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Abstract

Future exploratory missions of celestial bodies in the solar system will require
spacecraft capable of landing precisely near to predefined targets, such as places
of high scientific interest usually on topographically hazardous terrains, human
outposts and pre-positioned assets.

This thesis work analyses and implements the guidance problem for a pinpoint
landing on Mars. Which requires finding a feasible reference trajectory to safely
land a spacecraft on the Martian surface precisely close to a predefined target,
optimizing at the same time the fuel consumption.

The Lossless Convexification (LCvx) theory is identified as a very promising
method to solve this type of problem. The LCvx allows to formulate the guidance
problem as a convex optimization problem, which can be quickly solved by efficient
solvers. Then, based on the derived mathematical formulation, an algorithm is
implemented, with particular attention to the reliability of the solutions. An
optimization of the algorithm is needed, to increase its computational performance.
Tests and simulations are carried out to analyze the performance and the robustness
of the algorithm. Finally, a parametric analysis relates the behavior of the algorithm
with respect to a selection of meaningful design parameters of the lander, such as
the configuration of the Radar Doppler Altimeter, the performance of the parachute
and the requirements of the Landing Vision System.

In conclusion, the designed algorithm proves to compute optimal trajectories for
feasible guidance problems and sub optimal solutions for unfeasible optimization
problems. The sub optimal solutions result from a trade off between landing
accuracy and fuel consumption. Finally, the parametric analysis highlights interest-
ing correlations between the driver parameters of the analysis and the developed
algorithm, leading to useful guidelines for spacecraft design choices.





Acknowledgements

Innanzitutto, vorrei ringraziare il professore Carlo Novara per i preziosi consigli e il
costante supporto che mi ha fornito durante tutto lo svolgimento della tesi. Altresì,
vorrei ringraziare Thales Alenia Space per avermi accolto in questo progetto, per
me di grande ispirazione e crescita professionale. E in particolare Paolo Martella,
che in qualità di tutor aziendale, mi ha affiancato nel lavoro. Lo ringrazio per
avermi guidato in questo progetto e per aver condiviso con me la sua esperienza
rispondendo sempre con dedizione alle mie domande e curiosità.

Un ringraziamento speciale va alla mia famiglia. Ai miei genitori che mi hanno
sempre incoraggiato nelle mie scelte, devo alla loro costante fiducia e al loro sostegno
questo traguardo. A mio fratello, che primo fra tutti mi ha ispirato con il suo
coraggio nel prendere scelte difficili e con la perseveranza che ha dimostrato nel
portarle avanti. E a mia sorella, che più di tutti mi ha fatto sentire la sua vicinanza
in questi anni passati lontano da casa.

Infine, la mia gratitudine va ai miei amici. A gli amici di sempre, mi avete
accompagnato in questo percorso da ben prima che partissi per Torino. Mi avete
consigliato nel momento del bisogno e avete festeggiato con me i miei piccoli e
grandi traguardi. Ci siete sempre stati e per questo vi ringrazio. E a gli amici di
Torino, vi ringrazio per aver condiviso con me questi anni e per aver reso questa
esperienza così speciale. Ho imparato tanto da ognuno di voi.

iii





Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Brief history of autonomous landings on Mars . . . . . . . . . . . . 1
1.2 The new challenge of the precision landing . . . . . . . . . . . . . . 3
1.3 Tasks of the GNC in a precision landing mission . . . . . . . . . . . 5
1.4 A survey of mathematical methods to compute the landing reference

profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Tradeoff and justification for the chosen methodology . . . . . . . . 10

2 Formalization of the guidance problem for Pinpoint landing 11
2.1 Mathematical preliminaries . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Optimization problem . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Local and Global optimal solutions . . . . . . . . . . . . . . 13
2.1.3 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.4 Convex optimization problem . . . . . . . . . . . . . . . . . 19
2.1.5 The methodology of Second-Order Cone Programming . . . 21

2.2 Physical formulation of the problem and the constraints . . . . . . . 22
2.2.1 Reference frames . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.2 Dynamics behaviour of the system . . . . . . . . . . . . . . 23
2.2.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.4 Initial and final conditions . . . . . . . . . . . . . . . . . . . 28
2.2.5 Optimization problem . . . . . . . . . . . . . . . . . . . . . 29

2.3 Lossless convexification . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.1 Convex relaxation of the input lower bound . . . . . . . . . 31
2.3.2 Dynamic linearization . . . . . . . . . . . . . . . . . . . . . 32

2.4 Robustness approach to guarantee sub-optimal solutions . . . . . . 35
2.5 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

v



3 Algorithm description 41
3.1 Implementation of the optimization problem . . . . . . . . . . . . . 43

3.1.1 Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.2 Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Golden search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Unfeasible optimization problem . . . . . . . . . . . . . . . . . . . . 48
3.4 Solution and simulations . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Optimization of the execution time 51
4.1 Process step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Golden search tolerance . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Case studies of meaningful profiles 57
5.1 Initialization of the parameters . . . . . . . . . . . . . . . . . . . . 58
5.2 Examples of single cases . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.1 Feasible optimization problem . . . . . . . . . . . . . . . . . 60
5.2.2 Unfeasible optimization problem . . . . . . . . . . . . . . . . 62

5.3 Monte Carlo simulations . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Simulations 69
6.1 Overview of the simulation enviroment . . . . . . . . . . . . . . . . 70
6.2 Example case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7 Parametric analysis 77
7.1 Analysis for the driver parameters . . . . . . . . . . . . . . . . . . . 78
7.2 Impact of the configuration . . . . . . . . . . . . . . . . . . . . . . 85

7.2.1 Algorithm description . . . . . . . . . . . . . . . . . . . . . . 85
7.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.2.3 Influence of the driver parameters on the results . . . . . . . 88
7.2.4 Comparison between different T2W cases . . . . . . . . . . . 92

7.3 Identification of the performance limits . . . . . . . . . . . . . . . . 95

8 Conclusions 101
8.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Bibliography 105

vi



List of Tables

1.1 Comparison of explicit methods. . . . . . . . . . . . . . . . . . . . . 10
1.2 Comparison of numerical methods. . . . . . . . . . . . . . . . . . . 10

4.1 Comparison results of the optimal trajectory planning algorithm
with different ∆t values, in an example case. . . . . . . . . . . . . . 53

4.2 Comparison results of the optimal trajectory planning algorithm
with different tol values, in an example case. . . . . . . . . . . . . . 56

7.1 Minimum values of the overall force along the z axis applied on the
spacecraft at the end of the maneuver, for different values of T2W
and γp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

vii



List of Figures

1.1 Landing ellipses comparison for five different NASA missions to
Mars. Image credit: NASA/JPL-Caltech . . . . . . . . . . . . . . . 3

1.2 GNC scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Perseverance rover’s Entry, Descent, and Landing profile. Image

credit: NASA/JPL-Caltech. . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Global and local solutions of the function f(x) = cos(3πx)
x

for x ∈
[0.1,1.1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Parametric representation of a line and a line segment (darker)
between two points x1, x2 ∈ R2 [6]. . . . . . . . . . . . . . . . . . . 14

2.3 Hyperplane H ⊆ R3, with a = [1,2,3]T and b = 10. . . . . . . . . . . 16
2.4 The hyperplane H ⊆ R2, with a = [1,2]T and b = 10, separates R2

in two halfspaces H−− = {x ∈ Rn | aT x ≤ b} and H++ = {x ∈
Rn | aT x ≥ b}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Euclidian ball B ⊆ R2, with xc = [4,6]T and r = 5. . . . . . . . . . . 17
2.6 Second order cone C ⊆ R3. . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Graph of a convex function f(·), where the line segment between

two generic points (x, f(x)) (y, f(y)) lies above the function itself [6]. 19
2.8 Representation of the reference frames defined on Mars. From the

left to the right MMED, MMF, ENU. . . . . . . . . . . . . . . . . . 23
2.9 Thrusters configuration on the bottom of the spacecraft, where

e = kBRF [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.10 Representation of the thrust bounds ρmax = ρ2 and ρmin = ρ1 in a

two dimensional case Tc =
è

Tc1Tc2
é

∈ R2 [7]. . . . . . . . . . . . . 26
2.11 Representation of the feasible set of the thrust vector in a two

dimensional case Tc =
è

Tc1Tc2
é

∈ R2 as an intersection of the
upper and lower bounds on the magnitude and the pointing angle
constraint, where n̂ = kENU is the vertical direction and γp = θ [8]. . 27

2.12 Representation of the glideslope constraint where 4 hyperplanes
(with normal vectors n̂1, . . . , n̂4) define a safe region where the
lander can move through [9]. . . . . . . . . . . . . . . . . . . . . . . 27

viii



2.13 Graphical representation of the divert maneuver and his constraints
[9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.14 Feasible set due to the lower and upper bounds on the thrust vector
Tc =

è
u1u2

é
∈ R2 in the original problem on the left and in the

augmented problem on the right [9]. . . . . . . . . . . . . . . . . . . 31

3.1 Scheme of the trajectory planning algorithm for the divert maneuver. 42
3.2 First 3 iterations of the golden search, in an example case. . . . . . 46
3.3 Scheme of the trajectory planning algorithm, with resolution of

unfeasible optimization problems. . . . . . . . . . . . . . . . . . . . 48
3.4 Simulation of the dynamics of rx(t) between 2 discrete solutions of

the optimization problem, in an example case. . . . . . . . . . . . . 49

4.1 Solutions of the same optimization problem, with different values
of ∆t. The optimization problem has a critical initial velocity
∥v0∥2 = 161 m/s. Lower and upper bounds on the thrust magnitude
are represented with red dashed lines. . . . . . . . . . . . . . . . . . 54

4.2 Non linear relationship between N and tol, in a case example with
tmax = 150 s, tmin = 10 s. . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Simulation and computed results of the trajectory planning algorithm
for pinpoint landing, in a case of a feasible optimization problem.
In yellow the computed discrete solution, in black the simulation,
in blue the thrust vector profile superimposed on the trajectory, in
green the initial and final position and velocity, in red the constraints. 61

5.2 Simulation and computed results of the trajectory planning algorithm
for pinpoint landing, in a case of an unfeasible optimization problem.
In yellow the computed discrete solution, in black the simulation,
in blue the thrust vector profile superimposed on the trajectory, in
green the initial and final position and velocity, in red the constraints.
The value of λ is set to 1. . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Simulation and computed results of the trajectory planning algorithm
for pinpoint landing, in a case of an unfeasible optimization problem.
In yellow the computed discrete solution, in black the simulation,
in blue the thrust vector profile superimposed on the trajectory, in
green the initial and final position and velocity, in red the constraints.
The value of λ is set to 0.1. . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Simulation and computed results of the trajectory planning algorithm
for pinpoint landing, for a Monte Carlo experiment (100 cases). Every
simulation is represented with a different color, in red the constraints 68

ix



6.1 Results of the landing simulation, in an example case. Superimposed
on the graphs are drawn in sequence the activation flags of the
following events: intensive braking, final phase transition, ready for
touch down, leg touch down. . . . . . . . . . . . . . . . . . . . . . . 74

7.1 RDA configuration. In red the beams, from different views. . . . . . 78
7.2 Position and attitude of the Radar Doppler Altimeter in the spacecraft. 79
7.3 Trajectories on the xyz space, computed by a Monte Carlo experiment

(100 cases), for three different values of T2W. In red the initial
positions leading to the unfeasibility of the optimization problem 2.59. 83

7.4 Minimum values of altitude loss obtainable as a result of a feasible
optimization problem, for a set of initial velocity and maximum
pointing angle values, with T2W=3.37. In red the maximum altitude
loss compatible with the LVS. . . . . . . . . . . . . . . . . . . . . . 86

7.5 Minimum values of altitude loss obtainable as results of a feasible
optimization problem, for a set of initial velocity and maximum
pointing angle values, with T2W=2.53. In red the maximum altitude
loss compatible with the LVS. . . . . . . . . . . . . . . . . . . . . . 87

7.6 Divert maneuver trajectory on the xz plane, with T2W=2.53, v0 =
−90 m/s, γp = 50◦ and minimum altitude loss. In black the simula-
tion, in blue the thrust vector profile superimposed on the trajectory,
in green the initial and final position and velocity, in red the glides-
lope constraint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.7 Divert maneuver trajectories comparison, between the two T2W
cases, with v0 = −90 m/s, γp = 50◦ and minimum altitude loss.
In black the simulation, in green the initial and final position and
velocity, in red the glideslope constraint. . . . . . . . . . . . . . . . 89

7.8 Divert maneuver trajectories comparison, between the two T2W
cases, with v0 = −90 m/s, γp = 35◦ and minimum altitude loss.
In black the simulation, in green the initial and final position and
velocity, in red the glideslope constraint. . . . . . . . . . . . . . . . 91

7.9 Comparison of the results obtained in the two T2W cases. In yellow
and green the minimum values of altitude loss achievable as results
of a feasible optimization problem, for a set of initial velocity and
maximum pointing angle values. In red the maximum altitude loss
compatible with the LVS. . . . . . . . . . . . . . . . . . . . . . . . 93

7.10 Final distance from the target, for those cases that are incompatible
with the LVS requirement on the altitude loss. Solutions of the
optimization problem (2.60) with λ = 1. . . . . . . . . . . . . . . . 98

x



7.11 Altitude of the lander, in a vertical descent, during a deceleration
of the motion with the maximum thrust available. In the case of
T2W=2.53 and v0 = −120 m/s. . . . . . . . . . . . . . . . . . . . . 99

xi



Chapter 1

Introduction

1.1 Brief history of autonomous landings on Mars

The exploration of Mars began in the 60s with the space race between the United
States of America and the Soviet Union. In that period, the Cold War led the
two countries to compete for the supremacy of the space, as a demonstration
of power and technological capabilities. The large amount of money available
and the pressure from the governments brought a huge leap in the technological
development and in the end, great achievements for humanity itself, such as the
first man on the Moon.

In this historical background, the first attempts to reach Mars began. In the
beginning, attempts from both sides were disastrous, until in 1965 the American
mission Mariner 4 managed to accomplish the first fly-by of Mars, which gave us
the first close-up photos of the red planet.

On the other hand, the first mission to achieve a soft touch down of a lander
on the Martian surface was the soviet Mars 3 in 1971. The lander reached safely
the ground, but unfortunately, it shut down almost immediately due to unknown
reasons, without transmitting any information back to the Earth. It owns anyway
the record of the first human object to safely reach the Martian surface.

Later in 1976, the landers of the American missions Viking 1 and Viking 2 firstly
touched down on the surface and sent back information to the Earth.

In 1969, the first man on the Moon sealed the beginning of the end of the space
race. Thus, leading to a significant decrease in the interest of the governments in
the space exploration. Planned missions were postponed or canceled and in general
space campaigns were downsized.

A renovated interest in the space exploration reemerged only at the end of the
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Introduction

last millennium. While, the no longer URSS was struggling to continue its space
campaign, the NASA has resumed launching different types of missions, bringing
several orbiters, landers, and rovers to Mars over the years.

In the history of autonomous landings on Mars, it is worth mentioning the
missions: Mars Pathfinder, Mars Exploration Rover, Phoenix Mars Lander, Mars
Science Laboratory, InSight, Mars 2020. The Mars Pathfinder in the 1997 safely
landed the first rover Sojourney on the Mars surface, which was used to test
technologies for the next missions. The Mars Exploration Rover in 2003 brought
other two rovers Spirit e Opportunity to Mars. The Phoenix Mars Lander in the
2007 was in charge to study the Martian environment, looking for microbial life
and water. The Mars Science Laboratory in the 2011 landed the rover Curiosity.
The Insight mission in the 2018, to study the internal structure of the planet.
And the most recent mission Mars 2020, with the most advanced Martian rover
Perseverance, and the first Martian drone Ingenuity.

This new phase is also characterized by new countries involved in the exploration
of Mars, such as the European Union with the missions Mars Express and ExoMars,
India with the Mars Orbiter Mission, United Arab Emirates with the Emirates
Mars Mission, and China with the Tianwen-1 mission.

Future missions on Mars will be the NASA low cost mission EscaPADE, the
second Indian mission Mars Orbiter Mission 2, the second part of the ExoMars
mission led by the ESA. As well as the mission Mars Sample and Return in col-
laboration between NASA and ESA, which is planning to gather the Martian soil
samples collected by the rover Perseverance over the years and make the first launch
from an extraterrestrial planet toward the Earth, to bring back the samples letting
the scientists to examine them.
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1.2 – The new challenge of the precision landing

1.2 The new challenge of the precision landing

In recent years, the renewed interest in the exploration and scientific research of
celestial bodies of our solar system has led to a growing demand for technological
advances in the space field.

An important skill in the upcoming missions will be the ability to perform a
precision landing, also known as pinpoint landing, i.e. the autonomous guidance of
a lander toward the target, reaching it with an accuracy of less 100 m. Where the
precision can be measured using the landing ellipse, i.e. the region where it is 99
percent likely the spacecraft will land [1].

Previous missions had large landing ellipses, as we can see in Figure 1.1.

Figure 1.1: Landing ellipses comparison for five different NASA missions to Mars.
Image credit: NASA/JPL-Caltech
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This was due to multiple factors [2], such as:

• Delivery error at the entry interface. Where the delivery error is defined as the
difference between the desired position and velocity and the obtained ones.

• Knowledge uncertainty at the entry interface, resulting from the accumulated
sensor errors since the last navigational update.

• Environmental uncertainty, due to the deviation of atmospheric properties
from those expected.

• Vehicle performances, that will be inevitably different from those modeled.

The cumulative effect of these factors has always led to a landing ellipse wide
kilometers.

Therefore, in order to ensure a safe touch down, the choice of the landing site
has always been constrained to areas compatible with the expected landing ellipse.
Leading in past missions to a trade off in the choice of the landing site, between
scientific interest and landing safety.

But, thanks to the new technologies that are coming in the field of the precision
landing, fascinating new opportunities can be explored, such as:

• Explore Martian caves and valleys, which are places of high scientific interest,
and appealing sites for future human outposts.

• Explore target locations with topographically hazardous terrain.

• Return samples from other planets, as in the Mars Sample and Return mission.

• Set up permanent outposts through the solar system.

• Land close to pre-positioned assets.

• Make cheaper reusable rockets, that after every flight can be simply refueled
and reused, like airplanes. Leading to cheaper space flights and a more
affordable space economy.
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1.3 – Tasks of the GNC in a precision landing mission

1.3 Tasks of the GNC in a precision landing mis-
sion

The Guidance Navigation and Control (GNC) is the piece of software dedicated to
autonomously guide the spacecraft during its descent toward the Martian surface,
throughout the Entry, Descending, and Landing phases. The GNC computes
the trajectory from the spacecraft’s initial location to the target. It estimates
position, velocity, and attitude from the sensor measurements. Then, exploiting
this information, it implements a control strategy to keep the vehicle on track.

Figure 1.2: GNC scheme.

The Entry phase begins at the end of the interplanetary journey, when the
lander encounters the atmosphere of the planet, traveling at hypersonic speed.
Previous missions used a ballistic trajectory to guide the lander toward the target,
without any control over its effective position. A pinpoint landing, instead, requires
a guided entry [3], which through bank reversal maneuvers controls the asset of the
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spacecraft and thus the drag and lift forces applied, and ultimately the trajectory
itself.

Following, during the descent phase, the parachute is opened to slow down the
descent velocity. Unfortunately, the rarefied atmosphere of Mars does not allow to
reach sufficiently low speeds, and therefore an additional phase is necessary to land
safely.

Finally, in the landing phase, the spacecraft turns on the thrusters to slow down
the velocities and to perform a soft landing on the surface. Whereas, previous
missions were concerned only with the safety of the maneuver, the next missions
must also guarantee the precision of the landing. Then, a divert maneuver is needed
to recover the horizontal errors of the previous phases and reach the target. At the
same time, the maneuver must be optimized to save as much fuel as possible, since
every kilogram saved can reduce mission costs or increase the amount of landed
payload. For this maneuver becomes necessary to exactly locate the spacecraft on
the map of the Martian surface. But, we can no longer rely on the GPS as on the
Earth, then a Landing Vision System (LVS) is used to compute the exact location
of the lander, acquiring and comparing images of the surface.

Figure 1.3: Perseverance rover’s Entry, Descent, and Landing profile. Image
credit: NASA/JPL-Caltech.
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1.4 – A survey of mathematical methods to compute the landing reference profile

1.4 A survey of mathematical methods to com-
pute the landing reference profile

In this section, it is presented a selection of methods used and/or proposed over
the time to generate reference trajectories for spacecraft landing. A more detailed
description of the proposed methods can be found in the papers [2] [4] [5].

Explicit methods
Explicit methods analytically derive the acceleration and the thrust profile of the
spacecraft landing maneuver.

These methods turn out to be computational efficient, thanks to the closed
form of the solution of the guidance problem. But, on the other hand, they
have difficulty to take into account constraints, which could lead to unfeasible
trajectories. Moreover, they compute only sub optimal solutions with respect to
the fuel consumption.

• Gravity Turn
The Gravity Turn is a guidance method with a strong heritage. Indeed, it
was the first guidance law used by the NASA in the Surveyor missions. It
computes the acceleration profile, keeping the thrust vector aligned with the
velocity vector, so as to obtain zero velocity at the touch down.

a(t) = −a
v(t)

∥v(t)∥2 (1.1)

This guidance law computes the landing trajectory based only on the initial
position and velocity of the spacecraft, no adjustments are made during the
descent. This makes not possible to achieve precise landings.

• E-Guidance
The E-Guidance solves analytically the two-point boundary-value problem,
i.e. computes the acceleration profile of the spacecraft, once defined the initial
and final conditions of the position and the velocity. It assumes a linear
relationship between acceleration and time to go (time of flight from the
instantaneous position to the target).

a(t) = c0 + c1tgo

tgo = tf − t
(1.2)

• Apollo Guidance
The Apollo guidance is a modified E-guidance, with a quadratic relationship
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between acceleration and time, allowing to constrain the final acceleration and
thus the final attitude of the spacecraft.

a(t) = c0 + c1t + c2t
2 (1.3)

It has been used in six successful landing missions on the Moon, including the
Apollo missions from which it takes its name.
Its strong heritage has led this algorithm to be revised several times through
time, leading to the so called Modified Apollo technique. It improves the
Apollo guidance, choosing a total flying time that optimize a certain criterion,
such as the fuel consumption, usually by means of a linear search of the time
of flight.

Numerical methods
Numerical methods compute numerically the acceleration and thrust profile of the
spacecraft landing maneuver.

In general, these methods allow to formulate the guidance problem without
introducing any simplification and taking into account all the possible constraints.
The optimization theory is used to find a solution with a real optimal fuel con-
sumption. On the other hand though, they usually need high computational efforts
to be solved, which limit their use in real-time applications.

• Convex Guidance
Convex guidance solve the guidance problem, formulating it as a convex opti-
mization problem. This formulation allows solving the optimization problem
with a low computational effort, thanks to algorithms specifically designed to
solve efficiently this type of problems. To cast the guidance problem into a
convex optimization problem, we need to exploit the Lossless Convexification
theory (LCvx), developed by the NASA specially for this use. Unfortunately,
this mathematical theory is still under development, and it does not include
all the possible formulations of the problem. But, it is still more versatile than
any other explicit method.

• Gradient-based Optimization
Gradient-based optimization is a classical numerical optimization technique,
that exploits the gradient direction to find the maximum or the minimum
of a given function. It can take into account every kind of constraint and
formulation of the guidance problem. But unfortunately, it turns out to be
computationally expensive and there is no evidence to obtain a global optimal
solution.
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• Neural Guidance
It is an innovative approach, which proposes the use of an artificial neural
network (ANN) to solve the guidance problem. In this case, we do not have
any limitation on assumptions and constraints, because the AAN exploits only
the numerical relationship between a set of input and output data, without
involving any physical formulation of the problem. This method has proved
to be very robust in many tests, but there is still no mathematical evidence
of the convergence of the solution, this makes it difficult to be used in real
applications.
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Introduction

1.5 Tradeoff and justification for the chosen method-
ology

The method chosen in this thesis work to solve the guidance problem, was selected
among those presented in the previous section, according to the following features:

• Performance
The chosen method must guarantee a precise landing, with an accuracy of less
than 100 m, and at the same time, the minimum fuel consumption possible.

• Robustness
The chosen algorithm must provide high standards of reliability, to ensure
the successes of the mission. A robust algorithm is needed to deal with
unpredictable exceptions.

• Computational efficiency
Since the guidance problem is a real time application, we need an efficient
algorithm, with a low computational time.

The comparison of the proposed methods is summarized in the Tables 1.1 and 1.2.
Otherwise, a more detailed comparison can be found in [2].

Gravity Turn E-Guidance Apollo Guidance
Performance Poor Poor Moderate

(modified guidance)
Robustness Poor Poor Poor
Efficiency Good Good Good

Table 1.1: Comparison of explicit methods.

Convex Guidance Gradient-based Optimization Neural Guidance
Performance Good Good Good
Robustness Good Good Good
Efficiency Moderate Poor Poor

Table 1.2: Comparison of numerical methods.

As we can see from the comparison results presented in Tables 1.1 and 1.2,
numerical methods outperform explicit methods in this kind of applications, but
at the same time, they struggle with computational effort. Among them, only
convex guidance guarantees computational performances high enough to be used
in a real time application, motivating its choice as guidance method used in this
thesis work.

10



Chapter 2

Formalization of the
guidance problem for
Pinpoint landing

In this chapter, the trajectory planning optimization problem for pinpoint landing
it is introduced and formalized.

Actually, the mathematical formulation of the guidance problem is not difficult to
be determined, rather the problems arise when we want to implement it by means of
some numerical algorithms with the intent to obtain an unique and reliable solution.
As discussed in the following sections, to accomplish this purpose the optimization
problem must be suitable formulated as a convex optimization problem, more
specifically for this application it is cast into a second order cone program (SOCP).
This formulation indeed guarantees to achieve an unique solution by means of very
efficient e reliable algorithms. Indeed, convex optimization problems have been
studied for a long time and there are already available a lot of specific solvers deeply
studied and tested, supported by a strong mathematical theory. These appealing
features make this kind of approach suitable for real-time online applications, as it
is required by the nature of the problem.
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Formalization of the guidance problem for Pinpoint landing

2.1 Mathematical preliminaries
In order to understand the problem formulation, we need to introduce the funda-
mental mathematical concepts that are involved in this study. This section gathers
a selection of definitions from Boyd’s "Convex Optimization" book [6].

2.1.1 Optimization problem
An optimization problem is a class of mathematical problem of the form:

min
x

f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , m

hj(x) = 0, j = 1, . . . , p

(2.1)

where a cost function f0(x) : Rn → R is aimed to be minimized over the opti-
mization variable x ∈ Rn constrained by m inequalities fi(x) ≤ 0 and p equalities
hj(x) = 0.

Every optimization variable that satisfy all the constraints is said to be feasi-
ble. The set of all the feasible optimization variables defines the feasible set
X = {x ∈ Rn : fi(x) ≤ 0, i = 1, . . . , m; hj(x) = 0, j = 1, . . . , p}. Eventually the
problem is said to be feasible if exist at least one feasible solution of the problem.

Similar definitions can be derived for unfeasible optimization variables, an un-
feasible set and an unfeasible problem.

Solving an optimization problem means find the optimal minimum value of the
cost function, that is called optimal value

p∗ = inf{f0(x) | fi(x) ≤ 0, i = 1, . . . , m, hj(x) = 0, j = 1, . . . , p} (2.2)

For upper and lower unconstrained optimization problems p∗ can take values as
±∞. If the problem is unfeasible than conventionally p∗ = ∞. If the problem is
feasible but no optimal solution exist than we say that the optimal value p∗ is not
attained at any finite point.

The solution of the problem p∗ is associated to a set of feasible points x∗ ∈
X s.t. f0(x∗) = p∗, that are called optimal points.
The set of the optimal points is called optimal set

Xopt = {x | fi(x) ≤ 0, i = 1, . . . , m, hj(x) = 0, j = 1, . . . , p, f0(x) = p∗} (2.3)

Equivalently it can be formulated exploiting the arg min notation

Xopt = arg min
x∈X

f0(x) (2.4)

12



2.1 – Mathematical preliminaries

2.1.2 Local and Global optimal solutions
Whereas the global optimal solution coincides with the solution of the original
optimization problem, a local optimal solution is a solution of the optimization
problem on a domain restricted to a subset of the feasible set

min f0(z)
subject to fi(z) ≤ 0, i = 1, . . . , m

hj(z) = 0, j = 1, . . . , p

∥z − x∥2 ≤ R

(2.5)

Roughly speaking, a local solution is the minimum of f0 over nearby points, an
intuitive example case is reported in the Figure 2.1.

In conclusion, solving an optimization problem means seeking the global solution,
but actually problems arise when we try to retrieve it by means of numerical
algorithms. Indeed, there are no software able to distinguish between a local and a
global solution. Thus, to guarantee the correctness of the computed solution, the
problem needs to be properly formulated as a convex optimization problem. Indeed,
as we will see in the next sections, this specific type of optimization problem takes
advantage of some own property to assure always to find global solutions.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

x
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f(
x
)

global max

global min

local max

local min

Figure 2.1: Global and local solutions of the function f(x) = cos(3πx)
x

for x ∈
[0.1,1.1].
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Formalization of the guidance problem for Pinpoint landing

2.1.3 Convexity
Line, half line and line segment

Given two different points x1, x2 ∈ Rn and a parameter θ ∈ R, the line passing
through x1, x2 can be defined as the set of points y ∈ Rn such that

y = θx1 + (1 − θ)x2 (2.6)

Similarly we can define the half line starting from x2 and passing through x1 as

y = θx1 + (1 − θ)x2

θ ≥ 0
(2.7)

And the line segment between x1, x2 as

y = θx1 + (1 − θ)x2

0 ≤ θ ≤ 1
(2.8)

Figure 2.2: Parametric representation of a line and a line segment (darker)
between two points x1, x2 ∈ R2 [6].

Affine sets

A set A ⊆ Rn is an affine set if for any two points x1, x2 ∈ A the line passing
through x1, x2 lies on the set A itself

θx1 + (1 − θ)x2 ∈ A, θ ∈ R (2.9)

Alternatively a set A ⊆ Rn can be defined as an affine set if it contains every
affine combination of its points. Where an affine combination of a set of points

14



2.1 – Mathematical preliminaries

x1, . . . , xk is a linear combination of the points with coefficients that sum up to
one

θ1x1 + · · · + θkxk

θ1 + · · · + θk = 1
(2.10)

Convex sets

A set C ⊆ Rn is a convex set if for any two points x1, x2 ∈ C the line segment
between x1, x2 lies on the set C itself

θx1 + (1 − θ)x2 ∈ C, 0 ≤ θ ≤ 1 (2.11)

This means that every affine set is also convex.
Similarly to affine sets, we can define a convex set in an alternative way exploiting
the concept of convex combination. A set C ⊆ Rn is a convex set if it contains
every convex combination of its points. Where a convex combination of a set of
points x1, . . . , xk is a linear combination of the points with positive coefficients
that sum up to one

θ1x1 + · · · + θkxk

θ1 + · · · + θk = 1
θi ≥ 0, i = 1, . . . k

(2.12)

Cones

A set C is a cone if for every point x ∈ C the half line passing through x and
starting from the origin lies on the set C itself

θx ∈ C, θ ≥ 0 (2.13)

If a set is both a cone and a convex set, then it is called convex cone. It follows
that for any points x1, x2 ∈ C and θ1, θ2 ≥ 0 we have θ1x1 + θ2x2 ∈ C.
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Formalization of the guidance problem for Pinpoint landing

Some important convex sets

• Hyperplane {x ∈ Rn | aT x = b}, a ∈ Rn, a /= 0, b ∈ R
It is a generalization of a plane in more dimensions. It is an affine set and
thus also a convex set. Geometrically, an hyperplane is characterized by a
normal vector a ∈ Rn and an offset from the origin d = |b|

∥a∥2
∈ R.

Figure 2.3: Hyperplane H ⊆ R3, with a = [1,2,3]T and b = 10.
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2.1 – Mathematical preliminaries

• Halfspace {x ∈ Rn | aT x ≤ b}, a ∈ Rn, a /= 0, b ∈ R
The related hyperplane H = {x ∈ Rn | aT x = b} separates Rn in two parts,
these portions of space are called halfspaces.

Figure 2.4: The hyperplane H ⊆ R2, with a = [1,2]T and b = 10, separates R2 in
two halfspaces H−− = {x ∈ Rn | aT x ≤ b} and H++ = {x ∈ Rn | aT x ≥ b}.

• Euclidian ball {x ∈ Rn | ∥x − xc∥2 ≤ r}, r > 0
It is a generalization of a sphere in more dimensions. Geometrically, the
euclidian ball is characterized by a center xc ∈ Rn and a radius r ∈ R.

Figure 2.5: Euclidian ball B ⊆ R2, with xc = [4,6]T and r = 5.
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Formalization of the guidance problem for Pinpoint landing

• Second order cone {(x, t) ∈ Rn+1 | ∥x∥2 ≤ t}
It is an instance of a convex cone. It is used in the second order cone
programming theory to describe constraints on the euclidian norm of a vector,
as we will see in the SOCP section.

Figure 2.6: Second order cone C ⊆ R3.

Convex functions

Given a multivariate function f : Rn → R well defined in its domain domf = {x ∈
Rn : −∞ < f(x) < ∞}, the function f is said to be convex if domf is a convex
set and for all x1, x2 ∈ domf and all λ ∈ [0,1] it holds that

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2) (2.14)

Geometrically, it means that any line segment between x1, x2 lies above the func-
tion’s graph, as we can see in the Figure 2.7.
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2.1 – Mathematical preliminaries

Figure 2.7: Graph of a convex function f(·), where the line segment between two
generic points (x, f(x)) (y, f(y)) lies above the function itself [6].

The function f is concave if −f is convex.
Finally, f is strictly convex if the above inequality holds strictly, for all x1 /= x2
and for all λ ∈ (0,1). Similarly, f is strictly concave if −f is strictly convex.

2.1.4 Convex optimization problem
A convex optimization problem is defined as a mathematical problem in the form

min
x

f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , m

hj(x) = 0, j = 1, . . . , p

(2.15)

where

• the objective function f0 is convex

• the inequality constraints f1, . . . , fm are convex

• the equality constraints h1, . . . , hp are affine1
hj(x) = aT

j x − bj = 0, j = 1, . . . , p
2

With these additional features, the optimization problem has a feasible set X =
{x ∈ Rn : fi(x) ≤ 0, i = 1, . . . , m; hj(x) = 0, j = 1, . . . , p} that is an intersection
of convex sets, therefore it is a convex set itself. Thus in a convex optimization
problem a convex function f0 is minimized over a convex feasible set X.

Finally, we introduce the theorem that we were looking for to find the global
optimal solution of an optimization problem.
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Formalization of the guidance problem for Pinpoint landing

Theorem 1. If an optimization problem is convex, then any locally optimal solution
is also globally optimal.
Moreover the set of all the optimal solutions Xopt is convex .

Proof. Let x∗ be a local optimum point, i.e. there is R > 0 s.t.

f0(x∗) ≤ f0(z) ∀z ∈ X ∩ B(x∗, R) (2.16)

where B(x∗, R) = {z | ∥z − x∗∥2 ≤ R} is the euclidian ball of radius R around x∗.
By contradiction, assume that x∗ is not a global optimum point, i.e. there is

y ∈ X s.t. f0(y) < f0(x∗).
Take θ ∈ (0,1) s.t. xθ = θx∗ + (1 − θ)y ∈ B(x∗, R). Then by the local optimum
condition

f0(x∗) ≤ f0(xθ) = f0(θx∗ + (1 − θ)y) (2.17)

by the convexity property of the function f0

f0(θx∗ + (1 − θ)y) ≤ θf0(x∗) + (1 − θ)f0(y) (2.18)

and eventually by the assumption that f0(y) is the global minimum

θf0(x∗) + (1 − θ)f0(y) < θf0(x∗) + (1 − θ)f0(x∗) = f0(x∗) (2.19)

Putting together all of these inequality we obtain

f0(x∗) ≤ f0(θx∗ + (1 − θ)y) ≤ θf0(x∗) + (1 − θ)f0(y) < f0(x∗) (2.20)

Therefore, the assumption that x∗ is not the global optimal point results incorrect,
indeed the first and last term of the inequality (2.20) realize an impossible statement.

Since numerical algorithms are not able to distinguish between local and global
solutions the only way to be sure to find a global solution is to solve an optimization
problem that has only global solutions, that is a convex optimization problem.
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2.1 – Mathematical preliminaries

2.1.5 The methodology of Second-Order Cone Program-
ming

A generalization of the most common classes of convex optimization problems,
such as linear programming (LP) and quadratic programming (QP), is the second
order cone programming (SOCP), where a linear cost function is minimized over a
special convex set, that is a second order cone:

min
x

fT x

subject to ∥Aix + bi∥2 ≤ cT
i x + di, i = 1, . . . , m

Fx = g

(2.21)

where inequality constraints are expressed in the standard form of a second order
cone (SOC) on variable x ∈ Rn

∥Ax + b∥2 ≤ cT x + d (2.22)

with A ∈ Rm,n, b ∈ Rm, c ∈ Rn, d ∈ R.
SOCP includes several other simpler classes of convex optimization problems,

such as linear programs (LP), quadratic programs (QP) and quadratic constrained
quadratic programs (QCQP). All of them can be reformulated to be cast into a
SOCP.

SOCP has been discussed in details because it turns out to be the best structure
to describe the physical problem under analysis. Indeed, constraints related to the
square norm of the optimization variables need to be cast into SOC constraints.
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Formalization of the guidance problem for Pinpoint landing

2.2 Physical formulation of the problem and the
constraints

Considering the original problem to find the optimal trajectory for pinpoint landing,
we need to formulate a convex optimization problem and solve it to find the optimal
control action sequence that allow us to perform a large divert maneuver from an
uncertain initial location of the lander to the desired landing site with the lowest
possible fuel consumption. This problem must be solved in real time by means of a
numerical algorithm that provides the global optimal solution of the problem in
the shortest possible time.

2.2.1 Reference frames
First of all, we need to define the reference frames used to unambiguously describe
the vectors in the following sections. Every reference frame R can be defined given
his center P and his three main orthogonal axes {i, j, k}

• Mars-centered Mars Mean Equator and IAU-vector of Date
It is an important reference frame for any landing operations on Mars.
RMMED = {PMMED, iMMED, jMMED, kMMED}

– PMMED: center of Mars
– iMMED: oriented along the IAU-vector (along the intersection of the Mars

mean equator plane and the Earth mean equator of epoch J2000 plane)
– jMMED: over the Mars mean equator plane, such that jMMED = kMMED ×

iMMED

– kMMED: orthogonal to the Mars mean equator plane, oriented to North

• Mars centered Mars Fixed
Reference frame that rotates together with the planet.
RMMF = {PMMF , iMMF , jMMF , kMMF }

– PMMF : center of Mars
– iMMF : over the Mars mean equator plane, oriented toward the prime

meridian (which passes through a crater named Airy-0, located in the
Southern hemisphere)

– jMMF : over the Mars mean equator plane, such that jMMF = kMMF ×
iMMF

– kMMF : orthogonal to the Mars mean equator plane, oriented to North
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2.2 – Physical formulation of the problem and the constraints

• East North Up at the target location
It is the main reference frame used in this thesis work
RENU = {PENU , iENU , jENU , kENU}

– PENU : the target location on the surface of Mars
– iENU : oriented to East
– jENU : oriented to North
– kENU : oriented upwards along the nadir-zenith direction

• Body Reference Frame
RBRF = {PBRF , iBRF , jBRF , kBRF }

– PBRF : center of the mass of the lander spacecraft
– iBRF , jBRF : over the plane orthogonal to the symmetry axis and passing

trough PBRF

– kBRF : oriented along the symmetry axis of the spacecraft downwards

Figure 2.8: Representation of the reference frames defined on Mars. From the
left to the right MMED, MMF, ENU.

2.2.2 Dynamics behaviour of the system
To simplify the model, the lander is represented by a point mass that moves inside
a three dimensional space. The attitude dynamic instead is neglected, because
the attitude reference profile can be derived from the result of the optimization
problem. It is obtained by the orientation of the thrust vector in the space. Indeed,
since the thrusters are fixed in the lander spacecraft, a given partition of the thrust
components implies a well identified attitude of the spacecraft in the working
reference frame RENU . This approach in practice is correct as far as the attitude
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Formalization of the guidance problem for Pinpoint landing

dynamic is faster than the translational dynamic. Therefore, this condition gives
some design guide lines on the control algorithm, we need always to assure the
desired dynamic of the attitude, even if it implies a worse performance on the
translational dynamic.

The forces acting on the lander considered in this study are the martian gravi-
tational force and the thrust force, we neglect the aerodynamic forces due to the
winds, because the speed of the lander is such that the entity of these forces is
much smaller than the others taken into account.

We represent the translational dynamic of the vehicle with respect to the
reference frame fixed on the desired landing site on the Mars surface RENU

ṙ(t) = v(t)

v̇(t) = g + Tc(t)
m(t) − ω×ω×r(t) − 2ω×v(t)

(2.23)

where r ∈ R3 is the position, v ∈ R3 is the velocity, g ∈ R3 is the Mars gravity
force, ω ∈ R3 is the Mars angular velocity, ω× is the skew-symmetric matrix
representation of the cross product ω × (·), Tc ∈ R3 is the rocket thrust, m ∈ R is
the mass of the lander.
The Mars gravity force g can be represented in RENU as g = [0,0, gM ]T , with
gM = −3.7114 m/s2. This value is considered constant in this study, because the
spacecraft remains always sufficiently near to the surface during the maneuver.
The Mars angular velocity ω can be computed in RMMF as

ω = 2π

TsiderealMars

[0,0,1]T (2.24)

and therefore in RENU becomes

ω = 2π

TsiderealMars

[cos(θ),0, sin(θ)]T (2.25)

where TsiderealMars = 24.6229 days is the period of a sidereal revolution of Mars,
θ ∈ R is the latitude of the landing site.

Then we need to take into account the mass dynamic of the lander

ṁ(t) = −α∥Tc(t)∥2 (2.26)

where m ∈ R is the mass of the lander (with m = mdry + mfuel, mdry is the mass
of the lander without fuel, mfuel is the mass of the fuel that decreases over the
time), α = 1

Ispge
is the fuel consumption rate, ge ≈ 9.807 m/s2 is the gravitational

acceleration of the Earth, Isp is the rocket engine’s specific impulse.
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2.2 – Physical formulation of the problem and the constraints

2.2.3 Constraints
• Lower and upper bounds on the thrust magnitude

ρmin ≤ ∥Tc(t)∥2 ≤ ρmax (2.27)

The thrust vector Tc(t) is the result of the overall action of the neng thrusters
Tsingle(t) mounted on the bottom of the spacecraft. As shown in the Figure
2.9, they are fixed in place with a certain cant angle ϕ with respect to the
symmetric axis of the lander. Therefore, the norm of the thrust vector Tc(t)
results to be

∥Tc(t)∥2 = neng∥Tsingle(t)∥2cos(ϕ) (2.28)

Figure 2.9: Thrusters configuration on the bottom of the spacecraft, where
e = kBRF [7].

Every thrust vector Tsingle is bounded in magnitude above by the physical
capability limitation of the rocket and below to avoid instabilities and turbu-
lence in the ejected flux. Moreover, we need to leave some security margins
on these values to be able later to apply accurately the control law for the
attitude dynamics. Indeed, to obtain an overall torque action τ with the same
thrusters without interfering with the overall thrust vector Tc, some rockets
have to increase their thrust whereas others have to decrease to the same
amount.
Therefore, the upper and lower bounds of Tc are defined as

ρmin = 0.3 nengTmaxcos(ϕ)
ρmax = 0.8 nengTmaxcos(ϕ)

(2.29)

where Tmax = max ∥Tsingle∥2.
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Formalization of the guidance problem for Pinpoint landing

Figure 2.10: Representation of the thrust bounds ρmax = ρ2 and ρmin = ρ1 in a

two dimensional case Tc =
C

Tc1
Tc2

D
∈ R2 [7].

• Pointing angle 1 constraint

Tc(t)T êz ≥ ∥Tc(t)∥2cos(γp) (2.30)

During the divert maneuver the lander cannot tilt itself too much to guarantee
the correct behaviour of the radar. Indeed the radar, that is mounted on the
bottom of the spacecraft, works exploiting the slant and Doppler measurements
along 4 directions (one direction parallel to the symmetry axis and the other
ones 20° skewed). The combination of singular slant input allows altitude
determination. The system of the doppler measurements along the beam
directions can be solved in the body reference frame RBRF identifying the
velocity of the lander, provided that at least 3 of the 4 measurements are
available. If the lander is too sloped, one of them could stop working because
the measured distance turns out to be too large, when this happens even to a
second beam the radar cannot relay on enough beams and it is not able to
work properly anymore.
Therefore, the thrust vector Tc has to be constrained in his attitude within a
maximum angle γp ∈ [0, π] from the vertical direction êz = kENU .

1The pointing angle γ = ∠(Tc, êz) is defined as the separation angle of the symmetry
axis kBRF //Tc with respect to the local vertical kENU = êz
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2.2 – Physical formulation of the problem and the constraints

Figure 2.11: Representation of the feasible set of the thrust vector in a two

dimensional case Tc =
C

Tc1
Tc2

D
∈ R2 as an intersection of the upper and lower

bounds on the magnitude and the pointing angle constraint, where n̂ = kENU is
the vertical direction and γp = θ [8].

• Glideslope constraint
Hgsr(t) ≤ hgs (2.31)

During the descent toward the surface, it is essential to prevent collisions with
the nearby terrain. Hence, we need to maintain the lander in a safe region
that can be modelled as an intersection of a set of halfspaces centered on the
target.

Figure 2.12: Representation of the glideslope constraint where 4 hyperplanes
(with normal vectors n̂1, . . . , n̂4) define a safe region where the lander can move
through [9].
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In this study, to define the safe region, we choose 4 hyperplanes, as in Figure
2.12, passing through the desired landing site [0,0,0]T in RENU with different
inclinations. Each hyperplane has a normal vector related to the glideslope
angle γgs ∈ [0, π/2]

n̂T
1 = [cos(γgs),0, −sin(γgs)]

n̂T
2 = [0, cos(γgs), −sin(γgs)]

n̂T
3 = [−cos(γgs),0, −sin(γgs)]

n̂T
4 = [0, −cos(γgs), −sin(γgs)]

(2.32)

thus the Hgs matrix can be defined as

H =


n̂T

1
n̂T

2
n̂T

3
n̂T

4

 (2.33)

eventually since all of them pass through the origin the offset term is equal to
0 for all of them.

hgs =


0
0
0
0

 (2.34)

• Velocity constraint
∥v(t)∥2 ≤ vmax (2.35)

The velocity is constrained in magnitude to not exceed a security value vmax.

• Mass constraint
mdry ≤ m(tf ) (2.36)

The lander will decrease monotonically his mass over the time due to the
fuel consumption. This leads to the last constraint on the ending mass, that
cannot be less than mdry, that is, the mass of the lander without the fuel.

2.2.4 Initial and final conditions
To solve the problem, we need to impose initial conditions on the position r(0) ∈ R3

and the velocity v(0) ∈ R3 of the lander when it begins the divert maneuver, as
well his initial mass m(0) ∈ R

r(0) = r0, v(0) = v0, m(0) = mwet = mdry + mfuel (2.37)
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Similarly, we need to define also the final position r(tf ) ∈ R3 and the final velocity
v(tf ) ∈ R3

r(tf ) = rN , v(tf ) = vN (2.38)
where N identifies the last point of the landing trajectory subjected to the opti-
mization and not necessarily the last point of the landing trajectory.

2.2.5 Optimization problem
At this point, we gather all the above information to cast them into an optimization
problem. Whereas the constraints have been already defined in the previous section,
we still need to define the optimization variable and the cost function.

As optimization variable we obviously need the thrust profile over the time
Tc(t), t ∈ [0, tf ], but also the time of flight tf ∈ R.

The cost function aims to reduce as much as possible the fuel consumption,
thus we can formulate such function directly taking into account the mass or in a
smarter way the thrust that is strictly correlated to the mass variation. In this way,
we aims to minimize the thrust effort over the time, since it means also minimize
the fuel consumption. Therefore, the cost function is defined asÚ tf

o
∥Tc(t)∥2dt (2.39)

The overall optimization problem can be assembled using the previously defined
equations (2.23), (2.26), (2.27), (2.30), (2.31), (2.35), (2.36), (2.37), (2.38), (2.39)

min
Tc,tf

Ú tf

o
∥Tc(t)∥2dt

subject to ṙ(t) = v(t)

v̇(t) = g + Tc(t)
m(t) − ω×ω×r(t) − 2ω×v(t)

ṁ(t) = −α∥Tc(t)∥2

ρmin ≤ ∥Tc(t)∥2 ≤ ρmax

Tc(t)T êz ≥ ∥Tc(t)∥2cos(γp)
Hgsr(t) ≤ hgs

∥v(t)∥2 ≤ vmax

mdry ≤ m(tf )
r(0) = r0, v(0) = v0, m(0) = mwet

r(tf ) = rN , v(tf ) = vN

(2.40)

It is easy to see that this optimization problem is not convex, indeed the equation
(2.27) defines for the lower bound of the thrust a non convex set on the optimization
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variable. To overcome this problem, we need to exploit the lossless convexification
theory.

Figure 2.13: Graphical representation of the divert maneuver and his constraints
[9].
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2.3 Lossless convexification
The lossless convexification (LCvx) theory was developed by Açıkmeşe and Ploen
in 2007 [7]. It deals with this specific kind of problem in order to convexify the
equation (2.27). In order to overcome this problem, the LCvx theory introduces an
augmented slack variable that leads to a new augmented convex problem. It can
be proved that the optimal solution of the augmented problem coincides with the
optimal solution of the original non convex problem.

Initially, it could deal only with the equation 2.27, but over the time the theory
has been improved, more constraints were added to the optimization problem in
order to address more general cases. Currently, it is still under development.

2.3.1 Convex relaxation of the input lower bound
The LCvx theory deals with the equation (2.27), more specifically with the lower
bound of the thrust magnitude. Indeed, this constraint leads to a non convex
feasible set (left image on the Figure 2.14). Thus, the theory introduces a new
slack variable σ ∈ R such that

∥Tc(t)∥2 ≤ σ(t) (2.41)

Thanks to this augmented optimization variable, the new feasible set (right image
on Figure 2.14) results to be convex.

Figure 2.14: Feasible set due to the lower and upper bounds on the thrust vector

Tc =
C

u1
u2

D
∈ R2 in the original problem on the left and in the augmented problem

on the right [9].

31



Formalization of the guidance problem for Pinpoint landing

The new slack variable replaces ∥Tc(t)∥2 in the cost function and in the con-
straints of the original optimization problem (2.40):

min
σ,Tc,tf

Ú tf

0
σ(t)dt

subject to ṙ(t) = v(t)

v̇(t) = g + Tc(t)
m(t) − ω×ω×r(t) − 2ω×v(t)

ṁ(t) = −ασ(t)
ρmin ≤ σ(t) ≤ ρmax

∥Tc(t)∥2 ≤ σ(t)
Tc(t)T êz ≥ σ(t)cos(γp)
Hgsr(t) ≤ hgs

∥v(t)∥2 ≤ vmax

mdry ≤ m(tf )
r(0) = r0, v(0) = v0, m(0) = mwet

r(tf ) = rN , v(tf ) = vN

(2.42)

Since Problem (2.40) is a relaxation of Problem (2.42), a solution of the original
problem is always feasible for the relaxed problem, but we cannot state the inverse.
Pontryagin’s maximum principle can be used to prove that the optimal solution of
the Problem (2.42) {σ∗, T ∗

c , t∗
f} coincides with the optimal solution of the Problem

(2.40) {T ∗
c , t∗

f} [7]. This is equivalent to say that at the optimal solution of the
original problem (2.40) LCvx inequality (2.41) becomes the equality ∥T ∗

c (t)∥2 =
σ∗(t).

Moreover, the obtained control action assumes a so called Bang Bang profile,
where ∥T ∗

c (t)∥ = ρmin or ∥T ∗
c (t)∥ = ρmax for t ∈ [0, t∗

f ].

2.3.2 Dynamic linearization

Once the main source of non convexity has been treated, still remains to deal with
the non linear dynamic, more specifically with the division Tc(t)

m(t) . We can make a
change of variables to address this problem

ξ(t) = σ(t)
m(t) , u(t) = Tc(t)

m(t) , z(t) = ln(m(t)) (2.43)
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2.3 – Lossless convexification

where ξ ∈ R, u ∈ R3 and z ∈ R.
The modified dynamic results to be

ṙ(t) = v(t)
v̇(t) = g + u(t) − ω×ω×r(t) − 2ω×v(t)
ṁ(t)
m(t) = −αξ(t) ⇒ ż = −αξ(t)

(2.44)

Then, we need to modify the cost function, since α > 0 maximize m(tf ) is equivalent
to minimize Ú tf

0
ξ(t)dt (2.45)

It turns out that the new variables linearize all the constraints except the constraint
on the upper bound of ξ, indeed the new inequality becomes

ρmine−z(t) ≤ ξ ≤ ρmaxe−z(t) (2.46)

Moreover, we need to deal also with the lower bound, that is convex, but it doesn’t
fill into an SOCP, since it is an exponential cone. We decide to proceed linearizing
both constraints by means of the Taylor series approximation

µmin(t)[1 − δz(t) + 1
2δz(t)2] ≤ ξ(t)

ξ(t) ≤ µmax(t)[1 − δz(t)]
(2.47)

where

µmin(t) = ρmine−z0(t)

µmax(t) = ρmaxe−z0(t)

δz(t) = z(t) − z0(t)
z0(t) = ln(mwet − αρmaxt)

(2.48)

with z0(t) as lower bound of z(t)

z0(t) ≤ z(t) ≤ ln(mwet − αρmint) (2.49)
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Formalization of the guidance problem for Pinpoint landing

Eventually we can state the final convex linearized optimization problem

min
ξ,u,tf

Ú tf

0
ξ(t)dt

subject to ṙ(t) = v(t)
v̇(t) = g + u(t) − ω×ω×r(t) − 2ω×v(t)
ż(t) = −αξ(t)

µmin(t)[1 − δz(t) + 1
2δz(t)2] ≤ ξ(t)

ξ(t) ≤ µmax(t)[1 − δz(t)]
∥u(t)∥2 ≤ ξ(t)
u(t)T êz ≥ ξ(t)cos(γp)
Hgsr(t) ≤ hgs

∥v(t)∥2 ≤ vmax

ln(mdry) ≤ z(tf )
z0(t) ≤ z(t) ≤ ln(mwet − αρmint)
r(0) = r0, v(0) = v0, z(0) = ln(mwet)
r(tf ) = rN , v(tf ) = vN

(2.50)
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2.4 Robustness approach to guarantee sub-optimal
solutions

The solution provided by the literature does not focus on guarantee a reliable
control action for real applications, rather it is a general approach to this kind of
problem in order to show an implementation of the lcvx theory.

Therefore, the next step in this study in order to assure reliability of the software
in real applications it is to provide an alternative control action to the unfeasible
optimization problems, to assure the best sub optimal solution in such cases it is
impossible to reach the target. To this aim, we need first to add a relaxation on
the final constraint

rz(tf ) = hN instead of r(tf ) = rN (2.51)

and at the same time add an additional term on the cost function in order to
minimize the final distance to the target

.....
C

rx(tf )
ry(tf )

D.....
2

(2.52)

Finally also a slight modification on the glideslope constraint is needed

Hgs

r(t) −

 rx(tf )
ry(tf )

0


 ≤ hgs instead of Hgsr(t) ≤ hgs (2.53)
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The resulting optimization problem turn out to be

min
ξ,u,tf

Ú tf

0
ξ(t)dt + λ

.....
C

rx(tf )
ry(tf )

D.....
2

subject to ṙ(t) = v(t)
v̇(t) = g + u(t) − ω×ω×r(t) − 2ω×v(t)
ż(t) = −αξ(t)

µmin(t)[1 − δz(t) + 1
2δz(t)2] ≤ ξ(t)

ξ(t) ≤ µmax(t)[1 − δz(t)]
∥u(t)∥2 ≤ ξ(t)
u(t)T êz ≥ ξ(t)cos(γp)

Hgs

r(t) −

 rx(tf )
ry(tf )

0


 ≤ hgs

∥v(t)∥2 ≤ vmax

ln(mdry) ≤ z(tf )
z0(t) ≤ z(t) ≤ ln(mwet − αρmint)
r(0) = r0, v(0) = v0, z(0) = ln(mwet)
rz(tf ) = hN , v(tf ) = vN

(2.54)

where λ ∈ R is a weight parameter used to balance the influence of the two terms
in the cost function.
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2.5 Discretization
The optimization problems, as stated in (2.50),(2.54), are impossible to be solved,
indeed their optimization variables are time continuous variables ξ(t), u(t), t ∈
[0, tf ]. This means, that the number of optimization variables to be implemented
in the algorithm are actually infinite. This because, every variable in any time
instant must be considered as an individual optimization variable of the algorithm.
Therefore, it is needed to discretize the problem to reduce the optimization variables
to a finite number. The problem obtained in this way is not exactly the same of
his continuous counterpart, but it is a good approximation, that becomes more
and more accurate as the sample time is reduced.

The time interval [0, tf ] has been divided into equidistant time intervals of the
duration ∆t, such that tk = k∆t, k = 0, . . . , N , with N =

ì
tf

∆t

í
.

In this study, the zero-order-hold (ZOH) method has been used as simple and
reliable way to discetize the dynamics (2.44). It leads to N +1 discrete optimization
variables for each state variable and N for each input variable. Then there will be:

• r ∈ R3 ⇒ 3(N + 1) variables

• v ∈ R3 ⇒ 3(N + 1) variables

• z ∈ R ⇒ N + 1 variables

• u ∈ R3 ⇒ 3N variables

• ξ ∈ R ⇒ N variables

Therefore, the whole discretized optimization problem counts 11N + 7 optimization
variables.

Alternatively to the ZOH, other more complex methods could be used to reduce
this number. For example, we could exploit the Chebyshev polynomials as basis
functions instead of the piecewise constant basis functions used in this case.

The dynamics of the spacecraft, described by the equations (2.44), can be
reformulated in state space form as

ẋ(t) = Acx(t) + Bcũ(t) + Ecw(t) (2.55)

where x(t) = [r(t), v(t), z(t)]T ∈ R7 is the state vector, ũ(t) = [u(t), ξ(t)]T ∈ R4 is
the input vector, w = g ∈ R3 is the additive exogenous disturbance and the state
space matrices are

A =

 03 I3 0
−ω×ω× −2ω× 0

0 0 0

 , B =

 03 0
I3 0
0 −α

 , E =

 03
I3
0

 (2.56)
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Thus, in order to represent the discrete time dynamics as

x(k) = Ax(k − 1) + Bũ(k − 1) + Ew, k = 1, . . . , N (2.57)

we need to compute the discrete time state space matrices as

A = eAc∆t

B =
Ú ∆t

0
eAc(∆t−s)Bc ds

E = Ec

(2.58)

Therefore, the optimization problem (2.50) discretized becomes

min
ξ,u,tf

NØ
k=0

ξ(k)∆t

subject to x(k) = Ax(k − 1) + Bũ(k − 1) + Ew, k = 1, . . . , N

µmin(k)[1 − δz(k) + 1
2δz(k)2] ≤ ξ(k), k = 0, . . . , N − 1

ξ(k) ≤ µmax(k)[1 − δz(k)], k = 0, . . . , N − 1
∥u(k)∥2 ≤ ξ(k), k = 0, . . . , N − 1
u(k)T êz ≥ ξ(k)cos(γp), k = 0, . . . , N − 1
Hgsr(k) ≤ hgs, k = 0, . . . , N

∥v(k)∥2 ≤ vmax, k = 0, . . . , N

ln(mdry) ≤ z(N)
z0(k) ≤ z(k) ≤ ln(mwet − αρmintk), k = 0, . . . , N

r(0) = r0, v(0) = v0, z(0) = ln(mwet)
r(N) = rN , v(N) = vN

(2.59)
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Whereas, the optimization problem (2.54) discretized becomes

min
ξ,u,tf

NØ
k=0

ξ(k)∆t + λ

.....
C

rx(N)
ry(N)

D.....
2

subject to x(k) = Ax(k − 1) + Bũ(k − 1) + Ew, k = 1, . . . , N

µmin(k)[1 − δz(k) + 1
2δz(k)2] ≤ ξ(k), k = 0, . . . , N − 1

ξ(k) ≤ µmax(k)[1 − δz(k)], k = 0, . . . , N − 1
∥u(k)∥2 ≤ ξ(k), k = 0, . . . , N − 1
u(k)T êz ≥ ξ(k)cos(γp), k = 0, . . . , N − 1

Hgs

r(k) −

 rx(N)
ry(N)

0


 ≤ hgs, k = 0, . . . , N

∥v(k)∥2 ≤ vmax, k = 0, . . . , N

ln(mdry) ≤ z(N)
z0(k) ≤ z(k) ≤ ln(mwet − αρmintk), k = 0, . . . , N

r(0) = r0, v(0) = v0, z(0) = ln(mwet)
rz(N) = hN , v(N) = vN

(2.60)
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Chapter 3

Algorithm description

In this chapter, the algorithm used to solve numerically the optimization problems
for pinpoint landing stated in the previous chapter is described. From the literature,
has been taken as reference the already implemented code presented in [9].

The algorithm presents more levels of abstraction. The core of the algorithm
remains the implementation of the SOCP. Once chosen a suitable programming
language, we can exploit an already existing solver to compute the solution. They
are algorithms studied specifically to solve convex optimization problems with the
most efficient techniques. Unfortunately, every solver has his own interface, which
therefore would require to change again the shape of the optimization problem, to
be compliant with the predefined shape required by the solver. For this reason,
come in handy to exploit a software called parser, that take care of this reshaping.
The outer layer of the algorithm is dedicated to the computation of the optimal
time of flight. Indeed, this optimization variable needs to be fixed a priori. A
search algorithm evaluates and compares the solutions of the optimization problem
for different values of time of flight, in order to find the best solution.

Finally, the optimal control action is computed from the result of the described
algorithm, as well an accurate simulation of the dynamics of the spacecraft during
the divert maneuver.
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SOCP

TRAJECTORY PLANNING
ALGORITHM

Golden search

 SENSORS:

- Landing Vision System

- Radar Doppler Altimeter

- Inertial Measurement Unit

Parser

tf

Mission 
Data ICs

f0
*(tf)

T*

Solver

SOCP

Parser

Mission
Data ICs tf

*

Solver

SIMULATIONDIVERT MANEUVER

Figure 3.1: Scheme of the trajectory planning algorithm for the divert maneuver.
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3.1 Implementation of the optimization problem

First of all, it is necessary to choose a suitable programming language for the algo-
rithm. Here, it has been chosen Matlab, that provides a convenient environment
where develop and debug the code, as well a set of already implemented solvers and
parsers. Moreover, from the Matlab environment we can later automatically trans-
late the code into other programming languages more suitable for implementation
on real devices, e.g. C language.

3.1.1 Solver

The discretized optimization problems (2.59)(2.60) can be solved in the Matlab
framework exploiting a set of algorithms called solvers, that have been already
implemented in this environment. They are algorithms tailored to deal with
optimization problems. There are different products among which choose, that
have different capabilities, reliability and performances. Among the open source
solvers distributed for the Matlab environment need to be mentioned SDPT3,
SeDuMi and ECOS.

In this study, I have chosen SDPT3 solver, since although it is not the fastest
solver between those mentioned, it results to be the most reliable during the
simulations, with a computational time comparable to the others. In detail, SDPT3
version 4.0, as reported in the article [10], is an algorithm able to solve primal dual
semidefinite-quadratic-linear conic problems, whose constraints cone is a product
of semidefinite cones, second-order cones, non negative orthants and Euclidean
spaces, thus including also the problem under study, that is an SOCP. It exploits
an infeasible primal-dual predictor-corrector path-following method, with either
the HKM or the NT search direction. This method belongs to the set of algorithms
called Interior Point Method (IPM), used to efficiently solve numerical constrained
optimization problems, with in this case additional features like predictor-corrector
path following and different search directions. A detailed explanation of IPM is
beyond the scope of this thesis work. For further details about IPM refer to [11]
[12].

3.1.2 Parser

To solve the problem directly by means of a previously mentioned solver, the
optimization problem must be rewritten to comply with the input structure of
the solver. In the case of SDPT3 the problem must assume the structure of a
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semidefinite program (SDP)

min
x

cT x

subject to A(x) = b

F (x) ⪰ 0
(3.1)

Thus, to use the solver directly we need to provide it with the vectors and matrices
c, A, b, F , in such a manner that the problem (3.1) results to be equivalent to the
problems (2.59)(2.60).

Fortunately, there are some tools called parser that perform this operation for
us, we just need to write the optimization problem respecting some coding rules
and let the parser provides to the solver the data suitably cast into the desired
form. These tools allow us to code the optimization problem in a readable way.
Unfortunately this abstraction level implies a slight slower program, thus the use of
this kind of tools is justifiable during a preliminary design phase, whereas probably
they should be avoided in the implementation phase of the software on a real
device.

In the Matlab framework the most used parser is CVX, a detailed documentation
can be found in [13]. CVX allow us to choose a desired solver between some open
source solutions provided together with the CVX distribution itself, such as SDPT3
and SeDuMi, and others that can be separately downloaded and attached to the
parser, both free solutions like ECOS and commercial ones. Then we need to
describe the optimization variables, as well their dimensions, the cost function and
the constraints, exactly as they are written in the problems (2.59)(2.60). At the
end, we will obtain the value of the optimal cost function and the corresponding
values of the optimal variables, together with some specific details regarding the
computation of the solution during every iteration.
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3.2 – Golden search

3.2 Golden search

We observe that the problems (2.59)(2.60) cannot be solved without fixing a priori
the value of tf . Indeed, if tf was considered as a variable of the problem, it would
be a source of non convexity that cannot be eliminated. Therefore we need to find
the optimal time of flight t∗

f outside of the optimization problem.
A search algorithm for t∗

f has been implemented. The basic idea behind it consists
in comparing iteratively the optimal solution f ∗

0 of the optimization problem for
different values of tf = {t1

f , t2
f , . . . , tN

f } ∈ [tmin, tmax], searching for the value t∗
f

that minimize f ∗
0 . The sequence of tf has to be chosen in order to guarantee

the convergence of the solution and a final accuracy compliant with a required
tolerance.

The values tmin, tmax are respectively the minimum and maximum feasible value
of the time of flight.
The minimum feasible time of flight is computed as the time taken by the spacecraft
to reach the ground with the maximum command effort and without the fuel weight

tmin = mdry ∗ ∥v0∥2

ρmax

(3.2)

Instead the maximum feasible time of flight is computed as the time taken by the
spacecraft to deplete all the fuel with the minimum command effort

tmax = mwet − mdry

αρmin

(3.3)

The golden search function has been chosen as search algorithm. It is used to
find the minimum of an unimodal function f(x) : R → R between two extreme
points xmin, xmax.
During every step are defined 4 points a, b, c, d, as represented in Figure 3.2, such
that

IT OT

IC

= IC

Ic

= ϕ, IC = |b − c| > Ic = |c − a|, IT OT = IC + Ic = |b − a|

IT OT

ID

= ID

Id

= ϕ, ID = |d − a| > Id = |b − d|, IT OT = ID + Id = |b − a|

ϕ = 1 +
√

5
2 golden ratio

(3.4)
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a=xmin

a

a

b=xmax

b

b

c

c

c

xopt d

d

d

Figure 3.2: First 3 iterations of the golden search, in an example case.

The algorithm begins assigning a = xmin, b = xmax and computing c, d according
to the rule (3.4).

Then, during every iteration f(c) and f(d) are compared and depending on
whether or not f(c) < f(d) new 4 points a, b, c, d are defined. The points a, b, c are
reassigned to narrow the interval IT OT around the solution, whereas d is computed
again every iteration, accordingly to the rule (3.4).

The number of the iterations is computed a priori, in order to obtain a final
accuracy of the solution with a required tolerance tol. We observe that at the
n-th iteration the residual uncertainty interval, within we can find the solution, is
In = In−1

ϕ
= I0

ϕn−1 , where I0 = |xmax − xmin|. Thus, to obtain at the end IN ≤ tol,
the number of iterations N has to be at least

N =
G

ln(xmax−xmin

tol
)

ln(ϕ) + 1
H

(3.5)
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The algorithm implementation is based on [14].

1 function [x_sol ,y_sol] = golden (f,a,b,tol)
2 phi = (1+ sqrt (5))/2;
3 n = ceil(log ((b-a)/tol)/log(phi)+1);
4 rho = phi -1;
5 d = rho*b+(1- rho)*a;
6 yd = f(d);
7 for i = 1:n-1
8 c = rho*a+(1- rho)*b;
9 yc = f(c);

10 if yc <=yd
11 b = d;
12 d = c;
13 yd = yc;
14 x_sol = c;
15 y_sol = yc;
16 else
17 a = b;
18 b = c;
19 x_sol = d;
20 y_sol = yd;
21 end
22 end
23 end

In this case of study, f(·) = f ∗
0 (tf) is the solution of the optimization problem

depending on the time of flight, a = tmin is the minimum feasible time of flight,
b = tmax is the maximum feasible time of flight and tol is the tolerance on the
accuracy of the solution. Finally, xsol = t∗

f is the optimal time of flight, ysol = f ∗
0 (t∗

f )
is the solution of the optimization problem with the optimal time of flight.
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3.3 Unfeasible optimization problem
The golden search usually ends with an optimal time of flight t∗

f and the respective
solution of the optimization problem. But, sometimes could happens that for every
call of the the golden search the optimization problem (2.59) to be solved results
to be unfeasible, in these cases no exact solution is found. The divert maneuver is
impossible to be accomplished with the specified requirements. In these cases, we
need to provide a sub optimal solution for the maneuver, to guarantee a safe touch
down of the lander. As described in section 2.4, we are no longer capable to reach
the target, then we settle for a final position as near as possible to the desired
landing site. Hence, we replace the optimization problem (2.59) with the problem
(2.60) and we run again the previously described algorithm, as represented in Figure
3.3. In this way, we obtain a sub optimal solution of our original optimization
problem, that is a compromise between the necessity to safely land the spacecraft
on the Mars surface, to minimize the fuel consumption and to minimize the final
distance to the target.

TRAJECTORY PLANNING ALGORITHM

Optimal solution

(target reached with 

minimum fuel consumption)

TRAJECTORY PLANNING ALGORITHM

Suboptimal solution

(tradeoff between fuel consumption and

final distance from the target)

 SENSORS:

- Landing Vision System

- Radar Doppler Altimeter

- Inertial Measurement Unit

feasible

yes

T* T*

no

Figure 3.3: Scheme of the trajectory planning algorithm, with resolution of
unfeasible optimization problems.
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3.4 Solution and simulations
Once the optimization problem is solved, the optimal control sequence can be
computed as

T ∗
c (k) = m∗(k)u∗(k) = ez∗(k)u∗(k), k = 0, . . . , N − 1 (3.6)

where m∗(k), u∗(k), z∗(k) are the optimal variable solutions of the optimization
problem.

Thus, we can retrieve the continuous control action by means of the ZOH
method, keeping constant the value computed at the instant tk until tk+1

T ∗
c (t) = T ∗

c (k), tk ≤ t < tk+1 (3.7)

This is sufficient for thrust control purposes.
Instead, if we want to simulate accurately the behaviour of the dynamics variables

r(t), v(t), z(t), t = [0, t∗
f ] we cannot simply apply the ZOH method to the results

of the optimization problem r∗(k), v∗(k), z∗(k), k = 0, . . . N . We need a more
accurate simulation of their behaviour, as represented in Figure (3.4).

45 45.5 46 46.5 47 47.5
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45 45.5 46 46.5 47 47.5

t [s]

40
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80

100

r x
 [
m

]

discrete solution

continuous simulation

Figure 3.4: Simulation of the dynamics of rx(t) between 2 discrete solutions of
the optimization problem, in an example case.
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To this aim, we numerically integrate the differential equations of the dynamics
(2.23)(2.26) with the rk4 method (the Runge-Kutta method).

Given an initial value x(t0) = x0 and a non linear differential equation dx
dt

=
f(t, x), t ∈ [0, tf ] the rk4 method computes the discrete approximation of the
unknown function x(tn) over the time instants tn = n∆tsim, n = 0, . . . , Nsim,
with Nsim =

ì
tf

∆tsim

í
. Where ∆tsim << ∆t and Nsim >> N , to achieve a more

accurate resolution than the optimization problem’s result.
This method computes iteratively every value xn+1 from the previous value xn

plus an incremental term ∆x. Where the incremental term ∆x is composed by
the time interval ∆tsim times a weighted slope of the function. Indeed, k1 is the
slope at the beginning of the interval, k2 is the slope in the midpoint using k1 to
approximate xn in the midpoint, k3 is again the slope in the midpoint that use k2
to approximate xn and finally k4 is the slope at the end of the interval using k3 to
approximate xn at the end of the interval.

xn+1 = xn + ∆x

tn+1 = tn + ∆tsim

∆x = k1 + 2k2 + 2k3 + k4

6 ∆tsim

k1 = f(tn, xn)

k2 = f(tn + ∆tsim

2 , xn + k1

2 ∆tsim)

k3 = f(tn + ∆tsim

2 , xn + k2

2 ∆tsim)

k4 = f(tn + ∆tsim, xn + k3∆tsim)

(3.8)

Finally, we observe that if both the optimization problem and the simulation
have been solved correctly, the solution of the optimization problem will coincide
with the simulation results in the discretized time instants tk = k∆t, k = 0, . . . , N ,
as shown in Figure 3.4.
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Chapter 4

Optimization of the
execution time

In this chapter, the parameter’s tuning of the optimal trajectory planning algorithm
presented in the previous chapter is described.

To compute the optimal solution numerically, we need to solve several times a
large optimization problem with thousands of optimization variables. Hence, the
algorithm results to be computationally heavy. Since it is used in real-time online
applications, a trade-off between the accuracy of the solution and the computational
performance is required 1.

The parameters that most influence these factors are the sample time of the
discretized optimization problem and the tolerance of the golden search. Indeed, the
sample time is related to the dimension of the optimization problem, whereas the
tolerance of the golden search suggests how many times the optimization problem
must be repeated.

1In the Mars landing sequence the trajectory optimization algorithm is devoted to the planning
of the so-called divert maneuver aimed to recover a large horizontal error in a limited altitude
range. This operation may be executed once the navigation solution, based on Landing Vision
System (LVS), Radar Doppler Altimeter (RDA) and Inertial Measurement Unit (IMU) has found
the relative position of the lander with respect to the landing target. On the basis of the available
assumptions from JPL, the navigation takes not less than 10 s to achieve this objective starting
from an altitude close to 4000 m. In addition, it is needed to account about 5 s of additional
time in advance to the execution of the divert maneuver, to allow the spacecraft achieving the
initial divert attitude. Considering 15 s of total time and a conservative vertical velocity under
parachute of 120 m/s, this correspond to an altitude loss of 1800 m. The resulting altitude coming
out from this identified difference, 2200 m, is close to the altitude in which the divert maneuver
must initiate to permit the recovery of horizontal errors up to 3 km. From this raw computation
it comes immediately clear the paramount importance of minimizing the execution time of the
trajectory planning algorithm.
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Optimization of the execution time

4.1 Process step

As described in section 2.5, the sample time ∆t divides the time interval [0, tf ] in
N equidistant time instants. Hence, the optimization variables of the discretized
optimization problems (2.59)(2.60) are

• r(k) ∈ R3, k = 0, . . . , N

• v(k) ∈ R3, k = 0, . . . , N

• z(k) ∈ R, k = 0, . . . , N

• u(k) ∈ R3, k = 0, . . . , N − 1

• ξ(k) ∈ R, k = 0, . . . , N − 1

Then, the sample time ∆t and the time of flight tf define the overall number of
the optimization variables and thus the dimension of the optimization problem.

N =
9

tf

∆t

:
⇒ 11N + 7 optimization variables (4.1)

Whereas, the time of flight tf is a parameter defined inside the golden search, the
sample time ∆t is a free parameter that can be tuned.

Discretize the original optimization problem (2.50) let us solve it numerically,
but lead also to an approximation of the optimal solution. This approximation is
as much accurate as ∆t is small.

Thus, decreasing ∆t will lead to an heavier but more accurate optimization
problem, whereas increasing ∆t let us solve the optimization problem more quickly
but with worst results.

To tune ∆t, it is necessary to run several times the optimal trajectory planning
algorithm, keeping constant all the parameters and the initial conditions, except the
sample time ∆t. Then, to compare the computational performance of the algorithm
I measured the computational time tc taken to find the solution. Whereas, to
compare the accuracy of the solution I considered the computed fuel consumption
at the end of the divert maneuver mfc(N).

The values of ∆t for the comparison are taken around 1 s, that is the default
value used in [9].
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4.1 – Process step

tc [s] mfc(N) [kg]
∆t = 0.5 s 150.91 232.98
∆t = 1 s 78.6 233.02
∆t = 2 s 41.2 233.13
∆t = 4 s 24.32 233.69

Table 4.1: Comparison results of the optimal trajectory planning algorithm with
different ∆t values, in an example case.

As we can see from the results summarized in table 4.1, the choice of the sample
time ∆t has a great influence on the computational time tc, with an almost linear
relationship. Whereas, the computed fuel consumption mfc(N) at the end of the
maneuver almost does not change at all varying ∆t.

Hence, it seems that we can increase significantly the value of ∆t without losing
accuracy of the solution. Unfortunately, other problems arise when we increase too
much the value of ∆t.

We note that the LCvx theory guarantees the resolution of the original optimiza-
tion problem (2.40) only solving the modified continuous optimization problem
(2.50), not his discretized approximation (2.59). The most of the time, the ap-
proximation is still fine to solve correctly the original optimization problem. But
sometimes, when there are some critical initial conditions, could happen that the
discretized optimization problem computes an unfeasible solution for the origi-
nal optimization problem, as represented in Figure 4.1. In these cases, a thicker
discretization is needed.
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Figure 4.1: Solutions of the same optimization problem, with different values
of ∆t. The optimization problem has a critical initial velocity ∥v0∥2 = 161 m/s.
Lower and upper bounds on the thrust magnitude are represented with red dashed
lines.

Moreover, we observe that a bigger sample time ∆t requires a faster controller,
to track precisely the discontinuous thrust profile.

In conclusion, the sample time ∆t has to be reduced for the reasons just
mentioned. For this thesis work it has been chosen ∆t = 1 s, as satisfying trade-off
between speed and reliability of the algorithm.
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4.2 – Golden search tolerance

4.2 Golden search tolerance
As described in section 3.2, the number of calls of the optimization problem during
the golden search is related to the required tolerance tol of the solution and the
extreme values of feasible time of flight tmin, tmax.

N =
G

ln( tmax−tmin

tol
)

ln(ϕ) + 1
H

(4.2)

where ϕ is the golden ratio.

0 1 2 3 4 5 6 7 8 9 10

tol [s]

6

8

10

12

14

16

18

20

22

24

26

N
 [
-]

Figure 4.2: Non linear relationship between N and tol, in a case example with
tmax = 150 s, tmin = 10 s.

Since every optimization problem needs a not negligible computational time to
be solved, we need to take the number of calls as low as possible, guaranteeing at
the same time enough accuracy of the solution. Hence, a trade-off between accuracy
of the solution and computational performances is needed also here. Whereas,
the values of tmax, tmin are computed by (3.2),(3.3) and cannot be modified, the
tolerance tol is a free parameter that can be tuned.
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Optimization of the execution time

Similarly as done in the previous section, to tune tol it is necessary to run several
times the optimal trajectory planning algorithm, keeping constant all the parameters
and the initial conditions, except the tolerance tol. As before, the computational
performance of the algorithm is compared measuring the computational time tc

taken to find the solution. Whereas, the accuracy of the solution is compared
considering the computed fuel consumption at the end of the divert maneuver
mfc(N).

The values of tol for the comparison are taken starting from 0.001 s, that is the
default value used in [9].

tc [s] mfc(N) [kg]
tol = 0.001 s 161.73 233.01

tol = 1 s 80.98 233.01
tol = 2 s 68.15 233.04
tol = 3 s 62.99 233.04
tol = 4 s 60.74 233.04

Table 4.2: Comparison results of the optimal trajectory planning algorithm with
different tol values, in an example case.

From the table 4.2, we can observe that increasing the value of tol we can
decrease the computational time tc, keeping almost constant the fuel consumption
mfc(N). Anyhow, the relationship between tol and tc is not linear, for bigger values
of tol the improvements on tc are smaller.

To maintain a reasonable tolerance on the golden search solution and decrease the
computational time as long as there is a significant variation on the computational
performance, it has been chosen tol = 3 s.

As a final remark, we observe that in case of an unfeasible problem the algorithm
performs again the golden search looking for the best sub optimal solution and
therefore using twice the computational time.
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Chapter 5

Case studies of meaningful
profiles

In this chapter, several landing maneuvers are presented and analysed, in order to
test the results of the trajectory planning algorithm for pinpoint landing, described
in the previous chapters.

First, single maneuver tests are performed and their results are analysed, such
as the trajectory, the attitude profile, the fuel consumption and the optimal
thrust command profile. Both feasible and unfeasible cases are considered, with
respectively optimal and sub optimal solutions.

Then, a Monte Carlo experiment is used to analyse the general behaviour of the
algorithm. The reliability of the algorithm is tested sounding out a wide variety of
cases, within nominal working conditions.
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Case studies of meaningful profiles

5.1 Initialization of the parameters
The parameters to be defined in the algorithm can be divided in mission parameters
and initial conditions. Mission parameters have to be defined at priori and concern
the desired landing site and the spacecraft features. Whereas, the initial conditions
of the divert maneuver are measured by the sensors on the spacecraft, such as the
landing vision system, the radar doppler altimeter and the inertial measurement
unit. They concern the position and velocity of the lander at the beginning of the
maneuver.

Below are defined the mission parameters, chosen to be as similar as possible
to a real case. Whereas, since the initial conditions are specific to each maneuver,
they will be reported later along with every case.

Landing site

We need to know the position and the orientation of the desired landing site, to
define the reference frame RENU and the relative positions and velocities.

Moreover, we also need the latitude of the landing site θ to compute the Mars
angular velocity ω in RENU , as described in equation (2.25), to correctly set up
the dynamic of the optimization problem.

• θ = 30◦ ⇒ ω = [0.6139,0,0.3544]T 10−4 rad/s

Final conditions

The divert maneuver, topic of this thesis, it is not the last phase in the landing
procedure. Whereas, it allows to recover large horizontal errors at the end of the
descending phase, it does not dealt with the touch down on the Mars surface. That
is a delicate maneuver, which needs to be completed accurately in a following
separate phase.

Therefore, the final conditions of the divert maneuver are chosen in such a way
to prepare the lander for the touch down. The final position of the spacecraft after
the divert maneuver will be an elevated point above the desired landing site, with a
non zero final velocity directed downwards. Indeed, we need to leave enough space
to softly slow down the lander during his approach to the Mars surface.

• hN = 300 m

• vN = [0,0, −25]T m/s
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5.1 – Initialization of the parameters

Spacecraft features
The parameters of the spacecraft have been assumed on the basis of the following
considerations:

1. A dry mass of the landing platform similar to the expected one in the Rosalind
Franklin mission

2. A conservative level of the specific impulse and of the thrust level of each
engine

3. A cant angle sufficient to provide contributions to the roll control and to fine
lateral translation control

Thus, the chosen values are

• mdry = 1100 kg

• mwet = 1500 kg

• Isp = 205 s

• neng = 6

• ϕ = 20◦

• α = 5.293310−4 s/m

• Tmax = 2.5 kN

Constraints
Finally, we need to define the values of the constraints used in the optimization
problem. The maximum and minimum bounds on the thrust norm ρmax, ρmin are
computed by means of equation (2.29). The glideslope angle γgs in a generic case
can be chosen near to 90◦, just to avoid terrain’s collisions. The pointing angle
γp has to be compliant with the radar requirements. The maximum velocity vmax

needs to be a reasonable value, to avoid damages to the spacecraft structure.

• ρmin = 4.2286 kN

• ρmax = 11.2763 kN

• γgs = 86◦

• γp = 45◦

• vmax = 800 km/h
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Case studies of meaningful profiles

5.2 Examples of single cases
Singular maneuver tests are presented and discussed below, with the aim to analyse
in detail the results of the algorithm, in the case of a feasible and an unfeasible
optimization problem. Where, the feasibility of the optimization problem depends
on the mission parameters and the initial conditions of the divert maneuver. Too
demanding requests will lead to an unfeasible optimization problem and therefore
a sub optimal solution, as described in section 3.3.

The algorithm is set up in accordance with the evaluations on the trade-off
between accuracy and performance, done in the previous chapter. The mission
parameters used are those described in the previous section. Whereas, the initial
conditions are chosen depending on the case under study.

5.2.1 Feasible optimization problem
To analyse the solution of the trajectory planning algorithm with a feasible opti-
mization problem (2.59), we need to select not too demanding initial conditions.
The following values are chosen accordingly to the experience and the knowledge
in the field, to be similar to real working conditions.

r0 =

 1500
1500
2000

 m, v0 =

 0
0

−90

 m/s (5.1)

Below, in Figure 5.1 are reported the plots of the variables of interest for the
computed divert maneuver.

(a) Trajectory on the xyz space
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(b) Trajectory on the xy plane
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5.2 – Examples of single cases
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(h) Pointing angle

Figure 5.1: Simulation and computed results of the trajectory planning algorithm
for pinpoint landing, in a case of a feasible optimization problem. In yellow the
computed discrete solution, in black the simulation, in blue the thrust vector profile
superimposed on the trajectory, in green the initial and final position and velocity,
in red the constraints.

61



Case studies of meaningful profiles

In Figure 5.1a,5.1b,5.1c,5.1d,5.1e, we can observe the computed trajectory for
the divert maneuver, along with the velocity profile.

Since the initial velocity has not any horizontal components, the whole trajectory
evolves along a straight line on the xy plane. Whereas, it assumes a S shape along
the xz and yz planes. This because, the whole maneuver can be divided in the
three main phases, well defined in the thrust profile Figure 5.1f.

At the beginning, we can observe a powerful braking of the spacecraft, that
decreases the descent speed and at the same time accelerates the lander toward the
target landing site. Then, in a second phase the thrust is reduced to the minimum
to save fuel and exploit inertia to move toward the target. While at the same time,
the thrust vector inverts its orientation on the other site, to be ready for the third
phase. Finally, in the last phase there is a final powerful braking, that decrease
the descending speed until the desired final velocity and slow down the horizontal
motion until the spacecraft is above the target.

Figure 5.1f shows the profile of the thrust norm. We find the expected Bang
Bang profile, foreseen by the LCvx theory, where the thrust norm assumes only
maximum or minimum values. Small differences from the expected behaviour are
to be taken into account, due to the dynamic linearization and the discretization
of the original problem.

In Figure 5.1g, we can observe the spacecraft mass during the maneuver, that
obviously monotonically decreases over the time due to the fuel consumption.
Following the previously described three phases of the maneuver, since the fuel
consumption is strictly related to the thrust effort.

Finally, we can observe the attitude profile in Figure 5.1h. To control purposes,
it is important to observe that the attitude profile begins and ends with a non zero
pointing angle. Therefore, an initial rotation of the lander is needed to bring the
spacecraft in the right position to begin the divert maneuver and a final maneuver
it is needed to set upright the lander before the touch down.

5.2.2 Unfeasible optimization problem

On the other side, it could happen that the spacecraft starts the divert maneuver
with one or more critical initial conditions and/or critical mission parameters (e.g.
initial position too far from the target, too fast initial velocity, too tight pointing
angle range). In these cases, the optimization problem to be solved results to be
unfeasible and therefore a sub optimal solution is needed to assure the spacecraft to
reach safely the Mars surface. The computed sub optimal solution is a compromise
between the final distance from the target and the fuel consumption.

Among all the possible combination of critical conditions that could lead to an
unfeasible optimization problem, here we test a case with an initial position too far
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5.2 – Examples of single cases

from the target to be able to reach it. The chosen initial conditions values are

r0 =

 10000
10000
2000

 m v0 =

 0
0

−90

 m/s (5.2)

The computed sub optimal solution highly depends on the value of λ, that weight
up the two terms of final distance from the target and fuel consumption, in the
cost function of the optimization problem (2.60). Below are reported the plots of
the variables of interest for the computed divert maneuver, for two different values
of λ.

(a) Trajectory on the xyz space
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0 1 2 3 4 5 6 7 8 9 10

x [Km]

0

1

2

z
 [

K
m

]

(c) Trajectory on the xz plane
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Figure 5.2: Simulation and computed results of the trajectory planning algorithm
for pinpoint landing, in a case of an unfeasible optimization problem. In yellow
the computed discrete solution, in black the simulation, in blue the thrust vector
profile superimposed on the trajectory, in green the initial and final position and
velocity, in red the constraints. The value of λ is set to 1.
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(a) Trajectory on the xyz space
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(b) Trajectory on the xy plane
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Figure 5.3: Simulation and computed results of the trajectory planning algorithm
for pinpoint landing, in a case of an unfeasible optimization problem. In yellow
the computed discrete solution, in black the simulation, in blue the thrust vector
profile superimposed on the trajectory, in green the initial and final position and
velocity, in red the constraints. The value of λ is set to 0.1.

The first case with λ = 1 in Figure 5.2 is compared with the second case with
λ = 0.1 in Figure 5.3. In general, both cases have similar behaviour to the feasible
case in Figure 5.1. Whereas, as we could imagine, they differ significantly in the
mass and trajectory results. Bigger values of lambda lead to less fuel consumption
at the end of the divert maneuver, but at the same time worst results to reach the
target.

Another important difference regards the pointing angle and its rate. In contrast
to the feasible case in Figure 5.1h, the results achieved in Figure 5.2, 5.3 have a
very sharp rising edge respectively at time t = 31 s and t = 41 s. This sudden
increase of pointing angle cannot be easily realized, due to the limitation on the
attitude dynamics of the spacecraft.

In conclusion, in both cases the impossibility to reach the desired landing site
leads the spacecraft to move close to the target without reaching it. Then, we need
to choose the value of λ depending on the specific situation and our primary goals.
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5.3 – Monte Carlo simulations

5.3 Monte Carlo simulations

To study the overall behaviour of the algorithm, we observe the results of a numerous
set of cases, over a defined range of reasonable working conditions. They are a
random collection of samples of possible outcomes of the entry and descending
phase.

In the guided entry phase, thanks to bank reversal maneuvers, we are able to
reach the target within a precision of 3 km [3]. Then, in the descending phase a
parachute slows down the descent until manageable speeds. Therefore, the nominal
working conditions used in the Monte Carlo experiment are

r0 =

 r0x

r0y

r0z

 , s.t.

ñ
r2

0x + r2
0y ∈ [0,3000]m

r0z ∈ [1900,2100]m

v0 =

 v0x

v0y

v0z

 , s.t.
vox, v0y ∈ [−5,5]m/s
v0z ∈ [−100, −80]m/s

(5.3)

Hopefully, within these values we will obtain only feasible optimization problems
and therefore optimal solutions.

Instead, as far as concern unfeasible optimization problems, since countless
combination of critical parameters could lead to unfeasibility, a more detailed
analysis of them will be proposed in the next chapter only for some specific cases
of interest.
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Figure 5.4: Simulation and computed results of the trajectory planning algorithm
for pinpoint landing, for a Monte Carlo experiment (100 cases). Every simulation
is represented with a different color, in red the constraints

As we can observe in the Figure 5.4, all the cases tested lead to feasible opti-
mization problems and therefore to optimal solutions. Hence, the Monte Carlo
experiment confirms the feasibility of the working condition under analysis (5.3).
It proves the reliability of the algorithm under nominal working conditions.
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Chapter 6

Simulations

In this chapter, we simulate the behavior of a complete Guidance Navigation
and Control (GNC) algorithm for pinpoint landings, coupled with the developed
trajectory planning algorithm, that provides in this framework the guidance function
for the divert maneuver.

The simulator computes the spacecraft dynamics, given the thrust command
provided by the GNC. The GNC, in turn, is fed by the sensor measurements
provided by the simulator, adding random disturbances to the real values. The
simulation includes the entire lading maneuver, from the separation of the lander
from the backshell and parachute composite, to the touch down on the surface.
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Simulations

6.1 Overview of the simulation enviroment
The simulator, as well as the GNC, used in this simulation, are kindly provided
by Thales Alenia Space. The algorithm developed in this thesis work is integrated
in the provided GNC algorithm. It is used as guidance function for the divert
maneuver.

The GNC is composed by three separated pieces of software, with different purposes,
that interact with each other, as represented in Figure 1.2.

• The navigation function makes sensor fusion on the measurements provided
by the Inertial Measurements Unit (IMU), Radar Doppler Altimeter (RDA)
and Landing Vision System (LVS), to estimate position, velocity, acceleration,
attitude, angular rate and angular acceleration of the spacecraft throughout
the landing phase.

• The guidance function computes the reference trajectory for the landing. Once
the separation of the lander occurs, at the end of the descent phase, an initial
tip-up rotation brings the spacecraft to the initial attitude required by the
divert maneuver. Then, the divert maneuver slows down the vertical velocity
and at the same time recovers the horizontal distance from the target. Finally, a
sequence of procedures is carried out in order to guarantee a safe touch down of
the lander on the surface. Firstly, a rotation aligns vertically the lander. Then,
an intensive braking decreases significantly the remaining descent velocity. The
thrust is smoothly decreased until only gravity is compensated. The spacecraft
lands on the surface. The thrusters are switched-off at first contact with the
martian terrain. This is done independently by the GNC control loop thanks to
touch-down sensors placed in the landing legs with a redundant configuration
allowing majority voting to exclude undesired switch-off in advance.

• The control function takes care of keeping the spacecraft on track during the
landing. Indeed, although the computed trajectory results to be feasible, we
should always deal with disturbances and model uncertainties.

The simulator provides an environment to test the performance and the robust-
ness of the GNC algorithm. The spacecraft dynamics is computed accurately, given
the initial conditions and the thrust command provided by the GNC in real time.
The sensor measurements, used to run the GNC algorithm, are simulated adding
random disturbances.
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6.2 Example case

In this section, a simulation of the GNC behavior is carried out, in an example
case. The lander chosen for the simulation is similar to the ExoMars one, but
properly enlarged to be able to host a bigger propellant mass, in order to allow the
divert maneuver execution. The mission parameters used are the same presented
in section 5.1. Except for the rocket parameters, whose values are reported below:

• Tmax = 2.5 kN

• neng = 8

• ϕ = 20◦

The initial conditions of the spacecraft are:

r0 =

 1500
1500
2000

 m, v0 =

 0
0

−90

 m/s (6.1)

The results of the simulation are reported in the figures below:

(a) Trajectory in the xyz plane (b) Trajectory in the xy plane
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(c) Altitude

(d) Estimated altitude
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(e) Vertical velocity (f) Estimated vertical velocity

(g) Pointing angle (h) Estimated pointing angle
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(i) Thrust norm

(j) Fuel consumption

Figure 6.1: Results of the landing simulation, in an example case. Superimposed
on the graphs are drawn in sequence the activation flags of the following events:
intensive braking, final phase transition, ready for touch down, leg touch down.
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As we can see in the simulation results presented in Figure 6.1, the spacecraft at
the end of the descent phase is oriented almost vertically. Then, an initial rotation
is necessary to reach 35◦ of pointing angle, required as initial condition of the divert
maneuver. In the meanwhile, the spacecraft maintains the same descent velocity of
-90 m/s travelling 450 m in 5 s.

Then, the divert maneuver begins, the descent velocity is slowed down to -24
m/s, and a final distance from the target of 35 m is achieved.

Later, a verticalization of the lander is carried out, to prepare the spacecraft for
the touch down.

The spacecraft is at 300 m above the ground when it begins the touch down
maneuvers. Firstly, an intense braking decreases significantly the vertical velocity
up to -8 m/s. Then, a final transition smoothly decreases the thrust command to
the minimum. At this point, the lander is ready for the touch down. When the leg
sensors perceive the ground, the thrusters are shut down.

At the touch down, the lander reaches a final distance from the target of 35 m,
with a vertical velocity of -1.6 m/s, a horizontal velocity of 0.8 m/s and a pointing
angle of 1◦.
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Chapter 7

Parametric analysis

In this chapter, a parametric analysis of the trajectory planning algorithm is
carried out. This study evaluates the obtained results, varying a selection of
significant design parameters. With the aim of extrapolating a general behavior of
the algorithm.

Firstly, we look for the feasibility boundaries of the original optimization problem.
Then, where the optimization problem turns out to be unfeasible, we compute a
sub optimal solution and evaluate its performance.

This analysis provides interesting tips for the spacecraft design, relating the
performance of the propulsion system, the parachute, the radar doppler altimeter
and the landing vision system, with the results of the trajectory planning algorithm.
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7.1 Analysis for the driver parameters
A selection of relevant parameters have to be chosen to drive this analysis. Combi-
nations of their values will be used to study the feasibility of the guidance problem,
whereas all the other parameters will be kept constant. The parameters chosen are
strictly related to the design of the lander.

• Initial vertical velocity v(0) = [0,0, v0]T
The initial velocity depends on the performance of the parachute. From the
available data, we can expect values of ∥v(0)∥2 within the range [90,120] m/s.
To simplify the analysis, we assume zero horizontal components of the initial
velocity.

• Maximum pointing angle γp

The value of the maximum pointing angle is strictly related to the radar
doppler altimeter (RDA) placement. So firstly, we need to explain the RDA
configuration and its two possible placements on the bottom of the spacecraft.
The RDA is a sensor, that measures altitude and velocity of the spacecraft,
exploiting the slant and doppler measurements along 4 directions (one direction
parallel to the symmetry axis and the other ones 20° skewed), as represented
in Figure 7.1.

Figure 7.1: RDA configuration. In red the beams, from different views.
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To work properly, the RDA needs reliable measurements from at least 3 of 4
beams. A beam no longer works when the distance to measure is too large.
This happens when the inclination of the beam, with respect to the local
vertical kENU , exceeds 60◦.
Regarding the RDA location in the spacecraft, this study considers as appli-
cable the ExoMars configuration, represented in Figure 7.2a. The RDA is
mounted in the center of the spacecraft’s bottom, to exploit its symmetrical
geometry. In this way, the RDA behaves the same regardless the attitude of
the lander. But, the maximum pointing angle cannot be larger than 40◦ for 4
beams still working and 48.1◦ for 3 beams still working.
An alternative placement is the one chosen in the NASA missions MSL and
MSR, represented in Figure 7.2b. This configuration exploits an asymmetric
geometry, the RDA is placed on a side of the spacecraft’s bottom, 20◦ skewed in
order to align an external beam to the body vertical vector kBRF . This different
approach brings improvements on the maximum pointing angle achievable,
if the descent direction is aligned with the RDA. In this way, the maximum
pointing angle becomes 35.4◦ for 4 beams still working and 57.8◦ for 3 beams
still working. But, on the other hand, is required an additional rotation
maneuver at the beginning of the divert maneuver and an attitude control
during the descent.

(a) ExoMars configuration. (b) MSL and MSR configuration.

Figure 7.2: Position and attitude of the Radar Doppler Altimeter in the spacecraft.
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• Altitude loss h = h0 − hN

The altitude loss h is the altitude difference between the start and the end of
the divert maneuver. Whereas, the final altitude hN is fixed at 300 m, the
initial altitude h0 can vary within an upper and a lower boundary value. For
the purpose of this analysis, we need to estimate the upper boundary of h0
and thus the upper boundary of h.
The divert maneuver begins once the reference trajectory is computed. But,
to compute the reference trajectory, we need to know the exact location
of the spacecraft with respect to the desired landing site. The Landing
Vision System (LVS) is in charge to measure the position of the lander. It
compares constellations of landmarks in the camera and in the on-board maps,
till a successful matching locates the spacecraft. This operation needs to
be repeated at least twice to be validated. To work properly, the landing
navigation algorithms need to know the altitude of the spacecraft. The altitude
measurements are provided by the Radar Doppler Altimeter, and they are not
available before reaching 4200 m.
Once reached that altitude, the LVS needs 10 s to locate the spacecraft. Then,
the guidance problem must be solved, the landing platform must be separated
by the composite of parachute and backshell and the spacecraft must be
oriented in the skewed attitude required at initiation of the divert maneuver.
It is necessary to allocate about 7 s for these operations, and an extra 2 s as
safety margin. Therefore, after reaching 4200 m a total of 19 s must elapse
before starting the divert maneuver. Hence, considering a maximum descent
velocity of 120 m/s, in this time interval the spacecraft travels 120 m/s * 19 s
= 2280 m. Thus, the divert maneuver starts at most at 4200 − 2280 ≃ 1900 m.
Or rather, at most with an altitude loss of h = h0 − hN = 1900 − 300 = 1600
m.

• Thrust and Mass T2W=Tmaxnengcos(ϕ)
mwetg

The thrust and the mass characterize the dexterity of the spacecraft during the
divert maneuver. Since the dynamic of the spacecraft is affected simultaneously
by both, we need to use a new metric, the Thrust to Weight (T2W), which
takes both into consideration.
T2W is defined as the ratio between a thrust and a mass reference value. As
thrust reference, we take the maximum thrust value obtainable by all the
rockets together Tmaxnengcos(ϕ). Whereas, as mass reference, the force of
gravity of the spacecraft at the beginning of the maneuver mwetg.
To provide a reasonable amount of thrust throughout the maneuver, a lower
boundary of T2W is set to 2 (with a maximum achievable thrust twice the
force of gravity). Then, the following three cases are considered:
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– The same spacecraft’s features used for the tests in the previous chapter.


Tmax = 2500N
neng = 6
ϕ = 20◦

mwet = 1500kg

⇒ T2W = 2.53 (7.1)

– The previous case with an augmented number of engines. The configura-
tion of the thrusters has to remain symmetric, with an even number of
engines (n=8), to provide lateral thrust stability.


Tmax = 2500N
neng = 8
ϕ = 20◦

mwet = 1500kg

⇒ T2W = 3.38 (7.2)

– The previous case with more powerful rockets, the same presented in the
literature [9].


Tmax = 3100N
neng = 8
ϕ = 20◦

mwet = 1500kg

⇒ T2W = 4.18 (7.3)

A more thorough analysis of these cases is conducted, before proceeding with
the parametric analysis. Each case is tested with a Monte Carlo experiment,
to prove the reliability of the algorithm over a reasonable range of initial
conditions, the same used in section 5.3.
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(a) T2W = 2.53.

(b) T2W = 3.38.
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7.1 – Analysis for the driver parameters

(c) T2W = 4.18.

Figure 7.3: Trajectories on the xyz space, computed by a Monte Carlo experiment
(100 cases), for three different values of T2W. In red the initial positions leading to
the unfeasibility of the optimization problem 2.59.

As we can see from the results in Figure 7.3a, 7.3b, the cases with T2W=
{2.53,3.38} provide good results. A difference in the shape of the trajectories
can be observed, it concerns mainly the initial phase. A lower T2W value
means greater inertia in the movement and therefore a longer initial braking
phase.

On the other hand, with T2W=4.18 as represented in Figure 7.3c, the trajectory
planning algorithm cannot find a feasible solution of the optimization problem
2.59, for cases with an initial distance from the target d0 greater than 2700
m. Initially, we could think of an impossibility to reach the target from such
a distance. Instead, a deeper analysis reveals the existence of some feasible
trajectories able to accomplish this task. The problem in these cases is related
to the golden search, which fails to find a feasible time of flight. To explain the
reason, we need to remember that the golden search, presented in section 3.2,
is an iterative search algorithm that computes and compares the results of an
optimization problem for a sequence of values of time of flight tf within a range
[tmin, tmax]. Unfortunately, the convergence of the result is guaranteed only if
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both tmin (3.2), tmax (3.3) correspond to feasible optimization problems. But,
since these values are initial guesses, usually do not fulfill such requirement.
We call t̂min, t̂max the minimum and maximum values of time of flight leading to
a feasible optimization problem. Then, the values of tmin, tmax are chosen such
that [t̂min, t̂max] ⊆ [tmin, tmax]. The wider is the feasible interval [t̂min, t̂max],
the more likely the golden search will converge to a feasible solution. Narrow
intervals could be not found, leading to an unfeasible solution. Returning
to the beginning of this digression, for T2W=4.18 and d0 ≥ 2700 m, the
golden search no longer provides a feasible solution to the problem. Indeed,
in these cases, t̂max turns out to be significantly reduced, which leads to a
narrow feasible interval [t̂min, t̂max]. This aspect can be explained considering
the greater thrust available. Indeed, a bigger feasible time of flight t̂max is
reached with a slower movement on the xy plane. The thrust vector needs to
be pointed along a more vertical direction, while moving toward the target.
But, since in this case the thrust provided is bigger, reducing its component
along xy means to increase further its component along z. An excessive thrust
component on z increases too much the vertical velocity of the lander and
prevents the spacecraft to reach the desired final vertical velocity.
Finally, we conclude that we could find a feasible solution of the optimization
problem 2.59, but it would need a different search algorithm with an increased
computational effort, that we cannot afford in a real time application. Thus,
no case of T2W≥ 4 will be considered in this study.
For the sake of completeness, we report also the T2W value of the case
presented in literature [9].

Tmax = 3100N
neng = 6
ϕ = 27◦

mwet = 1905kg

⇒ T2W = 2.34 (7.4)

The remaining parameters are the same used in the previous chapter, defined in
section 5.1.

The initial position on the xy plane is taken at 3000 m far from the target,
i.e. the worst case we could reasonably expect on the basis of the Guided Entry
assumed performances.C

r0x

r0y

D
, s.t. d0 =

ñ
r2

0x + r2
0y = 3000m (7.5)

Finally, the glideslope constraint is applied on the final position of the divert
maneuver and no longer on the landing site.
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7.2 Impact of the configuration
The parametric analysis evaluates, separately for T2W= {2.53,3.37}, the value of
the minimum altitude loss achieved by a feasible optimization problem, for the
following values of initial velocity and maximum pointing angle:

• v0 = {−90, −100, −110, −120} m/s

• γp = {35◦, 40◦, 45◦, 50◦}

Then, the computed minimum altitude losses are compared with the maximum
altitude loss compatible with the LVS, that is 1600 m. If the computed value is
over this threshold, the trajectory planning algorithm will be forced in any case
to begin at 1900 m, leading to an unfeasible optimization problem and to a sub
optimal solution.

7.2.1 Algorithm description
The algorithm designed to find the minimum altitude loss compatible with a feasible
optimization problem (2.59) is similar to the bisection method.

It starts with two extreme values of altitude r0z_min, r0z_max. These values are
initial guesses, r0z_min has to be associated to an unfeasible optimization problem
and r0z_max to a feasible optimization problem. The values chosen are

r0z_min = hN = 300 m
r0z_max = 3000 m

(7.6)

Then, at each iteration, the middle point between r0z_min, r0z_max is computed as

r0z = r0z_min + r0z_max

2 (7.7)

And it is used to compute again the feasibility of the optimization problem. If
it turns out to be a feasible altitude loss r0z_max = r0z, otherwise r0z_min = r0z.
Then, to achieve a precise result, this iteration step is repeated 10 times.

Finally, the whole procedure is repeated with a different combination of v0 and
γp, until all 16 combinations are tested.

7.2.2 Results
• T2W=3.37

As we can observe in Figure 7.4, the best result is achieved by the smallest
value of initial velocity v0 = −90 m/s and the biggest value of maximum
pointing angle γp = 50◦. Worse results are obtained increasing the initial

85



Parametric analysis

velocity and decreasing the maximum pointing angle, with an almost linear
relationship. The pairs of values that pass the test are:

(v0, γp) ={(−90,50), (−90,45), (−90,40), (−100,50), (−100,45), (−110,50),
(−110,45), (−120,50)}

(a) Results in the three dimensional space of the parameters.

(b) Projection of the results on the v0 − γp plane, to highlight the combinations
of initial velocity and maximum pointing angle compatible with the LVS.

Figure 7.4: Minimum values of altitude loss obtainable as a result of a feasible
optimization problem, for a set of initial velocity and maximum pointing angle
values, with T2W=3.37. In red the maximum altitude loss compatible with the
LVS.
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• T2W=2.53
As we can see in Figure 7.5, in this case the computed results are no longer
related to the maximum pointing angle. There still remains an almost linear
relationship between the altitude loss and the initial velocity. The pairs of
values that pass the test are:

(v0, γp) ={(−90,50), (−90,45), (−90,40), (−90,35), (−100,50), (−100,45),
(−100,40), (−100,35)}

(a) Results in the three dimensional space of the parameters.

(b) Projection of the results on the v0 − γp plane, to highlight the combinations
of initial velocity and maximum pointing angle compatible with the LVS.

Figure 7.5: Minimum values of altitude loss obtainable as results of a feasible
optimization problem, for a set of initial velocity and maximum pointing angle
values, with T2W=2.53. In red the maximum altitude loss compatible with the
LVS.
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7.2.3 Influence of the driver parameters on the results

We can give some observations about the relationship between the feasibility of the
optimization problem and the driver parameters.

• Initial velocity
The initial velocity mainly influences the dynamic of the spacecraft in the
first phase of the divert maneuver, when the spacecraft carries out the initial
braking.

Figure 7.6: Divert maneuver trajectory on the xz plane, with T2W=2.53, v0 = −90
m/s, γp = 50◦ and minimum altitude loss. In black the simulation, in blue the
thrust vector profile superimposed on the trajectory, in green the initial and final
position and velocity, in red the glideslope constraint.

As we can see in the Figure 7.6, in a critical condition, where the optimization
problem is about to become unfeasible, the initial braking is almost vertical
and the spacecraft manages to stop the descent just before the forbidden area,
delimited by the glideslope constraint. Thus, a smaller altitude loss would no
longer provide enough space to slow down the lander in time, and therefore it
would lead to an unfeasible problem. Then, cases with higher initial velocities
need more space to slow down the lander and therefore greater altitude loss.
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(a) Entire trajectories.

(b) Zoom on the start of the trajectories.

Figure 7.7: Divert maneuver trajectories comparison, between the two T2W cases,
with v0 = −90 m/s, γp = 50◦ and minimum altitude loss. In black the simulation,
in green the initial and final position and velocity, in red the glideslope constraint.
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As we can see in Figure 7.7, also the value of T2W is relevant for the results
obtained. Indeed, in the lower T2W case, the lander employs a bigger per-
centage of the available thrust to compensate the gravity force, reducing its
capability to slow down the vehicle during the descent, leading to a bigger
minimum altitude loss.

• Maximum pointing angle
The influence of the maximum pointing angle on the feasibility of the opti-
mization problem is strictly related to the T2W value. To understand why,
firstly, we need to analyze the main forces applied to the spacecraft during
the divert maneuver.

FT OT (t) = T (t) + Fg(t) = T (t) − m(t)gM êz (7.8)

Then, we need to focus on the last phase, when the lander is lighter m → mdry,
and to compute the minimum value achievable on the z axis.

min
1
FT OT (tf )T êz

2
=

= min
1
T (tf )T êz − m(tf )gM

2
≈ ρmincos(γp) − mdrygM

(7.9)

Therefore, for the two different cases of T2W

ρmin [N] mdry [kg] γp [◦] min
1
FT OT (tf )T êz

2
[N]

35 -617.1
T2W = 2.53 14095.38 1100 40 -841.7

45 -1090.9
50 -1362.9
35 537.5

T2W = 3.38 18793.85 1100 40 238.1
45 -94.2
50 -465.9

Table 7.1: Minimum values of the overall force along the z axis applied on the
spacecraft at the end of the maneuver, for different values of T2W and γp.

In the table 7.1, we can notice the presence of two positive values in the last
column. In these two cases, the overall force applied on the z axis at the end
of the maneuver cannot reach negative values, i.e. the spacecraft can no longer
accelerate downwards. This consideration has the meaningful implication to
constraint the spacecraft on a monotonic decreasing trajectory, that limits
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the guidance authority for planning the trajectory in the cases of low initial
altitude.

We can observe the consequences of this implication in Figure 7.8, where the
spacecraft with T2W=3.37 can no longer follow the black trajectory, where
the spacecraft descends until the glideslope constraint to slow down the initial
velocity of the lander, to increase later again its altitude and recover the
horizontal error. In the T2W=3.37 case, this can no longer be done, because
once increased again the altitude it would approach the last phase of the divert
maneuver with an ascending speed that can no longer be redirected downward.
Hence, the spacecraft is constrained to move along a monotonically decreasing
trajectory and to achieve worse results.

Figure 7.8: Divert maneuver trajectories comparison, between the two T2W cases,
with v0 = −90 m/s, γp = 35◦ and minimum altitude loss. In black the simulation,
in green the initial and final position and velocity, in red the glideslope constraint.
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7.2.4 Comparison between different T2W cases

The results achieved in the two cases, with different T2W values, are compared in
the Figure 7.9.

(a) Results in the three dimensional space of the parameters.

(b) Projection of the results on the h − v0 plane.
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(c) Projection of the results on the h − γp plane.

(d) Projection of the results on the v0 − γp plane, to highlight the best combinations of
initial velocity and maximum pointing angle compatible with the LVS.

Figure 7.9: Comparison of the results obtained in the two T2W cases. In yellow
and green the minimum values of altitude loss achievable as results of a feasible
optimization problem, for a set of initial velocity and maximum pointing angle
values. In red the maximum altitude loss compatible with the LVS.
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A comparison of the results obtained in the two T2W cases is represented in
Figure 7.9d. Better outcomes are achieved for T2W = 2.53 with γp = {35◦,40◦} and
for T2W = 3.37 with γp = {45◦,50◦}. Whereas, in both cases the results get better
with smaller initial velocities, as we can see in Figure 7.9b. These observations can be
directly explained by the considerations previously made on the initial velocity and
maximum pointing angle. Indeed, in almost all the cases the optimization problem
becomes unfeasible due to the presence of the glideslope constraint. Therefore,
the results obtained are mainly related to the initial velocity and the T2W value.
With the exceptions of the cases with T2W=3.37 and γp = {35◦,40◦}, where the
maximum pointing angle is too small and leads to a monotonically decreasing
trajectory.
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7.3 Identification of the performance limits
We now analyze those cases that are incompatible with the LVS requirement on
the altitude loss. We run again the trajectory planning algorithm, with an altitude
loss h of 1600 m, as required by the LVS. Obtaining sub optimal solutions of the
problem. The performance of the results are compared, measuring the final distance
from the target at the end of the divert maneuver.

(a) Results in the three dimensional space of the parameters.
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(b) Projection of the results on the d − v0 plane.

(c) Projection of the results on the d − γp plane.
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(d) Representation of the results in the three dimensional space of the parameters.

(e) Projection of the results on the d − v0 plane.
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(f) Projection of the results on the d − γp plane.

Figure 7.10: Final distance from the target, for those cases that are incompatible
with the LVS requirement on the altitude loss. Solutions of the optimization
problem (2.60) with λ = 1.

As we can see in Figure 7.10, both T2W cases present the same result’s pattern
of the altitude loss parametric analysis. The same considerations done before can
be applied also here. For T2W=2.53, the results are not related to the value of
the maximum pointing angle. Whereas, for T2W=3.37, better results are achieved
with smaller initial velocities and bigger maximum pointing angles.

In addition, it is worth to highlight the absence of any result in the case of
T2W=2.53, with initial velocity v0 = −120 m/s. Indeed, in this specific case, also
the optimization problem for sub optimal solutions (2.60) results to be unfeasible.
This aspect can be explained considering the space needed to completely arrest the
descent of the spacecraft with an initial velocity of v0 = 120 m/s and a reduced
thrust available T2W = 2.53. The space required exceeds the altitude loss available
h = 1600 m, even in the most favorable conditions, i.e. a completely vertical descent
with the thrust always at the maximum. A simulation is proposed in Figure 7.11,
where we can see that the final altitude, achieved at v = 0 m/s, is hN = 147.93 m,
that is less than 300 m as required.
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Figure 7.11: Altitude of the lander, in a vertical descent, during a deceleration
of the motion with the maximum thrust available. In the case of T2W=2.53 and
v0 = −120 m/s.
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Chapter 8

Conclusions

This thesis work aims to analyze and implement the guidance problem for a pinpoint
landing on Mars, i.e. autonomously guide the spacecraft from his initial location
toward the desired landing site, with an accuracy of less than 100 m. The developed
algorithm will have to provide a reliable and accurate solution of the guidance
problem in real time. Moreover, a sub optimal solution has to be computed in
case of an unfeasible guidance problem, to ensure in any case a safe landing of the
spacecraft.

Firstly, a survey of analytical and numerical methods, used or proposed over time
to solve this type of problem, is carried out. We identify the Lossless convexification
(LCvx) as a very promising method and choose it for the development of this thesis
work. This choice is based on the fact, that LCvx provides a proven way to
convexify the guidance problem, originally described as a non convex optimization
problem. The obtained formulation assures at the same time the convergence to
the optimal solution and an efficient computation of the result, essential for real
time applications.

The first contribution of this thesis is to extend the optimization problem
proposed in literature [9] to assure sub optimal, but feasible, solutions also in
case of unfeasible optimization problems. For example, this could be required for
landing sites too far or initial velocities too high, available fuel too low and so on.
Thus, sub optimal solutions will not reach the desired landing site, but will assure
a safe touch down of the spacecraft, optimizing at the same time the final distance
from the target and the fuel consumption.

Then, a trajectory planning algorithm is designed to implement the mathematical
formulation of the guidance problem, derived previously. The developed algorithm
is written in Matlab code, which exploiting specific solvers, based on interior point
methods (IPMs), efficiently and rapidly find an optimal solution of the problem.

The tests performed on some meaningful case studies prove the performance
of the algorithm. Optimal solutions of feasible optimization problems reach the
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desired landing site with an optimal fuel consumption. Sub optimal solutions
of unfeasible optimization problems optimize at the same time fuel consumption
and final distance from the target. A weight parameter can be tuned to choose
which criterion to optimize over the other. A Monte Carlo experiment, with 100
cases, proves the robustness of the algorithm within nominal working conditions.
Finally, a simulation of the entire landing maneuver proves the performance of
the developed algorithm as part of a more structured algorithm, that manages
guidance, navigation and control of the spacecraft throughout the landing.

At the end, a parametric analysis of the trajectory planning algorithm provides
correlations between the behavior of the developed algorithm and a selection of
significant design parameters of the lander, such as the configuration of the Radar
Doppler Altimeter, the performance of the parachute and the requirements of
the Landing Vision System. This last analysis suggests useful guidelines for the
spacecraft design choices.

8.1 Future work
1. The Lossless convexification theory, used in this thesis work to formulate the

guidance problem as a convex optimization problem, is a research field still
under development. The LCvx cannot be applied to a generic non convex
optimization problem. Indeed, only some specific classes of cost function and
constraints can be used. For this reason, a significant assumption is done in the
formulation of the guidance problem, i.e. we neglect the attitude dynamics, in
favor of the translational dynamics. This choice can be motivated, considering
the attitude dynamics as a direct result of the translation dynamics. Indeed,
decoupling the guidance problem, the reference attitude can be derived by the
pointing angle of the thrust vector. However, this assumption leads to the
following drawbacks:

• We could compute an unfeasible attitude dynamic. Indeed, limitations
on the physical capability of the thrusters could constrain the maximum
attitude rate achievable.

• The attitude dynamics requires setting aside a percentage of the available
thrust from the translation dynamics.

• Since we cannot define the initial and final attitude of the spacecraft in
the guidance problem, an initial rotation is necessary to bring the lander
to the initial attitude required by the divert maneuver and a final rotation
is necessary to verticalize again the spacecraft at the end of the divert
maneuver. These rotation maneuvers subtract time, while the spacecraft
is falling down, forcing to start the landing maneuvers higher.
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Future works on the LCvx theory could enlarge the classes of constraints that
can be used, letting to add the attitude dynamics to the guidance problem
and solving the previously mentioned problems.

2. The discretization of the guidance problem, essential to solve numerically
the optimization problem, leads to an approximation of the original problem.
Large sample times could lead to approximations of the original problem that
no longer fulfill the requirements of the LCvx theory. In these cases, a feasible
solution of the approximated problem is computed, which however results
to be unfeasible for the original problem. The unfeasibility derives from the
violation of the thrust constraints.
Future works could identify a maximum admissible sampling time, or imple-
ment an exception procedure in case of unfeasibility of the original optimization
problem. This activity will also account the interaction between guidance and
control in terms of acceptable roughness of the reference profile and associated
mitigation actions.
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