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Abstract 

Nowadays, the measure of the gait and the lower limb joint kinematics is essential 
in clinical practice. The marker-based optoelectronic stereophotogrammetry gait 
analysis represents the gold standard to evaluate human motion since the measure of 
markers position is highly accurate. Despite its accuracy, the marker-based system 
has several limitations, such as the proper marker placement on the skin of the 
patient which implies considerable preparing time, the necessity of a prepared 
personal and the cost of dedicated spaces. 
The video-based markerless system presents a promising and cost-effective 
alternative to the marker-based system, offering the advantage of speeding up the 
acquisitions by removing the need of markers placement on the subject's body. In 
the recent years, several companies have developed affordable RGB camera 
integrated with infrared depth sensor (RGB-Depth). The accessibility and 
affordability of those systems have made systems opened to wider range of 
applications, leading advancements in various fields that require movement 
analysis. These alternatives, based on a single RGB-Depth camera (e.g. Azure 
Kinect body tracking SDK, OpenPose), model the foot as a single segment without 
articulating the metatarso-phalangeal joint kinematics, which is crucial to guarantee 
an affective load of the foot and correct progression (Allan J. et al., 2020). Van den 
Herrewegen I et al., 2014, proposes a 3D multi-segmental foot model through a 
D3DScan4D (5 scanner units), which relies on surface shape to identify foot 
anatomy. However, the high cost associated with this approach limits its clinical 
applicability. 
This thesis aimed to design a markerless method based on a single RGB-Depth 
camera to estimate sagittal ankle and metatarso-phalangeal kinematics using a two-
segment 3D foot model and explore its clinical applicability on children with foot 
deformities. This approach suggests an extension of a 2D Markerless protocol 
proposed by Balta et al 2020 by including a 3D two segments foot model composed 
by two segments (Mid-Rear-foot and Forefoot segments). 

The gait data of ten subject affected by Clubfoot (a congenital condition that affects 
the development of foot and ankle) were collected in the Gait Analysis Laboratory 
of Skaraborgs Hospital in Skövde, mean age 13 (7-17), 5 females and 5 males. The 
subjects were asked to walk at self-selected speed for six trials (three for left and 
three for right) in front of an RGB-Depth camera (Azure Kinect, fs = 30 fps) placed 
2.5 m laterally to the walkway  Two static lateral views (right and left side) of the 
subject were captured along with four static views of the foot (Frontal, Lateral, 
Medial and Posterior) placing the camera on the floor at a 0.6 m distance. External 
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anatomical landmarks (LE: lateral epicondyle, LM: lateral malleolus; MTP5: 5th 
metatarsophalangeal joint and TOE: the most distal point on the foot surface) were 
identified by palpation and marked with small labels. 
 
This thesis work proposes to develop two parts. The first aims to develop an 
algorithm to create a 2-segment 3D foot model by merging the four static views by 
aligning three common points on the foot sole of each view (ZF: the most anterior 
point of Frontal view, XL: the most lateral point of Lateral view and ZP: the most 
distal point of the Posterior point). Then the foot template was calibrated by 
manually selecting on the image the three external anatomical landmarks LM, 
MTP5 and TOE. Subsequently, based on the position of MTP5, the model was 
divided into two 3D segments: Mid-Rear Foot and Forefoot. 
The second part aims to develop an algorithm able to estimate the joint kinematics 
during a gait cycle. The method proposed by Balta et al., 2020 was employed to 
identify the most central gait cycle based on the foot positions. Then a depth 
completion technique, based on a low pass filter, was implemented to reconstruct, 
during the gait trials, missing depth information by exploiting RGB information. 
The positions of LM and MTP5 were reconstructed by matching the 3D foot 
template to the dynamic point clouds applying ICP algorithm (Besl et al., 1992), the 
TOE was identified as the most distal foot point. LE position was extracted 
implementing the 2D method proposed by Balta et al., 2020, in order to obtain the 
sagittal ankle angle. 
 
The acquisitions of the markerless system were not performed synchronously to the 
marker-based system due to Infrared interferences from the MB system in the depth 
images acquired from the Azure Kinect caused by similar wavelengths (850 nm). 
Kinematic curves were validated against manually labelled anatomical landmarks 
on the RGB images. The accuracy of the proposed MS method was assessed in 
terms of offset between the two curves and waveform similarity by estimating the 
root mean square errors (RMSE) after removing their mean values. 

The acquisition protocol aims to achieve a good balance between the accuracy of 
the modelling and the comfort of the patient, minimizing the possible discomfort, 
which the subject may feel in upright static position. 
Despite the limited number of views, the proposed method showed acceptable 
performance in terms of model reconstruction (error on foot length (%): 5.2 (R), 5.7 
(L)). Errors are mostly associated with the technological limitations of the RGB-D 
device (RMSE (deg): MTP: 4.8 (R), 5.3 (L); ankle: 3.5 (R), 3.9 (L) and offset (deg): 
MTP: 3.5 (R), 6.5 (L); ankle: 3.1 (R), 2.9 (L)). Results highlight the influence of 
depth completion on joint center estimation and the challenges it presents in high 



iii 
 

speed due to motion blurs and inaccurate reconstruction by the device. The presence 
of missing points in foot reconstruction affects accuracy, especially in the Forefoot 
(Forefoot to Mid-Rear-Foot points ratio = 0.26), impacting joint position estimation. 
The non-rigid nature of the human foot and soft tissue artifacts pose limitations to 
the rigid assumption of the ICP algorithm and a pre-alignment improves its 
efficiency and accuracy. Future studies will be focused on applying more accurate 
depth completion techniques (e.g. inpainting-based or deep learning based models) 
to improve the reconstruction of missing depth values. In conclusion, considering 
the rapid technological advancement in depth sensing, the proposed approach seems 
to be a very promising solution for evaluating gait of subjects with foot deformities. 

A summary of the work achieved in this thesis project named: “A preliminary 
validation of a 3D markerless method for estimating the kinematics of a two-
segment foot model using a single RGB-D camera” has been submitted for the 
annual conference of the Italian Society of clinical Movement Analysis (SIAMOC) 
that will be held in Roma in October 2023. 
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1 Clinical relevance and aim of work 

Walking is the most common activity in daily life and plays a crucial role in a 
person's overall health. The evaluation of gait, using instrumented measurements 
and the estimation of gait parameters, holds significant importance in clinical 
practice, biomechanical research, and sports-related applications. 
Gait analysis is a valuable tool for analysing lower limb functionality and 
evaluating the effectiveness of clinical therapies and training sessions. It is 
particularly beneficial in assessing individuals with gait alterations such as cerebral 
palsy [1], Clubfoot, musculoskeletal disorders or neurological conditions. 
Additionally, patients who have undergone lower limb orthopedic surgery or have 
experienced related injuries that affect their normal locomotion can benefit from 
gait analysis. By examining gait parameters and identifying any deviations or 
abnormalities, clinicians can tailor treatment plans, rehabilitation programs, and 
interventions to improve overall mobility and functional outcomes. 
 
Clubfoot is a congenital condition that affects the development of foot and ankle, 
with a worldwide incidence of 1 on 1000 live births. It is more frequent on males 
than on females and it occurs unilateral in 50% of the cases and the right side is 
more often affected [2]. Also called talipes equinovarus, this pathology is 
recognizable at birth:  its rigidness makes it distinguishable from other positional 
foot anomalies. This pathology is not passively correctable and if it is left untreated, 
it could provoke infections, foot and leg deformities, pain, and limits mobility [3]. 
There are two different types of clubfoot: 

- Congenital (CTEV) 
- Idiopathic (ITEV) 

The first one occurs at birth and it is normally caused by many environmental or 
genetic factors. Usually, this type of clubfoot is associated with other anomalies 
(chromosomal abnormalities or neural tube defects) and can be classed as isolated 
or syndromic. If the patient is affected by isolated clubfoot (the most common case), 
that means that it is the only anomality he suffers from. On the other hand, if the 
patient suffers from syndromic clubfoot, that means that he has other congenital 
abnormalities. 
The second case, idiopathic talipes equinovarus, is a type of clubfoot that appears 
without any known cause and it occurs sporadically [4]. 
The diagnosis of clubfoot is detected with ultrasonography after the 16th week of 
gestation and like hip dysplasia and idiopathic scoliosis, clubfoot is a developmental 
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deformation. The ligaments located at the posterior and medial aspects of the ankle 
and tarsal joints are significantly thick and tight. As a result, they restrict the foot 
from achieving proper dorsiflexion (equinus position) and cause the adduction and 
inversion of the navicular and calcaneus bones. 

 

 

Figure 1.1: Representation of normal foot (left) and foot affected by clubfoot [5]. 
 

The treatment for CTEV and ITEV is similar and can involve a non-surgical method 
such as Ponseti technique or surgical methods, depending on the severity of the 
condition. Following this technique, the foot is gradually rotated, around the head of 
talus, followed by cast application during the entire childhood with the first 
treatment in the first five weeks after birth. 

 

Figure 1.2: Ponseti correction treatment [6]. 
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After the treatment, in the case of unilateral clubfoot, the treated foot is slightly 
shorter (mean 1.3 cm) and narrower (mean 0.4 cm) than the healthy foot. Also the 
limbs are different in terms of the circumference of the leg, that results smaller 
(mean 2.3 cm) than the normal one [6]. 

The common gait features of patient affected by clubfoot are: 

 
- Toe walking: also known as equinus gait, it refers to a way of walking 

predominantly on the toes of affected foot with minimal or no contact 
between heel and ground. 

- Foot inversion: the foot may turn inward or tilting during the swing phase. 
The sole faces inwards, towards the midline of the body producing an 
abnormal foot placement and reducing the stability. 

- Limping: the subject affected by significant clubfoot deformity may show an 
important limp, due to a restricted range of motion and an altered position. 

- Shortened Stride Length: the stride length may be reduced because of the 
mobility and the reduced flexibility of the affected foot. 
 

 

Figure 1.3: Representation of Toe walking [7] and illustration of foot inversion  [8]. 

 

To date, marker-based (MB) systems are considered the gold standard for 
evaluating lower limb joint kinematics due to their high accuracy [9]. These systems 
utilize multiple cameras and advanced image processing techniques to track and 
determine the instantaneous 3D position of markers placed on specific anatomical 
landmarks of interest. By tracking the movement of these markers throughout the 
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gait cycle, MB systems can provide detailed information about joint angles, ranges 
of motion, and overall lower limb biomechanics. Despite its accuracy, the marker-
based system has several limitations, such as the proper marker placement on the 
skin of the patient which implies considerable preparing time, the necessity of a 
prepared personal and the cost of dedicated spaces.  

The Video-based markerless system presents a promising and cost-effective 
alternative to the marker-based system, offering the advantage of speeding up the 
acquisitions by removing the need of markers placement on the subject's body [10].  
In recent years, the development of affordable RGB cameras integrated with 
infrared depth sensors (RGB-Depth) has opened up new possibilities for movement 
analysis in various fields. These systems, such as the Azure Kinect body tracking 
SDK and OpenPose, offer accessibility and affordability, allowing for wider 
applications. However, these alternatives typically model the foot as a single 
segment without articulating the metatarso-phalangeal joint kinematics, which is 
essential for proper foot load and progression [11]. Another approach proposed by 
Van den Herrewegen I et al., 2014 [12] involves a 3D multi-segmental foot model 
using D3DScan4D (5 scanner units), which relies on surface shape to identify foot 
anatomy. However, the high cost associated with this method limits its clinical 
applicability.  

Following the idea of 3D multi-segmental foot of Van den Herrewegen I et al., 
2014, the aim of the thesis project is to design a Markerless method based on a 
single RGB-Depth camera to estimate sagittal ankle and metatarso-phalangeal 
kinematics using a two-segment 3D foot model and explore its clinical applicability 
on children with foot deformities. The method proposes to expand the 2D subject-
specific foot model developed by Balta et al., 2020 [13] to 3D subject-specific foot 
model composed by two segments: Mid-Rear-foot with ankle joint and Forefoot 
with fifth metatarso-phalangeal joint.  

The first two section of this thesis provide a comprehensive introduction to gait 
analysis, with a specific focus on lower limb joint kinematics and optical methods 
used for assessing gait. Furthermore, a thorough literature review is conducted to 
explore the markerless approach in gait analysis, with a particular focus on the 
RGB-Depth sensor technology. 

The second section provides to explain the methodology of the proposed thesis 
project, which is structured in four parts:  
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1) The first one aims to explain the algorithm proposed by Balta et al., 2020 
[13] to identify the most central gait captured by the Azure Kinect based on 
the foot trajectories. 

2) The second aims firstly to develop an algorithm to create a 2-segement 3D 
foot model by merging the four static views by aligning three common points 
on the foot sole of each view, and then the multi-segmental model proposed 
by Balta et al., 2020 in order create the 2D shank template was employed. 
Through a manual selection of the external landmarks on the image, the 
templates were calibrated.   

3) The third part aims to develop an algorithm able to estimate the joint 
kinematics during a gait cycle. Through a depth completion technique, was 
implemented to reconstruct, during the gait trials, missing depth information 
by exploiting RGB information. The positions of the ankle and fifth 
metatarso-phalangeal joint were reconstructed by matching the 3D foot 
template to the dynamic point clouds applying ICP algorithm [14] while the 
position of knee joint centre was extracted implementing the 2D method 
proposed by Balta et al., 2020. 

4) The last part is centred on the computation on the sagittal kinematics. 

In the subsequent section the acquisition protocol and the main hardware 
component of this work which is the Microsoft Azure Kinect are described. The gait 
data of ten subject affected by Clubfoot were collected in the Gait Analysis 
Laboratory of Skaraborgs Hospital in Skövde, where asked to them to walk at self-
selected speed in front of an RGB-Depth camera placed 2.5 m laterally to the 
walkway. The acquisitions of the markerless system were not performed 
synchronously to the marker-based system due to Infrared interferences from the 
MB system in the depth images acquired from the Azure Kinect caused by similar 
wavelengths (850 nm). For this reason, the kinematic curves of sagittal angles were 
validated against manually labelled anatomical landmarks on the RGB images and 
root mean square errors (RMSE) were estimated. 

In the last section of work, the results are commented, taking into account the 
strengths and weaknesses. The limitations of the method are analysed, and 
suggestions for future development in ML-based gait analysis are proposed, aiming 
to enhance the estimation of sagittal foot kinematics. 
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2 Fundamentals of gait analysis 

2.1 Gait cycle 

Gait cycle can be defined as the time interval between two successive occurrences 
of one of the repetitive events of walking [15]. The cycle can be divided in two big 
phases: stance and swing. During the first one, the foot is on contact with the 
ground, while during the second it is moving forward. 

 

 

Figure 2.1:  Gait Cycle phases. [16] 

 

The two phases also can be divided in eight periods (Figure 2.1): the first five are in 
the stance phase (double and single support), while the last three are in the swing 
phase. 
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2.1.1 Stance 

• Initial contact 
The ground contact is made by the heel (heel strike): the ankle is dorsiflexed, the 
knee is extended, and the hip is flexed. Body weight is moved into the foot. 
 

• Loading response 
It is represented by the first 10 % of the gait cycle. The ankle plantar flexion 
limits the heel rocker by forefoot contact  [15] and thanks to the flexion of knee 
the shock is absorbed. In this phase both feet are on contact with the ground and 
it ends when the opposite limb starts the swing period. 
 

• Mid stance 
The period occupies between 10% and 30% of the entire cycle. Here the foot is 
fully planted on the ground and the body weight is directly on the foot since it is 
in the first half phase of single support interval. Ankle is dorsiflexed while knee 
and hip are extended. 
 

• Terminal stance 
The body begins to move forward and the heel starts to rise (heel off). This 
phase lasts up to 50% of cycle and it completes the single support interval 
ending with the heel strike of the other foot. Ankle begins to be in plantar-flex, 
knee is slightly flexed and the extension of the hip puts the limb in a trailing 
position. 
 

• Pre-swing 
It is the last period of the stance phase, and it begins with the heel strike by the 
other foot. Characterized by an increasing knee and ankle flexion, this subphase 
is also known as weight release where the limb is promptly unloaded by the 
sudden transfer of body weight. It ends when the foot leaves the ground (Toe 
off). 
 
 
 
 
 

2.1.2 Swing  

• Initial swing 
Limb is advanced by hip and knee flexion, while the ankle is in part dorsiflexed 
and it takes place from 60% to 75% of the entire cycle. The other limb is starting 
the mid stance and when it reaches the flat foot, this phase ends. 
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• Mid swing 
The flexion of the hip allows the limb to advance and the knee to extend in 
response to the gravity, while the ankle ends to dorsiflex. Opposite to the stance 
limb, this period ends when the opposite tibia is vertical and the swinging limb 
is forward. 
 

• Terminal swing 
It is the last period of cycle (87%-100%) and the limb advancement is completed 
with a deceleration and stabilization by the muscles to prepare a new heel strike. 
Hip is in early flexion, ankle is in position of dorsiflexion and knee is extended. 

 

2.2 Joint kinematics 

Joint kinematics is the study of relative motion between two consecutive segments 
of the human body [17]. It involves analysing the various components of joint 
motion, including direction, range, and quality of movement. In the gait analysis it 
permits to value how joints work during different activities, so it can be useful to 
understand normal joint mechanics as well identifying abnormalities or 
dysfunctions. 

Kinematics considers three anatomical planes to describe the joint range of motion: 
sagittal frontal and transverse planes (Figure 2.2) and reporting the joints motion, it 
is recommended by Standardization and Terminology Committee (STC) of the 
International Society of Biomechanics (ISB) to adopt the Joint Coordinates System 
(JCS) provided by Grood and Suntay in 1983 for the knee [18] and for the ankle and  
the hip  joints [19], [20]. For the metatarso-phalangeal joint is introduced a new 
joint coordinate system. 
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Figure 2.2: Anatomical planes [17]. 

 

The foot and the ankle constitute a complex and intricate system composed of 28 
bones, 33 joints, and 112 ligaments. This system is regulated by 13 extrinsic 
muscles and 21 intrinsic muscles.  
The foot is divided into three main regions: rearfoot, midfoot, and forefoot. Each of 
these subdivisions performs various functions such as providing balance, supporting 
body weight, shock absorption and transferring ground reaction forces. In 
particular: 
 
• Hindfoot is the most posterior part of the foot and it comprises talus and 

calcaneus (two of seven tarsal bones) combined by subtalar joint. 
• Midfoot consists of five tarsal bones and the joint linked with the Hindfoot, is 

called Chopart’s joint. 
• Forefooot is the most anterior part of the foot and it includes metatarsal and 

phalangeal bones and it is linked with Midfoot thanks of the mid-metatarsal 
joints also known as Lisfranc joint [21]. 
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2.2.1 Ankle Joint 

The ankle joint complex consists of two main joints: the talocrural joint and the 
subtalar joint. The first one is formed between the talus and the tibia/fibula, while 
the second links the talus with calcaneus. According to Grood and Suntay [18] , the 
Joint Coordinate System (JCS) is defined starting from two coordinate systems 
(CCS) consists of two body-fixed axes, e1 and e3, and one "floating" axis, e2, which 
is mutually perpendicular to them. 

• e1  is fixed to the tibia/fibula, and it coincides with the z-axis of tibia/fibula CCS. 
The rotational movements are the plantarflexion (negative) and dorsiflexion 
(positive). 

• e3  is coincident with the y-axis and fixed to the calcaneus. Rotational 
movements are the external rotation (negative) and the internal rotation 
(positive). 

• e2  is the common axis perpendicular to e1 and e3. Rotational movements are 
eversion (negative) and inversion (positive). 

 

 

Figure 2.3: Illustration of the JCS for the right ankle joint [19], [20]. 
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2.2.2 Metatarsal-phalangeal joint 

The metatarsal-phalangeal joint (MTP) is the joint formed between the metatarsal 
bones and the proximal phalanges of the toes. There are five metatarsal joints of in 
each foot, corresponding to the five toes. These joints allow for flexion and 
extension movements, facilitating the activities which involve foot movement. The 
presence of adequate MTP joint dorsi-flexion, is essential during the terminal stance 
and pre swing phases to enable smooth forward progression of the foot [11].  

• The rotational movements on the z-axis are the plantarflexion (negative) and 
dorsiflexion (positive). 

• The rotational movements on the y-axis are the external rotation of abduction 
(negative) and the internal rotation of adduction (positive). 

•  The rotational movements on the x-axis are eversion (negative) and inversion 
(positive). 
The centre of coordinates is positioned on the first MTP joint. 
 

 

Figure 2.4: Coordinate system centred on the first MTP joint, anterior-medial view [22]. 
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3 Motion capture 

Human motion capture also known as “human mocap”, is a specialized application 

of motion capture technology that focuses on capturing and analysing the 
movements of human body using specialized sensors or markers.  

Mocap encompass various approaches based on electro-magnetical, inertial, electro-
mechanical, ultrasound or optical systems to acquire the movement. In particular, 
there are two different ways based on optical systems: 

1. Marker-based system (MB) 

2. Markerless systems (ML) 

Both have their own advantages and limitations: the choice depends on the specific 
requirements and the motion capture application context.  

In the clinical gait analysis, the use of mocap plays a crucial role, providing 
objective and detailed information about the biomechanics of the gait. 

 

 

3.1 Marker-based system 

Currently, optoelectronic systems are considered the most accurate technology for 
assessing joint kinematics and it is widely acknowledged as a significant tool in the 
assessment, planning of therapy, and evaluation of disorders associated with 
walking patterns [9]. However, it is essential to control the accuracy of the marker 
placement, in order to ensure the precision of estimation in gait analysis [23]. 
Moreover, according with the literature, it has been identified that marker-based 
motion capture systems are prone to errors primarily due to instrumental errors [24] 
and soft tissue artifacts [25]. 
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Figure 3.1: Illustration of a movement analysis laboratory with stereophotogrammetry system, 
force plates and the associated reference systems[26]. 

 

Three-dimensional (3D) marker-based system uses the principles of 
stereophotogrammetry and optoelectronic, involving the use of multiple cameras 
and markers placed on the object or subject of interest. Using image processing 
techniques, it is possible to detect the instantaneous 3D position of the markers.  
 
Optoelectronic stereophotogrammetry works following these steps:  

1) Cameras setup: cameras strategical placement around the capture area. 
2) Camera calibration: it is necessary to establish the spatial relationship 

between the cameras and the subject/object of interest in order to obtain the 
camera established intrinsic/extrinsic parameters. 

3) Markers placement: markers are placed on different landmarks, following 
specific protocols (e.g. Plug in gait) on the subject/object of interest.  

4) Data capture: following the subject/object movements, cameras capture 
images from the markers and consequently from different perspectives.  

5) Marker tracking: by the triangulation of the marker positions, thanks to the 
use of specialized software, it is possible to reconstruct the 3D trajectory of 
each marker. Moreover, every bone and rotational joints of interest are 
modelled as different segments[27].  

6) Data analysis: the collected data are then used to extract kinematics and 
temporal-spatial parameters.  
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In particular, two types of markers are used:  active and passive. The active ones 
(e.g. Optotrack) emit their own infrared light (IR) and they are sequentially powered 
in order to be detected one at time by the cameras.  
The passive ones (e.g. Vicon) reflect the light emitted by the mocap systems 
cameras and they receive the light at the same time in order to have all the different 
perspectives, allowing the triangulation of the markers positions in 3D space. 
Differently by the actives one, the passive markers have to be labelled in post-
processing phase, because of the impossibility to distinguish one from another, but 
on the other hand they don’t need cables nor power supplies and they let the subject 

have a high range of motion.  
Optoelectronic stereophotogrammetry has some issues, like having specialized 
laboratories (which are generally very expensive), the possibility of limited number 
of gait cycles, the long patient preparation and the long calibration times. However, 
this motion capture system, nowadays, is recognized as gold standard in gait 
analysis.  

 

 

3.2 Markerless systems 

The demand for motion capture methods that are more efficient in terms of time, do 
not rely on specialized personnel and are less susceptible to errors such as tissue 
artefact, currently is always increasing.  
The markerless motion capture uses a standard video recording to capture 
movement without the presence of markers to identify body positions and 
orientation. However, the widespread adoption of markerless motion capture has 
been hindered by the need to the requirement of advanced coding skills and in-depth 
computer science knowledge [10].  
This technique not only not require specialized environments and operators, but its 
possibility to reprocess old markerless videos with new pose estimation algorithms, 
demonstrates that it has the potential to perform movement analysis by reducing 
data collection and processing time compared to traditional MB systems [10]. 

Currently, two main ML systems are commonly used in mocap. The first one 
utilizes standard video cameras, while the second system relies on depth cameras. 
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Both systems could be implemented using either single camera or multi-cameras for 
data capture. 

Markerless motion capture with a standard camera have same some limitations 
comparable to MB system, such as the capture volume is restricted by the number 
of the cameras, but differently from MB approach, this system doesn’t suffer the 

sunlight or the interference of other systems that work simultaneously. However, 
the extraction of considerable information form recorded images using software can 
be a challenging task that requires a high level of accuracy [10].  
One of example of multi-cameras markerless system is developed by Theia 
Markerless. Thank of the use of multiple cameras synchronized, the system allows 
to obtain the 3D body segment position and orientation. If on one hand, the system 
results have more practical advantages than MB systems and it has the potential to 
facilitate quicker and simpler acquisition of gait kinematics and in wide range of 
environments [28], in the other hand, to capture a space of large dimensions, this 
system requires a large number of cameras. 
The RGB-Depth cameras have the ability to combine the standard video 
information and the depth measurements of the scene recorded from the device and 
in opposite MB systems, they are more economic and accessible.  

Three different principles of operation of the depth sensor are implemented in RGB-
Depth cameras. 
- Stereoscopic vision: the 3D reconstruction is based on the presence of two 

cameras. Like the binocular vision of human system, it consists in the detection 
of the common points, in the two images acquired by the respective cameras, 
that refer to the same point of the object. Knowing the intrinsic and extrinsic 
parameters of the cameras, it is possible obtain the position of object in the 3D 
space. 

- Fixed structured light: an infra-red light is projected on a known pattern made of 
grids or other distinctive features. The camera acquires the scene with the 
pattern included. Comparing the emitted pattern and the captured scene with the 
pattern, allows to extract, thanks of the triangulation process, the distance of 
various points in the scene from the camera. 

- Time of flight (ToF): the measurement of the time of flight (the time of the IR 
light takes to travel to the target and back to the sensor), permit to determine the 
distance of the points from the camera. ToF technology provides a cost-effective 
a mechanically compact solution for depth imaging. It offers the advantage of 
being unaffected by change in environment illumination, making it reliable in 
various lighting conditions and it simplifies the process of figure-ground 
separation [29]. The most recent RGB-Depth cameras, such as Microsoft Kinect, 



16 
 

Intel Real Sense and Orbecc are equipped with an integrated depth sensor that is 
able to reconstruct the depth image using this specific principle. 
 
 

 

Figure 3.2: Illustration of ToF principle [30].  

 

After collecting the video data, the next step of markerless system is the processing 
the data with a software to detect and extract the joint position. The pose estimation 
algorithms commonly employ deep learning techniques. These algorithms are 
trained through a massive dataset that consists of numerous of manually labelled 
key points [31]. These posed estimation algorithms work with mathematical 
calculation on each image using Convolutional Neural Network (CNN), that 
consists of multiple layers, with the input of one layer is the output of the previous 
one.  

This network allows to the algorithm to learn how extract joint centres identifying 
the features which characterize the body segments. 
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Figure 3.3: Pose estimation algorithm workflow. Stage One: manually labelled training dataset. 
Stage Two: pose estimation algorithm [10]. 

 

One of the most successful ML systems employed with deep learning is Openpose, 
an open-source computer vision library and software that provides real time multi-
person key point detection and pose estimation [32]. One of the key features of 
OpenPose is its real time performance, allowing for live pose estimation in video 
streams. In additions, it can detect and estimate the 2D positions od body joints for 
multiple people in image or video, making it a powerful tool for applications in 
human-computer applications [32]. In addition to obtaining 2D joint coordinates, 
OpenPose has developed a system of multiple synchronized cameras to obtain 3D 
joint positions. 
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Figure 3.4: Multi-person pose estimation. OpenPose [32]. 

Microsoft offers the Azure Kinect body tracking software development kit (SDK), 
which enables real time tracking of the position of multiple individuals. It is capable 
of extract e and visualize the segmentation map and the skeleton of each individual 
within the camera’s field of view[33]. The skeleton counts 32 body joints (Figure 
3.5), but only 9 represents the lower limb. 

 

 

Figure 3.5: Real time skeleton and segmentation map (left) and the 32 joints identified by Azure 
Kinect SDK [21]. 

 

Using the IR image acquired, the SDK extract the body segmentation map and the 
2D body skeleton through a CNN algorithm. It was trained with on real images and 
vast dataset of synthetic images generated from videos featuring artificially 
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simulated human bodies performing different movements. Then, meshing the 
information obtained by the depth sensor, the 3D joint coordinates and orientation 
are computed. 
As mentioned above, the extraction of the joint coordinates using a Convolutional 
Neural Network, requires a large training set. However, in the clinical application of 
gait analysis, obtaining a massive dataset can be challenging, especially in the 
pathological cases where access to a large amount of image data is limited. So, it 
become necessary to address the pathological gait analysis with a subject-specific 
approach. 
Castelli A. et al. [9], Pantzar-Castilia E. et al. [1] and [13] have implemented 2D 
markerless technique to perform the lower limb sagittal plane kinematic analysis 
using a single video camera. The methods proposed, involved extracting 2D joint 
positions through multisegmental model of the lower limb, which was calibrated in 
static image form anatomical landmarks manually identified by operator [9].  

In all proposed methods listed with markerless approach, the feet are represented as 
a single segment with an only joint identified. Van den Herrewegen I. et al.  [12] 
proposed a 4-segment foot model applying a D3DScanning focusing on the 
kinematics aspect of foot motion. The system consists in 5 scanner units (ViALUX) 
positioned around and below a glass force platform. The segments are manually 
selected on a static scan, which allows to acquire the whole foot surface also in the 
dynamic situations, representing it as point cloud. 
The algorithm proposed aligns the dynamic segments, matching them with the static 
scan through the Iterative Closest Point algorithm (ICP). It allows to define the 
segment position in the dynamic frame as the one that minimize the root mean 
square (RMS) between the transformed segment and dynamic frame. Then the 
calculation of kinematics is obtained with the inverse multiplication of the segment 
transformation matrices. 
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Figure 3.6: Workflow to calculate the kinematics form the 3D scan proposed by Van den 
Herrewegen I. et al [12]. 
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4 Methods 

As mentioned in introduction, the aim of thesis project is to design a markerless 
method based on a single RGB-Depth camera for estimating sagittal ankle and 
metatarso-phalangeal kinematics using a new two-segment 3D foot model. In 
particular, the method proposes to expand the 2D subject-specific foot model 
developed by Balta et al., 2020 [13] to 3D subject-specific foot model composed by 
two-segment: Mid-Rear-foot and Forefoot. 
The proposed protocol consists in five parts, as illustrated in the block diagram in 
Figure 4.1. 
 

 

Figure 4.1: General overview of the of the proposed method for estimating the sagittal shank and 
foot kinematics. 
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4.1 Gait cycle segmentation 

The first step of the proposed method is to identify the most central gait cycle 
between two consecutive initial foot contacts. To identify two consecutive foot 
contacts with the ground is applied the method based on a 2D clinical gait analysis 
protocol reported by Balta et al. 2020 [13]. 

In phase of acquisition, the subject was asked to wear red and blue socks to make 
the identification of the feet in RGB images easier. The feet are discriminated by 
applying two coloured filters: red for the right foot and blue for the left one [34].  
 

 

Figure 4.2: Color filters applied on the feet. 

 

Then, heel and toe are automatically identified, by assuming that heel point is 
determined as the intersection between the segmented foot sole's best-fitting line 
and the posterior portion of the foot, represented by a vertical segment (Figure 4.3). 
The toe, known a priori, represents the farthest point in the direction of progression. 
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Figure 4.3: Identification of the heel and toe. On the left there is the sole of the foot and the 
posterior portion of the foot (dotted red lines). On the right there is an example of the identification 

of heel and toe on both feet [13]. 

 

After that, the anterior-posterior and vertical coordinates of heel and toe are 
extracted. Since it is not possible to know a priori how the subject strikes the 
ground, the point and the time of contact with the ground, is determined as the foot 
point where both vertical and anterior-posterior coordinates, expressed in pixels, 
first reach a stationary condition. To evaluate this, the first derivative of heel and 
toe coordinates (vertical and anterior-posterior) was calculated and the foot 
extremities were considered as points of impact when the time derivatives variation 
of both coordinates were lower than a threshold given a priori (± 3 pixels) Figure 
4.4. 
 

 

Figure 4.4: First derivative on heel and toe coordinates. The black dotted lines represent the 
intervals in which heel and toe are in contact with the ground. In this figure there are two intervals 

for each extremity. The first interval represents the initial contact [13]. 
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To avoid the optical distortions and the parallax effect of the camera, the most 
central gait cycle is selected among the gait cycles inside each dynamic acquisition. 

 

4.2 Foot and shank model creation 

4.2.1 3D foot model 

The primary objective stated in the thesis is the introduction of a new segment in 
multi-segment model proposed by Balta et al. 2020 [13]. In particular, the creation 
of a two-segments foot model can lead to obtain a better information about the foot 
kinematics. In order to achieve this, the three-dimensional (3D) foot model is 
created by capturing four views of the foot in a static position:  frontal (FRO), 
posterior (POS), lateral (LAT), and medial (MED). Each view captures a different 
perspective of the foot and, by employing alignment techniques, it becomes 
possible to create the 3D foot model (3FM). 

 

 

Figure 4.5:  The four views (FRO, POS, LAT, MED) 
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The process of creating 3D foot model involves an acquisition protocol, that aims to 
achieve a good balance between accuracy of the model and the comfort of the 
patient. This protocol is designed to minimize the discomfort of the patient may feel 
in the upright static position during the acquisition. The process involves in a step-
by-step algorithm divided into 8 stages. The details of each step are provided below: 

1) Point cloud creation: for each view a 3D point cloud representing a view of 
the foot is generated using the depth data by exploiting the RGB-Depth 
information. 

 

 

Figure 4.6: Point cloud of lateral view of right foot. 

 

2) Ground removal: as shown in the figure above (Figure 4.6),  the foot point 
cloud could be affected by errors. These inaccuracies may be caused by the 
relevance from the depth sensor of the ground (green carpet) or the presence 
of the shadows due a different weight load on the feet during the static 
position. It is crucial to remove them since their presence can introduce 
problems during the merging of different views. For this reason, it is applied 
an a-priori-chosen threshold based on the percentage of height (e.g. 0.08%) 
that allows the point cloud to maintain the anatomical information of the 
foot.  
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Figure 4.7: Point cloud after remove the ground layer. 

 

3) Identification of lower layer: first of all, the sole is identified as a plane 
characterized by the lowest vertical coordinates. To merge the four views, it 
is essential identify common points in the sole of each view. 

 
4) Identification of the common points: for each view there are specific points 

to be identified.  
o The most anterior point (ZF) and the most lateral point (XFL) are 

identified in FRO.  
 

o  
Figure 4.8: Frontal view (purple line) and the identified points. 

 

o The most anterior point (ZL), the most lateral (XL) in the range 
between ZL and the distance in terms of depth between ZF and XL and 
the most posterior point (ZPL) are identified in LAT. 
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Figure 4.9: Lateral view (blue line) and the identified points. 

 

o The most anterior (ZM) and the most posterior point (ZPM) are 
identified in MED. 

 

 
Figure 4.10: Medial view (orange line) and the identified points. 

 

o The most distal point (ZP) is identified in POS. 
 

 
Figure 4.11: Posterior view (green line) and the identified point. 

 
5) Alignment of views: Using ZF of FRO as origin, the other three views are 

aligned following this order: 
 

• LAT is aligned to FRO using XL as the common point. 
• MED is aligned to FRO using ZF as the common point. 
• POS is aligned to LAT using ZP as the common point. 

 
In particular, the choice to use XL as common point between LAT and FRO is 
forced since from the lateral view it is not always possible to identify the same most 
anterior point seen by FRO, due the different morphologies of the toes. 
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Thanks to these alignments, a 3D foot model was created preserving the anatomical 
features of foot (Figure 4.12). 
 

 

Figure 4.12: 3D foot model (3FM). 

 

6) Template calibration: before acquiring the subject, external anatomical 
landmarks (LM: lateral malleolus; MTP5: 5th metatarsophalangeal joint and 
TOE: the most anterior point on horizontal coordinate on the surface of foot 
dorsum) have been identified by palpation and marked with a black pen on 
small colored labels, as it shown in Figure 4.13. In order to indicate the 
positions of landmarks, they are manually identified by clicking on the 
corresponding locations on the RGB-D images.  
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Figure 4.13: Illustration of external landmarks (blue labels) applied on the right side of the subject. 

 

 
7) Joints identification: To obtain the manual identification of landmarks from 2D 

RGB image and to convert them to corresponding 3D points, it is necessary to apply 
a conversion factor scale. This helps to establish the relationship between the 
coordinates in 2D image space and the corresponding 3D space, allowing to 
correctly map the landmarks on the 3D foot model. 
The conversion is defined as: 
 

𝑥(𝑝) = (
(𝑐𝑜𝑙(𝑝) − 640)

𝑘
) ∗ 𝑎𝑏𝑠(𝑑(𝑝)); 

 

 𝑦(𝑝) = (
(𝑟𝑜𝑤(𝑝) − 360)

𝑘
) ∗ 𝑎𝑏𝑠(𝑑(𝑝)); 

 
𝑧(𝑝) = −𝑑(𝑝); 

 
 
 
(4.1) 

 
 
Where 𝑥(𝑝) and 𝑦(𝑝)  are vertical and horizontal coordinates respectively, 𝑐𝑜𝑙(𝑝) 
and 𝑟𝑜𝑤(𝑝) denote the column and row indices of 2D image. The values 640 and 
360 correspond to the half width and half height of 2D image,  𝑘 is the conversion 
factor from 2D to 3D, 𝑑(𝑝) refers to the depth value of depth map with the 2D 
coordinates of the identified landmark (row(p), col(p)). 
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Finally, the TOE is identified as the most distal point of the foot at the same 
coordinate y of MTP5. 
 
 

 
 

Figure 4.14: 3D foot model (3FM) and the identified joint centres. 

 

8) Foot model splitting: the foot model is split, at the coordinate X of MTP5, 
in two segments: Mid-Rear-foot (MRF) and Forefoot (FF). The cut 
percentage was saved for applying the same method on dynamic frames.  
 
 

 
 

Figure 4.15: MRF segment (left) and FF segment (right) with identified joint centres. 
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𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑚𝑖𝑑−𝑟𝑒𝑎𝑟 𝑓𝑜𝑜𝑡(𝑥, 𝑦, 𝑧)0
𝐼   = {

𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑓𝑜𝑜𝑡(𝑥, 𝑦, 𝑧),                0
𝐼   𝑥𝐶𝐴 < 𝑥 < 𝑥𝑀𝑇𝑃5

 0,                                                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.2) 

 

𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑓𝑜𝑟𝑒𝑓𝑜𝑜𝑡(𝑥, 𝑦, 𝑧)0
𝐼   = {

  𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑓𝑜𝑜𝑡(𝑥, 𝑦, 𝑧)0
𝐼 ,             𝑥𝑀𝑇𝑃5 < 𝑥 < 𝑥𝑇𝑂𝐸

0,                                                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.3) 

 

Where 𝑥𝐶𝐴 is the x-coordinate of the most posterior point of the foot. 

 

 

4.2.2 Shank model 

To estimate the ankle kinematics on the sagittal plane, the markerless method 
proposed by Balta et al., 2020 was implemented as follows: 

• Multi-segmental model definition: a subject-specific lower limb model that 
consists in four body segments (foot, shank, thigh and pelvis). In this work, only 
the shank segment will be used, which is connected to the close segments 
through ankle and knee. The two joints allow for one rotational degree of 
freedom (DoF) and they are centred with the lateral malleolus (LM) and on 
lateral epicondyle (LE). 
The shank template and the relative joints coordinates systems were calibrated 
on the standing acquisition (Figure 4.16) by manually selecting the anatomical 
landmarks to obtain the position vector in the image system ( 𝐿𝑀00

𝐼 , 𝑐).  In order 
to accommodate the potential right/left asymmetries, the specific-subject model 
is defined for both sides. 
 

• Template calibration: as explained in the step 6 of the foot model creation, the 
knee joint is manually identified by expert operator through palpation and 
marked with a black dot on a small and coloured label in correspondence of the 
lateral epicondyle (LE). 
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Figure 4.16: Sagittal static upright standing acquisition and the 2 landmarks that defined the 
shank segments (LE and LM), identified by blue labels. 

 

• Shank template: the central shank portion was obtained by extracting the 
region encompassed within the annulus centred at 𝐿𝑀00

𝐼  with radii equal to 25% 
and 75% of the Euclidean distance between 𝐿𝑀00

𝐼  and 𝐿𝑀00
𝐼 , (L_Shank25 and 

L_Shank75, respectively). (Figure 4.17). Then, the template 𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠ℎ𝑎𝑛𝑘0
𝐼  

and its generic pixel 𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠ℎ𝑎𝑛𝑘(𝑥, 𝑦)0
𝐼  in the image I is obtained as 

follows: 
 

 
 
Then 𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠ℎ𝑎𝑛𝑘0

𝐼  is fitted inside an ellipse and the principal axes using its 
centroid was calculated. 
The shank coordinate system s0 is defined with its axes coinciding to ellipse inertial 
principal axes and the transformation matrix is computed. 

  𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠ℎ𝑎𝑛𝑘(𝑥, 𝑦)0
𝐼 = {

1, 𝑀𝑎𝑠𝑘𝑠𝑢𝑏𝑗𝑒𝑐𝑡(𝑥, 𝑦)0
𝐼 = 1 𝑎𝑛𝑑 𝐿𝑆ℎ𝑎𝑛𝑘25 < 𝑥2 + 𝑦2  < 𝐿𝑆ℎ𝑎𝑛𝑘75

0,                                                                                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    (4.4) 
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Figure 4.17: Lower-limb model for the right side by Balta et al. [13]. 

 

 

4.3 Foot kinematics estimation  

The two main steps to extrapolate the sagittal foot kinematics: 

• Foot segmentation 
• LM and MTP5 estimation  
Each of these two steps are subdivide into other several sub-steps. 
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 4.3.1 Foot segmentation 

The proposed foot segmentation follows the steps outlines below: 

 

1) Segmentation of 2D mask of the foreground foot: as reported in the previous 
paragraph, two color filters are implemented to identify the foot in the 
foreground. When the subject walks from the left to the right, it is applied the 
red color filter, since the right foot wears the red sock. Conversely, when the 
walking is in the opposite direction, the color filter detects the blue sock. 
A color filter is based on the RGB values of the pixels, so its effectiveness 
depends on the lighting conditions of the environment. The choice of the three 
RGB thresholds is very important to extract the full 2D mask of the foot. The 
presence of some shadows, or the presence of labels could cause some holes in 
the mask. For this reason, it is applied an algorithm based on morphological 
reconstruction to fill all holes in mask.[35] 

 

 
 

Figure 4.18: 2D foot mask with holes (left) and filled 2D foot mask (right). 

 

2) Identification of Depth mask of the foreground foot: using the 2D foot mask, 
it becomes feasible to extract the depth region corresponding to the foot from the 
full body of subject in the depth image. The depth sensor of Azure Kinect is 
affected incorrect depth map, when the object captured is in movement, as the 
foot shown in Figure 4.19. For this reason, to avoid a loss of anatomical 
information, it is crucial restore the missed depth points, in order to improve the 
estimation of the joint centres position.  
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Figure 4.19: Depth image (pink) overlapped on RGB image (green). 

 

3) Depth completion: Due to the significant portion of the highest moving frames 
of the gait cycle (pre and swing phase), which may cause an incorrect depth 
mask, it becomes essential to restore the missed depth points. The developed 
algorithm suggests a Depth completion to try to solve the problem. 
Depth completion in RGB-Depth cameras is a technique that aims to recover 
dense depth maps from sparse depth measurements [36], since the depth 
cameras often encounter difficulties in shiny, bright, transparent and distant 
surfaces [37]. Several approaches can be found in literature: inpainting-based 
algorithms that leverage the correlation between depth and color information to 
estimate the missing points [38] or learning- based methods that employ deep 
learnings models, such as convolutional neural networks (CNNs) or generative 
adversarial networks (GANs) [36], which learn the mapping between complete 
depth maps and the incomplete ones. 
The purposed method, in order to recover the missing depth points, applies a 
depth completion using kernel: a small matrix used to perform operations on the 
neighbouring pixels on the depth map. The process is described in the three 
following steps: 

 
A) Selection of target regions:  

To select the missed regions of Depth map, the 2D foot mask is 
overlapped on the Depth map, as shown in Figure 4.20. 
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Figure 4.20: Depth map (white) and 2D foot mask (red line). 

 

B) Kernel design: a 5x5 low-pass kernel is selected. For each pixel in the 
missed region, the mean value of a 5x5 neighbourhood was computed as 
reported in (4.5)  

 

𝑔(𝑥, 𝑦) = 𝑤 ∗ 𝑓(𝑥, 𝑦) = ∑ ∑ 𝑤(𝑑𝑥, 𝑑𝑦)𝑓(𝑥 − 𝑑𝑥, 𝑦 − 𝑑𝑦)

𝑏

𝑑𝑦=−𝑏

𝑎

𝑑𝑥=−𝑎

 

𝑓(𝑥 − 𝑑𝑥) ≠ 𝑁𝑎𝑁, 𝑓(𝑦 − 𝑑𝑦) ≠ 𝑁𝑎                                                                                                                                 
 

 
(4.5) 

 
Where 𝑔(𝑥, 𝑦) is reconstructed depth value, 𝑓(𝑥, 𝑦)is the original depth 
value and w is the kernel. 

 

 
Figure 4.21: 5x5 mean value kernel. 
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C) Starting point: it is possible to observe that the majority of the missing 
points is located in the anterior part of the foot since this part is 
characterized by the highest speed. Therefore, if the walking direction is 
towards to right, the kernel starts to slide over the depth map from the top 
left corner. This allows the kernel to traverse over the existing depth 
points and then on the missing ones, conversely in the opposite direction. 

 

After the application of kernel, the Depth map is ‘filled’ on the missing values as 
shown in the figure below. 

 

 

Figure 4.22: Depth map after depth completion (white) and 2D foot mask (red line). 

 

Through the reconstructed depth values, the final point cloud of the foot was 
obtained. 
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Figure 4.23: 3D foot point cloud during gait cycle before (left) and after (right) depth completion, 
with the boundary identified by 2D foot mask (red line). 

 

4.3.2 Iterative Closest Points (ICP) 

Iterative Closest Points is an iterative method to registrate 3-dimensional or 2-
dimensional shapes. The main goal of ICP is to find the best geometric 
transformation (translation and rotation), which aligns a generic dataset (P) to 
model (X). The algorithm works through a series of iterations to minimize the 
distance between the points of P and X. The main steps concerning in the algorithm 
include the following: 

1. Computation of closest points: for each point in the model X, the algorithm 
searches the corresponding point in the dataset P which has the minimum 
distance:  

 
 𝑑(𝑝, 𝑋) = 𝑚𝑖𝑛 𝑥 ∈ 𝑋 ||𝑥 − 𝑝|| (4.6) 

 

 
 

Figure 4.24: The closest points of the model to the dataset. 
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As a result, a set of closest points is obtained (Y).  
  

2. Computation of the transformation matrix: the algorithm computes an 
optimal transformation that aligns the closest points, estimating the roto-
translation matrix that allows to minimize the least mean square distance 
between the closest point. 
 

𝑑𝑘(𝑅, 𝑇) = min |
1

𝑁𝑝
∑||𝑦𝑖⃗⃗⃗  

𝑁𝑝

𝑖=1

− 𝑇(𝑝𝑖⃗⃗  ⃗)||
2| 

 
(4.7) 

 
Where [𝑇 =

𝑅

0 0 0
 
𝑡

1
 ]  is the transformation matrix. 

 
3. Termination of the iteration: the algorithm continues iterating through the 

first two steps until the convergence is achieved, 𝑑𝑘(𝑅, 𝑇) is below a 
threshold (chosen a priori) and the iteration finishes. 

 
 𝑑𝑘 − 𝑑𝑘+1 <  𝜏 (4.8) 

 
4.3.3 Lateral malleolus and fifth metatarso-phalangeal joint 
estimation  
To estimate the sagittal kinematics of the foot, it is necessary to identify the joint 
centres on each dynamic frame of the gait cycle. In order to do it, it is fundamental 
to apply the ICP technique between the dynamic point clouds Dyn and the 3D foot 
model point cloud. Anyway, to implement the ICP you need to develop different 
steps to pre-align the point clouds, since the pre-alignment plays a crucial role to 
improve the efficiency and accuracy of this technique [14]. 

The steps to estimate the joint centres are the following: 

1. Foot splitting: as well as in the creation the 3D foot model in paragraph 
4.2.1, two different segments are obtained (MRF and FF) from the split of 
the model on the MPT5, also Dyn point cloud is split into two segments by 
considering the same percentage.  
Since each Dyn point cloud has a different shape and different axis 
orientation, to find the perfect point of separation it is fundamental to align, 
in the best possible way to the sagittal axis (X) of 3FM. 
Using the information of the 2D foot mask’s inertia (a measure of the mass 
distribution of the object around its centroid), it is possible to determine its 
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orientation as the angle between the x-axis of the image and the principal 
axis of the object's inertia. 
After rotating Dyn at the angle output by the function (Figure 4.25.), it is 
possible to split it in two segments (MRFd and FFd), as shown in Figure 
4.26.  
This work proposes to use the same relative lengths of MRF and FF, which 
here are standardised, for every dynamic foot shape in every gait cycle phase. 
  

 

 
 

Figure 4.25: Original dynamic foot point cloud (left), rotated dynamic foot point cloud 
(right). 

 

 
 

Figure 4.26: MRFd (left) and FFd (right) after the splitting. 
 

2. Segments rotation: as noticeable in the Figure 4.26, FFd is not aligned to 
the horizontal axis as FF. The quality of the initial alignment greatly affects 
the convergence and accuracy of the ICP algorithm. Providing a good initial 
estimation of the relative pose between the two point clouds can lead to 
better results [14]. Consequently, it is necessary to coordinate the segments 
obtained with the segments of model. To do it, the orientation of the 2D foot 
mask regions corresponding to the area of segments point clouds is computed 
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to allow the alignment of them. When FFd is aligned to the horizontal axis, it 
is possible to identify the TOEj as the point with the maximum value on Y-
axis within a range of approximately of 10 mm around the most distal point 
on X-axis.  
 

 

 
 

Figure 4.27: FFd aligned to the sagittal axis. 

 

3. Scaling factor: What is notable in the dynamic frames is that due to the 
presence of soft tissue artifacts and the degradation of depth images caused 
by movement, the foot appears smaller compared to the model. It proposes to 
apply a factor scale s, in order to adapt the dimension of Dyn to the model 
ones so as to maximize the performance of ICP. 
 

 
 

𝑠 =
𝑙𝑚
𝑙𝑑𝑦𝑛

 (4.9) 

 
 
Where 𝑙𝑚 is the model segment length and 𝑙𝑑𝑦𝑛 is dynamic segment length. 
It is developed only in ratio of lengths because the height of the model, 
especially in MRF, is obtained by identification of a 3D ROI (point 1 of 
paragraph 4.3.2) and it could be different from the height 3FM, which is 
obtained by color filter. 
 

4. Segments alignment: to pre-align each dynamic frame to the model, the 
centroids of 3D model and dynamic segments are calculated.  
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The centroid of an object refers to the geometric centre or average position of 
all the points that make up the object. It is computed as the mean of the 
coordinates of those points, where each point's position is weighted equally. 
The centroid is commonly used as a measure of the object's location or as a 
reference point for various calculations in image processing and computer 
vision tasks. 
The centroids of the segments are aligned by adding an offset (width of the 
foot) on the frontal axis (Z). As mentioned above, Dyn represents the point 
cloud associated to the depth frame during the dynamic acquisition and it 
constitutes only the lateral view. Hence, an additional offset is necessary to 
ensure the alignment of the dynamic segments with the lateral side of the 
model. This offset helps to avoid to select the closest points on the medial 
side and ensure a proper alignment. 

 
 

 
 

Figure 4.28: Pre-alignment with offset of the dynamic segments (purple point cloud and 
blue dot) with model segments (green point cloud with red dot) view on the frontal plane. 

 

5. ICP: To estimate the position of joint centres (LM and MPT5), the extraction 
of the transformation matrix is required to achieve the optimal alignment 
between the two dynamic segments and the respective model segments. This 
is possible through the application of ICP algorithms on the dynamic 
segments, which produces the transformed point cloud along with the 
transformation matrix tform. The metric used is ‘Point to Point’ (Euclidean 
distance between point to point) with the number of maximum iterations is 
imposed equal 1000. 
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Figure 4.29:  Segment point clouds after alignment by ICP. 

 

6. Joint centres placement: tform is a 4x4 homogeneous transformation matrix 
that includes the information of rotation and translation applied to minimize 
the difference between the point clouds. 
Applying the inverse matrix to the landmarks LM and MTP5 of 3D foot 
model it becomes possible to estimate their position in the respective 
dynamic segments prior to ICP application. Specifically, the landmark LMj is 
estimated applying two inverse transformation matrixes to the LM (lateral 
malleolus of the 3D foot model). The first is that output from the alignment 
of Mid-Rear-foot dynamic segment (MRFd) and the respective segment 
model (MRF), while the second is from the alignment MRFd and the 
horizontal axis (point 1 of this paragraph). The same protocol is applied to 
MPT5j with the two inverse transformation matrixes applied on FFd. 
 

7. Fixing joint centres: to mitigate the risk of misestimating the joint position 
and placing it outside the point cloud, a corrective measure is implemented. 
This correction entails relocating the joint from its erroneous position to the 
segment point that has the minimum Euclidean distance from that particular 
position.  
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Figure 4.30: Dynamic right foot with TOEj (green dot) and the joint centres estimated: LMj 
(blue dot), MTP5j (red dot). 

 

8. LM and MTP5 position estimation on 2D plane: since the validation is 
performed on 2D images, the computation of the sagittal angle between MRF 
and FF requires the conversion from 3D to 2D coordinates. This conversion 
can be achieved by applying the inverse Formula 4.1, which allows to obtain 
the projection of  3D coordinate in the 2D coordinates ( 𝐿𝑀𝑗0

𝐼 , 𝑀𝑇𝑃5𝑗0
𝐼  and 

𝑇𝑂𝐸𝑗0
𝐼  ), enabling the computation of the sagittal angle. 

 

4.4 Shank kinematics estimation  

As the previous paragraph the next big step of this work, it is the shank kinematics 
estimation, which is achieved through the proposed method by Balta et al. [13]: 

• Subject segmentation 
• Knee joint centre estimation  
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4.4.1 Subject segmentation 

Subject segmentation involves the identification of the subject in the image, that 
makes possible to isolate the subject from the background through a series of 
distinct steps, as described below. 

1) Background subtraction: for each image acquired in dynamic acquisitions, 
it is applied a subtraction operation between the frame containing the subject 
and the background image. Then the difference obtained is converted to 
grayscale (4.10). 
 

 
 𝐷𝑥,𝑦,𝑐 = |𝐵𝑥,𝑦,𝑐 − 𝐼𝑥,𝑦,𝑐|  (4.10) 

 
 

𝐷_𝑔𝑟𝑎𝑦𝑥,𝑦,𝑐 = √𝐷𝑥,𝑦,𝑅
2 + 𝐷𝑥,𝑦,𝑅

2 + 𝐷𝑥,𝑦,𝑅
2  

(4.11) 
 

 
 

Where x and y refer to the image coordinates, c is the color channel of RGB 
image, I is the image containing the subject and B is the background image. 
 

 

 
 

Figure 4.31: Difference image in grayscale D_gray. 
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2) Gray thresholding: a histogram of grayscale is calculated to determine a 
threshold value, which is used to separate the subject from the background 
[39] and the weighted mean (Th) of the histogram is calculated using: 
 

 
 

𝑇ℎ =
∑ 𝑤𝑖 ∗ 𝑥𝑖

𝑁
𝑖=0

∑ 𝑤𝑖
𝑁
𝑖=0

 
(4.12) 

 
 
 

Where 𝑤𝑖 is the histogram count for the i-th class and 𝑥𝑖 indicates its 
grayscale level. 

 

 
 

Figure 4.32: Histogram of the grayscale image. Red line represents the threshold Th0. 

 

The segmentation mask (Figure 4.33.a) is generated using the following formula: 

 

 
𝑆𝑥,𝑦 = {

0, 𝑝𝑥,𝑦 < 𝑇ℎ

1, 𝑝𝑥,𝑦 ≥ 𝑇ℎ
 

 

(4.13) 

In addition, especially in cases with not homogenous background, it is important to 
remove all the undesired regions, which may be source of errors. 
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3) Mask cleaning: residual areas belonging to the background was removed by 
applying a threshold on the depth image (Figure 4.33.b).  
In addition, to remove the presence of the shadows on the ground, using 
color filter (paragraph 4.1) applied to the RGB images, the feet are deleted 
from the mask (Figure 4.33.c), leaving only the shadows, which are easy to 
remove. Then, the feet are reinserted in order to final subject segmentation 
(Figure 4.33.d).  

 
 

 

Figure 4.33: Cleaning mask process on the subject mask: a) represents D_gray after 
application the thresholding, b) shows the binary and depth mask overlapped, c) represents 

the subject without the feet, d) shows the subject segmented. 
 

 

4.4.2 Knee joint centre estimation 

To estimate the knee joint position, first it is necessary to identify the shank 
segment on the subject.  
The separation between the foreground and background shanks was carried out 
using two alternative strategies depending on whether there was or was not overlap 
between foreground and background shanks. 
To discriminate between overlap/non overlap conditions, a circle centred in 𝐿𝑀0

𝐼
𝑗 

(the 2D projection of LMj extracted in the point 8 of paragraph 4.33) with radius 
equal to the distance between 𝐿𝑀0

𝐼
0 and 𝐿𝐸0

𝐼
0 (lateral epicondyle on template) was 

drawn. If there was no overlap, points were grouped in two separated regions, and 
the foreground shank, being closer to the camera, coincided with the largest area 
(Figure 4.34a).  
Conversely, when there was overlap, a single connected region was found, and 
auxiliary depth sensor data were used to separate foreground and background 
shanks (Figure 4.34b).  
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The histogram of depth values within the region was obtained and the Otsu method 
[40] was applied for a binary classification (class 0: foreground shank, class 1: 
background shank) based on the minimization of the variance between classes. 

 

 

Figure 4.34: Separation between foreground and background shanks. A circle centred in 𝐿𝑀𝑗0
𝐼   

with radius equal to Euclidean distance between 𝐿𝑀0
𝐼

0 and 𝐿𝐸0
𝐼

0 is drawn. a) No- overlapped 
shanks. b) Overlap between the two shanks. Below the histogram of depth values inside the region 

and through Otsu method the two shanks are separated. 

 

The central portion of the foreground shank is defined in the anulus identified 
between the 25% and the 75% of the shank length (paragraph 4.2.2). 
The shank coordinate system 𝑠𝑗 is defined through the axis aligned with principal 
axes of inertia of the shank mask ellipse (Figure 4.34). Moreover, the 
transformation matrix 𝑇𝑠𝑗

0
0
𝐼 , based on the ICP algorithm (paragraph 4.3.2) from 𝑠𝑗 to 

image, is calculated. 
The lateral epicondyle position ( 𝐿𝐸𝑗)0

𝐼  for each frame is obtained by applying the 
three subsequent transformations: 
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𝐿𝐸00
𝑠0 = 𝑇𝐼0

𝑠0  𝐿𝐸00
𝐼 ;  𝐿𝐸𝑗0

𝑠𝑗 = 𝑇𝑠0
0

0

𝑠𝑗  𝐿𝐸0; 0
𝐼   𝐿𝐸𝑗0

𝐼 = 𝑇𝑠𝑗

0
0
𝐼  𝐿𝐸𝑗0

𝑠𝑗  

 

(4.14) 

 

Where 𝐿𝐸𝑗0

𝑠𝑗  is the lateral epicondyle referred to the dynamic shank template, 𝑇𝑠0
0

0

𝑠𝑗 is 
the transformation matrix from the shank template to the dynamic shank template of 
each frame and 𝐿𝐸00

𝐼  is referred to the shank template. 

 

4.5 Sagittal angles computation 

The sagittal are computed as follows: 
The ankle joint is computed as the inclination between Lateral Epicondyle (LE) - 
Lateral Malleolus (LM) segment minus 90 degrees. 
 
 
 𝜃𝑎𝑛𝑘𝑙𝑒 = 𝑎𝑟𝑐𝑐𝑜𝑠(

𝐿𝐸−𝐿𝑀

|𝐿𝐸−𝐿𝑀|
.

𝑀𝑇𝑃5−𝐿𝑀

|𝑀𝑇𝑃5−𝐿𝑀|
) -90° (4.15a) 

 
 
 
The ankle joint is computed as the inclination between Lateral Malleolus LM) - 
Metatarso-phalangeal (MTP5) joint segment. 
 
 
 

𝜃𝑀𝑇𝑃5 = 𝑎𝑟𝑐𝑐𝑜𝑠(
𝐿𝑀 − 𝑀𝑇𝑃5

|𝐿𝑀 − 𝑀𝑇𝑃5|
.
𝑇𝑂𝐸 − 𝑀𝑇𝑃5

|𝑇𝑂𝐸 − 𝑀𝑇𝑃5|
) 

(4.15b) 
 

 
 
Each gait was made of a different number of frames, so the resulting angles are 
referred to the percentage of gait cycle (0-100%) through spline interpolation. 
The kinematic curve is then filtered using a 3rd-order low-pass Chebyshev filter 
with a cut-off frequency of 7 Hertz.  
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Figure 5.6: The sagittal angles of metatarso-phalangeal joint (pink arch) and ankle joint (green 
arch). 
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5 Experimental acquisitions 

5.1 Azure Kinect DK 

Azure Kinect development kit refers to a comprehensive hardware and software 
package developed by Microsoft in 2020. It consists of a depth-sensing camera 
device which combines a depth sensor, high resolution RGB camera, spatial 
microphone array and an inertial measurement (IMU). 

In addition to the hardware, the Azure Kinect DK [41] provides three software 
developments kits (SDKs): a sensor for lower sensor and device access, Body 
tracking SDK for tracking bodies 3D and a Speech Cognitive Service SDK[33], 
[41]. 

 

 

Figure 5.1: Microsoft Azure Kinect camera. 

 

This device captures various visual data through a 12 MP RGB camera and 1MP 
Depth sensor, returning RGB color image, a depth map and an IR image (720x1280 
at 30 Fps). The pixels of the last one represents the amount of light reflected from 
the scene acquired. The image settings, such as the camera exposure, brightness and 
white balance can be manually managed.  
The camera operates based on the Time of Flight (TOF) principle, where it emits an 
amplitude-modulated continuous wave in the near-infrared spectrum onto the scene. 
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It then captures the indirect time taken by the emitted light to travel from the camera 
to the scene and back again. 
Processing the TOF measurements, the camera can output a depth map, with three 
dimensions, where the Z coordinate of every pixel, represents the distance from the 
camera in millimeters [42]. 

As noticeable in Figure 5.2, there are some cases where the reconstruction of depth 
may be affected by errors, resulting in invalided pixels. The invalid pixels are 
represented in the depth map as value equal to zero. The cause of errors could be: 

• When the pixels are outside of the active IR illumination mask. This occurs on the 
corners of the image (blue dots). 

• The IR signal on the pixels is saturated (e.g. high intensity reflected light from 
surfaces). 

• The IR signal is not quite high to generate depth values (greed dots). 
• Multi-path interference on the pixels that received IR signal from different objects 

in the scene (pink dots). 
 

 

Figure 5.2: The invalided pixels on the Depth mask (left) and respective IR image (Right).  

 

5.2 Experimental and Protocol and Setup 

The experimental protocol for studying the gait cycle involved of 3 gait cycle for 
each side in 10 subjects affected by Clubfoot, mean age 13 years (7-17), 5 females 
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and 5 males. Out of these patients, six subject have Bilateral Clubfoot, three have 
the right limb affected, and one patient has the condition on the left side. 
The patients were requested to walk at their own comfortable speed along a straight 
10-meter walkway while wearing ankle socks of different colors (red for the right 
foot and blue for the left foot) and underwear.  
The experimental set-up included: 

• One green carpet 
• One RGB-Depth camera positioned laterally approximately 2.5 meter from the 

walkway, at the height of 85 centimetres. 
• Two LED lamps set a to the maximum intensity and positioned laterally by the 

camera. 
 

 

Figure 5.3: The experimental set up in Skaraborg hospital of Skövde. 

 

Before starting the trials, subjects were submitted to several static acquisitions. In 
particular, 4 different static one-side view (frontal, posterior and 2 sagittal) with the 
subject in an upright standing position (2.5 m distant from the camera). In addition, 
4 different static one-side view for both feet (paragraph 4.2.1) with the camera 
placed on the ground and distant from the foot of 0.6 m. 

As shown in Figure 5.4 on the lateral side of both sides, four joints (great trochanter 
(GT), LE, LM and MTP5) are identified by palpation of an expert operator and 
marked with a black pen on small, coloured labels.  
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Figure 5.4: Illustration of labelled joints on the lower limb. 

 

5. 3 Infrared interference 

The manual labelling was performed to validate the automatic algorithm purposed.  

It was necessary adopt this validation, since the acquisitions were not conducted 
synchronously between the marker based and Markerless systems due to observed 
interferences in the depth map reconstruction in the Azure Kinect recordings. 

The gait analysis laboratory of Skövde Hospital studies the joint kinematics with the 
marker based system (Motion capture camera Qualisys). This system works with 
the same infrared wavelength (850 nm) of the Azure Kinect and it caused several 
undefined values on the depth mask, taking a great loss of information. When both 
systems work synchronously, the interference of IR signals causes the inability to 
generate the depth value (randomly) in the majority part of the scene by the Azure 
Kinect (Figure 5.5a). 

In addition, the presence of retroreflective markers produces errors in the depth 
mask. As shown in the Figure 5.5b the pixels, that should represent the markers 
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positioned on the joint centres, have values equal zero or are classified not-a-
number (NaN). This poses significant issue when the maker-placement requires a 
large number of markers, such as the Oxford protocol [43]  utilized by the gait 
analysis laboratory in Skövde. The protocol foresees the placement of 10 markers 
on the foot, resulting a very huge loss of anatomical information.  

 

 

Figure 5.5: a) Illustration of the IR interference between Azure Kinect and Qualisys system. b) 
Black invalidated pixels in correspondence of the reflective markers (red arrows) 

 

5.4 Manual labelling 

To avoid the concerns about interference, a manual clicking method on the labelled 
joints for each frame was employed to validate the output generated by the 
developed algorithm. Once obtained the coordinates of the labels by the manual 
clicking on the 2D RGB images, the sagittal shank and foot kinematics is compute 
using the same formula (Formula 4.15) used in the automatic method. 
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Figure 5.6: Labelling by manual clicking on RGB images on the joint centres (LE, LM and MPT5) 
and TOE (yellow dots). The sagittal angle of the ankle it is represented by the green arch while the 

sagittal angle of the MTP5 by the pink arch. 
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6 Results and Discussions 

6. 1 Evaluation of foot modelling accuracy 

To validate the reconstruction of the 3D foot model, the mean absolute error and the 
mean percentage error between the estimate foot length and the measured one were 
computed. The length of 3D model is obtained as the Euclidean distance between 
heel and toe position in the 3D foot model.  

 

ERROR 
(3D Foot 
model) 
(mm) 
(%) 

          
 

P_01 P_02 P_03 P_04 P_05 P_06 P_07 P_08 P_09 P_10 Mean 

R 2 
(0.8%) 

19 
(8.2%) 

16 
(6.0%) 

18 
(7.7%) 

15 
(6.6%) 

8 
(4.5%) 

21 
(7.8%) 

11 
(5.1%) 

26 
(10.7%) 

11 
(4.9%) 

12.3±7.6 
(5.2±3.0) 

L 18 
(7.3%) 

14 
(5.9%) 

27 
(10.0%) 

16 
(6.9%) 

10 
(4.5%) 

16 
(8.7%) 

18 
(6.7%) 

13 
(6.2%) 

13 
(5.1%) 

15 
(6.4%) 

16±4.4 
(5.7±2.4) 

Table 6.1: Absolute and relative errors in term of foot length (mm and in %) of the 3D Foot model. 

 

As shown in the Table 1, the relative errors fluctuating around 5 % (5.2 ± 3.0 % (R), 
5.7 ± 2.5 %(L)). Although the length obtained from the model may not accurately 
represent the actual length as measured manually, since the extreme coordinates of 
the point cloud could be different form the extremes measured, it can still serve as 
an approximate measure of the accuracy of the 3D foot model creation. 
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6.2 Comparison between 2D markerless kinematics and 
manual labelling 

To validate the estimate lower limb joint kinematics, the sagittal angles of fifth 
metatarsal-phalangeal joint and ankle obtained from the proposed markerless 
method is compared with the 2D angles achieved by manual labelling. 
The accuracy of the proposed method was assessed in terms of offset between the 
two curves and waveform similarity by estimating the root mean square errors 
(RMSE). To facilitate a comparison between the two protocols, the mean value is 
subtracted from both curves, aligning them and removing any offset differences. 
This subtraction of the mean value enables a clear assessment of the error between 
the two angle distributions, without the influence of offset variations. The offsets 
are obtained through the difference between the mean value of automatic kinematics 
and the mean value of labelled one. 
 

Figure 6.1: MTP5 kinematics obtained from the automatic method proposed (red lines) and from 
manual labelling (blue lines) and respective deviation standard (light red and light blue areas) for 

three trials for both sides. 

 

The primary aspect that immediately draws attention in Figure 6.1 is the high 
variability in both automatic and labelled curves identified by the deviation 
standard, represented by light blue and light red areas. This can be attributed to the 
substantial inter-patient gait variability resulting due to the high heterogeneity of 
Clubfoot patients. For instance, in Figure 6.2, it is evident that the waveforms for 
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that specific patient deviate from the mean trend of Right MTP5 kinematics shown 
in Figure 6.1. This observation highlights the lack of standardized gait cycle among 
patients, as individuals with clubfoot are affected differently, causing a high 
variance between the patients gait cycle. 

 

 

Figure 6.2: Right MTP5 automatic (red line) and labelled (blue line) kinematics of single 
patient. 

The offset between the mean kinematics of the metatarso-phalangeal joint and ankle 
joint are evaluated and illustrate in Table 6.2. 

 

OFFSET 
MTP5 
(3 trials) 

(deg) 

 

P_01 

 

P_02 

 

P_03 

 

P_04 

 

P_05 

 

P_06 

 

P_07 

 

P_08 

 

P_09 

 

P_10 

 

Mean 
 

R 1.2 
±1.7 

7.5 
±2.9 

1.8 
±1.0 

0.4 
±0.3 

3.5 
±1.9 

7.8 
±3.0 

1.9 
±0.9 

0.7 
±0.5 

2.7 
±0.9 

7.8 
±1.2 

3.5 
±3.0 

L 1.1 
±0.3 

6.6 
±2.7 

6.0 
±0.5 

9.0 
±1.4 

10.0 
±4.7 

12.8 
±0.5 

9.7 
±0.7  

5.9 
±1.5 

2.3 
±1.5 

1.4 
±0.9 

6.5 
±4.0  

Table 6.2: Mean and standard deviation of the offset of 3 trials between the MTP5 joint kinematics 
obtained from automatic and labelled methods. 
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The errors in terms of RMSE between the mean kinematics of the metatarso-
phalangeal joint are evaluated and illustrates in Table 6.3. 

 

RMSE 
MTP5 
(3 trials) 

(deg) 

 

P_01 

 

P_02 

 

P_03 

 

P_04 

 

P_05 

 

P_06 

 

P_07 

 

P_08 

 

P_09 

 

P_10 

 

Mean 
 

R 5.8 
±0.4 

3.7 
±0.9 

5.0 
±0.8 

5.5 
±0.7 

4.7 
±0.1 

5.3 
±1.3 

4.6 
±0.7 

4.4 
±0.2 

5.2 
±0.9 

3.6 
±0.2 

4.8 
±0.7 

L 5.3 
±0.2 

5.2 
±0.7 

5.1 
±0.0 

5.1 
±0.3 

5.7 
±1.1 

5.8 
±1.3 

5.2 
±0.3  

4.4 
±1.0 

5.9 
±0.6 

5.5 
±0.8 

5.3 
±0.5 

Table 6.3: Mean and standard deviation of the RMSE values after removing the offsets of 3 trials 
between the MTP5 joint kinematics obtained from automatic and labelled methods. 

 

The mean errors in terms of RMSE and Offset between the mean kinematics of the 
ankle joint are evaluated and illustrates in Table 6.4. 

 

Ankle 
 

RMSE (3 trial) 
(deg) 

OFFSET (3 trial) 
(deg) 

Right 4.8 ± 0.7 2.3 ±1.7 

Left 4.9 ±1.6 3.5 ±2.0 

Table 6.4: Mean and standard deviation of the RMSE values after removing the offsets of 3 trials 
between the ankle joint kinematics obtained from automatic and labelled methods. 

 
Upon analysis of Table 6.4, it is evident that the errors between the right and left 
foot are relatively similar, with the right foot displaying a slightly lower error (4.8 ± 
0.7 degrees) compared to the left foot (5.3 ± 0.5 degrees). Specifically, Table 6.2 
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demonstrates that the left foot kinematics are affected by a higher offset (6.5 ± 4 
degrees) compared to the kinematics of the right foot (3.5 ± 3 degrees). It could be 
associated with the color of socks. More details are explained in the paragraph 
(factor influencing the accuracy of kinematics). 

 

 

6.3 Factors influencing the accuracy of foot modelling 

The process of creating the foot model is semi-automated. It must be highlighted the 
importance of positioning the subject in the correct position during the static 
acquisitions in order to correctly identified the common points among the four 
views. One potential source of errors could be attributed to the incorrect position 
during the acquisition phase. Some of the models with the most significant errors 
occurs when the subject’s shank is not perpendicular to the ground causing a 

different shape to the side of the foot as shown in Figure 6.3a.  

Another problem which affects a good accuracy of the model reconstruction is the 
incorrect position, in particular the alignment of the foot axis with the sagittal plane 
during the acquisition of lateral and medial side. If this alignment is not respected 
(Figure 6.3b), the creation of the model requires an integration of manual 
adjustments for translation and rotation offsets since the common points could be 
different between the four views. 

 



62 
 

 

Figure 6.3: a) The incorrect position on the static acquisition for the medial view of left foot (red 
lines). The patient should stand as indicated by the green line. 

 b) Representation of misalignment of principal foot axis and (red dashed line) and X-axis during 
the static acquisition for the lateral view. 

 

6.4 Factors influencing the accuracy of joint kinematics 
estimation 

In this paragraph it will be analysed some issues which are the cause of residual 
errors in foot kinematics estimation related to the proposed depth completion 
technique and ICP algorithm 

One of the most factor which influences the joint centres estimation is the 
application of the depth completion. In particular, the errors are caused by 
inaccuracies in the measurement of the depth values from the depth sensor during 
high-speed movements resulting also in a low number of points belonging to the 
foot and residual errors in foot segmentation due to the blurred RGB images.  

During high-speed movements, it has been noticed that the depth sensor fails to 
accurately reconstruct depth values since the limited exposure time of RGB-D 
cameras can lead to motion blurs in captured images, potentially causing artifacts 
such as holes or fake boundaries [44], resulting in improper alignment between the 
depth image and the RGB image specifically at the foot (Figure 6.4c). To address 
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this issue, a solution is implemented where only the depth values within the RGB 
segmentation are selected using a color filter for subsequent steps. 
 

 

Figure 6.4: a) Depth map (pink pixels) overlapped on RGB images. b) RGB mask (red pixels) 
overlapped on RGB image. c) Overlap of RGB mask edge (green pixels) and subject segmented 
depth map (white pixels). Red arrow indicates the misalignment while blue arrow indicates the 

missed depth values. 

 

Another issue arises when there are a significant number of missing points (Figure 
6.5a), leading to an imperfect reconstruction that does not accurately represent the 
true 3D shape of the foot (blue arrow in Figure 6.5b). As indicated by red arrows in 
Figure 6.5b, another component which leads to a missing of depth values, is the 
incorrect placement of labels by the operator, too close to the edge of the socks or to 
the profile of foot. This placement in dynamic phase causes holes in the RGB mask, 
difficult to fill. 
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Figure 6.5: a) Original depth map obtained by the depth sensor. b) Dynamic point cloud with the 
region rebuilt by depth completion (blue arrow) with the holes caused by the incorrect position of 

labels (red arrows).  

 

In addition, the incorrect segmentation of the feet, such as for the right foot 
(covered by red sock), which in cases of overlap between the two feet (Figure 6.6a), 
leads to major errors in depth completion. Also, for the left foot, which is covered 
by blue sock, during the stance phase, the color filter encounters difficulties in 
accurately delineating the foot’s edges, due to the similarity in color with the green 
carpet, or the shadows caused by the foot itself (Figure 6.6c). These results in the 
identification of pixels on the depth map that do not belong to the foreground foot 
contribute to generate inaccurate point clouds (Figure 6.6b and (Figure 6.6d) by the 
depth completion algorithm, which in turn affects the alignment of the segments 
through the use of ICP.  
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Figure 6.6: Incorrect segmentation of the right foot due to feet overlap (a) and of the left foot due 
to similar color between sock and the carpet, leads an erroneous depth completion generating 

inaccurate point clouds (b, d). 

 

Furthermore, in phase of swing the foot undergoes rapid movement causing the blue 
color of the sock to blur. This blurring effect makes it even more challenging to 
perform to perform the manual labelling of the small labels for validating the joint 
kinematics (Figure 6.6). This difficult to label in the correct pixels add more errors 
in phase of validation. These problems could explain the higher errors obtained in 
the Offset and RMSE of left MTP5. 
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Figure 6.7: RGB images of left foot during the swing phase showing the difficulties to identify the 
labels. 

 

The Iterative Closest Point (ICP) algorithm represents a rigid alignment technique 
that assumes the objects under examination are rigid segments. However, the human 
foot cannot be considered a rigid segment as it can undergo shape variations, 
especially during the swing phase, due to soft tissue artifacts [12] 
Moreover, it is important to emphasize that applying the ICP algorithm to feet 
affected by deformities can pose challenges in achieving accurate alignment 
between the model and the moving foot. 
In this thesis project has been employed a rigid ICP algorithm to address artifacts 
robustly. However, in cases of insufficient data points or foot deformability, 
considering the application of non-rigid ICP or deformable shape models may lead 
to improved estimations of joint kinematics [12]. 

As stated in the point 2 of paragraph 4.3.3 pre-alignment plays a crucial role to 
improve the efficiency and accuracy of the ICP [14] since its good fitting is 
essential to estimate the correct kinematics [12]. In the context of this study, various 
tests were conducted to determine the optimal initial conditions to provide to the 
ICP algorithm, resulting that the best pre-alignment involves placing the dynamic 
point cloud in an external position relative to the model, in order to align the 
dynamic to the lateral view of the entire model. Despite this precaution, any 
adaptation issues can be resolved by solely identifying the points of the model 
belonging to the sagittal view, based on the normal vector of the point cloud. This 
implies selecting points in the point cloud whose normal vector has the same 
direction (within a tolerance) as the vector representing the sagittal plane. This 
approach could help limit the selection of point clouds and reduces errors. The RMS 
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error of fitting points was employed to get a quantitative measure to assess the 
fitting quality. Even if it gives a first indication of the measurement, it has been 
often difficult to interpret it [12].  

One of the factors that significantly impacts the quality of the ICP algorithm is the 
incorrect alignment of the dynamic foot data (Dyn) with the horizontal axis. In the 
foot splitting process, outlined in the chapter 4, the alignment is achieved by 
orienting the inertial principal axis of the 2D foot mask. However, if this axis of the 
2D foot mask does not align with the foot's horizontal axis, it results in an erroneous 
alignment (Figure 6.8a) and introduces a cascade of errors. As a result, due to the 
incorrect splitting, the Mid-Rear-foot segment may have a shorter length than its 
actual length (and vice versa for the Forefoot), which leads to errors in calculating 
the scaling factor.  

Another issue to consider is the presence of fewer points in the distal part of the foot 
compared to the posterior part (Forefoot to Mid-Rear-foot points ratio = 0.26)    
which can lead to errors in estimating the position of the fifth metatarsophalangeal 
joint (MTP5). 

Figure 6.8: a) Erroneous alignment between principal axis of Dyn (dotted line) and X-axis. b) 
overlapping of MRFd (pink points) and MRF (green points). c) the overestimated alignment  
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7 Conclusions 

Despite the marker-based system optoelectronic stereophotogrammetry nowadays 
represents the gold standard of human motion with its high accuracy of marker 
position, it has several limitations such as the proper marker placement on the skin 
of the patient which implies considerable preparing time, the necessity of a prepared 
personal and the cost of dedicated spaces. Nowadays, video-based markerless 
system presents a promising and cost-effective alternative to the marker-based 
system, offering the advantage of speeding up the acquisitions by removing the 
need of markers placement on the subject's body. 
In the recent years, several companies have developed affordable RGB camera 
integrated with infrared depth sensor (RGB-Depth). These proposes, based on a 
single RGB-Depth camera (e.g. Azure Kinect body tracking SDK, OpenPose), 
model the foot as a single segment without articulating the metatarso-phalangeal 
joint kinematics, which is crucial to guarantee an affective load of the foot and 
correct progression [11] 
This thesis aimed to design a markerless method based on a single RGB-Depth 
camera to estimate sagittal ankle and metatarso-phalangeal kinematics using a two-
segment 3D foot model and explore its clinical applicability on children with foot 
deformities. The method proposes to expand the 2D Markerless protocol proposed 
by Balta et al., 2020, including a 2D subject-specific foot model developed by Balta 
et al., 2020 to 3D one by using a 3D two-segments foot model (Mid-Rear-foot and 
Forefoot segments). 
The proposed 3D protocol is structured in two parts: 

1) Creation of a 2-segment 3D foot template by merging four static views of the 
foot (Frontal, Lateral, Medial, Posterior) by aligning three common points on 
the foot sole of each view. Then a 2D shank template was obtained as in 
Balta et al., 2020. Both templates were calibrated by manually identifying 
lateral epicondyle, lateral malleolus, the fifth metatarso-phalangeal joint and 
toe on the RGB static image. 

2) Estimation of the joint kinematics during a gait cycle. A depth completion 
technique was implemented to reconstruct, during the gait trials, missing 
depth information by exploiting RGB information. The positions of the ankle 
and fifth metatarso-phalangeal joint were reconstructed by matching the 3D 
foot template to the dynamic point clouds applying ICP algorithm [14] while 
the position of knee joint centre was extracted implementing the 2D 
markerless protocol proposed by Balta et al., 2020. 
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The experimental session was conducted on ten subjects affected by Clubfoot who 
were asked to walk straight at a self-selected speed for six trials (three for left and 
three for right) in front of the camera, which was placed laterally to the walkway. 
The markerless data were not performed synchronously due to the infrared 
interference of the two systems which had the same IR working wavelength (850 
nm). The computed joint angles were validated by comparing them with those 
obtained from manually labelled anatomical landmarks on RGB images. The 
accuracy of the proposed MS method was assessed in terms of offset between the 
two curves and waveform similarity by estimating the root mean square errors 
(RMSE) after removing their mean values. In addition, percentual errors of the 3D 
model creation in terms of foot length were computed. The accuracy of the 3D foot 
model reconstruction was evaluated by computing the difference in terms of the 
percentage error between the estimated foot length and the one manually measured 
on the patient.  

Taking into account the limited number of views required for the creation of the 3D 
model, the reconstruction accuracy showed promising results, represented by a 
percentage error of 5.2% for the right foot and 5.7% for the left foot. The 
acquisition protocol is specifically designed to minimize any possible discomfort 
that the subject may experience during the upright static position. However, it is 
important to note that incorrect positioning of the subject during the static 
acquisition phase can introduce errors and challenges in aligning the different 
views. Therefore, ensuring proper subject positioning is crucial to mitigate such 
issues and enhance the accuracy of the reconstruction process. 

By analysing the joint kinematics, the RMSE and offsets associated to the left lower 
limb are higher than the right one, RMSE (deg): MTP: 4.8 (R), 5.3 (L); ankle: 4.8 
(R), 4.9 (L) and Offset (deg): MTP: 3.5 (R), 6.5 (L); ankle: 2.3 (R), 2.5 (L)). 
The reported errors are mostly associated with the technological limitations of the 
RGB-Depth device employed. In particular, during high-speed movements 
especially during swing phase, the depth sensor of RGB-Depth cameras may fail to 
accurately reconstruct depth values due to motion blurs, leading to artifacts such as 
holes or fake boundaries. This limitation could be improved by implementing a 
depth sensor characterization in order to implement a more suitable depth 
completion techniques (e.g. inpainting-based or deep learning based models). In 
particular, the presence of missing points in the reconstruction process affects the 
accuracy of the 3D shape representation of the foot. This issue is especially 
represented in the Forefoot segments (Forefoot to Mid-Rear-foot points ratio = 
0.26) and can lead to errors in estimating the position of joints, such as the fifth 
metatarsophalangeal joint (MTP5). Furthermore, the assumption of rigid segments 
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in the ICP algorithm is not suitable for the non-rigid nature of the human foot which 
undergoes shape variations and can be influenced by soft tissue artifacts. This 
limitation suggests the need to explore alternative approaches. 
A technical limitation, that needs to be addressed, is the challenge of achieving 
synchronous acquisition between the Azure Kinect system and 
stereophotogrammetry.  
From a clinical perspective, a limitation of this method is that the acquisition is 
performed in the sagittal plane with a lateral view. This does not allow the 
consideration of the kinematics of the first metatarsophalangeal joint, which is a 
significant indicator of gait quality compared to the fifth joint [11]. 

In conclusion, considering the rapid technological advancement in depth sensing, 
the proposed approach seems to be a very promising solution, in terms of preparing 
and acquisition time and effective cost, to evaluate the gait of subjects with foot 
deformities. 
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