of entropy. The contribution [69] presents the
ELBM, which can be applied also to compressible flows.
The particles-on-demand method instead, could be a solution to overcome all of
the lattice Boltzmann method’s physical restrictions.

Entropic lattice Boltzmann method

The authors offer a lattice Boltzmann model in [70] that, in their perspective,
covers the full range of fluid flows, from low Mach weakly compressible flows to
transonic and supersonic flows. Three key improvements to the LBM scheme are
made to get over the low Mach number limit:

• A multi-speed lattice accurately developed

• A precise evaluation of the equilibrium

• An entropic relaxation for the collision

The basis for their work is that the Navier-Stokes equations can be recovered if the
Maxwell-Boltzmann distribution function is approximated accurately. The main
rule is to select a lattice whose discrete equilibria approach as close as it is possible
to the moments of the Maxwell-Boltzmann distribution function.

Particles on demand

The lattice Boltzmann schemes’ basic structure is quite similar to that of the particle
methods. Based on this notion and the connection to relaxation schemes, different
research teams start to build implicit schemes. In [71], a research team proposed an
implicit approach to a scalar, one-dimensional hyperbolic problem using D1Q2 and
D2Q4 as foundations. A Riemann problem for a barotropic gas is resolved in the
reference [71]. This group’s aim consists of handling the magnetohydrodynamics
equations. Using the same collision operator as the Entropic Lattice Boltzmann
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approach, a lattice Boltzmann strategy is provided in [72]. In order to satisfy the
set of moments, a distribution of particles is generated from the specified moments.
But the transport velocities are of type cj = v+ λj

3 rather than using the lattice’s
fixed velocities as in conventional LBM. The D2Q9 scheme is used to offer an
amazing test case for the thermal gas dynamics equations in [72] at very high Mach
numbers.

In [72], authors pretend that only fluid velocities near zero and temperatures
close to a reference temperature can be employed with the conventional LBM. On
the other hand, the particles on demand method’s possible flow velocities and
temperatures are limited only by the lattice speed selection.

The algorithms presented in [71], [72] are of significant importance despite their
implicit nature, for their innovative way to increase stability. On the other hand,
we must consider the higher computational cost.

3.2.4 Lattice Boltzmann & VLES
In [73] it is proposed a Very Large Eddy Simulation (VLES) method based on
the LBM to simulate high Reynolds number turbulent flows, a scheme used to
study the interaction between a reflected oblique shock and a supersonic turbulent
boundary layer.

As with the DDF-LBM, the hybrid LBM is based on a two-equation approach,
but the energy equation is in this case resolved using conventional numerical
techniques (finite volume, finite difference, etc.). A hybrid scheme was proposed in
the publication [74] to simulate the flows past a wedge and flows past an airfoil,
which was an earlier work using the same idea as [73].

3Where v is the velocity of the flow, while λj is the lattice velocity
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3.3 The lattice Boltzmann approach
As already seen in the previous chapter 2, the equation that is solved with LBM is
the Boltzmann Equation 2.29, which can be rewritten as a function of Knudsen
number Kn:

∂f(t, x, c)
∂t

+ c
∂f(t, x, c)

∂x
= 1
Kn

Ω(f) (3.1)

where t, x, and c are the time, space, and velocity variables. In this partial
differential equation 3.1, the unknown quantity is the function f of the three
variables (t, x, c).

The LBM can be thought of as a numerical method involving fictitious particles
(i.e. the particle distribution function f) forced to move on a cartesian lattice.
These pseudo-particles are scalars (i.e. numbers) and they interact locally with
each other during the collision phase, also known as the relaxation phase when
arriving on a lattice node.

These are the elements that compose a lattice Boltzmann scheme:

• a cartesian spatial mesh L = ∆x ∈ Zd , where d is the dimension of the
space, while ∆x is the uniform spatial step.

• a time step ∆t, which can be linked to the uniform spatial step ∆x through
the parameter λ = ∆x

∆t
which is the velocity of the lattice.

• a stencil of velocities {c0, ..., cq−1} ∈ λZd, where q is the length of this
stencil (i.e the number of velocities used in the method).
We can denote fj the particle distribution function of the particles that move
with the velocity cj where 0 ≤ j < q.

• an invertible matrix M of size q × q that defines the moments.

• the equilibrium value of the particle distribution functions.

• the relaxation parameters.

The lattice Boltzmann scheme makes the quantities fj(x, t) 4 change in accordance
with some straightforward criteria. One time step of the scheme splits into four
sub-steps, as we can see in the figure 3.1

4where 0 ≤ j < q, x ∈ L the cartesian spatial mesh and the time step t ∈ ∆N
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• f2m, based on the particle distribution functions fj(x, t), calculate the mo-
ments mk 0 ≤ k < q

mk(x, t) =
q−1Ø
j=0

Mkjfj(x, t) 0 ≤ k < q (3.2)

• R relaxes the moments toward the equilibrium

m⋆
k(x, t) = (1 − sk)mk(x, t) + skm

eq
k (x, t) 0 ≤ k < q (3.3)

where sk is the relaxation parameter associated to the kth moment.

• m2f, from the moments, calculate the particle distribution functions

f ⋆
j (x, t) =

q−1Ø
k=0

M−1
jk m

⋆
k(x, t) 0 ≤ j < q (3.4)

• T transport the particle distribution functions according to their velocities

fj(x, t+ ∆t) = f ⋆
j (x− cj∆t, t) 0 ≤ j < q (3.5)

Figure 3.1: Sketch of a lattice Boltzmann one time step

There are two categories of moments mk, 0 ≤ k < q.

• The first n moments 0 ≤ n < q − 1 are “conserved” during the relaxation
phase:

meq
k = mk 0 ≤ k < n (3.6)

• While for the remaining moments meq
k n ≤ k < q, their equilibrium value is a

function of the conserved moments, which is known a priori.

meq
k = meq

k (m0, ...,mn−1) n ≤ k < q (3.7)
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Therefore, the Boltzmann equation 3.1 can be discretized using LBM by separating
the transport and collision operators. The collision operator is approximated by an
explicit Euler scheme, while the transport phase is exact according to the theory of
the characteristics.

The following list of advantages of this algorithm can be summed up:

• The transport step is exact, in fact, all that needs to be done during this phase
is to move the data from one point to another.

• All the other steps are local in space, which suggests that parallelization can
be quite successful.

• The algorithm is fully explicit, so there is no need to save big matrices or
handle non-linear problems.

The disadvantages are as follows, in summary:

• Finding a lattice Boltzmann scheme that simulates a certain partial differential
equation is difficult. It is possible to determine which equation is simulated
for a given scheme, but the opposite is challenging.

• There is no established and unified framework for the numerical analysis of
such a system, and concepts like consistency, stability, and convergence are
not well-defined.

• The numerical stability is not completely understood; even if each step is
stable on its own, the overall system may develop spurious instabilities.

• It can be challenging to offer precise boundary conditions since they depend
on the incoming particle distribution functions rather than the moments.

The macroscopic conservative equations on the invariant moments of the collision
operator Ω result from an asymptotic evolution of the solution, according to the
tiny parameter Kn. These conserved moments are the kinetic velocity-dependent
moments that remain constant throughout a collision. The important aspect of this
theory is that the derived macroscopic equations depend only on these conserved
moments and not on the precise expression of the collision operator. Moments
of the microscopic particle distribution function can be used to determine the
macroscopic fluid density, momentum, and internal energy. In fact, from the 2.30
relations, these can be generalized depending on the discretization that was set out
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to be performed (i.e., the number of velocities chosen in the method)

ρ(x, t) =
q−1Ø
k=0

fk(x, t)

Q(x, t) =
q−1Ø
k=0

λkfk(x, t)

E(x, t) =
q−1Ø
k=0

(λk − u(x, t))2fk(x, t)/ρ(x, t)

(3.8)

Given these properties that are provided by the numerical method, any other
properties of the fluid can be easily derived. For example, given momentum (which
can be decomposed along Cartesian axes), it is possible to derive velocities.

ux = Qx

ρ

uy = Qy

ρ

|V | =
ñ
u2

x + u2
y

(3.9)

Or, from the relations of gas-dynamics, the pressure can also be derived:

p = (γ − 1)
C
E − 1

2
Q2

x +Q2
y

ρ

D
(3.10)

As well as the speed of sound:

c =

öõõôγ(γ − 1)
E − 1

2ρ(u2
x + u2

y)
ρ

(3.11)

Then the Mach number can be obtained:

Mach = |V |
c

(3.12)

Then the total pressure can also be derived, remembering that we are assuming a
compressible situation:

PT OT = p
3

1 + γ − 1
2 Mach2

4 γ
γ−1

(3.13)

Finally, although we will then go on to investigate an isothermal test case 6.2 and
7.2, the temperature can also be derived through the perfect gas equation:

T = p

ρR
(3.14)
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3.4 Vectorial Schemes
According to the analysis carried out by Professor Benjamin Graille and Professor
François Dubois, reported in section 3.2 of this chapter on the feasibility of treating
the supersonic regime through the LBM. The following elements can be used to
create a Lattice Boltzmann scheme, in order to simulate compressible flows:

• A promising approach is to use vectorial schemes (one distribution function
for each scalar conserved moment or a double distribution function)

• Re-centering the velocities (using relative velocity schemes or changing the
kinetic velocities) might increase stability.

• The intensity of internal energy might be considered through an adjustment
of the moment’s matrix

As already discussed in section 2.3.3, the MRT model will be used in this thesis to
deal with the collision operator, MRT concept which was furthermore extended to
the family of vectorial schemes [5] [6].

Focusing more on Professor Graille’s article [6], introduces a new lattice Boltz-
mann scheme named D1Q2

n, which is intended to mimic one-dimensional hyperbolic
conservative fluid dynamics equations, particularly those written in terms of con-
servation law. These include, in particular, the equations derived from the kinetic
theory of gases (i.e. Euler’s equations) [75]. The [6] methodology treats each of the
system’s equations independently while minimizing the necessity of the Boltzmann
equation. Usually, in order to increase the dimension of the system (i.e. the number
of conservation equations) conserved moments of the one-dimensional hyperbolic
system with higher velocities are introduced, with two consequences:

• The stencil of the velocities is extended, as a result, it will be more challenging
to apply the boundary conditions;

• Adding new velocities modifies the scheme, necessitating a re-evaluation of all
prior studies of stability and accuracy.

The well-known and simplest lattice Boltzmann system, the D1Q2 (one spatial
dimension and two discrete velocities), is replicated for each of the n conserved
moments in the proposed scheme [6], represented as D1Q

n
2 . This scheme is related

to a specific discretization of the relaxation method that separates the linear
hyperbolic part (which is dealt with using a Lax-Friedrichs discretization [76]) from
the relaxation part (which is dealt with using an explicit Euler solver).
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As a consequence, it is simple to apply what has been implemented from the study
of the scalar equation to the system of n-equations. In addition, since the boundary
conditions are given in terms of particle distribution functions within the context
of lattice Boltzmann schemes, the decoupling of these functions greatly simplifies
the selection of the incoming particle distribution functions on the boundaries in
order to satisfy the boundary conditions.

Given stability conditions, the scheme is defined within the framework of MRT
approach, which leads to the benefits already discussed. The relaxation method
presented by Jin and Xin [77] was analyzed in the paper by Professor Graille [6] in
order to connect the scheme with an explicit finite differences approximation. A
stiff source term and the relaxation approach were developed by [77] to convert
a non-linear hyperbolic system of dimension n into a linear hyperbolic system of
dimension 2n.

3.4.1 Lattice Boltzmann schemes for compressible flows

In this section, we are going to analyze several schemes to simulate Euler equations
that make up a classical hyperbolic system. The following vectorial schemes will be
discussed to show numeric artifacts like oscillations and diffusion. It is important to
point out that within the LBMHYPE project, as in [6], the proposed schemes are
written into d’Humières’ framework [78]; The Taylor expansion approach is used to
provide the corresponding equations up to the second order [79] [80]. As summed
up in [81], the lattice Boltzmann scheme’s accuracy 5 can be increased numerically
by using the Taylor expansion method. According to this method, it is possible
to determine the equivalent partial differential equation of the LB scheme up to
the second order of accuracy using the only parameter ∆t as infinitesimal variable
6. The Taylor expansion approach allows the development of an explicit formula,
in this way, it is easier to tune the parameters of the LB scheme and obtain a
higher-order accuracy. Through a trade-off between stability and precision, the
residual terms of second order are examined in accordance with the scheme’s free
parameters. As we will see in section 3.4.3, often figuring out how to set parameters
is not at all simple, and often the trivial solution is unstable.

Back to vectorial schemes, they can be obtained by combining several equations.
In this way, it is possible to emulate a set of equations like Euler equations.

5As well as the accuracy of any numerical method for simulating partial differential equations
associated with conservation laws of physics

6In addition to requiring that the lattice speed λ be constant
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In 1D the system reads: 
∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 + p) = 0,
∂t(E) + ∂x((E + p)u) = 0,

(3.15)

where ρ is the density, u the flow velocity, q = ρu the momentum, p the pressure
and e the total energy. All these quantities are both time-space-dependent. The
pressure p and the total energy E are linked by the relation

E = 1
2ρu

2 + p

γ − 1 (3.16)

where γ is the heat capacity ratio.

In 2D the system reads:

∂tρ+ ∂x(ρux) + ∂y(ρuy) = 0,
∂t(ρux) + ∂x(ρu2

x + p) + ∂y(ρuxuy) = 0,
∂t(ρuy) + ∂x(ρuxuy) + ∂y(ρu2

y + p) = 0,
∂t(E) + ∂x((E + p)ux) + ∂y((E + p)uy) = 0,

(3.17)

where ρ is the density, u = (ux, uy) the flow velocity, q = ρu the momentum, p the
pressure and E the total energy. All these quantities are both time-space-dependent.
The pressure p and the total energy E are linked by the relation

E = 1
2ρ(u

2
x + u2

y) + p

γ − 1 (3.18)

where γ is the heat capacity ratio.

3.4.2 LBM vectorial scheme D1Q222

To begin dealing with vectorial schemes, let us start with the simplest one that is
possible to implement, although a more advanced method (i.e., one that takes into
account more speed) will be used in the test cases that will be analyzed in 6 and 7.

The simplest 1D scheme that can model the 1D Euler equations is the D1Q222
vectorial scheme. Three coupled D1Q2 schemes are used, one for each of the
one-dimensional Euler conservation equations. The velocity stencil is the smallest
stencil in 1D and consists of only 2 velocities (1,−1). The conserved moments are
ρ, q, and E.

In order to build an invertible matrix MD1Q222 , we must first define the vectors
of the six moments m = (ρ,m0, q,m1, E,m2) and the vectors of the six particle
distribution functions f = (f0, . . . , f5).
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MD1Q222 =

MD1Q2 0 0
0 MD1Q2 0
0 0 MD1Q2

 , MD1Q2 =
A

1 1
λ −λ

B
, (3.19)

where λ = ∆x/∆t is the lattice speed.
Moments m = (ρ,m0, q,m1, E,m2), particle distribution function f0...5, and the
M-matrix MD1Q222 are linked by the following relationship:

m = MD1Q222f (3.20)

During the relaxation phase, the non-conserved moments are modified in accordance
with

m⋆
0 = m0 + sρ(meq

0 −m0), (3.21)
m⋆

1 = m1 + su(meq
1 −m1), (3.22)

m⋆
2 = m2 + sp(meq

2 −m2), (3.23)

where sρ, su, sp are the three relaxation parameters which must be chosen between
0 and 2 for stability reasons.

The equilibrium value of the non-conserved moments employed during the
relaxation phase must also be defined. As mentioned earlier, what was introduced
in [6] will be used:

meq
0 = ρu, meq

1 = ρu2 + p, meq
2 = (E + p)u. (3.24)

Last but not least, defining the temperature T by T = p/(ρR) = c2/(γR) with
R the specific gas constant, it is possible to obtain the corresponding equations up
to the second order using the expansion of Dubois [79] [80]:


∂tρ+ ∂x(ρu) = ∂x

1
Bρ,ρ∂xρ+Bρ,u∂xu+Bρ,T∂xT

2
+ O(∆t2),

∂t(ρu) + ∂x(ρu2 + p) = ∂x

1
Bu,ρ∂xρ+Bu,u∂xu+Bu,T∂xT

2
+ O(∆t2),

∂tE + ∂x((E + p)u) = ∂x

1
BT,ρ∂xρ+BT,u∂xu+BT,T∂xT

2
+ O(∆t2),

(3.25)
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where the coefficients Bα,β, α, β ∈ {ρ, u, T}, are the following:

Bρ,ρ =
3
λ2 − u2 − c2

γ

4
σρ∆t,

Bρ,u = −2ρuσρ∆t,
Bρ,T = −ρRσρ∆t,

Bu,ρ =
3
λ2 − u2 − c2

γ

4
uσu∆t,

Bu,u =
3
λ2 − 3u2 − c2

4
ρσu∆t,

Bu,T = −3ρuRσu∆t,

BT,ρ =
3
u2

2 (λ2 − u2) + c2

γ(γ − 1)
1
λ2 − 1

2(5γ − 3)u2 − c2
24
σp∆t,

BT,u =
3
λ2 − 2u2 − γ + 1

γ − 1c
2
4
ρuσp∆t,

BT,T = ρR

γ − 1
1
λ2 − 1

2(5γ − 3)u2 − c2
2
σp∆t,

(3.26)

with the Henon parameters σρ, σu, and σp defined by

σρ = 1
sρ

− 1
2 , σu = 1

su

− 1
2 , σp = 1

sp

− 1
2 . (3.27)

What was presented by using this scheme in the LBMHYPE project is that
this D1Q222 is consistent with the Euler equations up to the second order only for
sρ = su = sp = 2, but this choice of configurations is frequently unstable. The
complexity of the numerical diffusion depends on the hydrodynamic parameters.

From these complex relationships obtained for the simplest existing vectorial
scheme, we can already observe the non-linear interaction between the main
parameters of the LBM, namely the diffusivity σ of the scheme (related to the
relaxation parameters via 3.27) and the lattice velocity λ. For example, it can be
seen that λ, which has to satisfy a CFL-type condition to ensure the stability of
the scheme 7 is also involved in the numerical diffusion (i.e. the property under σ)
and vice versa.

3.4.3 LBM vectorial scheme D2Q4444

By increasing the size of the system, it is necessary to take into consideration more
speed in the stencil, so let’s start to see the method that will be used to solve the
wedge first 6 and the cylinder then 7.

7It should not be forgotten that we are using an explicit scheme.
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The simplest 2D vectorial system that can simulate the 2D Euler equations
is D2Q4444, in which four coupled D2Q4 schemes are used, one for each of the
two-dimensional (2D) Euler conservation equations. The velocity stencil is the
smallest stencil in 2D and only contains 4 velocities (((1,0), (0, 1), (−1, 0), (0,−1))).
The conserved moments are ρ, qx, qy, and E.

In this case, since the complexity and size of the system to be solved are
increasing, the vector of moments consists of sixteen elements:

m = (ρ,mρ,x,mρ,y,mρ,2, qx,mqx,x,mqx,y,mqx,2,

qy,mqy ,x,mqy ,y,mqy ,2, E,mE,x,mE,y,mE,2)

As well, the vector of particle distribution functions is composed of sixteen elements
f = (f0, . . . , f15).

In analogy with the vectorial scheme seen previously 3.4.2, there is a relationship
between moments and particle distribution functions through the invertible matrix
MD2Q4444 :

m = MD2Q4444f (3.28)

where the matrix MD2Q4444 is defined as follows:

MD2Q4444 =


MD2Q4 0 0 0

0 MD2Q4 0 0
0 0 MD2Q4 0
0 0 0 MD2Q4

 , (3.29)

where the MD2Q4 sub-matrix is defined as follows, as a function of the lattice speed
λ = ∆x/∆t:

MD2Q4 =


1 1 1 1
λ 0 −λ 0
0 λ 0 −λ
λ2 −λ2 λ2 −λ2

 , (3.30)

During the relaxation phase, the non-conserved moments are modified according
to:

m⋆
ρ,ξ = mρ,ξ + sρ(meq

ρ,ξ −mρ,ξ), m⋆
ρ,2 = mρ,2 + sρ,2(meq

ρ,2 −mρ,2), (3.31)
m⋆

qζ ,ξ = mqζ ,ξ + su(meq
qζ ,ξ −mqζ ,ξ), m⋆

qζ ,2 = mqζ ,2 + su,2(meq
qζ ,2 −mqζ ,2), (3.32)

m⋆
E,ξ = mE,ξ + sp(meq

E,ξ −mE,ξ), m⋆
E,2 = mE,2 + sp,2(meq

E,2 −mE,2), (3.33)

for ζ, ξ ∈ {x, y}, where sρ, su, sp are the three relaxation parameters which must
be chosen between 0 and 2 for stability reasons.
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Exactly as in the scheme presented before, it is then necessary to define the
equilibrium value of non-conserved moments adopted during the relaxation phase:

meq
ρ,ξ = ρuξ, meq

ρ,2 = ρ(u2
x − u2

y),
meq

qζ ,ξ = ρuζuξ + pδζ,ξ, meq
qζ ,2 = 0,

meq
E,ξ = (E + p)uξ, meq

E,2 = 0,
(3.34)

where δζ,ξ = 1 if ζ = ξ and δζ,ξ = 0 if ζ /= ξ.
Last but not least, defining the temperature T by T = p/(ρR) = c2/(γR) with

R the specific gas constant, it is possible to obtain the corresponding equations up
to the second order using the expansion of Dubois [79] [80]:

∂tρ+ ∂x(ρux) + ∂y(ρuy) = σρ∆t
3
∂xθ

ρ
x + ∂yθ

ρ
y

4
+ O(∆t2),

∂t(ρux) + ∂x(ρu2
x + p) + ∂y(ρuxuy) = σu∆t

3
∂xθ

ux
x + ∂yθ

ux
y

4
+ O(∆t2),

∂t(ρuy) + ∂y(ρu2
y + p) + ∂x(ρuyux) = σu∆t

3
∂xθ

uy
x + ∂yθ

uy
y

4
+ O(∆t2),

∂tE + ∂x((E + p)ux) + ∂y((E + p)uy) = σE∆t
3
∂xθ

E
x + ∂yθ

E
y

4
+ O(∆t2),

(3.35)

where the various parameters present are given by the following relationships:

θρ
x = (1

2λ
2 − 1

γ
c2 − 1

2(u2
x + u2

y))∂xρ− uxuu∂yρ− ρR∂xT

− ρux∂xux − ρuy∂yux − ρux∂yuy − ρuy∂xuy, (3.36)

θρ
y = (1

2λ
2 − 1

γ
c2 − 1

2(u2
x + u2

y))∂yρ− uxuu∂xρ− ρR∂yT

− ρuy∂yuy − ρux∂xuy − ρuy∂xux − ρux∂yux, (3.37)

θux
x = (1

2λ
2 − 2γ−1

γ(γ−1)c
2 − u2

x)ux∂xρ− (u2
x + 1

γ(γ−1)c
2)uy∂yρ− 2γ−1

γ(γ−1)ρuxR∂xT

− 1
γ(γ−1)ρuyR∂yT + ρ(1

2λ
2 − 3u2

x)∂xux − 2ρuxuy∂yux − ρu2
x∂yuy, (3.38)

θux
y = (1

2λ
2 − 1

γ
c2 − u2

y)ux∂yρ− (u2
x + 1

γ
c2)uy∂xρ− 1

γ
ρuyR∂xT − 1

γ
ρuxR∂yT

+ ρ(1
2λ

2 − u2
y)∂yux − 2ρuxuy∂xux − ρu2

x∂xuy − 2ρuxuy∂yuy, (3.39)

θuy
x = (1

2λ
2 − 1

γ
c2 − u2

x)uy∂xρ− (u2
y + 1

γ
c2)ux∂yρ− 1

γ
ρuxR∂yT − 1

γ
ρuyR∂xT

+ ρ(1
2λ

2 − u2
x)∂xuy − 2ρuyux∂yuy − ρu2

y∂yux − 2ρuyux∂xux, (3.40)

43



Lattice Boltzmann Method

θuy
y = (1

2λ
2 − 2γ−1

γ(γ−1)c
2 − u2

y)uy∂yρ− (u2
y + 1

γ(γ−1)c
2)ux∂xρ− 2γ−1

γ(γ−1)ρuyR∂yT

− 1
γ(γ−1)ρuxR∂xT + ρ(1

2λ
2 − 3u2

y)∂yuy − 2ρuyux∂xuy − ρu2
y∂xux, (3.41)

θE
x = (1

2u
4
x + 1

2u
2
xu

2
y + 3γ2−4γ+3

2γ(γ−1) u
2
xc

2 + 1
2γ
u2

yc
2 + 1

γ(γ−1)c
4)∂xρ

+ (1
2u

2
x + 1

2u
2
y + γ2−γ+1

γ(γ−1)2 c
2)uxuy∂yρ+ ρux(2u2

x + u2
y + γ

(γ−1)2 c
2)∂xux + ρuyu

2
x∂xuy

+ ρ(1
2u

3
x + 3

2uxu
2
y + 3

2u
2
xuy + 1

2u
3
y + 1

γ−1c
2uy + γ

γ−1c
2ux)∂yuy

+ ρR(3γ2−4γ+3
2(γ−1)2 u

2
x + 1

2u
2
y + 1

γ−1c
2)∂xT + ρRγ2−γ+1

(γ−1)2 uxuy∂yT, (3.42)

θE
y = (1

2u
4
y + 1

2u
2
yu

2
x + 3γ2−4γ+3

2γ(γ−1) u
2
yc

2 + 1
2γ
u2

xc
2 + 1

γ(γ−1)c
4)∂yρ

+ (1
2u

2
y + 1

2u
2
x + γ2−γ+1

γ(γ−1)2 c
2)uyux∂xρ+ ρuy(2u2

y + u2
x + γ

(γ−1)2 c
2)∂yuy + ρuxu

2
y∂yux

+ ρ(1
2u

3
y + 3

2uyu
2
x + 3

2u
2
yux + 1

2u
3
x + 1

γ−1c
2ux + γ

γ−1c
2uy)∂xux

+ ρR(3γ2−4γ+3
2(γ−1)2 u

2
y + 1

2u
2
x + 1

γ−1c
2)∂yT + ρRγ2−γ+1

(γ−1)2 uyux∂xT. (3.43)

These complex formulas suggest that selecting the equilibrium value of the last
moment in order to generate a null second-order operator is not practical. Even
though the D2Q4444 has more degrees of freedom in terms of equilibrium options,
the conclusion is the same as it was for the D1Q222: the scheme is consistent with
the Euler equation up to the second order only forsρ = su = sp = 2, but this choice
of parameters is unstable.
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Chapter 4

Boundary conditions for the
LBM

Unlike conventional CFD, it is challenging to implement boundary conditions in
the lattice Boltzmann approach since the required hydrodynamic macro quantities
imposed at the boundary and the variables of the algorithm, the so-called particle
distributions, do not associate directly with each other. For instance, when trying
to implement Dirichlet boundary conditions, at the boundary nodes, the velocity
cannot be directly imposed, unlike conventional CFD, but it is necessary to set the
particle distributions in order to have satisfied the required boundary velocity.

4.1 Literature Review of BCs
The traditional method employed in lattice Boltzmann simulations to implement
the non-slip boundary condition is the bounce-back rule [82] [83]. Although it is
very simple, it turns out to be an insufficiently accurate method, as demonstrated
in [84] [85] [86] [87].

Another difficulty that must be considered is the imposition of the slip condition,
which is more difficult to set than the no-slip condition. This is a problem that was
dealt with in the LBMHYPE project, but several issues with the new implementation
have been solved, as will be analyzed in Chapters 6 and 7. Other proposals for
satisfying the slip condition can be found in the literature ([24], [23], [85], [88], [89],
[90], [91]).

Subsequently, great effort was put by the research into developing boundary
methods that were more precise than the bounce-back rule. Early boundary
treatments were variants of the bounce-back rule and were only applicable to
extremely basic regular boundary geometries, like flat walls. Various examples in
the literature of these simple improvements to the bounce-back rule can be found
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in [22] [23] [24] [89] [92] [93] [90] [94].
Following that, more research is put into finding approaches that deal with curved

boundaries. For instance, [95] [96] proposed a first method that also considers
non-rectilinear geometries, the algorithm, nevertheless, might be unstable.

To solve these problems of algorithm instability, [91] [97] proposed an improve-
ment to [95] and [96], by including an additional neighboring node and therefore
expanding the stability region, but without resolving completely the problem of
the prior approach.

A different link-based method using linear interpolation with one or two neighbor
nodes was proposed by Bouzidi et al. in 2001 [20], which can also be generalized,
as shown in [98]. This type of boundary condition, being the basis of the new type
of boundary condition implemented in this thesis, will be discussed in detail in
section 5.3. In fact, the Bouzidi Bounce Back with Normal boundary conditions
are nothing but an extension of the Bouzidi-type, to which a correction term is
added to accurately implement the slip conditions, regardless of the orientation
of the wall with respect to the lattice, since the normal direction (of the wall) is
taken into account. By increasing the accuracy of the solution, there is also a slight
increase in computational cost as it is necessary to have knowledge of the velocity
and/or density at the node where the boundary scheme is established (i.e. this
method also depends significantly on certain flow properties).

4.2 Bounce-Back Boundary Conditions
The LBM has the advantage that fixed no-slip boundaries along the grid’s Cartesian
directions can be implemented easily and efficiently while keeping the same level of
accuracy of the method.

If the boundary exactly lies between the grid nodes, the most basic approach,
known as the bounce-back method, is possible to implement. The concept is
represented in Figure 4.1 and can be explained through the viewpoint of a particle.
If a grid node adjacent was already inside the solid boundary (i.e. from picture 4.1,
xF + ∆t · ξ

i,b
= xB,n), for directions ξ

i,b
towards the boundary node, a propagating

particle would basically "bounce back" to its original location. The particle would
even be reflected in the transverse direction for a rough surface (i.e. pointing at a
transverse node xB,tr in picture 4.1).
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Figure 4.1: Bounce-back boundary conditions, No-Slip case

Since it is a simple reflection, the bounce-back rule for no-slip boundaries is
given by the following relationship:

fi,b(t+ ∆t, xF ) = f ⋆
i,b(t, xF ) (4.1)

where fi,b is the opposite distribution to fi,b and the superscript "⋆" identifies the
post-collision state.

Since of more interest in the topic of this thesis, the Bounce-Back boundary
condition can also be employed to implement the slip condition, in such case a
perfectly reflecting wall, as seen in figure 4.2, behaves as a free slip boundary.
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Figure 4.2: Bounce-back boundary conditions, Slip case

Different transverse directions are set in the direction of the boundary, having a
tangential influence on the nearby fluid node xF,t:

fi,b(t+ ∆t, xF,t) = f ⋆
i,b(t, xF ) (4.2)

A "2-time step" approach is frequently used, in which distributions are moved
in the direction of the boundary node, the following time step without colliding,
turned around and shifted back. However, the approach is not mass conservative
like the original bounce-back approach.

The research presented in [86] demonstrates that bounce-back is second-order
accurate in space. An example supporting this can be found in the reference [87],
in which is presented that, in a pressure-driven Poiseuille flow, this straightforward
bounce-back approach only achieved second-order precision when the boundary
nodes were placed half a grid spacing from the solid wall 1. Whenever the mid-link
condition is not satisfied (for instance with moving / curved or sloped boundaries)
the accuracy of the simple bounce-back rule is only first-order.

1The mid-link condition is the formal name for this particular case.
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According to the study mentioned in [99], the simplest bounce-back technique
has a little slip velocity inaccuracy, this is also the reason for the error in the results
obtained within the LBMHYPE project, reported in sections 6.4.2 and 7.3.1. This
hidden error, as demonstrated by [86] [87] is evident when the Bounce-Back scheme
is compared with the standard Chapman–Enskog analysis. The contribution made
to research by [87] is also to predict, from a theoretical point of view, the value of
the slip velocity for the BGK collision model.

In the bibliography [100] and [101], instead, it is shown that, in the case of
the two-relaxation-time (TRT) collision model, the unwanted slip-velocity was
due to the relaxation rates. The important contribution of these two articles is
that a method for eliminating slip-velocity is also presented, a concept that was
also extended to the multi-relaxation-time (MRT) collision model in [102]. In the
theoretical framework, [102], the hidden mistakes are revealed by recasting the
bounce-back distribution using the space Taylor expansion, what we deduce is that
with the Bounce Back boundary condition, it is not possible to obtain a numerical
solution to achieve accurate up to the second order.

The inaccuracies we will see in sections 6.4.2 and 7.3.1, however, are not only
due to what was dealt with in [99], since in [103], in order to solve this problem, it
is proposed a method that eliminates non-equilibrium error throughout the collision
cycle (also known as the "magic" collision number for MRT collision).

4.2.1 Implementation on Python of Bounce Back BCs
Before moving on to the specific implementation of the boundary condition, there is
a main class in the boundary.py script of pylbm, namely Boundary, which represents
the boundary conditions of a lattice Boltzmann simulation in the pylbm library [4].

Boundary class

This class has three inputs basically, a domain object that represents the domain in
which the simulation takes place, a generator object that instead implements the
appropriate conditions for each stencil element, and finally, the ’dico’ dictionary,
which also describes the boundary conditions to be implemented through the keys
’method’ (which specifies the type of BCs, so Bounce Back or Bouzidi for example)
and ’value_bc’ which specifies, as the name already suggests, the value you have
in the boundary. The Boundary class also initializes two attributes, the first is
another dictionary that contains the lists of spatial indices and distances for each
label (bv_per_label), the second is a list of methods for BCs instances (methods).
Finally, in this class, there is also a method for figuring out which Bcs you need to
apply, the "compute_boundary" method, which takes a distribution function and
a list of boundary conditions as inputs, applies the boundary conditions to the
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distribution function. This method is part of the Boundary class.

BoundaryMethod class

Once we have seen very briefly how the algorithm figures out where to apply
the desired boundary condition, it is good to describe the key elements that are
common to any boundary condition that one wants to apply to a given surface. The
’mother’ class of any boundary condition in pylbm is BoundaryMethod. That class
includes several methods, mainly to perform the following operations: updating
the equilibrium distribution function, computing the distribution function at the
equilibrium on the boundary, and obtaining the point indices required to compute
the boundary condition.

The attributes of the class provide information about both the boundary condi-
tions and the domain over which the simulation takes place. The main attributes
of the BoundaryMethod class are as follows:

• feq: a Numpy ndarray (n-dimensional array) representing the distribution
function’s equilibrium values on the boundary

• rhs: a Numpy ndarray that represents the extra terms needed to fix the
boundary values

• distance: a Numpy ndarray representing the distance to the boundary
(required for some boundary condition algorithms, such as Bouzidi or Bouzidi
Bounce Back with Normal)

• istore: a Numpy ndarray representing the indices of points where the boundary
condition is applied

• ilabel: a Numpy ndarray representing the label of the boundary

• iload: a Numpy list of indices of points needed to compute the boundary
condition

• value_bc: a dictionary of the prescribed values on the boundary

BoundaryMethod also has a number of functions implemented, the most important
of which are as follows:

• __init__: initializes the attributes of the class.

• fix_iload: transposes iload and istore and converts them to contiguous arrays
of int32 type.
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• prepare_rhs: compute the distribution function at the equilibrium with the
value on the boundary.

• update_feq: update the feq attribute of the BoundaryMethod object, which
represents the distribution function’s equilibrium values on the boundary. This
method, in the original version of pylbm, is used only for time-dependent BCs
which have a direct dependence on simulation. Since the Bouzidi Bounce Back
with Normal also have a dependence on the simulation 2, it will be exploited
such a method already present within the library.

• _get_istore_iload_symb: generate symbolic variables for the istore and
iload attributes of the BoundaryMethod object.

• _get_rhs_dist_symb: generate symbolic variables for the rhs and distance
attributes of the BoundaryMethod object.

• update: update the distribution functions with the boundary conditions
specified by the BoundaryMethod object.

• _get_args: retrieve the necessary arguments for updating the distribution
functions with the boundary conditions specified by the BoundaryMethod
object.

• move2gpu: move the arrays needed to compute the boundary conditions on
the GPU memory.

Bounce Back class

The BounceBack class is a subclass of the BoundaryMethod class in the pylbm
library and it is the implementation of a boundary condition of type bounce-back.
In analogy with previous classes, this one will be simply explained in broad terms,
as it is not the subject of this thesis, and implementing a well-known boundary
condition. For any further information, please refer to the bibliographic entry [4].
Being a subclass of BoundaryMethod, the BounceBack class inherits many functions
of the parent class, and for that reason has only three functions:

• set_iload: computes the indices that are needed (symmetric velocities and
space indices) for these particular BCs.

• set_rhs: computes and sets the additional terms needed to fix the boundary
values.

2in fact, to evaluate p⋆ 5.17 it is necessary to know the value of the moments, thus the physical
parameters
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• generate: generates the numerical code for the boundary condition.

4.3 Bouzidi Bounce-Back Boundary Conditions
Bouzidi’s boundary conditions are presented in [20], which focused on the lattice
Boltzmann equation LBE’s velocity boundary condition for curved boundaries by
combining the "bounce-back" strategy with spatial interpolations of the first or
second order. These boundary conditions are clearly also applicable in the case of
fixed geometry, as in our case, and are of particular interest since the presented
boundary condition are a simple, robust, efficient, and accurate scheme. It has
been proved numerically to achieve second-order accurate velocity and first-order
accurate pressure.

For boundaries parallel with any of the discrete velocities of the model, previous
boundary conditions ("bounce-back" or "specular reflection") were demonstrated
to be adequate [16]. For general boundaries, it was discovered that taking into
account some sort of average over a region that included several lattice nodes,
coming up with mean boundary conditions, was necessary [84] [86] [104]. Physically,
this seems as if the dynamics’ relaxation behavior behaves as a low-pass spatial
frequency filter which removes the specifics of the smooth boundary representation
by a series of linear steps drawn on the base lattice.

In [20], a straightforward approach using interpolations and the intuitive concept
of "bounce-back" is proposed for dealing with boundaries of arbitrary shape in
the LBE method. In terms of accuracy and simplicity of the algorithm, it is
compatible with the idea of LBE approaches (i.e. the use of a regular lattice)
and most importantly it is not computationally expensive. This is different from
conventional CFD approaches, which employ nonuniform meshes designed to match
solid boundaries. There are some studies in the literature that aim to reproduce
these concepts, applied to LBM [105] [106].

Focusing now more on how these types of BCs actually work, as reported in
[20], to handle the advection step when boundaries are present, based on the one-
dimensional example shown in Figure 4.3, Bouzidi proposes an intuitive method.

Figure 4.3: Details of the collision process near the boundary for different distances
between the boundary node and the wall.
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In particular in Figure 4.3:

• On the left, there are fluid nodes (i.e. A, D, E, and F), with A being the final
one close to the wall.

• On the right, there are solid nodes, so the only one important for the simulation
is just the first one (i.e. B).

• Last but not least, C is the node that identifies the wall.

The following relation 4.3 identifies the dimensionless location of the wall.

q = |AC|
|AB|

(4.3)

Assuming that each particle distribution function moves at a speed of one unit,
except when q is equal to 0, 1/2, or 1, a particle leaving A and reflecting on the
wall (a "bounce-back" situation) won’t arrive at a fluid node after traveling a total
distance of 1. This implies that the population of particles at A with velocity -1
(represented by the vector with the label L in 4.3) is unknown after the collision
step.

• For q<1
2 , Bouzidi et al. set up the population of fictitious particles at location

D that will move to location A after bouncing back on the wall at location C
using the information known from the fluid.

• For q ≥ 1
2 , the unknown quantities at A will be determined using information

related to the particle departing A and arriving in D as well as the new
(post-advection) situation at fluid nodes E (and F).

Bouzidi’s boundary conditions thus apply linear or quadratic interpolation formulas
involving values at two or three nodes in both situations.

This first one-dimensional example was shown simply to make the basic concept
easier to understand, but in order to perform accurate calculations in two (or three)
dimensions, one needs to first identify all lattice links that cross the solid boundary.

Assume that rl is a fluid node and rl + ci is a solid node. Let’s denote the
opposite of the speed ci by ci′ (i.e. ci′ = −ci). Using linear interpolation, the
relationship for Bouzidi’s boundary conditions is as follows 3:

3Instability is the reason for employing two distinct expressions depending on the value of q,
as discussed in [107].
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fi′(rl, t+ 1) = 2qf c
i (rl, t) + (1 − 2q)f c

i (rl − ci, t) q <
1
2 (4.4)

fi′(rl, t+ 1) = 1
2qf

c
i (rl, t) + 2q − 1

2q fi(rl, t) q ≥ 1
2 (4.5)

The parameter f c, in the right-hand-side of the equations 4.4 and 4.5, are taken
after collision and before propagation. The left-hand side f(·, t + 1) indicates
the values of a particle distribution function following a collision and following
propagation (i.e. following a complete LBM time step) 4.

Using quadratic interpolation instead, the relationship for Bouzidi’s boundary
conditions is as follows:

fi′ (rl, t+ 1) = q(2q + 1)f c
i (rl, t) + (1 + 2q)(1 − 2q)f c

i (rl − ci, t)

− q(1 − 2q)f c
i (rl − 2ci, t) q <

1
2 (4.6)

fi′ (rl, t+ 1) = 1
q(2q + 1)f

c
i (rl, t) + (2q − 1)

q
f c

i′ (rl, t)

+ (1 − 2q)
(1 + 2q)f

c
i′ (rl − ci, t) q ⩾

1
2 (4.7)

It is interesting to note that the relation 4.6 turns out to be an upwind interpolation,
in contrast to the relation 4.7 which turns out to be a downwind interpolation.

Finally, to be complete, it should be pointed out that the classical Bounce Back
approach is included in Bouzidi’s relation, in case of zero-order interpolation, the
relation already seen above 4.1 is obtained, which is written with the new notation
adopted by Bouzidi becomes the following5:

fi′(rl, t+ 1) = f c
i (rl, t) (4.8)

A first consideration that can be done about these boundary conditions is that
the suggested technique uses interpolations, which makes it more stable than some
existing schemes that employ extrapolations [90] [96].

Another consideration that can be pointed out is that in equations 4.4, 4.5,
4.6, and 4.7, the change in q is continuous. In the specific case where q = 1

2 ,

4In other words, this indicates that the only distinction between the dynamics at nodes near
a boundary and at bulk nodes (i.e., the points that are not directly affected in the boundary
conditions, i.e., the domain nodes) is the propagation step.

5Obviously in this case, there is no longer a dependence on the dimensionless parameter q.
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the interpolation formulas 4.4, 4.5, 4.6, and 4.7 are reduced to the "bounce-back"
approach.

Although it is one of the boundary conditions implemented on pylbm [4],
and already has its advantages in terms of accuracy and simplicity, there are
improvements to this implementation in the literature. For example, a research
team extended Bouzidi’s rule in [108] by adding an additional on-wall node and
implemented a uniform approach that could be used in any fluid-solid interaction
situation.

4.3.1 Implementation on Python of Bouzidi BCs
The BouzidiBounceBack class is a subclass of the BoundaryMethod class in the
pylbm library and it is the implementation of a boundary condition of type
Bouzidi Bounce-Back. In analogy with previous classes, this one will be simply
explained in broad terms, as it is not the subject of this thesis. For any further
information, please refer to the reference [4]. Being a subclass of BoundaryMethod,
the BouzidiBounceBack class inherits many functions of the parent class:

• set_iload: computes the indices that are needed (symmetric velocities and
space indices) for these particular BCs. In the case of this implementation,
unlike the basic Bounce-Back, there will be two different iload, since, as
seen from relation 4.4 and 4.5, two different relations must be implemented
depending on the distance between the boundary node and the wall.

• _get_args: returns a dictionary of arguments used by the code generator to
produce the boundary condition’s numerical code.

• set_rhs: computes and sets the additional terms needed to fix the boundary
values.

• generate: generates the numerical code for the boundary condition.
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Chapter 5

Implementation of BCs for
general geometries

Applying Bounce-Back or Bouzidi boundary conditions to the wedge problem (or
the cylinder problem), which will be discussed in sections 6.4.2 (and 7.3.1) of this
thesis, leads to inaccurate results for a series of reasons that will be discussed later.
Therefore, in order to create an improvement to Bouzidi’s boundary conditions
which can provide an optimal result not only with geometries that conform to the
LBM lattice, Graille and Dubois developed this new type of boundary condition.
One of the main problems encountered in the study of supersonic flow over a
wedge is that the slip condition is applied as a no-slip boundary condition, which
is inappropriate when solving the Euler equations. Therefore, this new type of
boundary condition has the task of appropriately applying the slip condition,
which is more complicated to apply than the no-slip condition. That is because
whereas the no-slip boundary condition sets the velocity on the wall to zero, the
slip condition requires quantifying the tangential velocity on the wall surface.

5.1 Interpretation of f-functions as flux
Graille and Dubois applied the conventional finite-volume scheme to a LB lattice
node, not forgetting, however, that in the case of LBM, the information is contained
in the just point. The framework is to exploit the analogy between the four sides
of a D2Q4 scheme lattice cell and the four particle distribution functions, for that
reason, this idea is applicable to the LB D2Q4 scheme only.
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As shown in Figure 5.1, there are four possible directions for the particle distribution
function, taking the following notation for propagation directions:

• f1 is for the particle distribution that is moving toward the right

• f2 is for the particle distribution that is moving toward the top

• f3 is for the particle distribution that is moving toward the left

• f4 is for the particle distribution that is moving toward the bottom

Figure 5.1: Single lattice of the LBM with the four particle distribution functions
moving along the four directions
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Let us consider a generic vectorial scheme, thus for each conserved variable (φi),
we have a set of four particle distributions. Assume for simplicity that there is only
one conserved variable (so we are solving a single equation, e.g., conservation of
mass in Euler). Therefore, having a single φ, it is possible to say that around a
mesh point x, we have for the conserved moment the following relations:

φ(x, t) =
4Ø

j=1
f ⋆

j (x, t) = f ⋆
1 (x, t) + f ⋆

2 (x, t) + f ⋆
3 (x, t) + f ⋆

4 (x, t) (5.1)

Supposing we are evaluating particle distribution functions at point x at instant
t + ∆t, in other words, we will have four particle distribution functions coming
from the four neighboring nodes x1, x2, x3, and x4 respectively. We then evaluate
the four particle distribution functions after the advection, i.e. after the transport
and before the relaxation (it is without the superscript ⋆, which stands for after
relaxation phase (so post-collision)).

f1(x, t+ ∆t) = f ⋆
1 (x3, t)

f2(x, t+ ∆t) = f ⋆
2 (x4, t)

f3(x, t+ ∆t) = f ⋆
3 (x1, t)

f4(x, t+ ∆t) = f ⋆
4 (x2, t)

(5.2)

In 5.2, we simply applied the last step of the LBM (i.e. transport)1. Then
substituting the relations 5.2 into 5.1 at the next time step, we obtain the following
relation:

φ(x, t+ ∆t) =
4Ø

j=1
fj(x, t+ ∆t) (5.3)

= f1(x, t+ ∆t) + f2(x, t+ ∆t) + f3(x, t+ ∆t) + f4(x, t+ ∆t) (5.4)
= f ⋆

1 (x3, t) + f ⋆
2 (x4, t) + f ⋆

3 (x1, t) + f ⋆
4 (x2, t) (5.5)

At this point we make a difference between 5.5 and 5.1, yielding a relationship
that reminds a finite volume scheme:

φ
1
x, t+ ∆t

2
− φ

1
x, t

2
=
è
f ⋆

1 (x3) − f ⋆
3 (x)

é
+
è
f ⋆

2 (x4) − f ⋆
4 (x)

é
+è

f ⋆
3 (x1) − f ⋆

1 (x)
é

+
è
f ⋆

4 (x2) − f ⋆
2 (x)

é
(5.6)

1For example, f4(x, t + ∆t) after advection, will be equal to the particle distribution function
associated with direction 4, evaluated, however, at the point above x (i.e x2), before the transport
phase (i.e. post-collision).
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At this point, we come to the main aspect of this framework proposed by Profs.
Graille and Dubois, which is defining a numerical flux through each of the four
sides of the lattice unit. Therefore we define the four number streams as follows:

Φ3 = λ
1
f ⋆

3 (x) − f ⋆
1 (x3)

2
Φ4 = λ

1
f ⋆

4 (x) − f ⋆
2 (x4)

2
Φ1 = λ

1
f ⋆

1 (x) − f ⋆
3 (x1)

2
Φ2 = λ

1
f ⋆

2 (x) − f ⋆
4 (x2)

2 (5.7)

Therefore, by substituting the relations just defined 5.7 into 5.6, we obtain the
following more compact relation:

1
∆t

C
φ
1
x, t+ ∆t

2
− φ

1
x, t

2D
+ 1

∆x

4Ø
j=1

Φj = 0 (5.8)

The relationship 5.8 therefore allows the calculation of the numerical flux Φj

between x and xj, being an indirect link between the conservative variables and
this numerical flux, which depends on the particle distribution functions. Based on
this flux, new boundary conditions will be implemented to satisfy the slip condition
in a case where the boundary surface does not cross the grid points. The basic idea
is to compute the numerical flux that the wall must impose on the external fluid in
order to have a zero velocity along the normal direction.

5.1.1 Euler Equation
After having seen the basic idea, let us look at how to apply this concept to the
problem we want to solve, i.e. the two-dimensional Euler equations:

∂

∂t


ρ
ρu
ρv
ρE

 + ∂

∂x


ρu

ρu2 + p
ρuv

ρuE + pu

 + ∂

∂y


ρv
ρuv

ρv2 + p
ρvE + pv

 = 0 (5.9)

To describe the fluid’s behavior, as can be seen in equations 5.9, we have chosen
Euler’s equations written in a conservative form, i.e. as a function of density,
momentum, and total energy. Euler equations written in conservative variables
generally express the variations of these quantities and the fluxes of these quantities
through a control volume. In 5.9, the relationships are written as a system of
partial derivative equations, where the conserved quantities are the independent
variables and the fluxes are the functions of the partial derivatives of the conserved
quantities.
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Since the problem we have to solve deals with geometries that do not conform
to the typical LBM regular lattice, we will have to apply the boundary conditions
in a rotated frame of reference. For this reason, we write the system 5.9, in a
generic reference system (ξ, η), but first, we should point out that the momentum
J = (ρu, ρv) and its fluxes Φxx,Φxy,Φyx,Φyy = (ρu2 + p, ρuv, ρuv, ρv2 + p) are
invariant by rotation 2.

We need to point out the difference between the two similar notations that are
being adopted, in fact, we have the momentum fluxes Φxx,Φxy,Φyx,Φyy, and the
numerical fluxes Φ1,Φ2,Φ3,Φ4 5.7.

• In the first case, we refer to momentum fluxes, i.e. physical fluxes, through
vector notation which in the case of Euler 2D having four equations (mass,
momentum x, momentum y, and energy), there is a flux for each equation.

• In the case of 5.7 relations, there are always four fluxes, one for each of the
directions with which the Boltzmann equation has been discretized (i.e. 4,
since we are using D2Q4).

Therefore, since vectorial schemes will be adopted, and the basic scheme D2Q4,
that solve a single conservation equation, is associated with four numerical fluxes,
there will be a total of 4x4=16 numerical fluxes to describe the four-momentum
fluxes.
We then write the equations 5.9, effectively as a function of the conservative
variables {ρ; qx = ρu; qy = ρv; ρE} and the fluxes associated with them:

∂tρ+ ∂xqx + ∂yqy = 0
∂tqx + ∂xΦxx + ∂yΦxy = 0
∂tqy + ∂xΦxy + ∂yΦyy = 0
∂tE + ∂xψx + ∂yψy = 0

(5.10)

For the momentum conservation equations we can have the following vectorial
notation:

∂tq + ∇ · Φ = 0 (5.11)
defining vectorial fluxes through a symmetric matrix:

Φ =
I

Φxx,Φxy

Φyx,Φyy

J
(5.12)

2If a quantity’s value or shape does not change when the system is rotated around a certain
point or axis, in physics and mathematics it is said to be invariant by rotation. These invariants
by rotation are significant because they characterize properties independently of the system’s
orientation.
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In order to rotate the inertial frame of reference of equations 5.10, we define the
new generic frame of reference (ξ, η).

Figure 5.2: Frame of reference (ξ, η) turned by a generic angle θ

In a rotation of angle Θ which allows to point in a direction n 5.2 the coordinates
(un, ut) in the frame (ξ, η) are written:un = u cos(Θ) + v sin(Θ)

uτ = −u sin(Θ) + v cos(Θ)
(5.13)

This operation is necessary to separate the tangential coordinates and the normal
coordinates. Then the Euler equations can be written in the new frame as follow:

∂

∂t


ρ
ρun

ρuτ

ρE

 + ∂

∂ξ


ρun

ρu2
n + p

ρunuτ

ρunE + pun

 + ∂

∂η


ρuτ

ρunuτ

ρu2
τ + p

ρuτE + puτ

 = 0 (5.14)

In this way, similarly to 5.12, momentum flux can be expressed in the new reference
system

Φnn = ρu2
n + p

Φnτ = Φτn = ρunuτ

Φττ = ρu2
τ + p

After this long introduction on how the concept of flux can be introduced, we can
now move on to explain operationally how to exploit what we have just seen to
apply the slip condition.
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From a purely physical point of view, it is known that a wall (or slip) condition is
expressed by the condition:

(u⃗ · n̂) = un = 0 (5.15)

Figure 5.3: Direction normal to wall

From Euler’s equations 5.14, by extracting only what happens along the normal
direction (i.e. ξ), it will be seen that the only non-zero contribution is from the
momentum flux in the ξ direction.

∂

∂ξ


ρun

ρu2
n + p

ρunuτ

ρunE + pun

 → Φn =


0
p⋆

0
0

 (5.16)

From 5.16, it can be seen that only pressure ’p’ (called p⋆) remains in the
relationship, relating to the momentum flux contribution in the ξ direction (i.e.
normal). To calculate this pressure, from literature [109], Dubois, dealing with the
partial Riemann problem proposes the relation:

p+ ρcun = p⋆ (5.17)

with ρ density, p the pressure, c the speed of sound, and un the normal speed. All
these values are not taken at the wall, also because the velocity un would be zero
by hypothesis, but at the node in the domain closest to the wall.
The relationship 5.17 to evaluate the quantity p⋆ is based on a framework by
Dubois [109] and was derived from the acoustics equation, considering a Riemann
problem orthogonal to the wall.

What is crucial to emphasize is that, unlike conventional CFD, in imposing the
slip condition (i.e. un = 0), the idea is to compute the pressure p⋆ in order to fix
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un = 0. In other words, we compute the pressure p⋆ that the wall imposes on the
fluid for the result in terms of normal velocity in the wall to be zero.

What can be deduced from the 5.17 is that in implementing the boundary
conditions, unlike the classical Bounce-Back or Bouzidi, it will be necessary to
know the values of the fluid’s macroscopic properties at each time step, which
will certainly lead to a higher computational cost, but will produce satisfactory
results as we will see in 6.4.3 and 7.3.2. To discover macroscopic information
concerning the flows that the LBE approach simulates, it is necessary to consider
that the single-particle distribution function’s information can be provided directly
by the LBE approach. In fact, as seen in Chapter 3.3, it is simple to determine
macroscopic flow information, such as flow velocity and local pressure distributions,
based on the distribution function.

In the case of a boundary, the fluid-boundary interaction affects the momentum
transfer of all the particles that come into contact with the boundary, which as a
consequence changes the distribution function at the boundary. The fluid-boundary
interaction is described in the LBE approach in order to produce the desired macro-
scopic boundary conditions for the appropriate hydrodynamic scenarios. Realizing
the locations of the effective boundary for specific fluid-boundary interactions where
the desired macroscopic boundary conditions are satisfied is crucial when studying
the LBE boundary conditions [84] [86] [104].

Returning to focus on the relationship 5.16, since the scheme to be adopted
(D2Q4) only has velocities along Cartesian directions, it is necessary to calculate
the Cartesian components of the normal flux Φn. Through algebraic steps, we
obtain the following relationship:

∂

∂t

I
ρu
ρv

J
+ ∂

∂ξ

I
ρuun + p cos Θ
ρvun + p sin Θ

J
+ ∂

∂η

I
ρuuτ − p sin Θ
ρvuτ + p cos Θ

J
= 0 (5.18)

At this step, considering only the normal component locally to the wall (i.e.
nξ = 1 and nη = 0), setting the condition of no fluid crossings the wall un = 0, we
obtain that the momentum flux in the normal direction has Cartesian components:

p⋆

I
cos Θ
sin Θ

J
= p⋆n̂ (5.19)

So the four components for the Euler equation of the normal flux Φn are written
as follows:

Φ̃n =


0

p⋆ cos Θ
p⋆ sin Θ

0

 (5.20)

with p⋆ computed as 5.17 and n̂ = (cos(θ), sin(θ)).
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Finally, returned to a Cartesian reference system, it is possible to connect the
four relations 5.7 which compute the numerical flux, with the relation of Φ̃n 5.20
just written in the hypothesis where un = 0, with p⋆ calculated as 5.17. In this
way, it is possible to calculate the physical pressure that the wall must impose on
the external flow to fulfill the slip condition. This idea can be used to improve
both the Bounce Back and Bouzidi boundary conditions.

5.2 Bounce-Back with Normal
Let us then look at how to extend the boundary conditions of Bounce-Back,
through the normal flux just defined. First, however, in order for it to be possible
to generalize the relationships, we adopt a convention to denote neighboring points
differently. Therefore, the convention adopted is as follows for the 4 neighboring
points: 

σ(1) = 3
σ(2) = 4
σ(3) = 1
σ(4) = 2

(5.21)

Convention 5.21 is based on the directions from which the particle distribution
functions came at the previous time instant 5.4.

Figure 5.4: D2Q4 scheme, a convention adopted to indicate neighboring points

To apply the innovative concepts introduced to the classical Bounce-Back boundary
condition, we define the external fluid normal as follows:

n̂ =
I
cos(θ)
sin(θ)

J
(5.22)
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Figure 5.5: Trivial case in which we have θ = π

Let us rewrite the relation 5.20, where the wall flux of the Euler equations is
calculated with:

Φn =


0

p⋆cos(θ)
p⋆sin(θ)

0

 (5.23)

where, as discussed in relation 5.17, we have the pressure equal to p⋆ = p+ ρc(un),
which corresponds to a flux Φ, as introduced previously 5.7. We then write the
numerical flux, using the new convention adopted 5.21:

λ

C
f ⋆

σ(j)(x) − f ⋆
j (xσ(j))

D
= Φσ(j) = Φn (5.24)

By arranging the previous relation 5.24, we obtain a Bounce-Back boundary
condition, to which, however, the additional flux term Φn was added.

f ⋆
j (xσ(j)) = f ⋆

σ(j)(x) − 1
λ

Φn (5.25)

This new type of boundary condition was presented only on a theoretical level
and was not implemented in the Python pylbm [4] package, as it was preferred to
directly implement the Bouzidi Bounce Back with Normal.
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5.3 Bouzidi Bounce-Back with Normal
Similarly, the concept of Bounce Back boundary conditions has been extended, it is
possible to extend the Bouzidi boundary conditions, described in detail in section
4.3. Then we write Bouzidi’s classical relationship 4.4, using the new convention
adopted 5.21:

f ⋆
j (xσ(j)) = 2ξf ⋆

σ(j)(x) +
A

1 + 2ξ
B
f ⋆

σ(j)(xj) 0 ≤ ξ ≤ 1
2 (5.26)

f ⋆
j (xσ(j)) = 1

2ξ f
⋆
σ(j)(x) +

A
1 − 1

2ξ

B
f ⋆

j (x) 1
2 ≤ ξ ≤ 1 (5.27)

f ⋆
j (xσ(j))

xσ(j)

n̂

θ f ⋆
j (x)

x xj

f ⋆
σ(j)(x) f ⋆

σ(j)(xj)

ξ∆x ∆x

Figure 5.6: Case of a rebound treated with Bouzidi Bounce Back with Normal

Similar to what has been done with simple Bounce-Back BCs, we can apply a
condition of type f ⋆

j (xσ(j)) = f ⋆
σ(j)(x) + Φ, to Bouzidi conditions.

f ⋆
j (xσ(j)) =

C
2ξf ⋆

σ(j)(x) +
A

1 + 2ξ
B
f ⋆

σ(j)(xj)
D

− 1
λ

Φn 0 ≤ ξ ≤ 1
2 (5.28)

f ⋆
j (xσ(j)) = 1

2ξ

C
f ⋆

σ(j)(x) − 1
λ

Φn

D
+
A

1 − 1
2ξ

B
f ⋆

j (x) 1
2 ≤ ξ ≤ 1 (5.29)

where the normal wall flux is calculated using the Euler equations:

Φn =


0

p⋆ cos Θ
p⋆ sin Θ

0

 (5.30)
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5.3.1 Implementation on Python of Bouzidi Bounce-Back
with Normal Boundary Conditions

After dealing with the Bouzidi-Bounce-Back with Normal boundary conditions
from a theoretical point of view, we now proceed to discuss the implementation of
this new type within the Python library pylbm [4].

The new implementation took its design cue from the already existing and briefly
discussed in section 4.3.1 of the last chapter BouzidiBounceBack class, which, in
fact, is the mother class of the newly implemented subclass (i.e. BouzidiBounce-
BackWithNormalX and BouzidiBounceBackWithNormalY), which will be
discussed in this section and whose code is given in full in Appendix B.

BouzidiBounceBackWithNormalX

Being a subclass of BouzidiBounceBack, the BouzidiBounceBackWithNormalX
class inherits many functions of the parent class:

• update_feq: As mentioned in paragraph 4.2.1, related to the Boundary
Class, in this new implementation of boundary conditions, it is necessary
to know values from the simulation and update them at each time step to
"correct" BCs from time to time. The update_feq function then has the task
of updating the equilibrium distribution function feq.

• update_flux: This is the main function within class BouzidiBounceBack-
WithNormalX, as it is responsible for calculating the corrective flux to be
added to the Bouzidi boundary conditions to obtain slip conditions. Going
on to analyze the code in detail, as is possible to see in line 6 of the reported
part of the code below, one of the first things to do is to compute the indices
where the boundary conditions are applied. As it is reported then in the code
first we extract the values given in istore3, which are shifted by one cell so as
to obtain the first node within the geometry, thus outside the domain. Having
extracted the moments from the simulation in row 3 from Listing 5.1, it is
possible to calculate the values of the variables associated with each of the
conserved moments (i.e. ρ, Qx,Qy, and E). Computed density, momentum
along x and y, and energy, it is easy to obtain the components of velocity 3.9
and pressure 3.10, so as to calculate the pressure p⋆ 5.17 needed to calculate
the flux. Finally, the following function implements a different equation (5.28
or 5.29 ) depending on the distance between the boundary node and the wall,
how to compute the additional term for the Bouzidi-Bounce-Back with Normal
boundary condition.

3a Numpy ndarray representing the indices of points where the boundary condition is applied
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Listing 5.1: Function update_flux of class BouzidiBounceBackWithNormalX in
the boundary.py script implemented in the pylbm library

1 de f update_flux ( s e l f , s imu la t i on ) :
2 gamma = 1.4
3 m = simula t i on . m_halo
4 k = s e l f . i s t o r e [ : , 0 ]
5 v = s e l f . s t e n c i l . g e t _ a l l _ v e l o c i t i e s ( )
6 s e l f . f l u x _ i n d i c e s = s e l f . i s t o r e [ : , 1 : ] + v [ k ]
7

8 RHO = m[ rho ] [ s e l f . f l u x _ i n d i c e s [ : , 0 ] , s e l f . f l u x _ i n d i c e s [ : , 1 ] ]
9 QX = m[ qx ] [ s e l f . f l u x _ i n d i c e s [ : , 0 ] , s e l f . f l u x _ i n d i c e s [ : , 1 ] ]

10 QY = m[ qy ] [ s e l f . f l u x _ i n d i c e s [ : , 0 ] , s e l f . f l u x _ i n d i c e s [ : , 1 ] ]
11 E_ = m[E ] [ s e l f . f l u x _ i n d i c e s [ : , 0 ] , s e l f . f l u x _ i n d i c e s [ : , 1 ] ]
12 ux = QX/RHO
13 uy = QY/RHO
14 p = (gamma − 1) ∗ (E_ − . 5 ∗ (QX∗∗2 + QY∗∗2) /RHO)
15

16 p_star = p + np . sq r t (gamma ∗ p ∗ RHO) ∗ ( ux∗ s e l f . normal [ : , 0 ]
17 + uy∗ s e l f . normal [ : , 1 ] )
18 phi_n = p_star∗ s e l f . normal [ : , 1 ]
19

20 mask = s e l f . d i s t ance < . 5
21 not_mask = np . l og i ca l_not (mask )
22

23 s e l f . f l u x = np . z e r o s_ l i k e ( phi_n )
24 s e l f . f l u x [ mask ] = phi_n [ mask ] / lambda
25 s e l f . f l u x [ not_mask ] = phi_n [ not_mask ]
26 / (2 ∗ s e l f . d i s t anc e [ not_mask ] ∗ lambda )

• _get_args: returns a dictionary of arguments used by the code generator to
produce the boundary condition’s numerical code. In this case, unlike previous
implementations of this function, the flux parameter will also be present (in
addition to the already present istore, rhs, and dist)

• generate: This part of the code generates a C++ code using symbolic
manipulation and code generation libraries of pylbm. It is appropriate to focus
on the last part of the code, i.e. line 46, where the C++ code is generated
using the symbolic expressions. Briefly what line 46 of the code below does is
to use a for loop, which iterates over the boundary cells and assigns the values
of the rhs and flux of the Bouzidi Bounce-Back with Normal X boundary
condition to the cells.
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Listing 5.2: Function generate of class BouzidiBounceBackWithNormalX in the
boundary.py script implemented in the pylbm library

27 de f generate ( s e l f , o rder ) :
28 from pylbm . generator import For
29 from pylbm . symbol ic import nx , ny , nz , indexed , i x
30

31 ns = i n t ( s e l f . s t e n c i l . nv_ptr [ −1])
32 dim = s e l f . s t e n c i l . dim
33

34 i s t o r e , i l oad , ncond = s e l f . _get_istore_iload_symb (dim)
35 rhs , d i s t , _ = s e l f . _get_rhs_dist_symb ( ncond )
36 f l u x = IndexedBase ( ’ f l u x ’ , [ ncond ] )
37

38 idx = Idx ( ix , (0 , ncond ) )
39 f s t o r e = indexed ( ’ f ’ , [ ns , nx , ny , nz ] , index =[ i s t o r e [ idx , k ]
40 f o r k in range (dim + 1) ] , p r i o r i t y=sorde r )
41 f l o ad0 = indexed ( ’ fcopy ’ , [ ns , nx , ny , nz ] , index =[ i l o a d [ 0 ] [ idx , k ]
42 f o r k in range (dim + 1) ] , p r i o r i t y=sorde r )
43 f l o ad1 = indexed ( ’ fcopy ’ , [ ns , nx , ny , nz ] , index =[ i l o a d [ 1 ] [ idx , k ]
44 f o r k in range (dim + 1) ] , p r i o r i t y=sorde r )
45

46 s e l f . g enerato r . add_routine ( ( ’ Bouzidi_bounce_back_normalX ’ ,
47 For ( idx , Eq( f s t o r e , d i s t [ idx ] ∗ f l o ad0 + (1 − d i s t [ idx ] )
48 ∗ f l o ad1 + rhs [ idx ] − f l u x [ idx ] ) ) ) )

BouzidiBounceBackWithNormalY

Last but not least, let’s look at class BouzidiBounceBackWithNormalY, which
being a subclass of BouzidiBounceBackWithNormalX, inherits many functions of
the parent class and implements the bounce-back boundary condition on the y-axis.
In fact, as was seen in 5.20 relationship, this boundary condition is applied only
for momentum; in fact, it will be applied only for the second and third equations
of the Euler system to be solved by D2Q4444 vectorial scheme. Inheriting all the
functions of BouzidiBounceBackWithNormalX, in that case, there are only two
specific functions implemented in class BouzidiBounceBackWithNormalY :

• update_flux: Just as in the previous case in the x-direction, this function
calculates the flux term, which is the amount of mass, momentum, and energy
transferred through the boundary. So similar to the previous case, the up-
date_flux function uses the halo cells to first determine the fluid characteristics
(density, velocity, and pressure) at the boundary cells. The contribution from
the normal component of velocity is then added to the pressure to determine
the pressure at the boundary of cells. Utilizing the pressure and the normal
vector, it then determines the flux. The only difference with the implementa-
tion in the x-direction is in the definition of the normal, as in the first case
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one had defined the normal as self.normal[:, 0], whereas in this case, one has
self.normal[:, 1], so the normal component used for the definition of phin is
appropriately different.

• generate: Using the symbolic variables defined in the parent class, the
generate method creates the code for the bounce-back boundary condition, in
a way entirely analogous to the previous boundary conditions implemented.
The equation for the y-axis is the same as for the x-axis, but the array indices
have been changed. In summary, the two generated functions implement
the same basic logic but are specialized to apply Bouzidi bounce in different
directions, along the x, and y-axes respectively.
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Chapter 6

Supersonic Wedge

In this chapter, we finally proceed to examine the numerical results obtained in
both the LBMHYE project and the results achieved with the implementation of
the new boundary conditions introduced in Section 5.3.

6.1 Theory of oblique shock
In supersonic flow, the oblique shock wave is a typical aerodynamic phenomenon.
Through its full understanding and study, it can bring plenty of benefits to many
areas of aerospace engineering, just because of its frequency in the supersonic flow
[110] [111] [112] [113] [114] [115]. Examples of aerodynamic phenomena that can
be improved by studying oblique shock waves are the following:

• Decreasing wave drag.

• Optimizing shock waves of the supersonic inlet in off-design conditions.

• Reducing pressure loss.

• From an aeroacoustic point of view, it is possible to weak the sonic boom of
the supersonic vehicle.

• Inducing shock waves in the aero-engine nozzle to obtain thrust vector control
and modifying shock wave symmetry to achieve flight control.

• Controlling shock waves of the wave rider 1.

1An aeronautical vehicle known as a "wave rider" is one that is designed to benefit from shock
waves produced when traveling at supersonic or hypersonic speeds.
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Figure 6.1: Oblique shock waves produced by a scramjet-powered hypersonic
aircraft [116]

There are a wide variety of textbooks in the literature dealing with supersonic
aerodynamics, those referred to in this brief introduction that is intended to be
provided are [117], [118], [119] and [120].

As seen in Figure 6.2, when an object moves at supersonic speed, the flow is
not aware of its presence ahead, therefore, the flow is "forced" to compress. The
interaction of the supersonic moving object with the surrounding fluid causes the
formation of a shock wave in the supersonic flow (i.e. in front of the object, a zone
of high pressure known as a "shock wave" develops.). What happens is that the
object, moving at a supersonic speed, pushes the fluid to accumulate and compress
in a narrow area in front of it. As a direct consequence of this gas accumulation,
there is a strong increase in pressure. The shock wave, however, brings not only a
discontinuity in pressure, in fact, there is also a bump in temperature, density, and
clearly in velocity (not only as an absolute value, but also in the direction).

Figure 6.2: Shock waves on X-15 flight vehicle [118]
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6.1.1 Oblique shock
Oblique shock refers to a shock wave that is still attached to the body and deviates
from the flow direction by any arbitrary angle. The supersonic flow over a concave
corner is shown in Figure 6.3 and it is the problem that will be solved in this thesis
using LBM. At M1, the supersonic flow encounters an upward-facing corner with a
turning angle of θ, as the supersonic flow approaches the corner, there will be a
sudden compression process and a significant pressure gradient, with the consequent
formation of a shock wave attached, emerging from the summit of the concave
corner. The downstream Mach number changes to M2, and the oblique shock wave
angle is β. It is important to note that there are two potential downstream flow

Figure 6.3: Supersonic flow over a wedge

conditions, one brought on by a weak shock and the other by a strong shock, for a
given upstream Mach number M1 and deflection angle (Figure 6.4), and this can
also be seen from the relationship 6.2. The downstream pressure affects whether a
weak or strong shock solution occurs. In the case of weak shock waves, the wave
angle β and entropy rise are reduced. While the downstream Mach number is
subsonic in the case of a strong shock, it is supersonic in the case of a weak shock.
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Figure 6.4: Supersonic flow over a wedge - Strong and weak shock waves

6.1.2 Bow shock
There is a maximum flow deflection angle θmax that an oblique shock can handle
for a given upstream Mach number M1. If the deflection angle θ is greater than
θmax, the maximum flow deflection angle, the assumptions concerning the oblique
shock then do not succeed, and a curved bow shock generates in front of the body.
This bow shock has a curved shape and is detached from the body.

Figure 6.5: Supersonic flow over a wedge - Detached bow shock

Bow shocks are common near blunt bodies [121] [122] [123] for the reason that
was just discussed, which is a too-great deflection angle. For example, as will be
analyzed in the next chapter 7, in the case of a circular surface hit by a supersonic
flow, the deflection angle, locally is 90°, so a detached shock. The flow velocity
decreases from supersonic upstream to subsonic downstream as a result of the
non-isentropic thermodynamic change across a bow shock. The bow shock causes
a vehicle traveling at supersonic speeds to face a significant rise in drag, which is
why, in the case of engine intakes, it is necessary to keep the shock attached (i.e.
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adopt sharp geometry).

6.1.3 Analytical solution
The relationships for evaluating downstream fluid properties are derived directly
from the Rankine-Hugoniot equations [124] [125]. Rankine-Hugoniot relations
describe the conditions that develop after a discontinuity. They are derived
from the conservation of mass, momentum, and energy. To obtain the Rankine-
Hugoniot equations, however, there are some fundamental assumptions; in fact,
we consider a regular, one-dimensional flow subject to the Euler equations. These
fundamental equations of fluid dynamics are applicable to a normal shock, however,
these equations are valid, in the case of an oblique shock, considering the normal
component of Mach number to the shock. From these considerations, it is possible
to obtain a relation expressing the number of mach downstream of the shock wave:

M2
2 = 1

sin2(β − θ)

C
2 + (γ − 1)M2

1 sin2 β

2γM2
1 sin2 β − (γ − 1)

D
(6.1)

The relation 6.1 expresses M2 = f(θ, β,M1), where, however, the angle β is still an
unknown quantity of the problem.
To overcome this problem, there is a link between the quantities θ− β −M1, which
can be derived through geometric considerations, and the known identities from
the equations of Rankine-Hugoniot:

tan θ = 2
tan β

C
M2

1 (sin β)2 − 1
M2

1 [γ + cos(2β)] + 2

D
(6.2)

Hence through the 6.2 relation, it is possible to derive the β angle that the shock
wave forms with the upstream direction, so from 6.1 the parameter M2 can be
obtained 2.
Plotting the 6.2 relation in a Cartesian plane θ - β, using the Mach number M1
as a parameter, we get the curve shown in Figure 6.6, on which a number of
considerations can be made that prove what we have already seen in the previous
two paragraphs.

2Then, known M2, it can be derived with Rankine-Hugoniot equations all the field downstream
of the shock.
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Theta

∞

Figure 6.6: θ − β −Mach curve

Once we set a value of M1 a certain curve in the θ - β plane is defined.

• Each curve has two intersections with the horizontal axis (i.e., zeros of the 6.2
function)

– For the first intersection, the relationship 6.2 reduces to simple 1
tan(β) = 0

so it is obtained that β = π
2 (i.e., there is a normal shock) and the flow

downstream of the shock is aligned with the flow upstream (i.e. θ = 0).

– For the second intersection, on the other hand, it follows that:

M2
1 (sin(β))2 = 0 → (sin(β))2 = 1

M2
1

→ sin(β) = 1
M1

→ β = µ

So it is considered a Mach line, in fact, the current does not incur any
deflection (i.e. θ = 0).

• A maximum θmax of the θ − β −Mach curve is observed, so above this value
there is no longer an oblique shock, but rather a detached shock, as we have
already seen in the previous section.
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• Another concept discussed earlier is the existence of two solutions, namely a
weak shock (thus a supersonic Mach M2 number) in the left part of the curve
and a strong shock (thus a subsonic Mach M2 number) in the right part of
the curve.

• In the θ − β − Mach curve, it is possible to identify the two characteristic
curves, which are almost overlapping, but separate.

– The points that identify all the maxima of the various curves (i.e. θmax).
In Figure 6.6 marked as a red dotted line.

– The isomach line M2 = 1, that is, the deflection θ such that there is the
sonic condition downstream of the shock. In Figure 6.6 marked as a black
line, very close to the previous one.

6.2 Analytical Solution of the Wedge
As mentioned several times within the thesis, the first test case chosen to evaluate
the effectiveness of the new boundary conditions is the typical wedge invested by a
supersonic flow. The chosen test case has the input Mach number equal to M1 =

Figure 6.7: Schematic description of the flow domain and angle definitions.

2.5 and the θ angle equal to 15◦ as key parameters. The other parameters set in
the free stream are shown in the table 6.1. The parameters set in 6.1 are set in
such a way that the effects of temperature are negligible in the test case, in fact,
although it is not physically meaningful, we are treating an isothermal supersonic
wedge, so we focus only on the numerical aspect.
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Mach1 = 2,5
p1 = 1 [Pa]
T1 = 8,59-05 [K]
Qx1 = 3,5 [kg/m2s]
Qy1 = 0 [kg/m2s]
ρ1 = 1,4 [kg/m3]
Ux1 = 2,5 [m/s]
Uy1 = 0 [m/s]
E1 = 6,875 [J ]

|V |1 = 2,5 [m/s]
c1 = 1 [m/s]

pTOT1 = 17.086 [Pa]
u⊥1 = 0.647 [m/s]
u∥1 = 2.415 [m/s]

Table 6.1: Wedge Parameters - Free Stream

Once the input parameters have been defined, from the relation 6.2, known θ
and M1, we derive a β angle equal to β = 36.94◦ under the assumption of weak
shock, as it is the most common in nature 3. From a visual point of view, the
solution is shown in Figure 6.8.
Knowing the value of the β angle, from the relation 6.1, we obtain a value of
Mach number equal to M2 = 1.87. From the equations of Rankine-Hugoniot, and
from the equation of state of gases 4the entire field downstream of the shock can
be obtained. All the main values of the downstream field are given below and
summarized in Table 6.2.

• For the density field we employ the corresponding equation of Rankine-
Hugoniot:

ρ2 = (γ + 1)M2
1 sin2 β

(γ − 1)M2
1 sin2 β + 2ρ1 = 2.613[kg/m3] (6.3)

• For the pressure field we employ the corresponding equation of Rankine-
Hugoniot:

p2 = 1 + 2γ
γ + 1(M2

1 sin2 β − 1)p1 = 2.468[Pa] (6.4)

3The strong impact solution would involve an angle β = 83.06◦, but this will not be considered
in our case.

4In fact 6.6 relationship is proved by the equation of state, in fact, T2
T1

= p2
p1

ρ1
ρ2

.
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Figure 6.8: Supersonic flow over a wedge - Analytical Solution

• For the temperature field we employ the corresponding equation of Rankine-
Hugoniot, proved by the equation of state, in fact, T2

T1
= p2

p1

ρ1
ρ2

.:

T2 =
C
1 + 2γ

γ + 1(M2
1 sin2 β − 1)

DC
(γ + 1)M2

1 sin2 β

(γ − 1)M2
1 sin2 β + 2

D−1

T1 (6.5)

→ T2 = 1,14E − 01[K]

• For the total pressure field we employ the corresponding equation of Rankine-
Hugoniot:

pTOT2

pTOT1
=
A

1 + 2γ
γ + 1

1
M2

1 sin2 β − 1
2B− 1

(γ−1)
A

(γ + 1)M2
1 sin2 β

2 + (γ − 1)M2
1 sin2 β

B γ
γ−1

(6.6)
→ pTOT2 = 15.872[Pa]

• From the definition of the speed of sound, given the pressure and temperature,
it is possible to obtain c2 of the analytical solution.

c2 =
ó
γ
p2

ρ2
= 1.150[m/s] (6.7)
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• Known the Mach number and the speed of sound, it follows that the absolute
value of the speed will be:

|V |2 = M2c2 = 2.154[m/s] (6.8)

• Then we evaluate the energy in the field downstream of the shock:

E2 = 1
2ρ2|V |22 + p2

γ − 1 = 8.983[J ] (6.9)

• We calculate the velocity components of the downstream field:

Ux2 = |V |2 cos θ = 2.081[m/s] (6.10)
Uy2 = |V |2 sin θ = 0.558[m/s] (6.11)

• Knowing also the components of the velocities, we calculate the momentum in
the two directions, since those will be two starting parameters for the LBM,
being two of the conserved moments of the scheme used:

Qx2 = Ux2ρ2 = 5.437[kg/m2s] (6.12)
Qy2 = UY2ρ2 = 1.457[kg/m2s] (6.13)

• Under the imposed assumptions, the flux is adiabatic (i.e.,
1

To2
T01

2
= 1). The

entropy drop therefore can be calculated according to the following relationship:

∆s = − R

M
log

A
po2

p01

B
= 21.12[J/K] (6.14)

• Finally, we evaluate the normal and tangential components of the velocity
since those will be critical in understanding whether the new implementation
of BCs is efficient or not:

u⊥2 = Ux2 sin θ − Uy2 cos θ = 0[m/s] (6.15)
u∥1 = Ux2 cos θ − Uy2 sin θ = 1.866[m/s] (6.16)
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Mach2Analytical = 1.874
βAnalytical = 36.945 [°]
p2Analytical = 2.468 [Pa]
T2Analytical = 1,14E-04 [K]
Qx2Analytical = 5.437 [kg/m2s]
Qy2Analytical = 1.457 [kg/m2s]
ρ2Analytical = 2.613 [kg/m3]
Ux2Analytical = 2.081 [m/s]
Uy2Analytical = 0.558 [m/s]
E2Analytical = 12.232 [J ]

|V |2Analytical = 2.154 [m/s]
c2Analytical = 1.150 [m/s]

pTOT2Analytical = 15.872 [Pa]
u⊥2Analytical

= 0.000 [m/s]
u∥2Analytical

= 1.866 [m/s]
∆sAnalytical = 21.128 [J/K]

Table 6.2: Analytical Solution - Downstream shock field

6.3 Wedge US3D Solution
In order to fully assess the wedge test case, in addition to the analytical solution, a
traditional CFD code is used. One of the greatest CFD codes in the world, US3D,
created by Graham V. Candler of the University of Tennessee, has been selected
for this purpose.

6.3.1 US3D Introduction
Let’s very briefly go over the main aspects of this CFD code. It employs unstruc-
tured grids and has many sophisticated numerical capabilities and physical models
for multi-physics issues, it is based on NASA’s well-known DPLR system.
US3D code is written in the Fortan 90 language and is distributed commercially
by Candler’s VirtusAero https://virtusaero.com/us3d/. Being very popular and
widespread globally, it is very user-friendly and well-documented. Unstructured
grids are utilized by US3D, while the proprietary mesh generation software devel-
oped by ICEMCFD is used to create the meshes.
The following are described in great detail in [126]:

• The main capabilities of the code.

• The physical modeling approaches.
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• The different types of numerical flux functions.

• Time integration approaches.

• The parallelization strategy.

• A comparisons between US3D and the NASA DPLR code.

• Several simulations illustrate some features of the code.

6.3.2 CFD simulation input parameters
The US3D code is the main comparison used to evaluate the solutions provided
by pylbm. In this section, we are going to look at the CFD parameters set in the
analysis.

Computational Domain

Since our case is inviscid (i.e. Euler equations), as such, no wall stretching is
required. Regarding the choice of mesh, in general, two different approaches can
be implemented when comparing two results obtained by different methods:

• Using the best meshes available for comparison, such as adaptive mesh.

• Comparing using the same mesh, or a square lattice as LBM doesn’t use a
mesh.

The approach that has been taken in the LBMHYPE project is to compare the two
solutions, adopting the same grid. This aspect was also chosen because, even with
a uniform cartesian grid, mesh generation costs an effort that LBM method does
not have, in this way, we are going to save the computational cost of the US3D
mesh.
For the CFD analysis, a 1m x 1m computational domain was considered, shown in
Figure 6.9 as well as the grid. The wedge is 0.5 m long, as is the symmetry plane
in front of it.
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Figure 6.9: 201 x 201 Uniform, Cartesian Computational Grid US3D

Boundary Condition

Let us then look at the various typologies of BCs applied to each face of the domain:

• All of the independent flow variables are fixed at the supersonic inlet. So in
this case the CFD boundary condition is the standard characteristic-based
boundary condition.

• All variables are extrapolated from the inner domain at the supersonic outflow.
Also, in this case, the CFD boundary condition is the standard characteristic-
based boundary condition.

• Likewise supersonic outflow is set for the top surface.

• The symmetry boundary condition is set for the symmetry plane in front of
the wedge 5.

5i.e. The velocity component and the normal-to-the-wall derivatives of all the dependent
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• The following boundary conditions are imposed on the wall:

– Since we are solving an inviscid flow (i.e. Euler equations), a slip condition
is imposed on the wall, which states that the Dirichlet condition, u⃗ = U⃗
on the wall reduces to U⃗ · n̂ = 0, the velocity component normal to the
wall is zero.

– On the wall, Neumann’s general condition for stresses is also imposed 6.
Since the shear stress is zero for inviscid flows, the normal derivate of
pressure at the wall is zero.

– Either the Dirichlet-type (T = Twall) or Neumann-type (∇T · n̂ = g, where
g is a given heat flux function) boundary condition is the standard CFD
boundary condition for temperature on the wall. Assuming adiabatic flow
in our scenario, ∇T · n̂ = 0 on the wall is required 7.

These considerations suggest that the boundary conditions for adiabatic flows,
which occur in this situation, and the symmetry conditions for inviscid fluids
are the same.

CFD numerical scheme

For spatial discretization, the DPLR (Data Parallel Line Relaxation) approach
with Modified Steger-Warmming flux-splitting is used, employing second-order
MUSCL without further numerical dissipation on the variables rho, u, v, p. In
the context of the shock wave, not employing any dissipation might not be the
ideal strategy, therefore a Ducros dissipation model, which is the default and
recommended one, is available by the US3D code.

variables disappear.
6(S(u⃗) − pI⃗)n̂ = S⃗n condition is set, where u⃗ is the velocity vector, U⃗ velocity of the wall, S⃗n

is a given vector field, S the shear stress tensor, reduces to ((S(u⃗) − pI⃗)n̂) × n̂ = 0 on the wall, as
well (i.e. the normal component of the stress tensor vanishes).

7Applying the equation for the perfect gas state for temperature, density, and pressure p = ρRT
follows that the derivative of density normal to the wall is also zero, as the normal derivatives of
pressure and temperature.
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6.3.3 US3D Wedge Results
The solution obtained by US3D is shown in Figure 6.10 in terms of Mach number.
Other images have been reported in Appendix C.

Figure 6.10: CFD Mach number field for the Mach 2.5 supersonic wedge on the
201x201 grid

Numerical approximation of the β angle.

To evaluate the value of the shock wave angle (β), all Mach number values were
extracted for given y-coordinates (y = 0.01 m, y = 0.05 m, y = 0.15 m, y = 0.20
m, y = 0.30 m), then the corresponding x-coordinate at which the discontinuity
in Mach number occurs was evaluated. In Figure 6.11, the various discontinuities
in Mach number for various y-coordinates imported from the CFD simulation
are shown. Already from Figure 6.11, it is possible to visually understand the
corresponding x-coordinates.
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Figure 6.11: Discontinuity of Mach number for various coordinates y

What is obtained are therefore the coordinates x = 0.012 m, x = 0.063 m, x =
0.201 m, x = 0.264 m and x = 0.401 m. At that step by simple linear interpolation,
it is possible to compute the line that best fits the interpolating points, then from
the angular coefficient of that line males an angle β = 36.657°. The numerical
approximation of the position of the shock wave is shown in Figure 6.12

Figure 6.12: Numerical approximation of the shock wave obtained with US3D
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Downstream field

To analyze the field downstream of the shock, the values of all fluid dynamics
variables were extracted for a given x (x = 0.5 m, which corresponds to the outlet
in the US3D simulation), from ymax, which in the considered domain is equal
to 2, to y such that we have the wall (y = 0.134 m). Then the various fluid
dynamics parameters were graphed. Mach number, pressure, and density have been
reported in this section (6.13, 6.14, and 6.15). The remaining parameters (energy,
temperature, velocity, sound velocity, and momentum) are given in Appendix C.

Figure 6.13: Mach values for x = 0.5 m - US3D

Figure 6.14: Pressure values for x = 0.5 m - US3D
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Figure 6.15: Density values for x = 0.5 m - US3D

Wall values

Since it will be critical for the new boundary conditions for the LBM to evaluate
that indeed the wall velocity is zero. Let us also go on to graph the trend of the
Normal Velocity, Tangential Velocity, and Mach at the wall.

Figure 6.16: Normal wall velocity - US3D
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Figure 6.17: Tangential wall velocity - US3D

Figure 6.18: Mach wall - US3D

What is observed from Figures 6.16, 6.17 and 6.18, is the trend of u⊥, u∥ and Mach
at the wall, which is constant, as indeed is expected, except at the leading edge
of the wedge, due to the proximity of the shock wave. Finally, it is important
to note that the slip condition is satisfied, being u⊥ = 0 at the wall, while the
tangential velocity is not. The fluid dynamics parameters downstream of the shock
were finally averaged and reported in Table 6.3
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Mach2US3D = 1.870
βUS3D = 36.657 [°]
p2US3D = 2.469 [Pa]
T2US3D = 1,14E-04 [K]
Qx2US3D = 5.428 [kg/m2s]
Qy2US3D = 1.454 [kg/m2s]
ρ2US3D = 2.610 [kg/m3]
Ux2US3D = 2.080 [m/s]
Uy2US3D = 0.557 [m/s]
E2US3D = 12.221 [J ]

|V |2US3D = 2.153 [m/s]
c2US3D = 1.151 [m/s]

pTOT2US3D = 15.805 [Pa]
u⊥2US3D

= 0.000 [m/s]
u∥2US3D

= 1.865 [m/s]
∆sUS3D = 22.348 [J/K]

Table 6.3: US3D Solution - Downstream shock field
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US3D Error

What can be seen from this paragraph is that the solution obtained with US3D,
despite having used a regular mesh, is extremely accurate. In this regard, in Figure
6.19 the distance that is between the two shock waves (analytical - US3D) is shown,
which is of the order of magnitude of millimeters.

Figure 6.19: Distance between shocks [m]. Solutions: analytical - US3D

Table 6.4 shows the relative errors between the downstream values obtained ana-
lytically (i.e., the values given in Table 6.2) and those obtained with US3D (i.e.,
the values given in Table 6.3). Therefore, it can be noticed that the relative error
is always under 1%, emphasizing the accuracy of the method. In Table 6.4, for the
values of temperature, and normal speed (both having a null value), the absolute
error is reported. Finally, the parameter 6.4 expresses the distance between the
leading edge (where from the theoretical point of view the shock wave starts) and
the starting point of the shock wave obtained with US3D. This value is tiny, and it
is important as in the solution we will see in the next section 6.4.2 (LBM - Bouzidi
BCs) it is a relevant value, while in the solution discussed in section 6.4.3 (LBM -
Bouzidi Bounce Back with Normal), this parameter returns to millimetric values,
emphasizing the efficiency of the new boundary conditions implemented in this
thesis.
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ErrorMachUS3D
= 0.175 %

ErrorβUS3D
= 0.778 %

δUS3D = 1.4368 [mm]
ErrorpUS3D

= 0.043 %
ErrorTUS3D

= 1,75E-07 [K]
ErrorQxUS3D

= 0.162 %
ErrorQyUS3D

= 0.184 %
ErrorρUS3D

= 0.111 %
ErroruxUS3D

= 0.052 %
ErroruyUS3D

= 0.073 %
ErrorEUS3D

= 0.086 %
Error|V |US3D

= 0.053 %
ErrorcUS3D

= 0.077 %
ErrorpTOTUS3D

= 0.425 %
Erroru⊥US3D

= 1,16E-04 [m/s]
Erroru∥US3D

= 0.050 %
Error∆sUS3D

= 5.775 %

Table 6.4: Relative (or absolute) errors between solutions: analytical - US3D

6.4 Wedge LBM Solution
A slightly different domain, than that used for the CFD simulation, was considered
in the LBM solution. So let us consider a 3m x 2m domain, in which the wedge
is positioned on the long side, at a distance of 0.6 m from the origin of the frame
reference system. The input parameters of the LBM simulation are given in
Table 6.5, and are the results of a trade-off between stability and accuracy of the
simulation. In addition, those are set such that there is an optimal solution with
the new boundary conditions.

s = 1,6
λ = 11

∆x = 0,005
σ = 0.125

∆t = 4,545E-04

Table 6.5: Input parameters in the LBM simulation
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6.4.1 LBM scheme used for the wedge
The LBM scheme used for the wedge is the D2Q4444, as described in section 3.4.3.
Summarizing what has already been said, D2Q4444 is a vectorial scheme, in which
four distinct particle distribution functions are exploited, one for each conserved
moment (i.e. the mass, the momentum in x, and y-directions, and the total energy).
Each particle distribution function is discretized with four velocities: (λ, 0), (0,
λ), (-λ, 0), and (0,-λ) where λ is the lattice velocity. This scheme was chosen
mainly because of its solidity and robustness, despite its simplicity 8. However, the
structure of the numerical diffusion cannot be modified to fit the physical diffusion
operator of Navier-Stokes.

Parameters

From a theoretical point of view there are seven parameters that can be set in the
simulation:

• The lattice velocity λ. This first fundamental parameter of LBM is defined
as the ratio of space step to time step (λ = ∆x

∆t
). Mainly this velocity must

satisfy a CFL-type condition to ensure the stability of the scheme. However,
underlining the nonlinear dependence between LBM parameters, λ also plays
a role in numerical diffusion (the higher the lattice velocity, the higher the
numerical diffusion). Based on this, in choosing the parameter λ it is necessary
for it to be the largest of all physical velocities in the problem for stability
reasons, but at the same time be as small as possible in order to minimize the
numerical diffusion.

• The three relaxation parameters of first-order sρ, su, and sp. These three
parameters are involved in numerical diffusion (relaxation parameters are
linked to numerical diffusion via Henon’s relation 3.27), thus to the accuracy
of the method9. Furthermore, the direct influence of sρ, su, and sp is in the
relaxation towards equilibrium for the three first-order non-conserved moments
of the scheme.
To sum up, increasing the values of the parameters sρ, su, and sp decreases the
numerical diffusion while decreasing improves the stability, as seen in Section
3.4.

8This scheme behaves essentially like the D1Q2
9From the 3.27 relationships it can be seen that these parameters should take real values

between 0 and 2. In the case where the relaxation parameter is equal to 2, there would be a
second-order scheme, but highly unstable, especially in correspondence of discontinuities. A study
of how to damp such oscillations is presented in [7].
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• The three relaxation parameters of second-order sρ2, su2, and sp2. Unlike
previous relaxation parameters, sρ2, su2, and sp2 do not play a role in the
second-order numerical diffusion but just in the stability. Clearly, these
relaxation parameters are involved in the relaxation towards equilibrium for
the three second-order non-conserved moments of the scheme.

A good guideline for setting these parameters can be through the corresponding
equations up to the second order, obtained using the expansion of Dubois [79]
[80], even if those give only an asymptotic representation of the scheme. These
equations are shown in Appendix D.
In order to set the parameters, the main considerations made are as follows:

• the lattice velocity λ has to be large enough to ensure that the second-order
operator is positive;

• For each of the relaxation parameters s ∈ {sρ, su, sp}, defining Hennon’s
parameter as σ = 1

s
− 1

2 , by writing the corresponding equations up to the
second order the amplitude of the associated numerical diffusion is given by
∆xλσ, thus a function not only of λ and σ but also of the space step.

• The relaxation parameters of first-order should be chosen as close to 2 as
possible to minimize the effect of the numerical diffusion while remaining a
stable scheme.

• A good choice for the relaxation parameters of second-order is often to take
these three parameters equal to the first-order associated relaxation parameters
(i.e. sρ2 = sρ, su2 = su, and sp2 = sp).

The parameters chosen are then shown in Table 6.5, so all 6 relaxation parameters
were set equal to 1.6 for simplicity, but also to provide the same contribution to
numerical diffusion to all four equations. The value of 1.6 is the maximum that
could be imposed, considering the other two parameters as well; providing a lower
value of σρ, for example, would have resulted in a higher numerical diffusion in
the corresponding equation, and would also have degraded all the other variables
in which density plays a role (such as momentum or the speed of sound, thus
indirectly the Mach number). Regarding lattice speed, the value λ = 11 was set,
while it was fixed ∆x = 0.005.
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6.4.2 Bouzidi BCs Solution
In this section, we are going to look at the wedge solution by imposing Bouzidi 4.3
conditions on the wedge surface 10.

Figure 6.20 shows the field of Mach number obtained with the LBM simulation.
Already from this figure, we can see the problems faced in the LBMHYPE project.
In fact, a detached shock from the leading edge of the wedge is observed. Also, the
no-slip condition on the wall had to be applied instead of the slip condition, in fact,
it is observed a Mach number that tends to zero globally at the wall (i.e., no-slip
condition). From Figures 6.23 - 6.28, the fields of several fluid dynamics variables
are shown, in which the same problems found in 6.20 can be observed.

Figure 6.20: Mach Number Field - LBM Bouzidi Solution

A zoom of the leading edge of the wedge is shown in Figure 6.21 in order to show
the distance between the theoretical position of the shock wave (i.e., the leading
edge itself) and the numerically obtained position. This distance, called δ is equal
to 27 mm as listed in the summary table of results 6.7.

To compute the angle β numerically, similar to what was done with the US3D
solution, a collection of points where the discontinuity was found were extracted.

10The solution obtained with simple Bounce-Back 4.2 was not reported as it was superfluous
and worse than Bouzidi’s solution.
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Figure 6.21: Leading Edge - LBM Bouzidi Solution

Then β angle was determined to be 37.8° by interpolation, as shown in Table
6.6. Figure 6.22 shows the three different shock waves considered, namely the one
calculated with the LBM, the analytical one, and the one computed with US3D.

Figure 6.22: The different shock waves considered - LBM (Bouzidi) - Analytical -
US3D
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Figure 6.23: Density Field - LBM
Bouzidi Solution

Figure 6.24: Pressure Field - LBM
Bouzidi Solution

Figure 6.25: Momentum-x Field -
LBM Bouzidi Solution

Figure 6.26: Momentum-y Field -
LBM Bouzidi Solution

Figure 6.27: |V| Field - LBM Bouzidi
Solution

Figure 6.28: Speed of Sound Field -
LBM Bouzidi Solution
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In order to check what kind of boundary condition is applied, tangential and
normal wall velocities are shown in Figure 6.29 and 6.30. However, the best way to

Figure 6.29: Normal Velocity Field -
LBM Bouzidi Solution

Figure 6.30: Tangential Velocity Field
- LBM Bouzidi Solution

verify that the wall velocity tends to zero (both u⊥ and u∥), we considered a shear
section at the outlet of the domain (i.e. x = 0.5 m 11), and graph the trend of both
velocities as the y-coordinate varies, as shown in Figures 6.31 and 6.32. The same

Figure 6.31: Normal Velocity Outlet -
LBM Bouzidi Solution

Figure 6.32: Tangential Velocity Out-
let - LBM Bouzidi Solution

procedure was carried out for all other fluid dynamics variables, so from Figure
6.33 to 6.38 the trends at the domain outlet (i.e., x = 0.5 m) as the y-coordinate
changes are shown.

11If we were to consider the LBM simulation, the domain outlet is located for x = 3 m, despite
that the outlet entry refers to the US3D simulation whose outlet is for x = 0.5 m.
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Figure 6.33: Mach Outlet - LBM
Bouzidi Solution

Figure 6.34: Energy Outlet - LBM
Bouzidi Solution

Figure 6.35: Density Outlet - LBM
Bouzidi Solution

Figure 6.36: Pressure Outlet - LBM
Bouzidi Solution

Figure 6.37: Velocity-x Outlet - LBM
Bouzidi Solution

Figure 6.38: Velocity-y Outlet - LBM
Bouzidi Solution
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In the figures on the previous page, it is clear that the boundary condition is
incorrectly applied, as the occurrence of a boundary layer is clear, so the velocity
on the wall is not zero in the Euler equations.
Once the values for each y were extracted, the average value for all fluid dynamics
parameters was calculated. A sample of values located downstream of the shock
wave but far enough from the wedge wall (so as to avoid the boundary layer) was
considered in the averaging calculation. The values obtained are shown in Table
6.6.

Machoutlet = 1.851
β = 37.840 [°]

poutlet = 2.375 [Pa]
Qxoutlet = 5.163 [kg/m2s]
Qyoutlet = 1.314 [kg/m2s]
ρoutlet = 2.491 [kg/m3]
Uxoutlet = 2.072 [m/s]
Uyoutlet = 0.527 [m/s]
Eoutlet = 11.634 [J ]

|V |outlet = 2.138 [m/s]
coutlet = 1.155 [m/s]

PT OToutlet = 14.769 [Pa]
u⊥outlet = 0.027 [m/s]
u∥outlet = 1.865 [m/s]

∆s = 41.785 [J/K]

Table 6.6: Results - LBM - Bouzidi

Table 6.7 shows the relative percentage errors between the analytical solution
and the LBM solution. In contrast, Table 6.8 shows the relative percentage errors
between US3D and the LBM solution. It can be seen from both tables that the LBM
solution obtained with Bouzidi’s conditions is inadequate. The error of greatest
magnitude is regarding entropy, whose value calculated with the LBM is completely
wrong as already observed in Table 6.6, so the actual value of the relative error
was not even reported. The main problem is due to the implementation of the
boundary conditions on the sloped wedge wall. The reasons for this inadequacy
are due to the geometry considered. The adopted scheme, D2Q4444, only includes
horizontal and vertical velocities. However, since the normal on the wedge wall
surface is in the diagonal direction, it is necessary to approximate the contributions
to the horizontal and vertical velocities in order to adjust for the slip boundary
condition.
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Since the slip condition is erroneously implemented (indeed a no-slip condition
is applied), there is the occurrence of the boundary layer, which is not expected
in the case where Euler equations are being solved. Due to the presence of the
boundary layer, the effective body is not a sharp wedge but a streamlined shape,
so the shock is detached from the wedge.

As part of the LBMHYPE project, additional simulations were carried out by
fine-tuning the computational grid, thus obtaining better results. Clearly, this is
not the correct way to follow as there is a limit where the step size can be reduced
without numerical problems.

ErrorMachLBM
= 1.202 %

ErrorβLBM
= 2.423 %

δLBM = 27.684 [mm]
ErrorpLBM

= 3.756 %
ErrorQxLBM

= 5.039 %
ErrorQyLBM

= 9.831 %
ErrorρLBM

= 4.664 %
ErroruxLBM

= 0.405 %
ErroruyLBM

= 5.440 %
ErrorELBM

= 4.883 %
Error|V |LBM

= 0.734 %
ErrorcLBM

= 0.481 %
ErrorpTOTLBM

= 6.952 %
Erroru⊥LBM

= 0.027 [m/s]
Erroru∥LBM

= 0.015 %

Table 6.7: Errors between LBM Bouzidi - Analytic solutions

The LBM approach permits the shock angle to be obtained with a low diffusion
value, but the lack of non-aligned slip-wall BC makes the solution less accurate
and hides the very great potential of the method.
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ErrorMachLBM
= 1.029 %

ErrorβLBM
= 3.226 %

ErrorpLBM
= 3.797 %

ErrorQxLBM
= 4.884 %

ErrorQyLBM
= 9.665 %

ErrorρLBM
= 4.558 %

ErroruxLBM
= 0.353 %

ErroruyLBM
= 5.371 %

ErrorELBM
= 4.801 %

Error|V |LBM
= 0.681 %

ErrorcLBM
= 0.404 %

ErrorpTOTLBM
= 6.555 %

Erroru⊥LBM
= 0.027 [m/s]

Erroru∥LBM
= 0.035 %

Table 6.8: Errors between LBM Bouzidi - US3D solutions

6.4.3 Bouzidi Bounce Back with Normal BCs Solution
This section will instead look at the results that are obtained with the improvement
introduced in this thesis of Bouzidi BCs 5.3. The same as the previous simulation
were set as input parameters 6.5 in order to make a better comparison.

Figure 6.39 shows the Mach number obtained in the domain by applying the
new boundary conditions. It is already evident from this image that the main
problems encountered with the previous simulation have been solved. In fact, the
shock seems to be attached to the leading edge of the wedge, the shock wave fits
the analytical solution much better, and lastly, at the wall, there is no Mach =
0 (so the slip condition seems to be correctly applied). The main clearly visible
problem is the position of the shock wave, which is lower than in the analytical -
US3D case. What can be observed, however, is that the distance increases with
length, so it is plausible that this problem is due to the diffusion of the scheme. We
must always remember that we are using a first-order accuracy scheme for Euler’s
equations 12. In addition, a slight wall proximity effect can be observed.
Focusing initially on the positive aspects of the obtained solution, a zoom of the
leading edge is shown in Figure 6.40. In this case, the estimated distance between
the LE and the position of the shock wave is 1.8 mm, thus comparable with the 1.4

12From a purely theoretical point of view, as mentioned earlier, the adopted scheme has an
accuracy between the first and second order. However, the second order is achieved only at s=2,
for which, however, although it has minimal diffusion, the solution is unstable.
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Figure 6.39: Mach Number Field - LBM Bouzidi Bounce Back with Normal
Solution

mm obtained with US3D. The fact that the error is of the same order of magnitude
as obtained with US3D is already something sensational, especially considering
that in the previous solution, a δ of 27 mm was obtained. This type of error
is unavoidable; in fact, it is also present in US3D, since to discretize an oblique
surface, no matter how fine is the discretization adopted, a series of steps are used.
Therefore, in a supersonic flow, even a small step size is an important perturbation,
that is why a curved shock is observed near the leading edge. In that case, however,
the distance between the leading edge and the shock is very small.
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Figure 6.40: Leading Edge - LBM Bouzidi Bounce Back with Normal Solution

To compute the angle β numerically, similar to what was done with the US3D
and Bouzidi’s solutions, a collection of points where the discontinuity was found
was extracted. Then, from the interpolating line an angle β equal to 36.9° was
determined, as shown in Table 6.9. Figure 6.41 shows the three different shock
waves considered, namely the one calculated with the LBM, the analytical one,
and the one computed with US3D. In this case, however, the solution obtained
with the LBM is much more accurate than previously obtained, in Figure 6.22 the
distance between the analytical solution and the LBM solution is much greater
than in Figure 6.41.
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Figure 6.41: The different shock waves considered - LBM (Bouzidi with Normal)
- Analytical - US3D

From Figures 6.42 - 6.47, the fields of several fluid dynamics variables are shown,
in which the same pros and cons found in 6.39 can be observed. In fact, if on the
one hand, we observe a shock wave that is attached, straight, and fits the other
two solutions more accurately than the previous case. On the other hand, there is
a slight influence of the wall on the solution; in fact, although the slip condition is
correctly applied, a slight numerical dissipation phenomenon is observed at the wall.
If the parameter λ were increased (i.e.increasing numerical diffusion), this effect
would be much more pronounced, as will be analyzed in section 6.4.3. However, by
setting the λ parameter small enough, this effect alleviates.
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Figure 6.42: Density Field - LBM
Bouzidi with Normal Solution

Figure 6.43: Pressure Field - LBM
Bouzidi with Normal Solution

Figure 6.44: Momentum-x Field -
LBM Bouzidi with Normal Solution

Figure 6.45: Momentum-y Field -
LBM Bouzidi with Normal Solution

Figure 6.46: |V| Field - LBM Bouzidi
with Normal Solution

Figure 6.47: Speed of Sound Field -
LBM Bouzidi with Normal Solution
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Also in this Bouzidi Bounce Back with Normal boundary condition analysis, we
check the values of normal and tangential wall velocity, in order to check what kind
of boundary condition is applied. Therefore tangential and normal wall velocities
are shown in Figure 6.48 and 6.49. However, the best way to verify that only the

Figure 6.48: Normal Velocity Field -
LBM Bouzidi with Normal Solution

Figure 6.49: Tangential Velocity Field
- LBM Bouzidi with Normal Solution

wall velocity u⊥ tends to zero, we considered a shear section at the outlet of the
domain (i.e. x = 0.5 m, for the same consideration made in the previous LBM
analysis is valid. In fact, the outlet entry refers to the US3D simulation whose
outlet is for x = 0.5 m.), and graph the trend of both velocities as the y-coordinate
varies, as shown in Figures 6.50 and 6.51. Unlike the previous section, while the
normal velocity is zero, the tangential velocity is not, so the slip condition is applied
successfully in this case. Thus, the Bouzidi Bounce Back with Normal BCs met
expectations by correctly imposing the wall boundary condition.

Figure 6.50: Normal Velocity Outlet -
LBM Bouzidi with Normal Solution

Figure 6.51: Tangential Velocity Out-
let - LBM Bouzidi with Normal Solution
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The same procedure was carried out for all other fluid dynamics variables, so from
Figure 6.52 to 6.57 the trends at the domain outlet (i.e. x = 0.5 m) as a function
of the y-coordinate is shown. The considerations that can be made reflect what has
been seen in Figures 6.39 and from 6.42 to 6.49. In fact, it is evident that the shock
is captured perfectly in a few cells, similar to the trend found with US3D. This
accuracy is due to the fact that the relaxation parameter was specifically chosen to
have a low numerical diffusion. The obvious problem is the numerical dispersion
of values downstream of the shock wave. From an analytical point of view, one
would need to find constant values of all fluid dynamics properties downstream of
the discontinuity, as is the case with CFD simulation. What is observed in the
graphs for the LBM simulations, however, is that the value of the fluid dynamics
parameters are not perfectly constant downstream of the shock.

Figure 6.52: Mach Outlet - LBM
Bouzidi with Normal Solution

Figure 6.53: Energy Outlet - LBM
Bouzidi with Normal Solution

Figure 6.54: Density Outlet - LBM
Bouzidi with Normal Solution

Figure 6.55: Pressure Outlet - LBM
Bouzidi with Normal Solution
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Figure 6.56: Velocity-x Outlet - LBM
Bouzidi with Normal Solution

Figure 6.57: Velocity-y Outlet - LBM
Bouzidi with Normal Solution

The main problem in the pictures from 6.42 to 6.49 is the imperfect match
between the downstream shock values obtained with US3D and the LBM values.
This error is more pronounced in some variables than in others, as will be discussed
in Tables 6.10 and 6.11. The cause of the error is the first-order accuracy of the
adopted vectorial scheme, as well as the ever-present and necessary diffusion in the
LBM.
Before evaluating how to alleviate this undesirable effect, by considering values
downstream of the shock but not too close to the wall, arithmetic averages of all
fluid dynamics parameters are given in Table 6.9.
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Machoutlet = 1.936
β = 35.926 [°]

poutlet = 2.280 [Pa]
Qxoutlet = 5.298 [kg/m2s]
Qyoutlet = 1.277 [kg/m2s]
ρoutlet = 2.482 [kg/m3]
Uxoutlet = 2.134 [m/s]
Uyoutlet = 0.514 [m/s]
Eoutlet = 11.681 [J ]

|V |outlet = 2.195 [m/s]
coutlet = 1.134 [m/s]

PT OToutlet = 16.151 [Pa]
u⊥outlet = 0.008 [m/s]
u∥outlet = 1.928 [m/s]

∆s = 15.812 [J/K]

Table 6.9: Results - LBM - Bouzidi Bounce Back with Normal

Similar to the previous case where Bouzidi conditions were used, these values were
compared to the analytical solution (Table 6.10), and those obtained with US3D
(Table 6.11). Hence, with the new boundary conditions, the error in calculating
the β angle is 3.8% (compared to the 2.4% obtained previously) a value that is
much further than the 0.7% error obtained with US3D. This increase in error from
the previous case should be carefully observed. At first glance, it would seem to
have worsened this aspect. However, this problem in the shock calculation can be
attributed to the method and not to the boundary conditions. Underestimating
the value of β is something plausible using a method that adopts diffusion. In the
previous case, however, an overestimated value of the angle formed by the shock
wave was obtained. Personally, I think the presence of the boundary layer in the
solution obtained with Bouzidi’s boundary conditions altered this measurement.
The presence of the boundary layer causes the body invested by the upstream flux
to have a higher angle than 15° (i.e., it is as if the wedge has a few more degrees
due to the presence of the boundary layer). This alteration in geometry causes the
beta angle to be greater from a fluid dynamics point of view, so this effect goes
against the underestimation of the angle typical of LBM.

Moving on to the pros of this result, the best result is the distance obtained
between the leading edge and the position of the shock wave. From an analytical
point of view this distance is zero, but even US3D, for the reasons already seen
above, estimates a distance of about 1.4 mm. The previous LBM solution estimated
a distance of 27 mm, i.e., a bow shock, which although a physically possible

113



Supersonic Wedge

solution, is not the correct one for the imposed initial conditions. In the current
LBM solution, on the other hand, 1.8 mm is estimated, so an error of the same
order of magnitude as US3D, and this is remarkable for a method that is only
first-order accurate.

Regarding the macroscopic properties of the fluid, while there are fairly small
errors, even close to 1%, there are some fluid-dynamics properties that have rather
high errors as can be seen in Tables 6.10 and 6.11.

ErrorMachLBM
= 3.337 %

ErrorβLBM
= 3.806 %

δLBM = 1.814 [mm]
ErrorpLBM

= 7.607 %
ErrorρLBM

= 5.006 %
ErrorELBM

= 4.504 %
Error|V |LBM

= 1.910 %
ErrorcLBM

= 1.380 %
ErrorpTOTLBM

= 1.758 %
Erroru⊥LBM

= 0.008 [m/s]
Erroru∥LBM

= 3.368 %
Error∆sLBM

= 25.161 %

Table 6.10: Errors between LBM Bouzidi Bounce Back with Normal - Analytic
solutions

ErrorMachLBM
= 3.519 %

ErrorβLBM
= 3.631 %

ErrorpLBM
= 7.646 %

ErrorρLBM
= 4.900 %

ErrorELBM
= 4.421 %

Error|V |LBM
= 1.964 %

ErrorcLBM
= 1.456 %

ErrorpTOTLBM
= 2.192 %

Erroru⊥LBM
= 0.008 [m/s]

Erroru∥LBM
= 3.420 %

Table 6.11: Errors between LBM Bouzidi Bounce Back with Normal - US3D
solutions

114



Supersonic Wedge

In this regard, instead of analyzing absolute quantities and evaluating the corre-
sponding relative percentage errors, ratios of quantities upstream and downstream
of the shock are often used in the supersonic field. Therefore, Mach2

Mach1
, E2

E1
, ρ2

ρ1
and p2

p1
ratios are represented in figures 6.58 to 6.61, and also in this case, the graphs are
compared against the respective ratios obtained with US3D. Clearly, the error that
occurred in in Tables 6.10 and 6.11 is also reflected in the graphs below, however,
such graphs are more general, being dimensionless.

Figure 6.58: Mach Ratio Outlet -
LBM Bouzidi with Normal Solution

Figure 6.59: Energy Ratio Outlet -
LBM Bouzidi with Normal Solution

Figure 6.60: Density Ratio Outlet -
LBM Bouzidi with Normal Solution

Figure 6.61: Pressure Ratio Outlet -
LBM Bouzidi with Normal Solution

In Tables 6.12 and 6.13 absolute errors between the ratios of fluid dynamics
quantities obtained with LBM are shown, compared with US3D and the analytical
solution, respectively. Calculating the respective relative errors yields values around
2%.
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ErrorMachLBM
= 0.025

ErrorpLBM
= 0.188

ErrorρLBM
= 0.093

ErrorELBM
= 0.080

Error|V |LBM
= 0.016

ErrorcLBM
= 0.016

ErrorpTOTLBM
= 0.016

Table 6.12: Absolute errors in ratios between LBM Bouzidi Bounce Back with
Normal - Analytic solutions

ErrorMachLBM
= 0.026

ErrorpLBM
= 0.189

ErrorρLBM
= 0.091

ErrorELBM
= 0.079

Error|V |LBM
= 0.017

ErrorcLBM
= 1.432

ErrorpTOTLBM
= 0.020

Table 6.13: Absolute errors in ratios between LBM Bouzidi Bounce Back with
Normal - US3D solutions

To sum up, the implementation of the new boundary conditions has brought many
benefits and solved several problems:

• Correct application of Slip Condition: In the solution obtained in
the LBMHYPE project, by applying Bouzidi’s boundary condition with the
purpose of applying the slip condition, a No-slip condition had been imposed
on the wall, which is not appropriate in the case where the Euler equations
are being solved. The main problem was due to the geometry considered (i.e.,
the wedge) did not conform with the regular lattice typical of the LBM, and
this led to an error in the imposition of the slip condition that had not been
observed in the case of geometries conformed with the lattice (e.g., the Forward
Facing Step). Through the implementation within the python library, pylbm
[4], of the boundary conditions named Bouzidi Bounce Back with Normal, the
slip boundary condition was correctly applied. In fact, as seen in Figures 6.50
and 6.51, while the velocity u⊥ approaches zero, the velocity u∥ has a value
imposed by the fluid, unlike the previous case in which u∥ also tended to zero,
like many fluid-dynamics quantities (in fact, by imposing the no-slip condition
is observed the well-known phenomenon of the boundary layer).
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• Distance δ very close to the theoretical value zero: In the solution ob-
tained in the LBMHYPE project, by applying the Bouzidi boundary condition,
the boundary layer phenomenon was observed. As a result, the body invested
by the supersonic flow no longer has the rectilinear shape of the wedge but
becomes a streamlined body (similar to a blunt body), and thus the shock
wave is detached (the distance of the shock wave from the leading edge was
estimated to be 27 mm). Since with the imposition of the boundary conditions
Bouzidi Bounce Back with Normal, no boundary layer is observed, in that
case, the shape involved by the supersonic flow is the correct one. This led to
a drastic reduction in the effective distance between the shock wave and the
leading edge, estimating a distance of 1.8 mm. The result is of the same order
of magnitude as that obtained with US3D.

On the other hand, however, there are not only pros to the implementation of
the new boundary condition but also cons to the solution. However, the defects
found in the solution obtained with Bouzidi Bounce Back with normal boundary
conditions are due to the method, and not to the new boundary condition. In
fact, as much as D2Q4444 is a simple and robust scheme, it has a rigid numerical
diffusion and this induces a solution of first-order for Euler equations. Therefore,
the β angle is not calculated with an infinitesimal error as in the US3D solution,
and similar reasoning applies to all other fluid dynamics quantities downstream of
the shock wave.

Reduction of numerical diffusion

To achieve a better solution, it is necessary to reduce the numerical diffusion of the
scheme. As previously mentioned, by writing the corresponding equations up to the
second order (obtained using the expansion of Dubois [79] [80]) the amplitude of the
associated numerical diffusion is given by ∆xλσ, thus a function not only of λ and
σ but also of the space step. With the parameters set in Table 6.5 this diffusivity
parameter is equal to 0.0069. So in order to decrease numerical diffusion, it is
obvious that it is necessary to try to reduce these three parameters.

• Decrease of λ: Decreasing the lattice velocity greatly decreases the diffusion
of the scheme, however, it must be remembered that this parameter plays a
key role in CFL-type stability. Despite what might be expected, decreasing
the lambda parameter observed a program crash not due to the stability of
the scheme, but rather due to the imposition of boundary conditions. In
particular, a mathematical error occurs, namely a negative square root in the
calculation of p⋆ pressure, which is required for the imposition of the new
boundary conditions, and this leads to a program crash. The value λ = 11
was set to avoid this type of error, so the limitation is not due to the stability
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of the scheme. Therefore, numerical diffusion cannot be reduced through the
parameter λ.

• Decrease of σ: Decreasing sigma means increasing the value of the relaxation
parameter since σ = 1

s
− 1

2 . From the Hennon relationship just written, it
is clear that the relaxation parameter can take values s ∈ (0,2]. The ideal
case would be to set s = 2, so as to have sigma = 0, thus a solution without
numerical diffusion. In that case, also a second-order accurate solution would
be achieved. The problem with this solution is the strong instability at
discontinuities, with the occurrence of spurious oscillations also typical of
conventional CFD. The set value of s = 1.6 (i.e., σ = 0.125) is the highest
value such that a solution with no spurious instabilities has been obtained.
Therefore, numerical diffusion cannot be reduced through the parameter σ.

• Decrease of ∆x: Last but not least, to reduce the diffusivity of the scheme,
it is also possible to play with the space step. Clearly, it is possible to reduce
this parameter, but keeping in mind that it is always necessary to satisfy the
CFL condition, but also not to increase the computational cost.

Figure 6.62: Mach Number Field - LBM Bouzidi Bounce Back with Normal
Solution - λ = 11; s = 1.6; ∆x = 0.0025
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Based on what we have seen, the only way to reduce numerical diffusion is through
the space step. Figure 6.62 shows the Mach number field obtained with a space
step halved from the previous case (i.e. ∆x = 0.0025), keeping λ and σ unchanged
for the reasons just mentioned. As observed, the shock wave has a very good
approximation up to one and a half meters from the leading edge and then departs
from the analytical solution. So the problem of calculating β is not solved by simply
halving the diffusivity, but it would be necessary to reduce the values further, which
is not possible.
Concerning the values downstream of the shock wave, to verify that the accuracy of
these is actually improved, let us diagram the trend of Mach number (as the ratio
of upstream to downstream value) in a shear section for x = 0.5 m from the leading
edge of the wedge. From Figure 6.63, it can be seen that the error is smaller than

Figure 6.63: Mach Number Ratio Outlet - LBM Bouzidi Bounce Back with
Normal Solution - λ = 11; s = 1.6; ∆x = 0.0025

in the previous case (in fact, we have reduced the diffusivity and increased the
thickness of the computational grid). However always due to numerical diffusion,
there is an error with respect to US3D. Table 6.14 shows the results obtained with
the halved ∆x.
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Machoutlet = 1.914
β = 36.580 [°]

poutlet = 2.362 [Pa]
Qxoutlet = 5.384 [kg/m2s]
Qyoutlet = 1.362 [kg/m2s]
ρoutlet = 2.547 [kg/m3]
Uxoutlet = 2.114 [m/s]
Uyoutlet = 0.535 [m/s]
Eoutlet = 11.962 [J ]

|V |outlet = 2.181 [m/s]
coutlet = 1.140 [m/s]

PT OToutlet = 16.169 [Pa]
u⊥outlet = 0.031 [m/s]
u∥outlet = 1.904 [m/s]

Table 6.14: Results - LBM - Bouzidi Bounce Back with Normal - λ = 11; s = 1.6;
∆x = 0.0025

Table 6.15 shows the relative errors obtained with halved ∆x, compared with the
analytical solution. What is observed is a reduction in error, which in this case is
close to 2 percent for most of the fluid dynamics variables, with the exception of
pressure. Thus, the halving of diffusivity led to the desired improvement. Clearly,
the error is always not at US3D levels, but the D2Q4444 scheme is not as accurate
as CFD’s SOA.

ErrorMachLBM
= 2.149 %

ErrorβLBM
= 3.395 %

δLBM = 1.525 [mm]
ErrorpLBM

= 4.266 %
ErrorρLBM

= 2.548 %
ErrorELBM

= 2.206 %
Error|V |LBM

= 1.243 %
ErrorcLBM

= 0.886 %
ErrorpTOTLBM

= 1.870 %
Erroru⊥LBM

= 0.031 [m/s]
Erroru∥LBM

= 2.051 %

Table 6.15: Errors between LBM Bouzidi Bounce Back with Normal - Analytic
solutions - λ = 11; s = 1.6; ∆x = 0.0025
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Effect of λ on the solution

This small concluding paragraph aims to show an undesirable effect that the
parameter λ might have on the accuracy of the solution. In fact, in addition
to playing a key role in the stability of both the scheme and the new boundary
conditions, in addition to playing a role in the diffusivity of the scheme, if too high
a value is set, the formation of a boundary layer-like would be observed, as can be
seen in Figure 6.64 or even better in Figure 6.65.

Figure 6.64: Mach Number Field -
LBM Bouzidi Bounce Back with Normal
Solution - λ = 15; s = 1.6; ∆x = 0.005

Figure 6.65: Mach Number Outlet -
LBM Bouzidi Bounce Back with Normal
Solution - λ = 15; s = 1.6; ∆x = 0.005

This effect is due to the following reason, as λ increases, the numerical flux correction
introduced with the Bouzidi Bounce Back with Normal boundary conditions
decreases (as is clearly observed from the 5.28 and 5.29 relations). Then the
solution approaches the classical Bouzidi boundary condition (in the limit for
λ → ∞ coincides with the LBM solution with Bouzidi boundary conditions).
Hence, the same phenomenon encountered in the LBMHYPE project is found, i.e.,
a wall boundary layer.
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Chapter 7

Supersonic cylindrical-nosed
body

The Bouzidi Bounce-Back with Normal boundary conditions is independent of
the geometry used. The flux corrector term is evaluated with respect to the local
normal to the geometry so they are general and independent of geometry. Having
successfully tested the Bouzidi Bounce Back boundary conditions (within the
limitations seen in the previous chapter regarding the diffusion of the scheme),
in this section, we verify that these boundary conditions are applicable to any
geometry. To this end, this chapter will study the problem of a supersonic flow over
a blunt body with the same upstream properties as the previous test case. The
test case chosen is the infinitely long cylinder, as it is simpler than the sphere since
it does not have three-dimensional effects, so it is two-dimensional 1. The choice of
such a test case is first of all due to the non-rectilinear geometry, so as to test the
BCs on a curved surface. The resolution of the blunt body is crucial to the future
of the project since it is a particularly important shape in hypersonic aerodynamics,
in which all vehicles have blunt noses to reduce aerodynamic heating.

1In addition, with the pylbm package you can solve problems up to two dimensions.
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7.1 Bow shock
Bow shocks are common near blunt bodies [121] [122] [123] such as SpaceX’s Dragon
reentry vehicle, shown in Figure 7.1. In a blunt-nosed body, there is always a
detached bow shock with a subsonic pocket behind it and a subsequent expansion
of the flow to supersonic speed. Moving at a far distance from the vehicle, the shock
vanishes and its inclination with respect to the free stream direction approaches
asymptotically the Mach angle (i.e. µ∞ = arcsin( 1

M∞
)).

Figure 7.1: 3D graphic representation of the reentry of the Dragon capsule
(SpaceX)

As mentioned in the chapter on wedge there is a maximum flow deflection angle
θmax that an oblique shock can handle for a given upstream Mach number M1. If
the deflection angle θ is greater than θmax, the maximum flow deflection angle,
the assumptions concerning the oblique shock then fail, and a curved bow shock
generates in front of the body. This bow shock has a curved shape and is detached
from the body.

124



Supersonic cylindrical-nosed body

Figure 7.2: Supersonic flow over a wedge - Detached bow shock

In the issue of a circular surface hit by a supersonic flow, the deflection angle locally
is 90°, so it is obvious that the shock will be detached. The flow velocity decreases
from supersonic upstream to subsonic downstream as a result of the non-isentropic
thermodynamic change across a bow shock.

7.1.1 Theoretical background
In order to better analyze the flow field we are studying, let us consider the
supersonic flow over a body with a blunt nose, as shown in Figure 7.3, following
the procedure proposed by [127]. As it is well evident, in front of this body, a
strong curved bow shock wave emerges. The distance δ separates the shock from
the nose (δ known as standoff distance). Focusing more on Figure 7.3, at point a,
the wave’s upstream flow is a normal shock, in fact, immediately downstream of it
there is a subsonic pocket, as the shock wave is strong. The shock wave weakens
and curves as it moves away from the center, finally turning into a Mach wave
at great distances from the body (point e in 7.3). In addition, between points a
and e, for an upstream Mach number M1, the curved shock passes through every
scenario allowed for oblique shocks (i.e. all the possibilities that are feasible in the
graph 6.6).

• Point a: Normal shock, so to calculate the value immediately downstream
of the shock wave it is possible to use the relationships seen in the previous
chapter of Rankine-Hugoniot [124] [125], which are only locally valid.

• Point b: An oblique shock occurs, very close to the normal shock wave. As
a result, the shock wave is still strong, in fact downstream of the shock it is
within the subsonic pocket.

• Point c: It marks the separation between strong and weak solutions; the
highest deflection θmax occurs in the streamline through point c.
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• Point c’: The shock leads the flow to become sonic. Above this point the
flow downstream of the shock is supersonic.

• Point d: Weak oblique shock

• Point e: Mach line

Figure 7.3: Flow over a blunt body traveling at supersonic speed.

It can be seen from Figure 7.3 that a mixed subsonic-supersonic flowfield occurs
between the blunt body and its curving bow shock 2. Since there is a mixed
subsonic-supersonic field was very challenging to solve in the 1950s and 1960s when
this problem was first faced.

2The sonic line is the imaginary dividing line between these two regions (when M = 1)
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This flowfield’s solution is not simple. The Mach number, as well as the size and
shape of the body, influence the detached shock wave’s shape, its detachment
distance δ, and the entire flowfield.

7.1.2 Billig’s Approximation
The blunt body problem has been solved for the first time through characteristics.
Nevertheless, in the literature, there are very simple but effective methods based
on the geometry observed and the shock wave’s sonic point available [128]. Even
so, it would be interesting to find out if there are additional simplifications that
would produce results that closely matched those of the experiments. In this regard
there is an interesting empirical solution in the literature to estimate the position
of the shock wave, and also the shape, by knowing the input Mach number and
the radius of the object invested by the flow, known as Billig’s solution [129].
Since it is an empirical correlation it has limitations on validity, i.e., it can be
applied for perfect gases, thus for a Mach number not exceeding 8, so the effects of
aerothermodynamics are not significant. This approach makes the assumption that
the detached shock wave is an asymptotic hyperbola to the freestream Mach angle
(i.e. µ∞ = arcsin( 1

M∞
)) 3. The equation for the shock’s coordinates is the following:

x = R + δ −Rc cotan2 µ∞

A1 + y2 tan2 µ∞

R2
c

B1/2

− 1
 (7.1)

In Billig’s original work, expressions for the standoff distance δ and the vertex
radius of curvature Rc are derived experimentally to determine the hyperbola’s
shape. In our case, to estimate these two parameters in equation 7.1 we use the
proposal presented in [131], in which the experimental results for standoff distance
from various sources were correlated in case you are studying the cylinder as 4:

δ

R
= 0.386 · exp

A
4.67
M2

in

B
(7.2)

While in the case of the relationships for the vertex radius of curvature, they came
to the following relation 5:

Rc

R
= 1.386 · exp

A
1.8

(Min − 1)0.75

B
(7.3)

3In [130] is presented the case of detached shock for the wedge
4In the case where the case of the sphere is being studied, that is, in the case where the

three-dimensional effects are included, the empirical relation 7.2 becomes δ
R = 0.143 · exp( 3.24

M2
in

)
5Again, if a sphere is considered, in order to consider three-dimensional effects, the 7.3 relation

becomes Rc

R = 1.143 · exp( 0.54
(Min−1)1.2 )
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Figure 7.4 is shown a comparison of shock wave shapes for flow across cylinders
computed and measured from references [132], [133], [134], [135], [136], and [137].

Figure 7.4: Comparison of shock wave shapes for flow across cylinders computed
and measured from references [132], [133], [134], [135], [136], and [137]

The close agreement between data and theory for both spherical-nosed and
cylindrical-nosed bodies serves as proof that this strategy is effective.
It would be expected that the results would agree with theories for a perfect gas
with γ = 1.4 since the correlations that led to equations 7.1-7.3 were based on
tests conducted at relatively low temperatures. The shock-wave shape will only be
significantly affected by real gas effects at Mach values higher than or equal to 8.
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This solution is not exact, but it gives a fairly accurate estimate of the location
of the shock, and at SOA it is used as a first approximation. For example, it is
very useful to have an idea of the position of the shock wave before launching a
CFD simulation, so that it is possible to know a priori where it will be necessary
to refine the mesh.

7.2 Test case Cylinder
The case study chosen to test the newly implemented boundary conditions is the
simplest bidimensional test case that adopts a non-rectilinear geometry. Thus
we solve in this chapter with the LBM a supersonic flow investing the section of
a cylinder (not a sphere to avoid 3D effects) whose radius is 0.5 m. Figure 7.5
schematizes the chosen test case, in order to visualize the size of the domain set as
well.

Figure 7.5: Schematic description of the flow domain

The chosen test case has the input Mach number equal to M1 = 2.5 and the radius
equal to 0.5 m as key parameters. The other parameters set in the freestream are
shown in the table 7.1. The parameters set in 7.1 are set to focus only on the
numerical aspect i.e., the same approach is being taken as that used for the wedge.
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Mach1 = 2,5
p1 = 1 [Pa]
T1 = 8.5E-05 [K]
Qx1 = 3,5 [kg/m2s]
Qy1 = 0 [kg/m2s]
ρ1 = 1,4 [kg/m3]
Ux1 = 2,5 [m/s]
Uy1 = 0 [m/s]
E1 = 6,875 [J ]

|V |1 = 2,5 [m/s]
c1 = 1 [m/s]

pTOT1 = 17.086 [Pa]

Table 7.1: Cylinder Parameters - Free Stream

7.2.1 Analytical solution normal shock

Regarding analytical resolution, the solution of the oblique shock (plane and
attached) is no longer valid for the calculation of the field, but immediately
downstream of the curved shock, the field can still be calculated with the results
of the oblique shock theory. Thus just downstream of the discontinuity, the
relationships for evaluating fluid properties are derived directly from the Rankine-
Hugoniot equations [124] [125]. Past that location, the flow evolves differently and
the streamlines follow a curved path because it must still connect with the direction
of the downstream wall to satisfy the slip condition.
Therefore, the analytical values found downstream of the shock for y = 2 are
reported, such that the shock is normal (i.e., β = 90). In this situation, the
relations are exactly those of Rankine-Hugoniot for the normal shock. Exactly as
in the previous case, once the Mach number is obtained, from the equation of state
of gases 6the entire field downstream of the shock can be obtained. All the main
values of the downstream field are given below and summarized in Table 7.2.

• For the Mach number we employ the corresponding equation of Rankine-
Hugoniot:

M2
2 =

1 +
è

γ−1
2

é
M2

1

γM2
1 − γ−1

2
→ M2 = 0.513 (7.4)

6In fact 6.6 relationship is proved by the equation of state, in fact, T2
T1

= p2
p1

ρ1
ρ2

.
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• For the density we employ the corresponding equation of Rankine-Hugoniot:

ρ2

ρ1
=

γ+1p2
γ−1p1

+ 1
γ+1
γ−1 + p2

p1

→ ρ2 = 4.667[kg/m3] (7.5)

• For the pressure we employ the corresponding equation of Rankine-Hugoniot:

p2

p1
=

γ+1ρ2
γ−1ρ1

− 1
γ+1
γ−1 − ρ2

ρ1

→ p2 = 7.125[Pa] (7.6)

• For the temperature field we employ the corresponding equation of Rankine-
Hugoniot, proved by the equation of state, in fact, T2

T1
= p2

p1

ρ1
ρ2

:

T2

T1
=
C
1 + 2γ

γ + 1
1
M2

1 − 1
2D C2 + (γ − 1)M2

1
(γ + 1)M2

1

D
(7.7)

→ T2 = 1,84E − 04[K]

• For the total pressure field we employ the corresponding equation of Rankine-
Hugoniot:

pTOT2

pT OT 1
=
A

1 + 2γ
γ + 1

1
M2

1 − 1
2B− 1

(γ−1)
A

(γ + 1)M2
1

2 + (γ − 1)M2
1

B γ
γ−1

(7.8)

→ pTOT2 = 8.526[Pa]

• From the definition of the speed of sound, given the pressure and temperature,
it is possible to obtain c2 of the analytical solution.

c2 =
ó
γ
p2

ρ2
= 1.462[m/s] (7.9)

• Known the Mach number and the speed of sound, it follows that the absolute
value of the speed will be:

|V |2 = M2c2 = 0.750[m/s] (7.10)

• Then we evaluate the energy in the field downstream of the shock:

E2 = 1
2ρ2|V |22 + p2

γ − 1 = 19.125[J ] (7.11)
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• Knowing also the components of the velocities, we calculate the momentum in
the two directions, since those will be two starting parameters for the LBM,
being two of the conserved moments of the scheme used:

Qx2 = Ux2ρ2 = 3.5[kg/m2s] (7.12)
Qy2 = UY2ρ2 = 0[kg/m2s] (7.13)

• Under the imposed assumptions, the flux is adiabatic (i.e.,
1

To2
T01

2
= 1). The

entropy drop therefore can be calculated according to the following relationship:

∆s = − R

M
log

A
po2

p01

B
= 199.284[J/K] (7.14)

Mach2Analytical = 0.513
p2Analytical = 7.125 [Pa]
T2Analytical = 1,84E-04 [K]
ρ2Analytical = 4.667 [kg/m3]
E2Analytical = 19.125 [J ]

|V |2Analytical = 0.750 [m/s]
c2Analytical = 1.462 [m/s]

pTOT2Analytical = 8.526 [Pa]
∆sAnalytical = 199.284 [J/K]

Table 7.2: Analytical Solution - Downstream normal shock - y = 2

In order to get an initial idea about the position of the shock wave, we use the
previously mentioned Billig approximation. Using the 7.2 relationship, a standoff
distance of 0.41 m is estimated with Billig, while as for the radius of curvature
through the relation 7.3 a value of 2.61 m is obtained. Figure 7.6 shows the
analytical representation of the solution, obtained from equation 7.1.
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Figure 7.6: Billig’s approximation

7.3 LBM Solution

In the LBM simulation, we consider a computational domain as represented in
Figure 7.5, then let us consider a 6m x 4m domain, in which the section of the
cylinder has its center at the point (2,2) and a radius of 0.5 m. The input parameters
of the LBM simulation are given in Table 7.3, and are the results of a trade-off
between stability and accuracy of the simulation. In addition, those are set such
that there is an optimal solution with the new boundary conditions.

σ = 0.167
s = 1,5
λ = 11

∆x = 0,005
∆t = 4,5E-4

Table 7.3: Input parameters in the LBM simulation

The same considerations made in Section 6.4.1 of the previous chapter apply to
parameter selection.
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7.3.1 Bouzidi BCs Solution
In this section, we are going to look at the cylindrical-nosed body solution by
imposing Bouzidi 4.3 conditions on the curved surface 7.
Figure 7.7 shows the field of Mach number obtained with the LBM simulation. As
well as the analysis performed on the wedge with Bouzidi’s boundary conditions,
already from this figure, we can see the problems faced in the LBMHYPE project.
In fact, the slip condition is misapplied, in fact, it is observed a Mach number that
tends to zero globally at the wall (i.e., no-slip condition). From Figures E.1 - E.6,
the fields of several fluid dynamic variables are shown, in which the same problems
found in 7.7 can be observed.

Figure 7.7: Mach Number Field - LBM Bouzidi Solution

Figure 7.8 shows the comparison between the shock position obtained with LBM
and Billig’s analytical solution. What can be observed from the figure is that

7Also in this case, the solution obtained with simple Bounce-Back 4.2 was not reported as it
was superfluous and worse accurate than Bouzidi’s solution.
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the LBM solution fits Billig’s solution quite well, which, however, is an empirical
relationship that is not exact. Moreover, the difference obtained between the two
solutions is comparable with the errors found in [132], [133], [134], [135], [136], and
[137] between the experimental data and Billlig’s 7.1 relation for the set Mach
number. As the Mach number increases, the Billig error decreases, as can also be
guessed from Figure 7.4.

Figure 7.8: The different shock waves considered - LBM (Bouzidi) - Analytical
(Billig)

The problem found in the wedge was the incorrect imposition of the slip condition
at the wall. In order to check what kind of boundary condition is applied, Figures
7.9 and 7.10 show the velocities parallel to the x-axis and y-axis, respectively. From
the two images, it can be seen that both have an infinitesimal value at the wall,
so it can be guessed that even in this case, Bouzidi’s boundary condition is not
appropriate to impose the slip condition at the wall.
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Figure 7.9: Velocity ux Field - LBM
Bouzidi Solution

Figure 7.10: Velocity uy Field - LBM
Bouzidi Solution

However, as done in the previous wedge test case, the best way to verify that
the wall velocity tends to zero (both ux and uy), we considered a shear section
positioned at x = 2 m, so as to verify that the velocity tends to zero at the upper
extreme of the geometry. Figures 7.11 and 7.12 graph the trend of both velocities
as the y-coordinate varies. It is clear from the two figures that the velocity has a
drop to a zero value at the wall, so again, as in the case of the wedge solved with
Bouzidi, the occurrence of the boundary layer is observed.

Figure 7.11: Velocity ux for x = 2 m -
LBM Bouzidi Solution

Figure 7.12: Velocity uy for x = 2 m -
LBM Bouzidi Solution

The same procedure was carried out for all other fluid dynamics variables, so from
Figure 7.13 to 7.16 the trends for x = 2 m as the y-coordinate changes are shown.
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Figure 7.13: Mach for x = 2 m - LBM
Bouzidi Solution

Figure 7.14: Energy for x = 2 m -
LBM Bouzidi Solution

Figure 7.15: Density for x = 2 m -
LBM Bouzidi Solution

Figure 7.16: Pressure for x = 2 m -
LBM Bouzidi Solution
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From the figures on the previous page, it is clear that the boundary condition is
incorrectly applied, as the occurrence of a boundary layer is clear, which does not
exist by solving the Euler equations.
In this example, to evaluate the accuracy of the obtained solution, and to make a
comparison with the analytical solution we graph the trend of the fluid dynamics
variables for y = 2m (i.e., a shear section passing through the stagnation point).
The trends of the main fluid dynamics variables ratios as a function of the x
coordinate are then shown in Figures 7.17 to 7.23.

Figure 7.17: Mach number trend for y = 2

From Figure 7.17, related to the Mach number, the discontinuity is well evident, as
well as how the velocity tends to zero as you approach the geometry (in fact you
are approaching a point of isoentropic stagnation). Instead, the figures on the next
page show typical trends found in fluid dynamics variables downstream of a strong
shock wave. In fact, a discontinuous increase in density, pressure, temperature, and
energy is observed; in contrast, a drop in total pressure is present.
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Figure 7.18: Density trend for y = 2 Figure 7.19: Pressure trend for y = 2

Figure 7.20: Energy trend for y = 2 Figure 7.21: Temperature trend for y
= 2

Figure 7.22: Total Pressure trend for
y = 2 Figure 7.23: ux trend for y = 2
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The plotted graphs in Figures 7.17 to 7.23 are essentials for evaluating the post-
shock values of all fluid dynamics variables. In fact, as already mentioned above,
the analytical solution is only valid in proximity to the shock wave. In this regard,
Table 7.4 shows the post-shock values evaluated with the LBM (applying Bouzidi
wall boundary conditions).

MachPost Shock = 0.512
pPost Shock = 7.027 [Pa]
ρPost Shock = 4.602 [kg/m3]
EPost Shock = 18.857 [J ]

|V |Post Shock = 0.749 [m/s]
cPost Shock = 1.462 [m/s]
PT OTPost Shock = 8.404 [Pa]
TPost Shock = 1.84E-04 [K]

∆s = 203.421 [J/K]

Table 7.4: Results - LBM - Bouzidi

Table 7.5 shows the relative percentage of errors between the analytical solution
and the LBM solution. The results obtained downstream of the shock show a very
good correlation between the analytical values and the LBM values, with very
limited errors around 1%.

ErrorMachLBM
= 0.163 %

ErrorpLBM
= 1.377 %

ErrorTLBM
= 1,00E-05 [K]

ErrorρLBM
= 1.382 %

ErrorELBM
= 1.399 %

Error|V |LBM
= 0.160 %

ErrorcLBM
= 0.003 %

ErrorpTOTLBM
= 1.433 %

Error∆s = 2.076 %

Table 7.5: Errors between LBM Bouzidi - Analytic solutions

Finally, regarding the standoff distance, with the LBM we estimate a δ value of
0.4550 m. This value differs by 0.04 m from the value expected by Billig, which is
an empirical approximation, that estimated a δ of 0.4074 m.
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7.3.2 Bouzidi Bounce Back with Normal BCs Solution
In this section, we are going to look at the cylindrical-nosed body solution by
imposing Bouzidi Bounce Back with Normal 5.3 conditions on the curved surface.
Figure 7.24 shows the field of Mach number obtained with the LBM simulation.
Unlike the solution seen in the previous section (LBM with Bouzidi BCs imposed at
the wall), in this example the slip condition seems to be applied appropriately, not
observing the boundary layer near the surface. So it follows, that the new boundary
conditions Bouzidi Bounce Back with Normal are also applicable to non-rectilinear
geometries. This is due to the generality of calculating the correction factor (the
flux discussed in the section 5.1), which depends on the local normal, which while in
the wedge test case was constant, in this example changes as a function of position.

Figure 7.24: Mach Number Field - LBM Bouzidi Bounce Back with Normal
Solution

In Appendix E from Figures E.7 - E.12, the fields of several fluid dynamic
variables are shown.
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Figure 7.25 shows the comparison between the shock position obtained with LBM
and Billig’s analytical solution. The conclusions that can be taken are similar to
those seen with the application of Bouzidi’s boundary conditions, in fact, the LBM
solution fits Billig’s solution quite well and the difference obtained between the
two solutions is comparable with the errors found in [132], [133], [134], [135], [136],
and [137] between the experimental data and Billlig’s 7.1 relation for the set Mach
number.

Figure 7.25: The different shock waves considered - LBM (Bouzidi Bounce Back
with Normal) - Analytical (Billig)

The problem that has been found in Bouzidi is the incorrect slip condition, as
already seen several times in this thesis. In order to check what kind of boundary
condition is applied, Figures 7.26 and 7.27 show the velocities parallel to the x-axis
and y-axis, respectively. From the two images, it can be seen that there is no
boundary layer, as was already observed in Figure 7.24 on the Mach number.

142



Supersonic cylindrical-nosed body

Figure 7.26: Velocity ux Field - LBM
Bouzidi Bounce Back with Normal So-
lution

Figure 7.27: Velocity uy Field - LBM
Bouzidi Bounce Back with Normal So-
lution

However, as done in the previous section 7.3.1, the best way to verify that only the
wall velocity uy tends to zero, we considered a shear section positioned at x = 2
m, to verify that the velocity tends to zero at the upper extreme of the geometry.
Figures 7.28 and 7.29 graph the trend of both velocities as the y-coordinate varies.
In this example, therefore, it is evident how the tangential velocity is determined
by the flux, and not imposed equal to zero by the boundary condition. Conversely,
the normal velocity, which in this case is uy, considering the upper extreme of the
geometry, is zero. Therefore, the slip-condition is correctly applied, confirming
that the boundary conditions of Bouzidi Bounce Back with Normal are feasible
regardless of geometry.

Figure 7.28: Velocity ux for x = 2
m - LBM Bouzidi Bounce Back with
Normal Solution

Figure 7.29: Velocity uy for x = 2
m - LBM Bouzidi Bounce Back with
Normal Solution
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The same procedure was carried out for all other fluid dynamics variables, so from
Figure 7.30 to 7.33 the trends for x = 2 m as the y-coordinate changes are shown.

Figure 7.30: Mach for x = 2 m - LBM
Bouzidi Bounce Back with Normal So-
lution

Figure 7.31: Energy for x = 2 m -
LBM Bouzidi Bounce Back with Normal
Solution

Figure 7.32: Density for x = 2 m -
LBM Bouzidi Bounce Back with Normal
Solution

Figure 7.33: Pressure for x = 2 m -
LBM Bouzidi Bounce Back with Normal
Solution
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Also in this example to evaluate the accuracy of the obtained solution, and to
make a comparison with the analytical solution we graph the trend of the fluid
dynamics variables for y = 2m (i.e., a shear section passing through the stagnation
point). The trends of the main fluid dynamics variables ratios as a function of the
x coordinate are then shown in Figures 7.34 to 7.40.

Figure 7.34: Mach number trend for y = 2

From Figure 7.34, related to the Mach number, the discontinuity is well evident,
as well as how the velocity tends to zero as you approach the geometry (in fact you
are approaching a point of isoentropic stagnation). Instead, the figures on the next
page show typical trends found in fluid dynamics variables downstream of a strong
shock wave. In fact, a discontinuous increase in density, pressure, temperature, and
energy is observed; in contrast, a drop in total pressure is present.
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Figure 7.35: Density trend for y = 2 Figure 7.36: Pressure trend for y = 2

Figure 7.37: Energy trend for y = 2 Figure 7.38: Temperature trend for y
= 2

Figure 7.39: Total Pressure trend for
y = 2 Figure 7.40: ux trend for y = 2
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The plotted graphs in Figures 7.34 to 7.40 are critical for evaluating the post-
shock values of all fluid dynamics variables. In fact, as already mentioned, the
analytical solution is only valid in proximity to the shock wave. In this regard,
Table 7.6 shows the post-shock values evaluated with the LBM (applying Bouzidi
Bounce Back with Normal boundary conditions).

MachPost Shock = 0.508
pPost Shock = 7.067 [Pa]
ρPost Shock = 4.617 [kg/m3]
EPost Shock = 18.942 [J ]

|V |Post Shock = 0.743 [m/s]
cPost Shock = 1.464 [m/s]
PT OTPost Shock = 8.426 [Pa]
TPost Shock = 1.8E-04 [K]

∆s = 202.665 [J/K]

Table 7.6: Results - LBM - Bouzidi Bounce Back with Normal

Table 7.7 shows the relative percentage of errors between the analytical solution
and the LBM solution. The results obtained downstream of the shock show a very
good correlation between the analytical values and the LBM values, with very
limited errors around 1%. From a relative error point of view, there is a slight
improvement over the LBM (Bouzidi) solution, but the big improvement is the
correct imposition of slip-condition at the wall.

ErrorMachLBM
= 1.030 %

ErrorpLBM
= 0.817 %

ErrorTLBM
= 4,73E-04 [K]

ErrorρLBM
= 1.072 %

ErrorELBM
= 0.957 %

Error|V |LBM
= 0.903 %

ErrorcLBM
= 0.129 %

ErrorpTOTLBM
= 1.173 %

Error∆s = 1.697 %

Table 7.7: Errors between LBM Bouzidi Bounce Back with Normal - Analytic
solutions

Finally, regarding the standoff distance, with the LBM we estimate a δ value of
0.4800 m. This value differs by 0.07 m from the value expected by Billig which
estimated a δ of 0.4074 m. Thus for the standoff distance, the solution obtained
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with Bouzidi Bounce Backs with Normal BCs differs more from Billig’s empirical
solution than the solution obtained with Bouzidi, as also observed from Figure
7.41.

Figure 7.41: Comparison between the two solutions LBM and Billig

7.4 Conclusion
The analysis reported in this last chapter is undoubtedly incomplete, a CFD
simulation performed with US3D would also be needed for this test case to better
evaluate what was obtained with the LBM. However, the purpose of the LBM
analysis on the cylindrical-nosed body was to test the boundary conditions of
Bouzidi Bounce Back with Normal in curved geometries. From this point of view,
the simulation has to be considered a success, as it appropriately imposed the
slip-wall boundary condition.
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Chapter 8

Conclusion

This concluding chapter aims to evaluate the results obtained, both the positive,
and negative aspects, of both simulations performed. Also evaluating the possible
improvements and insights that can be made.

Finally, this chapter also aims to present the future perspectives of the pylbm
project, in order to make the software capable of dealing with increasingly complex
problems and to make it industrially competitive.

8.1 Achievements
In this thesis, it was shown that the Lattice Boltzmann Method is a method with
much potential for the future. Its success is primarily due to:

• The amazing computational efficiency

• The ease of managing complex geometry

• The simplicity of the code

• The ease of parallelizing

The disadvantage addressed in this thesis, however, is the difficulty one has in
controlling and analyzing the simulation and then the results. This complexity
comes from the great advantage that LBM uses to solve fluid dynamics, namely the
particle distribution functions. The main problem that has been addressed in this
thesis is the imposition of boundary conditions, which are more complex to impose,
compared to conventional CFD, because of the particle distribution functions.
Dealing with a boundary condition through particle distribution functions also
makes it more complex to understand how to impose the correct boundary condition,
precisely because the slip condition, in our case, is imposed indirectly.
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The problem encountered in the LBMHYPE project was due to the incorrect
imposition of the slip condition. However, this problem was only observed in
non-Lattice conforming geometries, i.e., in any geometry that is not aligned with
the Cartesian axes, this problem was encountered, such as the wedge.

In this thesis, through the implementation of Bouzidi Bounce Back with Normal
boundary conditions, it was possible to solve such problem of the incorrect wall
boundary condition for nonconforming geometries with Cartesian axes.

8.1.1 Wedge
In the wedge test case, the improvements brought by the new boundary conditions
are incredible. Since the slip condition is correctly imposed, the boundary layer
phenomenon is not observed, and the distance between the LE and the shock
occurrence is very small, almost comparable to the US3D result. However, due to
the high numerical diffusion of the scheme, the solution is not as accurate as that
obtained by US3D but consistent with a first-order method. However, we must not
forget the formidable strength of the LBM; while the US3D solution is of superior
accuracy, the computational speed of the LBM is sensational; a good solution can
be obtained in a couple of minutes.

8.1.2 Supersonic cylindrical-nosed body
In this thesis, in the last chapter, a simulation was performed in a blunt body,
to verify the applicability of Bouzidi Bounce Back with Normal in a curvilinear
geometry. In this regard, the new boundary conditions met theoretical expectations.
Considering the generality of the definition of corrective flux discussed in Section 5.1
as a function of the normal direction at the wall, the simulation was a success. In
fact, by applying the Bouzidi boundary condition, the same problem seen with the
wedge in the LBMHYPE project is encountered, whereas, through the imposition
of the Bouzidi Bounce Back with Normal at the wall, the slip condition is correctly
imposed.

Regarding this simulation, it should be pointed out that a more in-depth analysis
would be needed, again making a comparison with the US3D solution.
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8.2 Future developments
Nowadays, research is focusing on the development and understanding of multiple
aspects of the LBM, such as more flexible and stable collision terms or multi-phase
models.

Focusing only on pylbm, however, there are several aspects that can be developed
being a very ambitious project.

• Increase the accuracy of the method: A first aspect that can be improved
in this project is the accuracy of the method. The adopted scheme has a high
numerical diffusion, which can be removed by, for example, increasing the
relaxation parameter s. As mentioned, however, increasing this parameter
results in an unstable scheme, with the occurrence of spurious oscillations at
discontinuities. A possible solution would be to adopt specific improvements
to locally smooth the spurious oscillations, such as the non-oscillating LBM
system presented in [7] for one-dimensional test cases. So a future improvement
of pylbm could extend these schemes to solve two-dimensional problems as
well, then implement these WENO schemes for D2Q4444 as well.

• Extension to Navier-Stokes equation: The main future focus will be to
extend pylbm to 2D viscous flows at high Mach numbers. In order to solve 2D
Navier-Stokes problems will be necessary to better understand the numerical
viscosity of the scheme, in particular, it will be challenging to deal with the
viscosity in each LB discretization system. The diffusive scaling must be
chosen in order to be consistent with a parabolic system, such as the complete
Navier-Stokes system.

• Hypersonic regime: Once it is extended to Navier-Stokes, a further complica-
tion will be the extension to the hypersonic regime. The numerical limitations
given by the compressible field, which have already been resolved, are added
to the limitations already mentioned in section 3.2. The set values for the
heat capacity ratio γ and the Prandlt number (Pr = 1) are two additional
non-numerical restrictions that belong to LBM.

– According to the first restriction, the thermal diffusivity coefficient cannot
be freely set while the dynamic viscosity is fixed, and vice versa.

– The second limitation is closely related to the number of internal degrees
of freedom of gas molecules. Indeed from the γ relationship, if only
translational DOFs are considered, as in the case of conventional LBM, this
limits the field of use of the method, applicable accurately to monoatomic
gases only. Rotational DOFs must be included at least when defining the
internal energy or the total energy in order to reproduce realistic flows.
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• Multi-phase models: Another crucial aspect of hypersonic after high tem-
peratures is dealing with multiphase flows, which are a problem to be dealt
with not only with pylbm but also with LBM in general, in fact, much research
is focused on this aspect.

• Treatment of any external sources: The pylbm’s handling of source terms,
such as heat sink/sources in the energy equation, is yet another area to be
developed.

• Velocity stencil extension in 2D and 3D: With validations on academic
test cases in 1D and 2D, the entire vectorial schemes have demonstrated a
good potential to mimic compressible flows with high Mach numbers. The
study on vectorial schemes will continue by increasing the stencil of velocities,
both in 2D but especially in 3D.

– In 2D, the stencil can be extended by considering up to 9 velocities (i.e.,
D2Q9). This on the one hand would result in better accuracy, especially
for turbulent flows, not well taken into account with only 4 velocities,
but on the other hand, would result in an extension of the conditions
Bouzidi Bounce Back with Normal. In fact, the new boundary conditions
implemented in this thesis are applicable to D2Q4 only, as they exploit
the analogy between the four cell faces and the four velocities. Therefore,
it is necessary to generalize this concept. One idea would be to change
the shape of the elementary latex cell, but this would lead to problems
in the future, extension in 3D especially, or another option would be to
properly consider the components of the corrective fluxes in the Bouzidi
Bounce Back with Normal BCs.

– The real future development of pylbm, in order to consider geometries
more and more like reality, and the engineering industry is the extension
to the third dimension. In 3D, the stencil can be extended by considering
seven, nineteen, and twenty-seven velocities schemes (i.e., D3Q7, D3Q19
or D3Q27). In 3D these schemes will need to be tested and compared in
terms of quality and computational cost, but more importantly in terms
of stability.
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Appendix A

Euler equations

The extensive studies conducted by numerous scientists between the 18th and 19th
centuries led to the development of equations that describe the motion of fluids.
The first to derive a macroscopic set of equations for the specific case of inviscid
fluid flows was Euler in 1755 [138]. Euler’s theory is based on two key principles:

• Conservation of mass
∂ρ

∂t
+ ∇ · (ρu) = 0 (A.1)

• Conservation of momentum

∂ρu

∂t
+ ∇ ·

1
ρu2

2
= ρg − ∇p (A.2)

where respectively ∇ is the physical space’s gradient operator, ρ the density, ρu the
momentum, ρg the external force, p the pressure, and ρu2 the second-order tensor
linked to the momentum convection. Assuming by hypothesis that the external
force is known, the system of Euler equations A.1 and A.2 contains three unknowns
(density ρ, momentum ρu, and pressure p), so the system is open. The system
can be solved, by providing an evolutionary constitutive law for the pressure 1. In
his [138] proposal, Euler suggested that pressure should just depend on density
p = p(ρ) (i.e. barotropic fluid) to obtain a set of equations that are well posed.
However, Euler was only able to analyze the motion of non-viscous (inviscid) and
non-heat-conducting flows in his study.
The absence of shear stresses in the momentum conservation equation A.2 is related
to the restriction of non-viscous flows. While the non-heat-conducting flow restric-
tion results from two main causes: firstly, the equations provided above do not

1Clearly, like any system of PDEs, boundary and initial conditions are required
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Euler equations

account for the energy conservation principle, and secondly, according to Euler’s
theory, pressure is not related to temperature through the equation of state.
Navier made the first adaptation to the Euler momentum equation for incompress-
ible flows in 1821 [139]. Stokes modified the compressible momentum equation in
1845 using the framework of fluid mechanics [140], obtaining the Navier-Stokes
equation’s contemporary version.
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Appendix B

Python code for new
boundary conditions

This appendix shows the two classes implemented within the pylbm library. Both
scripts implement the Bouzidi Bounce Back With Normal boundary conditions
(in the x- and y-direction, respectively). Both classes were added to the library’s
existing ones in the boundary.py script, which can be found in the pylbm library
[4].

Listing B.1: BouzidiBounceBackWithNormalX class
49 c l a s s BouzidiBounceBackWithNormalX ( pylbm . bc . BouzidiBounceBack ) :
50 de f update_feq ( s e l f , s imu la t i on ) :
51 super ( BouzidiBounceBackWithNormalX ,
52 s e l f ) . update_feq ( s imu la t i on )
53 s e l f . update_flux ( s imu la t i on )
54

55 de f update_flux ( s e l f , s imu la t i on ) :
56 gamma = 1.4
57

58 m = simula t i on . m_halo
59

60 k = s e l f . i s t o r e [ : , 0 ]
61 v = s e l f . s t e n c i l . g e t _ a l l _ v e l o c i t i e s ( )
62

63 s e l f . f l u x _ i n d i c e s = s e l f . i s t o r e [ : , 1 : ] + v [ k ]
64

65 RHO = m[ rho ] [ s e l f . f l u x _ i n d i c e s [ : , 0 ] , s e l f . f l u x _ i n d i c e s [ : , 1 ] ]
66 QX = m[ qx ] [ s e l f . f l u x _ i n d i c e s [ : , 0 ] , s e l f . f l u x _ i n d i c e s [ : , 1 ] ]
67 QY = m[ qy ] [ s e l f . f l u x _ i n d i c e s [ : , 0 ] , s e l f . f l u x _ i n d i c e s [ : , 1 ] ]
68 E_ = m[E ] [ s e l f . f l u x _ i n d i c e s [ : , 0 ] , s e l f . f l u x _ i n d i c e s [ : , 1 ] ]
69

70
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71 ux = QX/RHO
72 uy = QY/RHO
73

74 p = (gamma − 1) ∗ (E_ − . 5 ∗ (QX∗∗2 + QY∗∗2) /RHO)
75

76 p_star = p + np . sq r t (gamma ∗ p ∗ RHO) ∗ ( ux∗ s e l f . normal [ : , 0 ]
77 + uy∗ s e l f . normal [ : , 1 ] )
78

79 phi_n = p_star∗ s e l f . normal [ : , 0 ]
80

81 mask = s e l f . d i s t ance < . 5
82

83 not_mask = np . l og i ca l_not (mask )
84

85 s e l f . f l u x = np . z e r o s_ l i k e ( phi_n )
86

87 s e l f . f l u x [ mask ] = phi_n [ mask ] / lambda
88 s e l f . f l u x [ not_mask]= phi_n [ not_mask ]
89 / (2 ∗ s e l f . d i s t anc e [ not_mask ] ∗ lambda )
90

91 de f _get_args ( s e l f , f f ) :
92 dim = len ( f f . nspace )
93

94 nx = f f . nspace [ 0 ]
95

96 i f dim > 1 :
97 ny = f f . nspace [ 1 ]
98

99 i f dim > 2 :
100 nz = f f . nspace [ 2 ]
101

102 f = f f . array
103 fcopy = f f . array . copy ( )
104

105 f o r i in range ( l en ( s e l f . i l o a d ) ) :
106 exec ( ’ i l o a d { i } = s e l f . i l o a d [ { i } ] ’ . format ( i=i ) )
107

108 i s t o r e = s e l f . i s t o r e
109 rhs = s e l f . rhs
110 f l u x = s e l f . f l u x
111

112 i f ha sa t t r ( s e l f , ’ s ’ ) :
113 d i s t = s e l f . s
114

115 ncond = i s t o r e . shape [ 0 ]
116 re turn l o c a l s ( )
117

118

119
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120

121 de f generate ( s e l f , s o rde r ) :
122 from pylbm . generator import For
123 from pylbm . symbol ic import nx , ny , nz , indexed , i x
124

125 ns = i n t ( s e l f . s t e n c i l . nv_ptr [ −1])
126

127 dim = s e l f . s t e n c i l . dim
128

129 i s t o r e , i l oad , ncond = s e l f . _get_istore_iload_symb (dim)
130 rhs , d i s t , _ = s e l f . _get_rhs_dist_symb ( ncond )
131 f l u x = IndexedBase ( ’ f l u x ’ , [ ncond ] )
132

133 idx = Idx ( ix , (0 , ncond ) )
134

135 f s t o r e = indexed ( ’ f ’ , [ ns , nx , ny , nz ] , index =[ i s t o r e [ idx , k ]
136 f o r k in range (dim + 1) ] , p r i o r i t y=sorde r )
137

138 f l o ad0 = indexed ( ’ fcopy ’ , [ ns , nx , ny , nz ] , index =[ i l o a d [ 0 ] [ idx , k ]
139 f o r k in range (dim + 1) ] , p r i o r i t y=sorde r )
140

141 f l o ad1 = indexed ( ’ fcopy ’ , [ ns , nx , ny , nz ] , index =[ i l o a d [ 1 ] [ idx , k ]
142 f o r k in range (dim + 1) ] , p r i o r i t y=sorde r )
143

144 s e l f . g enerato r . add_routine ( ( ’ Bouzidi_bounce_back_normalX ’ ,
145 For ( idx , Eq( f s t o r e , d i s t [ idx ] ∗ f l o ad0 + (1 − d i s t [ idx ] )
146 ∗ f l o ad1 + rhs [ idx ] − f l u x [ idx ] ) ) ) )
147

148

149 @property
150 de f func t i on ( s e l f ) :
151 re turn s e l f . g ene rator . module . Bouzidi_bounce_back_normalX
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Listing B.2: BouzidiBounceBackWithNormalY class
152 c l a s s BouzidiBounceBackWithNormalY ( BouzidiBounceBackWithNormalX ) :
153 de f update_flux ( s e l f , s imu la t i on ) :
154 gamma = 1.4
155

156 m = simula t i on . m_halo
157

158 k = s e l f . i s t o r e [ : , 0 ]
159 v = s e l f . s t e n c i l . g e t _ a l l _ v e l o c i t i e s ( )
160

161 s e l f . f l u x _ i n d i c e s = s e l f . i s t o r e [ : , 1 : ] + v [ k ]
162

163 RHO = m[ rho ] [ s e l f . f l u x _ i n d i c e s [ : , 0 ] , s e l f . f l u x _ i n d i c e s [ : , 1 ] ]
164

165 QX = m[ qx ] [ s e l f . f l u x _ i n d i c e s [ : , 0 ] , s e l f . f l u x _ i n d i c e s [ : , 1 ] ]
166

167 QY = m[ qy ] [ s e l f . f l u x _ i n d i c e s [ : , 0 ] , s e l f . f l u x _ i n d i c e s [ : , 1 ] ]
168

169 E_ = m[E ] [ s e l f . f l u x _ i n d i c e s [ : , 0 ] , s e l f . f l u x _ i n d i c e s [ : , 1 ] ]
170

171 ux = QX/RHO
172 uy = QY/RHO
173

174 p = (gamma − 1) ∗ (E_ − . 5 ∗ (QX∗∗2 + QY∗∗2) /RHO)
175

176

177 p_star = p + np . sq r t (gamma ∗ p ∗ RHO) ∗ ( ux∗ s e l f . normal [ : , 0 ]
178 + uy∗ s e l f . normal [ : , 1 ] )
179

180 phi_n = p_star∗ s e l f . normal [ : , 1 ]
181

182 mask = s e l f . d i s t ance < . 5
183 not_mask = np . l og i ca l_not (mask )
184

185 s e l f . f l u x = np . z e r o s_ l i k e ( phi_n )
186

187 s e l f . f l u x [ mask ] = phi_n [ mask ] / lambda
188

189 s e l f . f l u x [ not_mask]= phi_n [ not_mask ]
190 /(2 ∗ s e l f . d i s t anc e [ not_mask ] ∗ lambda )
191

192

193

194

195

196

197

198

199
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200 de f generate ( s e l f , s o rde r ) :
201 from pylbm . generator import For
202 from pylbm . symbol ic import nx , ny , nz , indexed , i x
203

204 ns = i n t ( s e l f . s t e n c i l . nv_ptr [ −1])
205 dim = s e l f . s t e n c i l . dim
206

207 i s t o r e , i l oad , ncond = s e l f . _get_istore_iload_symb (dim)
208 rhs , d i s t , _ = s e l f . _get_rhs_dist_symb ( ncond )
209 f l u x = IndexedBase ( ’ f l u x ’ , [ ncond ] )
210

211

212 idx = Idx ( ix , (0 , ncond ) )
213 f s t o r e = indexed ( ’ f ’ , [ ns , nx , ny , nz ] , index =[ i s t o r e [ idx , k ]
214 f o r k in range (dim + 1) ] , p r i o r i t y=sorde r )
215 f l o ad0 = indexed ( ’ fcopy ’ , [ ns , nx , ny , nz ] , index =[ i l o a d [ 0 ] [ idx , k ]
216 f o r k in range (dim + 1) ] , p r i o r i t y=sorde r )
217 f l o ad1 = indexed ( ’ fcopy ’ , [ ns , nx , ny , nz ] , index =[ i l o a d [ 1 ] [ idx , k ]
218 f o r k in range (dim + 1) ] , p r i o r i t y=sorde r )
219

220

221 s e l f . g enerato r . add_routine ( ( ’ Bouzidi_bounce_back_normalY ’ ,
222 For ( idx , Eq( f s t o r e , d i s t [ idx ] ∗ f l o ad0 + (1 − d i s t [ idx ] )
223 ∗ f l o ad1 + rhs [ idx ] − f l u x [ idx ] ) ) ) )
224

225 @property
226 de f func t i on ( s e l f ) :
227 re turn s e l f . g ene rator . module . Bouzidi_bounce_back_normalY
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Appendix C

Wedge Results

This appendix provides pictures and tables of the results obtained.

C.1 US3D Results
This section provides pictures and tables of the results obtained with US3D.

Figure C.1: CFD pressure field for the Mach 2.5 supersonic wedge on the 201x201
grid
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Wedge Results

Figure C.2: CFD density field for the Mach 2.5 supersonic wedge on the 201x201
grid

Figure C.3: Velocity |V | values for x
= 0.5 m - US3D

Figure C.4: Energy E values for x =
0.5 m - US3D
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Wedge Results

Figure C.5: Velocity ux values for x
= 0.5 m - US3D

Figure C.6: Velocity uy values for x
= 0.5 m - US3D

Figure C.7: Momentum Qx values for
x = 0.5 m - US3D

Figure C.8: Momentum Qy values for
x = 0.5 m - US3D

Figure C.9: Speed of Sound c values
for x = 0.5 m - US3D

Figure C.10: Temperature T values
for x = 0.5 m - US3D
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Appendix D

Second-order Equivalent
Equations

The corresponding equations up to the second order, obtained using the expansion
of Dubois [79] [80] are shown in this appendix. The equivalent PDE equation is as
follows:

d

dx
Fx+ d

dy
Fy + d

dt
U = ∂

∂x
Bxx

d

dx
U+ ∂

∂x
Bxy

d

dy
U+ ∂

∂y
Byx

d

dx
U+ ∂

∂y
Byy

d

dy
U (D.1)

For each of the 4 conserved moments (ρ, qx,qy, and E) there will be for the first
order the following relations to calculate the coefficients of D.1:

F ρ
x = qx

F qx
x =

2Eγρ− 2Eρ− γq2
x − γq2

y + 3q2
x + q2

y

2ρ
F qy

x = qxqy

ρ

FE
x =

qx

1
2Eγρ− γq2

x − γq2
y + q2

x + q2
y

2
2ρ2

F ρ
y = qy

F qx
y = qxqy

ρ

F qy
y =

2Eγρ− 2Eρ− γq2
x − γq2

y + q2
x + 3q2

y

2ρ

FE
y =

qy

1
2Eγρ− γq2

x − γq2
y + q2

x + q2
y

2
2ρ2

(D.2)
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Second-order Equivalent Equations

As for the second order, the following equations are obtained:

Bρ,ρ
xx = −∆t

A
γq2

xσρ

2ρ2 +
γq2

yσρ

2ρ2 − λ2σρ

2 − q2
xσρ

ρ2 −
q2

yσρ

ρ2

B

Bρ,qx
zx = −∆t

A
−γqxσρ

ρ
+ 2qxσρ

ρ

B

Bρ,ωµ
xx = −∆t

A
−γqyσρ

ρ
+ 2qyσρ

ρ

B
Bρ,E

xx = −∆t (γσρ − σρ)

Bqx,q2
xz = −∆t

A
−3γqxqyσu

ρ2 + 3qxqyσu

ρ2

B

Bqz ,B
xx = −∆t

A
3γqzσu

ρ
− 3qzσu

ρ

B

Bh1,ρ
xx = −∆t

A
γq2

xqyσu

2ρ3 +
γq3

yσu

2ρ3 − 5q2
zqyσu

2ρ3 −
q3

yσu

2ρ3

B

Bqy ,qx
zz = −∆t

A
−γqxqyσu

ρ2 + 3qxqyσu

ρ2

B

Bβ1,ωu
xx = −∆t

A
−
γq2

yσu

ρ2 − λ2σu

2 + q2
xσu

ρ2 +
q2

yσu

ρ2

B

Bq2
x

xxE = −∆t

A
γqyσu

ρ
− qyσu

ρ

B

BE,qx
xx = −∆t

A
2Eγqxσp

ρ2 − 7γq3
zσp

2ρ3 −
3γqzq

2
yσp

2ρ3 + 7q3
xσp

2ρ3 +
3qxq

2
yσp

2ρ3

B

Bρ,ρ
xy = ∆tqxqyσρ

ρ2

Bρ,qx
xy = −∆tqyσρ

ρ

Bρ,ωy
xy = −∆tqxσρ

ρ

Bp,E
xy = 0

Bqxy ,ρ
xy = −∆t

A
−Eγ2qyσu

ρ2 + Eγqyσu

ρ2 + γ2q2
zqyσu

2ρ3 +
γ2q3

yσu

2ρ3 − 5q2
xqyσu

2ρ3 −
q3

yσu

2ρ3

B

Bqz ,qz
xy = −∆t

A
−γqxqyσu

ρ2 + 3qxqyσu

ρ2

B

Bqz ,E
xy = −∆t

A
γqyσu

ρ
− qyσu

ρ

B
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Btn,ρ
xy = −∆t

A
γq3

xσu

2ρ3 +
γqzq

2
yσu

2ρ3 − q3
xσu

2ρ3 −
5qxq

2
yσu

2ρ3

B

Bqyy ,qx
xy = −∆t

A
−γq2

xσu

ρ2 + q2
xσu

ρ2 +
q2

yσu

ρ2

B

B
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A
−γqxqyσu

ρ2 + 3qxqyσu

ρ2

B

Bqx,E
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A
γqxσu

ρ
− qxσu

ρ

B

BE,qz
xy = −∆t

A
Eγqyσp

ρ2 − 5γq2
zqyσp

2ρ3 −
γq3

yσp

2ρ3 + 5q2
xqyσp

2ρ3 +
q3

yσp

2ρ3

B

BE,,y
xy = −∆t

A
Eγ2qxσp

ρ2 − γ2q3
zσp

2ρ3 −
γ2qxq

2
yσp

2ρ3 −
2γqzq

2
yσp

ρ3 + q3
xσp

2ρ3 +
5qxq

2
yσp

2ρ3

B
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xy = −∆t

A
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ρ2

B
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yz = ∆tqxqyσρ

ρ2
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ρ
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yα = −∆tqzσρ

ρ
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A
γq2

1qyσu
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γq3

yσu

2ρ3 − 5q2
zqyσu
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q3

yσu

2ρ3

B
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A
−γqxqyσu

ρ2 + 3qxqyσu

ρ2

B
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A
−
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yσu

ρ2 + q2
zσu
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q2

yσu

ρ2

B
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A
γqyσu

ρ
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ρ

B

Bq2,ρ
yz = −∆t

A
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ρ
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B
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BE,qz
yx = −∆t

A
Eγ2qyσp

ρ2 − γ2q2
zqyσp

2ρ3 −
γ2q3

yσp

2ρ3 − 2γq2
zqyσp

ρ3 + 5q2
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2
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2
yσp
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B
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A
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ρ2

B
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ρ2

B
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A
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ρ
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ρ

B
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A
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ρ
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ρ

B
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Bqx,ρ
xz = −∆t
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− Eγ2qxσu
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2ρ3 +
γ2qxq

2
yσu

2ρ3 + γq3
zσu

ρ3

+
γqxq

2
yσu

ρ3 − 7q3
xσu

2ρ3 −
3qxq

2
yσu

2ρ3

B

Bquqx
xx = −∆t

A
(Eγ

2σu

ρ
− Eγσu

ρ
− γ2q2

xσu

2ρ2 −
γ2q2

yσu

2ρ2 − 5γq2
xσu

2ρ2

+
γq2

yσu

2ρ2 − λ2σu

2 + 6q2
zσu

ρ2

B

BEs,ρ
xx = −∆t

A
− Eγ2q2

xσp

2ρ3 +
Eγ2q2

yσp

2ρ3 − 3Eγq2
xσp

2ρ3 −
Eγq2

yσp

2ρ3 + γ2q4
xσp

4ρ4 −
γ2q4

yσp

4ρ4

+ 2γq4
xσp

ρ4 +
5γq2

xq
2
yσp

2ρ4 +
γq4

yσp

2ρ4 − 9q4
xσp

4ρ4 −
5q2

xq
2
yσp

2ρ4 −
q4

yσp

4ρ4

B

BE,qp
xx = −∆t

A
− Eγ2qyσp

ρ2 + Eγqyσp

ρ2 + γ2q2
xqyσp

2ρ3 +
γ2q3

yσp

2ρ3 − 3γq2
xqyσp

ρ3

−
γq3

yσp

ρ3 + 5q2
xqyσp

2ρ3 +
q3

yσp

2ρ3

B

BE,E
xx = −∆t

A
Eγ2σp

ρ
− Eγσp

ρ
− γ2q2

zσp

2ρ2 −
γ2q2

yσp

2ρ2 + 3γq2
xσp

ρ2 +
γq2

yσp

ρ2 − λ2σp

2

− 3q2
xσp

2ρ2 −
q2

yσp

2ρ2

B

Bqz ,σv
xy = −∆t

A
Eγ2σu

ρ
− Eγσu

ρ
− γ2q2

xσu

2ρ2 −
γ2q2

yσu

2ρ2 + γq2
xσu

2ρ2

−
γq2

yσu

2ρ2 + q2
zσu

ρ2 +
q2

yσu

ρ2

B

168



Second-order Equivalent Equations

BE,ρ
xy = −∆t
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Second-order Equivalent Equations

BE,qx
yy = −∆t

A
− Eγ2qxσp

ρ2 + Eγqxσp

ρ2 + γ2q3
xσp

2ρ3 +
γ2qxq

2
yσp

2ρ3 − γq3
xσp

ρ3 −
3γqxq

2
yσp

ρ3

+ q3
zσp

2ρ3 +
5qzq

2
yσp

2ρ3

B

BE,E
yy = −∆t

A
Eγ2σp

ρ
− Eγσp

ρ
− γ2q2

xσp

2ρ2 −
γ2q2

yσp

2ρ2 + γq2
xσp

ρ2 +
3γq2

yσp

ρ2

− λ2σp

2 − q2
xσp

2ρ2 −
3q2

yσp

2ρ2

B

170



Appendix E

Supersonic cylindrical-nosed
body results

This appendix provides pictures of the results obtained for the test case of the
cylindrical-nosed body.

E.1 Bouzidi solution

The figures below show the fields of several fluid dynamics variables, obtained with
LBM, by imposing Bouzidi’s boundary conditions on the wall.

Figure E.1: Density Field - LBM
Bouzidi Solution

Figure E.2: Pressure Field - LBM
Bouzidi Solution
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Supersonic cylindrical-nosed body results

Figure E.3: Momentum-x Field - LBM
Bouzidi Solution

Figure E.4: Momentum-y Field - LBM
Bouzidi Solution

Figure E.5: |V| Field - LBM Bouzidi
Solution

Figure E.6: Speed of Sound Field -
LBM Bouzidi Solution

E.2 Bouzidi Bounce-Back with Normal solution
The figures below show the fields of several fluid dynamics variables, obtained with
LBM, by imposing Bouzidi Bounce-Back with Normal boundary conditions on the
wall.
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Supersonic cylindrical-nosed body results

Figure E.7: Density Field - LBM
Bouzidi Bounce Back with Normal So-
lution

Figure E.8: Pressure Field - LBM
Bouzidi Bounce Back with Normal So-
lution

Figure E.9: Momentum-x Field - LBM
Bouzidi Bounce Back with Normal So-
lution

Figure E.10: Momentum-y Field -
LBM Bouzidi Bounce Back with Nor-
mal Solution

Figure E.11: |V| Field - LBM Bouzidi
Bounce Back with Normal Solution

Figure E.12: Speed of Sound Field -
LBM Bouzidi Bounce Back with Normal
Solution173
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