
POLITECNICO DI TORINO

Master of Science in Computer Engineering

Master of Science Thesis

Extending MES Software: Enhancing Data

Integration and Usability in Siemens Opcenter

and Open Data Opera MES

Supervisor

Prof. Ernesto Sánchez

Co-supervisor:

Prof.ssa Sara Vinco

Candidate

Diego Gazmuri L.

Academic Year 2022/2023

Acknowledgements

En primer lugar, quiero agradecer a mis padres, Sandra y Rodrigo, por su apoyo
incondicional. Han sido un soporte inquebrantable durante toda mi vida y quiero
que sepan todo lo que lo aprecio. Gracias por todas las oportunidades que me han
brindado a nivel personal y educativo, especialmente por la experiencia de vida
irrepetible que me regalaron al permitirme ir a Italia. Esta tesis no existiŕıa sin

ustedes.

Asimismo, quiero mencionar a las dos compañeras que la vida me ha regalado,
Josefina y Emilia. Hermanas queridas, me encantó haber compartido mi infancia
con ustedes y espero que la vida nos depare experiencias tan lindas como las que ya

hemos vivido juntos.

También quiero destacar a una persona que ha sido fundamental durante mi vida y
que me acompaña desde el d́ıa en que naćı. Panchita, eres mi segunda madre y te
estaré eternamente agradecido por el inmenso amor que me has dado desde que
tengo memoria. Me has enseñado much́ısimo y no seŕıa la misma persona si no

fuera por ti.

Los quiero mucho a todos.

Infine, desidero esprimere il mio sincero ringraziamento ad aizoOn per la fiducia
che ha riposto in me nello sviluppo dei progetti inclusi in questa tesi. Vorrei

ringraziare in particolare Simona, che mi ha accompagnato sin dal primo giorno, e
anche i miei colleghi Laura ed Umberto, che mi hanno guidato e sostenuto

all’inizio del mio percorso professionale. Grazie di cuore.

Abstract

In the era of Industry 4.0, manufacturing execution systems (MES) software plays
a crucial role in supporting production planning, tracking and control. This thesis
focuses on extending two MES software programs for two distinct companies, Lin-
cotek and Robopac, in response to the evolving needs of managers, operators and
modern manufacturing in general.

The first phase of the project regards Lincotek’s need for efficient data exchange
with a certain type of machine involved in their manufacturing process. A novel
architecture is implemented, supported by a dedicated database and a new workflow
in the Opera MES software. The solution automatises the data transfer process, thus
eliminating the need for manual data copying and ensuring data accuracy.

The second part focuses on reimagining and redesigning the default work order
diagram of operations in Siemens Opcenter, thereby enhancing the understanding
of work order status. A visually appealing and informative new diagram is developed
using a JavaScript library. It is then placed in a convenient panel within the interface
that operators interact with the most, thus enabling them to swiftly access and
interpret production information.

These projects illustrate the versatility and flexibility of MES software, which allows
customisation in order to be tailored towards specific needs. Through continuous
improvement of MES software, companies can enhance productivity and efficiency,
thereby adapting to the complexities that frequently arise in the manufacturing
world.

This thesis also contributes to the advancement of smart manufacturing practices
by demonstrating the importance of MES software in the process of transformation
from a traditional production plant into an agile smart factory. The insights and
conclusions shared throughout this work can serve as principles for companies seek-
ing to begin the journey of digitalisation and automation in their manufacturing
processes.

Ultimately, and beyond any specific implementations, this thesis carries a broader
message: the importance of continuous improvement and process optimisation in the
era of Industry 4.0. This is a crucial lesson that manufacturing companies would be
wise to learn. Additionally, and going even further, it highlights the significance of
embracing a mindset of constant betterment not just in the manufacturing industry
but in all aspects of professional and personal life.

Contents

1 Introduction 1

1.1 Context . 1

1.2 Objectives . 1

2 Background 3

2.1 Industry 4.0 . 3

2.2 MES Software . 7

2.3 Companies Involved in the Thesis . 10

2.3.1 aizoOn . 10

2.3.2 Lincotek . 11

2.3.3 Robopac . 12

3 Lincotek and Opera MES 13

3.1 Opera MES . 13

3.1.1 Overview . 13

3.1.2 Stored Procedures and Variables 18

3.1.3 Example of the Advancement of a Phase of a Work Order . . 20

3.2 Airflow Machines . 32

3.3 Novel Contribution: Automatic Data Collection and Storage for En-
hanced Quality Assurance . 35

3.3.1 Objectives . 35

3.3.2 Providing Data to the Airflow Machines 36

3.3.3 Reading Data from Airflow Machines and Inserting it into
Opera MES . 43

3.3.4 Additional Changes to Workflow 397 47

3.3.5 Final Comments . 51

4 Robopac and Opcenter 53

4.1 Opcenter . 53

4.2 Robopac’s use of Opcenter . 58

4.3 Novel Contribution: Enhanced Work Order Visual Representation . . 60

4.3.1 Objectives . 60

4.3.2 Implementing the Interface . 61

4.3.3 Generating the New Diagram 65

4.3.4 Final Comments . 74

ii

5 Discussion 75
5.1 Added Value . 75

5.1.1 Lincotek and Opera MES . 75
5.1.2 Robopac and Opcenter . 77

5.2 Comparing Opera MES and Opcenter 78

6 Conclusions 81

Bibliography 85

List of Figures 89

iii

Introduction

1.1 Context

Nowadays, the world is going through a new Industrial Revolution, commonly re-
ferred to as Industry 4.0. This is a new paradigm that seeks to alter forever the way
in which humans interact with machines in manufacturing and production environ-
ments [1]. Industry 4.0 aims to revolutionise manufacturing to achieve a new level
of industrial automation, thus improving work conditions, productivity and quality
[2].

One of the key factors of Industry 4.0 is that it is IT-driven, since its design principles
heavily favour interconnection and information transparency, leading to better and
more informed decision making [3, 4]. In other words, Industry 4.0 is all about
using new technologies to collect more and better data, leading to a better decision-
making process that improves efficiency and minimises manual work [5]. In this
context, manufacturing execution systems (MES) software is emerging as a critical
tool to support production planning and control [6] and will therefore play a crucial
role in enabling the objectives of Industry 4.0 [3].

MES is an integrated information system and real-time compliant software that
is used to plan, track and document the entire manufacturing process, controlling
and monitoring the transformation of raw materials into finished products [7, 8].
The usage of MES allows decision makers to make important decisions with more
and better information or detect potential issues as soon as possible, leading to an
increase in production efficiency [9].

Considering all of the above, implementing MES is very advantageous for a com-
pany, especially considering the worldwide manufacturing revolution being thrust
forward by Industry 4.0. This means that modern companies should be pushing
to incorporate this software and be looking to improve its functionalities regularly,
always aiming to optimise production.

1.2 Objectives

This thesis has been done alongside aizoOn, a company that specialises in technology
consulting. Two of its clients, Lincotek and Robopac, are companies that implement

1

https://www.aizoongroup.com/home.aspx#intro
https://www.lincotek.com/
https://www.robopac.com/en

Introduction

MES software to manufacture their products. Since the requirements these two
companies have for their MES software vary with time, with new ones frequently
arising, they have hired aizoOn to implement additional functionalities when new
necessities emerge.

The aim of this thesis is to implement a number of functionalities for each com-
pany. Each of these firms uses a different MES software, each coded in a different
programming language, meaning that the skills needed for each part of the project
will vary. Furthermore, the ability to add new functionalities shown in the rest of
the thesis will hopefully demonstrate the versatility and flexibility of MES software,
which allows managers to quickly implement changes that are required by workers
in order to improve the manufacturing process.

2

Background

This chapter delves deeper into the topics introduced by the Introduction. The two
initial sections continue to discuss the relevance of Industry 4.0 and MES software
in today’s world, exploring their origins, features and how experts believe they will
continue to evolve and gain prevalence.

The final section is focused on the three companies involved in the thesis: aizoOn,
Lincotek and Robopac. With respect to the first, a deeper overview is given as well as
an explanation of what it usually does. Regarding the final two, their manufacturing
process and its relationship to MES software is presented. This gives a more clear
image of how MES software is employed and how companies benefit from its usage,
as well as deepening the understanding of what these firms want from it.

2.1 Industry 4.0

Throughout history, there have been a total of four Industrial Revolutions. Every
one of them has been the result of greater knowledge and scientific progress, leading
to important technological advances that have revolutionised the way we see industry
and manufacture products. These four paradigm-changing shifts in production have
brought drastic changes to all aspects of life, from the efficiency of our production
processes to the quality of life of workers around the world.

The first Industrial Revolution deeply changed the way in which goods were pro-
duced, as humanity transitioned from mostly employing skilled artisans to employing
relatively unskilled workers that used machinery powered by water or steam [10].

The second Industrial Revolution is usually dated between 1870 and the beginning
of the 20th century. It involved the improvement of current technologies as well
as the usage of electricity instead of water and steam, thus driving rapid technical
changes. Additionally, machines were arranged to favour the smooth transition from
one operation to the next, thus giving birth to the assembly line. This, alongside the
increased usage of interchangeable parts, marked the beginning of mass production
[10, 11, 12].

The third Industrial Revolution began on the 1970s and consisted of the spread of
automation and digitisation as computers and the internet started to arise. Their
introduction to the manufacturing process allowed reaching unprecedented levels of

3

Background

precision and accuracy [10, 13]. Due to the third Industrial Revolution, we now have
affordable digital manufacturing tools that are connected to the Internet [14].

Figure 2.1: The Four Industrial Revolutions [15] (by Christoph Roser at AllAboutLean.com)

Lastly, there is the aforementioned fourth Industrial Revolution, also known as In-
dustry 4.0. The last decades have seen technological innovation develop at an un-
precedented rate, leading to changes in all aspects of life. Technologies like artificial
intelligence (AI), machine learning, robotics and the Internet of Things (IoT) have
revolutionised the way we live our daily lives, as well as our economic and financial
sectors [16, 17].

Industry 4.0 has created many opportunities and is likely to create many more
in a variety of economic areas [18]. For instance, regarding sustainability, Corfe
[19] has listed multiple ways in which it might bring up opportunities to clean the
environment and decarbonise our industries, thus curbing air pollution.

In the field of manufacturing, the term Industry 4.0 refers to the effect all the
aforementioned technologies have on productivity, data collection, automation and
product quality, among others [20]. These new technologies are allowing production
plants to reach unprecedented levels of automation and connectivity. Herman et al.
and Yao et al. [21, 22] consider the following technologies as key components of
Industry 4.0:

• Big Data is “structured, unstructured and raw data stored in multiple dis-
parate formats” [23]. Access to more data provides many benefits to compa-
nies, such as identifying failures and their causes in real time. Over the past
decades, the amount of data has seen an unprecedented increase. Further-
more, it is only predicted to continue growing. Figure 2.2 shows Taylor’s [24]
predictions regarding this subject.

4

2.1 – Industry 4.0

Figure 2.2: Volume of data/information created, captured, copied, and consumed
worldwide from 2010 to 2020, with forecasts from 2021 to 2025 (by Petroc Taylor at
statista.com)

• Cloud Manufacturing (CM) is the industrial version of cloud computing
[23]. It works by encapsulating manufacturing resources into manufacturing
services that are then available in the cloud as cloud services [25]. These cloud
services are managed centrally and can be offered by various suppliers.

• The Internet of Things (IoT) is the infrastructure that allows a variety of
objects, devices and sensors to connect, communicate and interact with each
other through the Internet [26]. This interconnection between all items that
are associated with the manufacturing process allows the generation of data
that can be used throughout the supply chain as well as connecting machinery
and people in unprecedented ways [27]. Additionally, IoT gives companies
the ability to rapidly respond to malfunctions, since operators are notified
instantly due to the effective collaboration network [28].

• Cyber-Physical Systems (CPS) consist of the integration between the
physical and virtual worlds, usually supported by the aforementioned tech-
nologies [29]. Humans can interact with CPSs in many new ways that older
systems simply cannot support. Cyber-physical systems allow computers to
monitor and control physical processes, meanwhile the results of these physical
processes affect future computations [30].

• Smart Factories is a term that has gained prevalence in recent years, as
it is increasingly being used in industry. Despite this, it has no consistent
definition throughout the scientific world [31]. However, the literature has
proposed plenty of definitions. After analysing several definitions, Radziwon
et al. [32] have defined it as follows:

5

Background

“A Smart Factory is a manufacturing solution that provides such flexible and
adaptive production processes that will solve problems arising on a production
facility with dynamic and rapidly changing boundary conditions in a world of
increasing complexity. This special solution could on the one hand be related
to automation, understood as a combination of software, hardware and/or me-
chanics, which should lead to optimisation of manufacturing resulting in re-
duction of unnecessary labour and waste of resource. On the other hand, it
could be seen in a perspective of collaboration between different industrial and
nonindustrial partners, where the smartness comes from forming a dynamic
organisation.”

From this definition and others found in the literature, we can confidently
conclude that the technological advances of the last decades have made possible
the creation of smart factories. The integration of some of the aforementioned
technologies, such as the IoT and CPS, have given new capabilities to modern
manufacturing plants, turning them into smart factories [23]. These new type
of factories use information technology and data in new ways that improve the
management and control of manufacturing resources, thus pushing the limits
of the manufacturing processes of the past [33].

Figure 2.3: Smart Factories [34] (by Olha Didenko at altamira.ai)

The impact Industry 4.0 has had so far and will continue to have in the next decades
has been widely discussed in the literature. It certainly will have deep effects on sev-
eral domains beyond the industrial sector, bringing about paradigm-shifting changes
[35].

Among the affected sectors, Industry will be the most impacted one [35]. The man-
ufacturing paradigm will be deeply changed by all the aforementioned technologies,
leading to a digitised production that will be made up of elements capable of com-
municating with each other, making decisions, responding to the environment and
autonomously controlling themselves [36]. Furthermore, Industry 4.0 will have a

6

2.2 – MES Software

deep influence on industrial processes, manufacturing systems and supply chains
[35].

Every industrial revolution has had at its core an increase in productivity. However,
the fourth industrial revolution is expected to go even further by affecting the entire
supply chain, from product development and engineering processes to outbound
logistics [35].

Figure 2.4: Industry 4.0 [37]

2.2 MES Software

From the previous section, we can conclude that factories that want to get on the
Industry 4.0 train need to fulfil a series of criteria. Mainly, these include several
technological features that will become inseparable from the factories of the coming
years, since their benefits are simply too great and companies that do not take
advantage of them will be at a serious, perhaps even insurmountable, disadvantage.

Due to this, companies will be likely to start developing smart factories with cyber-
physical systems supporting them. In production plants like these, effective coordi-
nation and communication between all elements is essential to achieve automation
and make the most out of the smart factory. These elements are connected through
the IoT and CPS. In this context, a comprehensive and robust tool is needed to prop-
erly manage and control the manufacturing process, watching over all its intricate
parts.

Manufacturing execution systems (MES) are an integrated information system and
real-time compliant software that are used to plan, track and document the entire
manufacturing process, controlling and monitoring the transformation of raw mate-
rials into finished products [7, 8]. MES software performs the important function
of acquiring, saving, managing and forwarding all the information being generated,
thus aiding the decision-making process and optimising the manufacturing process
[38]. Therefore, usage of MES provides decision-makers with more data of higher

7

Background

quality, meaning the firm is better prepared when making important decisions. This
leads to an increase in production efficiency [9].
MESA (Manufacturing Enterprise Solutions Association) International is a global
nonprofit that provides education and shares good practices regarding Industry 4.0
and Smart Manufacturing. MESA “was formed in 1992 as a trade association rep-
resenting developers and vendors of MES software” [39]. Back in 2001, when MES
was a lot less developed than it is today, McClellan [40] stated some of the benefits
MES offers to its users. These benefits were a compilation done by MESA during
those times and they included:

1. Reduces manufacturing cycle time.

2. Reduces work-in-process inventory.

3. Reduces paperwork between shifts.

4. Eliminates lost paperwork/blueprints.

5. Improves customer service.

6. Reduces or eliminates data entry
time.

7. Reduces lead times.

8. Improves product quality.

9. Empowers plant operations people.

10. Responds to unanticipated events.

Out of these benefits, we can see that most of them (Benefits 1, 3, 6, 7, 8, 9 and
10) provide even more value to a company nowadays due to Industry 4.0 and the
technologies that comprise it. It is also pretty evident that this list is somewhat
outdated, since it does not really convey just how useful and powerful MES software
is for a company in the Industry 4.0 context.

Tzedef [41] identifies four main areas in which MES software provides great added
value:

1. Manufacturing Indicators: the company has access to more information re-
garding the efficiency and availability of the resources needed for the manufac-
turing process. Additionally, the system also realises when a certain resource
is being wasted.

2. Quality: full management of all quality related stages in the process. When-
ever a product does not meet quality standards, the information reaches the
competent persons practically immediately, allowing fast responses and ad-
justments. Furthermore, due to the large amount of data being stored, it is
easier to identify a certain faulty machine that is more prone to producing
items that do not meet quality standards.

3. Traceability: due to the connection between all elements involved in pro-
duction, which is possible due to the IoT, administrators have full visibility of
every product that is being manufactured and every product manufactured in
the past. Thus, the company will always know what process any given product
went through and what resources were used to create it.

4. Planning: MES facilitates the planning of production due to the additional
knowledge of production floor constraints and limitations it provides. It also
allows for easy comparisons between what was planned and what was the

8

https://www.mesa.org/

2.2 – MES Software

actual output of the plant. Furthermore, involving MES in scheduling ensures
the optimal usability of resources [42].

The first list of benefits, put together by MESA, is reason enough for a manufactur-
ing company to incorporate MES software into their production processes, since it
provides it with many desirable and even necessary improvements. When this list
was compiled over twenty years ago, the benefits were already very attractive and
compelling, but with the passage of the years, the power of MES has only increased,
as has its added value. During these years, MESA’s list of benefits has evolved into
the much broader one proposed by Tzedef. Nowadays, the benefits of properly im-
plementing MES software go beyond just the manufacturing process, also affecting
the entire supply chain.

Before Industry 4.0 was conceived and understood as it is today, MES already in-
creased the efficiency and effectiveness of the entire manufacturing process by allow-
ing better control of resources, including raw materials, equipment, personnel and
facilities [43]. Nowadays, in the midst of the fourth industrial revolution, the litera-
ture agrees that is has become a crucial tool to enable smart factories. Mantravadi
and Møller [3] state that MES software is and will continue to be crucial to enable
smart factories, thus playing a key role in the manufacturing systems pushed for-
ward by Industry 4.0. Additionally, they hypothesise manufacturing enterprises will
continue to invest in MES to serve their future factories. However, the authors have
also claimed that the full impact of MES is yet to be quantified in the literature,
meaning that it could turn out to be even more important than is currently believed.

Figure 2.5: Features of Manufacturing Execution Systems [44]

9

Background

Due to all of the above, manufacturing companies should begin implementing MES
software as soon as possible. This is what companies like Robopac and Lincotek
have done in order to work towards having their production plants evolve into smart
factories. Each of these two companies has bought a license for a different MES
software and have hired aizoOn to implement all modifications and additional func-
tionalities they might require. By doing so, they have begun to access the benefits
MES software provides and are on their way to automatise further their production
plants, hoping to reap the rewards Industry 4.0 promises to deliver.

2.3 Companies Involved in the Thesis

The final section of this chapter delves deeper into each of the three companies
involved in the projects undertaken in this thesis. It offers a general introduction to
each company, enabling the reader to gain a better understanding of their objectives
and roles in the implemented projects.

2.3.1 aizoOn

aizoOn Technology Consulting is a company that was founded in Turin, Italy. Since
then, it has expanded to multiple cities around Italy, as well as into the United
Kingdom, the United States and Australia. The firm defines itself as a “global
technology consulting company focused on innovation” [45]. aizoOn is structured in
eight different market areas, each of which offers variety of technological services.
These areas are:

• Aerospace and Defence

• Energy

• Finance

• Consumer Goods & Services

• Transportation

• Government

• Health & Life Sciences

• Industrial Goods &
Communication

Among the offered technological services is the maintenance and development of
MES software. Lincotek and Robopac are two companies that have hired this service
and are currently working with aizoOn to improve their respective MES software.
Each firm uses a different software, as will be seen in the following subsections,
meaning that aizoOn’s MES team must adapt to different software and programming
languages.

In the development of this thesis, the implementation of functionalities for both of
these firms was carried out through a collaboration with aizoOn. The nature of
the features was very different and therefore required different skills to implement.
The entire project was estimated to last four months, meaning two months were
dedicated to each company.

10

2.3 – Companies Involved in the Thesis

2.3.2 Lincotek

Lincotek is an Italian manufacturing company that defines itself as follows:

“[Lincotek] is a global contract manufacturer for services in markets including Indus-
trial Gas Turbines, Aviation and Medical Device applications, as well as a leading
manufacturer of industrial coating equipment and one of the most respected producers
in the Additive Manufacturing field.” [46]

The firm has its headquarters in Italy but has expanded into other European coun-
tries, as well as Asia and North America. Within Italy, it has many production
plants, among which is one located in Rubbiano. This plant organises its manu-
facturing process with Opera MES, a MES software developed by Italian company
Open Data, part of the Zucchetti group. aizoOn has been employed by Lincotek to
maintain the software and implement any requested changes.

Figure 2.6: Rubbiano Manufacturing Plant

One of Lincotek’s many partners is an American company named FlowSystems that
designs, manufactures and supports a wide range of flow measurement products for
gasses and liquids [47]. This firm produces a special machine that Lincotek uses
in its manufacturing process called an Airflow machine. This important piece of
equipment is at the centre of all modifications that were done in this thesis.

In the following chapters, a deeper dive into Opera MES and how it works internally
will be done, as well as explaining in detail how workers interact with it and how
modifications are implemented. Additionally, the characteristics of Airflow machines
and their role in Lincotek’s manufacturing process will be illustrated.

11

https://www.opendatasrl.it/index.php/en/
https://www.zucchetti.it/website/cms/home.html
https://www.flowsystemsinc.com/

Background

2.3.3 Robopac

Robopac is another Italian company that was founded in 1935. It “offers a wide
range of solutions and services for the end-of-line packaging industry: from semi au-
tomatic wrapping machines to automatic machines, shrinkwrappers and case pack-
ers” [48]. In the years since its founding, Robopac has expanded across Europe and
also into Asia and the Americas.

Robopac divides itself into six different business units:

• Robopac Machinery

• Robopac Systems

• Robopac Packers

• Sotemapack

• Robopac Brasil

• Toptier

The business unit that concerns aizoOn and therefore this thesis is Robopac Machin-
ery. It was established in 1982 and has its headquarters in San Marino. It currently
is the world leader in wrapping technology with stretch film [49].

Figure 2.7: Robobac Machinery Manufacturing Plant in San Marino

Robopac Machinery uses a MES software called Siemens Opcenter to organise its
manufacturing process. Just as with Opera MES and Lincotek, aizoOn has been
hired by Robopac to add functionalities to this MES software. Subsequent chapters
will delve deeper into the way Siemens Opcenter works and how aizoOn modifies it.

12

Lincotek and Opera MES

This chapter is dedicated to the first phase of the project, regarding Lincotek, which
spanned a duration of just over two months. The initial section explains in detail
how Opera MES works and what are its essential components, along with any other
important details regarding the project. Subsequent sections delve into the specific
customisations requested and their implementation, in addition to a more compre-
hensive exploration of Airflow machines.

3.1 Opera MES

3.1.1 Overview

Opera is a Manufacturing Execution System platform developed by Open Data,
a software company part of the Zucchetti group. They claim Opera is a “factory
IT system that guides, governs, controls and optimises the entire manufacturing
process, from launch of order to finished goods, connecting people, machines and
functional processes” [50].

The Opera MES manual [51] states that the software allows the user to “understand
and improve plant production performances, managing and monitoring the whole
factory by providing real-time information”. Opera is designed to be part of a
company’s IT infrastructure in a central location, between the Plant and enterprise
resource planning (ERP), thus making its analysis tools more powerful in supporting
strategic decision making.

Figure 3.1: IT architecture were Opera works best

13

Lincotek and Opera MES

Opera manages and tracks information in the following way:

Operator X started Activity Y on Resource Z

The key entities involved are:

• Operators (X)

• Work Orders (WO), which are composed of a series of required activities
and all the necessary data, such as quantities needed, delivery dates, etc. (Y)

• Machines, which can either be the machine itself or any resource where op-
erators performs their activities. (Z)

An activity is any action taken in the factory floor. Whenever an action is performed,
a new record is generated in the Opera MES software. This record contains all
necessary information to answer the question who did what and where? Due to this,
every step of the manufacturing process is fully tracked, meaning decision makers
have an abundance of information and always know what worker did what activity
and what resources were needed to do so.

The main components, including hardware and software, involved in Opera’s factory
layout configuration are illustrated in Figure 3.2. Without these components, the
functioning of the Opera MES software is not possible.

Figure 3.2: Opera’s Factory Layout Configuration

14

3.1 – Opera MES

The server is a computer where the SQL server and Opera WFM are installed.
Naturally, all requests are managed by the server. Opera WFM enables the exe-
cution of Workflows (more on them later) to an authenticated user. In order to
use Opera WFM, it must be configured to a Monitor, which then must be linked
to terminals (Term in Figure 3.2). These are devices that can interact with the
Monitor and therefore with Opera. By setting up all of this, users can properly use
Opera MES. Finally, there is Opera MC, which represents the management side
of Opera. This is what decisions makers use to access all the saved information
regarding the manufacturing process.

As previously mentioned, work orders are composed of a series of activities. In
Opera, these activities are called phases. Whenever an operator wants to work on
a phase, they must record the progress on the MES software, which they do by
accessing it through terminals in the factory floor. In order to advance a work order
in the software, workflows must be executed.

Workflows are the main entity Opera WFM works with. A Workflow is a process
that assigns values to a structured set of variables [51]. There are four elements that
characterise a workflow:

• The set of variables.

• The order in which the variables are shown.

• The order in which events are propagated between variables.

• The actions to be taken when major events occur. Such events include the
Workflow creation, the alteration of a variable’s value and the Workflow’s
finalisation.

Figure 3.3 shows the interface an operator interacts with whenever they want to
register something in Opera MES. This is the main window where the operator
selects a Workflow to execute.

Each coloured rectangle corresponds to a different Workflow. Every Workflow is
identified by its ID and is also given a name, as seen in each rectangle in Figure 3.3.
By hovering over a rectangle, the Workflow’s ID is visible, as illustrated in Figure
3.4. Since the manufacturing plant is located in Italy, everything is in Italian.

15

Lincotek and Opera MES

Figure 3.3: Opera’s main window

Figure 3.4: Opera - Hovering over a Workflow

In this case, we can see that the ID of the Workflow with name Inizio Piazzamento
is 3. Naturally, clicking on a coloured rectangle redirects the operator to the asso-
ciated Workflow’s interface. For example, clicking on Riepilogo Commessa presents
information regarding all work orders. Through this particular Workflow, the op-
erator can know the details of every work order and every phase that comprises it.
Figure 3.5 shows what the operator sees when they access this workflow.

16

3.1 – Opera MES

Figure 3.5: Opera - Riepilogo Commessa Workflow

In the row labelled as Ordine di Lavoro (work order) there is a table containing
every work order in the server and some information about it, such as the order
ID and the client that requested it. By clicking on a row in the table, additional
information about the selected work order is displayed in the row labelled as Fase
di Lavoro (Phase of the work order), as shown by Figure 3.6.

Figure 3.6: Opera - Riepilogo Commessa Workflow When a Work Order is Selected

In this case, work order number 020033000348 has been selected. The second table
displays a breakdown of this order, were each row is a different phase. For the
purpose of this thesis, the most important columns are:

• Operazione: code of the phase

• Descrizione: description of what the phase does

• Mac. Prv : machine(s) that is(are) capable of executing the operation

17

Lincotek and Opera MES

• Q.tà Prevista: amount of items that are expected to pass through this phase

• Q.tà Versata: amount of items that have passed through the phase

• Operatore: operator that is executing the phase

By analysing the table, we can conclude that this work order has not yet been
initiated. This is because 0 items have passed through in the first phase, as shown
by the 0 under the Q.tà Versata column. Furthermore, the Operatore field is also
empty, meaning no operator has been assigned to this phase.

When an operator decides to carry out this work order, they can obtain all necessary
information from the table. By quickly looking at the table, the operator will know
that the machine with code INC is necessary to complete the first phase of the work
order.

To exemplify the typical use of Workflows to advance a work order, the final subsec-
tion of the Opera MES section will show the completion of the first phase of work
order number 020033000348.

3.1.2 Stored Procedures and Variables

Opera MES is written in three different programming languages: JavaScript, HTML5
and Structured Query Language (SQL). The first two are mainly utilised to design
the front-end, i.e. the interface the operator interacts with in the monitor, whilst
SQL is used for the back-end. This means that the functionalities of all Work-
flows are defined and determined by SQL code. The Lincotek project was centred
around implementing changes to Workflows, so all changes were done in SQL. Due
to this, this thesis will not delve into the parts of Opera MES written in HTML5
and JavaScript.

All Opera MES Workflows work by calling stored procedures. A stored procedure
is a set of SQL statements that can be saved, so they can be used over and over
again. In other words, it is an SQL block of code that can be called by other pieces
of code, thus allowing it to be reused often.

Every Workflow is composed four essential stored procedures:

• Commit : called on Workflow finalisation

• OnChangeValue : called when a variable’s value is updated

• OnWfCreate : called when a Workflow is created (accessed by operator)

• ViewFillGrid : called to populate the data for a variable

Together, they make all necessary changes to the database to register everything
that is done during production. Figure 3.7 shows that these four stored procedures
are the ones that make up Workflow 385.

18

3.1 – Opera MES

Figure 3.7: The Four Stored Procedures

While defining Workflows in the previous subsection, it was mentioned that these
entities assign values to a set of variables which are displayed in a determined order.
Once all necessary variables of a given Workflow have been set, the Workflow can
be committed, thus running the Commit stored procedure. If one or more variables
have not been properly set, Opera MES will raise an error.

All variables are stored in the database in a table called MntrVars that contains
information about all of them. Figure 3.8 shows the first 10 entries of this table in the
DEV environment. If a Workflow wants to use a variable, it must link to it through
another table called MntrWV. This table not only establishes the connection, it
also determines the behaviour of the variable in said Workflow through a series of
parameters and flags. Additionally, the order of the variables is also detailed in
MntrWV.

Figure 3.8: First Ten Entries of MntrVars Table

19

Lincotek and Opera MES

To create a variable and link it to a Workflow, only two insert queries are required,
one to each table. In the second table, the correct order of appearance for that
variable must also be set. This will all be done in detail later in the project when
implementing the customisations.

Whenever a Workflow is being executed, variables manifest themselves as tabs in
that Workflow. Each tab in the Workflow’s display screen corresponds to a variable,
and the order of the tabs follows the order determined in the MntrWV table. The
next subsection will illustrate this.

3.1.3 Example of the Advancement of a Phase of a Work
Order

The first step to beginning a phase of a work order is preparing and readying the
machine, which is done with the first Workflow of the grid, as shown in Figure 3.3.
This is Workflow 3 - Inizio Piazzamento. Figure 3.9 shows what the operator sees
when accessing this Workflow.

Figure 3.9: Opera MES Example - Inizio Piazzamento

Here we can see there are five different tabs, one corresponding to each variable
associated to this Workflow, as mentioned in the previous subsection. The order
of the tabs is also the aforementioned order of the variables. In the case of Work-
flow 3 - Inizio Piazzamento, there are five variables: Badge, Macchina, Ordine di
Lavoro, Fase di Lavoro and Programma/Scheda componente. In order to properly
execute the Workflow and thus correctly start the first phase of work order num-
ber 020033000348, the operator must go through each tab, inputting the correct
information.

The first step is completing the tab Badge. For this, the operator simply needs
to scan their badge in the scanner next to the monitor where he is accessing the
Workflow. Once they do this, their information will appear on screen. For this

20

3.1 – Opera MES

example, a random worker from the database was used. His badge number and
name are shown in Figure 3.10.

Whenever the operator selects something in a tab, they are essentially giving a
value to the associated variable. Therefore, by scanning their badge and selecting
themselves, the operator has saved their badge ID in the variable. Whenever this is
done, the tab is updated and starts showing the current saved value. This can be
appreciated by comparing Figures 3.9 and 3.10. In the former, in the top left corner,
one can see the selected tab is Badge, but there is no information in the button to
open the tab, shown in blue. In the latter figure, once the operator has scanned
their badge, their information is shown in that same button, meaning the variable
has been set. The same occurs for each tab.

Figure 3.10: Opera MES Example - Inizio Piazzamento: Badge Selected

Once the badge has been scanned, the program knows what worker is going to exe-
cute the Workflow. This is essential to the proper functioning of any MES software,
since traceability is a crucial part of it. The next step is selecting the machine that
will be used. As mentioned above, this phase requires the use of machine INC, so
the operator must select it. When first opening the Macchina tab, the operator is
shown all machines, as shown in Figure 3.11. The operator must then select the
correct machine either by scrolling with the arrow to the bottom right or by looking
up the machine code after clicking on the magnifying glass, located to the left of the
arrow. Figure 3.12 shows this same tab after the operator has scrolled and found
the correct machine, INC.

21

Lincotek and Opera MES

Figure 3.11: Opera MES Example - Inizio Piazzamento: Macchina Tab

Figure 3.12: Opera MES Example - Inizio Piazzamento: Macchina Tab After
Scrolling

In Figure 3.12, the correct machine is shown by the red rectangle. After selecting
it, the operator must then select the correct work order from the Ordine di Lavoro
tab. When opening this tab, Opera shows all work orders that can be executed with
the selected machine. This is illustrated in Figure 3.13.

Every item in this list of work orders displays some information to recognise the
desired one. In this case, the item corresponding to work order number 020033000348
is the one in the middle. Figure 3.14 zooms in into this item to display all the
information it possesses, where the first row corresponds to the work order number.
After finding the correct item, the operator must click on it to save it into the
variable.

22

3.1 – Opera MES

Figure 3.13: Opera MES Example - Inizio Piazzamento: Ordine di Lavoro Tab

Figure 3.14: Opera MES Example - Inizio Piazzamento: Item Containing Work
Order Information

As mentioned earlier, a work order consists of many phases. Now that the operator
has identified the work order, they must tell Opera what phase of this work order is
to be executed. This is what the tab Fase di Lavoro is for. Figure 3.15 shows what
the software displays to the operator. There are two available options, corresponding
to the two phases of the selected work order that can be executed in the selected
machine.

The operator must determine what the correct phase is. This is done by looking
at the third row of the information each item displays. This row contains the work
order number with the Operazione number appended to its end after a period. The
operator can know what the Operazione number is by looking into the table in
Figure 3.6, located in the Riepilogo Commessa Workflow. Figure 3.16 zooms in into
the items displayed in Figure 3.15.

23

Lincotek and Opera MES

Figure 3.15: Opera MES Example - Inizio Piazzamento: Fase di Lavoro Tab

Figure 3.16: Opera MES Example - Inizio Piazzamento: Items in Fase di Lavoro
Tab

After analysing the table in Figure 3.6, the operator should conclude that the first
phase has an Operazione number equal to 0010 and should thus select the first item
from Figure 3.16.

After doing so, the Workflow goes into its final tab: Programma/Scheda componente.
In this particular phase of this work order, nothing needs to be selected in this tab,
as illustrated in Figure 3.17. This is because this phase does not have options in
this category. Therefore, the operator can just commit the Workflow by clicking on
the green check mark located in the bottom of the screen. This tells Opera that
all the variables have been set and that the Workflow is ready to be executed. If
there have been errors in the setting of variables, Opera will let the operator know
through an error message.

24

3.1 – Opera MES

Figure 3.17: Opera MES Example - Inizio Piazzamento: Programma/Scheda com-
ponente Tab

If everything has been done correctly, Opera will be correctly notified that the setup
for phase 1 has been concluded. This can be verified by going into the Riepilogo
Commessa Workflow. Now, when selecting the work order, the table in the row
labelled as Fase di Lavoro has been slightly updated, as shown by Figure 3.18.
Now, in the first phase’s row, the Operatore column has been updated to the name
of the operator who executed the Inizio Piazzamento Workflow. This means that
this phase is in process of being completed and that the operator that is executing it
is Chebil Bechir. It is worth noting that the value of Q.tà Versata is still 0, meaning
that the phase has not been completed yet.

Figure 3.18: Opera MES Example - Riepilogo Commessa After Committing the
Inizio Piazzamento Workflow

The next step is executing Workflow 4 - Fine Piazzamento, which tells Opera that
the setup process has been completed. When opening this Workflow, located just
to the right of Inizio Piazzamento, the operator faces the screen showed in Figure
3.19. This is very similar to the previous Workflow and works in exactly the same
way. By following the same procedure as with Inizio Piazzamento, the Workflow
advances the current phase and lets Opera know that the set up is ready and that
the activity can be properly started.

25

Lincotek and Opera MES

Figure 3.19: Opera MES Example - Fine Piazzamento Workflow

Now, after committing Workflow 4, the operator can begin the activity itself. This is
done by executing Workflow 1 - Inizio Attività, located to the right of Fine Piazza-
mento. As evidenced by Figure 3.20, this Workflow has six variables and therefore
six tabs. The first four are exactly the same as Inizio Piazzamento and work in
the same way. The final two tabs are presented in Figures 3.21 and 3.22, and they
are called Attrezzature and Componenti, meaning equipment and components re-
spectively. For this particular work order, they are both empty since there is no
additional information that needs to be set, just like the final tab in the Inizio
Piazzamento Workflow. In other work orders, it is possible for options to appear
here.

Figure 3.20: Opera MES Example - Inizio Attività Workflow

26

3.1 – Opera MES

Figure 3.21: Opera MES Example - Inizio Attività: Attrezzature Tab

Figure 3.22: Opera MES Example - Inizio Attività: Componenti Tab

When this Workflow is committed, Opera is being told that the activity has been
executed. This means that some quality control tests can be run and that is exactly
what Opera expects the operator to do. Therefore, after committing the operator is
taken directly to a new Workflow, not back to the Home page. This is Workflow 385
- Controlli, meaning checks. Figure 3.23 shows what the operator sees after being
redirected here. There are just four tabs here and the first one, Badge, is completed
automatically when this Workflow is accessed via another Workflow, since Opera
assumes that the same operator that was executing an activity is the one that is
going to run the quality control tests for it. Workflow 385 can also be accessed
through the Home page, as evidenced by Figure 3.3.

27

Lincotek and Opera MES

Figure 3.23: Opera MES Example - Controlli

In this Workflow, the operator must once again select the correct work order that
the checks are being run for. Figure 3.24 zooms in into the table and shows the
correct selection for work order number 020033000348, as well as the correct phase.

Figure 3.24: Opera MES Example - Controlli : Correct Fase di Lavoro Selection

Once the correct work order and phase have been selected, the Workflow moves into
the Programma/Scheda componente tab. This tab was also present in the Inizio
Piazzamento Workflow and did not show anything to the operator, so the same
should occur here. This is the case, as illustrated by Figure 3.25.

28

3.1 – Opera MES

Figure 3.25: Opera MES Example - Controlli : Programma/Scheda componente Tab

The final tab is called Prova, which means test, and it is where the operator selects
the test to be run. Some activities have many tests while others only have one. In
this case, there is only one test that needs to be run. Due to this, only one item is
present in this tab, as shown by Figure 3.26.

Figure 3.26: Opera MES Example - Controlli : Prova Tab

After selecting the test and clicking on the green check mark to commit, Opera once
again redirects the operator to a new Workflow, either 380 - Controlli per Prova
or 381 - Controlli per Matricola. The destination depends mainly on what the test
is and what the chosen parameters were in Workflow 385 - Controlli. In this case,
the operator is redirected to Workflow 380. This is shown in Figure 3.27. Just like
in the previous case of redirection from one Workflow to another, some variables
are automatically assigned based on what was selected in the Workflow that was
committed.

29

Lincotek and Opera MES

Figure 3.27: Opera MES Example - Controlli per Prova Workflow

As evidenced by Figure 3.27, the first three tabs of Workflow 380 (Badge, Fase di
Lavoro and Prova) have been completed automatically. The only thing the operator
must do is complete the information in the table present in the last tab. If the test
was passed, the operator selects Positiva under the Esito column. If the test was
not passed, then the Negativa option must be selected, as well as a reason under
the Difetto column. For this example, it is assumed that the test was passed. Once
the operator has completed the table, they can commit the Workflow with the green
check mark. If something was not completed correctly, Opera will throw an error
and the Workflow will not be committed.

Figure 3.28: Opera MES Example - Controlli per Prova: Test Successfully Passed

After executing the activity with the Inizio Attività Workflow and informing the
system that all tests were run successfully with the Controlli and Controlli per
Prova Workflows, only the final step of the phase remains. This consists on running

30

3.1 – Opera MES

Workflow 2 - Fine Attività, which tells Opera that the machine is now free to use
again. Figure 3.29 shows this Workflow and its three tabs. After completing all tabs
with the correct data and committing, the phase will be complete and will have been
correctly executed. Figure 3.30 shows the updated table in Riepilogo Commessa. In
it, we can see that Q.tà Versata is now equal to Q.tà Prevista, meaning that the
phase has been completed. Furthermore, the Operatore column is now empty since
no operator is working on that phase now that it is over.

Figure 3.29: Opera MES Example - Fine Attività Workflow

Figure 3.30: Opera MES Example - Riepilogo Commessa After Phase is Complete

Now that the first phase is over, the second can be executed. It is not necessary
that the same operator executes all phases, so the second one can be started by any
worker.

31

Lincotek and Opera MES

3.2 Airflow Machines

In its manufacturing processes, Lincotek uses several machines of diverse nature.
Opera MES registers which machine has been used for what activity, as well as
what machines are able to execute which tasks. The database contains all machines
in a table called Macchine, which literally means machines. This table has 85
entries, meaning Opera MES is monitoring the usage of 85 different machines in
the manufacturing process. Some columns of the first fifteen entries of this table
can be seen in Figure 3.31. Additionally, Figures 3.11 and 3.12 also displayed some
of the available machines.

Figure 3.31: First Fifteen Entries of the Macchine Table

Four of these machines, visible in Figure 3.31, areAirflowmachines. Theirma codice
(machine code) is AFX, where X is the number of the machine, ranging from 1 to
4. Airflow machines are produced by Flow Systems, an American company that
designs, manufactures and supports a wide range of flow measurement products for
gasses and liquids [47].

Flow Systems defines an Airflow machine as a “compact air flow measurement system
specially designed for highly accurate and repeatable measurement” and state that
it “meets a wide range of component flow range air testing needs” [52].

These Airflow machines also provide an interface with which the user can interact.
It is worth noting that this interface is completely independent from Opera MES.
Figures 3.32, 3.33 and 3.34 show three screens of this display.

32

3.2 – Airflow Machines

Figure 3.32: Airflow Machine Interface

Figures 3.32 and 3.33 show a screen were measured data is being displayed to the
user. The former also shows the setting of parameters for the test just above the
“Load and Start (F1)” button located in the bottom left corner. The latter figure
displays important data in the bottom left corner rectangle with a silver edge. These
data regard the individual items that are worked on during a phase of a particular
work order. In fact, the work order number can also be seen there.

Figure 3.33: Airflow Machine Interface - Operation Data Inserted

33

Lincotek and Opera MES

Figure 3.34: Airflow Machine Interface - Operation Description Menu

Figure 3.34 displays a series of test parameters, as well as the test’s results, that
the Airflow machine collects every time it is run. Before the thesis project started,
Lincotek’s operators had to manually insert these data into Opera MES, since no
direct and automatised connection existed between the machines and the software.

34

3.3 – Novel Contribution: Automatic Data Collection and Storage for Enhanced Quality Assurance

3.3 Novel Contribution: Automatic Data Collec-

tion and Storage for Enhanced Quality Assur-

ance

3.3.1 Objectives

Every time it is run, an Airflow machine collects valuable data regarding the item
it is working on, which can then be used to run quality control tests and learn
more about the machine itself. After doing this, a document called Certificate of
Conformity (COC) is generated and sent to Lincotek’s clients as evidence that the
work done has complied with certain quality criteria. This document is created
automatically by reading data stored in Opera MES. The problem was that the
collected data from Airflow machines were not being inserted into the system and
were just saved locally in the computer connected to the Airflow machine, which
meant that operators had to copy and save them into Opera MES by hand after the
machine had run.

Obviously, collecting the data by hand can potentially lead to the information being
stored wrongly due to human error. It is also inefficient and a suboptimal use of a
worker’s time, especially in the context of a factory that aims to become a smart
factory over the next few years. Due to this, the decision was made to modify the
Opera MES software so that it would automatically collect, store and process the
data generated by the four Airflow machines. Thus, the following two objectives
were defined for the project:

1. Integration of the data regarding Airflow machines stored in the Opera MES
software.

2. Integration of the measurements of flow tests done by Airflow machines into
the Opera MES software.

By achieving these two objectives, the Airflow data would be correctly stored into
Opera MES, thus eliminating the manual copy-paste step and facilitating the gen-
eration of the COC document, whilst guaranteeing that the data used to create it is
correct. In order to attain both objectives, two fundamental steps were identified:

1. Provide Airflow machines with the data they require.

2. Read measurements from Airflow machines and insert them into Opera MES.

Once these two steps are completed, the Workflow in charge of interacting with the
operator must be edited and adjusted to allow everything to work properly.

The following subsections will delve deeper into what each step actually means and
implies, as well as all modifications that were done to complete it. Additionally,
they will explain why a new Workflow had to be created and how it was edited in
order to adjust to the needs of Airflow machines and operators.

35

Lincotek and Opera MES

3.3.2 Providing Data to the Airflow Machines

Before the Airflow machine can actually operate and run any of its tests, it needs
to gather some information about how it is registered in the database. Therefore,
before the Airflow machine starts to run, all the necessary information must be
gathered and provided to it to ensure it runs properly. If this is not done, then the
information Lincotek desired to gather would not be available.

To achieve this, a stored procedure and four tables, one for each Airflow machine,
were created in the database. The former is used to insert the information into
the tables, where it will be stored and read by the machine. The tables are called
OperaMESData and were not created in the main Opera MES database where
everything else is located but rather in a new dedicated database created solely to
communicate with the four Airflow machines. This is because this information will
only be read by these machines and is not necessary for any other entities, meaning
that it would introduce an unnecessary extra complexity to the already intricate
system that consists of hundreds of tables and entities. Furthermore, by doing this
one limits what the Airflow machine can access. Figure 3.35 shows where the created
table is located in the case of Airflow machine 1.

Figure 3.35: External Airflow Machines Database

As highlighted in Figure 3.35, the external database is called DB01-IT-RU\Log. In
there, each Airflow machine has its own section called AF0X-IT-RU, where X is the
number of the machine. Within this section there are two tables, the aforementioned
OperaMESData and AirflowData, which was created later on and will be explained
in the following subsection. The OperaMESData table consists of the following
fields:

• machine: The code of the machine (AF1, AF2, AF3 or AF4).

• configuration: Configuration the machine has been set to.

• ol codice: Code number of the work order that is going to be executed.

• serial number: Code that identifies each individual item that is worked on
during a phase.

36

3.3 – Novel Contribution: Automatic Data Collection and Storage for Enhanced Quality Assurance

• ar codice: Code of the type of items that are being produced. All items
belong to a category of item that has a general ar codice.

• fa id: Code number of the phase of the work order that is going to be executed.

Figure 3.36: Tables Created in the External Database

Most of these pieces of information were mentioned during the first subsection of
this chapter, although not always citing how they are called within the system. To
better understand what each of them is, a brief summary of their relationship will
be provided.

Each work order is identified with a number, internally saved as ol codice. Work
orders consist of many steps that must be followed sequentially to complete them.
These steps are called phases and they also have a number that identifies them,
internally referred to as fa id.

Every work order has a certain number of items it aims to produce. For example,
a certain order might expect to produce one hundred nails. These items are also
identified via a number called the serial number (serial number). In Opera MES,
every phase of the work order keeps track of the amount of items that complete
it, and the operator can access this information through Workflow 370 - Riepilogo
Commessa, as evidenced in Figures 3.5, 3.6, 3.18 and 3.30. The amount of items that
are expected to pass through the phase are displayed under the column Q.tà Prevista
and the amount that have passed already are under the column Q.tà Versata.

Now, better understanding what some of these fields are, it is clearer why the Airflow
machine wants this information before running, since it provides it with a lot of data
about the operation it is about to perform.

As mentioned earlier, a stored procedure was created to insert the data in the Op-
eraMESData tables. This stored procedure is called InviaDatiAirflow, which means
send Airflow data. Naturally, this stored procedure is saved in the main database
system and not in the other one created for Airflow machines. This is because it

37

Lincotek and Opera MES

needs to access all the information in order to send it. The stored procedure has
three steps:

1. Adjust machine code string.

2. Delete all current records from the OperaMESData table.

3. Insert data from the operation about to be executed.

The code of the InviaDatiAirflow stored procedure is included on the next two pages.
The first thing the stored procedure does is change the string that contains the code
machine. This is because each Airflow machine has its own AirflowData table which
is identified by its machine code, as mentioned above. However, the machine code
in the Opera MES database is AFX, meanwhile the other database considers it as
AF0X (where X is the number of the machine). Due to this, a 0 had to be added in
the middle of the string. The new string is saved into @ma codice new format.

The next step is fairly straightforward. It first checks if there are any records in
the OperaMESData table. If there are, it deletes all of them. Regardless of what
happens in the IF statement, the result is that the table is always empty after this
step.

The final step gathers the required information and inserts it into the OperaMES-
Data table that corresponds to the Airflow machine involved in this activity. As
evidenced in the code, getting this information requires joining a lot of different
tables.

It is worth noting that this stored procedure has three parameters, @ma codice,
@pb codice and @ce despro. These three must be provided by any stored proce-
dure, function or piece of code that calls InviaDatiAirflow. Default values for these
parameters have been set, as seen in lines 2, 3 and 4 of the code, for debugging
purposes.

In these code blocks, comments are shown in green, SQL instructions or statements
in blue, strings in red and regular text in black. In order to make the queries work
for all four machines, they had to be written in an indirect way, first saving them
as strings into a variable and then executing these strings. This is because the
Airflow machine in use affects what part of the external database is being accessed,
so the query must take the machine code into consideration. To do this, the variable
@ma codice new format must be appended to the query, which must be done in this
method.

38

3.3 – Novel Contribution: Automatic Data Collection and Storage for Enhanced Quality Assurance

ALTER PROCEDURE [dbo].[CUST_InviaDatiAirflow]

@ma_codice TipoChiave = ‘AF1’,

@pb_codice TipoChiave = ‘0001904682’,

@ce_despro TipoChiave = ‘CONFIGURAZIONE A’

AS

BEGIN

DECLARE @ma_codice_new_format TipoChiave

IF @ma_codice = ‘AF1’ BEGIN

SET @ma_codice_new_format = ‘AF01’

END ELSE IF @ma_codice = ‘AF2’ BEGIN

SET @ma_codice_new_format = ‘AF02’

END ELSE IF @ma_codice = ‘AF3’ BEGIN

SET @ma_codice_new_format = ‘AF03’

END ELSE IF @ma_codice = ‘AF4’ BEGIN

SET @ma_codice_new_format = ‘AF04’

END

DECLARE @sql Nvarchar(500) = ‘’

DECLARE @sql2 Nvarchar(1500) = ‘’

-- STEP 1: DELETE EVERYTHING FROM TABLE

SET @sql = ‘IF ((SELECT COUNT(*) FROM [DB01-IT-RU\ LOG].[’

+ @ma_codice_new_format + ‘-IT-RU].[dbo].[OperaMESData]) > 0)

BEGIN

DELETE FROM [DB01-IT-RU\ LOG].[’ + @ma_codice_new_format +

‘-IT-RU].[dbo].[OperaMESData]

END’

EXEC sp_executesql @sql

39

Lincotek and Opera MES

-- STEP 2: INSERT

SET @sql2 = ‘INSERT INTO [DB01-IT-RU\ LOG].[’ + @ma_codice_new_format +

‘-IT-RU].[dbo].[OperaMESData] (machine, configuration, ol_codice,

serial_number, fa_id, ar_codice)

SELECT A.ma_codice as [Macchina], CCE.ce_despro as [Configurazione],

L.ol_codice as [ODL], [dbo].[fn_SplitString](U.um_codice, ’’|’’, 5) AS

[Seriale], F.fa_id as [fa_id], OL.ar_codice as [ar_codice]

from Azioni as A (nolock)

inner join Fasi as F (nolock) on F.fa_id = A.fa_id

inner join Pianificati as PN (nolock) on PN.pi_id = F.pi_id

inner join Lavori as L on L.la_id = PN.la_id

inner join OrdiniDiLavoro OL (nolock) on OL.ol_codice = L.ol_codice

inner join Articoli AR (nolock) on AR.ar_codice = OL.ar_codice

inner join Dipendenti as D (nolock) on D.di_matrico = A.di_matrico

inner join Lotti as LT (nolock) on LT.lt_codice = L.ol_codice

inner join UDM as U (nolock) on U.lt_autoinc = LT.lt_autoinc

inner join OrdiniDiCollaudo OC (nolock) on OC.um_autoinc =

U.um_autoinc and OC.la_id = L.la_id

inner join CicloCollEffettivo as CCE (nolock) on CCE.oc_codice =

OC.oc_codice and CCE.ce_flags = 1

inner join Prove as PR (nolock) on PR.pr_codice = CCE.pr_codice

where F.pb_codice = ‘‘‘ + @pb_codice + ’’’ AND

CCE.ce_despro = ‘‘‘ + @ce_despro + ’’’’

EXEC sp_executesql @sql2

END

It is worth noting that, in order to access the table, it is necessary to call it in the
following way:

[DB01-IT-RU\LOG].[AF01-IT-RU].[dbo].[OperaMESData]

And not simply

[dbo].[OperaMESData]

This is because, as previously mentioned, the OperaMESData table is located on
a different database, meaning that the name of this database must be included for
the query to know where to search.

As seen in the example of subsection 3.1.3, advancing an activity and collecting
data from it is done through three Workflows. The first step is always starting the
activity through WF 1 - Inizio Attività, then choosing the quality control test to
be run and setting its parameters through WF 385 - Controlli and finally running
the test through either WF 380 - Controlli per Prova or WF 381 - Controlli per
Matricola. Whether the final involved Workflow is WF 380 or WF 381 depends on
the machines involved, the parameters set and the activity.

40

3.3 – Novel Contribution: Automatic Data Collection and Storage for Enhanced Quality Assurance

In the case of Airflow machines, before implementing any modifications, the flow
was the following:

WF 1 −→ WF 385 −→ WF 381

Given that the Airflow machine needs to receive the data sent by InviaDatiAirflow,
the first approach was to edit Workflow 381 and make it work differently when
the chosen machine was of type Airflow. The problem with this approach was
that Airflow machines need additional variables that other machines do not, which
made the entire Workflow much more complex than it needed to be. Therefore, the
decision was made to create a new Workflow dedicated just to Airflow machines:
Workflow 397 - Controlli per Airflow. It was based off WF 381 but the four stored
procedures were edited and adapted to the needs of Airflow machines. The ways
in which each stored procedure was edited will be explained in the corresponding
steps.

This means that whenever the operator is working with a phase that uses an Airflow
machine, Workflow 385 will redirect to Workflow 397, not Workflow 381. So, the
new flow for Airflow machines is:

WF 1 −→ WF 385 −→ WF 397

The first change that was implemented to WF 397 was the calling of InviaDatiAir-
flow. As previously mentioned, one of the necessary parameters to do this is the
configuration, called ce despro. Therefore, WF 397 would require a tab to set the
desired configuration, which is shown in Figure 3.37. When the configuration is
selected by the operator, the OnChangeValue stored procedure of WF 397 calls the
InviaDatiAirflow stored procedure. The code is added into OnChangeValue because
this is the stored procedure that is called every time a variable is set.

Figure 3.37: Workflow 397 - Controlli per Airflow : Configuration Tab

41

Lincotek and Opera MES

The code to call InviaDatiAirflow was added into the section corresponding to the
Configurazione tab. The following is the code:

ELSE IF (@idEvVar = ‘sn_config’) BEGIN

IF (@sn_config IS NOT NULL) BEGIN

SELECT ‘airflow_data’ AS idVar,

‘’ AS idValue,

‘’ AS value,

‘0’ AS bDefValue,

‘0’ AS bEvPropagation,

‘4’ AS nMode

EXEC [dbo].[CUST_InviaDatiAirflow]

@ma_codice = @ma_codice,

@pb_codice = @pb_codice,

@ce_despro = @sn_config

END

END

The ELSE IF statement at the beginning is used to identify what tab the Workflow
is in: @idEvVar contains the name of a variable (which, as previously explained,
corresponds to a tab). In other words, @idEvVar saves the name of the variable
that needs to be given a value. The variable that saves the configuration is called
@sn config, so @idEvVar will stores that string when the Configurazione tab comes
up.

When this is the case and a configuration is chosen, two things happen. Firstly,
the variable airflow data is selected as the current variable, meaning the Workflow
moves to that tab. Secondly, the InviaDatiAirflow stored procedure is called. Its
parameters are @ma codice (the code of the machine), @pb codice (the ID of the
phase) and @ce despro (the chosen configuration). By doing this, the OperaMES-
Data table is updated and saves the data the Airflow machine needs, thus completing
Step 1.

42

3.3 – Novel Contribution: Automatic Data Collection and Storage for Enhanced Quality Assurance

3.3.3 Reading Data from Airflow Machines and Inserting it
into Opera MES

Once the machine has received the data it needs through InviaDatiAirflow, the
Workflow continues to advance. Then, after the machine has executed its operation,
the data Lincotek wants can be accessed. These data are saved into the aforemen-
tioned AirflowData tables. There are four AirflowData tables, one for each Airflow
machine. Since the Airflow machines interact directly with these tables, it is also
located in the external database, just like the OperaMESData tables. Therefore, to
display the information in the Opera MES interface, the first task is to read and
import it into the Opera MES database. The AirflowData table consists of the
following fields:

• machine: The code of the machine (AF1, AF2, AF3 or AF4).

• configuration: Configuration the machine has been set to.

• serial number: Code that identifies each individual item that is worked on
during a phase.

• part number: Code that identifies the manufactured item.

• measure: Measurement made by the Airflow machine.

• lower range: Lowest value that measure can have for a valid test.

• upper range: Highest value that measure can have for a valid test.

• measure type: Type of test being run.

Once again, a stored procedure was created to do this specific duty: LeggiDatiAirflow
(read Airflow data). Its function is to take all the data from AirflowData and insert
them into a new table located in the Opera MES database called AirflowDataHistory.
The former database is then emptied to avoid any confusion. The code of this stored
procedure is included on the following page.

The stored procedure takes three parameters:

• @ma codice: The code of the machine.

• @ol codice: The code number of the work order.

• @fa id : Code number of the phase.

43

Lincotek and Opera MES

ALTER procedure [dbo].[CUST_LeggiDatiAirflow]

@ma_codice TipoChiave = ‘AF1’,

@ol_codice TipoChiave = ‘020033000445’,

@fa_id TipoChiave = ‘65995’

AS

BEGIN

DECLARE @ma_codice_new_format TipoChiave

IF @ma_codice = ‘AF1’ BEGIN

SET @ma_codice_new_format = ‘AF01’

END ELSE IF @ma_codice = ‘AF2’ BEGIN

SET @ma_codice_new_format = ‘AF02’

END ELSE IF @ma_codice = ‘AF3’ BEGIN

SET @ma_codice_new_format = ‘AF03’

END ELSE IF @ma_codice = ‘AF4’ BEGIN

SET @ma_codice_new_format = ‘AF04’

END

DECLARE @sql Nvarchar(500) = ’’

SET @sql = ‘INSERT INTO [dbo].[CUST_AirflowDataHistory] (

machine, configuration, serial_number, part_number, measure,

lower_range, upper_range, measure_type, ol_codice, fa_id, timestamp)

SELECT

T.machine, T.configuration, T.serial_number, T.part_number, T.measure,

T.lower_range, T.upper_range, T.measure_type, ’ + @ol_codice +

‘ as [ol_codice], ’ + @fa_id + ’ as [fa_id], getdate() as [timestamp]

FROM [DB01-IT-RU\ LOG].

[’ + @ma_codice_new_format + ‘-IT-RU].[dbo].[AirflowData] as T

WHERE T.machine = ‘‘‘+ @ma_codice + ’’’’

EXEC sp_executesql @sql

-- Delete everything in AirflowData table

DECLARE @sql Nvarchar(500) = ’’

SET @sql2 = ‘DELETE FROM [DB01-IT-RU\ LOG].[’ + @ma_codice_new_format +

‘-IT-RU].[dbo].[AirflowData]’

EXEC sp_executesql @sql2

END

44

3.3 – Novel Contribution: Automatic Data Collection and Storage for Enhanced Quality Assurance

Just like in InviaDatiAirflow, default parameters have been set for debugging pur-
poses. Also like that stored procedure, the first step in LeggiDatiAirflow is changing
the string that contains the code machine. It is done in the same way and for the
same reasons as before.

Then, there are two queries to be done, which are both fairly straightforward. The
first inserts into AirflowDataHistory, in the main Opera MES database, the data
from the AirflowData table. The second query deletes everything from the Air-
flowData table corresponding to the machine used. The queries were written in an
indirect way, saving them as strings into variables and then executing these strings,
just like in InviaDatiAirflow.

Once LeggiDatiAirflow was completed, a way to call it in Workflow 397 had to
be added. To do this, a new variable called airflow data was created. This same
variable was mentioned in the previous section, since it is set as the current variable
just before calling InviaDatiAirflow.

It was mentioned earlier in this chapter that creating variables required two insert
queries, one into the MntrVars table and another into the MntrWV table. In the
case of the airflow data variable, the first insert was:

INSERT INTO MntrVars

(mv_strId, mv_strDescr, mv_strType, mv_nSize, mv_nNotVoid)

VALUES

(‘airflow_data’, ‘Airflow Data’, ‘string’, 50, 0)

And the second was:

INSERT INTO MntrWV

(wf_nId, mv_strId, wv_IdSequence, wv_IdCtrlType, wv_bHide, wv_bReport,

wv_bNotVoid, wv_bEnableEvent, wv_bValidate, wv_idEvSeqNext,

wv_spOnVarChange, wv_spOnVarValidate, wv_spDataGridView,

wv_IdSequenceNested, wv_idParent, wv_dwCtrlCliFlags, wv_sCtrlParam,

wv_spOnQueryElements, wv_sIdImage, wv_spOnDocumentList)

VALUES

(397, ‘airflow_data’, 20, 14, 0, 2, 0, 1, 0, 21, ‘’, ‘sp_default’,

‘StpMntrWF397_ViewFillGrid’, NULL, NULL, ‘69632’, NULL, ‘sp_default’,

NULL, ‘’)

The first query simply creates the variable, gives it a name and a maximum length.
In this case, the variable holds a string of maximum length 50 characters. The second
query has a lot of parameters, but the most important ones, for the purpose of this
thesis, are wf nId, wv IdSequence and wv idEvSeqNxt. The first one corresponds to
the Id of theWorkflow that this variable is being linked to. In this case, it is Workflow
397. The second one, wv IdSequence, assigns a number to the variable within the
Workflow. This number acts as the Id of the variable for sequencing purposes.
Finally, wv idEvSeqNxt says what variable comes after the current one. This is

45

Lincotek and Opera MES

indicated by inserting the wv IdSequence of the next variable. For airflow data, its
wv IdSequence is 20 and the next variable that will be called after its completion
is the one with wv IdSequence equal to 21. Figure 3.38 shows some columns of the
row corresponding to airflow data in the MntrWV table.

Figure 3.38: MntrWV Table Showing airflow data Variable

Now, after having created the variables, one has to make the corresponding tab
appear when accessing Workflow 397. This is done by editing the ViewFillGrid
(VFG) stored procedure by adding an IF statement. The VFG stored procedure is
in charge of retrieving the information the user should visualise and sending it to
the client. The VFG has a series of IF statements, where each one corresponds to
a different variable. It has an internal variable, called @idvar, that saves the name
of the variable corresponding to the tab that is currently open. Thus, a typical IF
statement in a VFG stored procedure does the following:

IF @idvar = some_variable BEGIN

Execute some code

...

END

In the case of the airflow data variable, this is the code:

ELSE IF @idvar = ‘airflow_data’

BEGIN

SELECT ‘Dati da Airflow’ AS [idInternalVal],

‘’ AS [idVal],

‘<h1 style=color:GREEN>Aggiorna Dati Macchina

Airflow</h1>’ AS [ShortDescr],

‘/images/pr_esitoOK.png’ AS [ImageRef],

‘’ AS [Descr]

END

This code leads to the output displayed by Figure 3.39, which corresponds to the
Airflow Data tab in Workflow 397. Each of the items of the SELECT query affects
what is shown in the Opera MES client. For example, [ImageRef] takes the save
location of an image within the system and displays it in the client.

46

3.3 – Novel Contribution: Automatic Data Collection and Storage for Enhanced Quality Assurance

Clicking on the image of Figure 3.39 makes Opera MES call LeggiDatiAirflow, thus
saving the data the machine collected into the Opera MES database.

Figure 3.39: Workflow 397 - Controlli per Airflow : Airflow Data Tab

ELSE IF (@idEvVar = ‘airflow_data’) BEGIN

IF (@airflow_data IS NOT NULL) BEGIN

SELECT ‘airflow_test’ AS idVar,

‘’ AS idValue,

‘’ AS value,

‘0’ AS bDefValue,

‘0’ AS bEvPropagation,

‘4’ AS nMode

EXEC [dbo].[CUST_LeggiDatiAirflow]

@ma_codice = @ma_codice,

@fa_id = @fa_id,

@ol_codice = @ol_codice

END

END

3.3.4 Additional Changes to Workflow 397

So far, two stored procedures have been created, InviaDatiAirflow and LeggiDa-
tiAirflow. These two allow the communication between the Opera MES database
and another external database that interacts directly with Airflow machines, thus
permitting the exchange of data between Opera MES and the Airflow machines.
This is essential to gather the data collected by the latter. The result of using these
two stored procedures is that the Airflow machines have all the data they need to
be executed and run the tests that gather the information Lincotek wants to re-
trieve, which, after the implemented modifications, is now saved in new tables in
the database.

47

Lincotek and Opera MES

Furthermore, a new Workflow was created: Workflow 397 - Controlli per Airflow.
This Workflow was generated from the code of Workflow 381, i.e. its four stored pro-
cedures (OnWfCreate, ViewFillGrid, OnChangeValue and Commit). These stored
procedures were edited in the previous two subsections so that they would call
InviaDatiAirflow and LeggiDatiAirflow when necessary. This means that the com-
munication between the Opera MES database and the external database dedicated
to Airflow machines is triggered by WF 397.

Naturally, and since WF 397 is so different from WF 381, many more modifications
had to be done to the four stored procedures that originally came from WF 381.
These additional changes aim to create a functional Workflow that works in an
intuitive way and achieves all of the goals Lincotek had set. This subsection is
dedicated to the most relevant changes that facilitated the gathering of data and
that improved the usability for operators.

Firstly, Figure 3.40 shows Workflow 397 with its final tab selected, Airflow Test.
In this tab, the operator is shown all available tests that match the selected work
order, phase, serial numbers and configuration (set in previous tabs) and must then
select which tests are to be run.

Figure 3.40: Workflow 397 - Controlli per Airflow : Airflow Test Tab

This is a more advanced version of Workflow 397 compared to the one displayed in
Figure 3.37, where the Configurazione tab had just been added. The main difference
between the two Workflow 397 versions is that the one exposed in Figure 3.40 has
three additional tabs: S/N A Master, Airflow Data and Airflow Test. The last one
replaced the tab Prova.

In previous Workflows, the operator had to select the serial number in the S/N tab,
which is associated to the sn config variable. In the case of WF 397, there is an
additional tab called S/N A Master, which also sets the serial number. Why is this?

48

3.3 – Novel Contribution: Automatic Data Collection and Storage for Enhanced Quality Assurance

Usually, serial numbers identify each individual item that is produced during a phase.
However, Lincotek requested that, when a phase required an Airflow machine, an
additional type of serial number be created. Due to this, there now are two types of
serial numbers when a phase is to be executed by an Airflow machine: the original
“normal” serial numbers and the new ones, called master serial numbers. The
former, as always, identifies each individual item. The latter encompasses all the
individual ones that fall under that particular phase. There are two types of master
serial numbers, one that is executed before the “normal” ones, A master, and one
that is executed after, Z master.

In other words, every phase that uses an Airflow machine has an additional two
master serial numbers that encompass all the original serial numbers that identify
each individual item being worked on. In order to run the tests, the operator must
first select the A master serial number on the S/N A Master tab. Then, they must
skip the S/N tab (i.e. leave it empty) and continue with the normal execution of
the Workflow. Once this has been done, the operator can execute the tests of each
individual serial number, which are selected in the S/N tab. Once all of them have
been properly tested, final tests must be run by selecting the Z master serial number
in the S/N tab.

The purpose of the master serial number implementations is not the scope of this
thesis project, but it was done to have more control over the testing process and
thus generate more information. This was requested by Lincotek after the initial
project had begun.

As mentioned above, there are two additional tabs that Workflow 397 possesses,
Airflow Data and Airflow Test. The former is associated to the airflow data variable
and was discussed in subsection 3.3.3 and shown in Figure 3.39. As mentioned, it
triggers the call to the LeggiDatiAirflow stored procedure. On the other side, Airflow
Test is the tab where the operator must select what tests are going to be run (see
Figure 3.40) when the green check mark is clicked and thus the Commit stored
procedure is called.

The Commit stored procedure must take all the selected tests and consider them,
and only them, when running. Any test that was not selected by the operator must
be ignored. Despite the fact that many tests can be selected, only one response is
given. If all of the tests have been passed, then the result of the test is positive.
If one or more tests do not pass, then the result is negative and a Non-Conformità
(Non-Compliance) report is generated, which the operator must manually attend
to. This report is dealt with in Workflow 383 - Gestione Non Conformità. There,
the operator must fill out some data that saves into Opera MES what went wrong
with the tests. If this is not done, the work order cannot be advanced.

To individually check every selected test, the Commit stored procedure must iterate
through all of them, just like a for loop. This is done by using a cursor. In SQL,
queries often return a set of rows, and a cursor is a mechanism for working with one
row at a time. The following is the code of the cursor:

49

Lincotek and Opera MES

DECLARE @pr_esito TipoChiave = ‘Positiva’

DECLARE CursoreAirflow CURSOR LOCAL SCROLL FOR

SELECT * FROM [Opera6010_TC_DEV].[dbo].[CUST_AirflowDataHistory] WHERE

machine = @ma_codice AND ol_codice = @ol_codice AND fa_id = @fa_id AND

serial_number = @serial_number AND configuration = @sn_config

OPEN CursoreAirflow

FETCH FIRST FROM CursoreAirflow INTO @machine, @configuration,

@serial_number, @part_number, @measure, @lower_range, @upper_range,

@measure_type, @ol_codice, @fa_id, @timestamp

WHILE @@FETCH_STATUS=0 BEGIN

-- Check if @measure is between the allowed ranged and set @pr_esito

IF (@measure < @lower_range) OR (@measure > @upper_range) BEGIN

SET @pr_esito = ‘Negativa’

END

-- Check if serial number is Z Master

IF (@serial_number like ‘%Z_MASTER%’) BEGIN

SET @isZMaster = 1

END

ELSE BEGIN

SET @isZMaster = 0

END

FETCH NEXT FROM CursoreAirflow INTO @machine, @configuration,

@serial_number, @part_number, @measure, @lower_range, @upper_range,

@measure_type, @ol_codice, @fa_id, @timestamp

END

CLOSE CursoreAirflow

DEALLOCATE CursoreAirflow

The variable @pr esito saves the result of the test. Its default value, before any of
the tests have been changed, is Positiva, meaning that the the result is successful.
If a single negative test is found, the value of the variable changes to Negativa.

Firstly, the cursor must be declared. Then, the SELECT statement fetches all the
tests that have been selected by the operator which will individually go through the
checks within the WHILE loop. When a row is selected by the cursor, it temporarily
saves all of the values of its columns into variables that must be declared previously.
This is done by the FETCH FIRST FROM command.

50

3.3 – Novel Contribution: Automatic Data Collection and Storage for Enhanced Quality Assurance

Then, the variables are used to execute queries or any other operation. In this
case, the code checks for any test that does not comply with what is expected. As
mentioned previously, a single test with a value outside of the permitted range saves
Negativa in the @pr esito variable and thus makes the whole result of the tests
negative.

Within the WHILE loop, an additional IF statement is present. Its only purpose
is to check if a Z master serial number has been selected, because in this case the
Commit stored procedure will redirect the operator into a different Workflow.

3.3.5 Final Comments

This marks the end of the most important changes done to the Opera MES software
to allow the efficient and complete communication with Airflow machines in order
to gather the valuable data they provide that Lincotek operators were having to
insert manually, thus risking it being saved incorrectly.

Naturally, many more modifications were done to Workflow 397 to ensure that it
worked properly and that operators would not experience any trouble when using it.
However, many of these were small adjustments that consisted of many hours of de-
bugging the code rather than large changes that drastically altered the way in which
the entire software works. Due to this, only the more important modifications were
included in this chapter, since these are the ones that allow the reader to understand
how the objectives were achieved and how value was provided for Lincotek with the
creation of a simple and effective way of communicating with the Airflow machines.
Chapter 5 will analyse and delve deeper into the added value these implementations
provide.

51

52

Robopac and Opcenter

This chapter is centred around the second project of the thesis, which spanned
approximately six weeks. The first section explains what Opcenter is and how
it works, while the second details what the project aimed to do and how it was
ultimately achieved.

4.1 Opcenter

Opcenter is a manufacturing operations management (MOM) solution that enables
a company to digitalise their manufacturing operations [53]. It is a software that
covers and provides solutions for several areas, including:

• Advanced Planning and Scheduling

• Manufacturing Execution

• Quality Management

• Manufacturing Intelligence and
Performance

• Research, Development and Labo-
ratory

Within the Manufacturing Execution area, Siemens offers two products as part of its
Opcenter package: Opcenter Execution Process and Opcenter Execution Discrete.
The former is dedicated to process manufacturing while the latter is designed for
discrete manufacturing.

Put simply, process manufacturing consists on following a formula or recipe to cre-
ate a product, whereas discrete manufacturing is concerned with the assembly of
products in a prescribed process [54]. Robopac falls under the second category and
therefore uses Opcenter Execution Discrete.

Siemens claims that Opcenter Execution Discrete “provides powerful Manufactur-
ing Execution capabilities that ensure greater process flexibility and efficiency, com-
plete integration of regulatory and quality requirements, synchronised production
processes for optimal supply-chain management and sustained reductions in main-
tenance and operation costs” [55].

When mentioning Opcenter throughout this chapter and the entire thesis in general,
it will be referencing only its discrete MES part, Opcenter Execution Discrete, not
the entire MOM solution that encompasses all Opcenter sofware.

53

Robopac and Opcenter

In Opcenter, users with different roles interact with the application. These roles
determine the level of authorisation a user has and what they have access to. A user
is defined as a person who can access the application, and each one has a login and
password [56].

Internally, Opcenter tracks production through processes and how they are se-
quenced. A process is an abstract representation of the sequence of operations
and steps involved when a specific good is being produced; they serve as an outline
that indicates the order in which certain activities should be executed. A process
encompasses all operations, tools, machines and materials involved in the producing
of a product. Each instance of a process is referred to as a work order [56].

A process is composed of the following elements, listed hierarchically:

• Sub-processes (optional)

• Process operations

• Process steps (optional)

Figure 4.1: Hierarchical Structure Model of a Process

Operations are the building blocks of processes and their most important element.
Sub-processes and steps are optional, meaning that the only element that is always
present is operations. This means that a work order is always composed of operations
at its core, even if it has been subdivided into sub-processes and/or steps.

Figure 4.2 shows the main window Robopac’s users interact with when using Op-
center. It is worth noting that this is not the default main window, since aizoOn
has edited it ever since it started working alongside Robopac.

This window is used to select the activity the user wants to carry out. All of these
activities are located towards the bottom of the page and are arranged by category.
These categories are the ones visible inside the white squares in Figure 4.2 (Robopac,
Robopac Landing, Production Coordination, etc.). If the user clicks on one of these
white squares, the app automatically scrolls down to the selected category. This

54

4.1 – Opcenter

means that clicking on a category button does not redirect the user to another page,
it just scrolls down the appropriate amount (see Figure 4.3). The user can also
manually scroll down or use the search bar in the top left to manually look for an
activity.

Figure 4.2: Opcenter Execution Discrete Main Window

Figure 4.3: Opcenter Execution Discrete Main Window After Scrolling

Figure 4.3 shows some of the activities belonging to the Robopac and Robopac
Landing categories. Naturally, clicking on one redirects the user to the corresponding
activity’s interface. One of the main activities is called Work Orders, shown in Figure
4.4. Its function is to display information about all work orders. Clicking on one of
them redirects the user to a site that shows all kinds of information regarding the
work order, as well as the operations it is made up of and a diagram that links the
operation together (see Figures 4.5, 4.6 and 4.7).

55

Robopac and Opcenter

Figure 4.4: Opcenter - Work Orders Window

Figure 4.5: Opcenter - Work Order Details

In this activity, the user can access all relevant information about a particular work
order. However, the activity does not allow the user to control production in real-
time and see how a certain operation advances. This is done in another activity
called Operator Landing, the interface of which can be seen in Figure 4.8. Here, the
user can start an operation, pause it or even skip it if necessary. Furthermore, the
user can also notify the MES system that there have been defects and add notes.

So far, it has been explained how a user can access information about a work order
as well as track how far it has been advanced and what the current operation is.
If the user is in the Operator Landing Page, they would need to go to the Work
Orders activity to visually see what operations have been completed, which are yet
to come and how the dependencies work. The dependencies refer to the order in

56

4.1 – Opcenter

Figure 4.6: Opcenter - Work Order and its Operations

Figure 4.7: Opcenter - Work Order Diagram of Operations

which operations must be executed, as well as what operations must be completed
in order to start another one.

Opcenter is a very complete and complex software that allows a company to control
much more than what has been covered so far. However, additional features will not
be covered in this thesis, since they go beyond its scope and do not help the reader
understand why Robopac wanted to extend the Opcenter software and why it was
important, as well as what customisations were done.

57

Robopac and Opcenter

Figure 4.8: Opcenter - Operator Landing Page

4.2 Robopac’s use of Opcenter

As mentioned in subsection 2.3.3 of the Background chapter, Robopac has a manu-
facturing plant in San Marino that produces and assembles machinery. Their main
product is a robot that does packaging operations. Since these robots require the
assembling of pieces, their production process falls under the discrete manufactur-
ing category and therefore the Discrete version of Opcenter Execution is used, as
previously explained.

The San Marino manufacturing plant has three production lines. Two of them, lines
2 and 3, are not automated. In them, there are workers at each station ready to
operate machines and take care of the assembling process. Workers must also insert
everything manually into the MES software to keep track of everything, just like
Lincotek operators do with Opera MES.

The other line, however, is completely automated. This is Line 1 and it is the
kind of production line one would find in a smart factory. In this line, machines
communicate directly with the MES software and do not require the worker to insert
any data or intervene in the process unless it malfunctions. Robopac has developed
a site that shows the status of Line 1 in real-time, which is shown in Figure 4.9. As
evidenced there, Line 1 has a lot of stations (machines) that the product must go
through. It also displays a timer in the top right corner, which indicates how much
time there is left in the current cycle. Each cycle lasts 14 minutes and it is the time
each operation has available to complete. After it reaches 0, the products move to
the next station. Figure 4.10 shows a part of Line 1 and some of its stations.

Just like one would expect, Line 1 is the most productive line of the manufactur-
ing plant. This is because it has a much higher uptime and because the highly
specialised machinery is very efficient at doing its particular job. Furthermore, the

58

4.2 – Robopac’s use of Opcenter

Figure 4.9: Robopac’s Smart Line in Real-Time

Figure 4.10: Robopac’s Smart Line

MES software communicates directly with the machines and vice versa, meaning
that no human intervention is needed.

This setup allows operators to focus on overseeing the manufacturing process and
ensuring smooth operations. They utilise monitors to access the Opcenter MES
software, primarily interacting with the Operator Landing Page (refer to Figure
4.8) during active production. However, this approach presents a practical challenge.
Workers find it impractical to access information from other activities, such as the

59

Robopac and Opcenter

Work Order Details activity (see Figures 4.5, 4.6 and 4.7). Robopac recognised
this as a significant issue since efficient real-time monitoring, a critical aspect of a
smart line in a smart factory, was hindered by the inconvenient location of crucial
information.

4.3 Novel Contribution: Enhanced Work Order

Visual Representation

4.3.1 Objectives

As mentioned above, the way in which certain features were laid out across Opcenter
was a problem for Robopac. In particular, they felt that operators were not being
able to access all the information they needed in the activity that was almost always
on display in the monitors surrounding Line 1 and its machines. Therefore, to assist
its operators and the manufacturing process, Robopac requested that the Work
Order Diagram of Operations (see Figure 4.7) be visible in the Operator Landing
Page.

However, there was also an issue with the diagram itself. Robopac believed the
flowchart was not very helpful, since it was poorly organised, dull and provided
little information about the work order and the operations it was composed of.
They also claimed it lacked a colour scheme that quickly informed operators of the
state of each operation and the work order in general. Therefore, Robopac also
requested a new diagram that fixed these issues by being more clear, informative
and visually appealing.

Consequently, the following two objectives were defined:

1. Integration of the Work Order Diagram of Operations into the Operator Land-
ing Page to improve operator access to critical information.

2. Enhancement of the clarity, informativeness and visual appeal of the work
order flowchart to optimise understanding of operations and their statuses.

By modifying the Opcenter software and achieving these two objectives, Line 1 would
become more productive and would have less errors due to improved accessibility,
information clarity and visual representation of work orders and operations. In order
to attain these objectives, the following steps were established:

1. Development of an interface within the Operator Landing Page to display the
redesigned diagram.

2. Creation of the diagram, incorporating the required additional information.

The subsequent subsections will explain what were the necessary modifications to
accomplish each step.

60

4.3 – Novel Contribution: Enhanced Work Order Visual Representation

4.3.2 Implementing the Interface

The default Operator Landing Page contains a lot of information, meaning there is
not much room to add more data without crowding everything and making it harder
to understand. Figure 4.11 shows it when no order has been selected, and it looks
like there is plenty of space. However, when selecting and starting an operation,
this changes drastically, as highlighted by figure 4.12.

Clearly, adding the new diagram to this overloaded interface was not a good idea,
since it would be far too small to be useful or would cover everything up. Because of
this, it was decided to create a retractable panel that could be activated by pressing
a button. This solution is further supported by the fact that operators do not
require constant visibility of the diagram, but rather only when specific information
is needed.

Figure 4.11: Opcenter - Operator Landing Page

The choice was made to add a button to show and hide the panel in the lower
bar, next to the already existing Logistic Requests button. To do this and many
other things, Siemens provides an additional program called Solution Studio. In
it, an authorised user can modify activities and their layouts by adding, deleting
or rearranging components. Figure 4.13 shows the Solution Studio interface, called
Mashup, when modifying the Operator Landing Page interface.

To add the desired button, it is enough to add an additional component between
the Button Bar and Send to Rework Area components located at the bottom of
the Mashup. Figure 4.14 exhibits this. Once the button has been added to the
Mashup and saved, the Operator Landing Page will display it. Figure 4.15 shows
the same situation as Figure 4.12 but with the new button, which was called Layout.
Naturally, at this point the button did not do anything.

61

Robopac and Opcenter

Figure 4.12: Opcenter - Operator Landing Page with Selected Operation

Figure 4.13: Solution Studio - Operator Landing Edit Page

Two JavaScript files were created in the application’s frontend to interact with the
new Layout button: ShowLayout.js and Layout.js. The former connects the button
itself, in the Opcenter interface, with the code that makes the frontend work; it
defines its visibility and specifies which functions are executed when it is clicked.
In other words, whenever the button is clicked, ShowLayout.js is called. The latter
controls the panel, including its contents and dimensions. Furthermore, a file called
Treant.js was also added. Its purpose will be explained in the next subsection. The
tree on the following page shows the organisation of relevant files within the folder
where all extensions to the software are saved.

62

4.3 – Novel Contribution: Enhanced Work Order Visual Representation

Figure 4.14: Solution Studio - Operator Landing Page Edit Page with New Compo-
nent

Figure 4.15: Opcenter - Operator Landing Page with Layout Button

Siemens.SimaticIT.RobopacExtApp

components

ShowLayout

ShowLayout.js

ShowLayout.html

scripts

Treant.js

views

Layout

Layout.js

Layout.html

63

Robopac and Opcenter

The complete contents of the ShowLayout.js and Layout.js files will not be displayed
in this document as it would not contribute to the reader’s comprehension of the
modifications. However, relevant and useful portions will be presented. The follow-
ing code is responsible for connecting the frontend code and the Layout button:

function initCommandBar() {
self.buttonSL = {

id: "btnBrShowLayout",

type: "Command",

name: "ShowLayout",

unauthorizedBehavior: "show",

svgIcon: "common/icons/cmdListBox24.svg",

onClickCallback: showLayoutFunction,

visibility: true,

disabled: false,

align: "left"

};

self.buttonBarConfig = {
barType: "Tool",

bar: [

self.buttonSL

]

};
}

Essentially, this code serves the purpose of locating the Layout button within Op-
center and establishing a connection to the code. Then, it enables the button’s
visibility control and associates a callback function to execute when the button is
clicked. This function is responsible for triggering the opening of the panel and its
code is included on the following page.

The function first checks that the operator has selected an operation. If they have
not, then nothing happens. However, if an operation has been selected, then the
function gathers the data from the work order and the operation and opens the
panel. These data are stored in the global $state variable that is used for this
purpose.

In summary, the aforementioned actions resulted in the creation of a user interface
button named Layout. When pressed, and if an operation has been selected by
the operator, an empty panel is opened. The information regarding the selected
operation and the work order it belongs to is stored in a global variable that will
be accessed in the following step to generate the diagram and display it inside the
panel.

64

4.3 – Novel Contribution: Enhanced Work Order Visual Representation

function showLayoutFunction() {
var currentOperation = null;

var ctx = u4dmSvc.data.cache;

if (self.selectWoo) {
if (currentOp) {

ctx.setCurrentWorkOrderOperation(currentOperation);

} else {
currentOperation = ctx.getCurrentWorkOrderOperation();

}

if (currentOperation) {
$state.go(self.layoutState, {

"wooId": currentOperation.Id,

"woId": currentOperation.WorkOrder_Id,

"woNId": currentOperation.WorkOrder.NId

});
u4dmSvc.ui.sidePanel.open("e");

}
}

}

4.3.3 Generating the New Diagram

When brainstorming the best way to go about creating the new diagram, two pos-
sible approaches were discussed:

• Use the default library provided by Siemens and customise it to add the desired
functionalities.

• Search for a new library that supported the features Robopac requested.

After serious consideration, the first approach had to be ruled out. This was because
the diagram-generating system created by Siemens was very inflexible and did not
allow the level of customisation required to add the necessary features. Additionally,
even if it had been more modification-friendly, the amount of necessary changes
would have been extensive and very time consuming. Due to all of this, the decision
was made to pursue the second approach. Thus, the search for a suitable library
began.

After conducting a thorough search and evaluating several libraries, one was identi-
fied as the most suitable option: Treant.js. This “is a Javascript library for creating
tree structure charts” [57]. To use it, one simply needs to add the Treant.js file,
mentioned in the previous subsection, to the project folder. Then, after importing
the file, the Treant object has to be initialised with a chart config parameter which
contains all of the tree information, either in an array or in JSON format. The
following is a simple example:

65

https://fperucic.github.io/treant-js/

Robopac and Opcenter

// JSON approach

chart_config = {
chart: {

container: "#tree-simple"

},

nodeStructure: {
text: { name: "Parent node" },
children: [

{
text: { name: "First child" }

},
{

text: { name: "Second child" }
}

]

}
};

// Array approach

config = {
container: "#tree-simple"

};
parent_node = {

text: { name: "Parent node" }
};
first_child = {

parent: parent_node,

text: { name: "First child" }
};
second_child = {

parent: parent_node,

text: { name: "Second child" }
};
chart_config = [

config, parent_node,

first_child, second_child

];

// Tree creation

var chart = new Treant(chart config, function() {
alert("Tree Loaded")

}, $);

66

4.3 – Novel Contribution: Enhanced Work Order Visual Representation

Figure 4.16 shows the tree that the previous code creates:

Figure 4.16: Treant.js Basic Example Tree

Treant.js is highly customisable and allows the implementation of all of the fea-
tures Robopac desired. However, before actually designing the graph, the data that
would be used to generate it had to be gathered. In any graph, there are two basic
components: nodes and arcs. In the case of a work order graph, the nodes are the
operations and the arcs are the dependencies that indicate the order in which these
operations must be executed. Therefore, the first step is obtaining the operations
of a work order and the order in which they must be executed.

Fortunately, Opcenter already has functions that facilitate the obtaining of these
data. This means that the new code, which is all located in Layout.js, just had
to call said functions to populate the two arrays that were created to store the
information, one for operations and the other for dependencies.

Once the arrays had the necessary information, the next step was to get any addi-
tional data either requested by Robopac or necessary to generate the graph. This
is all done by the function createGraph, which in turn invokes other functions to do
specific tasks.

The createGraph function takes three parameters: the current operation, the op-
erations array and the dependencies array. Essentially, the function takes each
operation and obtains some additional data, which is then stored in JSON format.
Finally, each operation is saved in a new array called graph config.

67

Robopac and Opcenter

function createGraph(selectedOperation, operations, dependencies) {
var graph config = [];

operations.forEach((element) => {
var elementParent = getParent(element, dependencies);

var nodeColour = obtainColour(element, selectedOperations);

var duration = obtainDuration(element.EstimatedDuration_Ticks);

var currentOperation = {
id: element.Id,

HTMLclass: nodeColour,

text: {
name: element.Name,

title: "",

desc: duration,

datafoo: element.Id

}
}

if (elementParent != "") {
currentOperation["parent"] = elementParent;

}

graph config.push(currentOperation);

});

return transformGraph(graph config);

}

The first step is creating the new empty array. Then, a loop that iterates through
all operations begins. Within the loop, several functions are called. The first one is
called getParent and it is very simple: given an operation, the function returns its
parent. The following is the code:

function getParent(operation, dependencies) {
var parent = "";

dependencies.forEach((dep) => {
if (dep.ToWOO_Id == operation.Id) {

parent = dep.FromWOO_Id;

}
});
return parent;

}

68

4.3 – Novel Contribution: Enhanced Work Order Visual Representation

The second function invoked by createGraph is obtainColour. As its name implies, it
determines the colour that the node should have in the graph. It also gives an orange
border to the node that represents the operation that the work order is currently in,
which is why it takes a second parameter corresponding to this. The colour scheme
that Robopac desired was based on the status of the operation, so this is what the
function uses to determine the correct colour. The code is the following:

function obtainColour(operation, selectedOperation) {
var colour = "";

if (operation.Status["StatusNId"] == "Open") {
colour = "green";

}
else if (operation.Status["StatusNId"] == "Active") {

colour = "blue";

}
else if (operation.Status["StatusNId"] == "Partial") {

colour = "yellow";

}
else if (operation.Status["StatusNId"] == "NotExecuted") {

colour = "red";

}
else {

colour = "gray";

}

if (operation.Id == selectedOperation) {
colour += "-border selected";

}

return colour;

}

Operations have a field that stores the duration of said operation in a unit called
ticks; one tick equals one hundred nanoseconds. The job of the third function,
obtainDuration, is to convert ticks into hours, minutes and seconds. Its code, as
well as the code of the function it calls to create a more readable output, is included
on the following page.

After obtainDuration returns its value, all necessary information is available. The
next step is to put it all together in a single variable, currentOperation, which is then
added to the graph config array. The colour must be saved into the HTMLclass
attribute because the only way to colour a node with Treant.js is to do it through the
HTML file, which will be shown shortly. After every operation has been added to the
array, the output of the transformGraph function is returned. This function takes
the array that was just created and transforms it into a format that the Treant.js
library can read and convert into a tree.

69

Robopac and Opcenter

function obtainDuration(ticks) {
var totalSeconds = ticks / Math.pow(10, 7);

var hours = Math.floor(totalSeconds / 3600);

var minutes = Math.floor((totalSeconds / 60) % 60);

var seconds = totalSeconds % 60;

var result = pad2(hours) + ":" + pad2(minutes) + ":" pad2(seconds);

}

function pad2(number) {
number = "0" + number;

return number.substr(number.length - 2);

}

As previously mentioned, there are two approaches to represent the information that
is used by the library to initialise the tree: array format and JSON format. In the
former, each node is stored into a separate variable. In order to identify the parent
node of a given node, the name of the variable where the parent is stored must be
provided. However, due to the dynamic nature of the project, where the number of
operations is not known beforehand (since it varies depending on the work order),
the array approach was not suitable. Therefore, the JSON approach was deemed to
be the only viable option, since it allows more flexibility when dealing with dynamic
data.

The transformGraph function first iterates through each of the items it receives as
parameters, which are the operations with their associated data, and saves each one
with a format that complies with the JSON approach into a new dictionary.

After this, the output dictionary is modified to keep track of a node’s children. In
the JSON approach, all nodes that are children of a parent node are part of an
array saved into the children field of the parent. The code included on the following
page shows these two first steps, where the output dictionary is created and then
the children field is added to the nodes that need it.

70

4.3 – Novel Contribution: Enhanced Work Order Visual Representation

function transformGraph(graph) {
var output = {};
graph.forEach((elem) => {

output[elem.id] = {
id: elem.id,

HTMLclass: elem.HTMLclass,

text: {
name: elem.text["name"]

title: elem.text["title"],

desc: "Durata Stimata: " + elem.text["desc"],

datafoo: elem.text["datafoo"]

}
}
if ("parent" in elem) {

output[elem.id]["parent"] = elem.parent;

}
});

var nodeStructure = "";

for (var op in output) {
var entry = output[op];

var parent = output[output[op].parent];

if (parent == undefined) {
nodeStructure = entry;

}

else {
if (!(children in parent)) {

parent["children"] = [];

}
parent["children"].push(entry);

}
}

The result of this, as previously mentioned, is that all nodes have a field called
children that contains the JSON objects containing the information of their children.
The variable nodeStructure stores the first node (i.e., the entry node to the entire
graph).

The last step is to create the JSON object that defines some of the settings for the
generation of the graph. Then, this new object is returned alongside the nodeStruc-
ture variable that stores the entire tree. The following is the code:

71

Robopac and Opcenter

var config = {
container: "#layout",

connectors: {
type: "step"

},
node: {

HTMLclass: "nodeExample1"

},
rootOrientation: "WEST",

callback: {
onTreeLoaded: function () {

const $oNodes.on("click", function (oEvent) {
const $oNode = $(this);

var opId = $oNode[0].children[3].innerText;

getEquipment(opId).then(function (eq) {
$oNode[0].children[1].innerText = eq;

});
});

}
}

}

var chart_config = [

config,

nodeStructure

]

return chart config;

}

A callback function was implemented to handle the event when a node in the diagram
is clicked. This callback function retrieves the equipment associated to operation
that the node represents and then displays it. This approach was selected for ef-
ficiency reasons, since retrieving the equipment of a given operation must be done
through a query. Due to this, triggering the query for every operation when building
the diagram would have been inefficient. This approach improves the performance
of the system.

Finally, all that remains is calling the createGraph function that will construct the
graph by invoking everything else. Also, and since many operations can be part of
a single work order, a horizontal scrollbar was set up.

Subsequently, the interface implemented in subsection 4.3.2 displayed the Work
Order Diagram of Operations. The remaining relevant code resides in the Lay-
out.HTML file, specifically responsible for modifying the colour of a node and set-
ting its border to orange when necessary. A section of this HTML file is included on
the following page, as well as the aforementioned call to the createGraph function.

72

4.3 – Novel Contribution: Enhanced Work Order Visual Representation

vm.chart config = createGraph(workOrderOperationId, vm.allOperations,

vm.dependencies);

var chart = new Treant(vm.chart config, function () {
var opSelected = document.getElementsByClassName("selected");

var graphElement = document.getElementById("layout");

var selectedOffset = opSelected[0].offsetLeft;

if (selectedOffset > 1200) {
graphElement.scrollLeft += selectedOffset - 600;

}
}, $);

<style>

.green {
background-colour: #3FCA67;

}
.green.border {

background-colour: #3FCA67;

border: 3px solid #F3962F;

}
</style>

The new Work Order Diagram of Operations is depicted in Figure 4.17, showcasing
the enhanced colour scheme and improved visual elements. When a node is clicked,
additional information is shown, as highlighted in Figure 4.18. Finally, Figure 4.19
shows the diagram of a different work order, showcasing some of the other node
colours.

Figure 4.17: Updated Work Order Diagram of Operations

73

Robopac and Opcenter

Figure 4.18: Updated Work Order Diagram of Operations when Node is Clicked

Figure 4.19: Another Example of the Updated Work Order Diagram of Operations

4.3.4 Final Comments

This denotes the completion of the most important modifications done to Siemens
Opcenter Execution Discrete to satisfy Robopac’s desire to have a more convenient,
practical and aesthetically appealing way of visualising the status of a work order
through the Work Order Diagram of Operations. Robopac was very pleased with
the outcome.

The next chapter, Chapter 5, will further discuss and delve deeper into the value
these modifications provided both to Robopac and its workers.

74

Discussion

This chapter will analyse what the actual added value was in each of the two projects
by comparing the initial situation to the final one. Additionally, the two MES
software programs will then be compared, highlighting advantages and disadvantages
of each one in the context of smart factories. The intention is to evaluate strengths
and weaknesses of each software in relation to their applicability and effectiveness
in this Industry 4.0 world.

5.1 Added Value

5.1.1 Lincotek and Opera MES

Before the project, there was a big problem regarding data transfer between Opera
MES and the Airflow machines, which are part of the manufacturing process of some
work orders. The issue was that all communication between these two entities had
to be done manually by operators, meaning that data transfer was both inefficient
and subject to human error. Figure 5.1 visually represents this.

Figure 5.1: Opera MES - Original Flow of Data Exchange

The data, generated after running quality control tests, were crucial to Lincotek since
they were used, among data from other machines and tests, to generate a document
called Certificate of Conformity (COC), which reports to clients the results of quality
tests. Essentially, this document serves as a guarantee that the manufacturing
process is living up to the standards set by customers. Due to this, it is evident that
ensuring the integrity of the data is of upmost importance.

75

Discussion

To achieve this goal, a new architecture was devised. The new system permitted the
direct communication and data transfer between the software that controlled and
kept track of everything, Opera MES, and Airflow machines. By doing this, data
integrity is assured and operators are relieved of the uncomfortable task of manually
copying data from one machine to another. Figures 5.2 and 5.3 visually represent
the new flow, including the stored procedures that trigger data exchange.

Figure 5.2: Opera MES - New Flow of Data Exchange

Figure 5.3: Opera MES - Zoom in on the New Flow of Data Exchange

76

5.1 – Added Value

5.1.2 Robopac and Opcenter

Siemens Opcenter Discrete, the MES software used by Robopac in their San Marino
manufacturing plant, offers its users a diagram to visualise the flow of operations
that make up any given work order. However, Robopac believed this diagram to
be dull, counter-intuitive and even uninformative, as well as poorly placed within
the software. This was all a problem, since the software was failing to aid the
comprehension of operators in this particular aspect.

The project presented in this thesis devised and introduced a new diagram to address
this issue. The new diagram offers enhanced clarity, intuitiveness and displays a
greater amount of information, as well as being located in a more convenient interface
of the software. Now operators do not need to leave the interface they use to interact
with work orders to get information about the progression of a given work order,
which is what they had to do previously. Furthermore, a quick glance at the new
diagram provides them with more information that careful inspection of the previous
one would have. Finally, the information is not only presented with improved clarity
but also more detail is included.

Both diagrams, old and new, are shown in Figures 5.4 and 5.5. It is clear that the
new one has a cleaner design and facilitates operator comprehension with its colour
scheme.

Figure 5.4: Opcenter - New Work Order Diagram of Operations

77

Discussion

Figure 5.5: Opcenter - Old Work Order Diagram of Operations

5.2 Comparing Opera MES and Opcenter

Opera MES and Siemens Opcenter are two MES software programs that aim to keep
track of everything production-related in a manufacturing plant, thus providing the
company with a lot of information they would not have otherwise. Ideally, MES
software should also facilitate the functioning of smart factories by communicating
directly with machinery.

Both Opera MES and Opcenter offer capabilities for managing all operations in the
manufacturing process, but they differ in terms of features and flexibility.

Opera MES offers a very user-friendly interface that is highly customisable and eas-
ily adaptable to customer needs, thus enabling a company to tailor the software to
their specific requirements and streamline their operations effectively. From a pro-
gramming perspective, Opera MES offers the advantage of easy modification and
quick implementation and testing of new features. This is because, unlike other
systems or programs, Opera MES does not require rebuilding the entire project for
each change, thus facilitating rapid testing without significant downtime. This flex-
ibility allows developers to evaluate changes to the software quickly and efficiently.

However, this flexibility can come at a cost. A potential downside of the Opera
MES approach is that there is an increased risk of introducing bugs or errors, since
the implementation can be very quick and there is not much revision of the code.
Without the rebuilding process, there is a higher probability of unintended and un-
expected code behaviour. Due to this, the developer has to be careful to thoroughly
test any new features they might be implementing, since no safety net is present.

On the other hand, Siemens Opcenter is a more robust system that uses a more
traditional rebuilding process to push any new changes. This means that flexibility

78

5.2 – Comparing Opera MES and Opcenter

is reduced and testing times drastically increase, especially due to the downtime
associated with the entire building process. However, this process has additional
filters and barriers, meaning that the code is checked much more thoroughly be-
fore actually being added to the program. This approach is a lot more inefficient
whenever a small change needs to be implemented or whenever a small error needs
addressing, since checking whether it was solved can be very time-consuming. On
the other hand, it also provides more safety and is more resilient, since it is able to
deal with any potential human error in a better way, preventing these errors from
being integrated.

Another significant difference between the two software programs is the way in which
workflows are actually created and modified. In Opera MES, everything is done
through SQL, as described in Chapter 3. This means that all interaction with the
database is very direct, enabling more flexibility when managing and manipulating
data. Additionally, SQL is built to interact with databases, so the developer can
make the most of the language and retrieve data efficiently. However, SQL does not
offer the same features that languages like JavaScript do, meaning that workflows
in Opera MES might be slightly limited due to this.

In contrast, Opcenter manages workflows through JavaScript and C#. For this
thesis, and due to the nature of the required modifications, only the former was used,
as discussed in Chapter 4. Using these two programming languages allows for great
flexibility since they are highly versatile and offer extensive libraries for development,
like the Treant.js library used for this project. Moreover, these languages provide
easy and seamless integration with other technologies, meaning that communication
with other systems is effortless. However, using JavaScript and C# means that
interaction with the database is done in indirect fashion, adding an additional layer
of complexity that might impact performance. Also, performance may be impacted
further since these are higher level languages that entail additional processing when
compared to direct SQL interactions.

The work done for this thesis showcases some of the strengths of both Opera MES
and Opcenter. The Lincotek project showed the advantages Opera MES has when
connecting directly with a database due to the fact that workflows are created on
SQL, facilitating the implementation of the new architecture that ensured efficient
data collection and storage. Additionally, the ease with which a new workflow
was created depicts the software’s flexibility. These are all desirable qualities for a
software program that controls a smart factory, since the company can tailor the
process to their needs to streamline production.

On the other hand, the Robopac project illustrated the advantages of working with
languages such as JavaScript, which offer seamless integration with countless li-
braries. This capability greatly enhances the extensibility of a software program
because it massively increases the features that can be implemented while minimis-
ing the work needed to do so. So, even if Opcenter is slightly less flexible than

79

Discussion

Opera MES in terms of workflow creation and editing, the nature of the program-
ming languages makes up for it. Once again, this is a desirable quality for a software
program that interacts with a smart factory environment.

In conclusion, both MES software programs have advantages and disadvantages
both to the manufacturing company and the developers implementing any poten-
tial required modifications. Both systems are adaptable and have good scalability,
meaning they would be a good fit for small, medium or even large manufacturing op-
erations. There is no right or wrong answer when asking which of the two programs
is better, and which one should be used ultimately comes down to the requirements
of the manufacturing process and the company.

80

Conclusions

In the rapidly evolving landscape of manufacturing, manufacturing execution sys-
tems (MES) software has assumed an increasingly leading role. This software plays
a crucial part in facilitating production planning, tracking and control, monitoring
the transformation of raw materials into finished products. This has made MES in-
dispensable in the era of Industry 4.0. As smart factories continue to emerge, MES
software will continue to be a key component to ensure efficient operations. Due
to all of this, this thesis was focused on implementing functionalities to extend two
different MES software programs, as requested by two distinct companies, Lincotek
and Robopac, as they navigate the evolving demands of modern manufacturing in
the context of Industry 4.0.

The initial phase of the project was centred on addressing Lincotek’s need for an
efficient data exchange process with Airflow machines, which are involved in their
manufacturing process. Prior to the project, data transfer was performed manually
by operators. To solve this, a novel architecture was devised and implemented. The
solution involved the development of a dedicated database specifically designed to
interact with Airflow machines. Furthermore, a new workflow was integrated into
the Opera MES software, establishing a connection between the new database and
the primary database, thus enabling efficient data exchange.

Following the successful implementation of the above, data exchange between Opera
MES and Airflow machines has become automatic and seamless. This has eliminated
the need for manual copying by operators into monitors, thus enabling integration
of Airflow machine data into Opera MES. As a result, operators can now use their
time more efficiently whilst data accuracy is ensured.

The second phase of the project consisted on redesigning the default diagram avail-
able in Opcenter to show the flow of operations that make up a work order. Robopac
identified limitations in the existing diagram, which lacked sufficient information and
also presented it in an unintuitive way, thus hindering the ability of an operator to
quickly understand the current stage and production status. Moreover, the diagram
was located in an inconvenient interface, making it difficult for operators to access
the information swiftly.

To solve these issues, a new visually appealing and informative diagram was devel-
oped using a JavaScript library, taking advantage of the extensive range of libraries

81

Conclusions

available in the language. The diagram was placed in a convenient user-friendly
panel within the interface that operators primarily interact with when overseeing
the manufacturing process. With the integration of the implemented features, op-
erators can now quickly access and interpret information regarding the status of
operations within a work order. The novel diagram not only provides a clearer vi-
sual representation but also incorporates new data, allowing workers to plan the
manufacturing process more effectively.

The work done in this thesis for Lincotek and Robopac shows the versatile and
flexible nature of MES software. The ability to successfully extend both programs,
Opera MES and Opcenter, demonstrates the great adaptability that MES software
has, as it can keep up with the ever evolving needs of manufacturing environments.
Because of this quality, managers can effectively improve the production processes
they oversee by tailoring the MES software to their operators’ needs and require-
ments, thus optimising manufacturing.

To effectively adapt MES software to a firm’s needs, company collaboration is a
very valuable tool. The partnership Lincotek and Robopac have with aizoOn allows
them to swiftly evolve their MES software by implementing new functionalities that
streamline their manufacturing processes. The partnership is also very beneficial for
aizoOn, since the specific requirements of real-world clients provide valuable insight
into the manufacturing world and developers are faced with practical challenges,
thus improving the service the company provides its clients.

Furthermore, this thesis illustrates the importance of customising the manufactur-
ing process to drive the development and advancement of smart factories. This is
because, as stated in Chapter 2, a smart factory requires flexible and adaptive pro-
duction processes in a world of increasing complexity [32]. The focus of this thesis of
continuously updating and tailoring MES software to align with a company’s manu-
facturing process plays a key role in this adaptation, thereby serving as an essential
step towards establishing a smart factory.

The fine-tuning of MES software enables the enhancement of the manufacturing
process and the increase in operational efficiency, thus catalysing the transforma-
tion of a production plant into a smart factory. The ability to continuously adapt
and optimise processes through technology integration and automation empowers a
company to achieve new levels of agility and responsiveness, aiding it to be at the
forefront.

The impact of this thesis goes beyond the specific implemented features, either MES
software program and the involved companies. The most important lesson from the
entire project is the importance of continuously improving and optimising the pro-
duction process to enable the advancement of smart manufacturing practices. This
mindset of ongoing betterment is relevant not only in the manufacturing industry
but also in various aspects of professional and personal life. The principle of constant
improvement transcends the boundaries of this thesis and serves as a reminder of the

82

Conclusions

importance of striving for growth and development in all aspects of life. Embrac-
ing this mindset propels a company or individual to always push and work towards
excellence.

In summary, this thesis has consisted of the extension of two MES software programs
through the implementation of various functionalities. The Lincotek and Robopac
projects have served as examples of how MES software can be enhanced to meet
specific needs: The former upgraded data exchange capabilities while the latter
improved visual appeal and representation of information regarding work orders.
Through these modifications, the versatile and adaptable nature of MES software
has been showcased, which allows it to adjust to the evolving requirements of the
fast-paced manufacturing world. Due to this, managers can swiftly address the needs
and demands of their operators to continuously improve production processes.

Furthermore, this thesis has highlighted and justified the importance of continu-
ous improvement and process optimisation in smart factories. The integration of
emerging technologies and the refinement of production processes are key elements
that empower a company to transform their productions plants into efficient smart
factories.

This mindset of continuous improvement is an important lesson that this thesis
carries that goes beyond the implemented features and the software programs used.
A culture of perpetual betterment and striving for development is an important
concept in several facets of professional and personal life which unlocks the potential
for success and growth.

To conclude this thesis, the profound impact of MES software in the process of trans-
forming a production plant into a smart factory should be restated. Additionally,
it is essential to have a mindset of ongoing betterment to tailor the software to the
needs of managers and operators, thus improving and optimising the manufactur-
ing process. As industries embrace digitalisation and automation, the experiences
shared in this thesis can serve as a valuable guideline to companies undertaking the
journey of transforming their manufacturing plants into smart factories.

83

84

Bibliography

[1] Y. Ersoy, “The advantages and barries in implementing of industry 4.0 and key
features of industry 4.0,” The Journal of International Scientific Researches,
vol. 7, pp. 207–214, 10 2022.

[2] M. Nardo, D. Forino, and T. Murino, “The evolution of man–machine interac-
tion: the role of human in industry 4.0 paradigm,” Production & Manufacturing
Research, vol. 8, no. 1, pp. 20–34, 2020.

[3] S. Mantravadi and C. Møller, “An overview of next-generation manufacturing
execution systems: How important is mes for industry 4.0?,” Procedia Man-
ufacturing, vol. 30, pp. 588–595, 2019. Digital Manufacturing Transforming
Industry Towards Sustainable Growth.

[4] M. Hermann, T. Pentek, and B. Otto, “Design principles for industrie 4.0
scenarios,” in 2016 49th Hawaii International Conference on System Sciences
(HICSS), pp. 3928–3937, 2016.

[5] A. Shojaeinasab, T. Charter, M. Jalayer, M. Khadivi, O. Ogunfowora,
N. Raiyani, M. Yaghoubi, and H. Najjaran, “Intelligent manufacturing execu-
tion systems: A systematic review,” Journal of Manufacturing Systems, vol. 62,
pp. 503–522, 2022.

[6] S. Mantravadi, C. Li, and C. Møller, “Multi-agent manufacturing execution
system (mes): Concept, architecture ml algorithm for a smart factory case,”
pp. 477–482, 01 2019.

[7] M. McClellan, Applying Manufacturing Execution Systems. CRC Press, 1997.

[8] L. Mayer, N. Mehdiyev, and P. Fettke, “Manufacturing execution systems
driven process analytics: A case study from individual manufacturing,” Pro-
cedia CIRP, vol. 97, pp. 284–289, 2021. 8th CIRP Conference of Assembly
Technology and Systems.

[9] MESCenter, “Mes - manufacturing execution system.” http://mescenter.

org/en/articles/108-mes-manufacturing-execution-system. Accessed:
2022-12-15.

[10] I. Wright, “What is industry 4.0, anyway?.” https://www.engineering.com/

story/what-is-industry-40. Accessed: 2022-12-16.

[11] J. Mokyr and R. H. Strotz, “The second industrial revolution, 1870-1914,”
Storia dell’economia Mondiale, vol. 21945, no. 1, 1998.

[12] A. Atkeson and P. J. Kehoe, “The transition to a new economy after the second
industrial revolution,” 2001.

[13] P. Magal, “Timeline of revolutions.” https://manufacturingdata.io/

newsroom/timeline-of-revolutions/. Accessed: 2022-12-16.

85

http://mescenter.org/en/articles/108-mes-manufacturing-execution-system
http://mescenter.org/en/articles/108-mes-manufacturing-execution-system
https://www.engineering.com/story/what-is-industry-40
https://www.engineering.com/story/what-is-industry-40
https://manufacturingdata.io/newsroom/timeline-of-revolutions/
https://manufacturingdata.io/newsroom/timeline-of-revolutions/

Bibliography

[14] P. Troxler, “Making the 3rd industrial revolution,” Fab Labs: Of Machines,
Makers and Inventors, Transcript Publishers, Bielefeld, 2013.

[15] C. Roser, “The four industrial revolutions.” https://www.allaboutlean.com/
industry-4-0/. Accessed: 2022-12-16.

[16] S. Muhammad, Y. Pan, C. Magazzino, Y. Luo, and M. Waqas, “The fourth
industrial revolution and environmental efficiency: The role of fintech industry,”
Journal of Cleaner Production, vol. 381, p. 135196, 2022.

[17] M. Shahbaz, M. A. Nasir, E. Hille, and M. K. Mahalik, “Uk’s net-zero carbon
emissions target: Investigating the potential role of economic growth, finan-
cial development, and rd expenditures based on historical data (1870–2017),”
Technological Forecasting and Social Change, vol. 161, p. 120255, 2020.

[18] M. Ghobakhloo, “Industry 4.0, digitization, and opportunities for sustainabil-
ity,” Journal of Cleaner Production, vol. 252, p. 119869, 2020.

[19] S. Corfe, “4ir and the environment: How the fourth industrial revolution can
curb air pollution and decarbonise the economy,” Social Market Foundation,
2020.

[20] S. S. Kamble, A. Gunasekaran, and S. A. Gawankar, “Sustainable industry 4.0
framework: A systematic literature review identifying the current trends and
future perspectives,” Process Safety and Environmental Protection, vol. 117,
pp. 408–425, 2018.

[21] M. Hermann, T. Pentek, B. Otto, et al., “Design principles for industrie 4.0
scenarios: a literature review,” Technische Universität Dortmund, Dortmund,
vol. 45, 2015.

[22] X. Yao, H. Jin, and J. Zhang, “Towards a wisdom manufacturing vision,”
International Journal of Computer Integrated Manufacturing, vol. 28, no. 12,
pp. 1291–1312, 2015.

[23] M. M. Mabkhot, A. M. Al-Ahmari, B. Salah, and H. Alkhalefah, “Requirements
of the smart factory system: A survey and perspective,” Machines, vol. 6, no. 2,
2018.

[24] P. Taylor, “Volume of data/information created, captured, copied, and con-
sumed worldwide from 2010 to 2020, with forecasts from 2021 to 2025.” https:
//www.statista.com/statistics/871513/worldwide-data-created/. Ac-
cessed: 2022-12-20.

[25] X. Xu, “From cloud computing to cloud manufacturing,” Robotics and
Computer-Integrated Manufacturing, vol. 28, no. 1, pp. 75–86, 2012.

[26] K. Rose, S. Eldridge, and L. Chapin, “The internet of things: An overview,”
The internet society (ISOC), vol. 80, pp. 1–50, 2015.

[27] A. A. Author, B. B. Author, and C. Author, “Supply chain management and
industry 4.0: A theoretical approach,” Brazilian Journal of Operations and
Production Management, vol. 10, no. 2, pp. 49–53, 2005.

[28] M. Ben-Daya, E. Hassini, and Z. Bahroun, “Internet of things and supply chain
management: a literature review,” International Journal of Production Re-
search, vol. 57, no. 15-16, pp. 4719–4742, 2019.

[29] R. Baheti and H. Gill, “Cyber-physical systems,” The impact of control tech-
nology, vol. 12, no. 1, pp. 161–166, 2011.

86

https://www.allaboutlean.com/industry-4-0/
https://www.allaboutlean.com/industry-4-0/
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/

Bibliography

[30] E. A. Lee, “The past, present and future of cyber-physical systems: A focus on
models,” Sensors, vol. 15, no. 3, pp. 4837–4869, 2015.

[31] E. Hozdić, “Smart factory for industry 4.0: A review,” International Journal
of Modern Manufacturing Technologies, vol. 7, no. 1, pp. 28–35, 2015.

[32] A. Radziwon, A. Bilberg, M. Bogers, and E. S. Madsen, “The smart factory:
exploring adaptive and flexible manufacturing solutions,” Procedia engineering,
vol. 69, pp. 1184–1190, 2014.

[33] B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee, and B. Yin, “Smart factory of
industry 4.0: Key technologies, application case, and challenges,” IEEE Access,
vol. 6, pp. 6505–6519, 2018.

[34] O. Didenko, “Industry 4.0: the real value of a smart factory [full guide].” https:
//www.altamira.ai/industry-4-0-smart-factory/. Accessed: 2022-12-20.

[35] A. Pereira and F. Romero, “A review of the meanings and the implications
of the industry 4.0 concept,” Procedia Manufacturing, vol. 13, pp. 1206–
1214, 2017. Manufacturing Engineering Society International Conference 2017,
MESIC 2017, 28-30 June 2017, Vigo (Pontevedra), Spain.

[36] S. Erol, A. Jäger, P. Hold, K. Ott, and W. Sihn, “Tangible industry 4.0: A
scenario-based approach to learning for the future of production,” Procedia
CIRP, vol. 54, pp. 13–18, 2016. 6th CIRP Conference on Learning Factories.

[37] DATAZero, “The fourth industrial revolution.” https://dat4zero.eu/

what-is-industry-4-0/. Accessed: 2022-12-21.

[38] Wonderware, “Cos’è il mes, manufacturing execution system?.” https://www.

wonderware.it/cose-il-mes-manufacturing-execution-system/. Ac-
cessed: 2022-12-21.

[39] S. Henderson, “The benefits of mes: from the field,” 2016. 6th CIRP Conference
on Learning Factories.

[40] M. McCLELLAN, “Introduction to manufacturing execution systems,” in MES
Conference & Exposition, Baltimore, Maryland, pp. 1–7, 2001.

[41] K. Tzedef, “The evolution of manufacturing execu-
tion systems (mes).” https://www.contel.com/news-item/

the-evolution-of-manufacturing-execution-systems-mes/. Accessed:
2022-12-21.

[42] S. Jaskó, A. Skrop, T. Holczinger, T. Chován, and J. Abonyi, “Development of
manufacturing execution systems in accordance with industry 4.0 requirements:
A review of standard- and ontology-based methodologies and tools,” Computers
in Industry, vol. 123, p. 103300, 2020.

[43] A. Deuel, “The benefits of a manufacturing execution system for plantwide
automation,” ISA Transactions, vol. 33, no. 2, pp. 113–124, 1994.

[44] Iriday, “Software mes cos’È?.” https://mes.iriday.it/

software-mes-cose/. Accessed: 2022-12-23.

[45] aizoOn, “aizoon technology consulting.” https://www.aizoongroup.com/

home.aspx#intro. Accessed: 2022-12-26.

[46] Lincotek, “Lincotek.” https://www.lincotek.com/. Accessed: 2022-12-27.

[47] FlowSystems, “Flowsystems.” https://www.flowsystemsinc.com/. Ac-
cessed: 2022-12-27.

87

https://www.altamira.ai/industry-4-0-smart-factory/
https://www.altamira.ai/industry-4-0-smart-factory/
https://dat4zero.eu/what-is-industry-4-0/
https://dat4zero.eu/what-is-industry-4-0/
https://www.wonderware.it/cose-il-mes-manufacturing-execution-system/
https://www.wonderware.it/cose-il-mes-manufacturing-execution-system/
https://www.contel.com/news-item/the-evolution-of-manufacturing-execution-systems-mes/
https://www.contel.com/news-item/the-evolution-of-manufacturing-execution-systems-mes/
https://mes.iriday.it/software-mes-cose/
https://mes.iriday.it/software-mes-cose/
https://www.aizoongroup.com/home.aspx#intro
https://www.aizoongroup.com/home.aspx#intro
https://www.lincotek.com/
https://www.flowsystemsinc.com/

Bibliography

[48] Robopac, “Robopac: About us.” https://www.robopac.com/en/about-us.
Accessed: 2022-12-28.

[49] RobopacMachinery, “Robopac machinery.” https://www.robopac.com/en/

business-units/robopac-machinery. Accessed: 2022-12-28.
[50] O. MES, “Opera mes.” https://www.operames.net/index.php/en/

operames/operames-overview. Accessed: 2022-12-29.
[51] O. Data, Opera v.6 - User Manual. Open Data, 40050 Funo di Argelato (BO)

- Italy, 1st ed.
[52] FlowSystemsInc, “Portable air flow test stand.” https://www.

flowsystemsinc.com/portable-air-flow-test-stand/. Accessed: 2023-
01-04.

[53] Siemens, “Opcenter.” https://www.plm.automation.siemens.com/global/

en/products/opcenter/. Accessed: 2023-01-23.
[54] Sage, “What is discrete manufacturing?.” https://www.sage.com/en-us/

blog/glossary/what-is-discrete-manufacturing. Accessed: 2023-01-23.
[55] Siemens, “Opcenter execution discrete.” https://www.plm.automation.

siemens.com/global/en/products/opcenter/discrete-manufacturing.

html. Accessed: 2023-01-23.
[56] Siemens, Siemens Digital Industries Software: Opcenter Execution Discrete.

Siemens, 5800 Granite Parkway, Plano, Texas, United States, 1st ed.
[57] Treant.js, “Treant.js.” https://fperucic.github.io/treant-js/. Accessed:

2023-06-12.

88

https://www.robopac.com/en/about-us
https://www.robopac.com/en/business-units/robopac-machinery
https://www.robopac.com/en/business-units/robopac-machinery
https://www.operames.net/index.php/en/operames/operames-overview
https://www.operames.net/index.php/en/operames/operames-overview
https://www.flowsystemsinc.com/portable-air-flow-test-stand/
https://www.flowsystemsinc.com/portable-air-flow-test-stand/
https://www.plm.automation.siemens.com/global/en/products/opcenter/
https://www.plm.automation.siemens.com/global/en/products/opcenter/
https://www.sage.com/en-us/blog/glossary/what-is-discrete-manufacturing
https://www.sage.com/en-us/blog/glossary/what-is-discrete-manufacturing
https://www.plm.automation.siemens.com/global/en/products/opcenter/discrete-manufacturing.html
https://www.plm.automation.siemens.com/global/en/products/opcenter/discrete-manufacturing.html
https://www.plm.automation.siemens.com/global/en/products/opcenter/discrete-manufacturing.html
https://fperucic.github.io/treant-js/

List of Figures

2.1 The Four Industrial Revolutions [15] (by Christoph Roser at AllAboutLean.com) 4
2.2 Volume of data/information created, captured, copied, and consumed

worldwide from 2010 to 2020, with forecasts from 2021 to 2025 (by

Petroc Taylor at statista.com) . 5
2.3 Smart Factories [34] (by Olha Didenko at altamira.ai) 6
2.4 Industry 4.0 [37] . 7
2.5 Features of Manufacturing Execution Systems [44] 9
2.6 Rubbiano Manufacturing Plant . 11
2.7 Robobac Machinery Manufacturing Plant in San Marino 12

3.1 IT architecture were Opera works best 13
3.2 Opera’s Factory Layout Configuration 14
3.3 Opera’s main window . 16
3.4 Opera - Hovering over a Workflow . 16
3.5 Opera - Riepilogo Commessa Workflow 17
3.6 Opera - Riepilogo Commessa Workflow When a Work Order is Se-

lected . 17
3.7 The Four Stored Procedures . 19
3.8 First Ten Entries of MntrVars Table 19
3.9 Opera MES Example - Inizio Piazzamento 20
3.10 Opera MES Example - Inizio Piazzamento: Badge Selected 21
3.11 Opera MES Example - Inizio Piazzamento: Macchina Tab 22
3.12 Opera MES Example - Inizio Piazzamento: Macchina Tab After

Scrolling . 22
3.13 Opera MES Example - Inizio Piazzamento: Ordine di Lavoro Tab . . 23
3.14 Opera MES Example - Inizio Piazzamento: Item Containing Work

Order Information . 23
3.15 Opera MES Example - Inizio Piazzamento: Fase di Lavoro Tab . . . 24
3.16 Opera MES Example - Inizio Piazzamento: Items in Fase di Lavoro

Tab . 24
3.17 Opera MES Example - Inizio Piazzamento: Programma/Scheda com-

ponente Tab . 25
3.18 Opera MES Example - Riepilogo Commessa After Committing the

Inizio Piazzamento Workflow . 25
3.19 Opera MES Example - Fine Piazzamento Workflow 26
3.20 Opera MES Example - Inizio Attività Workflow 26

89

List of Figures

3.21 Opera MES Example - Inizio Attività: Attrezzature Tab 27
3.22 Opera MES Example - Inizio Attività: Componenti Tab 27
3.23 Opera MES Example - Controlli . 28
3.24 Opera MES Example - Controlli : Correct Fase di Lavoro Selection . 28
3.25 Opera MES Example - Controlli : Programma/Scheda componente Tab 29
3.26 Opera MES Example - Controlli : Prova Tab 29
3.27 Opera MES Example - Controlli per Prova Workflow 30
3.28 Opera MES Example - Controlli per Prova: Test Successfully Passed 30
3.29 Opera MES Example - Fine Attività Workflow 31
3.30 Opera MES Example - Riepilogo Commessa After Phase is Complete 31
3.31 First Fifteen Entries of the Macchine Table 32
3.32 Airflow Machine Interface . 33
3.33 Airflow Machine Interface - Operation Data Inserted 33
3.34 Airflow Machine Interface - Operation Description Menu 34
3.35 External Airflow Machines Database 36
3.36 Tables Created in the External Database 37
3.37 Workflow 397 - Controlli per Airflow : Configuration Tab 41
3.38 MntrWV Table Showing airflow data Variable 46
3.39 Workflow 397 - Controlli per Airflow : Airflow Data Tab 47
3.40 Workflow 397 - Controlli per Airflow : Airflow Test Tab 48

4.1 Hierarchical Structure Model of a Process 54
4.2 Opcenter Execution Discrete Main Window 55
4.3 Opcenter Execution Discrete Main Window After Scrolling 55
4.4 Opcenter - Work Orders Window . 56
4.5 Opcenter - Work Order Details . 56
4.6 Opcenter - Work Order and its Operations 57
4.7 Opcenter - Work Order Diagram of Operations 57
4.8 Opcenter - Operator Landing Page 58
4.9 Robopac’s Smart Line in Real-Time 59
4.10 Robopac’s Smart Line . 59
4.11 Opcenter - Operator Landing Page 61
4.12 Opcenter - Operator Landing Page with Selected Operation 62
4.13 Solution Studio - Operator Landing Edit Page 62
4.14 Solution Studio - Operator Landing Page Edit Page with New Com-

ponent . 63
4.15 Opcenter - Operator Landing Page with Layout Button 63
4.16 Treant.js Basic Example Tree . 67
4.17 Updated Work Order Diagram of Operations 73
4.18 Updated Work Order Diagram of Operations when Node is Clicked . 74
4.19 Another Example of the Updated Work Order Diagram of Operations 74

5.1 Opera MES - Original Flow of Data Exchange 75
5.2 Opera MES - New Flow of Data Exchange 76
5.3 Opera MES - Zoom in on the New Flow of Data Exchange 76
5.4 Opcenter - New Work Order Diagram of Operations 77
5.5 Opcenter - Old Work Order Diagram of Operations 78

90

	Introduction
	Context
	Objectives

	Background
	Industry 4.0
	MES Software
	Companies Involved in the Thesis
	aizoOn
	Lincotek
	Robopac

	Lincotek and Opera MES
	Opera MES
	Overview
	Stored Procedures and Variables
	Example of the Advancement of a Phase of a Work Order

	Airflow Machines
	Novel Contribution: Automatic Data Collection and Storage for Enhanced Quality Assurance
	Objectives
	Providing Data to the Airflow Machines
	Reading Data from Airflow Machines and Inserting it into Opera MES
	Additional Changes to Workflow 397
	Final Comments

	Robopac and Opcenter
	Opcenter
	Robopac's use of Opcenter
	Novel Contribution: Enhanced Work Order Visual Representation
	Objectives
	Implementing the Interface
	Generating the New Diagram
	Final Comments

	Discussion
	Added Value
	Lincotek and Opera MES
	Robopac and Opcenter

	Comparing Opera MES and Opcenter

	Conclusions
	Bibliography
	List of Figures

