
POLITECNICO DI TORINO
Master’s Degree in ICT FOR SMART SOCIETIES

Master’s Degree Thesis

Road Elements Identification and LiDAR
Integration for Advanced Driver

Assistance Systems

Supervisors

Prof. ANDREA TONOLI

Prof. NICOLA AMATI

Prof. ANGELO BONFITTO

PhD Candidate STEFANO FAVELLI

PhD Candidate EUGENIO TRAMACERE

Candidate

MENG XIE

JULY 2023

Abstract

The fusion of data from multiple sensors in real-time is a critical process
for autonomous and assisted driving systems, where high level controllers need
classification of objects in the surroundings and estimation of relative positions.
This paper presents an open-source framework to estimate the distance between
a vehicle equipped with sensors and different road objects on its path using the
fusion of data from camera and LiDAR. The target application is an Advanced
Driver Assistance System (ADAS) which benefits the integration of the sensors’
attributes to plan the vehicle speed according to real-time road occupation and
distance from obstacles.

Based on geometrical projection, a low-level sensor fusion approach is proposed
to map 3D point clouds into 2D camera images. The fusion information is used to
estimate the distance of objects detected and labelled by a Yolov7 detector.

The open-source pipeline implemented in ROS consists of a sensors’ calibration
method, a Yolov7 detector, LiDAR points down-sampling and clustering, and
finally a 3D to 2D transformation between the reference frames. The goal of the
pipeline is to perform data association and estimate the distance of the identified
road objects. The accuracy and performance are evaluated in real-world scenarios
with real sensors data. The pipeline running on an embedded Nvidia Jetson AGX
Xavier AI Vehicle Computer achieves good accuracy on object identification and
distance estimation operating at 5Hz.

The proposed framework introduces a flexible and resource-efficient method for
data association using commonly available automotive sensors. It demonstrates
its potential as a promising solution for enhancing the environment perception
capabilities of assisted driving systems.

Keywords: ADAS, Environment Perception, Object Detection, Sensor Fusion, Camera,
LiDAR, ROS, Embedded Linux, C++, Python

Table of Contents

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 4
1.3 Overview of the PITEF – AutoECO Project 5
1.4 Thesis Outline . 5

2 Theoretical Background 7
2.1 Environmental perception . 7
2.2 Object Detection . 8
2.3 Working Principles of ADAS sensors 10

2.3.1 Camera . 10
2.3.2 LiDAR . 14
2.3.3 Sensor Fusion Techniques 17

3 System Architecture Design and Methodology 20
3.1 Requirement Analysis . 21
3.2 Hardware Architecture Design . 21

3.2.1 NVIDIA Jetson AGX Xavier 22
3.2.2 ZED2 . 23
3.2.3 PandarXT-32 . 24

3.3 Algorithms Development . 25
3.3.1 ROS environment . 25
3.3.2 Yolo v7 . 26
3.3.3 Training of Yolo v7 . 28
3.3.4 LiDAR and Camera Joint Calibration 29
3.3.5 Sensor Fusion Algorithm . 36

3.4 Hardware Deployment . 46
3.4.1 Testing Plan . 46

3.5 Overview of the Integration Pipeline 47

ii

4 Experiments and Results 49
4.1 Data collection . 49

4.1.1 Precision of the Distance Measurement 50
4.1.2 Stability of Object Detection and Distance Measurement . . 52
4.1.3 Robustness of Multiple Object Detection and Distance Mea-

surement. 54
4.2 Accuracy Evaluation . 57

4.2.1 Precision of the Distance Measurement 57
4.2.2 Stability of Object Detection and Distance Measurement . . 60
4.2.3 Robustness of Multiple Object Detection and Distance Mea-

surement . 62

5 Conclusions and Future Works 69

List of Tables 73

List of Figures 74

6 Algorithm 76

7 Parameters 79

8 Data Structure 81

Bibliography 84

iii

Chapter 1

Introduction

1.1 Background

The automotive industry has been witnessing remarkable advancements in recent
years, particularly in the realms of automation and artificial intelligence. This
convergence has paved the way for the emergence of Advanced Driver Assistance
Systems (ADAS) and autonomous driving, with the potential to revolutionize
transportation. Simultaneously, the market share of new energy vehicles (NEVs)
has significantly increased, driven by the pressing need for sustainable and environ-
mentally friendly transportation solutions.

A hybrid electric vehicle (HEV) combines an electric motor with an internal
combustion engine (ICE), in order to achieve higher fuel economy and reduce
greenhouse gas emissions[1]. Due to the rising fuel prices and the implementation
of strict emission-related rules, the global market for HEV is expanding quickly[2].
The fuel economy can be improved significantly because electric motors are more
efficient than internal combustion engines at lower speeds, and the powertrain
efficiency can be improved by optimizing the use of power from engine and battery
for fixed speeds, which is known as an Optimal Energy Management Strategy
(Optimal EMS). The Optimal EMS is derived from the prediction of future events
on the road in the driving scenario [3].

The prediction and decision making are made possible by the ADAS. The
ADAS are safety systems designed to remove the human errors when driving the
vehicle, and use advanced technologies to assist the driver, and thereby improve
the performance of the vehicle. The ADAS platform consists of not only cameras,
sensors such as RADAR, LiDAR, and ultrasonic sensors, which gives the vehicle
the ability to perceive the surrounding environment, but also interfaces, and a
powerful computer processor that integrates all the data and makes decisions in
real-time, so the ADAS can provide information to the driver or act when necessary,

1

Introduction

and improve the driving safety and experience[4][5].
The ADAS can be further defined as Passive and Active ADAS systems. For

the Passive ADAS, the onboard computer merely informs the driver of an unsafe
condition. The driver must take action to prevent that condition from resulting
in an accident. Examples of Passive ADAS functions include: Forward Collision
Warning, Lane Departure Warning, Blind Spot Detection, Parking Assistance, etc.
For the Active ADAS, the onboard computer acts directly without the driver’s
intervention. Examples of Active ADAS functions include: Automatic Emergency
Braking, Adaptive Cruise Control, Lane Keeping Assist and Lane Centering, Self-
Parking, etc.[4].

The ADAS are one of the first steps towards autonomous driving, although
fully autonomous commercial vehicles are still far from being introduced in the
automotive market. The existing solutions still have technological limitations,
coupled with limited trust from customers regarding the feasibility of autonomous
driving in daily applications. In this scenario, the focus of the research work is
to enhance the reliability of the existing systems and develop affordable, safety-
oriented solutions to gradually improve public perception of autonomous driving
technology.

In order to establish a general classification standard for autonomous systems,
the Society of Automotive Engineers (SAE) International established its SAE J3016
Levels of Automated Driving[6] standards in 2014. The guidelines, adopted both by
the United Nations and the US Department of Transportation, have been updated
in 2021 and are now considered as the widely recognized and accepted standard for
assessing the capabilities and responsibilities of autonomous driving systems.

As reported in Figure 1.1, the SAE Levels of Driving Automation consist of six
distinct levels, each representing a progressive level of autonomy:

• Level 0 - No Automation: The driver has full control of the vehicle. Warnings
and momentary assistance such as emergency braking and blind spot warning
are provided, but no intervention.

• Level 1 - Driver Assistance: The vehicle incorporates basic driver assistance
features of steering or speed management support, such as adaptive cruise con-
trol or lane-keeping assistance. However, the driver remains fully responsible
for vehicle operation and must monitor the driving environment.

• Level 2 - Partial Automation: The vehicle can control both steering and
speed management under specific conditions. The driver is still responsible
for monitoring the driving environment and must be ready to take control at
any time. This is made possible by ADAS.

• Level 3 - Conditional Automation: The vehicle can manage most aspects
of the driving task under specific conditions. However, the driver must be

2

Introduction

Figure 1.1: SAE Levels of Driving Automation™

prepared to intervene when alerted by the system to resume control.

• Level 4 - High Automation: The vehicle can perform all driving tasks within de-
fined operational domains and conditions without driver intervention. However,
the system may require the driver to take over in exceptional circumstances.

• Level 5 - Full Automation: The vehicle is capable of performing all driving
tasks under all conditions, and the driver is not required to be involved in
the driving process. Level 5 vehicles are fully autonomous and do not require
human intervention.

This thesis work is a part of the PITEF – AutoECO project, which aims at
building a hybrid light duty vehicle equipped with P1 Electric Motor and ADAS
sensors. This thesis focuses on the perception of surrounding environment of the
vehicle, in particular the road elements detection and distance measurement. So,

3

Introduction

the ADAS can have enough information to make decisions about the optimal energy
management.

1.2 Motivation
The main motivation for this thesis work is to design a mechanism to acquire
the important information about the surrounding environment, especially the
traffic information in front of the vehicle, such as other vehicles, traffic light states,
speed limits and other traffic signs. There are several solutions for environment
perception in assisted driving applications, but each solution has its own strengths
and weaknesses. Some of the most used ones are:

• LiDAR (Light Detection and Ranging): It emits pulsed light waves into the
surrounding environment, and these pulses bounce off surrounding objects
and return to the sensor, then the sensor uses the time it took for each pulse
to return to the sensor to calculate the distance it traveled. Repeating this
process millions of times per second creates a precise, real-time 3D map of the
environment. This 3D map is called a point cloud, which helps in detecting
objects like cars, pedestrians, and road infrastructure, and measure their
distance[7].

• Computer Vision: It is a field of artificial intelligence (AI) that enables
computers to derive and understand meaningful information from digital
images, videos, and other visual inputs in the same way that humans do. It
uses cameras and machine learning algorithms to interpret visual data and
detect objects in real-time. However, it can be blinded by dirt, sun, rain, snow
or darkness[8][9].

• Radar (Radio Detection and Ranging): It uses radio waves to detect objects and
measure their distance, speed, and angle relative to the vehicle. It transmits
a radio signal and measures the time it takes for the signal to bounce back
after hitting an object, then it calculates the distance to the object, and by
using the Doppler Effect, according to the difference in frequency between the
transmitted and received signals, it calculates the speed of the object[10].

• Ultrasonic Sensor: It emits ultrasonic sound waves, and converts the reflected
sound waves into an electrical signal, then measures the time taken for the
bounce back to determine the distance to an object. It is particularly useful in
low-light or adverse weather conditions, where other sensors, such as cameras
and LiDAR, may struggle[11].

• GPS (Global Positioning System): GPS is a satellite-based navigation system
that provides accurate and reliable positioning information. It uses satellite

4

Introduction

signals to determine the precise location and velocity of the vehicle in real-
time[12].

To ensure the accuracy and efficiency of environmental perception, the solution
of sensor fusion is employed by the ADAS. Sensor fusion, like how the human brain
process information, combines large amounts of data from camera and different
sensors with the help of image recognition software, algorithms to process point
cloud and range information from LiDAR and RADAR, which is more accurate
than the information obtained by individual sensors. This technology provides a
more robust and reliable perception of the surroundings, and can physically respond
faster than a human driver ever could. It can analyze streaming video in real time,
recognize what the video shows, and determine how to react to it[13].

1.3 Overview of the PITEF – AutoECO Project
The PITEF – AutoECO project is a research project funded by the government
of Piedmont Region, where PITEF stands for Piattaforma Tecnologica di Filiera,
which means Supply Chain Technology Platform[14]. The project aims to promote
and validate on a demonstrator vehicle, an integrated system consisting of a hybrid
drive module and a control unit that allows to assess the potential benefits and
to exploit the information available from the ADAS sensors, in optimizing energy
management control and improving energy efficiency.

As shown in Figure 1.2, there are many partners involved in this project. The
road map consists of three steps:

• Step 1: Assess the benefits on the fuel economy given by the integration of a
P1 Hybrid Architecture.

• Step 2: Assess the further reduction potential introduced by the equipment of
ADAS sensors.

• Step 3: Design, Integration and Validation of Control Logics to leverage the
Hybrid Architecture and the ADAS information to reduce the fuel consump-
tion.

1.4 Thesis Outline
This thesis work is structured as follows:

• Chapter 2 presents the theoretical background of the topics presented, with a
particular focus on computer vision and sensor fusion techniques.

5

Introduction

Figure 1.2: PITEF Project

• Chapter 3 is dedicated to the design of system architecture and the imple-
mentation of the proposed method. Starting from the hardware architecture
overview and then the development of the sensor fusion algorithms is dis-
cussed, with particular focus on implementation and integration of hardware
and software.

• Chapter 4 presents the setup of experimental validation process and the
evaluation of the obtained results.

• Chapter 5 is the final chapter, where conclusions and future works are reported.

6

Chapter 2

Theoretical Background

Before the discussion of the proposed method, this chapter is focused on the
introduction of the theoretical background of this thesis work. With the continuous
development of the autonomous driving industry, many research and solutions have
sprung up. Although the purpose of our project is not to achieve autonomous
driving, the basic principles are very similar in terms of the environmental awareness
and data processing. First, we will introduce the common environmental perception
solutions in the autonomous driving sector, and define the scenario of our project.
Then, we will investigate the working principles of necessary ADAS sensors to
acquire the data, such as camera and LiDAR, and the state-of-the-art computer
vision algorithms to process the data from camera. Finally, we will discuss about
the sensor fusion techniques for the processing methods.

2.1 Environmental perception
To be able to optimize the energy management for a hybrid vehicle driving in a
real-world traffic scenario, it is fundamental to have a comprehensive perception
of the surrounding environment of the vehicle. An autonomous vehicle acquires
knowledge of its surrounding by scanning the road ahead to extract road features,
detect road objects and predict their behaviors. The road features consist of the
infrastructures such as lanes, pedestrian crossing, barriers, traffic lights, speed
limits and stop signs. The road objects are the dynamic roles such as other vehicles
and pedestrians[15][16].

The operation scenarios defined in our project have lower requirements than
those in the autonomous vehicle industry. What we want to achieve is to identify
the road objects such as vehicles, traffic lights and speed limit signs, and detect
the relative distances of the objects from our vehicle, and read the information of
the traffic lights and road signs. Therefore, the computer vision algorithm for the

7

Theoretical Background

object detection and sensor fusion algorithm are the key technologies to realize our
goal.

2.2 Object Detection
Over the past two decades, object detection technology has mainly gone through
two periods of development. The first period is the traditional methods of target
detection using artificially designed features (such as Haar, HOG, LBP, etc.),
combined with traditional machine learning algorithms (such as SVM, Boosting,
etc.) for target detection. Although these features are not specifically designed for
vehicle detection, and the effect of this type of algorithm is average, this period
has laid the foundation for target detection. The second period is the introduction
of deep learning technology, where convolutional neural network (CNN) is used
to learn feature representations and object classifiers. The earliest deep learning
target detection algorithm Region-based CNN (R-CNN) uses a combination of
CNN network and SVM classifier, which can achieve high detection accuracy.

Due to the different structure of neural networks and the feature learning
process, the deep learning object detection algorithms are divided in two directions,
two-stage object detection and one-stage object detection.

The two-stage detection algorithm, such as R-CNN, divides the detection process
into two stages: region proposal and object classification. The region proposal stage
involves extracting a set of regions from the image that may contain objects. These
regions are often called regions of interest (ROI) or region proposals. The typical
method to generate the ROI is called sliding window-based method, which scans
the image at different scales and positions, and generates an object probability
for each window to obtain a set of candidate boxes. In the object classification
stage, for each candidate box, we need to classify whether it contains an object or
not. This usually involves designing a classifier that can take the candidate box
as input and output a probability value indicating whether the box contains an
object. Common classifiers include Support Vector Machine (SVM), Convolutional
Neural Network (CNN), etc.

Fast R-CNN is an upgraded algorithm of R-CNN. Its innovation lies in the
ROI pooling layer, which can map candidate regions of different sizes to fixed-size
feature maps, thus avoiding the process of convolution feature extraction for each
candidate region separately. In addition, Fast R-CNN uses SoftMax layer instead
of SVM classifier in R-CNN to improve the speed and accuracy of detection results.

Faster R-CNN further proposed the RPN (Region Proposal Network) module,
which replaces the traditional region selection method by extracting candidate
boxes on the convolution feature map, and uses shared convolution features and
Smooth L1 loss function, which greatly improves the speed and accuracy of the

8

Theoretical Background

detection algorithm.
Region-based Fully Convolutional Networks (R-FCN) improved detection per-

formance based on Faster RCNN and FCN with faster speed and less computation.
The main contribution of R-FCN is to introduce position-sensitive score maps
to replace the fully connected layer in the region-based detection network. The
position-sensitive score maps are generated by partitioning the final convolutional
feature maps into grids, where each grid cell is associated with a score map that
encodes the position information. By using the position-sensitive score maps, the
object detection network can efficiently classify object regions with shared com-
putation. This design reduces the computational cost and enhances the detection
accuracy at the same time.

In conclusion, the two-stage detection algorithms have been widely used and
have accurate detection results in vehicle detection. However, due to the slow
and complex region proposal generation stage, they cannot achieve real-time
performance[17].

On the other hand, the one-stage detection algorithms directly predict the
presence and location of objects in an image without the region proposal step.
One-stage detection algorithms typically use a single convolutional neural network
(CNN) to predict the class probabilities and bounding boxes for all possible locations
in an image. One-stage detection algorithms usually use anchor boxes, which are
pre-defined bounding boxes of different sizes and aspect ratios, to handle the
variations in object sizes and shapes. The anchor boxes are used to divide the
image into a grid of cells, and each cell is responsible for predicting the bounding
boxes of the objects that are centered within it, and the network predicts the class
probabilities and offsets for each anchor box at each grid cell. The main advantage
is the high detection speed. The one-stage detection models are more efficient,
easier to optimize, and more suitable for real-time devices. Examples of popular
one-stage detection algorithms include YOLO (You Only Look Once), SSD (Single
Shot Detector), and RetinaNet. [16]

YOLO uses a deep convolutional neural network (CNN) to extract features from
the image, and then applies several convolutional and fully connected layers to
generate the final output. YOLO performs convolutional calculation on the entire
image, so it has the advantage of a larger field of view (FOV) during the detection,
and it is not easy to misjudge the background. The output of YOLO is a set of
bounding boxes, each with a corresponding class probability. YOLO is known for
its speed and accuracy, achieving state-of-the-art results on several object detection
benchmarks, however, it may not perform well on small objects[17][18].

SSD transforms the inspection task into a unified end-to-end regression problem,
and obtains both location and classification through only one process. The idea of
transforming detection into regression was inherited from YOLO. SSD works by
applying a set of predefined anchor boxes to an image to generate multiple bounding

9

Theoretical Background

boxes at different scales and aspect ratios, and then performs classification and
localization on each bounding box, while YOLO uses a single set of anchor boxes for
the entire image. SSD’s advantage over other one-stage object detection algorithms
is that it can detect objects at multiple scales of an image, better handling objects
of different sizes[17][19].

RetinaNet is a state-of-the-art object detection algorithm that was introduced
in 2017 by a team of researchers at Facebook AI Research. RetinaNet uses a focal
loss function to address the class imbalance problem in object detection, which
occurs when there are many more background regions than object regions. This
can avoid the bias towards background regions and have higher detection accuracy
for smaller objects. In terms of the use of anchor boxes, RetinaNet adopts the
same approach as the SSD. RetinaNet may be a better choice for applications that
require high detection accuracy, while YOLO may be more suitable for real-time
applications on low-power devices.

In this work, since our use case is a real-time object detection application running
on a low-power onboard device, we eventually choose Yolo v7, the newest version
of the Yolo family, when we started to design our system[17][20].

2.3 Working Principles of ADAS sensors

2.3.1 Camera
Type of sensors

The camera is an optical device that captures visual information with high resolution.
Like the human eye, most cameras capture light in the visible spectrum, while
some special cameras capture other parts of the electromagnetic spectrum, such as
infrared. The camera consists of a lens that captures the light in the environment
and focuses it on an image sensor, usually a CMOS (complementary metal oxide
semiconductor) or CCD (charge-coupled device) sensor. The sensor converts light
into electrical signals, which are then processed by the onboard processing unit of
the camera to generate images.

Both CCD and CMOS image sensors convert light into electrons by capturing
light photons with millions of photosensitive sites and converting them into an
electrical signal. Then the sensors quantify the accumulated charge of each photo-
sensitive site in the image, and from here the technologies start to differ. A CMOS
sensor is a digital device, while a CCD sensor is an analog device. The CMOS
sensor is made up of an array of photosensitive sites, each contains a photodiode,
which absorbs light and generates an electrical charge that is proportional to the
amount of light that falls on it. There are several transistors at each photosensitive
site to amplify and read out the electrical charge, and the charge is converted to

10

Theoretical Background

a voltage signal, then the signal is multiplexed by row and column to multiple
on-chip, digital-to-analog converters. On the other hand, the CCD sensor converts
light into electrons. It is a silicon chip that contains an array of photosensitive sites.
The output is immediately converted to a digital signal by an analog-to-digital
converter. The voltage is read from each site to reconstruct an image.

Both technologies are commonly used in digital cameras, each has its own merits.
Here are some of the key differences between CMOS and CCD:

• Image quality: CCD sensors produce high-quality, low-noise images with
better color accuracy and dynamic range, because they have high sensitivity
to light, and each photosensitive site is capable of capturing a large number
of electrons, so they produce less noise in low-light conditions, while CMOS
sensors have high, fixed-pattern noise and low sensitivity, as there are several
transistors located next to each photosensitive site and some photons might hit
the transistors instead of the photosensitive site. However, CMOS sensors have
made significant progress in recent years and are now capable of producing
high-quality images that rival those of CCD sensors.

• Speed: CMOS sensors are generally faster than CCD sensors because each
photosensitive site directly converts the electrical charge into a voltage signal,
so the signal can be read out in parallel, while CCD sensors require a sequential
readout of each photosensitive site. This advantage makes CMOS sensors
well-suited for applications that require high-speed imaging, such as sports
photography and smart driving.

• Power consumption: CMOS sensors are typically more power-efficient than
CCD sensors because they only need to power the photosensitive site that are
being read out, which can significantly reduce power consumption compared
to CCD sensors, which require constant power to maintain the charge on each
photosensitive site. A CCD sensor consumes as much as 100 times more power
than an equivalent CMOS sensor.

• Manufacturing cost: CCD sensors rely on specialized fabrication that requires
dedicated and costly manufacturing processes, while CMOS sensors can be
manufactured on most standard silicon production lines, so CMOS sensors
cost much less than CCD sensors.

In conclusion, the choice between CMOS and CCD sensors depends on the
specific application and the requirements of the user. However, CMOS sensors
have significant advantage over CCD sensors in terms of manufacturing cost, power
consumption and processing speed, and they are rapidly improving in image quality.
These advantages have led to the wide adoption of CMOS sensors in a variety of
imaging applications, including digital cameras, mobile phones, and automotive
cameras[15][21][22][23][24].

11

Theoretical Background

Pinhole Camera Model

The pinhole camera model is a simple mathematical model that describes the
relationship between a point in the 3D world and its projection on the image plane
of an ideal pinhole camera. It assumes that light enters the camera through a small
aperture or so-called pinhole, and projects an inverted image on the image plane
behind the pinhole, where the camera aperture is described as a very small point
with no lens to focus the light.

In this model, the camera is represented by a single point, known as the
camera center or optical center. The image plane or focal plane is assumed to
be perpendicular to the optical axis of the camera, which is a straight line called
the principal axis passing through the center of the pinhole and the center of the
image plane. The distance between the image plane and the pinhole is the focal
length. The plane through the camera center parallel to the image plane is called
the principal plane of the camera.

Sometimes, the image plane is placed between the optical center and the 3D
object at distance of the focal length from optical center. In this case, it is called
the virtual image plane or virtual retinal plane. The pinhole camera model is shown
in the following figure 2.1[25]:

Figure 2.1: Pinhole Camera Model

To capture an image using the pinhole camera model, each point in the 3D
world is projected onto the image plane by drawing a line from the point through
the pinhole and onto the image plane. By similar triangles, this projection results
in an inverted image of the world on the image plane, with objects farther away

12

Theoretical Background

from the pinhole appearing smaller than objects closer to the pinhole.
The pinhole camera model can be used to calculate the 2D coordinates of each

point in the image, given its 3D coordinates and the intrinsic parameters of the
camera, which include the focal length of the lens, the position of the pinhole, and
the size of the image sensor. It can also be used to estimate the camera’s extrinsic
parameters, which describe the position and orientation of the camera relative
to the 3D world. The detailed approach will be introduced in the methodology
section[26][27].

Monocular Camera vs Stereo Camera

A monocular camera uses a single lens to capture 2D images or videos. The
working principle of a monocular camera is introduced above. It is a common type
of vision sensor used in autonomous vehicles. It is smaller and cheaper than the
stereo camera, and can be easily mounted and integrated into different systems.
However, all real scenes encountered by the camera are three-dimensional. Objects
at different depths in the real world may appear adjacent to each other in the two-
dimensional mapping world of the camera sensor. The human brain has the ability
of perspective, which allows us to determine the depth from the two-dimensional
scene. For a front camera in the car, the ability to analyze the relative distance is
not easy.

In order to estimate the distance of objects in the scene, the stereo camera was
invented. A stereo camera uses two lenses to capture images or videos from two
different viewpoints. By capturing two images of the same scene from slightly
different perspectives, stereo cameras can create 3D images or videos that provide
depth information. This allows the camera to simulate human binocular vision
and therefore it can sense depth. This is accomplished by analyzing the disparity
between the two images captured by the camera, which is the position difference
between corresponding pixels in the two images, and then by using triangulation
method, the algorithm can calculate the distance of objects in the scene. Although
this method is effective in many environments, stereo vision is limited by the
baseline distance between the two cameras. Especially when the detected object
is far away, the depth estimation is often inaccurate, because even very small
triangulation or angle estimation errors can be translated into very large errors in
the distance.

To further discuss about the triangulation method, the concept of disparity
needs to be clarified in detail. After the left and the right camera of the stereo
camera are calibrated, we can calculate the distance to an object by finding the
disparity between the images captured by the left and right cameras for that point
at the same time. The disparity is defined as the number of pixels that a particular
point has moved in the right camera image compared to the left camera image. An

13

Theoretical Background

object is projected onto different locations on the image plane of the two cameras,
depending on the distance of the object. The stereo disparity varies with object
distance, and is inversely proportional to the distance of the object.

The stereo correspondence usually gives a reliable estimate of disparity, unless
most of the image are featureless, and no correspondence can be found. The
accuracy depends on the baseline distance between the two cameras. In general,
for a given baseline distance between cameras, the accuracy decreases as the depth
value increases. This is because small errors in disparity can be translated into
huge errors in depth estimation. In the range of very distant objects, there is no
observable disparity, and depth estimation usually fails. According to experience,
when the depth exceeds a certain distance, the depth estimation from the stereo
vision often becomes unreliable.

There are some methods to increase the maximum detection range and improve
the accuracy, such as physically increase the distance between the two cameras or
increase the focal length. However, it is not feasible to change a physical attribute
of a well-designed and calibrated stereo camera, and the space allowed to mount a
stereo vision system on a vehicle is very limited. Therefore, we can only optimize
the system on a software level, such as implement algorithms to calculate stereo
disparity at the sub-pixel level, which leads to increased complexity of the system
and additional consumption of computing power.

In conclusion, as for our use case, the depth sensing function of our stereo
camera can only provide a baseline for our distance estimation task, and we cannot
only rely on the stereo camera to measure the precise distances of the detected
objects. This is the chance for the LiDAR to be effective[28][29].

2.3.2 LiDAR
LiDAR is short for light detection and ranging. It is a remote sensing technology
that works by emitting eye-safe laser beams towards an object or surface, and then
measuring the time it takes for the laser pulse to bounce back to the sensor to
create a 3D representation of the surveyed environment that can be used to better
understand and manage the world around us. LiDAR technology can be used in a
wide range of applications, including automotive, infrastructure, robotics, trucking,
UAV, industrial, mapping, and many more. Because the light source of LiDAR is
itself, the technology offers strong performance in a wide variety of lighting and
weather conditions.

The laser emission is in the infrared spectrum, typically with a wavelength
of around 905 nanometers or 1550 nanometers. The use of infrared light allows
LiDAR systems to penetrate through haze, dust, and other atmospheric conditions
that can interfere with visible light. The short pulses of light emitted by LiDAR
lasers typically last only a few nanoseconds, and can be repeated many times

14

Theoretical Background

per second to gather a large amount of data about the environment. There are
differences between the two wavelengths in terms of safety, water absorption, and
power consumption.

Water can affect LiDAR signal integrity, which is important for automotive
LiDAR systems given the adverse weather conditions vehicles might encounter on
the road and the safety of the human eyes. The energy of laser beams begins to
be absorbed by water from the wavelength of 1400 nanometers. As a result, 1550
nm waves may experience significant signal degradation under conditions of rain,
fog or snow compared to 905 nm waves, but this inherent disadvantage makes it
possible for the aqueous liquid of human eyes to filter out the wavelength, making
the 1550 nm beams less harmful than the 905 nm beams. However, we need to
emphasize that sensors using 905 nm and 1550 nm wavelengths achieve eye-safety
certification via compliance with the FDA eye-safety standard IEC 60825. If sensors
are designed to meet eye-safety standards, both wavelengths can be used safely.
The degradation in rain, snow and fog conditions of 1550 nm wavelength means
LiDAR sensors using 1550 nm will need 10 times more power as compared to a
similar 905 nm system. This may demand for larger systems, including additional
power and cooling components that must be stored in a vehicle. To put it another
way, to offset degradation and to achieve longer range, 1550 nm systems need to
send out more laser light to achieve performance comparable to 905 nm systems.
As a result, 1550 nm systems typically consume more electrical power.

From the engineering point of view, the 905 nm LiDAR technology is a better
fit for ADAS and autonomous vehicles.

There are two kinds of LiDAR, mechanical rotation LiDAR and solid-state
LiDAR. Mechanical rotation LiDAR uses a rotating mirror or a moving lens to
scan the environment with laser pulses. This method has been used for decades
and is effective in many applications, but it is relatively bulky and expensive.
Additionally, the moving parts are subject to wear and tear, reducing the lifespan
of the device. Currently, the common mechanical rotation LiDARs on the market
ranging from 16 channels to 128 channels with a horizontal FOV of 360 degrees
and vertical FOV between 20 to 45 degrees. In contrast, solid-state LiDAR uses
an array of lasers, typically semiconductor lasers, to emit laser pulses without any
moving parts. The lasers are mounted on a fixed substrate and directed using an
optical beam-steering system, such as micro-electro-mechanical systems (MEMS).
This approach eliminates the need for bulky and expensive mechanical components,
reducing the size, weight, and cost of the device. Additionally, solid-state LiDAR
can emit laser pulses at a much higher rate, allowing for more detailed and accurate
scanning of the environment, and it has a lower power consumption and can
operate at higher temperatures. Solid-state LiDAR has a smaller FOV than the
mechanical rotation LiDAR, typically of 120 degrees. The trend in perception
system is replacing the current mechanical rotation LiDAR by a set of solid-state

15

Theoretical Background

LiDARs integrated around the vehicle[7][15][30][31][32][33][34][35][36].
There are some terminologies need to be clarified when we evaluate the perfor-

mance of a LiDAR. This is very important for us to choose the appropriate LiDAR
for different application scenarios, as the industry has not yet established a unified
standard.

The first concept is related to the distance. In the ADAS or autonomous driving
scenario, the farther a LiDAR can see, the more time is allowed for the system to
prepare and make decisions. However, there are differences between the concepts
of detection distance and maximum range. The maximum range is the farthest
detection distance without restrictions. On the other hand, the detection distance
usually refers to the ranging capability of a LiDAR, which means the farthest
detection distance under standard working conditions.

To define the standard working conditions, one of the essential standards is the
10% reflectivity target, which leads us to the second concept, the reflectivity. It
is defined as the degree to which an object reflects light. For an object made of
the same material, the color and smoothness of their surface can affect reflectivity.
White has a higher reflectivity than black, and smooth surfaces have a higher
reflectivity than rough surfaces. Objects with higher reflectivity are more easily
perceived. However, in the real-world scenario, the ability to perceive object with
low reflectivity is more meaningful. There are certain materials with a known
reflectivity of 10%, meaning that it reflects approximately 10% of the light incident
on its surface. For example, a black tire is a typical 10% reflectivity target. During
the calibration or performance testing of the LiDAR system, a target with a 10%
reflectivity is placed at a known distance from the sensor. Then, the sensor emits
laser pulses toward the target, and captures and analyzes the reflected signal.
The accuracy and consistency of the measured distance and signal strength from
the target can help evaluate the performance of the LiDAR system and can be
used to adjust and fine-tune the system parameters if necessary. When evaluating
the performance of LiDAR systems from different manufacturers or applications,
the 10% reflectivity target can be used as a standardized reference to ensure
comparability and consistency, providing a reliable benchmark for evaluating the
system’s capabilities.

Normally, the maximum range of the same LiDAR is greater than the ranging
capability. For example, a LiDAR that claims to have a maximum detection
distance of up to 400 meters may only have a ranging capability of 200 meters
when the reflectivity is limited to 10%. In conclusion, the ranging capability is a
more meaningful indicator for assisted driving.

Finally, the concept of resolution is introduced to evaluate if the LiDAR can
see things clearly. Like cameras, an image is composed of a matrix of pixels. The
denser the pixels in an image, the higher the resolution. LiDAR can be seen as
a three-dimensional camera, and the resolution is evaluated by the density of the

16

Theoretical Background

three-dimensional pixels. The density is the number of point clouds generated by
the LiDAR per second, i.e., the point frequency. The higher the point frequency,
the higher the resolution, providing a clearer view and bringing safety to the ADAS
system.

2.3.3 Sensor Fusion Techniques
Using a single type of sensor to achieve environmental awareness has proven to be
insufficient and unreliable. Therefore, in order to overcome these limitations, it
is necessary to adopt sensor fusion technology. Due to the integration of informa-
tion from multiple sensors, sensor fusion improves the reliability and accuracy of
measurement, and reduces the uncertainty of results.

Sensor fusion between LiDAR and camera refers to the process of combining
data from both LiDAR and camera sensors to obtain a more accurate and robust
perception of the environment. The camera is responsible for identifying and
classifying objects, while the LiDAR is responsible for measuring the exact distance
of objects. The combination of the information from the camera and the LiDAR
adds redundancy and certainty to the decision-making stage.

There are many studies on different implementation ideas for sensor fusion, and
here we review these approaches through the levels of sensor fusion, depending on
the complexity and degree of integration of the sensors. In fact, when we make
decision on the implementation of sensor fusion, we need to answer the following
three questions:

When should the fusion occur?

The answer to this question is focused on the manipulation of the data. From
this point of view, the fusion is divided by abstraction level. In the industry, it is
further divided into low-level, mid-level, and high-level fusion.

The low-level fusion, also known as sensor level fusion, combines the raw data
from multiple sensors. The most common approach is to project the LiDAR point
cloud onto the 2D camera image, then to check whether the projected points belong
to 2D bounding boxes detected with the camera. The advantage is that it takes
all the data into consideration, so it has the potential to support algorithms that
utilize information more comprehensively, making detection results more accurate.
The disadvantage is that it requires very high computational resources, as it needs
to project hundreds of thousands of points onto a 2D plane in a few milliseconds.

The mid-level fusion, also known as feature level fusion, combines the outputs of
objects detected independently by each sensor. The idea is to detect objects from
the 3D point cloud directly to get 3D bounding boxes, and then fuse them with the
2D bounding boxes detected with the camera. The advantage is that the working

17

Theoretical Background

process of each sensor is more intuitive and easier to understand. The disadvantage
is that it relies heavily on the performance of each detector. If the detection of
one sensor is too noisy or even failed, the entire fusion might fail. Although it is
possible to adopt algorithms such as Kalman Filter to reduce the noise and improve
accuracy, it still requires high computational resources and increases the complexity
of the system.

The high-level fusion, also known as decision level fusion, uses the resulting
data to make decisions and predictions about the environment, which involves
the tracking of the detected objects, i.e., the prediction of their trajectories. The
advantage is the same as the above-mentioned mid-level fusion. The disadvantage
is the output result of each sensor is more abstract as most of the information is
hidden in the process. If one tracking is wrong, the entire tracking task is failed.

Where should the fusion happen?

The answer to this question is mainly focused on the design of hardware archi-
tecture and dataflow. In theory, the information from all the sensors must be
combined together to make a final decision, but there are different physical and
logical arrangements of data processors in different architectures. In this case, the
fusion can be further categorized into centralized fusion, decentralized fusion, and
distributed fusion.

The centralized fusion adopts a central control system to process data from all
the sensors and realize the fusion. The sensors either process the raw data on its
own computer and send the abstract information to the central control system, or
send raw data to the central control unit directly, and the system is responsible
for the processing of different types and formats of data. For example, Aptiv, an
Irish-American automotive technology supplier, developed a sensor fusion system
called the Satellite Architecture, which treats the sensors mounted on different
positions as satellites, and the main computer fuses the data to realize a 360°
detection. It is a highly flexible and scalable approach, and reduces the weight of
the vehicle and the complexity of the system at the same time.

As opposed to the centralized fusion concept, the decentralized fusion and
distributed fusion let sensors to fuse data from other sensors locally, then forward
the fused data to the next sensors. For example, if a car has LiDAR, Radar and
camera, it first fuses the data between LiDAR and camera, and between Radar
and camera separately, then combine the two fused data together to get the final
detection. This is an approach adopted by the classic architecture, because it is
easier to fuse data between two sensors in terms of complexity of algorithm and
computation, rather than deal with data of different format and rate at the same
time.

18

Theoretical Background

What should the fusion do?

This question is mainly about the objective of the sensor fusion. If the sensors are
used for the same purpose, for example, when we use a Radar and a LiDAR at
the same time for distance measurement, we introduce redundancy to improve the
accuracy.

If we want to build a panorama with multiple cameras, the sensors look at
different directions to get the full picture. Since the sensors complete each other,
this can be called a complementary fusion.

If we want to do a 3D reconstruction or 3D Scan with multiple 2D sensors,
we are using two or more sensors to produce a new scene, and it can be called a
coordinated fusion[17][37][38][39][40][41][42][43][44][45][46].

19

Chapter 3

System Architecture Design
and Methodology

This chapter focuses on the overall architecture design and actual implementation
of our road environment awareness system. As introduced in the theoretical
background reviewed in the previous chapter, there are solid scientific theories
and mathematical basis to support the working principles of sensors for data
acquisition and the workflow of sensor fusion for environmental perception. In
order to successfully achieve the objectives of this project, we need to first define
the core requirements of the task, then design the overall architecture of the system,
and select appropriate hardware and software solutions, and finally deploy the
entire system on the vehicle for testing.

The first section is dedicated to the requirement analysis. As the project studied
in this thesis is a part of a complete ADAS system, we need to define the task
objectives specifically applicable to our use case based on upstream and downstream
constraints and requirements in the workflow, rather than proposing a general
sensor fusion solution.

The second section introduces the architecture design of the hardware. While
ensuring that the project requirements are met, we fully weighed the feasibility,
efficiency, scalability of the system, as well as the differences between the labora-
tory and the industrial environment, then we choose the most suitable hardware
equipment from the available resources at hand. The key parameters, operat-
ing environment, dependency libraries, instructions, and workflow of the selected
hardware will be emphasized.

The third part introduces software architecture design and algorithm develop-
ment, which is also the core of this project. Firstly, we will briefly introduce the
working principle of ROS environment, the creation and usage of ROS packages,
followed by the working principle and training process of the YOLO algorithm,

20

System Architecture Design and Methodology

including the joint calibration method of the camera and LiDAR, and finally the
design and implementation of the sensor fusion algorithm.

The fourth part introduces the deployment plan of the entire system on the
testing vehicle, the selection of testing environment, and the collection of key data.

Finally, an overview of the whole pipeline of the system is presented to explain
its integration with the complete ADAS system.

3.1 Requirement Analysis
Requirement analysis is the process of gathering and defining the functional and
non-functional requirements of a software system. It is a critical step in the software
development process, as it forms the basis for all subsequent development activities,
including design, implementation, and testing. This process includes collecting
and documenting requirements, analyzing, and prioritizing them, and defining the
scope and objectives of the system. It helps to ensure that the system meets the
needs and expectations of its stakeholders, providing a clear understanding of what
the system must do and how it should perform.

As the system is developed to realize the environmental awareness function
in an ADAS system, it must be capable of accurately detecting and interpreting
the surroundings of the vehicle in real-time to provide necessary information to
the ADAS system, and even advanced warning to the driver in case of potential
dangers.

Given that our main function is to detect objects in front of our own vehicle
in the current lane and adjacent lanes, such as other vehicles, pedestrians, traffic
lights, and road signs related to speed control, etc., and to measure the relative
distance between the detected objects and our own vehicle. We decided to utilize
camera and LiDAR to detect and analyze the environment surrounding the vehicle.
In addition, the system must be capable of processing large volumes of data in
real-time, meanwhile, it must have low energy consumption and compact size.

As the system will be installed on a vehicle and tested in actual road scenarios,
the robustness is also very important. The system must have a high level of accuracy
and precision, and be able to function reliably, in detecting and interpreting objects
in the environment, even in challenging weather conditions.

3.2 Hardware Architecture Design
Given the constraints that the whole system will be mounted on a hybrid light
duty vehicle and will be integrated with the existing vehicle’s system, the hardware
equipment needs to be powerful in computation, efficient in power consumption,
and compact in size, including the ECUs (Electronic Control Unit) for central

21

System Architecture Design and Methodology

control and environment perception, the sensors such as LiDAR and camera, as
well as other devices such as the monitor for visualization, and the batteries for
power supply during the testing phase.

3.2.1 NVIDIA Jetson AGX Xavier
NVIDIA Jetson AGX Xavier is a high-performance computing platform designed
specifically for autonomous machines and AI applications. It is an embedded
system-on-module that combines a powerful NVIDIA GPU, CPU, and deep learning
accelerators, making it one of the most advanced and capable embedded edge devices
available.

The Jetson AGX Xavier platform is based on the NVIDIA Xavier SoC (system-
on-chip) which integrates an 8-core NVIDIA Carmel ARM® v8.2 64-bit CPU, a
512-core NVIDIA Volta™ GPU with 64 Tensor Cores, two NVDLA (NVIDIA Deep
Learning Accelerator) engines and two PVA (Programmable Vision Accelerator).
It also includes 32 GB of LPDDR4x memory, 32 GB of eMMC 5.1 storage, and
support for high-speed connectivity such as HDMI, USB 3.1, PCIe, and Gigabit
Ethernet interfaces.

While it offers an excellent workstation performance with up to 32 TOPS (Tera
Operations Per Second) of AI performance, it has a size of only 10 percent of
a normal workstation, and a configurable power mode at 10W, 15W, and 30W
according to application needs, which makes it an ideal onboard device for a vehicle.

Figure 3.1: AI Vehicle Computer RSL A3

To ensure a long-term reliable use, we choose the AI Vehicle Computer RSL A3,
as shown in Figure 3.1, from Syslogic, a leading tech company in the embedded
industry, which combines the NVIDIA Jetson AGX Xavier module with its own

22

System Architecture Design and Methodology

carrier board and a specifically designed robust housing made of aluminum and
stainless steel, resistant to shock and vibration. The device adopts a fanless passive
cooling system and is capable of operating in temperatures ranging from –25 to
+65 degrees Celsius.

The operating system of the platform is NVIDIA Linux for Tegra (L4T 35.1.0)
Ubuntu 20.04, JetPack 5.0.2 and ROS Noetic, which have been chosen to ensure
the compatibility of various dependencies required by the state-of-the-art Yolo
algorithm, the sensor fusion algorithm, and the ROS packages of the LiDAR and
camera sensors. One thing to be noticed is that the CPU architecture is aarch64,
so most of the libraries installed to support the hardware and software that will be
introduced in the following chapters are specifically designed for this architecture,
not the x86_64 or amd64 version.

3.2.2 ZED2
The ZED2 camera is a stereo camera that provides high-definition 3D video and
neural depth perception of the environment. It has been designed for the most
challenging applications, from autonomous navigation and mapping to augmented
reality and 3D analytics. It is manufactured by Stereolabs, a company that
specializes in producing cameras and software for 3D sensing applications.

The ZED2 camera is designed to replicate the way human vision works. As
shown in Figure 3.2, by using its two CMOS image sensors and triangulation,
it captures stereo images and generate depth maps with a high-resolution video
output up to 2.2K, and provides a three-dimensional understanding of the observed
scene. It has a wide FOV of up to 120 degrees, which enables it to capture a
large area in a single shot. It also uses neural networks to reproduce human vision,
bringing stereo perception to a new level.

Figure 3.2: ZED2

The ZED2 has the most complete built-in sensor stack. Featuring next-generation

23

System Architecture Design and Methodology

IMU, barometer, magnetometer, and temperature sensors, it captures elevation
and magnetic field data in real-time. As camera heating induces changes in focal
length and motion sensors biases, it adopts a more robust all-aluminum enclosure
with thermal control to monitor temperature and compensate these drifts, allowing
it to be capable of operating in temperatures ranging from –10 to +50 degrees
Celsius.

The ZED2 is a USB-powered video camera with low level access to the device. It
provides control over all the camera parameters such as exposure, gain, sharpness,
etc. Thanks to its comprehensive and well-documented API, it can be interfaced
with multiple third-party libraries and environments. In our case, we use the ZED
ROS wrapper to use the camera with ROS Noetic environment.

However, despite the ZED2 camera has such powerful functions, we decided
to use it as a monocular camera, because its depth detection ability using dual
vision is limited by its size, and is not enough for a vehicle in actual road scenarios.
Not to mention the complexity of performing the joint calibration between the
stereoscopic view of the camera and the LiDAR.

3.2.3 PandarXT-32
The PandarXT-32 is a high-performance LiDAR sensor developed by Hesai Tech-
nology, a leading Chinese manufacturer of advanced 3D sensing solutions. It is a
32-channel LiDAR sensor designed for autonomous driving, robotics, and other
high-precision sensing applications. It adopts the mechanical rotation scanning
method to generate a 360-degree horizontal FOV. The channels of the LiDAR are
uniformly distributed in the vertical direction, with an interval of 1 degree between
adjacent wire harnesses, as shown in Figure 3.3:

Figure 3.3: LiDAR’s Channel Vertical Distribution

The vertical FOV is 31 degrees (-16 degrees to +15 degrees). The instrument

24

System Architecture Design and Methodology

range is from 0.05m to 120m, and the range capability is 80m at 10% reflectivity
for the channels in the middle of the vertical FOV (Channels 9 24), and 50m at
10% reflectivity for the channels on both sides of the vertical FOV (Channels 1 8,
25 32). The vertical resolution is 1 degree, and the horizontal resolution is 0.18
degree at 10 Hz frame rate typically. The range accuracy is ±1cm and the precision
is 0.5cm.

There are two return modes to choose, single return and dual return. The single
return means that for each laser beam, the LiDAR receives either the strongest
or the last return signal, while dual return means that for each laser beam, both
return signals are received by the LiDAR. In this project, we choose the single
return mode to receive the strongest return signal, so the data rate is 640,000
points per second at 10 Hz frame rate. The wavelength of the laser beam is 905nm,
and it satisfies the Class 1 Eye Safe standard. The LiDAR is capable of operating
in temperatures ranging from –20 to +65 degrees Celsius.

The point cloud data is transmitted using UDP/IP Ethernet protocol. The data
is composed of distance, azimuth angle, and intensity of each returned point. The
LiDAR uses GPS or PTP as the clock source to define the timestamp of each frame
of point cloud data.

3.3 Algorithms Development

3.3.1 ROS environment
ROS (Robot Operating System) is an open-source software development kit for
robotics applications. Although ROS is not a real operating system, but a set of
software frameworks for robot software development, it has the services that an
operating system can provide, including hardware abstraction, low-level device
control, implementation of commonly-used functionality, message-passing between
processes, and package management. ROS offers a standard software platform
to developers from various industries, providing full support from research and
prototype design to deployment and production. It also provides a flexible and dis-
tributed architecture that enables communication, coordination, and collaboration
among various components and modules of a robotic system.

Figure 3.4: The ROS Ecosystem

25

System Architecture Design and Methodology

The core of ROS is a messaging system, often called middleware or plumbing.
Middleware is a type of software that bridges the gap between applications and
operating systems. It provides a method of data management and communication,
and enables the interaction between software and hardware. The ROS runtime
is a peer-to-peer network of loosely coupled processes using the ROS communi-
cation infrastructure. ROS implements several different communication methods,
including synchronous RPC-style request–response communication over services,
asynchronous streaming of data over topics based on a publish-subscribe messaging
model, and storage of data on a Parameter Server. Although reactivity and low
latency are important in robot control, ROS is not a real-time framework. However,
it is possible to integrate ROS with real-time computing code.

ROS follows a modular approach, where a robotic system is divided into in-
dividual software modules called nodes. A node is an executable that uses ROS
to communicate with other nodes. Nodes can perform specific tasks, such as
controlling actuators, processing sensor data, or implementing algorithms. Nodes
can communicate with each other by publish messages or subscribe to predefined
topics, and can also provide or use a Service. ROS organizes software components
into packages, which are the basic unit of software distribution in ROS. Packages
contain nodes, libraries, configuration files, and other resources related to a specific
functionality or application. For example, the package must contain a catkin com-
pliant package.xml file, which is called manifest and is a description of a package.
It serves to define dependencies between packages and to capture meta information
about the package like version, maintainer, and license.

The catkin is the official build system of ROS, which combines CMake macros
and Python scripts to provide more functionality on top of CMake’s normal
workflow. The build system is responsible for generating targets that end users
can use from raw source code. The targets can be libraries, executables, generated
scripts, exported interfaces such as C++ header files, or any other non-static code.
A package typically consists of one or more targets during the building process.
ROS is designed to support cross platform code reuse in robotics research and
development, so the language-independent and platform-independent tools are
included for building and distributing ROS-based software, and Python and C++
are fully supported. All the mentioned features make ROS highly scalable and
suitable for large-scale runtime systems and development processes.

3.3.2 Yolo v7
The YOLO algorithm, as the most typical representative of one stage object
detection algorithm, is based on deep neural networks for object detection, with
fast running speed and can be used in real-time systems. YOLOv7 was released by
Chien-Yao Wang and Alexey Bochkovskiy in July 2022. At that time, it was the

26

System Architecture Design and Methodology

most advanced algorithm in the YOLO series, surpassing previous YOLO series
and other object detectors in both accuracy and speed in the range from 5 FPS to
160 FPS. It also had the highest accuracy 56.8% AP among all known real-time
object detectors with 30 FPS or higher on GPU V100.

Compared with the most advanced real-time object detectors at that time,
YOLOv7 reduced the parameter count by about 40% and the computational
complexity by about 50%. Its optimization mainly involves two aspects: model
architecture optimization and training process optimization. They proposed the
extend and compound scaling methods that effectively utilize parameters and com-
putational complexity for model architecture optimization. For the optimization of
the training process, the concept of bag-of-freebies was proposed in YOLOv4, which
is a module or method that improves accuracy at the cost of increasing training
costs but does not increase inference costs. In YOLOv7, the re-parameterized
technology is used to replace the original module, and the dynamic label assignment
strategy is used to allocate labels more efficiently to different output layers.

Figure 3.5: The structure of YOLOv7

The network structure of YOLOv7 is divided into three parts: input, backbone
network, and head network, as shown in Figure 3.5 [47]. The backbone uses
convolutional neural networks to effectively extract image features. It consists
of several CBS (Conv+BN+SiLU), ELAN and MP (Maxpooling) layers. The
head is responsible for detecting targets and generating bounding boxes and class
predictions. It consists of a SPPCSPC layer, several Conv and MP layers, and then
three Rep+Conv layers for output three unprocessed prediction results of different
sizes. The three output layers are used to detect targets of different scales. Each
output layer will generate a set of bounding boxes and category predictions, and
then use the Non-Maximum Suppression (NMS) algorithm to eliminate duplicate

27

System Architecture Design and Methodology

bounding boxes to obtain the final detection result.
The workflow of Yolov7 can be briefly summarized as follows: first, the input

image is resized to 640x640, and features are extracted by the backbone network.
Then, feature maps in three different sizes are output through the head network.
The Rep and Conv layers predict the three tasks of image detection, namely the
classification, foreground and background separation, and bounding box. Finally,
the prediction results are output. It is worth mentioning that a threshold can be
set on the confidence score, so that the Yolov7 only output the detections with a
confidence score above the threshold. In our use case, we set the threshold to 50%.

The detailed working principle of the Yolov7 neural network is not the focus of
this study, for in depth analysis on the Yolov7, please refer to[48].

3.3.3 Training of Yolo v7
To fulfill the task of object detection in this project, it is crucial to define the target
objects that we want to identify. According to the requirement of the entire project,
there are 25 classes of objects that need to be detected, including vehicles, traffic
light status, speed limits, traffic signs that may affect speed, pedestrians, and bikes.
The detailed classes are listed in the Table 7.1.

In order to train the neural network to detect all the required targets, we need
to prepare our own dataset. Many annotated datasets for autonomous driving
research can be found on the internet, but their annotation does not meet our needs.
So, we decided to use the images from these datasets, but manually annotated
them according to the task requirements.

The datasets we used to train the Yolov7 are BDD100K from Berkeley DeepDrive
Industry Consortium[49], The German Traffic Sign Recognition Benchmark (GT-
SRB)[50], The German Traffic Sign Detection Benchmark (GTSDB)[51], and Road
Sign Detection[52]. The BDD100K dataset consists of 100,000 videos. Each video
is about 40 seconds long, 720p, and 30 fps. The videos were collected from diverse
locations in the United States, covering different weather conditions, including
sunny, overcast, and rainy, as well as different times of day including daytime and
nighttime. We used the 100K Images subset from the BDD100k, which consists
of the frames at the 10th second in the videos. The GTSRB was introduced as
a multi-class, single-image classification challenge which was held at the IEEE
International Joint Conference on Neural Networks (IJCNN) 2011. As a successor
to the GTSRB, the GTSDB was introduced on the IEEE IJCNN 2013. They both
provide a single-image detection assessment dataset for researchers with interest in
the field of computer vision, pattern recognition and image-based driver assistance.
The Road Sign Detection dataset was published on Kaggle.com and it contains 877
images of 4 distinct classes for the objective of road sign detection.

After careful examination of the datasets, we select in total 3,108 images to train

28

System Architecture Design and Methodology

the Yolov7, which contains 1,451 images from BDD100k, 99 images from GTSRB,
706 images from GTSDB, and 852 images from the Road Sign Detection.

Figure 3.6: Yolov7 Training Results

To manually annotate the images, we use the Yolo_mark tool provided by
Alexey Bochkovskiy[53], which is a GUI for marking bounding boxes of objects
in images for training Yolo neural network. It outputs label files directly in Yolo
format. The label file is a txt file with the same name as the corresponding image,
and the content is the object number and object coordinates on this image. For
each object, it takes up a line of <object-class> <x_center> <y_center> <width>
<height>.

The training of the Yolov7 was conducted locally on the workstation in our
laboratory, with an Intel i7 16 core CPU and a NVIDIA GeForce RTX 3080Ti
GPU. As for the main parameters, we used all 16 workers (CPU cores), 640x640
image input size, 4 batch size, and trained for 600 epochs. The whole training
process lasted for 13.085 hours. The training results are shown in Figure 3.6 and
3.7.

3.3.4 LiDAR and Camera Joint Calibration
In order to get the LiDAR and the camera to work together, the first step is to
perform the joint calibration between the two sensors, so that they can work in a
common coordinate system. The joint calibration typically involves determining
the relative position and orientation between the two sensors, which is described
by the extrinsic parameters. The basic problem in calibration is to calculate the

29

System Architecture Design and Methodology

Figure 3.7: Yolov7 Confusion Matrix

transformation between the two frames of the camera and the LiDAR, which
has been theoretically solved, but still challenging and often underestimated in
applications. The main challenge is to achieve robust and accurate estimation of
calibration in practice, which is often affected by human operations, environmental
factors, and sensor errors.

In our case, what we want to achieve is to project 3D point of the LiDAR to the
2D image plane of the camera. The extrinsic parameters are the translation and
rotation vectors that convert LiDAR’s coordinate system to the camera’s coordinate
system. The image frame is the left camera color rectified image from the ZED2.
The distortion-free projective transformation given by a pinhole camera model is
described by the function:

pC = A
è
R|t

é
PL (3.1)

where

• PL is a 3D point expressed in the LiDAR coordinate system

• pC is a 2D pixel in the image plane in the camera coordinate system

• A is the intrinsic parameter matrix of the camera

• R and t are the rotation and translation vector mentioned above

30

System Architecture Design and Methodology

The camera intrinsic matrix A projects 3D points given in the camera coordinate
system PC to 2D pixel coordinates:

pC = APC (3.2)

The A is composed of the focal lengths fx and fy, which are expressed in pixel
units, and the principal point (cx, cy) is usually at the image center:

A =

fx 0 cx

0 fy cy

0 0 1

Therefore, the projection equation can be expressed as:u

v
1

 =

fx 0 cx

0 fy cy

0 0 1

Xc

Yc

Zc

 (3.3)

The intrinsic parameters do not depend on the scene viewed. They are estimated
before leaving the factory, and provided in the calibration file.

The joint rotation-translation matrix [R|t] is the matrix product of a projective
transformation and a homogeneous transformation. The 3× 4 projective transfor-
mation maps 3D points in camera coordinates to 2D points in the image plane and
represented in normalized camera coordinates x′ = Xc/Zc and y′ = Yc/Zc:

Zc

x′

y′

1

 =

1 0 0 0
0 1 0 0
0 0 1 0

Xc

Yc

Zc

1

The homogeneous transformation is encoded by the extrinsic parameters R and
t and represents the change of basis from the LiDAR’s coordinate system L to
the camera’s coordinate system C. R is a 3× 3 rotation matrix, and t is a 3× 1
translation vector: è

R|t
é

=

r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

Therefore, if we combine the above mentioned parameters together, we can write
out 3.1 as: u

v
1

 =

fx 0 cx

0 fy cy

0 0 1

r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

XL

YL

ZL

1

 (3.4)

31

System Architecture Design and Methodology

The objective of calibration is to acquire the R and t vectors[25].
Extrinsic calibration parameters are very sensitive to noise during the feature

extraction process, as small errors in rotation or translation estimation can greatly
affect the usability of the calibration result. For example, the uncertainty in plane-
fitting or line-fitting of edges caused by measurement errors of sensors. Tsai et al.[54]
proposed a well-designed method to perform the calibration using multiple sets of
3 poses of chessboard, to obtain a robust estimate of the calibration parameters
with uncertainty. In our project, we adopted their method to calibrate our LiDAR
and camera system. The calibration pipeline is shown in the Figure 3.8.The main
idea of their method will be briefly explained in the following paragraphs.

Figure 3.8: Calibration Pipeline

The rotation matrix RL
C represents a rotation transformation between two

coordinate system in a three-dimensional space. It is used to rotate points around a
specified axis or a combination of axes. In their calibration method, the algorithm
extracts the center point and plane normal of a chessboard target from the LiDAR
point cloud and the image, which are denoted as NC and NL. Then, from the
equation:

RL
CNC = NL (3.5)

where

• NC =
è
n0

C n1
C n2

C

éT

• NL =
è
n0

L n1
L n2

L

éT

the rotation matrix can be calculated. The equation is modified by Verma et al.[55]
to include more plane normals in NC and NL to improve the robustness of the
algorithm. However, in practice, if too many poses are included, the algorithm
tends to be over-fitted. In this method, instead of using more poses for a single
calibration, it uses multiple sets of 3 poses as illustrated in Figure 3.9 to obtain a
robust estimation of the rotation matrix with some uncertainty.

Similarly, the translation matrix represents a translation transformation between
two coordinate system in a three-dimensional space. It is used to shift points by a
specified distance in different directions, which is more straight forward to calculate.

32

System Architecture Design and Methodology

Figure 3.9: Set of 3 Poses

The translation matrix is computed from aligning the center of the chessboard in
the LiDAR and the camera domain. So, the accuracy of the center estimation by
the LiDAR and the camera greatly impacts the reliability of the calibration. Since
the height and width of the chessboard is known, it is easy to find the center in
the camera view by counting the pixels in the image. The tricky part lies in the
LiDAR domain.

To perform a line-fitting or plane-fitting in the LiDAR cloud points, the Random
Sample Consensus (RANSAC)[56][57] algorithm is a popular choice. RANSAC is
an iterative algorithm to estimate parameters of a mathematical model from a set
of data points that contains outliers. It works by estimating the parameters of
the desired model that best fit the inlier data points while ignoring the outliers.
The pseudocode of RANSAC is described in Algorithm 1. It is a non-deterministic
algorithm, because it only produces a reasonable result with a certain probability,
and this probability will increase as more iterations are allowed. It accomplishes
this by iteratively selecting a random subset of the data points, known as a minimal
sample, and fitting a model to this subset. The model is then tested against the
remaining data points to determine how well it fits. Data points that are consistent
with the model within a specified threshold are considered inliers, while those that
deviate beyond the threshold are considered outliers. By repeating this process

33

System Architecture Design and Methodology

for enough iterations, RANSAC aims to find the best model that maximizes the
number of inliers and minimizes the impact of outliers.

For example, if the task is to estimate the parameters of a plane in a point cloud,
RANSAC will sample three points that are the minimum needed to define a plane
(provided they are not all co-linear to each other), then calculate the Euclidean
distance from all points in the point cloud to such a plane, and then calculate
the percentage of inliers based on a certain threshold. After a certain number
of iterations, RANSAC will return the plane with the highest support, thereby
returning the plane with more points closer to it.

Figure 3.10: LiDAR Range Error

In our case, the method first determines the edge lines of the chessboard using
the RANSAC algorithm, then it finds the intersection of edge lines to identify
the corners. This estimation is heavily influenced by the number of points that
lie on the board, and the range accuracy of those points due to that LiDAR has
errors in the range measurement as illustrated in Figure 3.10. It has been found
empirically that the error in chessboard measurement is greater at certain distances
from the sensor pair, such as when the distance is too close or too far, and when
the chessboard is facing certain directions. By calculating the measurement error
of the chessboard, we can quantitatively evaluate the accuracy of the chessboard
center estimation.

For a set of three poses, the quality of the rotation parameters can be evaluated
using the rank of the matrix, and the quality of the translation parameters can be
evaluated using errors in chessboard measurements. These metrics can be combined
into a single equation called Variability of Quality (VOQ).

V OQ = kLC + ebe (3.6)

34

System Architecture Design and Methodology

where
k(N) =∥ N ∥∥ N−1 ∥

kLC = max{k(NL), k(NC)}

edim =
3Ø

i=0
|lL,i − lM,i|

ebe = 1
3

2Ø
j=0

edim,j

• kLC is the condition number of the matrix, which represents the linear de-
pendency of the matrix, and gives an indication of the stability of its inverse.
If the normal matrix tends to be linear dependent, the computation of the
inverse becomes unstable and can negatively affect calibration results. As
shown in Figure 3.9, the determinant |N3×3| reflects the stability of the inverse
computation, and a high determinant means a stable inverse. However, it’s
hard to be used as a metric, because it’s difficult to set a boundary. So they
decided to use the condition number as a metric, as k = 1 means the most
stable result, and k → +∞ means the least stable result.

• the sum of dimension errors edim represents the accuracy of sensor mea-
surements, where lL,i, i = 0, 1, 2, 3 are the LiDAR’s measurement of the
chessboard’s edge lengths, and lM,i are the actual edge lengths. For each set
of 3 poses, we have 3 errors edim,j, j = 0, 1, 2, and the mean error is ebe in
millimetres.

A low VOQ score means better generalization of the calibration results, while a high
VOQ score leads to overfitting and a higher standard deviation of the calibration
results.

The calibration procedure consists of preparing the chessboard, fixing the
relative position between radar and camera, capturing at least 20 poses, and run
the algorithm to estimate the parameters. Our chessboard has 7x5 inner vertices
with 90mm square length, and the board dimension is 565x793mm. The setup
of our sensor pair is shown in the picture. We captured 33 poses. The output
parameters are listed in Table 3.1. The histogram with a Gaussian fit is shown in
the Figure 3.11.

The output calibration parameters describe the transformation from the camera
frame to the LiDAR frame, which means that the camera coordinate system is
the parent coordinate system, and that is the rule defined in the OpenCV library.
However, in the fusion algorithm we will introduce in detail in the following
paragraphs, the rotation vector required by OpenCV is in Rodrigues rotation
representation, that is, the Axis-Angle representation, while the rotation vector

35

System Architecture Design and Methodology

Figure 3.11: Extrinsic parameter results

roll -1.59269
pitch 0.00381
yaw 3.13990

x 0.06537
y -0.07814
z -0.04579

Table 3.1: Calibration output parameters

given by the calibration algorithm is in Euler Angle representation, so an additional
conversion is needed. We can use the equation introduced in [58] to compute the
conversion. The final rotation vector is [0.0061, 2.2445, -2.1959], and the translation
vector is [0.0654, -0.0781, -0.0458].

3.3.5 Sensor Fusion Algorithm
At this stage, we have a calibrated camera LiDAR sensor set, a properly trained
object detector, and a ROS environment running on our NVIDIA Jetson AGX
Xavier. Now, our goal is to fuse these data from the sensors to extract the distance
information for the detected objects. We have proposed two versions of the sensor
fusion algorithms:

36

System Architecture Design and Methodology

• The first version utilizes the point cloud data after preprocessing, which
includes down-sampling and clustering. This approach isolates the objects of
interest and filters out noisy background, thereby enhancing the accuracy of
distance measurement.

• The second version involves using point cloud data with a simpler preprocessing
step. It includes filtering out points at ground height and applying restrictions
on the FOV to focus solely on objects in front of us. This version does not
employ down-sampling and clustering.

The main objective of this design is to conduct a comparative study between
the two approaches. We aim to evaluate differences in terms of processing time,
precision in distance measurement, and the impact of different parameter settings
in the preprocessing step on overall sensor fusion performance. We chose to use
raw data because LiDAR distance measurements are highly precise. In simple and
controlled scenarios, we can consider these measurements as a baseline or even
as ground truth to some extent, because obtaining precise ground truth distance
values during tests on real vehicles in real-world environments is impractical.

The sensor fusion process consists of six steps: time synchronization of the
data-flows, preprocessing of the LiDAR cloud points, distance calculation of the
cloud points, projection of the 3D cloud points to 2D Yolov7 detection images,
the distance measurement of the detected object, and finally the output of the
detection information.

Time synchronization of the data-flows

Our fusion algorithm needs to subscribe to two topics, the point cloud data from
the LiDAR and the image data with bounding box information of the detections
from the Yolov7. The two dataflows are at different rates. The LiDAR outputs
point cloud data at 10 Hz (10 samples per second), while the Yolov7 outputs image
at about 3 to 4 Hz. It means the algorithm receives about 2 or 3 frames of point
cloud data between two image frames. The purpose of sensor fusion is to combine
information from the two sensors at the same time to extract the useful information
in real-time. However, if the rates of the two data streams are different, it will
greatly impact the real-time performance, especially in real-world traffic scenarios.
In order to solve this problem, we need to design a strategy to synchronize the two
data streams. The main idea of the synchronization is, firstly, to drop some frames
of the faster sensor which are in between the intervals of the frames of the slower
sensor to reduce the complexity of the data processing, and secondly, to make sure
the data we kept is collected at approximately the same time and represents the
same state of the world.

37

System Architecture Design and Methodology

Figure 3.12: ApproximateTime policy

ROS provides a time synchronizer in the “message_filters” library, which takes
in messages of different types from multiple sources, and outputs them only if it has
received a message on each of those sources with the same timestamp. Both the data
frames from the LiDAR and the Yolov7 have a timestamp in their headers. We adopt
the Policy-Based Synchronizer filter to synchronize the dataflows received from the
two topics. There are two policies: the ExactTime and the ApproximateTime. The
ExactTime policy requires messages to have exactly the same timestamp in order
to match, while the ApproximateTime policy uses an adaptive algorithm to match
messages based on their timestamps. In our case, since it’s not realistic to expect
that there could be enough frames from the two data flows to arrive at exactly the
same time, we choose the ApproximateTime policy, since it finds the best match
by allowing some time difference.

The adaptive algorithm works as following: firstly, for a new set of frames from
the two topics, it finds the latest message among the heads of the two queues, and
we call that the pivot. For each message older than the pivot in the other queue,
we create a set of frames as candidate. Then, it goes through the queue until the
end in order of time in search of a better candidate. Finally, it outputs the optimal
candidate as the new frame set to the callback function. The process can be shown
intuitively in the Figure 3.12 [59][60].

In our algorithm, we first create two Subscriber filter to subscribe to the LiDAR
and Yolov7, respectively. Then, we create a synchronizer with the ApproximateTime
policy, and register the callback function for the synchronizer.

Preprocessing of the LiDAR cloud points

After the time synchronization strategy is defined, we need to design the callback
function. The input data of the callback function are the point cloud data of the
sensor_msgs :: PointCloud2 message type, and the image data with detection
information of the vision_msgs :: Detection2DArray message type. The message
structures of the two types are shown in List 8.1 and 8.2.

In our solution, we use the PCL library to process the point cloud data, and
the OpenCV to process the image data. The PCL stands for the Point Cloud
Library, which is a standalone, large scale, open project for 2D/3D image and
point cloud processing. The PCL framework contains numerous state-of-the art

38

System Architecture Design and Methodology

algorithms including noise filtering, feature estimation, surface reconstruction,
registration, model fitting and segmentation. The OpenCV stands for the Open-
Source Computer Vision Library, which is an open-source computer vision and
machine learning software library. It has more than 2500 optimized algorithms,
which has a comprehensive set of both classic and state-of-the-art computer vision
and machine learning algorithms, including object identification, face detection and
recognition, tracking camera movement and moving objects, producing 3D point
clouds from stereo camera, etc.

The first task of our callback function is to convert the message of sensor_msgs ::
PointCloud2 data type to the PointCloud < pcl :: PointXY ZRGB > data type
in PCL. In this way, we can get a point cloud data with the coordinate information
of x, y, z, and create a RGB field for each point. which can be used for visualization
in the next steps.

The second task is to apply a filter on the point cloud data by x-axis to limit
the FOV of the LiDAR. The purpose of this step is focus on detecting the distance
of the objects in front of our vehicle and on the adjacent lanes on both sides.

The second task is to filter out the points on the ground, because in the task
of environment perception, we are only interested in the objects on the ground,
not the ground itself. The points on the ground account for a considerable portion
of the cloud points, and they can affect the accuracy of the subsequent clustering
task. There are many methods commonly used to determine if a point belongs
to the ground, such as using RANSAC to fit a plane model to the points and
identifying the ground points based on their proximity to the estimated ground
plane, or using the morphological approach to classify ground and non-ground
points by comparing the height difference between neighboring points, or even the
machine learning-based methods classify points as ground or non-ground based on
features derived from the point cloud. However, those methods are very complex
and resource intensive.

As the main purpose of this step is to preliminary filter out some ground points
without affecting the computational efficiency, in order to be more accurate in the
clustering step, we chose a relatively simple method, which is to set a threshold
on the z-axis to filter out points on the ground according to the height of the
LiDAR from the ground. We use the pcl :: PassThrough function to implement
this operation.

Then, we need to down-sample the point cloud data, which reduces the number
of points while preserving important features and structures. For each frame of
point cloud data, there are 64,000 points, even if we only focus on the 180 degrees
of FOV in the front after the ground filtering, there are still about 20,000 points.
Down-sampling can significantly reduce the number of points by about 50%, and
the clustering can further reduce 50% to 80% of points depending on the road
scene, surrounding environment, methods and parameters, therefore reducing the

39

System Architecture Design and Methodology

computational complexity, memory requirements, and processing time in future
operations.

The down-sampling process involves selectively retaining a subset of points
from the original point cloud based on certain criteria. Here we adopt voxel grid
down-sampling method, which divides the 3D space of the input point cloud data
into a grid of uniform-sized cubic voxels. Then, the points falling within the same
voxel are grouped together, and only one representative point is retained for that
voxel. The representative point can be the centroid of the points inside the voxel
or the center of the voxel.

We apply the pcl :: V oxelGrid function to realize the voxel grid down-sampling,
and it uses the centroid as the representative point, because though it is a bit
slower than approximating the points with the center of the voxel, but it represents
the underlying surface more accurately. We set the voxel grid leaf size to 10cm,
because in our planned application scenario, the common detection distance is
between 5 to 20 meters. The error introduced by a 10cm leaf size is acceptable,
and its performance is the best when we tried different leaf sizes ranging from 5cm
to 30cm. This process effectively reduces the number of points by preserving the
overall distribution and shape of the original point cloud.

The next task is to perform a Euclidean cluster extraction from the down-
sampled point cloud. It is often used in segmentation tasks, where groups of points
that are spatially close to each other are grouped into separate clusters based on
their Euclidean distance. It assumes that points belonging to the same object or
surface are in proximity to each other. By clustering points based on their spatial
proximity, we can segment objects or structures within a point cloud. However,
the segmentation of the point cloud is not the goal of our project. The purpose of
the clustering is to separate the points belonging to the detected objects from the
noisy points in the background, because the depth information is lost when the 3D
point cloud is projected onto the 2D image plane.

If from the camera’s point of view, there is obstruction or overlap between objects,
or there is a background far behind the detected objects, and at the same time,
if we experience some fluctuations in message transmission due to the hardware
problems such that the two data streams are misaligned, then the projection of
3D points within the bounding box may be wrong, resulting in incorrect distance
measurement. Due to the difficulty of directly addressing hardware issues, we
choose to avoid or at least mitigate the impact of this phenomenon from a software
perspective. By down-sampling, the point cloud of objects farther away from us
becomes sparser, while objects closer to us are less affected. Then we cluster the
down-sampled point cloud, and by setting appropriate parameters, we can filter
out most of the background noise, such as houses, trees, etc. In this way, even if
there is a deviation in the projection, at least the distance of the detected object
will not be wrongly measured as the distance of the background noise.

40

System Architecture Design and Methodology

In our algorithm, we perform the extraction of the Euclidean clusters with the
pcl :: EuclideanClusterExtraction class. The class provides various parameters
that can be adjusted to control the clustering behavior, including the minimum and
maximum cluster sizes, the distance threshold for considering points as neighbors,
and the search method to use. The first step is to define a search method for
the extraction. PCL provides many search methods, such as KdTree, Octree, and
FlannSearch:

• The Octree is a tree-based data structure used for voxel-based spatial partition-
ing, which divides 3D space into smaller cubic voxels. The root of the Octree
represents the entire 3D space, and each level of the tree further subdivides
the space into eight sub-voxels.

• The Flann stands for Fast Library for Approximate Nearest Neighbors, which
focuses on performing efficient approximate nearest neighbor searches rather
than exact searches.

• The KdTree, or k-dimensional tree, is a data structure used for organizing
data points in a space with k dimensions. It is particularly useful for fast
and efficient nearest neighbor searches and range queries in high-dimensional
spaces. It is a binary tree where each node represents a k-dimensional point
and recursively splits the data space into two halves based on a splitting
criterion.

In terms of our application scenario, KdTree is the most suitable one. The point
clouds are in three dimensions, so our k-d tree is a three-dimensional tree. At
each level of the tree, all the data are divided along a specific dimension, using a
hyperplane that is perpendicular to the corresponding axis. For example, at the
root of the tree, the tree splits based on the x axis, at the next level, the tree splits
based on the next axis, and so on. At each level of the k-d tree, the data points are
partitioned into two subsets based on the splitting criterion. Points on one side of
the split are assigned to the left sub-tree, and points on the other side are assigned
to the right sub-tree. Then it repeats this procedure on both the left and right
sub-trees until each leaf node represents a single data point.

The second step is to define the other three main parameters. The first one is the
Cluster Tolerance, which is the distance threshold used to determine if points in a
point cloud belong to the same cluster. It specifies the maximum distance between
two points for them to be considered part of the same cluster. This parameter has
a significant impact on the quality of clustering, as a larger tolerance value allows
for greater distances between points, resulting in larger clusters, while a smaller
tolerance value restricts the distance between points, leading to smaller clusters.

In our case, we set the tolerance to 30cm, which means if the distance between
two points is larger than 30cm, they will not be regarded as the same object. The

41

System Architecture Design and Methodology

reason is that we set the voxel size to 10cm during the down-sampling stage. It
is reasonable to assume that for the two adjacent voxels in the diagonal direction
after down-sampling, the maximum distance between the farthest two points is less
than 35cm, so 30cm is a reasonable choice.

The other two parameters are Minimum Cluster Size and Maximum Cluster
Size, which represent the minimum and maximum number of points required for a
cluster to be considered valid and included in the output. Clusters with points less
than the specified minimum or greater than the maximum will be discarded. We
set the minimum to 50 and maximum to 20000, because the main target for the
down-sampling and clustering is to filter out the noisy background, and this set of
parameters worked best in the test.

Once we set all the parameters, we can perform extract the clusters. The
algorithmic steps are listed in the pseudo code in Algorithm 2. At this point, the
preprocessing of the LiDAR cloud points is completed.

Distance calculation of the cloud points

There are different ways to define the distance between vehicles and objects, each
with its own advantages and considerations. One approach is to utilize point cloud
data to calculate the three-dimensional Euclidean distance. By measuring the
Euclidean distance in this three-dimensional space, we can obtain an accurate
measure of the physical distance between the LiDAR and an object.

To calculate the Euclidean distance between the points and the LiDAR is
straightforward. It can be done using the distance function with the x, y, z values
of the coordination information.

d =
ñ

(xP − xO)2 + (yP − yO)2 + (zP − zO)2

On the other hand, a simpler alternative is to directly use the distance infor-
mation along the y-axis to represent the object’s distance in front of the vehicle,
which is also called longitudinal distance. This approach assumes that the vehicle’s
forward direction aligns with the y-axis of the LiDAR. By considering only the
longitudinal distance, we simplify the calculation and reduce the dimensionality of
the problem. This method can be particularly useful in certain scenarios where the
precise three-dimensional location of objects might not be necessary, such as when
estimating distances within a constrained region directly in front of the vehicle.

Since our LiDAR is mounted on top of the vehicle, calculating the Euclidean
distance using point cloud data inherently includes the height of our vehicle in
the measurement. However, when defining the distance between two vehicles, we
typically focus on the distance from our vehicle’s front bumper to the rear bumper
or the nearest part of the other vehicle. In this context, considering the longitudinal
distance becomes a more appropriate and practical representation. By utilizing the

42

System Architecture Design and Methodology

longitudinal distance, we can effectively capture the relative distance between the
relevant parts of the vehicles, providing a more meaningful measure in our specific
scenario.

Here we also want to emphasize on the order of the data process. After the
down-sampling and clustering, we still obtain a point cloud data. However, the
projection function requires a vector<Point3f> data type as input, so we need to
convert the point cloud data to a vector<Point3f> before the projection. Since
we need to traverse the point cloud and reorganize it into an ordered vector, we
can extract or calculate the distance information during this process, and create a
distance vector in the same order as the point cloud vector, so that we can search
for the distance information in future operations based on the order of the elements
in the vector.

3D to 2D Projection

The projection of the 3D cloud points onto 2D Yolov7 detection images is the
core of our algorithm. This operation correctly assigns the LiDAR points to the
corresponding objects in the image, so that we can extract the distance information
of the detected objects. In this step, we use the cv :: projectPoints function to
implement the projection. This function computes the 2D projections of 3D points
to the image plane given intrinsic and extrinsic camera parameters. As mentioned
in the previous step, the input is an array of object points, the array can be a
3xN/Nx3 1-channel array or a 1xN/Nx1 3-channel array, where N is the number of
points, or it can be a vector of vector<Point3f> datatype, which is what we use in
our solution.

Then the function needs the rotation vector in Rodrigues rotation representation
and the translation vector as the extrinsic parameters, which define the relative
position and orientation between the camera’s coordinate system and the LiDAR’s
coordinate system. The function also needs the camera intrinsic matrix and the
distortion coefficients as the intrinsic parameters. The intrinsic matrix describes
the focal length and the optical center of the camera, and the distortion coefficients
describes the distortion of the lens. Since the ZED2 camera is well calibrated in
the factory, and it offers a rectified image output, so the distortion coefficients can
be set to all zeros, and the intrinsic matrix is provided by the manufacture of the
camera. The extrinsic parameters are calculated from the calibration step. The
parameters we were using are listed in the chapter 7 Parameters.

After we input the vector of points and the parameters, the function outputs an
array of image points, the array can be a 1xN/Nx1 2-channel array, or a vector of
or vector<Point2f> datatype. The output image points are pixels in the Yolov7
detection image. Each pixel represents a corresponding LiDAR point.

43

System Architecture Design and Methodology

The distance measurement of the detected objects

After the projection step, we iterate through the detection results to calculate
the distance of each detected object. As mentioned before, each object contains
information such as its object class, the coordinates of the center point of the
bounding box, as well as its height and width. To determine if the 2D points from
the projected LiDAR data fall within the bounding box, we traverse the vector of
the projected LiDAR points. As the bounding box is a rectangular box surrounding
the object, and the shapes of the detected objects are diverse, there may be some
blank spaces at the corners of the bounding box, particularly for the most common
targets like vehicles. To avoid mistakenly selecting background points as part of
the detected objects, we need a method to eliminate the corners of the bounding
boxes.

Here we propose a method that applies a re-scale factor to both the height and
width of the bounding box, effectively shrinking it. This allows us to focus more
on the points around the center of the object. In our algorithm, we set the re-scale
factor to 90%.

For the 2D points within the bounding box, we utilize their position information
to find the corresponding distance information. Since we already have a vector of
distances in the same order as the LiDAR points, we create a new vector for each
detected object to store its distance information.

Once we have extracted the distance of each LiDAR point within the bounding
box of the detected object, there are two approaches to represent the relative
distance. We can either use the minimum value or calculate the average value of
the distance vector. However, even after shrinking the bounding box, in extreme
cases, there may still be a few outliers in the distance vector. To address this issue,
we employ another method. We calculate the average value using a truncated mean
method, which involves disregarding obvious outliers based on a certain percentage
threshold. For example, if a vehicle is approximately 5 meters away in front of us,
most of the points reflected by the vehicle should have distances around 5 meters.
However, if there are some points reflected by the background, such as the road,
walls, or other vehicles in front of the target vehicle, the distances might be around
10 meters, indicating they are obviously the outliers. In our algorithm, we set the
truncate threshold to 10%.

The minimum distance measurement provides an indication of the closest point
between the two cars, while the average distance offers a more generalized repre-
sentation based on the overall distances observed. By comparing the minimum
distance and average distance, we can evaluate which calculation method is more
suitable for representing the relative distance between two cars from the perspective
of the driver. As the sensor set is positioned on top of the vehicle, its FOV differs
from that of the driver. Consequently, the distance measured by the LiDAR may

44

System Architecture Design and Methodology

not align precisely with the driver’s perception. Therefore, it becomes crucial to
find a representation that better corresponds to the driver’s perception of distance.
This evaluation helps ensure that the system provides distance measurements that
are intuitive and more driver friendly, enhancing the overall usability and safety of
the system in real-world driving situations.

The output of the detection information

In this step, we can choose to output any necessary information according to the
different requirements of the project at different development stages. For the testing
stage, we need to publish point cloud after the down-sampling and clustering to
tune the parameters, and visualize the projected LiDAR points on the image to
check if the projection is correct. We also need to print the detection information,
such as object class, confidence score, and distance information, and save those
information to a local CSV file for post-processing to evaluate the performance of
the algorithm. When the algorithm is integrated into the ADAS system, we will
need to output the required information according to the downstream requirements
of the pipeline.

Figure 3.13: LiDAR and camera sensor set

45

System Architecture Design and Methodology

3.4 Hardware Deployment
In order to assess the viability of installing the sensor set on an actual vehicle
and evaluate the real-time performance of the entire system on the road, we have
selected a FIAT QUBO as our test vehicle. The configuration of the LiDAR and
camera sensor set can be seen in Figure 3.13, with the sensors mounted above the
front windshield of the vehicle as depicted in Figure 3.14. To utilize the outlet
of the air conditioning system as a cooling mechanism, we have positioned the
NVIDIA Jetson AGX Xavier AI Vehicle Computer and the battery for powering
the system on the floor of the co-pilot seat.

Figure 3.14: LiDAR and camera mounting position

3.4.1 Testing Plan
Since our system is designed for the implementation on a real vehicle, it is important
to perform the tests in a real-world environment. There are several indicators that
we want to focus on in the testing:

• The first one is to assess the precision of the distance measurement. This
involves evaluating the two different approaches for calculating relative distance
(Euclidean distance and longitudinal distance) and two different representations
for evaluating the distance (minimum value and truncated mean value). To
achieve this, we gather data in a simple and controlled environment. Our test
platform consists of our vehicle equipped with the sensor set, while another
vehicle serves as the target object. These tests are conducted in an empty

46

System Architecture Design and Methodology

parking lot, allowing us to create a scenario where we can precisely control
the variables and obtain accurate measurements.

• The second one is to assess the stability of object detection and distance
measurement. This test involves simulating a typical driving scenario where
we follow another vehicle on a highway or suburban road while maintaining a
relatively fixed distance to the target vehicle in front of us. By conducting this
test, we can evaluate the stability and potential of our sensor set for future
project developments, such as object tracking and Adaptive Cruise Control
(ACC). The aim is to ensure that our system can reliably detect and measure
distances to objects under real-world driving conditions, demonstrating its
effectiveness and suitability for practical applications.

• The third one is to assess the robustness of multiple object detection and
distance measurement. This test involves driving in a busy and crowded urban
neighborhood characterized by a rapidly changing and complex environment.
In addition to vehicles parked on both sides of the road and approaching
vehicles from the opposite direction, the surroundings may include various
traffic signs, bicycles, and pedestrians. Since this test is conducted in a real-
world neighborhood, obtaining ground truth data for the relative distances to
each detected object is not feasible. Therefore, the key performance indicators
in this scenario are the accuracy of the Yolov7 detection results and the
reasonableness of the distance measurements. The aim is to evaluate how
well our system performs in detecting multiple objects in such dynamic and
challenging environments. We assess the accuracy of object detection using
the Yolov7 model and examine the reliability and rationality of the distance
measurements. This test will provide valuable insights into the system’s ability
to handle complex real-world scenarios and will aid in further refining and
improving our project’s capabilities.

3.5 Overview of the Integration Pipeline
This system incorporates multiple hardware and software components with scalable
potential. It handles the real-time processing of data flows from various sensors,
extracting valuable information, and transmitting it to the upper-level control unit.
The system architecture is illustrated as Figure 3.15.

The hardware components include sensors such as LiDAR and cameras, which
capture the surrounding environment. These sensors generate continuous data
streams that need to be processed in real-time to extract relevant information.

The software components consist of algorithms and processing modules that
handle the data from the sensors. These components are responsible for performing

47

System Architecture Design and Methodology

tasks such as object detection, sensor fusion, distance measurement, and data
interpretation. The algorithms and modules are designed to efficiently process the
incoming sensor data and extract useful information from it.

The system is designed with scalability in mind, meaning that it can handle an
increasing number of sensors and adapt to different configurations. This scalability
allows for the integration of additional sensors or the expansion of the system’s
capabilities as needed.

One of the key challenges is the real-time processing requirement, as the system
needs to handle and analyze data streams in a timely manner to ensure the driving
safety. This necessitates efficient algorithms and hardware resources capable of
handling the computational load.

Overall, the system’s primary objective is to process data from multiple sensors
in real-time, extract meaningful information, and transmit it to the upper-level
control unit for decision-making and further actions. Its scalable design allows for
future enhancements and adaptability to different applications and scenarios.

Figure 3.15: Integration Pipeline

48

Chapter 4

Experiments and Results

This chapter is dedicated to the implementation of the test plan and the subsequent
evaluation of the test results. The implementation of the test plan involves carrying
out the predefined test scenarios and procedures. This includes setting up the
necessary hardware and software components, configuring the system accordingly,
and executing the planned tests in a controlled and consistent manner. Following
the completion of the test execution, the evaluation of the test results is performed.
This evaluation phase involves analyzing the collected data, assessing the system’s
performance, and comparing the obtained results against the predefined success
criteria or benchmarks. The test results are thoroughly examined to determine the
system’s strengths, weaknesses, and areas for further improvement.

4.1 Data collection

As per the test plan, we conducted the tests in three distinct scenarios and obtained
raw data from the LiDAR and camera sensors. To facilitate further analysis and
processing, the acquired data were stored in rosbag files. Although the fusion
algorithm is capable of real-time execution, the offline fusion process primarily
serves the purpose of testing various parameter combinations and conducting data
analysis. By performing offline fusion, we have the flexibility to experiment with
different parameter settings and evaluate their impact on the fusion results. This
allows us to fine-tune the algorithm and optimize its performance. Additionally,
conducting offline fusion enables us to thoroughly analyze the data, examine the
accuracy of the fusion process, and gain insights into the overall performance of
the system.

49

Experiments and Results

4.1.1 Precision of the Distance Measurement
In the first testing scenario, we focused on assessing the distance measurement
capabilities of the system. This test was conducted in an empty parking lot that
featured standard parking spaces, each measuring 2.5 meters in width. For the
first test, as shown in Figure 4.1, the setup involved a target vehicle parked in a
fixed position, while our test vehicle, equipped with the sensor set, parked behind
the target vehicle at an initial distance of 2.5 meters. It should be noted that in
the context of this chapter, the distance refers to the distance from the LiDAR
to the rear of the target vehicle. To evaluate the distance measurement accuracy,
our test vehicle slowly moved backward, increasing the distance between the test
vehicle and the target vehicle by 2.5 meters. Once the movement was completed,
we stopped and repeated the process until the Yolov7 object detection system
stopped detecting the target vehicle. By systematically increasing the distance and
observing the point at which the target vehicle was no longer detected, we were
able to assess the system’s ability to accurately measure distances.

Figure 4.1: Precision evaluation in the parking lot (Vehicle)

For the second test, as depicted in Figure 4.2, we conducted an experiment where
we gradually approached a yield sign. The aim was to determine the maximum
distance at which the system could recognize the yield sign and to observe the
differences between the Euclidean distance representation and the longitudinal
distance representation.

In the offline fusion step, we implemented the two versions of the sensor fusion

50

Experiments and Results

Figure 4.2: Precision evaluation in the parking lot (Yield Sign)

Figure 4.3: Point cloud visualization (left: vehicle, right: yield sign)

algorithm introduced earlier in Section 3.3.5, the point cloud visualization of the
two tests is shown as 4.3. In this controlled environment, our primary objective was
to investigate the feasibility of using the raw data as the baseline for distance mea-
surement. To achieve this, we compared the measurements obtained from the raw
data with manually measured distances. Furthermore, we compared the distance
measurements derived from the raw data with those obtained from the preprocessed
point cloud. This comparison allowed us to evaluate the differences between the
two approaches, particularly at longer distances. By conducting these comparisons,
we aimed to assess the accuracy and reliability of the sensor fusion algorithms
in capturing distance information. We specifically focused on understanding how
well the raw data approach aligned with the manually measured distances, as
well as examining any disparities between the raw data and preprocessed point
cloud approaches. By comparing and evaluating the results from both approaches,
we gained a better understanding of their respective strengths, limitations, and
potential applications in real-world scenarios.

51

Experiments and Results

Additionally, we utilized this opportunity to evaluate the differences between
the two distance calculation methods, considering the combination of the test
driver’s perception. By comparing the results obtained from the minimum distance
calculation and the average distance calculation, we could assess which method
better aligned with the test driver’s perception of distance. This evaluation allowed
us to understand the system’s performance in determining the precise distance to
the target vehicle in various positions and distances.

4.1.2 Stability of Object Detection and Distance Measure-
ment

Figure 4.4: Car following scenario

In the second testing scenario, our focus was on evaluating the stability of object
detection and distance measurement. This test took place on an empty suburban
road to simulate real-world driving conditions. The test began with two cars parked
on the road, facing the same direction, with the target vehicle positioned in front
and the test vehicle positioned behind it. The target vehicle gradually started to
move away, fading into the distance. Once the Yolov7 object detection system
stopped detecting the target vehicle, the test vehicle began to chase after it. As the
two cars eventually met again, they both resumed normal driving while maintaining
a relatively fixed distance between them, as shown in Figure 4.5 and Figure 4.4.
This scenario allowed us to assess the system’s stability in detecting objects, as
well as its capability to maintain a steady distance from the target vehicle.

In the offline fusion step, similar to the first testing scenario, we implemented the
two versions of the sensor fusion algorithm to assess the impact of preprocessing the

52

Experiments and Results

Figure 4.5: Car following visualization

point cloud data during dynamic driving conditions. This evaluation allowed us to
understand how different preprocessing techniques affect the system’s performance
in detecting and measuring distances to objects in real-time. By conducting these
evaluations in the offline fusion step, we aimed to gain insights into the effective-
ness and practicality of the preprocessing techniques in enhancing the system’s
performance. Furthermore, by aligning the distance calculation methods with the
test driver’s perception, we could determine the most suitable representation of
relative distance for the specific driving scenario.

The results obtained from this test provided insights into the system’s reliabil-
ity and accuracy in real-world driving scenarios, demonstrating its potential for
applications such as object tracking and Adaptive Cruise Control (ACC).

53

Experiments and Results

Figure 4.6: Typical Neighborhood in Torino

4.1.3 Robustness of Multiple Object Detection and Dis-
tance Measurement.

In the third testing scenario, our focus was on assessing the robustness of multiple
object detection and distance measurement. This test was conducted in three
different locations, each representing various real-world driving scenarios:

• Typical Neighborhood in Torino: As depicted in 4.6, this location simulated a
typical neighborhood environment with parked cars on both sides of a narrow
road. Additionally, there were occasional pedestrians, bicycles, and traffic signs
indicating speed limits or pedestrian lines. This scenario aimed to evaluate
the system’s ability to detect and measure distances accurately in a complex
and dynamic neighborhood setting.

54

Experiments and Results

Figure 4.7: Two-Lane Road without Traffic Light

• Two-Lane Road without Traffic Light: In this scenario, we conducted tests on
a two-lane road with low traffic flow. This scenario aimed to simulate a typical
urban driving environment, as shown in 4.7. While there were no traffic lights
present, we encountered occasional appearances of pedestrians and loading
trucks, adding complexity to the driving situation. The purpose of this scenario
was to evaluate the system’s performance in a realistic urban driving scenario
where traffic lights were absent. The evaluation helped identify strengths,
weaknesses, and potential areas for improvement, ultimately enhancing the
system’s performance and ensuring its suitability for use in typical urban
driving scenarios.

• Three-Lane Road with Traffic Light: In this scenario, we started from ap-
proaching a traffic light and waiting for it to turn green. This test involved
driving on a three-lane road alongside other vehicles, with instances of lane

55

Experiments and Results

switching performed by both the test vehicle and other vehicles, as shown in
4.8. This particular situation represents a common use case for ADAS. This
scenario aimed to evaluate the system’s robustness in detecting and measuring
distances accurately and ability to handle traffic light detection in a dynamic
traffic situation with lane changes and intersections.

Figure 4.8: Three-Lane Road with Traffic Light

By conducting the tests in these three different locations, we aimed to assess the
system’s performance in detecting multiple objects and accurately measuring their
distances in real-world driving conditions. The tests helped us evaluate the system’s
reliability, robustness, and its ability to provide accurate and timely information to
assist drivers in various driving scenarios.

56

Experiments and Results

In the offline fusion step, in contrast to the first and second testing scenarios,
we solely implemented the preprocessed version of the sensor fusion algorithm.
This decision was made based on our understanding from the algorithm’s design
phase that using raw point cloud data in crowded scenarios, where objects overlap
with each other, could lead to incorrect distance measurements. Therefore, we
introduced clustering of the raw point cloud data to differentiate objects from each
other and the noisy background, ensuring more accurate distance measurement.

Nevertheless, we still conducted a comparison between the two distance calcula-
tion methods to determine which representation is more reasonable in an urban
driving scenario. This evaluation aimed to identify the most appropriate approach
for representing relative distances in the context of complex urban environments.
By focusing on the preprocessed version of the sensor fusion algorithm and compar-
ing the distance calculation methods, we aimed to assess the system’s performance
in accurately measuring distances between objects in crowded urban driving sce-
narios. Through this analysis, we sought to provide a reference basis for future
improvements and upgrades to enhance the system’s reliability, and ensure that it
provides distance measurements that are reasonable and applicable to real-world
urban driving scenarios.

Additionally, since we have applied a filter on the x-axis of the point cloud data
to limit the LiDAR’s FOV and focus only on the objects in front of us and the
adjacent lanes, we can select a scenario to evaluate the impact of this filter on the
fusion time compared to the algorithm without any limitation on FOV.

4.2 Accuracy Evaluation
In this section, we present and discuss the results of the offline fusion from the
three testing scenarios. For each scenario, we have developed specific criteria to
evaluate the system’s capabilities and performance in different real-world driving
situations.

4.2.1 Precision of the Distance Measurement
In the first scenario, our focus was on comparing the measurements obtained from
the sensor fusion algorithm with manually measured distances. The purpose of this
evaluation was to verify the precision of the distance measurement performed by
the system. Since LiDAR is renowned for its high precision in measuring distances,
it is crucial to determine the most suitable distance representation in order to fully
leverage the potential of the LiDAR sensor.

Firstly, we need to assess which distance calculation method is more reasonable
to be used as the default method in the subsequent tests. Figure 4.9 demonstrates

57

Experiments and Results

0 10 20 30 40 50 60 70 80
Time [s]

0

5

10

15

20

25

30

35

40

Lo
n
g
it

u
d
in

a
l
D

is
ta

n
ce

[m
]

Minimum vs Average Distance Estimation

Minimum
Average
Ground Truth

Figure 4.9: Minimum vs Average Distance Estimation

that the distance calculated using the minimum value provides a more stable mea-
surement compared to the distance calculated using the average value, and Figure
4.10 shows a significantly higher root mean square error (RMSE) for the average
value, where RMSEavg = 5.1545 and RMSEmin = 2.4878. This observation is
significant as it indicates that relying on the minimum value as a representative
distance yields more consistent and reliable results. Using the minimum value helps
mitigate the influence of outliers or irregularities in the measured distances, leading
to a more robust distance measurement.

0 10 20 30 40 50 60 70 80
Time [s]

-15

-10

-5

0

5

10

15

E
st

im
a
ti

o
n
 E

rr
o
r

[m
]

Distance Estimation Error

Ground Truth
RMSE Minimum
RMSE Average

Figure 4.10: Minimum vs Average Distance Estimation Error

As mentioned in 3.3.5, we employed the Euclidean distance (deuclidean) and the

58

Experiments and Results

longitudinal distance (dlongitudinal) as distance representations, aiming to determine
which one is more appropriate through this test.

0 5 10 15 20 25 30 35 40
Time [s]

0

2

4

6

8

10

12

14

16

18

20
D

is
ta

n
ce

 [
m

]
Raw Data vs Clustered Data Distance Estimation

Raw
Clustered
Ground Truth

Figure 4.11: Raw Data vs Clusterd Data Distance Estimation

In Figure 4.11, we can observe that the measured distances closely align with
the ground truth, indicating that the LiDAR’s ranging capability is reliable and
precise when measuring a single target directly in front of the vehicle, and there is
not much disparity in the two distance representations.

30 35 40 45 50 55
Time [s]

0

5

10

15

20

25

D
is

ta
n
ce

 [
m

]

Longitudinal vs Euclidean Distance Estimation

Longitudinal
Euclidean
Ground Truth

Figure 4.12: Longitudinal vs Euclidean Distance Estimation

However, as shown in Figure 4.12, in the test where we gradually approach
a yield sign, the difference between the distance representations becomes more
pronounced. This disparity arises because the Euclidean calculation takes into
account the height (z-axis) and lateral distance (x-axis) of the detected object, as
depicted in Figure 4.13, resulting in a larger Euclidean distance compared to the

59

Experiments and Results

30 35 40 45 50 55
Time [s]

0

5

10

15

20

25

Lo
n
g
it

u
d
in

a
l
D

is
ta

n
ce

 [
m

]

-10

-8

-6

-4

-2

0

2

4

6

8

10

La
te

ra
l
D

is
ta

n
ce

 [
m

]

Distance Estimation

Minimum
Average

Figure 4.13: Longitudinal vs Lateral Distance Estimation

longitudinal distance. Based on this test, we can confidently conclude that, in
driving scenarios, the longitudinal distance representation is more aligned with the
driver’s perception of distance.

Additionally, we observe a difference in the maximum detection range between
the two preprocessing approaches. The measurement from the raw data exhibits a
longer detection range compared to that from the preprocessed data. This disparity
arises due to the minimum number of reflected points threshold applied during
the preprocessing of point cloud data. As the distance between the two vehicles
increases, the point cloud becomes sparser, resulting in fewer points being reflected
back by the target vehicle. Once the number of points falls below the threshold,
the target vehicle is filtered out, causing the algorithm to fail in recognizing
it. However, this situation represents a trade-off between ranging ability and
measurement stability, which will be further elucidated in the subsequent test.

4.2.2 Stability of Object Detection and Distance Measure-
ment

In the second scenario, the main objective is to assess the stability of object
detection and distance measurement using both raw data and preprocessed data.
To achieve this, we concentrate on determining the maximum effective detection
distance and evaluating the stability of distance measurements within this range
while the target vehicle is maintaining a relatively fixed distance from the test
vehicle.

Since we have already established that the longitudinal distance representation
is more reasonable, we plot the variation of the longitudinal distance to assess

60

Experiments and Results

0 10 20 30 40 50 60 70
Time [s]

0

5

10

15

20

25

30

35

40

45

50

D
is

ta
n
ce

 [
m

]

Clustered vs Raw Data Distance Estimation

Clustered
Raw
Target

Figure 4.14: Clustered vs Raw Data Stability Estimation

its stability when maintaining a relatively constant distance from the test vehicle.
From the Figure 4.14, we can see that the maximum effective and stable detection
distance of clustered data is 25 meters, while the detection range using the raw
data can reach up to 30 meters, which aligns with the driver’s perception. In urban
driving scenarios, drivers typically focus more on the environment within a range
of approximately 30 meters. Therefore, for the current sensor set and system, the
detection range meets the requirements of the ADAS system’s use case.

-5 0 5 10 15 20 25
Time [s]

0

5

10

15

20

25

30

D
is

ta
n
ce

 [
m

]

Filtering on Lateral Coordinate - Following Scenario

Not Filtered
Filtered

Figure 4.15: Filtering on Lateral Coordinate

Regarding the ranging stability, the Figure 4.14 illustrates that the distances
measured from both the preprocessed data and the raw data exhibit stability. This
observation suggests that both the preprocessed data, obtained after applying
downsampling and clustering, and the raw data provide consistent and reliable
distance measurements. The stability in the measured distances indicates that the
fusion algorithm effectively processes the data and maintains accuracy throughout

61

Experiments and Results

the car following scenario. Additionally, we implemented a filter on the lateral
coordinate to restrict the FOV and focus specifically on the current lane. Figure
4.15 presents a comparison between the filtered and unfiltered situations. Figure
4.16 illustrates a typical urban driving scenario, where we follow a car in front of us.
The distance measurements captured during this scenario provide valuable insights
into the system’s performance. The minimum distance recorded in the figure is 5
meters, indicating that the system successfully maintains a safe distance from the
car in front of us when coming to a stop. On the other hand, the maximum distance
observed is 30 meters, representing the system’s maximum ranging capability. The
stability of the measured distances is a crucial aspect in ADAS systems, as it
directly impacts the system’s ability to make informed decisions and provide timely
warnings to drivers, demonstrating its potential for applications such as object
tracking and ACC.

0 50 100 150 200 250

Time [s]

0

5

10

15

20

25

30

35

D
is
ta
n
ce

[m
]

Relative Distance Measure in Urban Car-Following Scenario

Figure 4.16: Filtering on Lateral Coordinate in Urban Scenario

4.2.3 Robustness of Multiple Object Detection and Dis-
tance Measurement

In the third scenario, the main objective is to evaluate the robustness of multiple
object detection and distance measurement in the typical urban driving situations.
Due to the lack of a ground truth value for the relative distances between the
detected objects and the test vehicle, our focus shifts towards assessing the accuracy
of the Yolov7 by comparing the detected objects with the actual objects present in
the scene, and the reasonableness of the measured distances based on the relative
positions and sizes of the detected objects within a specific section of the road.

Therefore, we proposed some criteria to evaluate the performance of the algorithm
in this scenario:

• Accuracy of the Yolov7 detection: This criterion involves comparing the
number of correct detections and false detections generated by the Yolov7 with
the total number of objects present in the scenario. This analysis provides

62

Experiments and Results

insights into the system’s ability to correctly identify and classify objects, thus
understanding its reliability in real-world scenarios.

• Distance representations: In this criterion, we calculate the average distance
of all the measured objects based on their respective classes, which helps
us understand the average proximity maintained between the test vehicle
and various objects encountered during the driving scenarios. This analysis
allows us to compare the representation of the Euclidean distance and the
longitudinal distance and assess the differences between them, and provides
insights into the effectiveness and applicability of each distance representation
method in accurately reflecting the distances between objects and the test
vehicle.

• Valid ranging ratio: In this criterion, we calculate the ratio of detections with
a valid measured distance to all the detections, considering their respective
object classes. This metric provides insights into the system’s ranging ability
for different objects encountered during the testing scenarios.

Typical Neighborhood in Torino

As shown in Figure 4.17 and Table 4.1, the Yolov7 demonstrates a high level of
precision in detecting vehicles within a crowded environment. However, for less
frequently encountered objects, there may be instances of false detections. For
objects with valid distance measurements, the average distances obtained are found
to be reasonable. However, it is worth mentioning that the measurements for traffic
signs may not always be valid. In terms of distance representation, it is observed
that the Euclidean distance tends to be larger than the longitudinal distance.

Class Detection False Detection Total deuclidean[m] dlongitudinal[m] Valid Ranging[%]
Vehicle 82 0 82 7.59 6.82 91.4

Crosswalk Line 4 1 4 6.79 5.99 30.8
Pedestrian 4 1 5 6.25 5.54 75

Bike 1 1 2 5.67 4.70 100
Bumper Sign 1 0 1 N/A N/A 0
Speedlimit 40 1 1 1 N/A N/A 0

Table 4.1: Typical Neighborhood in Torino

Two-Lane Road without Traffic Light

As shown in Figure 4.18 and Table 4.2, the Yolov7 performs even better in a less
crowded environment. For objects with acceptable valid distance measurements,

63

Experiments and Results

Figure 4.17: Typical Neighborhood in Torino

the average distances are also reasonable. The measurements for traffic signs are
still not reliable. As for the distance representation, the Euclidean distance is also
larger than the longitudinal distance.

Three-Lane Road with Traffic Light

As shown in Figure 4.19 and Table 4.3, there are less objects since we are driving
in a traffic flow, the performance of Yolov7 is stable, but there are still some false
detections in the speed limit signs. The average distances are also reasonable,
however, the measurements for traffic lights are not available. As for the distance
representation, the difference is similar to the previous cases.

64

Experiments and Results

Class Detection False Detection Total deuclidean[m] dlongitudinal[m] Valid Ranging[%]
Vehicle 61 0 61 9.83 9.05 75.5

Crosswalk Line 4 0 4 8.71 8.34 76.9
Pedestrian 6 0 6 7.51 7.19 14.3

Bike 1 0 2 6.55 5.09 25
Crosswalk Sign 5 0 5 14.23 13.95 3.8
Speedlimit 30 1 0 1 N/A N/A 0

Stop Sign 1 0 1 14.36 13.79 100

Table 4.2: Two-Lane Road without Traffic Light

Figure 4.18: Two-Lane Road without Traffic Light

Summary of Robustness

Through the analysis of the three urban driving scenarios mentioned above, we can
draw the following conclusions:

65

Experiments and Results

Class Detection False Detection Total deuclidean[m] dlongitudinal[m] Valid Ranging[%]
Vehicle 23 0 23 11.24 10.88 62.7

Red Light 2 0 2 N/A N/A 0
Green Light 5 0 5 N/A N/A 0

trafficlight NA 2 0 2 N/A N/A 0
Crosswalk Line 3 0 3 8.33 7.63 66.7

Pedestrian 4 0 4 5.16 3.86 24
Bike 2 0 2 9.82 8.98 18.2

Yield Sign 2 0 2 12.88 12.59 6.67
Speedlimit 30 0 2 0 N/A N/A 0

Table 4.3: Three-Lane Road with Traffic Light

Figure 4.19: Three-Lane Road with Traffic Light

• Accuracy of the Yolov7 detection: The current training of Yolov7 demonstrates
reliability in detecting common objects such as vehicles, traffic lights, and

66

Experiments and Results

pedestrians. For example, the detection success rate of vehicle and traffic lights
is 100%. However, there are some instances of false detection when it comes
to traffic signs. This discrepancy suggests that the current training data may
not be as comprehensive or specific for accurately detecting and recognizing
traffic signs. To address this issue and improve the detection performance of
traffic signs, further training of the Yolov7 model with additional dedicated
datasets specifically focused on traffic signs is recommended.

• Distance representations: It is observed that when an object is detected
by the Yolov7 and has a valid distance measurement, both the Euclidean
and longitudinal representations provide reasonable and consistent distance
measurements that align with the corresponding scenarios. Based on the
tests conducted and the analysis performed, a cautious conclusion can be
drawn that, considering the nature of driving scenarios and the need to match
the driver’s distance perception, the longitudinal distance emerges as a more
suitable representation in real-world driving situations.

• Valid ranging ratio: The ranging ability of the system demonstrates variations
across different classes of objects. Objects that are relatively large and have
a clear line of sight from the LiDAR’s perspective, such as vehicles, bikes,
and pedestrians near the test vehicle, consistently yield valid distance mea-
surements. For example, In the first two scenarios, where the objects are
not obstructed by other objects, the valid ranging ratio exceeds 75%. This
indicates that the system successfully provides valid distance measurements
for a significant portion of the detected objects. However, in the third sce-
nario, where there are more objects present in parallel lanes, the valid ranging
ratio is slightly lower, reaching approximately 65%. This stability in distance
measurement validity can be attributed to the prominent presence and un-
obstructed visibility of these objects. However, for smaller objects, such as
traffic lights and traffic signs, the validity of distance measurements may be
less reliable. As for the crosswalk lines on the road, they might pose challenges
for the ground filtering function, leading to potential difficulties in obtaining
valid distance measurements. Additionally, certain vehicles and pedestrians
that are obstructed by other objects from the LiDAR’s perspective may also
exhibit a lower likelihood of obtaining valid distance measurements. These
findings indicate that the ranging ability of the system is influenced by the
size, visibility, and potential obstructions of the objects being detected. Larger
and more visible objects tend to yield more consistent and reliable distance
measurements, while smaller or obstructed objects may present challenges in
obtaining valid measurements.

• FOV Limitation vs Fusion Time: From Figure we can see that the limitation

67

Experiments and Results

of FOV has significantly improved the fusion speed and shortens the fusion
time. After limiting the x-axis to cover a range of four meters on each
side to focus on the adjacent lanes, we observed a 50% reduction in the
number of points that needed to be processed compared to the unrestricted
scenario. Additionally, the fusion time was only 10% of the original processing
time. This indicates that by applying the FOV limitation, we successfully
reduced the number of point cloud data to be processed and significantly
improved the fusion processing speed. This FOV filter allows us to balance the
trade-off between system reliability and computational efficiency. It enables
us to lower the ‘min_cluster_size‘ parameter to detect more clusters and
improve the detection capability for distant objects, while maintaining an
appropriate balance between system reliability and processing speed. This
filtering technique plays a crucial role in the system, providing an effective
and reliable solution to enhance the detection of distant objects.

It is important to note that these conclusions are drawn based on the tests
conducted in specific driving scenarios. Further validation and testing in various
real-world scenarios are necessary to solidify these findings and ensure their general
applicability.

68

Chapter 5

Conclusions and Future
Works

With the increasing convergence of artificial intelligence and the automotive industry,
the capability of vehicles to perceive their surroundings, process data in real-time,
and integrate information has become a crucial aspect of ADAS. This work aims
to investigate the feasibility of meeting project requirements for the environmental
awareness task in a real ADAS project and propose a practical solution.

The study begins by investigating the theoretical background of each related
field, which involves computer vision, sensor technology, and real-time sensor fusion
techniques. By gaining a deep understanding of these concepts, the groundwork is
laid for the subsequent development of an effective solution. Then the focus shifts
to the design of hardware and software architectures, leveraging existing hardware
equipment available. Next, we build a reliable software working environment
that enables seamless integration between the hardware and software components.
Meanwhile, due to specific requirements for the targets to be detected, Yolov7 was
trained using a customized dataset prepared by ourselves. Then an algorithm is
developed to realize the real-time sensor fusion, which aims to effectively combine
data from various sensors, such as LiDAR and camera, with potential scalability, and
output meaningful result according to system requirements, as depicted in Figure
5.1, enabling a comprehensive perception of the vehicle’s surrounding environment.

Once the software and hardware components are interconnected and functional,
the system is installed in a test vehicle. Real-world testing is conducted in diverse
application scenarios to evaluate the performance and capabilities of the system.
Throughout the testing phase, data is collected and analyzed to assess the system’s
performance, reliability, and adherence to project requirements. This evaluation
serves as a foundation for identifying areas of improvement, refining algorithms,
enhancing the overall performance of the system, and proving the validity and

69

Conclusions and Future Works

Figure 5.1: Visualization of the sensor fusion result

reliability of integrating the system to the ADAS system.
Based on the test results, several key conclusions can be drawn. First, the

Yolov7 object detector demonstrates impressive performance and is well-suited for
real-time and customized object detection tasks. Its accuracy and reliability make
it a valuable choice for ADAS applications. Additionally, the preprocessing of point
cloud data proves to be essential in ensuring accurate and stable detection and
distance measurement in real-world driving scenarios. While this preprocessing
operation may reduce the effective detection distance slightly and increase processing
time, it is crucial for achieving reliable results in complex environments. The trade-
off between accuracy and efficiency is well-justified in this context. Regarding
distance representations, the longitudinal distance proves to be more aligned with
the driver’s perception of distance in real-world driving scenarios. This finding
suggests that using the longitudinal distance, which represents the distance in front
of the vehicle along the y-axis, provides a more intuitive and reasonable measure
for the driver. Furthermore, when representing an object’s distance, using the
nearest distance rather than the average distance appears to be more appropriate.
This approach ensures that the closest point to the vehicle, which is more likely
to reflect the object’s position, is considered as the representative distance. This
choice enhances the overall accuracy and reliability of the distance measurement.

This study outlines the process of exploring, designing, implementing, and evalu-
ating an ADAS project. By establishing the theoretical basis, developing hardware
and software architectures, and conducting real-world testing, the study aims to

70

Conclusions and Future Works

demonstrate the feasibility and effectiveness of the environmental awareness system
in meeting project objectives. The collected data and analysis provide valuable
insights for further development of the ADAS system, offering an opportunity to
enhance the safety and capabilities of vehicles in real-world driving scenarios.

This study has laid a strong foundation for future development and improvements
in the ADAS system. There are several potential areas for further enhancements
from both a hardware and software perspective.

On the hardware side, upgrading the sensors can improve the system’s ranging
ability and extend the detection range. This can be achieved by incorporating
more advanced LiDAR sensors, radars, or additional cameras to provide a more
comprehensive view of the vehicle’s surroundings. The integration of these sensors
can enhance the accuracy and reliability of the system’s perception capabilities.

From a software standpoint, further development of the fusion algorithm is crucial.
The inclusion of an object tracking function can greatly enhance the system’s
performance by enabling the tracking and prediction of object movements. This
functionality can contribute to improved decision-making and proactive responses
to evolving traffic situations. Additionally, leveraging the image stream and point
cloud data to generate a visually appealing and intuitive visualization for the driver
can enhance situational awareness. By presenting the surrounding environment
in a clear and informative manner, drivers can make more informed decisions and
better understand potential hazards.

In conclusion, this study provides a solid platform for future development in
the ADAS system. Upgrading the hardware components, improving the fusion
algorithm, and incorporating advanced visualization techniques can further enhance
the system’s performance, safety, and user experience. Continuous innovation and
advancements in this field will contribute to the realization of more sophisticated
and effective ADAS systems in the future.

71

List of Tables

3.1 Calibration output parameters . 36

4.1 Typical Neighborhood in Torino . 63
4.2 Two-Lane Road without Traffic Light 65
4.3 Three-Lane Road with Traffic Light 66

7.1 Label Classes of Yolov7 . 80

73

List of Figures

1.1 SAE Levels of Driving Automation™ 3
1.2 PITEF Project . 6

2.1 Pinhole Camera Model . 12

3.1 AI Vehicle Computer RSL A3 . 22
3.2 ZED2 . 23
3.3 LiDAR’s Channel Vertical Distribution 24
3.4 The ROS Ecosystem . 25
3.5 The structure of YOLOv7 . 27
3.6 Yolov7 Training Results . 29
3.7 Yolov7 Confusion Matrix . 30
3.8 Calibration Pipeline . 32
3.9 Set of 3 Poses . 33
3.10 LiDAR Range Error . 34
3.11 Extrinsic parameter results . 36
3.12 ApproximateTime policy . 38
3.13 LiDAR and camera sensor set . 45
3.14 LiDAR and camera mounting position 46
3.15 Integration Pipeline . 48

4.1 Precision evaluation in the parking lot (Vehicle) 50
4.2 Precision evaluation in the parking lot (Yield Sign) 51
4.3 Point cloud visualization (left: vehicle, right: yield sign) 51
4.4 Car following scenario . 52
4.5 Car following visualization . 53
4.6 Typical Neighborhood in Torino . 54
4.7 Two-Lane Road without Traffic Light 55
4.8 Three-Lane Road with Traffic Light 56
4.9 Minimum vs Average Distance Estimation 58
4.10 Minimum vs Average Distance Estimation Error 58

74

List of Figures

4.11 Raw Data vs Clusterd Data Distance Estimation 59
4.12 Longitudinal vs Euclidean Distance Estimation 59
4.13 Longitudinal vs Lateral Distance Estimation 60
4.14 Clustered vs Raw Data Stability Estimation 61
4.15 Filtering on Lateral Coordinate . 61
4.16 Filtering on Lateral Coordinate in Urban Scenario 62
4.17 Typical Neighborhood in Torino . 64
4.18 Two-Lane Road without Traffic Light 65
4.19 Three-Lane Road with Traffic Light 66

5.1 Visualization of the sensor fusion result 70

75

Chapter 6

Algorithm

Algorithm 1 RANSAC algorithm
1: Ndata ← Number of data points
2: Np ← Minimum number of points required by the model
3: Ni ← Number of iterations
4: Ninlier ▷ Number of inlier points
5: t← maximum distance threshold of a point to the model to be an inlier
6: Bestinlier ← 0 ▷ Most number of inlier points
7: BestModel ← NULL ▷ Best model so far
8: while not all iterations done do
9: Draw Np points randomly;

10: Fit a model M to those points;
11: Ninlier ← 0;
12: for each point in the data do
13: d← distance from the point to the model;
14: if d < t then
15: Ninlier ← Ninlier + 1;
16: end if
17: end for
18: if Ninlier > Bestinlier then
19: Bestinlier ← Ninlier;
20: BestModel ←M
21: end if
22: end while
23: return BestModel ▷ The best model is returned

76

Algorithm

Algorithm 2 Euclidean Cluster Extraction
1: function EuclideanClusterExtraction(P, r, dth)
2: Initialize an empty Kd-tree data structure
3: Initialize an empty list of clusters C
4: Initialize an empty queue Q
5: for each point pi in P do
6: Create a new cluster Ci

7: Add pi to Q
8: Add pi to Ci

9: while Q is not empty do
10: Remove the first point pi from Q
11: Search for the set P k

i of point neighbors of pi within a sphere of
radius r < dth

12: for each neighbor pk
i in P k

i do
13: if pk

i has not been processed then
14: Add pk

i to Q
15: Add pk

i to Ci

16: end if
17: end for
18: end while
19: Add Ci to C
20: end for
21: return C
22: end function

77

Algorithm

Algorithm 3 Sensor Fusion Function
1: procedure SensorFusion(Pointcloud msg, Detection msg)
2: if Detection msg is not empty then
3: Filter Pointcloud by x-axis to limit the FOV
4: Filter Pointcloud by z-axis to remove ground points
5: Downsample Pointcloud using VoxelGrid
6: Cluster Pointcloud using EuclideanClusterExtraction
7: for each point p in preprocessed Pointcloud do
8: Calculate distance and save to vector distances
9: Save (x, y, z) as cv :: Point3f and save to vector points_3d

10: end for
11: Project points_3d to points_2d using cv :: projectPoints
12: for each detection in Detection msg do
13: for each p2d

i in points_2d do
14: if p2d

i is inside the bounding box then
15: find the corresponding distance in distances according to the

position i and save to a new vector distance
16: end if
17: end for
18: if distance is not empty then
19: Do calculations on the distance vector and output necessary data
20: end if
21: end for
22: end if
23: end procedure

78

Chapter 7

Parameters

intrinsic =

fx 0 cx

0 fy cy

0 0 1

 =

521.517 0 638.569
0 521.517 356.64
0 0 1

 (7.1)

rvec = [0.0061, 2.2445,−2.1959] (7.2)

tvec = [0.0654,−0.0781,−0.0458] (7.3)

79

Parameters

0 vehicle
1 trafficlight_NA
2 trafficlight_G
3 trafficlight_Y
4 trafficlight_R
5 speedlimit_NA
6 speedlimit_20
7 speedlimit_30
8 speedlimit_40
9 speedlimit_50
10 speedlimit_60
11 speedlimit_70
12 speedlimit_80
13 speedlimit_90
14 speedlimit_100
15 speedlimit_110
16 speedlimit_120
17 speedlimit_130
18 yield
19 stop
20 stop_horizontal
21 bumper_sign
22 crosswalk_sign
23 crosswalk_line
24 pedestrian
25 bike

Table 7.1: Label Classes of Yolov7

80

Chapter 8

Data Structure

Listing 8.1: sensor_msgs::PointCloud2
1 sensor_msgs / PointCloud2
2 std_msgs /Header header
3 uint32 seq
4 time stamp
5 string frame_id
6 uint32 height
7 uint32 width
8 sensor_msgs / PointField [] fields
9 uint8 INT8 =1

10 uint8 UINT8 =2
11 uint8 INT16 =3
12 uint8 UINT16 =4
13 uint8 INT32 =5
14 uint8 UINT32 =6
15 uint8 FLOAT32 =7
16 uint8 FLOAT64 =8
17 string name
18 uint32 offset
19 uint8 datatype
20 uint32 count
21 bool is_bigendian
22 uint32 point_step
23 uint32 row_step
24 uint8 [] data
25 bool is_dense

81

Data Structure

Listing 8.2: vision_msgs::Detection2DArray
1 vision_msgs / Detection2DArray
2 std_msgs /Header header
3 uint32 seq
4 time stamp
5 string frame_id
6 vision_msgs / Detection2D [] detections
7 std_msgs /Header header
8 uint32 seq
9 time stamp

10 string frame_id
11 vision_msgs / ObjectHypothesis [] results
12 int64 id
13 float64 score
14 vision_msgs / BoundingBox2D bbox
15 geometry_msgs /Pose2D center
16 float64 x
17 float64 y
18 float64 theta
19 float64 size_x
20 float64 size_y
21 sensor_msgs /Image source_img
22 std_msgs /Header header
23 uint32 seq
24 time stamp
25 string frame_id
26 uint32 height
27 uint32 width
28 string encoding
29 uint8 is_bigendian
30 uint32 step
31 uint8 [] data

82

Bibliography

[1] Hybrid electric vehicle. url: https://en.wikipedia.org/wiki/Hybrid_
electric_vehicle. (accessed: 25.06.2023) (cit. on p. 1).

[2] Custom Market Insights. url: https://www.globenewswire.com/en/news-
release/2022/11/14/2555167/0/en/Latest-Global-Hybrid-Vehicle-
Market-Size-Share-Worth-USD-1670-Billion-by-2030-at-a-30-CAGR-
Custom-Market-Insights-Analysis-Outlook-Leaders-Report-Trends-
Forecast-Segmentation-Growt.html. (accessed: 25.06.2023) (cit. on p. 1).

[3] Jordan Tunnell, Zachary Asher, Sudeep Pasricha, and Thomas Bradley. «To-
ward Improving Vehicle Fuel Economy with ADAS». In: SAE International
Journal of Connected and Automated Vehicles 1 (Oct. 2018). doi: 10.4271/12-
01-02-0005 (cit. on p. 1).

[4] What is ADAS (Advanced Driver Assistance Systems)? url: https : / /
dewesoft.com/blog/what-is-adas. (accessed: 25.06.2023) (cit. on p. 2).

[5] Automotive electronics revolution requires faster, smarter interfaces. url:
https : / / www . embedded . com / automotive - electronics - revolution -
requires-faster-smarter-interfaces/. (accessed: 25.06.2023) (cit. on
p. 2).

[6] On-Road Automated Driving (ORAD) Committee. Taxonomy and Definitions
for Terms Related to Driving Automation Systems for On-Road Motor Vehicles.
Apr. 2021. doi: https://doi.org/10.4271/J3016_202104. url: https:
//doi.org/10.4271/J3016_202104 (cit. on p. 2).

[7] LIDAR 101: What is lidar? url: https://velodynelidar.com/what-is-
LiDAR/. (accessed: 25.06.2023) (cit. on pp. 4, 16).

[8] What is computer vision? url: https://www.ibm.com/topics/computer-
vision. (accessed: 25.06.2023) (cit. on p. 4).

[9] What Is Sensor Fusion? url: https://www.aptiv.com/en/insights/
article/what-is-sensor-fusion. (accessed: 25.06.2023) (cit. on p. 4).

84

https://en.wikipedia.org/wiki/Hybrid_electric_vehicle
https://en.wikipedia.org/wiki/Hybrid_electric_vehicle
https://www.globenewswire.com/en/news-release/2022/11/14/2555167/0/en/Latest-Global-Hybrid-Vehicle-Market-Size-Share-Worth-USD-1670-Billion-by-2030-at-a-30-CAGR-Custom-Market-Insights-Analysis-Outlook-Leaders-Report-Trends-Forecast-Segmentation-Growt.html
https://www.globenewswire.com/en/news-release/2022/11/14/2555167/0/en/Latest-Global-Hybrid-Vehicle-Market-Size-Share-Worth-USD-1670-Billion-by-2030-at-a-30-CAGR-Custom-Market-Insights-Analysis-Outlook-Leaders-Report-Trends-Forecast-Segmentation-Growt.html
https://www.globenewswire.com/en/news-release/2022/11/14/2555167/0/en/Latest-Global-Hybrid-Vehicle-Market-Size-Share-Worth-USD-1670-Billion-by-2030-at-a-30-CAGR-Custom-Market-Insights-Analysis-Outlook-Leaders-Report-Trends-Forecast-Segmentation-Growt.html
https://www.globenewswire.com/en/news-release/2022/11/14/2555167/0/en/Latest-Global-Hybrid-Vehicle-Market-Size-Share-Worth-USD-1670-Billion-by-2030-at-a-30-CAGR-Custom-Market-Insights-Analysis-Outlook-Leaders-Report-Trends-Forecast-Segmentation-Growt.html
https://www.globenewswire.com/en/news-release/2022/11/14/2555167/0/en/Latest-Global-Hybrid-Vehicle-Market-Size-Share-Worth-USD-1670-Billion-by-2030-at-a-30-CAGR-Custom-Market-Insights-Analysis-Outlook-Leaders-Report-Trends-Forecast-Segmentation-Growt.html
https://doi.org/10.4271/12-01-02-0005
https://doi.org/10.4271/12-01-02-0005
https://dewesoft.com/blog/what-is-adas
https://dewesoft.com/blog/what-is-adas
https://www.embedded.com/automotive-electronics-revolution-requires-faster-smarter-interfaces/
https://www.embedded.com/automotive-electronics-revolution-requires-faster-smarter-interfaces/
https://doi.org/https://doi.org/10.4271/J3016_202104
https://doi.org/10.4271/J3016_202104
https://doi.org/10.4271/J3016_202104
https://velodynelidar.com/what-is-LiDAR/
https://velodynelidar.com/what-is-LiDAR/
https://www.ibm.com/topics/computer-vision
https://www.ibm.com/topics/computer-vision
https://www.aptiv.com/en/insights/article/what-is-sensor-fusion
https://www.aptiv.com/en/insights/article/what-is-sensor-fusion

BIBLIOGRAPHY

[10] HOW DOES RADAR AND THE DOPPLER SYSTEM WORK? url: https:
//www.radars.com.au/articles.php/how-radar-works-t-9. (accessed:
25.06.2023) (cit. on p. 4).

[11] What is an Ultrasonic Sensor? url: https://www.fierceelectronics.
com/sensors/what- ultrasonic- sensor. (accessed: 25.06.2023) (cit. on
p. 4).

[12] Global Positioning System. url: https://en.wikipedia.org/wiki/Global_
Positioning_System. (accessed: 25.06.2023) (cit. on p. 5).

[13] What is ADAS? url: https://www.synopsys.com/automotive/what-is-
adas.html. (accessed: 25.06.2023) (cit. on p. 5).

[14] Piattaforma tecnologica di Filiera Pi.Te.F. url: https://www.regione.
piemonte . it / web / temi / fondi - progetti - europei / fondo - europeo -
sviluppo-regionale-fesr/programmazione-2014-2020/piattaforma-
tecnologica-filiera-pitef. (accessed: 25.06.2023) (cit. on p. 5).

[15] Francisca Rosique, Pedro J. Navarro, Carlos Fernández, and Antonio Padilla.
«A Systematic Review of Perception System and Simulators for Autonomous
Vehicles Research». In: Sensors 19.3 (2019). issn: 1424-8220. doi: 10.3390/
s19030648. url: https://www.mdpi.com/1424-8220/19/3/648 (cit. on
pp. 7, 11, 16).

[16] Luiz G. Galvao, Maysam Abbod, Tatiana Kalganova, Vasile Palade, and
Md Nazmul Huda. «Pedestrian and Vehicle Detection in Autonomous Vehicle
Perception Systems—A Review». In: Sensors 21.21 (2021). issn: 1424-8220.
doi: 10.3390/s21217267. url: https://www.mdpi.com/1424-8220/21/
21/7267 (cit. on p. 7).

[17] Chaochao Meng, Hong Bao, and Yan Ma. «Vehicle Detection: A Review».
In: Journal of Physics: Conference Series 1634.1 (Sept. 2020), p. 012107.
doi: 10.1088/1742-6596/1634/1/012107. url: https://dx.doi.org/10.
1088/1742-6596/1634/1/012107 (cit. on pp. 9, 10, 19).

[18] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You Only
Look Once: Unified, Real-Time Object Detection. 2016. arXiv: 1506.02640
[cs.CV] (cit. on p. 9).

[19] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C. Berg. «SSD: Single Shot MultiBox
Detector». In: Computer Vision – ECCV 2016. Ed. by Bastian Leibe, Jiri
Matas, Nicu Sebe, and Max Welling. Cham: Springer International Publishing,
2016, pp. 21–37. isbn: 978-3-319-46448-0 (cit. on p. 10).

85

https://www.radars.com.au/articles.php/how-radar-works-t-9
https://www.radars.com.au/articles.php/how-radar-works-t-9
https://www.fierceelectronics.com/sensors/what-ultrasonic-sensor
https://www.fierceelectronics.com/sensors/what-ultrasonic-sensor
https://en.wikipedia.org/wiki/Global_Positioning_System
https://en.wikipedia.org/wiki/Global_Positioning_System
https://www.synopsys.com/automotive/what-is-adas.html
https://www.synopsys.com/automotive/what-is-adas.html
https://www.regione.piemonte.it/web/temi/fondi-progetti-europei/fondo-europeo-sviluppo-regionale-fesr/programmazione-2014-2020/piattaforma-tecnologica-filiera-pitef
https://www.regione.piemonte.it/web/temi/fondi-progetti-europei/fondo-europeo-sviluppo-regionale-fesr/programmazione-2014-2020/piattaforma-tecnologica-filiera-pitef
https://www.regione.piemonte.it/web/temi/fondi-progetti-europei/fondo-europeo-sviluppo-regionale-fesr/programmazione-2014-2020/piattaforma-tecnologica-filiera-pitef
https://www.regione.piemonte.it/web/temi/fondi-progetti-europei/fondo-europeo-sviluppo-regionale-fesr/programmazione-2014-2020/piattaforma-tecnologica-filiera-pitef
https://doi.org/10.3390/s19030648
https://doi.org/10.3390/s19030648
https://www.mdpi.com/1424-8220/19/3/648
https://doi.org/10.3390/s21217267
https://www.mdpi.com/1424-8220/21/21/7267
https://www.mdpi.com/1424-8220/21/21/7267
https://doi.org/10.1088/1742-6596/1634/1/012107
https://dx.doi.org/10.1088/1742-6596/1634/1/012107
https://dx.doi.org/10.1088/1742-6596/1634/1/012107
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640

BIBLIOGRAPHY

[20] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár.
Focal Loss for Dense Object Detection. 2018. arXiv: 1708.02002 [cs.CV]
(cit. on p. 10).

[21] Key differences between CCD and CMOS imaging sensors. url: https :
/ / www . flir . eu / support - center / iis / machine - vision / knowledge -
base / key - differences - between - ccd - and - cmos - imaging - sensors/.
(accessed: 25.06.2023) (cit. on p. 11).

[22] CMOS vs CCD: Why CMOS Sensors Are Preferred for Machine Vision
Cameras. url: https://www.phase1vision.com/blog/difference-betwe
en-cmos-and-ccd. (accessed: 25.06.2023) (cit. on p. 11).

[23] Introduction to Machine Vision. url: https://datasensor.in/machine-
vision/introduction-to-machine-vision/. (accessed: 25.06.2023) (cit. on
p. 11).

[24] CMOS ADVANTAGES OVER CCD. url: http://www.siliconimaging.
com/ARTICLES/cmos_advantages_over_ccd.htm. (accessed: 25.06.2023)
(cit. on p. 11).

[25] Camera Calibration and 3D Reconstruction. url: https://docs.opencv.
org/3.4/d9/d0c/group__calib3d.html#ga1019495a2c8d1743ed5cc23fa0
daff8c. (accessed: 25.06.2023) (cit. on pp. 12, 32).

[26] Pinhole camera model. url: https://en.wikipedia.org/wiki/Pinhole_
camera_model. (accessed: 25.06.2023) (cit. on p. 13).

[27] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer
Vision. 2nd ed. Cambridge University Press, 2004. doi: 10.1017/CBO978051
1811685 (cit. on p. 13).

[28] Ashutosh Saxena, Jamie Schulte, and Andrew Y. Ng. «Depth Estimation
Using Monocular and Stereo Cues». In: IJCAI’07. Hyderabad, India: Morgan
Kaufmann Publishers Inc., 2007, pp. 2197–2203 (cit. on p. 14).

[29] Aish Dubey. «Stereo vision-Facing the challenges and seeing the opportunities
for ADAS applications». In: Texas Instruments Technical Note (2016) (cit. on
p. 14).

[30] G Ajay Kumar, Jin Hee Lee, Jongrak Hwang, Jaehyeong Park, Sung Hoon
Youn, and Soon Kwon. «LiDAR and Camera Fusion Approach for Object
Distance Estimation in Self-Driving Vehicles». In: Symmetry 12.2 (2020). issn:
2073-8994. doi: 10.3390/sym12020324. url: https://www.mdpi.com/2073-
8994/12/2/324 (cit. on p. 16).

[31] A Guide to Lidar Wavelengths for Autonomous Vehicles and Driver Assistance.
url: https://velodyneLiDAR.com/blog/guide-to-LiDAR-wavelengths/.
(accessed: 25.06.2023) (cit. on p. 16).

86

https://arxiv.org/abs/1708.02002
https://www.flir.eu/support-center/iis/machine-vision/knowledge-base/key-differences-between-ccd-and-cmos-imaging-sensors/
https://www.flir.eu/support-center/iis/machine-vision/knowledge-base/key-differences-between-ccd-and-cmos-imaging-sensors/
https://www.flir.eu/support-center/iis/machine-vision/knowledge-base/key-differences-between-ccd-and-cmos-imaging-sensors/
https://www.phase1vision.com/blog/difference-between-cmos-and-ccd
https://www.phase1vision.com/blog/difference-between-cmos-and-ccd
https://datasensor.in/machine-vision/introduction-to-machine-vision/
https://datasensor.in/machine-vision/introduction-to-machine-vision/
http://www.siliconimaging.com/ARTICLES/cmos_advantages_over_ccd.htm
http://www.siliconimaging.com/ARTICLES/cmos_advantages_over_ccd.htm
https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html#ga1019495a2c8d1743ed5cc23fa0daff8c
https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html#ga1019495a2c8d1743ed5cc23fa0daff8c
https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html#ga1019495a2c8d1743ed5cc23fa0daff8c
https://en.wikipedia.org/wiki/Pinhole_camera_model
https://en.wikipedia.org/wiki/Pinhole_camera_model
https://doi.org/10.1017/CBO9780511811685
https://doi.org/10.1017/CBO9780511811685
https://doi.org/10.3390/sym12020324
https://www.mdpi.com/2073-8994/12/2/324
https://www.mdpi.com/2073-8994/12/2/324
https://velodyneLiDAR.com/blog/guide-to-LiDAR-wavelengths/

BIBLIOGRAPHY

[32] Hesai Technology. url: https://www.hesaitech.com/. (accessed: 25.06.2023)
(cit. on p. 16).

[33] LiDAR. url: https://en.wikipedia.org/wiki/LiDAR. (accessed: 25.06.2023)
(cit. on p. 16).

[34] What is LiDAR and how does it work? url: https://geoslam.com/what-
is-LiDAR/. (accessed: 25.06.2023) (cit. on p. 16).

[35] The Basics of LiDAR - Light Detection and Ranging - Remote Sensing. url:
https://www.neonscience.org/resources/learning-hub/tutorials/
LiDAR-basics. (accessed: 25.06.2023) (cit. on p. 16).

[36] What is lidar? url: https://oceanservice.noaa.gov/facts/LiDAR.html.
(accessed: 25.06.2023) (cit. on p. 16).

[37] 9 Types of Sensor Fusion Algorithms. url: https://www.thinkautonomous.
ai/blog/9-types-of-sensor-fusion-algorithms/. (accessed: 25.06.2023)
(cit. on p. 19).

[38] Sensor Fusion - LiDARs and RADARs in Self-Driving Cars. url: https:
//www.thinkautonomous.ai/blog/sensor-fusion/. (accessed: 25.06.2023)
(cit. on p. 19).

[39] LiDAR and Camera Sensor Fusion in Self-Driving Cars. url: https://www.
thinkautonomous.ai/blog/LiDAR-and-camera-sensor-fusion-in-self-
driving-cars/. (accessed: 25.06.2023) (cit. on p. 19).

[40] Satellite Architecture Basics. url: https://www.aptiv.com/en/insights/
article/satellite-architecture-basics. (accessed: 25.06.2023) (cit. on
p. 19).

[41] Satellite Architecture. url: https : / / www . aptiv . com / en / solutions /
advanced-safety/satellite-architecture. (accessed: 25.06.2023) (cit.
on p. 19).

[42] Sensor fusion levels and architectures. url: https://www.sensortips.com/
featured/sensor-fusion-levels-and-architectures-faq/. (accessed:
25.06.2023) (cit. on p. 19).

[43] Xin Gao, Guoying Zhang, and Yijin Xiong. «Multi-scale multi-modal fusion
for object detection in autonomous driving based on selective kernel». In:
Measurement 194 (2022), p. 111001. issn: 0263-2241. doi: https://doi.org/
10.1016/j.measurement.2022.111001. url: https://www.sciencedirec
t.com/science/article/pii/S026322412200272X (cit. on p. 19).

87

https://www.hesaitech.com/
https://en.wikipedia.org/wiki/LiDAR
https://geoslam.com/what-is-LiDAR/
https://geoslam.com/what-is-LiDAR/
https://www.neonscience.org/resources/learning-hub/tutorials/LiDAR-basics
https://www.neonscience.org/resources/learning-hub/tutorials/LiDAR-basics
https://oceanservice.noaa.gov/facts/LiDAR.html
https://www.thinkautonomous.ai/blog/9-types-of-sensor-fusion-algorithms/
https://www.thinkautonomous.ai/blog/9-types-of-sensor-fusion-algorithms/
https://www.thinkautonomous.ai/blog/sensor-fusion/
https://www.thinkautonomous.ai/blog/sensor-fusion/
https://www.thinkautonomous.ai/blog/LiDAR-and-camera-sensor-fusion-in-self-driving-cars/
https://www.thinkautonomous.ai/blog/LiDAR-and-camera-sensor-fusion-in-self-driving-cars/
https://www.thinkautonomous.ai/blog/LiDAR-and-camera-sensor-fusion-in-self-driving-cars/
https://www.aptiv.com/en/insights/article/satellite-architecture-basics
https://www.aptiv.com/en/insights/article/satellite-architecture-basics
https://www.aptiv.com/en/solutions/advanced-safety/satellite-architecture
https://www.aptiv.com/en/solutions/advanced-safety/satellite-architecture
https://www.sensortips.com/featured/sensor-fusion-levels-and-architectures-faq/
https://www.sensortips.com/featured/sensor-fusion-levels-and-architectures-faq/
https://doi.org/https://doi.org/10.1016/j.measurement.2022.111001
https://doi.org/https://doi.org/10.1016/j.measurement.2022.111001
https://www.sciencedirect.com/science/article/pii/S026322412200272X
https://www.sciencedirect.com/science/article/pii/S026322412200272X

BIBLIOGRAPHY

[44] Jing Li, Rui Li, Jiehao Li, Junzheng Wang, Qingbin Wu, and Xu Liu. «Dual-
view 3D object recognition and detection via Lidar point cloud and camera
image». In: Robotics and Autonomous Systems 150 (2022), p. 103999. issn:
0921-8890. doi: https://doi.org/10.1016/j.robot.2021.103999. url:
https://www.sciencedirect.com/science/article/pii/S092188902100
2542 (cit. on p. 19).

[45] Esraa Khatab, Ahmed Onsy, and Ahmed Abouelfarag. «Evaluation of 3D
Vulnerable Objects’ Detection Using a Multi-Sensors System for Autonomous
Vehicles». In: Sensors 22.4 (2022). issn: 1424-8220. doi: 10.3390/s22041663.
url: https://www.mdpi.com/1424-8220/22/4/1663 (cit. on p. 19).

[46] Yaodong Cui, Ren Chen, Wenbo Chu, Long Chen, Daxin Tian, Ying Li,
and Dongpu Cao. «Deep Learning for Image and Point Cloud Fusion in
Autonomous Driving: A Review». In: 23.2 (Feb. 2022), pp. 722–739. issn:
1524-9050. doi: 10.1109/TITS.2020.3023541. url: https://doi.org/10.
1109/TITS.2020.3023541 (cit. on p. 19).

[47] Wenbo Zhu, Quan Wang, Lufeng Luo, Yunzhi Zhang, Qinghua Lu, Wei-
Chang Yeh, and Jiancheng Liang. «CPAM: Cross Patch Attention Module
for Complex Texture Tile Block Defect Detection». In: Applied Sciences 12
(Nov. 2022), p. 11959. doi: 10.3390/app122311959 (cit. on p. 27).

[48] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. YOLOv7:
Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors.
2022. arXiv: 2207.02696 [cs.CV] (cit. on p. 28).

[49] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen
Liu, Vashisht Madhavan, and Trevor Darrell. BDD100K: A Diverse Driving
Dataset for Heterogeneous Multitask Learning. 2020. arXiv: 1805 . 04687
[cs.CV] (cit. on p. 28).

[50] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. «Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition». In:
Neural Networks 32 (2012). Selected Papers from IJCNN 2011, pp. 323–
332. issn: 0893-6080. doi: https://doi.org/10.1016/j.neunet.2012.
02.016. url: https://www.sciencedirect.com/science/article/pii/
S0893608012000457 (cit. on p. 28).

[51] Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and
Christian Igel. «Detection of Traffic Signs in Real-World Images: The German
Traffic Sign Detection Benchmark». In: International Joint Conference on
Neural Networks. 1288. 2013 (cit. on p. 28).

[52] Road Signs Dataset. url: https://makeml.app/datasets/road-signs
(cit. on p. 28).

88

https://doi.org/https://doi.org/10.1016/j.robot.2021.103999
https://www.sciencedirect.com/science/article/pii/S0921889021002542
https://www.sciencedirect.com/science/article/pii/S0921889021002542
https://doi.org/10.3390/s22041663
https://www.mdpi.com/1424-8220/22/4/1663
https://doi.org/10.1109/TITS.2020.3023541
https://doi.org/10.1109/TITS.2020.3023541
https://doi.org/10.1109/TITS.2020.3023541
https://doi.org/10.3390/app122311959
https://arxiv.org/abs/2207.02696
https://arxiv.org/abs/1805.04687
https://arxiv.org/abs/1805.04687
https://doi.org/https://doi.org/10.1016/j.neunet.2012.02.016
https://doi.org/https://doi.org/10.1016/j.neunet.2012.02.016
https://www.sciencedirect.com/science/article/pii/S0893608012000457
https://www.sciencedirect.com/science/article/pii/S0893608012000457
https://makeml.app/datasets/road-signs

BIBLIOGRAPHY

[53] Yolo_mark. url: https://github.com/AlexeyAB/Yolo_mark. (accessed:
25.06.2023) (cit. on p. 29).

[54] Darren Tsai, Stewart Worrall, Mao Shan, Anton Lohr, and Eduardo Nebot.
Optimising the selection of samples for robust lidar camera calibration. 2021.
arXiv: 2103.12287 [cs.CV] (cit. on p. 32).

[55] Surabhi Verma, Julie Stephany Berrio, Stewart Worrall, and Eduardo Nebot.
Automatic extrinsic calibration between a camera and a 3D Lidar using 3D
point and plane correspondences. 2019. arXiv: 1904.12433 [cs.CV] (cit. on
p. 32).

[56] José María Martínez-Otzeta, Itsaso Rodríguez-Moreno, Iñigo Mendialdua,
and Basilio Sierra. «RANSAC for Robotic Applications: A Survey». In:
Sensors 23.1 (2023). issn: 1424-8220. doi: 10.3390/s23010327. url: https:
//www.mdpi.com/1424-8220/23/1/327 (cit. on p. 33).

[57] What Is RANSAC? url: https://ww2.mathworks.cn/discovery/ransac.
html. (accessed: 25.06.2023) (cit. on p. 33).

[58] Maths - Conversion Euler to Axis-Angle. url: http://euclideanspace.
com / maths / geometry / rotations / conversions / eulerToAngle / index .
htm. (accessed: 25.06.2023) (cit. on p. 36).

[59] message_filters Package Summary. url: http://wiki.ros.org/message_
filters. (accessed: 25.06.2023) (cit. on p. 38).

[60] message_filters ApproximateTime. url: http://wiki.ros.org/message_
filters/ApproximateTime. (accessed: 25.06.2023) (cit. on p. 38).

89

https://github.com/AlexeyAB/Yolo_mark
https://arxiv.org/abs/2103.12287
https://arxiv.org/abs/1904.12433
https://doi.org/10.3390/s23010327
https://www.mdpi.com/1424-8220/23/1/327
https://www.mdpi.com/1424-8220/23/1/327
https://ww2.mathworks.cn/discovery/ransac.html
https://ww2.mathworks.cn/discovery/ransac.html
http://euclideanspace.com/maths/geometry/rotations/conversions/eulerToAngle/index.htm
http://euclideanspace.com/maths/geometry/rotations/conversions/eulerToAngle/index.htm
http://euclideanspace.com/maths/geometry/rotations/conversions/eulerToAngle/index.htm
http://wiki.ros.org/message_filters
http://wiki.ros.org/message_filters
http://wiki.ros.org/message_filters/ApproximateTime
http://wiki.ros.org/message_filters/ApproximateTime

	Introduction
	Background
	Motivation
	Overview of the PITEF – AutoECO Project
	Thesis Outline

	Theoretical Background
	Environmental perception
	Object Detection
	Working Principles of ADAS sensors
	Camera
	LiDAR
	Sensor Fusion Techniques

	System Architecture Design and Methodology
	Requirement Analysis
	Hardware Architecture Design
	NVIDIA Jetson AGX Xavier
	ZED2
	PandarXT-32

	Algorithms Development
	ROS environment
	Yolo v7
	Training of Yolo v7
	LiDAR and Camera Joint Calibration
	Sensor Fusion Algorithm

	Hardware Deployment
	Testing Plan

	Overview of the Integration Pipeline

	Experiments and Results
	Data collection
	Precision of the Distance Measurement
	Stability of Object Detection and Distance Measurement
	Robustness of Multiple Object Detection and Distance Measurement.

	Accuracy Evaluation
	Precision of the Distance Measurement
	Stability of Object Detection and Distance Measurement
	Robustness of Multiple Object Detection and Distance Measurement

	Conclusions and Future Works
	List of Tables
	List of Figures
	Algorithm
	Parameters
	Data Structure
	Bibliography

