
POLITECNICO DI TORINO
Master’s Degree in Mechatronics Engineering

Master’s Degree Thesis

Digital twin control system model
development applied to 5-axis gantry

stacker

Supervisors

Prof. Andrea TONOLI

Mr. Alessio CALLEGARI

Candidate

Paolo ARNAUDO

July 2023

Abstract

Flat glass represents one of the key materials employed in important market
slices, like constructions and automotive, due to its recyclability and its intrinsic
characteristics.

The production process plays an important role in the efficiency and the fulfill-
ment of the market demand. Bottero S.p.A. is one of the leading companies in the
glass technology and it is the principal partner of this research.

An upcoming problem that will be faced is the combination of shorter time-to-
market required and delays in the supply chain which leads to limited design and
installation phases. To overcome this challenge, the solution is the development of
a digital twin for virtual commissioning.

The digital twin represents an emerging technology for a digital and intelligent
design. This model is a virtual copy of the complete system capable of monitoring,
simulating processes, predicting possible outcomes and optimizing the re-think of
the automation unit at all the phases of the design.

The machinery under investigation is a 5-axis gantry stacker whose main purpose
is the loading and unloading of glass sheets from the line conveyor to the storage
racks. Mechanically, it is composed by a gantry portal on which a bridge can
translate on wheels along the line direction. A carriage then slides perpendicularly
on the bridge guides. A lifting piston governed by a chain mechanism then perform
the movement in height. In the end, two motors define the rotation along the z
axis and the tilting movement along the x axis.

From an electrical and automation point of view, the system is composed
principally by two control units: a CPU (Siemens ET200SP) that performs the
control algorithms on the IO coming from the operator (console and HMI), the
processing line and the pneumatic commands for glass suction and blowing; the
second component is a Motion Control Unit (Siemens SIMOTION D425-2) which
governs the axis motion, synchronism and trajectory definition.

Once programmed the software codes, the interconnections between the sub-
systems are required and the SIMIT simulation software is the responsible for the
different signals travelling in the machinery. With this software, it is possible to
emulate the several instances of control units and investigate the response of the
automation system to the several Input tests.

The final element of the digital twin is the definition of a proper multi-body model.
From the CAD design, two simple MatLab models were developed investigating
several aspects of the kinematics and dynamics of the machine. With the help of
the Robotic Matlab Toolbox, it is possible to analyse the definition of the pose of
the robot with an interactive GUI and, once defined the working environment, a

collision check can be performed with the several robot configurations considered
during the trajectory definition.

With the SimScape model, instead, a trajectory planning analysis is developed
considering the exploitation of the drive parameters, cycle time and dynamic
response of the system to different solutions such as polynomial cubic and quintic
function, harmonic trajectory and piecewise trajectories (trapezoidal and double-S).

This project represents the beginning of the virtual commissioning process
that will be further developed with the interconnection with the native Siemens
multi-body designer, capable of interacting with the IO and the automation. This
project has the power to show the complete design process under a newer, brighter
light.

ii

Summary

This project has been developed with the contribution of the Technical Department
of the flat glass branch of Bottero S.p.A., a leader company in the glass technology.

The core of this business unit is the design and installation of glass production
lines whose final products varies from large sheets for construction purposes down
to small displays for technological devices.

Float glass lines are the industry plants that transform the silica sand into glass
sheet through a continuous stream of glass that floats over a tin bath due to the lower
density. From there, this continuous rib of glass is moved with conveyors and cut.
The handling and the storage of these glass lites is performed by anthropomorphic
robots or portal gantries, depending on the weight to be transported. The final
package is represented by a storage rack where the plates are piled in different
packs with univocal production codes each one separated by cardboard spacer.

The other types of production line are categorised in off-line post treatment of
the glass: these comprehend the coaterization and lamination of the glass. In this
case the production sites are fed by the racks of pre-produced glass sheets. Aside
from the processing unit of the glass, the production time of the system is highly
influenced by the cycle time of the gantries that load the required sheets.

For the following reasons, a proper and optimized design of this machinery is the
goal. Unfortunately, the combination of shorter time-to-market required and delays
in the supply chain decreases the possibility of a proper project and installation
phase. To overcome this challenge, the solution is the development of a digital twin
for virtual commissioning.

With respect to classical simulation methods that have limited capabilities
in evaluating system performance, the digital twin concept represents the break-
through of limitations on the modeling and engineering analysis. A digital twin
is an integrated multi-physics and multi-scale simulation of a system that can
reproduce all aspects of the desired partner: starting from the mechanical to the
software passing through the electrical emulation. Digital twin model technology
is recognized as one of the technological milestones for achieving the goals of
Smart Manufacturing and Industry 4.0. The most direct value of adopting digital
twin design is to replace the costly pure-physical commissioning and test phases,

ii

so-called Virtual Commissioning. However, the desired end goal does not include
only the system validation but also the design innovation.

Starting from a predefined CAD design of this portal stacker, a simplified
multi-body model has been developed. The structure of the gantry starts with
the support structure on which the bridge can translate driven by two motors.
Nested in the bridge beams a carriage performs another translation, perpendicular
to the previous one. A chain mechanism performs the translation along the vertical
direction of the cup frame. The cup frame is then governed by two different revolute
joints, one for the rotation with the axis normal to the horizontal line and one
tilting component.

With the help of MatLab Robotic Toolbox, a kinematic analysis as been per-
formed, starting from the geometric robot parameters applied to the Denavit-
Hartemberg convention up to the homogeneous transformation matrix that relates
the pose of the end-effector (i.e. the cup frame) with the joint variables q̇. With
this preliminary model it has been possible to define the robot configurations for
several trajectories according to predefined position, but also by an interactive GUI.
In addition, using the inverse kinematic solver and having defined the environment
around the robot, it has been possible to check for collision between the robot
configurations of a given trajectory and the surroundings.

A second mechanical model of the gantry has been developed using MatLab
Simscape Multibody which offers a simulation environment for tri-dimensional
mechanical systems using as building blocks bodies, joints, force constraints and so
on. Given the proper inertia matrices at the bodies and defined the interconnections
between rigid bodies and their relative joints, a trajectory response analysis has
been investigated. In facts, each joint has been driven according to a predefined
function that can be classified into macro-categories, such polynomials, piece-
wised trajectories and harmonic functions. In general, trajectories that exploit
maximally the motor capabilities are faster in time, but cause abrupt vibrations to
the mechanical system due to the infinite jerk applied to the joints. On the other
hand smoother kinematic profiles will affect badly the cycle time. In addition, a
spectral harmonic analysis of the trajectory is observed and defined as the input of
a dynamic distributed parameters model (mass - spring - damper). The frequency
response is analysed to better understand how the resonance peaks act on the
mechanical system. From the Multi-body model it is possible to recover the
kinematic profiles, but also the torques measured at the joints where it is possible
to see the expected behaviours.

Once observed the mechanical point of view, it is important to better understand
the electrical and software behaviour of the system. For sake of simplicity, the
hardware configuration of the control network is composed by a CPU (Siemens
ET200SP) and a motion control system (Siemens SIMOTION D425-2). The former
is a control unit that performs logic and operations on IO and communicate with

iii

other CUs and networks; the latter instead, control the drive commands, defining
the positioning and ensuring the synchronism of motion between multiple axis with
the creation of cams and gearings.

Concerning the PLC, the program code is developed as a combination of Ladder
networks and Structured Code Language functions. The algorithm can be subdi-
vided in the following macro-areas: access area and emergencies, communication
with the process line and with the production manager, rack counter plate, position
manager and checkpoints, input and sensor monitoring and pneumatic control for
cups inclusion.

The program developed for the SIMOTION control unit govern the motion
command to be imparted to the drives. This operative system works with tasks
that can be recalled at event, or cyclically, or as interrupt, or in the background
according to the level of priority. The algorithm principle requires that the drive
commands (s.a. enable, positioning, camming. . .) must be done once and thus a
case status code is developed according to the feedback state from the technological
objects. The important aspect that has been developed regards the synchronisation
of axis according to the cam. In facts, to complete a multiple-axis trajectory an
axes acts as the master and its movement cause the slave axis in sync to move
accordingly to an in-cycle designed cam.

The final element of this thesis is the development of the Siemens SIMIT project,
which is a simulation software capable to create emulated instances for the control
units in the system (respectively with PLCSIM Advanced and SIMOSIM Advanced).
Once defined the coupling between the software and the emulated instances a
communication between the hubs is created. Moreover graphs have been developed
in order to govern the field inputs and to recreate black blocks that simulate the
behaviour of external elements such as external encoders and the PROFIdrive
telegram communication for the correct functioning of the closed-loop control
positioning motors.

To summarize, the digital twin concept will be fulfilled once the multi-body
model will be coupled with the Siemens SIMIT simulation environment. This final
step will be performed in the near future by using the native Multi-body designer of
Siemens, Siemens NX Mechatronics Concept Design, where encoders and other
field bus inputs can be simulated according to a 3D design and a complete virtual
commissioning can be performed.

This new solution for the design, validation and testing will lead to an immediate
decrement of commissioning costs and, thanks to a new iterative project phase,
to an improvement of the total quality of the system, opening the doors for the
Industry 4.0 to the complete business unit.

iv

Table of Contents

List of Figures viii

1 Overview on flat glass industry 1
1.1 Layout of a float glass production line 2

1.1.1 Furnace and melting process 3
1.1.2 Glass quality defect detection and cut definition 7
1.1.3 Cutting and geometry check 9
1.1.4 glass plate handling . 12

2 Digital twin concept 14
2.1 Principles of Industry 4.0 . 14
2.2 Digital twin concept . 18
2.3 Virtual commissioning . 22

3 Kinematics and Dynamics of the Gantry stacker 26
3.1 Direct Kinematics . 26
3.2 Dynamics of the manipulator . 38

3.2.1 Lagrange formulation . 38

4 Trajectory planning 45
4.1 Trajectories in joint space . 45

4.1.1 Polynomial trajectories . 46
4.1.2 Trigonometric trajectories 48
4.1.3 Composite and piece-wise trajectories 50
4.1.4 Spline trajectories . 52

4.2 Analysis and comparison between trajectories 55
4.2.1 Comparison on the actuation system exploitation 57
4.2.2 Comparison on the dynamic frequency response 60
4.2.3 Trajectory analysis with MatLab SimScape Multi-body . . 67

vi

5 Control architecture of the system 73
5.1 Overview of the hardware adopted 73
5.2 Siemens TIA Portal - ET200SP CPU 74
5.3 SIMOTION Control Unit . 80
5.4 SIMIT . 89

6 Conclusions 95

A SIMOTION codes 97

Bibliography 108

vii

List of Figures

1.1 Market region share . 1
1.2 Market application share . 1
1.3 Layout of float production line . 2
1.4 Cross-fired float furnace . 4
1.5 Micro-structure of the glass . 5
1.6 Glass annealing lehr oven . 6
1.7 quality defect inspection portal . 7
1.8 Real-time glass defect image . 8
1.9 3D image processing of the inspection 8
1.10 Glass cutting optimizer . 9
1.11 Crack formation scheme . 10
1.12 Different angles of the roller cut . 10
1.13 Float glass cutting mechanism . 11
1.14 Example of a glass rack . 12
1.15 Anthropomorphic arm for glass plate handling 13
1.16 Examples of a coated and a laminated glass 13

2.1 General overview of Industry 4.0 . 15
2.2 Architectural design of a smart industry 17
2.3 Concept map for Smart and Classical Manufacturing System Design 19
2.4 Framework of the smart manufacturing system design 21
2.5 Virtual commissioning procedure 23
2.6 Hardware-in-the-Loop architecture 24
2.7 Comparison between Classical engineering and Virtual Commissioning 24
2.8 Architecture of the several concepts 25

3.1 Robot reference frame . 27
3.2 Denavit-Hartemberg convention . 29
3.3 Gantry stacker . 30
3.4 Definition of joints according to MatLab Robotic Toolbox 33
3.5 Cup frame representation in .STL file 34

viii

3.6 Single axis movement performed on the multi-body model 34
3.7 Movement of the end-effector performed on the multi-body model . 34
3.8 Collision check in the Inverse Kinematic Designer 35

4.1 Cubic polynomial with null boundary velocities 47
4.2 Cubic polynomial with boundary velocities not null 47
4.3 Quintic polynomial . 48
4.4 Harmonic trajectory and derivatives 49
4.5 Cycloid trajectory and derivatives 50
4.6 Trapezoidal trajectory . 51
4.7 Double-S trajectory . 52
4.8 Spline interpolation . 54
4.9 Operative field of the motor . 58
4.10 Torque velocity feasibility of motion profiles 59
4.11 Single Mass-Spring-Damper model 61
4.12 Multiple Mass-Spring-Damper model 62
4.13 Trapezoidal function frequency response x 62
4.14 Harmonic function frequency response x 62
4.15 Trapezoidal function frequency response z 63
4.16 Harmonic function frequency response z 63
4.17 Bode diagram of the system transfer function 64
4.18 Spectrum expression for different trajectories 65
4.19 Trapezoidal function frequency response 65
4.20 Double S frequency response . 66
4.21 Frequency response for different trajectories 66
4.22 Definition of environment of the model 67
4.23 Definition of the single rigid body arm 68
4.24 SimScape Multi-body model of the gantry 69
4.25 Polynomial profiles at the joint 1 (bridge movement) 70
4.26 Trapezoidal profiles at the joint 5 (cup frame tilting) 71
4.27 torque profiles at the joint 1 (bridge movement) 71
4.28 SimScape Multi-body model of the gantry 71
4.29 SimScape Multi-body model 3D visualization 72

5.1 Hardware configuration of the gantry stacker 74
5.2 Example of program blocks . 75
5.3 HMI panel: Access area . 76
5.4 HMI panel: Rack counter plate . 77
5.5 HMI panel: geometrical definition of the rack 77
5.6 HMI panel: cups selection . 78
5.7 Example of a PLCSIM Advanced instance 79

ix

5.8 General architecture of the SIMOTION Control Unit 80
5.9 Simotion execution system principle 81
5.10 General scheme of a Technology Object 82
5.11 Definition of the time usage in the execution system 84
5.12 Example of SIMOTION D425-2 Architecture 85
5.13 Trace and TO trace of a manual jog simulation 86
5.14 Example of a Simotion Cam . 87
5.15 Start-Stop on a synchronised cam 88
5.16 Travelling of consecutive cams . 89
5.17 Hardware in the loop scheme . 90
5.18 Simit working architecture . 92
5.19 Drive chart emulation . 93
5.20 communication between SIMIT and Simotion control unit 94
5.21 Virtual commissioning with Siemens Tecnomatix 94

6.1 Comparison between reality and digital twin (NX MCD) 96

x

Chapter 1

Overview on flat glass
industry

Flat glass, also known as sheet or plate glass, is most commonly used for man-
ufacturing windows, doors, mirrors and solar panels. It is produced by melting
a powder mixture, principally sand, into liquid and spreading it to the desired
thickness. The molten liquid is then cooled to obtain the desired product. Flat
glass is manufactured through controlled thermal and chemical reactions to ensure
the required toughness in the structural formation. Nevertheless, flat glass is highly
flexible and its features can be customised according to post treatments.

Figure 1.1: Market region share Figure 1.2: Market application share

Flat glass represents a substantial slice in the manufacturing market and it
is interconnected with several sectors, such as automotive and constructions. In
facts, in 2021, the global flat glass market size reached US$ 101.9 Billion and the
estimations state that it will reach US$ 144.2 Billion by 2027, exhibiting a growth

1

Overview on flat glass industry

rate of 5.87% during this period, keeping into account the fluctuations due to the
COVID-19 global pandemic and its consequences on the different end use industries
[1]. Analysing the customer sectors, the construction industry is the key factor
driving the oscillations of the market.
In addition, the upcoming development of an energy-sustainable society, enlarge
the request of flat glass as a key player in the construction of eco-friendly green
buildings, aimed at minimizing carbon emissions into the environment. On the
same theme, flat glass is widely used in photovoltaic modules, e-glass structures and
solar panels. Thanks to its recyclablity features, insulated flat glass is gradually
replacing the traditionally construction materials like bricks, stone and wood
thus allowing a pollution reduction and enhancing the comfort and the light for
the inhabitants. Another important field of application is the automotive. The
automobile manufacturers are increasingly employing tempered glass due to its
shatterproof properties that can prevent severe injuries and possible life threats in
case of accidents.

1.1 Layout of a float glass production line
The majority of the sheet glass is manufactured through a float production line,
which is characterised by a continuous stream of glass that is floating over a tin bath
and so allowing the homogeneous cooling and the removal of undesired residual
stresses.

Figure 1.3: Layout of float production line

2

Overview on flat glass industry

This process is the initial step for further treatments and for the manufacturing
of more complex sheets, such as coated glass and laminated glass [2]. It is common
sense to adopt a layout that consists of a main line, where the glass flow is cut,
which feeds secondary lines that complete the manufacturing of the lite.

1.1.1 Glass formation and microstructure
A glass melting furnace is the starting point of the process and it is the stage
where the raw materials are melted into glass. The principal aspect in this early
process is the power required to modify the micro-structure of the batch of silica-
sand. Depending on the intended use, there exist different designs of glass melting
furnaces which use different power sources. Most of the glass furnaces are fossil-
fueled (natural gas, heavy or light oil) or electrically powered, with the possibility
of a combined energy to optimize the efficiency and the cost of the energy income.

Another fundamental aspect for the glass melting furnace is the refractory
material building the chamber for the heating process. The melting tanks are
copmosed of refractory materials. Typical elements are alumina (Al2O3), silica
(SiO2), magnesia (MgO), Zirconia (ZrO2) and combined, it is possible to obtain
the necessary refractory ceramic materials.

The glass raw materials are usually fed to the glass melting tank continuously
or in discrete portions (batches) [3]. In addition to the basic components, such as
the silica sand, the batch can also contains the cullet from recycled glass coming
from the defective scraps discarded along the line process in order to lower the
power consumption (approximately 2% energy savings for every 10% of cullet).

For economical reasons, the glass melting furnaces are operated continuously
throughout the year for mass glass in order to save energy in the heat up process.
Apart from small planned intermediate repairs, during which the furnace is taken
out of operation, the furnace journey can last up to 16 years and more (depending
on the product group, capacity and color change). The capacity can range from
about one ton to over 2000 tons and the daily throughput can range from a few
kilograms to over 1000 tons. The operating temperature inside the furnace, above
the so-called glass bath is about 1550 °C. This temperature is determined by the
composition of the batch and by the required amount of molten glass, as well as
the design-related energy losses.

Continuously operated furnaces consist of two sections, the melting tank and the
working tank. These are separated by a passage or a constriction. In the melting
tank, the batch is melted and refined. The melt then passes through the passage
into the working tank and from there into the feeder (fore-hearth). In float glass
production, the glass is fed at special wide outlets as a glass ribbon over a so-called
float bath of liquid tin and it is moved over a profiled roller [4].

If pure oxygen is used instead of air for the combustion of fossil fuel (preferably

3

Overview on flat glass industry

gas), energy savings and, in the most favorable case, lower operating costs occur.
The combustion temperature and thus the heat transfer are higher, while the gas
volume to be heated is lower.

Figure 1.4: Cross-fired float furnace

In the heating of the combustion air, a regenerative or a recuperative system is
adopted in order to increase the energy efficiency.

In a typical regenerator, the hot exhaust gases (1300 °C - 1400 °C) are fed
discontinuously in the melting chambers through a latticework of refractory bricks
that is heated during the process. After this storage of the thermal energy of the
exhaust gas by the lattice, the direction of the gas flow is reversed and the fresh,
cold air required for combustion now flows through the previously heated lattice
work of the chamber. The combustion air is thereby preheated by the refractory
materials up to approximately 1200 °C. This results in considerable energy savings.
The process is repeated periodically at intervals of 20 to 30 minutes. The chambers
are thus operated discontinuously. This process can lower the energy consumption
up to 30%.

The other equipment used to improve the efficiency of the furnace is the recupera-
tor. This subsystem operates continuously and consists of a metallic heat exchanger
between the exhaust gas and fresh air. Because of the metallic exchanger surface
(heat-resistant high-alloy steel tubes in combination with a metallic double shell), a
recuperator can only be operated at lower exhaust gas temperatures and therefore
work less effectively (40%). Thus, only relatively lower preheating temperatures
(max. 800 °C) are achieved.

Float glass furnaces are plant specifically engineered for the production of soda
lime glass. The requirements concerning glass quality are stricter and differ from

4

Overview on flat glass industry

those related to hollow glass. In the adoption of this complete configuration, instead
of the throat, a neck is present, where coolers are installed, ensuring the perfect
temperature for the subsequent float process. The float process itself starts, when
the glass leaves the furnace at an overflow and enters in the tin bath. The adequate
furnace insulation and optimal flow profile of the combustion air, as well as efficient
preheating of the combustion air, allow the operation of the furnace with minimum
energy consumption.

In this embryonic stage, the micro-structure of the melted glass plays a crucial
part. The glass(or vitreous solid) is a solid formed by rapid melt quenching.
Principally, a glass is an unformed solid that exhibits all the typical mechanical
parcels of a solid. The infinitesimal structure of a glass lacks the long- range
periodicity observed in crystalline solids [5]. Due to chemical cling constraints,
spectacles do retain a high degree of short-range order with respect to original
infinitesimal polyhedra.

Figure 1.5: Micro-structure of the glass

From a microscopical point of view, glass can be identified as a liquid due to its
lack of a first-order phase transition [6]. During this transformation, most of the
thermodynamic variables, such as entropy and enthalpy, are not continuous through
the glass transition range, hence the equilibrium theory of phase transformations
does not hold for this material. The glass transition can not be classified as
one of the classical equilibrium phase transformations in solids, but it concerns
the decrement of viscosity with the lowering of the temperature. The typical

5

Overview on flat glass industry

composition of the glass output from a float glass line is the soda-lime glass, where
the amorphous structure of silica (SiO2) stands for the 70% to 74% composition
by weight. The remaining part comprehends several additives that modify also
the physical characteristics of the material. Sodium carbonate (Na2CO3, "soda")
is the principal additive and its contribution is related to the decrement of the
glass-transition temperature. Unfortunately, this molecule is soluble in water and
so other additives, such as lime (CaO, calcium oxide, generally obtained from
limestone), magnesium oxide (MgO), and aluminium oxide (Al2O3) are commonly
added to improve chemical durability and resistance. Soda–lime glasses represent
over 75% of manufactured glass. The characteristics of Soda–lime–silicate glass is
transparent, easily formed, but as drawbacks, it has a high thermal expansion and
poor resistance to heat.

The second step of the production line is the glass annealing lehr oven, which is
a long kiln with an end-to-end temperature gradient [7]. During this process, the
newly made glass is annealed along the transportation thanks to the temperature
gradient done with rollers or on a conveyor belt. This stress relieving process
strengthen the glass reducing the internal stresses and as a consequence, lower the
probability of crack formation.

Figure 1.6: Glass annealing lehr oven

In facts, the rapid cooling of molten glass results in an uneven temperature
distribution throughout the material, since the glass ribbon is subjected to different
cooling rates on the surface and in internal body of the glass. This temperature
difference represent the cause of mechanical stresses throughout the molten glass,
which can be sufficient to cause the material to crack as it cools to ambient
temperature.

In the process of annealing glass, the temperature is first equalised by holding
the glass at the annealing point for a predefined period of time. The glass is then

6

Overview on flat glass industry

slowly cooled at a rate that depends upon the maximum thickness of the glass.
From a thermal analysis, the temperature at which the glass ribbon leaves the tin
bath is circa 600°C, well above its annealing point. The annealing temperature
range for float glass is defined from 540°C to 470°C and it is the working area of
the central part of the lehr [8]. The basic working principle is to exploit the mass
air to cool uniformly the glass to near room temperature without causing the glass
to break. This stage requires a correct air recycle to be implemented and this is
possible thanks to fans that blow air directly onto the top and bottom of the glass
ribbon.

For the Float Annealing Lehr the transportation of the ribbon is performed with
a drive mechanism that sets the rollers in motion which pull the glass ribbon from
the tin bath into the lehr. An important aspect is speed of the ribbon, which is
directly related to the velocity of the rollers. The affecting factor for this variable
is the glass thickness that can be monitored in real time and from this evaluation
the velocity is controlled to obtain the desired thickness. The float glass that exits
from the annealing oven is at the correct temperature to be cut and subsequently
stored.

1.1.2 Glass quality defect detection and cut definition

The definition of the cut is set in order to optimize the non-defective glass throughput
based on two principal boundary conditions given by the production required by
the user and the defects present on the glass ribbon. The former condition is
extracted from a production worksheet, where the end-products available are
defined according to the dimensions and the minimum quality accepted.

Figure 1.7: quality defect inspection portal

7

Overview on flat glass industry

The latter demand comes from the online quality defect inspection portal which
is located at the exit of the lehr oven. Typically, this detection method is performed
with several digital monochrome cameras that analyse the light coming from a red
LED light source that traverse the float glass ribbon. The inspection principle holds
on the fact that good quality glass maintains a good optical homogeneity, resulting
in the stability of refraction angle, light path and power of the red incident beam
that pass through the glass. In case of abrupt changes in this refractive behaviour,
a defect is acknowledged. This image processing requires high efficient algorithms
based on the machine vision.

Figure 1.8: Real-time glass defect
image

Figure 1.9: 3D image processing of the
inspection

Typical defects detected are bubbles (gas inclusion inside the bulk glass), stones
(partially melted particle of rock, clay or batch ingredient embedded in the glass),
tin residues on the surface and the optical distortion [9]. This information on the
defects (position, dimension and gravity) is then evaluated by the optimization
cutting algorithm that defines the cutting lines on the ribbon and thus the plate
dimensions to fulfill the production request and reduce the cullet, as shown in fig.
1.10.

8

Overview on flat glass industry

Figure 1.10: Glass cutting optimizer

The undesired portions of glass ribbon containing defects will be cut and further
along the line this parts will be excluded from the processing thanks to tilting
conveyors that sends the unwanted lites to scrap. These debris will be then recycled
in the batch that will be melted in the starting oven.

1.1.3 Cutting and geometry check

Once defined the cutting scheme, the glass ribbon is moved by the conveyors
through the cutting portal. This section of the line is composed by multiple bridges
with one ore more cutting heads. The large majority of processing lines currently
use mechanical roller cutting for sheet glass. The rollers have a wedge-shaped
obtuse-angle section and are manufactured from hard alloys, based on tungsten
carbide [10]. The cutting proceeds in two stages: first a scratch is made, thanks to
the head tool, and, in a second stage, a bending force is applied across the cut line.
From this, the sheets of glass are divided. A groove remains after the roller has
passed along the surface of the glass forming a network of intersecting cracks in
the surface layer. the path of this crack grid coincides with the action of the shear
stress. Furthermore, plastic deformation of distant layers is exhibited and gives
rise to additional stresses which cause the cracks to grow [11]. In general, after
a scratch, three types of cracks can be identified: central normal, superficial and
lateral as shown in fig. 1.12.

9

Overview on flat glass industry

Figure 1.11: Crack formation scheme

As a result of the relaxation of the stresses, the crack starts to grow to equilibrium
dimensions arising in the surface layers as a result of the wedging action of the
roller and the residual stresses in the glass [12]. According to the intensity of the
stresses, the crack increases with the load and decreases with the sharpening angle
of the roller; the depth of the cracks is proportional to the intensity of the stresses.
The forces exerted by the roller on the glass are directed perpendicular to the edges
of the glass and act in shear in the adjoining layers. Considering a sharper roller,
the forces act further away from the normal to the glass surface and therefore the
region of the stresses results wider and in deeper layers of the sheet as shown in fig.
1.12. The sharpening angle of a roller is defined on the basis of the thickness of the
glass to be cut.

Figure 1.12: Different angles of the roller cut

10

Overview on flat glass industry

In the case of acute-angle rollers, undesirable lateral cracks are free to grow.
Hence the use of obtuse rollers is preferable, due to the fact that the stress action
is directed primarily downwards. For thick glass, a larger force is required and
this has a negative effect on the edge quality. In order to lower the breaking force,
tensile stresses must be introduced along the line of the cut, and therefore an
obtuse-angle roller must be adopted with an higher pressing force of the head
cutter. Typically, to maintain an high quality cut, lubricating liquids are used in
roller cutting. These liquids have several functions, from the increase of the roller
service life to the creation of an hydraulic cushion that gives a more uniform force
distribution during the cut. Mechanical rollers are the most suitable solution due
to the following advantages:

• equipment is inexpensive;

• operating costs are low;

• cutting operation is fast, since the cutting speed can reach 120 m/min);

• no limits on the glass sheet dimension that can be cut

The drawbacks of this process can be summarised in the relative poor quality of the
cut due to the non-planarity and high residual stresses of the sheet. The first cut
is done in the transversal direction of the glass ribbon and is intended to split the
continuous flow of glass that comes from the furnace in the desired sheets. This cut
is performed by mechanical rollers whose trajectory has a certain angle with respect
to the normal direction of the flow. Since the ribbon has a certain continuous
velocity, in order to produce a precise perpendicular cut, the speed of the head
cutter is calculated in relation to the glass flow speed and the misalignment angle.

Figure 1.13: Float glass cutting mechanism

11

Overview on flat glass industry

Multiple transversal head cutters can be adopted for closer transversal cuts in
the case of smaller sheet dimensions. After this groove creation, a breakout bar is
lifted up from under the glass ribbon and increase the tensile stress concluding the
cut. To create a certain gap between the sheets, accelerating conveyors are adopted
immediately after this stage. The next step is the longitudinal cut performing.
Depending on the chosen production by the optimizer, at least two cuts are
performed in the direction of the flow to remove the marks given by the dented
gears that pulled the glass flow. In this sense, the glass ribbon drift must be taken
into account in order to obtain the correct dimensions. An edge trimmer roller
works in a similar way of the breakout bar, splitting the glass products from the
marginal scrap. After this cutting process, a quality check is performed to evaluate
the correctness of the glass sheet (perpendicularity and dimension tolerance) and
to acknowledge the presence of a surplus of glass due to an incorrect break.

1.1.4 glass plate handling
The end products of the float glass line are the glass plates. Elements belonging to
the same production quality are usually stored on racks in several packs, according
to fig. 1.15.

Figure 1.14: Example of a glass rack

The storage of the glass lites can be done with the help of anthropomorphic
robots in case of small dimensions or with a cartesian gantry stacker. The definition
of the final destination is defined by the overall system and can be controlled and
monitored by the SCADA, which is the high level control and supervision system
of the production plant. This destination is typically located on the final end of a
branch of the main line.

12

Overview on flat glass industry

Figure 1.15: Anthropomorphic arm for glass plate handling

To redirect the glass plates to the correct path, the lite can be lifted up and
rotated with pop-up conveyors and with crossed belts it can be forwarded to the
secondary lines for the unloading. The unloading from the line can be performed in
several manners. In facts, the lites can be positioned on the racks in portrait mode
(where the largest lite dimension lies on the height of the rack) or, viceversa, in
landscape mode. Another important differentiation is the picking method. In fact,
the glass can be picked up from the top, in air mode or from the bottom where
the suction cups lift the plate in tin mode. In the latter case, the tilting conveyors
facilitate the maneuvers for the handling station. The focus of this analysis is keen
on the behaviour and the simulation of a gantry stacker handling mechanism, which
is the final actor in the processing of glass plate with larger dimensions. However,
due to its flexibility, This machinery can be used also as the feeder (and thus, the
starting point) of an automated line that works glass plates to transform it in more
complex final products. Examples of this post-treating processes are the coating
lines and the laminated lines, whose products are shown in fig. 1.16.

Figure 1.16: Examples of a coated and a laminated glass

13

Chapter 2

Digital twin concept

One of the fundamental architectural elements in the Industry 4.0 vision is the
digital twin, based on the basic principle that each physical entity should have a
reliable virtual representation in the digital world. Although this term is widely
overused in a larger sense, this concept gives origin to widespread possibilities in
the industrial scenario.

In the following chapter, a brief overview of the literature around the digital
twin concept and the general principles of virtual commissioning and Industry 4.0
is presented.

2.1 Principles of Industry 4.0

At the beginning of the 21st century, the fourth industrial revolution took place,
reshaping the way individuals live and work. Industry 4.0 is a realistic answer to
the seek for sustainability. However, this sustainability has not to be limited to
the environmentalism, because it also considers the preservation of economical and
social resources [13].

According to United Nations, sustainability refers to a movement for ensuring a
better and more sustainable well-being for all the population, including the future
generations, which aims to solve the everlasting global issues of injustice, inequality,
peace, climate change, pollution, and environmental degradation.

In simple terms, in the industry 4.0 scenario, interconnected computers, smart
materials, and IA driven machines communicate with one another, interact with
the surroundings, and make decisions with large autonomy. Concerning the man-
ufacturing, the digitization of the productive and business processes may offer
numerous advantages such as the increment of manufacturing productivity and a
limitation in the waste reduction [14].

14

Digital twin concept

Figure 2.1: General overview of Industry 4.0

Originally, Industry 4.0 was a concept strictly related to the manufacturing
industry. Nevertheless, this philosophy has evolved during the years and now
involves the digital transformation of the whole industrial sphere and consumer
markets.

According to the literature, in the following paragraphs are listed the basic
notions and characteristics of the Industry 4.0 [15].

• Business model novelty and innovation: interoperability, decentralization,
and real-time capability have drastically transformed how business units design
and deliver goods and services.

• Carbon/harmful gas emission reduction: according to United Nations,
industrial emissions are the cause of circa 40 % of greenhouse gas emissions.
The upcoming manufacturing digitization creates several opportunities for
lowering the carbon footprint by increasing efficiency and flexibility of pro-
duction and reduce waste. In the extreme sense, new business models can be
developed with the intent to shift the focus from mass production to the mass

15

Digital twin concept

customization and product individualization to decrease the contribution to
the materialization of low-carbon future.

• Corporate profitability improvement: the corporate profitability is in-
fected by the application of new technology trends such as IIoT, additive
manufacturing, data analytics, and smart manufacturing that can lead to
the following economical benefits: material flow optimization and inventory
costs, better time-to-market of products, resources efficiency, superior product
innovation and quality and improved production capacity and reliability.

• Energy and resource sustainability: Digital transformation supports
environmental sustainability through sustainable energy and resource trans-
formation. With the advent of Industry 4.0, the development of Smart energy
grids facilitates the integration of power grids and renewable energy sources.
Moreover, efficient production systems and advanced digital manufacturing
technologies contribute to material efficiency and energy saving.

• Environmental responsibility development: Thanks to the development
of reactive and proactive environmental-friendly practices it is estimated to
have implications for socio-economic sustainability. An important aspect is
represented by the productivity impact enabled by collaborative production
management, supply chain-wide knowledge management capabilities and
production flexibility.

• Human resource development: Smart manufacturing ensures process
simplification and automation, thus resulting in enhanced decision-making
processes that can improve HR efficiency [16]. With AI and data analytics
tools, it is possible to predict meaningful career development patterns and
learning programs based on the individual behaviour, experience and skills,
personality, and learning patterns of each employee. With the use of Internet
of People (IoP) working operators can interactively communicate with each
other improving leadership and middle-management. Lastly, effective ways of
industrial training can be performed with the help of augmented or virtual
reality and simulation of the system.

• Increased production efficiency and productivity: According to [14], the
Manufacturing digitization allows the implementation of an hybrid lean-agile
manufacturing ecosystem. In addition, the automation interoperability affects
positively the production efficiency and productivity by improving process
control measures, facilitating real-time maintenance, monitoring machine
performance in real-time [17]. In the end, the use of automation systems
reduces human contribution leading towards lower human errors, risks, and
safety countermeasures.

16

Digital twin concept

• Manufacturing cost reduction: The cost-saving advantages that Industry
4.0 offers are related to improved process control techniques, enhancement
of manufacturing accuracy, precision and quality, real-time monitoring and
accident prediction and prevention. In general, the production process towards
an autonomous system leads to lower human resource costs and material/re-
source/energy efficiency.

• Manufacturing agility and flexibility: Through Industry 4.0 and smart
manufacturing, manufacturers are enabled to adopt a more agile and flexible
manufacturing system. With the help of industrial simulation, digital twins,
and data analytics it becomes possible to micromanage processes and exploit
real-time capability.

Figure 2.2: Architectural design of a smart industry

To achieve the Industry 4.0 expected goals, the new up-do-date technologies are
exploited and coexist. In facts, the cooperation of Information, Digital, and Opera-
tion Technologies (IDOT), Automated Guided Vehicles (AGV), robots, Augmented
and Virtual Reality (AVR), data analytics, cloud computing, Internet of Services
(IoS) and Artificial Intelligence (AI) will lead to the desired industrial revolution.
This solution has become feasible very recently, thanks to the maturity in terms

17

Digital twin concept

of integrability and interoperability between the different up-to-date technologies
necessary for digitization.

As shown in 2.6, the industry 4.0 digital transformation relates to the complete
digitization and integration of the final product, form the production to the end of its
natural life-cycle. At the top of this architecture, the Digital Supply Network (DSN)
manages an integrated supply network (both horizontal and vertical) including
smart suppliers, connected customers, smart factories, production machinery that
communicate and interact on a real-time basis in a worldwide scale [18].

This communication efficiency, transparency, surveillance, and control in the
future smart factory leads to lower downtime, waste, defects, and risks across the
whole production process. [15]. The virtualization principle of Industry 4.0 and
the simulation of sensor data acquired from the physical world into digital twin
models permit to evaluate the behaviour of the real copy and seek for predictions
and optimized solutions of manufacturing operations [19].

Considering a real design department, the digital twin can be used to test and
simulate the real future use of the physical products and ascertain the digital
footprint throughout the complete lifecycle.

Lastly, the use of industrial robotics, automation and additive manufacturing
push towards modularity characteristics to facilitate an agile, flexible and decentral-
ized production environment tailored to the ever-changing customer requirements
[20].

2.2 Digital twin concept
The progression of the technologies has improved the development of the design
process in all its sides. Thanks to Computer-aided technologies (CAD, CAE,
CAM, FEA,..) Big data, Internet of things (IoT), artificial intelligence, cloud
computing, the industry conception has been revisited [21]. The coexistence of
these technologies in the planning procedure creates a connection between the
physical world and the digital world, which represents the future manufacturing
idea, characterized by growing complexity and high demands from the final client.
The process of this integration is at its first steps. The actual point in the technology
S-curve for this scenario is set on the digital twin concept [22].

The digital twins concept is the redefinition of the modeling and simulation
technology. With digital twins technology, automation designers are capable of
overcoming the limitations on the engineering analysis capabilities of simulation.
In general, digital models are divided in three principal categories according to the
level of emulation:

• digital replica: considers principally the automatic projection of system
constructions, predicting and optimizing scenarios.

18

Digital twin concept

• digital shadow: emphasizes mainly the mathematical modeling to describe
the physical/chemical attributes of a given system.

• digital twin: an integrated multi-physics and multi-scale simulation of a
system that can reproduce the mechanical, electrical, software, and other
properties of the reality.

The focus of this project is the digital twin. This solution is typically developed
in order to optimize the physical product/system based on the updated real-time
data synchronized from smart sensors. Typical industry fields that adopted this
method are the manufacturing, aviation, healthcare, and medicine.

In the Smart Manufacturing System Design, the simulation technology is not
simply restricted to a standard tool for supporting designers to solve specific
engineering problems, but it is the core concept for the improvement of the design
phase to subsequent lifecycle activities.

Figure 2.3: Concept map for Smart and Classical Manufacturing System Design

As shown in 2.3, the classical engineering and design methods lack of an effective
iterative procedure of optimization made of small adjustments in the design process.
Instead, digital twin models are macroscopic components that can be modified
and tailored. Interesting outcomes form this new technology practice are complex
design elements and data that can be analysed to avoid upcoming defects (i.e.
production bottlenecks) [23].

The design process for the creation of a digital twins is composed by three
phases:

1. Conception stage of digital twin: in this phase the static configuration of
the system is been performed, defining the function design and the structural

19

Digital twin concept

design by a continuous interaction between the two spheres. The objective
of this stage is not the pursuit of accuracy but a continuous trial-and-error
design.

2. Forming stage of digital twins, where it is studied and developed the
dynamic execution of the system. At this instance, the behavioural design and
the control software design are developed with the continuous feedback from
the several areas. In this step, key technical design parameters, like motor
sizing, are determined by simulations. At this stage, it is a good practice to
perform the semi-physical system commissioning required by industry-customer
specifications and safety measures.

3. Fine-tuning stage of digital twins In this last step, the Performance
optimization is searched by investigating the intelligence design and the per-
formance design. In this interval, key factors are the flexibility, the robustness
and the artificial intelligence teaching methods.

The digital twins is the appropriate settlement for the reduction of expensive
trials and errors in the design process that can accurately spot the critical points
that need to be studied, modeled and improved. In another words, this approach
leads to a faster and cheaper achievement of the manufacturing validation by
running fewer physical test, with the addition of higher design efficiency and quality.
From a mere economical point of view, the most direct value of the digital twin
implementation is the abolition of the costly pure-physical commissioning and test.
Although, the higher returns are related to design innovation thanks to the intrinsic
iterative process.

According to the previous development definition, it is possible to define the cor-
rect framework corresponding to the Digital Twin for Smart Manufacturing System
Design, which is a Function-Structure-Bevahiour-Control-Intelligence-Performance
(FSBCIP) as defined in fig. 2.4 [24].

20

Digital twin concept

Figure 2.4: Framework of the smart manufacturing system design

In the following graphs the various stages of this process are briefly described:
1. Function model: This preliminary phase defines a structured description

of the activities for manufacturing and underlines the relations between the
manufacturer demand and the constitutive elements of product manufacturing,
assembly, maintainability, and safety. This introductory model includes the
general process planning, the equipment selection, and the mechanical design
of parts.

2. Structure model: In the structural development phase, the assembly rela-
tions and connections among the mechanical structures before designed. The
result of this interrelation is the basis for the processing and transportation
processes of the goods, energy consumption, information networking, and
motion behaviour. After this stage, the topology definition, layout planning,
are determined.

3. Behaviour model: Here is described the mechanical motion transmission,
transformation, and their mutual relations. This submodel comprehends the
study of equipment motion, Work In Process (WIP) motion and material
handling. From this phase, the principal elements of motion behaviour basically
include forces, displacements, velocities, acceleration and jerk.

4. Control model. In this stage, the program codes that define the automation
routines is developed to interacts correctly with the structure and the electrical
sensor grid. In general, it comprehends electrical and pneumatic system
designing, sensor networking and multi-processing coordination.

5. Intelligence model. In this progress stage, the Intelligent model is capable
of the description, development, and validation and the learning ability. In

21

Digital twin concept

this moment, reasoning rules, machine learning algorithms and computational
optimization algorithms are typically applied.

6. Performance model. In this final stage, the model includes the evaluation
and optimization of the system performance in terms of efficiency, flexibility
and robustness.

The input of the design process are typically defined by personalized requirements
and parameters, while the output is represented by the virtual models, the motion
scripts and trajectories, control schemes and intelligent algorithms.

2.3 Virtual commissioning
In this section, the final phase of this thesis, the Virtual commissioning is
theorized. The principal goal of Virtual commissioning (VC) is to test manufacturing
systems and associated control programs through simulation, conducted on emulated
instances before the real systems are installed and realised. The expected benefits
of this procedure consist in a reduction of debugging time and a limitation of
corrections performed during real commissioning. To obtain this achievement,
Virtual commissioning requires a detailed manufacturing system model available
for the simulation of all the technical components [25].

Nowadays, the design of automation systems takes place in an industrial envi-
ronment characterized by significant cost constraints, lack of material disposal and
aggressive strategies for rapid time-to-market. For these reasons, the scheduled
time-frame for engineering is progressively tightening whereas the demands on
planning accuracy and planning quality are growing.

Manufacturing systems are a collective of various elements such as storage,
robots, conveyors, handling and transportation systems, processing machinery tools,
control and HMI systems, distinguished in standard parts and custom purpose-built
components [26]. The development design of a production assembly comprehends
several phases: facility design, mechanical engineering, electrical engineering and
automation engineering (programming of robots, PLCs and HMI). These decision-
making processes are often sequentially executed, but their consequences and their
results affect all the other subsystems in development.

In the classical engineering point of view, after the completion of design, supply
procurement and assembly, the real commissioning is completed. Conventionally,
the starting of the test phase concerning the whole planned manufacturing system
is not feasible before the fulfillment of the previous steps. As a consequence, a
considerable number of design problems and faults is not detected until the first
system start-up. This downstream redesign, due to test results, leads to expensive
corrective measures with a short reaction time. Usually, these defect corrections,

22

Digital twin concept

since executed during the installation, commissioning and the early production
phases are delayed incurring in increased costs for all the parties involved. According
to [27], the commissioning time consumes up to 25% of the time available for plant
engineering and construction and up to 15% is employed in solving bugs in the
automation control software alone.

The solution to this problem presented in the Industry 4.0 vision is the Vir-
tual Commissioning. During Virtual Commissioning, a digital duplicate of the
manufacturing system is used to proceed with commissioning through simulation,
without relying on the real components. The main goal of this procedure is the
early detection and correction of design and programming errors.

Figure 2.5: Virtual commissioning procedure

An experimental study performed in 2006 [27] shows the positive effects of Virtual
Commissioning on the error rate and the debugging phase. In this experiment,
two groups of engineers were compared on the design of an automation system
development, one using virtual commissioning, while the other in a more classical
way. The results showed a decrement of standard commissioning time by 75%, with
enhanced software quality at the end of the project development. The fulcrum of
this process is then the reproduction of an emulated model that can reproduce the
real specimen behaviour, in a reasonable time amount.

The outcome of Virtual Commissioning process is the analysis and verification of
all the design aspects of the project. The simplest behaviours that can be replicated
and checked correspond to the geometry, kinematics and mechanical design, thanks
to a 3D simulation of the assembly. With this opening phase simulation, the project
designer is able to detect the mechanical responsibilities on geometrical planning
errors.

The following step consists on the further verification of the control programs,
the electrical network and the sensors efficiency. Emulating the series of I/O used,
it is possible to detect deviations and bugs from the specified control software.

This verification of control can be arranged in four basic system configurations:

23

Digital twin concept

1. Real plant and real control system: the classical procedure for testing during
real commissioning

2. Simulated plant and real control system: “Soft commissioning” often called
“hardware in the loop” (HiL). The hardware controller is necessary in advance,
while the mechanical elements are emulated. In simpler terms, the PLC is the
real hardware controller. An improvement is the exploitation of an emulated
PLC, a technique called "software in the loop (SiL)" simulation. Therefore, no
hardware PLC is required.

3. Real plant and simulated control system (“Reality in the loop”)

4. Simulated plant and simulated control system

Figure 2.6: Hardware-in-the-Loop architecture

This last point represent the virtual commissioning and it is the combination
of the 3D simulation and the control logic that leads to an integrated simulation
environment that is capable of checking the feasibility of all complete functional
chains from control programs through sensors, actuators and drives onto the
mechanical movements.

Figure 2.7: Comparison between Classical engineering and Virtual Commissioning

24

Digital twin concept

Fig. 2.8 shows the main differences between the classical engineering process and
the design that exploits the virtual commissioning. The first step is the definition
of the model of the production system. With respect to the classical sequence, the
virtual commissioning allows the simultaneous development of the several areas,
saving time and costs by avoiding the rework and changes with the optimization
loops outlined by the arrows in figure.

Figure 2.8: Architecture of the several concepts

The implementation of Virtual Commissioning in the actual engineering pro-
cesses is hard for various reasons. The principal concerns are related to the high
implementation costs at the beginning as well as the considerable complexity of
the modelling of the reality. An important characteristics to be evaluated is the
level of abstraction regarding the simulation model. In facts, increasing the level of
accuracy of the simulation, the better the results at cost of exponentially computing
requirements. Several conditions and requirements can be controlled, such as the
collision check for the different configurations and bad designs. With Virtual
Commissioning, the designers can verify the planned cycle time of the production
system. Furthermore, critical and limit scenarios can be investigated without costly
crashes and possible productive downtime [28] .

25

Chapter 3

Kinematics and Dynamics of
the Gantry stacker

In order to better understand the behaviour of the gantry stacker, a kinematics
and dynamics analysis is developed in this chapter. Starting from the mechanical
design and specifics, the end-effector motion is developed with the help of MatLab
software and its Robotic Toolbox add-in.

3.1 Direct Kinematics

The first step of this study is the development of a direct kinematic model of the
robot. Typically, a manipulator is a structure composed by several rigid bodies,
called links, which are interconnected through kinematic couples, also known as
joints, constituting a kinematic chain. The joints are the fundamental elements
that permits relative movement between links. There exists two principal types
of joints: prismatic joints which permit relative translation and revolute joints
which allow relative rotation. Each joint has a parent and a child, so forming the
kinematic chain. The number of joints n in a tree structure represents also the
degree of freedom of the manipulator. A robot configuration is a specified subset of
values for the joint variables, resulting in a defined pose of the manipulator, which
is the exact geometrical description of all the arms.

26

Kinematics and Dynamics of the Gantry stacker

Figure 3.1: Robot reference frame

The first extreme of the kinematic chain is defined by the base, which defines
also the principal reference frame Ob-xbybzb. The last extreme, instead, is the end-
effector, which corresponds to the final tool of the manipulator such as a gripper
or a drill. According to this final rigid body, the end-effector reference frame is
defined with origin in the tool centre point (TCP) and the three unit vectors are
found through a homogeneous transformation matrix that relates the end-effector
reference frame Oe-xeyeze with the base reference frame Ob-xbybzb defined in the
following way [29]:

Tb
e(q) =

C
n⃗b

e(q) s⃗b
e(q) a⃗b

e(q) p⃗b
e(q)

0 0 0 1

D
(3.1)

where:

• q represents an (n × 1) vector containing the joint variables

• p⃗e represents the position vector of the TCP with respect to the base reference
frame

• a⃗e represents the arbitrary unit vector chosen in the approach direction of the
tool

• s⃗e represents the arbitrary unit vector perpendicular to a⃗e chosen in the sliding
direction of the end-effector tool

• n⃗e represents the normal vector and it is defined in order to make the triplet
of versors orthonormal.

27

Kinematics and Dynamics of the Gantry stacker

For complex structures, the geometric evaluation of this homogeneous matrix is
not immediate, so a systematic procedure is preferable. It is possible, in facts, to
use a recursive approach which considers the transformations between the several
rigid bodies done by the joints.

Denavit-Hartemberg convention

Considering an open chain manipulator, n + 1 links and n joints are defined. The
interconnection is of the parent-child type, where each joint links the previous
rigid body with the next link permitting a motion defined by the joint variable qi.
Therefore, reference frames of the links are related to the homogeneous matrices
of the previous manipulator arms, leading to the equation 3.2 that defines the
reference frame of the n-th link according to the initial reference frame.

T0
n(q) = A0

1(q1)A1
2(q2) . . . An−1

n (qn) (3.2)

This recursive method requires a general and systematic procedure to determine
position and orientation between two consecutive arms. Typically, the Denavit-
Hartemberg convention is adopted. The DH convention defines the choice of the
reference frame of each rigid body and the exploitation of the geometric parameters
of arms, according to the joint variables q. The reference frame of the i-th link is
determined through the following rules

• selection of zi axis lying on the axis of joint i + 1. The reference frame n has
not the z axis automatically defined since there is no other joint, but it is
common sense, when the final joint is revolute, to align zn with zn−1;

• reference frame origin Oi is found at the intersection between zi axis and the
normal direction between zi and zi−1. In the reference frame 0, only the z0
axis is defined, then the origin O0 can be chosen arbitrarily;

• xi axis direction along the normal between zi−1 axis and zi axis with positive
orientation towards joint i + 1. The convention is not univocal in the case of
intersecting consecutive axes and so xi axis direction is arbitrary. Same holds
for x0 since there is no previous joint;

• yi axis direction is defined to complete an orthonormal basis triplet of vectors.

28

Kinematics and Dynamics of the Gantry stacker

Figure 3.2: Denavit-Hartemberg convention

When the reference frame definition is not arbitrary, the indetermination can be
exploited to simplify the procedure. Once the orthonormal bases are chosen, the
geometrical parameters of each arm is defined, according to the DH parameters
[30].

• ai as the distance along xi between Oi and O′
i

• di as the coordinate on zi−1 of O′
i

• αi as the angle between zi−1 axis and zi axis around the xi axis in counter-
clockwise direction

• θi as the angle between xi−1 axis and xi axis around the zi−1 axis in counter-
clockwise direction

Two of these parameters, ai and αi, are constant and consider only the connection
geometry between two consecutive joints. Depending on the nature on the joint,
one of the other two parameter is related to the joint variable: if the i-th joint
is prismatic, the variable is di, else the variable becomes θi in the presence of a
revolute joint. According to DH convention, the homogeneous matrix that relates
the reference frames of two consecutive links is obtained in the equation 3.3.

Ai−1
i (qi) =

cθi

−sθi
cαi

sθi
sαi

aicθi

sθi
cθi

cαi
−cθi

sαi
aisθi

0 sαi
cαi

di

0 0 0 1

 (3.3)

The complete transformation can be done through the reiteration of the process
for all the joint in the rigid body tree. The final homogeneous matrix is evaluated
through equation 3.2.

29

Kinematics and Dynamics of the Gantry stacker

Direct Kinematics of the Gantry

The machinery under investigation is a Gantry-stacker adopted to the pick and
place of glass sheets. The dimensions of these plates can range from 1 m up to 9 m
of length and with a thickness of few centimeters with the possibility of handling
up to four adjacent lites simultaneously. The total weight that is transported can
rise up to over a ton. For these reasons, a simple anthropomorphic manipulator
is not suitable for the task and a structure able to sustain and relieve the load is
required. Hence, a gantry structure with several ribbons is a preferable solution.
Being a gantry stacker, the kinematic chain can be distinguished in a Cartesian
structure, composed of three prismatic joints and a semi-wrist part, consisting of
two revolute joints.

Figure 3.3: Gantry stacker

According to picture 5.17 it is possible to identify the following rigid bodies
defining the kinematic chain:

• bridge supports, which act as guides for the translational movement along x
axis. Their reference frame is define as base and it is the root link for our
manipulator structure;

• bridge, a wheeled beam able to move over the support guides;

30

Kinematics and Dynamics of the Gantry stacker

• carriage, a structure able to translate along y axis on the hollow guides internal
to the bridge beam. This movement is performed through a catenary;

• lifting piston, mechanism able to perform z translation attached to the carriage;

• rotating structure, unit composed of a motor and revolving coupling that
allows rotation along the z axis of the frame;

• cup frame, it is the end-effector of the robot. It is a structure containing
2D grid of vacuum cups capable of picking glass sheets thanks to negative
pressure gradients. On this gripper tool are also present different sensors, such
as sonars and proximity sensors.

Given this preliminary geometrical description and the mechanical drawing with
the exact dimensions, the direct kinematic expression that links the 5 joint variable
q⃗ and the pose of the gantry can be computed, following the Denavit-hartemberg
convention.

i-th link ai di αi θi

1 - Bridge a1 dx −90◦ +90◦

2 - Carriage a2 dy −90◦ +90◦

3 - Lifting piston 0 dz 0 0
4 - Rotating structure a4 0 +90◦ θz

5 - cup frame a5 0 −90◦ θx

Once the definition of the reference frame for each robot link is developed,
resulting in the Denavit-Hartemberg parameters expressed in the table and the
homogeneous transformation matrices described in eq. 3.4.

T5
0 =

s4c5 c4 s4s5 dx

c4c5 -s4 c4s5 dy

-s5 0 c5 dz

0 0 0 1

 (3.4)

Joint space and operative space

As shown before, the direct kinematic equation allows to express position and
orientation of the end-effector reference frame as a function of the joint variables.
During an automated operation, the assignment of position and orientation of the
tool in function of the time is a key factor. This pose definition is simpler for the
position, while is not immediate for the orientation since it is defined according
to the three versors (ne, se, ae) that must satisfy the orthonormality condition.
In summary, it is possible to identify the tool position with a minimum number

31

Kinematics and Dynamics of the Gantry stacker

of coordinates defined by the geometric of the system and the orientation can be
described by a minimal representation of the rotation with respect to base reference
frame. The final pose can be described with a (m × 1) vector with m ≤ 6 which is
defined according to eq. 3.5.

xe =
C
pe

ϕe

D
(3.5)

This description is defined in the operative space. In order to link this vector with
the joint variable vector q described in the configuration space, it is fundamental
to define the direct kinematic equation in the alternative form expressed in eq. 3.6.

xe = k(q) (3.6)

This is a vectorial function in general non-linear able to evaluate the end-effector
position in operative space starting from the joint configuration.

On the contrary, the inverse kinematic problem requires the definition of the
joint variables given the end-effector pose. This problem plays a key role in the
translation of the motion specifics, typically starting from a trajectory in the
operative space and resulting in the corresponding joint motions that produce the
desired movement. In general, the inverse kinematic problem is more complex
since the non-linearity characteristic of the equations. Typically this problem can
have multiple solutions due to the redundancy or, on the contrary do not have
admissible solutions because the pose does not lie in the dexterity working region
of the manipulator. The determination of closed-form solutions requires geometric
and algebraic intuition to define the significant equations and couplings of the
structure to reduce the number of joint variables related to an operative coordinate.
For complex case, the search for analytic solutions can be solved with numerical
algorithms that exploit the Jacobian matrices of the system.

Robot configuration and pose with MatLab Robotic Toolbox

In this subsection, a simple robot model is built and developed using the Robotic
MatLab Toolbox [31]. Typical robot models designed with this application are the
embryos of the digital twin concept, where simple feasibility checks can be done on
the preliminary aspects of the automation mechanism. This robot representations
simulate the kinematic and dynamic properties of manipulator robots and other
rigid body systems. A kinematic chain is defined in MatLab as a rigidBodyTree
object containing rigidBodies linked by rigidbodyJoints elements with their
joint transformations and inertial properties [31]. The first step consists in the
definition of a proper kinematic chain where, starting from the robot base, all the
bodies are connected, up to the end-effector, thanks to the function addBody.

Each rigid body is attached by a joint, whose goal is the definition of the
motion that the arm can perform with respect to its parent. Characteristics of

32

Kinematics and Dynamics of the Gantry stacker

this rigidbodyJoints are the attachment point between the child and the parent
kinetic links, but also the nature of the degree of motion defining three basic types
of joint: fixed, revolute, and prismatic. In addition,Each joint is characterised
by an axis of motion defined in its properties. The joint axis is represented by a
3D unit vector that, depending on the nature of the joint can define the axis of
rotation (for revolute joints) or the axis of translation (for prismatic joints) [31].

Figure 3.4: Definition of joints according to MatLab Robotic Toolbox

The HomePosition represents the starting position for each specific joint, which
is a point within the position limits. The configuration composed by all the joints
in their initial position can be recalled as homeConfiguration.

Joints also have properties that define the fixed transformation between parent
and children body coordinate frames. In MatLab, these properties can be modified
thanks to the setFixedTransform function. Depending on the definition of the
kinetic chain and its transformation parameters, the joint transformation is defined
according to the child or the parent body, either the JointToParentTransform or
ChildToJointTransform property is set using this method. The image 3.5 shows
the previous properties according to the kinematic chain [31].

Another important element of this multi-body model is represented by the
collision object. This geometrical feature is the 3D space occupied by the body.
According to the complexity of the modelling, it is possible to define collision with
simple geometric figures (parallelepiped, sphere, cylinder), but there is also the
possibility of adopting collision primitives from a convex collision mesh imported
with an .STL or .DAE file. Even in this case, the specification of a rigid transform
matrix is optimal to correctly pose the body geometry in the reference frame.

This MatLab script exploits the graphical visualization of the several elements of
the robots and so it is possible to analyse and control the preliminary configurations
that the manipulator should reach. These joint configurations q can be previously
set with the code, but also visually redefined, thanks to an interactive GUI. With

33

Kinematics and Dynamics of the Gantry stacker

Figure 3.5: Cup frame representation in .STL file

this method, it is possible to transform the kinetic chain by moving the end-
effector of the robot, but also by modifying the joint variable of each singular axes
independently, by selecting the correct marker body to be translated or rotated as
shown in fig. 3.6 and 3.7.

Figure 3.6: Single axis movement per-
formed on the multi-body model

Figure 3.7: Movement of the end-
effector performed on the multi-body
model

With this initial multi-body, it is possible to confront also the principal waypoints
of the trajectories performed by preliminary behavioural analysis and perform the
collision check with the obstacle that occupy the workspace of the gantry stacker.
Thanks to the Inverse Kinematic Designer app, it is possible to design an
inverse kinematics solver for the robot model previously developed. In facts, by
defining the parameters of the inverse kinematics solver, adding the constraints
relative to the obstacles and the requested job task to be performed, the feasibility
of the desired behaviour is controlled. In principles, the sequence performed in this
environment are defined as following:

34

Kinematics and Dynamics of the Gantry stacker

• Import of the rigid body tree model previously built.

• Adjust inverse kinematics solvers and import of the collision bodies of the
other elements to be encountered.

• eventual definition of the constraints that affect the robot (locking a certain
joint movement and boundary definition in the space for the end-effector).

• Definition of the joint configurations to be analysed and the relative waypoints
in the trajectory.

• Export of the results and the review in the MatLab Workspace.

As a result, in this programming environment, it is possible to check which trajecto-
ries are feasible and which are not available due to collisions with the environment
elements, but also against the links of the robot (self-collision), as shown in figure
3.8.

Figure 3.8: Collision check in the Inverse Kinematic Designer

To further develop the digital twin principles, once defined the model for the
definition of the trajectory waypoints and their relative collision checks, it is
fundamental to analyse the kinematics and dynamics of the system.

Jacobian matrix and differential kinematics

The objective of the differential kinematic is to determine the relationships between
the joint velocities and the linear and angular velocity of the end-effector. This

35

Kinematics and Dynamics of the Gantry stacker

principle is translated into eq. 3.7:

ṗe = JP (q)q̇
ω̇e = JO(q)q̇

(3.7)

where ṗe is the linear velocity vector and ω̇e is the angular velocity of the end-
effector. This set of equation can be generalised into eq. 3.8.

ve =
C
ṗe

ωe

D
= J(q)q̇ (3.8)

where J is the geometric Jacobian of dimensions (6 × n) of the manipulator. The
starting point is the analysis of the velocity of a generic robot arm [29]. According
to the Denavit-Hartemberg convention previously adopted, the link i connects
the joints i to i + 1. Being pi−1 and pi the position vectors for the origins of the
reference frames for the given joints, the vectorial sum that relates the positions of
two consecutive arms is described in eq. 3.9.

pi = pi−1 + Ri−1r
i−1
i−1,i (3.9)

According to the derivation of the rotation matrix, it is possible to evaluate the
derivative ṗi which is described in eq. 3.10.

ṗi = ṗi−1 + Ri−1ṙ
i−1
i−1,i + ωi−1 × ri−1,i = ṗi−1 + vi−1,i + ωi−1 × ri−1,i (3.10)

From this equation, it is possible to consider the linear velocity of arm i as a
function of the linear and angular velocity of i−1 link. vi−1,i represents the velocity
of the origin of the reference frame i with respect to the origin of the reference
frame i−1. This general relationship for the speed of a robotic arm can be specified
on the basis on the joint type that links the two rigid bodies. In the case of a
prismatic joint, the reference frame orientation does not change, thus ωi−1,i = 0.
In addition, the linear velocity can e defined as eq. 3.11

vi−1,i = ḋizi−1 (3.11)

where zi−1 is the unit vector of the axis of joint i. As a consequence, the velocity
of the arm moved by the prismatic joint is defined by eq. 3.12.

ωi =ωi−1

ṗi =ṗi−1 + ḋizi−1,i + ωi × ri−1,i

(3.12)

On the other hand, the revolving joint links the orientations of the two reference
frames with the joint variable, according to eq. 3.13.

ωi−1,i = θ̇zi−1,i (3.13)

36

Kinematics and Dynamics of the Gantry stacker

The difference in linear velocity between frames derives from the induced motion
of joint i − 1 on the reference frame i. The expressions for the linear and angular
velocity are defined according to eq. 3.14.

ωi =ωi−1 + θ̇izi−1

ṗi =ṗi−1 + ωi × ri−1,i

(3.14)

Evaluation of the Jacobian

In order to evaluate the Jacobian is preferable to analyse separately the linear
velocity from the angular velocity [29]. The linear velocity contribution can be
stated as the time derivative of the pose pe(q), defined as eq. ??.

ṗe =
nØ

i=1

∂pe

∂qi

q̇i =
nØ

i=1
jPi

q̇i (3.15)

Each term represents the velocity contribution of the i joint to the velocity of the
end effector, calculated when the other joints are locked. Similarly to the definition
of the arm velocity, also the Jacobian contribution can be distinguished according
to the type of joint. In the case of a prismatic joint, the variable q is represented
by d and, consequently, the Jacobian contribution is described by eq. 3.16.

jPi
= zi−1 (3.16)

On another perspective, the joint variable for a revolute joint is defined by θ and
its contribution on the linear velocity can be defined as eq. 3.17

jPi
= zi−1 × (pe − pi−1) (3.17)

In addition, the angular velocity contribution is defined as eq. 3.18.

ωn =
nØ

i=1
ωi−1,i =

nØ
i=1

jOi
q̇i (3.18)

It is fundamental to stress that in the case of a prismatic joint, its relative
component of the jacobian matrix is null, due to pure translation, while considering
a revolute joint, the contribution corresponds to the zi−1 axis. The final Jacobian
matrix can be expressed as the separate contribution of jPi

and jOi
described in

eq. 3.19.

jPi
=

zi−1 for a prismatic joint
zj−1 × (pe − pi−1) for a revolute joint

jOj
=

0 for a prismatic joint
zi−1 for a revolute joint

(3.19)

37

Kinematics and Dynamics of the Gantry stacker

In this way, it is possible to calculate the Jacobian directly with the kinematic
relations because the vectors that appears in eq. 3.19 are functions of the joint
variables q.

To resume, the Jacobian matrix represent an effective instrument to evaluate
the translational and rotational velocities of each point of the kinematic chain, with
particular focus on the end effector. This matrix is the most important element in
the kinematic analysis thanks to which it is possible to perform inverse kinematics
algorithms, but is also part of the solution to better understand the dynamics of
the manipulator.

3.2 Dynamics of the manipulator
The dynamic model of the manipulator is the instrument able to translate the joint
actuations into the robotic structure motion. This model for the derivation of the
motion law of the manipulator arm can be implemented through several methods.
In this section the Lagrange’s formulation is described.

3.2.1 Lagrange formulation
The Lagrangian of a mechanical system is defined as 3.20.

L = T − U (3.20)

where T is the kinetic energy and U is the potential energy of the system. This
equation is dependent only on the generalised coordinates qi that describe the
position of all the mechanical elements of the system independently on the reference
system. The Lagrange equations are then defined as in eq. 3.21:

d

dt

∂L
∂q̇i

− ∂L
∂qi

= ξi (3.21)

where ξi is the generalised force associated to the generalised coordinate qi. This
equation can be rewritten in matrix form as in eq. 3.22

d

dt

A
∂L
∂q̇

BT

−
A

∂L
∂q

BT

= ξ (3.22)

The vector ξ comprehends all the non-conservative forces, considering the actuation
torques generated at the joints, the friction forces between moving parts and also the
forces derived from the interaction between the end-effector and the environment.
As a first step, it is fundamental to evaluate the kinetic energy of the manipulator

38

Kinematics and Dynamics of the Gantry stacker

given by the sum of the contributions of each arm in motion and the contributions
of the actuators, according to eq. 3.23.

T =
nØ

i=1
(Tli + Tmi

) (3.23)

The kinetic energy contribution of each arm can be evaluated as eq 3.24:

Tli = 1
2

Ú
Vli

ṗ∗
i

T ṗ∗
i ρdV (3.24)

where the rigid body is subdivided in infinitesimal volume element dV with definite
density ρ. ṗ∗

i represents the linear velocity vector of dm particle. This velocity
component can be expressed as the vector sum of the velocity of the centre of
mass and a Coriolis term related to the rotation of the arm and the distance of the
particle from the centre of rotation.

ṗ∗
i = ṗli

+ ωi × ri = ṗli
+ S(wi)ri (3.25)

The kinetic energy of the single arm can be re-expressed as 3.26,which is the
decoupling of the translation and rotation contribution:

Tli = 1
2mliṗ

T
li
ṗli

+ 1
2ωT

i

AÚ
Vli

ST (ri)S(ri)ρdV

B
ωi (3.26)

The integral term can be substituted with the inertia tensor matrix relative to the
centre of mass of the link, according to eq. 3.27.

Ili =

s
(r2

iy + r2
iz)ρdV −

s
rixriyρdV −

s
rixrizρdV

∗
s
(r2

ix + r2
iz)ρdV −

s
riyrizρdV

∗ ∗
s
(r2

ix + r2
iy)ρdV

 =

=

Ilixx −Ilixy −Ilixz

∗ Iliyy −Iliyz

∗ ∗ Ilizz

(3.27)

This symmetrical inertia matrix is expressed according to the base reference frame
Ob-xbybzb and depends on the robot configuration. Considering the rotation matrix
Ri that allows to express the angular velocity ω with a reference frame in accordance
with ith link, it is possible to define the inertia tensor with the same reference
frame which results constant. This constant inertia tensor is defined I i

li
and it is

independent from the configuration. The total kinetic energy resulting from the
translation and rotation contribution is then expressed according to eq. 3.28.

Tli = 1
2mliṗ

T
li
ṗli

+ 1
2ωT

i RiI
i
li
RT

i ωi (3.28)

39

Kinematics and Dynamics of the Gantry stacker

This equation must be then explicited according to the joint variables, in order
to retrieve the kinetic energy from the generalised coordinates. Considering the
previous adopted geometrical method for the Jacobian, it is possible to obtain the
following relation for ṗli

and ωli
.

ṗli
= jP1 q̇1 + · · · + jPi

q̇i = J
(li)
P q̇

ωi = jO1 q̇1 + · · · + jOi
q̇i = J

(li)
O q̇

(3.29)

With reference to eq. ?? the kinetic energy of the arm can be finally written as eq.
3.30.

Tli = 1
2mli q̇

T J
(li)T
P J

(li)
P q̇ + 1

2 q̇T J
(li)T
O RiI

i
li
RT

i J
(li)
O q̇ (3.30)

The second contribution is given by the kinetic energy of the drive motor at
the ith joint and the procedure to evaluate it with the joint variables is similar.
Considering electrical motors (able to actuate both rotation and prismatic joints
through proper mechanisms), the effective contribution is given by the rotor, since
the stator contribution is accounted in Tli , according to eq. 3.31:

Tmi
= 1

2mmi
ṗT

mi
ṗmi

+ 1
2ωT

mi
Imi

ωmi
(3.31)

where mmi
represents the rotor mass, ṗmi

represents the linear velocity of the
centre of mass of the rotor, Imi

represents the inertia tensor of the rotor relative to
the centre of mass and ωmi

represents the angular velocity of the rotor. Indicating
with θmi

the angular position of the rotor, in the rigid transmission hypothesis, the
joint velocity q̇i can be written as eq. 3.32:

q̇i = θ̇mi

kri

(3.32)

where kri is the mechanical transmission ratio. The total angular velocity of the
rotor is the sum of the angular velocity of the previous adjacent arm and the
angular contribution of the motor, as defined in eq. 3.33.

ωmi
= ωi−1 + kriq̇izmi

(3.33)

even in this case, it is necessary to explicit the kinetic energy of the rotor as a
function of the joint variables q and so it is necessary to take into account the
Jacobian of the rotor as stated in eq. 3.34.

ṗmi
=J

(mi)
P q̇

ωmi
=J

(mi)
O q̇

(3.34)

40

Kinematics and Dynamics of the Gantry stacker

The two jacobian matrices related to mi differs from the previous one related to
the manipulator arm and their columns are defined according to eq. 3.35.

j
(mi)
Pj

=

zj−1 for a prismatic joint
zj−1 × (pmi

− pj−1) for a revolute joint

j
(mi)
Oj

=

j
(li)
Oj

for a prismatic joint
krizmi

for a revolute joint

(3.35)

Finally, the kinetic energy of the ith rotor can be written as eq. 3.36.

Tmi
= 1

2mmi
q̇T J

(mi)T
P J

(mi)
P q̇ + 1

2 q̇T J
(mi)T
O Rmi

I i
mi

RT
mi

J
(mi)
O q̇ (3.36)

In conclusion, the total kinetic energy can be defined as the total sum of the
contributions of the links and the actuators, according to eq. 3.37.

T = 1
2

nØ
i=1

nØ
j=1

bij(q)q̇iq̇j = 1
2 q̇T B(q)q̇ (3.37)

Where the matrix B(q) is the inertia matrix (n×n) that is configuration-dependent,
symmetric and definitively-positive and can be evaluated as eq. 3.38.

B(q) =
nØ

i=1

1
mliJ

(li)T
P J

(li)
P + J

(li)T
O RiI

i
li
RT

i J
(li)
O

+ mmi
J

(mi)T
P J

(mi)
P + J

(mi)T
O Rmi

I i
mi

RT
mi

J
(mi)
O

2 (3.38)

Recalling eq. 3.20, the second element to be investigated is U , which is the total
potential energy given by the sum of all the robot links and rotors as stated in eq.
3.39.

U =
nØ

i=1
(Uli + Umi

) (3.39)

Under the assumption of the rigid body, and thus neglecting the elastic contribution,
the potential neergy is given by the gravitational forces and so it is defined according
to eq. 3.40:

Uli = −
Ú

Vli

gT
0 p∗

i ρdV = −mlig
T
0 pli (3.40)

where g0 is the gravitational acceleration vector referred to the base reference frame
and it considers the coordinate of the centre of mass of the ith arm. Regarding the
rotor contribution, it can be evaluated analogously as written in eq. 3.41.

Umi
= −mmi

gT
0 pmi

(3.41)

41

Kinematics and Dynamics of the Gantry stacker

Being the total potential energy only function of the vectors pli and pmi
, it results

that this component of the Lagrangian is dependent only on the joint variable q
and not on the joint velocity q̇. From the definition of the total kinetic energy and
potential energy, it is possible to derive according to eq. 3.21, where the partial
derivative with respect to q̇ affects only the kinetic energy resulting in eq. 3.42.

∂L
∂q̇

= B(q)q̇ (3.42)

and then deriving with respect to the time the first term of the Lagrangian equation
can be developed into eq. 3.43.

d

dt

∂L
∂q̇

= B(q)q̈ + Ḃ(q)q̇ (3.43)

The second term, related to the partial derivative with respect to the joint variable,
affects both the Lagrangian contributions, resulting in eq. 3.44.

∂L
∂q

= 1
2

A
∂

∂q

1
q̇T B(q)q̇

2BT

−
A

∂U(q)
∂q

BT

(3.44)

The final representation in matrix form of the Lagrangian formulation can be
described according to eq. 3.45:

B(q)q̈ + n(q, q̇) = ξ (3.45)

where

n(q, q̇) = Ḃ(q)q̇ − 1
2

A
∂

∂q

1
q̇T B(q)q̇

2BT

+
A

∂U(q)
∂q

BT

(3.46)

Other important observations can be done considering the single row of this matrix
equation, since the total potential energy U does not depend on q̇. Hence:

d

dt

A
∂L
∂q̇i

B
= d

dt

A
∂T
∂q̇i

B
=

nØ
j=1

bij(q)q̈j +
nØ

j=1

dbij(q)
dt

q̇j

=
nØ

j=1
bij(q)q̈j +

nØ
j=1

nØ
k=1

dbjk(q)
dqi

q̇j q̇k

(3.47)

In a similar way, also the second term of the Lagrangian formulation can be
evaluated observing the single row elements and it results in eq. 3.48.

∂T
∂qi

= 1
2

nØ
j=1

nØ
k=1

∂bjk(q)
∂qi

q̇j q̇k (3.48)

42

Kinematics and Dynamics of the Gantry stacker

By considering also the single row contribution for the Lagrangian term relative to
the potential energy, according to eq. 3.49:

∂U
∂qi

= −
nØ

j=1
(mlj g

T
0 j

(lj)
Pi

(q) + mmj
gT

0 j
(mj)
Pi

(q)) = gi(q) (3.49)

The final equation of motion defined for the ith row can be rewritten as eq. 3.50:

nØ
j=1

bij(q)q̈j +
nØ

j=1

nØ
k=1

hijk(q)q̇kq̇j + gi(q) = ξi (3.50)

where
hijk = ∂bij

∂qk

− 1
2

∂bjk

∂qi

(3.51)

The equation 3.50 underlies several interesting physical interpretations. In facts,
the terms multiplying the joint acceleration q̈j can be seen as the set of coefficient
bii which represents the inertia moment related to the ith in the current robot
configuration where the other joints are fixed and the coefficients bij which take
into account the effect of acceleration of the jth joint on joint i.
Concerning the coefficients of the quadratic term of the joint velocity, it is possible
to notice that the term hijj q̇

2
j represents the centrifugal effect induced by the

velocity of joint j on joint i. A further observation leads to the conclusion that
hiii is null since the term ∂bii/∂qi = 0. On the other hand, the terms with mutual
joint velocity hijkq̇j q̇k accounts for the Coriolis effect induced to the ith joint by
the velocities at joints j and k.
Finally, for the terms only depending on the configuration, being described in gi(q)
it represents the torque generated by the effect of gravity on the joint i given the
actual configuration of the robot.
The non-conservative forces that acts on the joints of the manipulator are the resul-
tant from the actuation torques τ to which the viscous friction torques given by Fvq̇
and the static friction torques fs(q, q̇). Fv represents an (n × n) matrix containing
the viscous friction coefficients and analogously Fs for the static counterpart. fs

is then evaluated accounting the Coulomb friction model, where fs = Fs sgn(q̇)
where sgn(q̇) accounts for the sign of the velocity at the joints. An additional
component to be evaluated is the contribution of the external environment given
by the interaction with the end-effector and its contact forces. given he the vector
containing the forces and moments executed by the terminal tool, the resulting
torques on the joints are given by JT (q)he.
The final dynamic model in the joint space can be described as eq. 3.52:

B(q)q̈ + C(q, q̇)q̇ + Ḟvq̇ + Fssgn(q̇) + g(q) = τ − JT (q)he (3.52)

43

Kinematics and Dynamics of the Gantry stacker

where C is a (n × n) matrix defined such that its elements satisfy the relation
nØ

j=1

nØ
k=1

hijkq̇kq̇j. (3.53)

This dynamic model presents interesting properties that lead to the dynamic
parameters identification and to the definition of some control algorithms.
The first characteristic is the anti-simmetricity of the matrix composed by Ḃ − 2C
obtained by selecting the correct parameters of the non-univocal C matrix, which
are the first type Christoffel symbols. A second property important to note is the
linearity in the dynamic parameters. These observation will be better understood
in the analysis of the torques measured at the joints in the multi-body model
defined after the trajectory planning digression with the help of MatLab SimScape
Multi-Body Model.

44

Chapter 4

Trajectory planning

Trajectory planning is one of the key aspects for the completion of tasks by the
manipulator. The starting point is the definition of a series of parameters as input,
such as a temporal sequence of interpolating points that build the desired trajectory.
The control system is responsible for the fulfilment of the planned path. The correct
trajectory planning is the key factor for the performance requirements, leading to
the exploitation of the max velocities and accelerations taking into consideration the
structural solicitations of the mechanical structure and its frequency response. As
a starting point for this analysis, a point-to-point motion algorithm for a trajectory
in the joint space will be analysed and then, a wider range of solutions will be
explored in order to choose the most suitable one for the several tasks of the gantry
stacker.

4.1 Trajectories in joint space

The specification of a given trajectory is typically defined with parameters in the
operational space, such as initial and final configuration of the manipulator. In
order to evaluate a trajectory in the joint space, it is necessary to extract the
joint variables q⃗ from position and orientation assigned to the given end-effector
points with an inverse kinematic algorithm, as already seen in chapter 3. In the
simplest case, the robot task is the movement from an initial configuration q⃗i to
the final configuration q⃗i in a fixed time interval tf . The goal of these algorithms
is to generate a trajectory that can be a solution for an optimization problem for
some quality factor index. A possible choice of this factor is the minimization of
dissipated power for the motor. Given I, the moment of inertia of the robot arm
relative to its axis of rotation, the torque τ applied by the motor is related to the
variation of angular velocity ω̇ (where ω represents the joint variable derivative q̇)

45

Trajectory planning

through eq. 4.1.
Iω̇ = τ (4.1)

The suitable solution must satisfy the eq. 4.2 in order to go from a posture qi to qf

in the predefined time and minimize the index quality given by the eq. 4.2.
Ú tf

0
ω(t)dt = qf − qi (4.2)

min
∀ω

Ú tf

0
τ 2(t)dt (4.3)

A simplification is required, because the moment of inertia of the axis is dependent
on the complete configuration of the manipulator, being the distances of the link
masses related to the joint variables q⃗ [29]. The resulting solution for this problem
is of the form 4.4.

ω(t) = at2 + bt + c (4.4)

4.1.1 Polynomial trajectories

The solution to this minimization problem is the cubic polynomial that defines the
kinematic of the joint variable according to eqs. 4.5, 4.6 and 4.7.

q(t) = a3t
3 + a2t

2 + a1t + a0 (4.5)

q̇(t) = 3a3t
2 + 2a2t + a1 (4.6)

q̈(t) = 6a3t + 2a2 (4.7)

Since these equations take into account four parameters (a0, a1, a2 and a3), it is
possible to impose four boundary conditions that are the values of the joint variable
and its velocity at the initial and final configuration, according to eqs. 4.8, 4.9,
4.10 and 4.11.

qi = a0 (4.8)

q̇i = a1 (4.9)

qf = a3t
3
f + a2t

2
f + a1tf + a0 (4.10)

q̇f = 3a3t
2
f + 2a2ft + a1 (4.11)

46

Trajectory planning

Figure 4.1: Cubic polynomial with
null boundary velocities Figure 4.2: Cubic polynomial with

boundary velocities not null

Another possible trajectory definition is the quintic polynomial . With respect to
the former solution, this form contains two more coefficients, leading to the further
assignment of the initial and final values of the joint acceleration q̈. The motion
law for the generic joint expressed as quintic polynomial returns the kinematic
variables according to eqs. 4.12, 4.13 and 4.14.

q(t) = a5t
5 + a4t

4 + a3t
3 + a2t

2 + a1t + a0 (4.12)

q̇(t) = 5a5t
4 + 4a4t

3 + 3a3t
2 + 2a2t + a1 (4.13)

q̈(t) = 20a5t
3 + 12a4t

2 + 6a3t + 2a2 (4.14)
This model smooths the trajectory, defining the jerk for the motion. It is important
to stress that this polynomial does not satisfy the minimization of the index quality
stated in eq. 4.3. The boundary conditions to be imposed are defined in eq. 4.20.

qi = a0 (4.15)
q̇i = a1 (4.16)
q̈i = a2 (4.17)

qf = a5t
5 + a4t

4 + a3t
3
f + a2t

2
f + a1tf + a0 (4.18)

q̇f = 5a5t
4
f + 4a4t

3
f + 3a3t

2
f + 2a2ft + a1 (4.19)

47

Trajectory planning

q̈f = 20a5t
3
f + 12a4t

2
f + 6a3tf + 2a2 (4.20)

Figure 4.3: Quintic polynomial

In general, it is possible to adopt a n-th polynomial to describe the given
trajectory.

q(t) = a0 + a1(t − t0) + a2(t − t0)2 + . . . an(t − t0)n (4.21)

The polynomial order n depends on the number of boundary conditions that need
to be imposed, but also on the smoothness required for the motion. In addition
to the initial and final conditions, it is possible to specify the kinematic values at
general time instances tj , by calculating the derivative of the k-th order, according
to eq. 4.22 [32].

q(k)(tj) = k!ak + (k + 1)!ak+1tj + · · · + n!
(n − k)!antn−k

j (4.22)

4.1.2 Trigonometric trajectories
In several manipulator tasks, the adoption of trigonometric functions is a viable
solution with the purpose of planning trajectories with smoother acceleration or jerk
profiles that can reduce resonance due to residual vibrations applied to resonant
systems. Similarly to polynomial trajectories, the characteristic parameters can
be evaluated on the basis of the desired bounds on velocity, acceleration, jerk,
snap and so on. Furthermore, the equivalence between dynamic behaviour and
trajectories expressed by analytic functions provides an immediate characterization
of the motion from a spectral frequency analysis.
The first possibility is the harmonic function, defined according to eq. 4.23 where
h represents the amplitude between qf and qi.

q(t) = h

2

A
1 − cos

π(t − t0)
T

B
+ q0 (4.23)

This equation generalize the harmonic motion where the acceleration is directly
proportional to the displacement, but with opposite sign. Being composed by
trigonometric functions, the higher order derivatives are always continuous as

48

Trajectory planning

described in eq. 4.24 for the joint velocity, eq. 4.25 for the joint acceleration and
eq. 4.26 for the joint jerk [32].

q̇(t) = h

2
π

T
sin

A
π(t − t0)

T

B
(4.24)

q̈(t) = h

2

A
π

T

B2

cos

A
π(t − t0)

T

B
(4.25)

...
q (t) = −h

2

A
π

T

B3

sin

A
π(t − t0)

T

B
(4.26)

Figure 4.4: Harmonic trajectory and derivatives

The principal drawback of the harmonic function is the discontinuity in the
acceleration in the initial and final configuration of the trajectory, thus resulting
in a jerk that rises up to infinity. To overcome this problem and maintaining
the trigonometric behaviour, the adoption of a cycloidal function 4.27 is a good
compromise that ensure continuity in the acceleration.

q(t) = h
1

t−t0
T

− 1
2π

sin2π(t−t0)
T

2
+ q0

q̇(t) = h
2

π
T

sin
1

π(t−t0)
T

2
q̈(t) = h

2

1
π
T

22
cos

1
π(t−t0)

T

2
...
q (t) = −h

2

1
π
T

23
sin

1
π(t−t0)

T

2 (4.27)

49

Trajectory planning

Figure 4.5: Cycloid trajectory and derivatives

4.1.3 Composite and piece-wise trajectories

An alternative approach for the calculation of the manipulator motion law is a
mixed polynomial tailored for the industrial practice. these piece-wise functions can
exploited defined accelerations and velocities according to the mechanical coupling.
The most common solution belonging to this category is the velocity trapezoidal
trajectory, which is characterised by 3 segments as referred in 4.28: at first the
acceleration phase with positive constant a2 in the time interval t ∈ [0, Ta], followed
by a constant cruise velocity in the time interval t ∈ [Ta, T − Ta] that ends in a
deceleration phase with negative constant q̈.

qa(t) = a0 + a1t + a2t

2 for 0 ≤ t ≤ Ta

qb(t) = b0 + b1t for Ta ≤ t ≤ Tf − Ta

qc(t) = c0 + c1t + c2t
2 for Tf − Ta ≤ t ≤ Tf

(4.28)

The trapezoidal function is also defined as 2-1-2 according to the order of the
polynomial adopted in the various traits of the curve. As shown in eq. 4.28, 8
parameters have to be defined, also accounting for joint position and joint velocity
continuous at the conjunctions of the traits. Other constraints are compulsory for
the feasibility of the trapezoidal trajectory as requirements for the acceleration
time (4.29) and the minimum acceleration to fulfil the displacement (4.30).

Ta ≤ T

2 (4.29)

|q̈| ≥ 4|qf − qi|
T 2 (4.30)

50

Trajectory planning

Figure 4.6: Trapezoidal trajectory

The configuration of these parameters can change according to the desired
requirement. To exploit the maximum characteristic of the drive, it can be imposed
maximum joint velocity and acceleration, which in the trapezoidal case result in the
velocity in the constant trait and the acceleration values in the others, as defined
in 4.31. q̇b(t) = vmax

q̈a(t) = −q̈c(t) = amax

(4.31)

As a consequence, the acceleration time interval Ta and the total duration T are
not predefined, but evaluated as 4.32.Ta = vmax

amax

T = qf −qi

vmax
+ vmax

amax

(4.32)

It is important to verify the condition of feasibility for the maximum velocity. In
facts, for small joint displacements, a trajectory with a triangular velocity profile
(so called bang-bang) is performed, formed by a trait of maximum acceleration and
one of maximum deceleration. Another solution for the retrieval of the coefficients
for the trapezoidal function is the imposition of the time characteristics Ta and T .

Since this piece-wise function presents discontinuity in the acceleration profile,
this trajectory is not recommended for applications that require smoother motions.

51

Trajectory planning

Thus, piece-wise functions with polynomial junctions of order larger than 2 can
be developed, imposing continuous acceleration and, furthermore, trajectories
with continuous jerk. The 7-segments or double-S trajectory allows continuous
second derivative and it is formed by three main phases: acceleration, constant
velocity, deceleration. Differently from the trapezoidal velocity, the traits of
acceleration/deceleration are divided in three sub-parts characterised by constant
jerk (positive-null-negative and viceversa for deceleration phase).

Figure 4.7: Double-S trajectory

4.1.4 Spline trajectories

The spline trajectories are multi-points functions composed by piece-wise polyno-
mials (typically 3-th or 5-th order) with interpolation conditions through n points
with continuity in the whole trajectory and its derivatives up to a certain order. It
can be demonstrated that, given the conditions on continuity, the spline function

52

Trajectory planning

is the interpolating trajectory with minimum curvature.

s(t) = {gk(t), t ∈ [tk, tk+1], k = 0, . . . n − 1},

qk(t) = ak0 + ak1(t − tk) + ak2(t − tk)2 + ak3(t − tk)3 (4.33)

Considering n points, n − 1 polynomials are defined. Starting from a cubic spline
defined according to eq. 4.33, 4(n − 1) parameters have to be defined according to
the continuity constraints.

• 2(n − 1) conditions on trajectory passing through extremities, since each cubic
segment has to start and finish in two consecutive waypoints;

• n − 2 conditions on continuity velocity at the boundary points of each interval;

• n − 2 conditions on continuity acceleration in the predefined intermediate
points.

In this case, The degree of freedom of the system of equations for the spline
parameters can be evaluated according to equation 4.34.

4(n − 1) − 2(n − 1) − 2(n − 2) = 2 (4.34)

The final two parameters can be defined by imposing the initial and final velocity
condition. Another possibility for a spline is the polynomial sequence with the
definition of the desired joint velocity q̇k. As a result, the continuity condition on
the acceleration falls and substituted by the equations imposing the velocity at the
waypoints.

The computation algorithm for the evaluation of the coefficients aki
starts from

the definition of the system of constraints, according to 4.35.
qk = qk(tk) = ak0

vk = q̇k(tk) = ak1

qk+1 = qk(tk+1) = ak0 + ak1Tk + ak2T 2
k ak3T 3

k

vk+1 = q̇k(tk+1) = ak1 + 2ak2Tk + 3ak3T 2
k

(4.35)

If the velocities at the junction points are not given, the evaluation of v1 . . . vn−1
can be done by imposing continuity in the acceleration, thus resulting in eq. 4.36.

q̈k(tk+1) = q̈k+1(tk+1)
2ak2 + 6ak3Tk = 2a(k+1)2 (4.36)

Substituting the expressions for the coefficients extracted from eq. 4.35 and
multiplying by TkTk+1

2 , the general equation for the k-th polynomial can be rewritten
in a matrix form, according to the steps shown in 4.37.

53

Trajectory planning

Tk+1vk +2(Tk+1 +Tk)+Tkvk+2 = 3
TkTk+1

[T 2
k (qk+2 −qk+1)+T 2

k+1(qk+1 −qk)] (4.37)

This results in a matrix component comprehending the time interval elements
A and the vector of velocities v. The matrix C is formed by constants depending
only on the intermediate positions and the time interval of the segments.

A′ =

T1 2(T0+T1) T0 0 ··· ··· ··· 0

0 T2 2(T1+T2) T1
...

... ...
0 Tn−2 2(Tn−3−Tn−2) Tn−3 0

0 ··· 0 Tn−1 2(Tn−2+Tn−1) Tn−2

Given initial and final speed, it is possible to eliminate the first and last row,

resulting in 4.38.
A(T)v = c(T, q, v0, vn) (4.38)

The new A matrix is diagonally-dominant and thus is always invertible, given
that the time interval Tk are always positive. Furthermore, being a tri-diagonal
matrix, efficient inversion algorithms can be exploited and thus, the vector v can be
calculated as v = A−1c and the spline coefficients are evaluated through eq. 4.35.

Figure 4.8: Spline interpolation

54

Trajectory planning

4.2 Analysis and comparison between trajecto-
ries

In order to satisfy certain constraints on maximum velocities or accelerations, it is
convenient to consider trajectories expressed in the same boundaries and so the
functions require to be normalised by applying scaling operation in the geometrical
and temporal domain. Every trajectory is thus defined over a displacement h =
q1 − q0 and a time length T = t1 − t0 and so it can be rewritten in normalised form
as qN(τ) where:

τ = t − t0

t1 − t0
(4.39)

qN(τ) = q(t) − q0

q1 − q0
(4.40)

As a consequence, the temporal variable t is obtained scaling τ of a factor of λ = T .
It follows that the derivatives defining the joint velocities and the other kinematic
parameters are function of h and T according to eq. 4.41.

q̇(t) = h

T
˙qN(τ)

q̈(t) = h

T 2 q̈N(τ)
...

q(n)(t) = h

T n
qN

(n)(τ)

(4.41)

The maximum values of velocity, acceleration and jerk are found in correspondence
of the stationary points of the normalised derivatives. By modifying the duration
of the trajectory T it is possible to exploit the kinematic saturation achieving
the maximum velocity and the maximum acceleration. Considering the simplest
trajectory, the cubic polynomial with a rest-rest trajectory (with initial and final
joint velocity null), the peak of velocity is reached in the medium point of the
trajectory with τ = 0.5, while the max acceleration is performed at the initial
time with τ = 0. in eq. 4.42, the result for max acceleration and max speed are
performed.

q̇N(τ)max = q̇N(0.5) = 3
2 =⇒ q̇max = 3h

2T

q̈N(τ)max = q̈N(0) = 6 =⇒ q̈max = 6h

T 2

(4.42)

55

Trajectory planning

Working in the same conditions, the quintic polynomial has a smoother profile and
so the peak values of the derivatives are reached at different values of the time
fraction, as stated in eq. 4.43.

q̇N(τ)max = q̇N(0.5) = 15
8 =⇒ q̇max = 15h

8T

q̈N(τ)max = q̈N

13 −
√

3
6

2
= 10

√
3

3 =⇒ q̈max = 10
√

3h

3T 2

...
q N(τ)max = ...

q N(0) = 60 =⇒ ...
q max = 60h

T

(4.43)

Considering instead the trigonometrical trajectories, the normalised cycloidal
function is defined according to eq. 4.44.

qN(τ) = τ − 1
2π

sin(2πτ) (4.44)

From which it is possible to derive the other kinematic functions, as stated in eq.
4.45

q̇N(τ) = 1 − cos(2πτ)
q̈N(τ) = 2πsin(2πτ)

...
q N(τ) = 4π2cos(2πτ)

(4.45)

The absolute maxima in these equations are found in the following time fractions
τ , resulting in the peak values shown in eq. 4.46.

q̇Nmax = q̇N(τ = 0.5) = 2 =⇒ q̇max = 2 h

T

q̈Nmax = q̈N(τ = 0.25) = 2π =⇒ q̇max = 2π
h

T
...
q Nmax

= ...
q N(τ = 0) = 4π2 =⇒ q̇max = 4π2 h

T

(4.46)

On the other hand, the harmonic motion profile is characterised by the normalised
function described by eq. 4.47

qN(τ) = 1
2(1 − cos(πτ) (4.47)

From which it is possible to derive the other kinematic functions, as stated in eq.
4.48

q̇N(τ) = π

2 sin(πτ)

q̈N(τ) = π2

2 cos(πτ)

...
q N(τ) = −π3

2 sin(πτ)

(4.48)

56

Trajectory planning

The absolute maxima in these equations are found in the following time fractions
τ , resulting in the peak values shown in eq. 4.49.

q̇Nmax = q̇N(τ = 0.5) = π

2 =⇒ q̇max = πh

2T

q̈Nmax = q̈N(τ = 0) = π2

2 =⇒ q̇max = π2h

2T 2

...
q Nmax

= ...
q N(τ = 0.5) = π3

2 =⇒ q̇max = π3h

2T 3

(4.49)

This analysis, regarding the exploitation of the peak velocity and acceleration of
the drive, returns that each profile has a minimum time to saturate the capacity of
the motor. Depending on the parameters of the drive and the path extremes, it is
possible to classify the faster trajectory, considering the highest Tmin to complete
the trajectory.

Trajectory Formula constraints Tmin

Cubic polynomial q̇max = 3h
2T

T = 3h
2q̇max

1.5 h
q̇max

q̈max = 6h
T 2 T =

ñ
6h

q̈max
2.449

ñ
h

q̈max

Quintic polynomial q̇max = 15h
8T

T = 15h
8q̇max

1.875 h
q̇max

q̈max = 10
√

3h
3T 2 T =

ò
10

√
3h

3q̈max
2.403

ñ
h

q̈max

Harmonic function q̇max = πh
2T

T = πh
2q̇max

1.571 h
q̇max

q̈max = π2h
2T 2 T =

ñ
π2h

2q̇max
2.221

ñ
h

q̈max

Cycloidal function q̇max = 2h
T

T = 2h
q̇max

2 h
q̇max

q̈max = 2πh
T 2 T =

ñ
2πh

q̈max
2.507

ñ
h

q̈max

4.2.1 Comparison on the actuation system exploitation
In the previous table, the trajectory are compared in terms of faster time given the
same peak velocity and acceleration, but in practice there exist other parameters
to take into account for the selection of a trajectory for a specified application,
considering, for example, the actuation system. In facts, an electric motor has a
typical torque-velocity behaviour, as shown in fig. 4.9, and the following parameters:

• peak torque (τp), which is the instantaneous maximum torque value capable
to generate;

• effective or continuative torque (τc), which is the maximum torque value
capable to generate indefinitely over time;

57

Trajectory planning

• nominal velocity (vn), which is the maximum velocity rotation of the motor;

• maximum power (Pmax), which identify the motor size;

• operative field, depending on the nature of the task (continuative or interme-
diate).

Figure 4.9: Operative field of the motor

It is fundamental to verify the compatibility of the motion profile characteristics
with the actuator system limits. In addition to the simple condition on the
maximum admissible velocity (q̇max ≤ vn), it is necessary to verify that the torque
τ(t) requested to realize the tasks of the joint can be effectively supplied by the
motor, according to eq. 4.50.

max{τ(t)} = τmax ≤ τp (4.50)

Considering a simple dynamic model, where only inertia and friction forces are
considered, the torque expression results in eq. 4.51

τ(t) = Jtq̈(t) + Btq̇(t) (4.51)

where Jt represents the total moment of inertia, given by the contributes of the
motor inertia Jm and the inertia of the load translated to the motor (scaled by the
reduction ratio k2

r). The same reasoning holds for the total damping coefficient
Bt = Bm + Bl

k2
r
.

A motion profile is feasible if the mechanical task and so the curve described in the
(q̇(t), τ(t)) is entirely included in the area below the torque-velocity characteristic of

58

Trajectory planning

the motor. In particular, when the load is predominantly inertial, the friction forces
can be neglected and so τ(t) ≈ Jtq̈(t) and so the acceleration profile represents a
good estimate of the torque required for the execution of a given motion.

As an example for this feasibility analysis, two trajectories are analysed, accord-
ing to fig. 4.10.

Figure 4.10: Torque velocity feasibility of motion profiles

The trajectory (a) represents a cycloidal point-to-point function and it is inter-
esting to note the smooth behaviour in the curve, without abrupt non-derivative
points. On the other hand, the motion profile (b) is the torque-speed requirement
for a trapezoidal motion. Both trajectories are feasible because the curves lie
below the motor characteristic. In the case of cyclic tasks, the thermal dissipation
problem must be taken into account: in facts, the working point shall not stay in
the intermittent working region. A possible feasibility impairment is the effective
value for the torque along a period, that can be calculated with eq. 4.52 and must
be lower than the continuative torque τc.

τeff =
ó

1
T

Ú T

0
τ 2(t)dt (4.52)

Reconsidering the definition of the torque, according to 4.51, the effective torque
τ 2

eff is given by 4.53.

τ 2
eff = 1

T

Ú T

0
τ 2(t)dt

= J2
t

T

Ú T

0
q̈2(t)dt + B2

t

T

Ú T

0
q̇2(t)dt + 2JtBt

T

Ú T

0
q̈(t)q̇(t)dt

= J2
t q̈2

eff + B2
t q̇2

eff

(4.53)

59

Trajectory planning

This equation returns the effective values of joint velocity and joint acceleration.
The knowledge of the peak and effective values of the velocity and acceleration
profiles has a fundamental relevance on the sizing of the actuation system and,
viceversa, on the feasibility of a given trajectory having fixed the drive. In order to
compare trajectories it is a good practice to define the a-dimensional coefficients of
velocity Cv and acceleration Ca independent from displacement h and period T ,
according to eq. 4.54.

Cv = q̇max

h/T
=⇒ q̇max = Cv

h

T

Ca = q̈max

h/T 2 =⇒ q̈max = Ca
h

T 2

(4.54)

From the definition, the coefficients Cv and Ca can be seen as the maximum velocity
and acceleration of the corresponding normalised trajectory qN (τ). In the same way,
it is possible to define the coefficient for the effective velocity Cveff

and effective
acceleration Caeff

, according to eq. 4.55.

Cveff
= q̇eff

h/T
=⇒ q̇eff = Cveff

h

T

Caeff
= q̈eff

h/T 2 =⇒ q̈eff = Caeff

h

T 2

(4.55)

In the table are shown the values for the several coefficients depending on the
chosen type of trajectory. It is

Trajectory Cv Ca Cveff
Caeff

Polynomial 3-th grade 1.5 6 1.0954 3.4131
Polynomial 5-th grade 1.875 5.7733 1.1952 4.1402
Polynomial 7-th grade 2.1875 7.5017 1.2774 5.0452
Triangular (bang-bang) 2 4 1.1547 4

Trapezoidal 2 4.8881 1.2245 4.3163
Harmonic 1.5708 4.9348 1.1107 3.4544
Cycloidal 2 6.2832 1.2247 4.4428

Table 4.1: Comparison between trajectories

4.2.2 Comparison on the dynamic frequency response
The starting point of the dynamic analysis of a trajectory is the definition of the
mechanical model of the system. During a motion, the structural elasticity and

60

Trajectory planning

dissipation behaviours of the system can create vibrational phenomenons. The
precision, and thus the complexity of this modeling, that can be achieved depends
on the time and costs limits. A possible solution is a FEM analysis of the system,
where, starting from the elastic characteristic of the elements and retrieving the
total response of the model.
A cheaper solution is the simplification of the mechanical parts that, from being
intrinsically defined with distributed parameters (mass, elasticity and damping),
are defined with elements with concentrated parameters defining mass elements
without elasticity and viceversa. In addition, to simulate the energy dissipation due
to the friction between moving parts, damping elements are added. The values of
the mechanical parameters have to be determined and tuned in order to reproduce
the behaviour of the various mechanical part from a kinematic and elastic point of
view. The basic model is then composed by an actuator drive that put in motion a
mass m. This system has a concentrated stiffness k and a dissipating element d, as
reported in fig. 4.11 From this model, the dynamic of the system is described by

Figure 4.11: Single Mass-Spring-Damper model

the differential equations described in eq. 4.56:

mẍ + dẋ + kx = dẏ + ky

mz̈ + dż + kz = −mÿ
(4.56)

that can be re-described with the canonical second order differential equation 4.57:

z̈ + 2δωnż + w2
nz = −ÿ (4.57)

where

ωn =
ó

k

m

δ = d

2mωn

(4.58)

61

Trajectory planning

More complex models can be obtained by subdividing the single mass-spring-damper
model into smaller ones taking into account n concentrated parameters elements, as
shown in fig. 4.12, leading to a behaviour more similar to the distributed parameter
system [32]. Supposing an ideal actuation system, where y(t) corresponds to the

Figure 4.12: Multiple Mass-Spring-Damper model

joint variable q(t), it is possible to evaluate the response of the system model to the
several possible motion laws. Taking into consideration two opposite philosophies
for the trajectory planning, the trapezoidal function with discontinuity in the
acceleration and the smoother cycloidal function, the resulting response on the
kinematic variables of the mass m is shown in fig. 4.13 and 4.14.

Figure 4.13: Trapezoidal function fre-
quency response x

Figure 4.14: Harmonic function fre-
quency response x

another observation can be done on the z profiles where it is considered the
motion difference between the actuator drive and the mass element. With profiles

62

Trajectory planning

with discontinuity in the accelerations larger oscillations and are shown, according
to fig. 4.15 and 4.16.

Figure 4.15: Trapezoidal function fre-
quency response z

Figure 4.16: Harmonic function fre-
quency response z

This phenomenon can be further analysed considering the harmonic content
of the acceleration profile ÿ in relation eith the Bode diagram of the structure,
focusing particularly on the natural frequency of the system ωn. Recalling the
Fourier’s transform defined as 4.59, where the generic signal is defined as the sum
of infinite sinusoidal waves with amplitude V (ω) and phase ϕ(ω)

x(t) =
Ú +∞

0
V (ω)cos[ωt + ϕ(ω)]dω (4.59)

it is possible to confront the amplitude at the several frequencies with the harmonic
response value of the system, in order to verify the solicitation of the mechanical
model. Important relevance relies on the avoidance of the resonance modes of
the mechanical structure from the input trajectories. Considering again the single
dof model stated in fig. 4.11 the transfer function in variable s that relates the
acceleration ÿ and the difference z(t) results in eq. 4.60.

G(s) = Z(s)
A(s) = −1

s2 + d
m

s + k
m

(4.60)

63

Trajectory planning

The corresponding Bode diagram for the amplitude of the system result in the
function shown in fig. 4.17

Figure 4.17: Bode diagram of the system transfer function

In order to avoid the vibratory phenomenon, the maximum pulsation of the
trajectory requires to be significantly lower than the resonance frequency of the
system, which corresponds to the peak frequency in the previous graph. The
following step is the analysis of the frequency spectrum of the trajectory types.
To express the relations in the same boundary conditions, the trajectories are
normalised and the spectra are defined according to the a-dimensional variable Ω
defined according to eq. 4.61.

Ω = ω

ω0
(4.61)

The spectra expressions can be determined in closed form or numerically and the
following table contains the expressions for the principal trajectories.

64

Trajectory planning

Figure 4.18: Spectrum expression for different trajectories

Considering the piecewise functions, the parameter α and β represent respectively
the fraction of time of the acceleration phase (for both trapezoidal and Double S
trajectory) and the time ratio during the acceleration of constant jerk in the double
S trajectory. In the figure 4.20, is shown the spectrum of the trapezoidal trajectory
as a function of the α parameter. Decreasing α, the acceleration becomes more
and more impulsive and so the harmonic components forming the trajectory signal
will have undesired higher frequencies.

Figure 4.19: Trapezoidal function frequency response

65

Trajectory planning

On second analysis, the harmonic content of the acceleration profile of the
Double S trajectory with α = 0.25 and β variable. In this case, decreasing β means
increasing the jerk value, thus resulting in a similar trajectory to the trapezoidal
function, that represents the limit case with β = 0.

Figure 4.20: Double S frequency response

As last analysis, the spectrum content of the acceleration profile of the polynomial
and sinusoidal trajectories are exposed in fig. 4.21.

Figure 4.21: Frequency response for different trajectories

66

Trajectory planning

4.2.3 Trajectory analysis with MatLab SimScape Multi-body

In this section, a new model of this gantry stacker is developed eith the help of
the MatLab SimScape Multi-body. In order to build this virtual partner, it is
important to understand how this multi-body elements are designed and work. In
the SimuLink environment, the first elements to be defined to start the composition
of the kinematic chain is defined by the following parameters, as shown in fig. 4.22
[33].

• Solver configuration: in this block it is possible to define how the software
elaborate the inputs of the system, for example by defining the equation
formulation type as time or frequency analysis.

• World Frame Reference: Provides access to the world or ground frame, a
unique motionless, orthogonal, right-handed coordinate frame predefined in
any mechanical model. World frame is the ground of all frame networks in a
mechanical model.

• Mechanism configuration: In this block element it is possible to set
mechanical and simulation parameters that apply to an entire machine, the
target machine to which the block is connected. In this area it can be specified
uniform gravity for the entire mechanism.

• Base rigid body: represents the starting rigid body that refers to the global
reference frame.

Figure 4.22: Definition of environment of the model

From this point on, the definition of the successive robotic arms and its correspond-
ing joints. In facts, the modular element corresponding to the rigid link can be

67

Trajectory planning

defined as a MatLab subsystem defined by two rigid transforms related to a solid
rigid body as shown in fig. 4.23.

Figure 4.23: Definition of the single rigid body arm

The first block element defines a fixed 3D rigid transformation between two
frames. The characteristics of this homogeneous transformation can be specified in
accordance to the desired translational and rotational components. The second
block represents a solid component whose geometry, material and visual properties
can be retrieved from a CAD file designed with CATIA, NX, and other softwares.
The File Solid block obtains the inertia from the geometry and density, from
the geometry and mass, or from an inertia tensor previously specified. The final
component required is the definition of the joint, as the interconnection mechanism
between two rigid bodies. According to the nature of the desired joint, it is possible
to define several parameter, that are briefly described in the following list [33].

• State Targets: definition of position and velocity targets

• Internal mechanics: in this section it is possible to specify the spring stiffness
and the damping coefficients properties of the joint. In addition, it is possible
to specify the limits of the primitives.

• Actuation: In this part the actuation modality is defined according to
the force and motion. These two modes can be provided by the input or
automatically computed starting from the system perturbation.

68

Trajectory planning

• Sensing: In the sensing area, the parameters that are ticked are displayed in
a physical output port that can be further observed with a scope.

Once built the complete robotic structure, each joint can be controlled with a
q function that can be defined directly in the SimuLink model with the help of
the trajectory block functions or through functions created in the MatLab script
environment. The final multi-body SimuLink project is shown in fig. 4.24

Figure 4.24: SimScape Multi-body model of the gantry

The trajectories that can be analysed in the previously described way, are
polynomial and trapezoidal functions.

The Polynomial Trajectory block generates trajectories through waypoints at the
given time points using cubic, quintic, or B-spline polynomials. The block outputs
developed are position, velocity, and acceleration profiles that defines the trajectory
based on the Time input. Positions of waypoints of the trajectory at given time
points are specified through an n × p matrix, where n is the dimension of the
trajectory (typically three dimensional) and p represents the number of waypoints.
Additional parameters are the boundary constraints required to completely define
the trajectories. In facts, for cubic polynomials Velocity boundary conditions for
waypoints must be specified as an n × p matrix, where each row corresponds to the
velocity at each of the p waypoints. In addition for quintic polynomials, acceleration
boundary conditions for waypoints must be specified.

On the contrary, trapezoidal velocity profile trajectory block creates trajectories
through multiple waypoints using trapezoidal velocity profiles. Parameters that
can be defined to correctly design the proper trajectory are:

• Peak velocity of the profile segment. This peak velocity is the highest
velocity that is achieved during the trapezoidal velocity profile. Depending on

69

Trajectory planning

its definition, a scalar value is applied to all the segments of the trajectory
and between all waypoints. If using an n element vector is each segment of
the trajectory is limited by the relative value in the vector.

• Acceleration of the velocity profile. This acceleration defines the constant
acceleration from zero velocity to the previously defined Peak Velocity value.

• Time duration of trajectory segment, defines the time interval required to
complete the given segment of the trapezoidal trajectory.

• Duration of acceleration phase of velocity profile. It defines the ta con-
straint for the acceleration and deceleration phases in the several trapezoidal
segments.

In order to communicate between the q output and the SimScape multi-body model
and viceversa, PS-Simulnk and Simulink-PS converters convert the Physical signals
from and to the Simulink output signals.

Thanks to this model, it is possible to define the trajectories through waypoints
at each joint simultaneously, with the help of vectors (fixed or defined by the script).
As an output, position, velocity, acceleration profiles are shown and analysable as
shown in fig. 4.25 and 4.26 as previously theorized in this chapter.

Figure 4.25: Polynomial profiles at the joint 1 (bridge movement)

70

Trajectory planning

Figure 4.26: Trapezoidal profiles at the joint 5 (cup frame tilting)

In addition, the torque performed at the several joint can be shown at the output
port of the block and their behaviour is in accordance to the theory explained in
the last part of the fourth chapter. Torque graphs are depicted in fig. 4.27 and
4.28.

Figure 4.27: torque profiles at the joint 1 (bridge movement)

Figure 4.28: SimScape Multi-body model of the gantry

71

Trajectory planning

Another interesting outcome is a 3D representation of the simulated trajectory
that is shown in the MatLab environment as shown in fig. 4.29.

Figure 4.29: SimScape Multi-body model 3D visualization

Possible adjustments to this multi-body model are the experimental tuning
of the stiffness and damping coefficients of the several joints, but this additional
experimentation is not the focus of this thesis.

72

Chapter 5

Control architecture of the
system

After having analysed the mechanical and trajectory behaviour of the gantry stacker,
the following step described in this chapter is the development of the hardware and
software architecture for the control algorithms that govern this machinery.

5.1 Overview of the hardware adopted

The general architecture of this machinery is composed by a central CPU (model:
Siemens ET200SP) which elaborates the inputs coming from the several sensors,
the communication with the other PLC networked in the industry plant and the
Human Machine Interface adopted (i.e. WeinTek HMI or Siemens T900 Comfort).

This CPU interacts with the SIMOTION D 425-2 Device which is a driver
Control Unit with trivial combinatory logic functionalities and motion control
algorithms. This choice is adopted to exploit its extremely high performance
characteristics to satisfy fast and precise cycle times. This Control Unit has the
possibility to govern several Dirve-CLiQ communication interfaces which allows a
simpler transmission of data from and encoders and motors.

73

Control architecture of the system

Figure 5.1: Hardware configuration of the gantry stacker

In addition, several hardware components are adopted to define the IOs corre-
sponding to different areas of the gantry. Here are listed the principal elements:

• Interface module: this device allows to have additional IO cards in a remote
position with respect to the PLC. This is typically used to manage the inputs
coming from the console governed by the human operator and its relative
output lights for the information management.

• Pneumatic valve controller: This device is the interface between the
control logic signals and the pneumatic commands. With this valve controller
it is possible to decide the vacuum and blow intervals, but also the inclu-
sion/exclusion of the cup groups and the working behaviour of the grippers.

• IO Field devices: this devices are typically used to obtain digital and analog
IOs from remote zones of the gantry. As an example, Murr Elektronik sockets
are put on the bridge and carriage to obtain the signals from the overstrokes
and mechanical cams that are in the upper physical positions.

• Radar micro-processor for access area: This device is adopted to govern
the accesses controlled by several radars for safety countermeasures.

This basic Hardware is the basis adopted in this type of automation system, with
additional components inserted according to particular specific design. In general,
the disposal of this components for the testing of complete automation system is
available only on field during the installation phase on-site. For this reason, the
commissioning phase typically starts from here.

5.2 Siemens TIA Portal - ET200SP CPU
In the following section, an overview of the developed software is performed and
its relative Human-Machine-Interface management screens are shown.

74

Control architecture of the system

The working principle of a PLC software program is realized through sofware
blocks. There exist four types of blocks [34]:

• Organization Blocks (OB) define the overall structure of the user program
and are divided into subcategories that allow to decide how the tasks are
recalled, cyclically or at a particular event (i.e. in case of Hardware failure).
This type of block also includes the Main block, which is principal program in
which all the subtasks are recalled cyclically in a maximum cycle time.

• Function Blocks (FB) that are code blocks that store their values perma-
nently in their instance data blocks. This functions allows to have a dedicated
memory for a particular program code that remains available after the block
execution.

• Function calls (FC) are code blocks or subroutines without dedicated memory,
where the variables are defined outside the function recall, but the memory
space occupied is not linked to the FC.

• Data Blocks (DB) are used to store program data and thus contain variable
data that is used by the user program. Global data blocks store data that can
be used by all other blocks. In this category fall also the instance Data Blocks
created by the FB.

In addition, variables can not only be saved within Data Blocks but also within tag
tables. In this case it is necessary to assign them an address inside the CPU. These
variables are divided into three categories: Inputs, Outputs and Merker memories.

Figure 5.2: Example of program blocks

Concerning inputs and outputs, the address in the PLC is associated to the
channel physically wired to the given signal, while for the Merkers a series of
addresses available. The programming languages adopted are SCL (Structured
Code Language) and the ladder code.

75

Control architecture of the system

Input and Output
Given the program code, its results depend on the several digital inputs coming
from the physical signals, but also the HMI control. In the main block, a good
practice is the wiring of the input and output signals in auxiliary variables inside
the interested DB. To do so, an input function call is required. In addition, to
retrieve the information and commands from the HMI panel a similar solution is
developed. Similarly, physical outputs and variables read from the HMI are written
by symmetric FC (called "Outputs" and "HMI_Read") [35].

Access area control
The following subroutine recalled concerns the access area management. In facts,
to maintain the proper level of safety in accordance to the industry compliance,
Safety Inputs require an additional control on the consistency of the signal channel.
Access doors and photocells signals are typically F-DI (safety inputs). However, in
order to perform maintenance or changeovers, it is required to cut these barriers
without setting the system in emergency. To do so, there are access area selectors
with safety key in order to consent the transit. This accesses are observed and
summarised in a relative HMI screen as shown in fig. 5.3.

Figure 5.3: HMI panel: Access area

Rack counter plate
A fundamental part of the gantry stacker software is the production. In these
functions, the number of lites and plates are defined and the stacker works in order
to complete correctly the several packs present in a rack. Pack composition can be

76

Control architecture of the system

defined by external production manager or from local HMI panel and it is possible
to perform, several forcing commands like the decrement of a plate (in case of
broken glass sheet) or the forced end rack. A general screen for rack counter control
is depicted in fig. 5.4.

Figure 5.4: HMI panel: Rack counter plate

Rack manager point

In addition, in order to have faster time cycles, the gantry stacker is capable of
predicting the position of the next load/unload on the rack depending on the
geometrical configuration of the rack and the material thickness deposited or taken.
Typical parameters are defined in an operator HMI screen as shown in fig. 5.5.

Figure 5.5: HMI panel: geometrical definition of the rack

77

Control architecture of the system

Motion mission control
The motion of this machinery is defined in different cycles consisting on several
phases. The first one is the homing cycle, which is a fundamental trajectory
capable of returning the system in a well-known and predefined condition. This
cycle is defined through fixed points which are out of encumbrance with respect
to conveyors, racks and other obstacles present. Each phase is completed once
fulfilled a given condition and is then reset and the cycle movement proceed to
the following one. Other cycles consist of Load Air, Unload Air, Cycle from rack,
Cycle from conveyor and so on.

Pneumatic control
Another important program area is the pneumatic control definition. Physically,
the cups are regulated by air pressure and can be inserted or excluded according
to a manual selection or an automatic distinction depending on the dimensions of
the glass plates handled. Example of this control is shown in fig. 5.6.

Figure 5.6: HMI panel: cups selection

Communication
The last important aspect is the communication of this network with the other
control units and managers. Typically, the communication between different CPUs
is developed through the I-Device protocol, which is a particular function of Siemens
CPU where a master controller defines the memory areas which are shared between
the control units. In particular, each transmission is done by allocating a given
memory reserve for receiving and another for transmitting. In order to have the

78

Control architecture of the system

correct communication, the standard adopted is the definition of a proper UDT
(User Defined Datatype) which is a particular structure composed by multiple vari-
ables (independent on the type of the single ones). This generated structure is used
to map the common I-Device memory from the PLC that send the information, but
also from the PLC that receive the data. Another possible communication protocol
is the standard TCP/IP communication, where two control units communicate on
the IP network. This communication is possible with the functions TSEND_C and
TRECV_C that transmit and receive data on a given port at a given IP address.

The development of the code is only part of the software definition, since a debug-
ging and testing part is fundamental to avoid bugs and to consider all the possible
cases. A preliminary stage can be performed by simulating brief portions of the
software and by emulating inputs and outputs and seeing the behaviour of the
program code. This is the so-called "Soft commissioning".

Figure 5.7: Example of a PLCSIM Advanced instance

This debugging phase can be performed with a physical CPU connected to the
ethernet network or with an emulated instance with the software PLCSIM Advanced
[36].

This program is the simulation software able to emulate the behaviour of PLCs
from the families SIMATIC 1500 and ET 200SP series in order to test the correct
functioning of the control algorithm. Instead of a hardware connection with the
PLC network, the software provides two main communication interfaces: Local
(PLCSIM) and with a Virtual Ethernet Adapter [37].

79

Control architecture of the system

5.3 SIMOTION Control Unit

Simotion Scout is the development ambient for the drive commands and the
definition of the synchronized movement of the axes. The execution system of the
Simotion control system is based on the multi-tasking system principle [38].

Figure 5.8: General architecture of the SIMOTION Control Unit

The general control algorithm is defined by tasks which are recalled in three
different ways:

• Background tasks: Cyclically processed blocks of the program

• time-triggered: synchronous compilation of the function at a fixed time
interval

• interrupt-triggered: tasks called by the fulfillment of a certain event with
its priority

The algorithm principle requires that the drive commands must be recalled once
and thus a case status code is developed according to the feedback state from the
technological objects.

80

Control architecture of the system

Figure 5.9: Simotion execution system principle

Technology Objects (TO)
Technological objects are the black boxes that provide the functionality for motion
and technical control. A technology object (TO) represents a technological func-
tionality in the SIMOTION user software. As shown in fig. 5.10 the technological
object is the interactive link between sensors, actuators (Hardware components)
and the command and parametrization of the software counterpart. Moreover, each
technology object provides a set of alarms and value statuses in order to better
understand the behaviour and the reaction of the motion system.

Technology Objects can be activated or deactivated from the program and so it
defines an intrinsic adaptation to the several machine configurations (i.e. axis not
required, synchronised motion not necessary). Typical TOs are:

• TO axis for drive and encoder

• TO external encoder for one encoder only

• TO Following Object for the synchronous operation between two axes

• TO cam for the definition and representation of complex programmable
functions (adopted for trajectories)

81

Control architecture of the system

Figure 5.10: General scheme of a Technology Object

Programming model
The commands are connected to respective tasks which are assigned to the execution
levels of the motion control system. The execution time of a general motion
command on the technology object depends on the nature of the action to be
performed. In general, the commands issued from the user program, the user
program tasks, can be categorized as follows:

• Commands which are executed immediately in the context/sequence of the
user program tasks These are handled like a function within the user program
tasks. These commands are synchronous since the user program is continued
only upon the return of the function result.

• Commands which are queued in a command buffer and which overwrite each
other due to higher priority

• Commands which are entered in a command buffer and which are rejected if
the command buffer is occupied

In a further analysis of the execution task system and its levels, it is possible to
distinguish between sequential tasks and cyclic tasks.

After the recalling, sequential tasks (i.e. Motion Tasks) are executed only once
and then are terminated. In this way, the functions and the commands that are

82

Control architecture of the system

coded in this section are singularly executed. IN addition, at each new instantiation,
all the local variables are initialized. Since sequential tasks do not considering any
time monitoring, their execution time can be extended as desired by the program.
Sequential tasks are subject only to the control of the application developed, in facts,
the user program can start, stop, pause and resume tasks. The general principle in
this type of tasks is the consecution of single commands that are usually performed
when the previous task has been completed. The step enabling condition that
must be implemented to obtain this behaviour is WHEN_COMMAND_DONE in the next
Command parameter of the successive command. This execution model is typically
called synchronous execution.

On the other hand, cyclic tasks (such as the Background Task) are periodically
recalled immediately after their completion or after a certain time interval. In this
case, the static variables of the program belong to a retentive memory. Cyclic tasks
are subjected to time monitoring and a pre-defined error response is performed
in case of the exceeding of the maximum execution time. As a result, the code
contained in cyclic tasks must be efficient and quick. This characteristics are not
typical of motion commands (i. e. positioning of an axis), where the completion
is achieved after several clock cycles. With respect to sequential tasks, cyclical
TO commands have the parameter IMMEDIATELY in the step enabling condition
for the next Command parameter. This procedure is called instead asynchronous
execution.

The SIMOTION execution system comprises System task and user-defined
tasks. Each task is subjected to a level of priority and associated execution level.
System tasks are regularly executed by the system and comprehends principally
communication and motion control and are performed at different levels, from the
isochronous bus base cycle up to faster IPO cycles, for the interpolation calculation
of setpoints. On the opposite, User applications can be defined as event-controlled
execution tasks (so called interrupt tasks) or startup/stop tasks events. Although,
the basic user applications belongs to the freely running execution level, where a
Round Robin priority process execute background and the motion tasks. A typical
time cycle is shown in fig. 5.11.

83

Control architecture of the system

Figure 5.11: Definition of the time usage in the execution system

The SIMOTION D Control Unit is the device under investigation for the motion
control. SIMOTION D is a drive-based version of SIMOTION based on the
SINAMICS S120 drive family. The SIMOTION D425-2 is particularly designed to
fulfill the needs of applications with many coordinated axes with high precision at
high speeds. Typical applications include:

• Compact multiple-axis machines

• High-performance applications with short machine cycles

• Distributed drive concepts

• Applications with multiple axes

This control unit is general connected to other hardware components that are
governed by this central brain. In facts, SIMOTION D represents the Control
Unit consisting of the SIMOTION runtime system (operative system that execute
the applications) and the SINAMICS drive control (interaction and governance of
the drives and the axes). Attached to the CU is then connected the SINAMICS
Integrated drive with various SINAMICS S120 drive modules to perform open-
loop and closed-loop control of the axis movement. Other additional components
that can be connected are the Sensor Modules (encoder systems) that are easily
connected with the DRIVE-CLiQ interface as shown in fig. 5.12.

84

Control architecture of the system

Figure 5.12: Example of SIMOTION D425-2 Architecture

Software development in SIMOTION SCOUT
In the following paragraphs, the developed code for the motion control algorithm
is analysed. For sake of simplicity, the principal codes developed are available in
the Appendix A.

For the complete development of the software, several elements need to be
defined. To start, the technological objects that characterise the project must be
created and parametrized. Initially, it is important to configure all the possible
axis to be controlled with the Simotion Control Unit. Each axis can be defined
as a speed control, a positioning axis or a possible synchronous operation axis.
This distinction accounts the possible methods of axis movement and its intrinsic
feedback control. Additional parameters to be set regard the type of axis (electrical,
hydraulic or virtual) and its driver assignment with, if necessary, its relative encoder
for the closed-loop positioning control. For the simulation purposes, all these axis
are then simulated, since without the real Hardware it is not possible to emulate
the relative drive component.

Another fundamental technological object is the cam. This structure can be
used to define a transmission function and apply it to other technology objects. In
general, a cam describes the dependency of an output variable on an input variable,
as y = f(x). Typical input variables are the actual position of a master axis, a
virtual master value source, or the time, that control output variables like the set
position of a following axis, the setpoint profile, or the velocity profile.The cam is
defined as a stand-alone technology object, but its working principle is satisfied
when interconnected with other technology objects.

After defining these TOs and their relative connections, the following step is the
definition of the tasks and the development of the programs. The strategy adopted

85

Control architecture of the system

in this code is the background management of the motion missions received by the
controller. As an additional background task, the control on the abilitation of the
several axis is performed.

The simplest motion function that is developed is the possibility of a manual
jog. In this case, the operator (for maintenance and service purposes) requires to
perform a movement on the singular axis. From a communication point of view,
the Simotion receives the axes affected and their relative commands of positive
or negative jogs (typically controlled by physical push buttons on the console).
Once the system is set in its manual condition, it investigates the existence of
a manual command and then executes a positioning towards the motion limits,
that can be software-defined or, in case of maintenance access level, consistent
with the hardware-controlled endstops. This positioning motion continues until the
button is pushed. Once released, the motion is immediately paused and, after a
certain predefined idle time, the motion command is stopped. The results and the
analysis of this commands and motion variables can be obtained with the powerful
trace system of the simotion scout, where it is possible to observe the queue of the
motion commands, the states of the technology objects and the kinematic variables
of the several axis. This possibility is detailed in fig. 5.13, where a consecution of
the manual jog is performed.

Figure 5.13: Trace and TO trace of a manual jog simulation

The movement of a single axis can be also performed by defining its velocity-
profile or position-time profile. To do so, the Technology Object Cam plays a
fundamental role. In facts, thanks to the definition of a function profile, it is
possible to command an axes with a _runPositionLockedVelocityProfile or a
_runTimeLockedPositionProfile that is synchronised with a cam. The definition
of a cam requires a specific function program, where, starting from the waypoints
and their relative geometric characteristics draws a graph profile. The parameters
required for each point can be summarized as the following:

86

Control architecture of the system

• Master point position (X): it represents the setpoint of the master variable
for which an image in the slave domain

• Slave point position (Y): represents the value of the defined profile at the
X master position. In general Y = f(X)

• Geometrical velocity (m): it represents the first derivative coefficient of the
profile at its relative waypoint. Considering a cam drawn for a position-time
profile it represents the instantaneous velocity detected at the given point.

• Geometrical acceleration (k): it represents instead the second order deriva-
tive of the function at the given point.

• Profile: this parameter represents the type of interpolation that the function
exploit for the connection between the several segments. The possible profile
selection comprehends the polynomial functions (straight, cubic and quintic
polynomial), the harmonic functions (cicloidal and acicloidal).

Simotion Scout offers the possibility of the definition of a cam through the native
Siemens library of technology commands or through a cam edit tool. With the
former, it is possible to redesign on-line profiles with the modification of the
input points, while with the latter, a drawing graph environment helps to better
understand the behaviour of the function profile. In addition, it is possible to
evaluate and analyse the cam calculated in the online project as shown in fig. 5.14.

Figure 5.14: Example of a Simotion Cam

A complete different approach regards the synchronised movement of multiple
axis. In this concept, the cam is the interconnection object between two axis. In a
simpler case, a slave axis needs to perform a motion in accordance with the position

87

Control architecture of the system

movement of a master axis, so the slave axis requires to be in camming with the
master. The motion of the master axis causes a synchronised motion of the slave
one following the cam profile. For complex applications, a synchronised motion
of multiple axis is performed with the use of a virtual master axis that leads the
motion of the following synchronised objects. It is important to stress the correct
tuning of the several cams which are drawn separately in order to perform the
desired movement.

From this point, the possible implementations vary according to the needs of
the general trajectory planning and completion. A possible example is the start-
stop-restart of a synchronised motion of multiple axis. In this case the positioning
command on the virtual axis is stopped and resumed by external commands and
an example of this behaviour is shown in fig. 5.15.

Figure 5.15: Start-Stop on a synchronised cam

Another possible development is the application of two consecutive cams. This
solution allows to design different trajectory segments that can be travelled in
sequence without the loss of time. This solution is briefly depicted in fig. 5.16
where the light blue line corresponding to the synchronisation status of the cam
interconnection is immediately reattached, while the position profile is changed
according to the two designed profiles (first one is a straight profile, while the
second one is a cubic polynomial function).

88

Control architecture of the system

Figure 5.16: Travelling of consecutive cams

Other motion strategies are represented by the manual jog on the cam, with
the possibility of running in forward and backward the gantry in order to help the
operator in the maintenance and control of critical motions. Proper simulations
and debugging of this motion control program is performed with the SIMOSIM
software, capable of emulating the instances of the Simotion control units.

5.4 SIMIT
In the previous sections of this chapter, the single environments and codes were
analysed. However, an important aspect of the whole software architecture system
that was hidden regards the interconnection between the two control systems and
the communication. In addition, concerning the simulation of several elements
external to the control units (i.e. input sensors, output actuators, encoders), the
only alternative was the soft-commissioning of specific algorithms of the program
[39].

Instead, studies of cycle operations, feasibility and reliability of the automated
system require an analysis on the final design as a complete automation system.
Thanks to the simulation software Siemens SIMIT, it is possible to connect to
a single simulation platform all the virtual components investigated to complete
comprehensive tests of automation projects.

This simulation platform represents the milestone for the virtual commissioning,
where the designed automation system interacts with the simulated environment
and it can be subjected to operator sequence of manual tasks for a training and
time-study analysis.

The principal benefits coming from a Siemens SIMIT solution are the following:

• Improved engineering and higher automation quality;

• Detection and correction of automation errors in upstream phases;

• Faster commissioning and start-ups with reduced risks;

89

Control architecture of the system

• Increased plant availability and safety throughout the entire life cycle

• Operator training with actual commands prior to plant start-up

• Risk-free testing of optimization and alternative solutions

• Study and development of expansion projects of actual designs

Siemens SIMIT software is able to link all necessary couplings for communi-
cation between the simulation and automation environment. In facts, it permits
communication with real hardware controllers through the use of a SIMIT unit,
thus developing a HiL (Hardware-in-the Loop) system.

Figure 5.17: Hardware in the loop scheme

The Hardware-in-the-Loop testing is a procedure where real signals coming
from a controller are connected to the test system that simulates reality, eluding
the controller into computing logic and executing tasks in the assembled virtual
environment. Test and design iteration take place as though the real-world system
interacts with the controller and so it is possible to run through thousands of
possible scenarios to properly exercise the logic of the controller without the cost,
time and risks associated with actual physical tests.

For this analysis to be coherent with reality, the quality of the simulation software
is of utmost importance. Simulation software must be paired with hardware that
not only accounts for system specifications such as connector type and I/O but
also allows for fault insertion and the ability to test real-world scenarios.

On the other hand, there is the possibility of a Software-in-the-loop analysis (SiL)
where each component is simulated, comprehending the controllers via emulators
such as SIMATIC S7-PLCSIM Advanced and SIMOSIM Advanced.

The Software-in-the-Loop represents the integration of compiled production
source code into a mathematical model simulation, in a virtual environment for

90

Control architecture of the system

the development and testing of detailed control strategies for large and complex
systems.

With SiL, all the components can be emulated on the computer and the whole
system can be iteratively tested and, according to its response, modify the source
code, by directly connecting software to a digital plant model substituting for costlier
systems, prototypes or test benches. SiL makes it possible to test software prior to
the initialization of the hardware prototyping phase, significantly accelerating the
development cycle.

SiL enables the earliest detection of system-level defects or bugs, significantly
reducing the costs of later stage troubleshooting, when the number and complexity
of component interactions is greater. SiL provides an excellent complement to
traditional Hardware-in-the-Loop (HiL) simulation, while helping to accelerate
time-to-market and ensuring the more efficient software development.

Software-in-the Loop is the technical solution adopted for the virtual commis-
sioning of this gantry stacker.

Development of the SIMIT project
The SIMIT application is a field environment simulation software that can be used
for different applications:

• Complete plant simulation, comprehending the emulation of signals, devices
and plant response;

• Input and output simulator of test signals for an automation controller;

• Testing and commissioning of the automation software

These steps can be progressively performed, starting from the testing of signals
and simulation models up to the complete virtualization of the overall system in
order to obtain the dynamic responses of the plant. In Siemens SIMIT there exist
basically three macro-elements, that can be listed as following:

• Couplings are the interfaces to the automation system and is required for
signal exchange.

• Charts represent the control logic of the inputs and the external sensors and
actuator of the system not simulated by the control units.

• Visualization Objects are the tools to obtain an overview of the signals
from the plant with simple graphical objects or control elements

The general structure of the simulation is defined in charts with components,
controls and connections and is linked to the coupling with connectors. The charts

91

Control architecture of the system

contain the simulation model. In these graphical representations, the components,
controls and connections compose the behaviour of the surroundings . As previously
stated, charts consist of the following elements:

• Components for logical and arithmetic functions and for drives, sensors,
connections and communication.

• Controls for specifying values in a current simulation or displaying values
derived from the control logic.

• Connections are defined with signals and are represented as wiring connections
or as connectors. Signals are the interconnection systems between components,
controls and coupling of the automation system.

The first step to be done for the development of a simulation platform for the
testing of the project is the definition of the couplings. Couplings are used by SIMIT
to communicate with the automation system. A coupling is an interface between
the simulation environment and a coupling partner (i.e. an automation system or
an emulated virtual controller). In general, the coupling fulfills the following tasks:

• Signal exchange with the coupling partner (The input/output signals (I/O
signals) of the coupling partner are exchanged with SIMIT over the coupling)

• Coordination of signal exchange between SIMIT and the coupling partner

Figure 5.18: Simit working architecture

Each simulation system consists of two regions, which can briefly summarized in
the modeling system definition (where to configure the interfaces to the coupling
partners) and the control system running simulation. In this context, the coupling
provides the connection between the simulation model run by the control system
and the coupling partner variables.

92

Control architecture of the system

In the developed project, the coupling adopted is related to the PLCSIM
Advanced coupling, which, thanks to the HWCN Export, it is possible to create
the emulation of two instances related to the TIA E200SP CPU (with a PLCSIM
Advanced Instance) and to the SIMOTION D425-2 (with a SIMOSIM Advanced
Instance). From this import, all the Inputs and Outputs present in the two
control units are the initial signals that can be used in the charts paragraphs. As
an example, it is possible to govern the several inputs that affect the complete
automation. With a simple chart, it is possible, for example, the testing and
validation of the safety area accesses.

Figure 5.19: Drive chart emulation

The focal point of this SIMIT project consists in the emulation of the drives,
in order to obtain the correct motion control, as shown in fig. 5.19. In principles,
motion drives communicate and act through predefined telegrams composed of bits
and words with precise meanings and parameters. To emulate this, it is necessary
to choose the correct drive accordingly to their control (i.e. Closed loop control).
The analysed system is principally composed by drive that are described by the
PROFIdrive2, which is a popular Siemens standard. From a chart point of view,
it is important to understand the presence of an emulated encoder (here called
sensor) that is fed by a macro that integrates the output velocity of the drive,
thus retrieving the position of the axis. A general description of the PZD words
exchanged between the Simotion Control Unit and the SIMIT environment is well
described in the graph 5.20.

93

Control architecture of the system

Figure 5.20: communication between SIMIT and Simotion control unit

With this basis developed, it is now possible to start the virtual commissioning
with Software-in-the-Loop of the automation system of the gantry stacker. For
a better understanding of the motion trajectories and mission cycles, the SIMIT
software has been also coupled with Siemens Tecnomatix Plant Simulation,
which is a process simulator for the workflow of multiple machines, as shown in
fig. 5.21. This software is not designed for the digital twin concept of a single
automation system, but it is used to investigate the behaviour of a complete
manufacturing line.

Figure 5.21: Virtual commissioning with Siemens Tecnomatix

94

Chapter 6

Conclusions

The aim of thesis was the creation and the development of the instruments that,
combined together, form the digital twin concept the gantry stacker for glass plate
handling.

In facts, starting from the basic CAD geometries of a previously designed
machine, a simple kinematic model was developed in order to investigate the general
behaviour and check the trajectory feasibility for several production layouts. Once
accepted these waypoints, a theoretical and experimental analysis was developed
for the advantages and drawbacks concerning the trajectory planning strategies. To
obtain these results, a SimScape Multi-body model was created and the different
motion profiles were run at the several joints of the kinematic chain. In general, the
chosen trajectory profile represents the trade-off of different observed parameters,
such the dynamic resonance, the required time and the correct exploitation of
the actuators power. Depending on the nature of the mission to be performed, a
particular solution was adopted.

Moving forward, this project steered to the automation sphere. A basic complete
automation software was completed, starting from the PLC control program that
governs the logic of all the aspects (aside from the motion) of the gantry stacker. In
addition, an HMI interface was developed in order to ensure the operator interaction
with the automation system.

Instead, the motion control system was programmed for a different hardware
component, the SIMOTION control unit. In this code, the possibility of synchro-
nised movements between different axis was investigated and several commands
were accounted for and developed.

From a project point of view, the classical design would have required a real
commissioning, where the complete machinery was installed in a test factory
building with the disposal of the hardware components of the network and a
sufficient supply power. This test phase is mandatory before the installation phase
in order to the debug the coded software and to highlight the critical points of the

95

Conclusions

overall design. Apart from the expensive costs required for the shipment, mounting
and renting costs of this solution, this tests are performed in late stages of the
design process, where the possible changes are costly and time-critical.

The virtual commissioning is the solution adopted in our project that does
not rely on the physical components and represents one of the pillars of Industry
4.0. The missing element for the complete emulation of the automation software
was the definition of the simulation environment and the interconnection between
the control units. To fill this gap, a SIMIT project was developed and the debug
of the software was performed. In addition, a coupling with a simulation plant
software permits a graphical visualization of the motion that the controlled stacker
accomplishes.

Figure 6.1: Comparison between reality and digital twin (NX MCD)

This collective automation subsystem and the multi-body model represent the
two halves of the digital twin concept. In future works, the goal is to relate these
two environments, allowing the interactions between the mechanical parts in motion
and the several sensors and actuators, to better investigate the complete automation
system, from a mechanical, electrical and software point of view.

From this project, Bottero S.p.A., with the adoption of the Siemens native
multi-body model (Siemens NX MCD), will create the digital twin of a widely used
machine, aiming to a revolutionary engineering process that is the starting point of
the Industry 4.0 philosophy.

96

Appendix A

SIMOTION codes

1 INTERFACE
2 USEPACKAGE cam ;
3 USES DefGlob ;
4

5 PROGRAM Enable_Axis ;
6 PROGRAM Mode_Selection ;
7

8 END_INTERFACE
9

10 IMPLEMENTATION
11 PROGRAM Enable_Axis
12 VAR_TEMP
13 i : INT ;
14 END_VAR
15 (∗FOr each axis , check the enable s t a tu s and act consequent ly

∗)
16 FOR i := 0 TO NR_AXIS−1 BY 1 DO
17 IF (G_EnableAxis [i] XOR G_AxisEnableStatus [i]) THEN
18 (∗ I f the command r e q u i r e s the axisEnabled , proceed ∗)
19 IF (G_EnableAxis [i] AND AxisStruct [i] . c o n t r o l =

INACTIVE) THEN
20 ErrorAxisEnable [i] := _enableAxis (
21 ax i s := AxisStruct [i]) ;
22 END_IF;
23 (∗ I f the command turn o f f the enabl ing , check that

a l l the ax i s movements are stopped ∗)
24 IF (NOT G_EnableAxis [i] AND AxisStruct [i] . c o n t r o l =

ACTIVE) THEN
25 IF (AxisStruct [i] . motionStateData . motionState <>

STANDSTILL) THEN
26 ErrorAxisStop [i] := _stop (

97

SIMOTION codes

27 ax i s := AxisStruct [i]
28 , stopMode := STOP_AND_ABORT
29 , s t o p S p e c i f i c a t i o n := ALL_AXIS_MOTION(∗
30 , s topId :=
31 , pos i t iveAcce lType :=
32 , p o s i t i v e A c c e l :=
33 , negat iveAccelType :=
34 , negat iveAcce l :=
35 , po s i t i veAcce lS ta r tJe rkType :=
36 , p o s i t i v e A c c e l S t a r t J e r k :=
37 , pos it iveAccelEndJerkType :=
38 , pos i t iveAcce lEndJerk :=
39 , negat iveAcce lStartJerkType :=
40 , n ega t i v eAcce lS ta r tJe rk :=
41 , negativeAccelEndJerkType :=
42 , negat iveAccelEndJerk :=
43 , v e l o c i t y P r o f i l e :=
44 , mergeMode :=
45 ,nextCommand :=
46 , commandId :=
47 , movingMode :=
48 , abo r tAcce l e r a t i on := ∗)
49) ;
50 ELSE
51 ErrorAxisEnable [i] := _disableAxis (
52 ax i s := AxisStruct [i]) ;
53 END_IF;
54 END_IF;
55 END_IF;
56 (∗Memory s e t f o r ax i s s t a tu s ∗)
57 G_AxisEnableStatus [i] := G_EnableAxis [i] ;
58 END_FOR;
59 END_PROGRAM
60

61 (∗ Here i s s e l e c t e d the working mode o f the motion c o n t r o l machine
∗)

62 PROGRAM Mode_Selection
63 VAR_TEMP
64 i : INT ;
65 END_VAR
66

67 (∗ Emergency ac t i va t ed ∗)
68 IF (G_emergencyStop) THEN
69 G_manualMovement := FALSE;
70 G_CamMovement := FALSE;
71 END_IF;
72

73 (∗ Manual mode a c t i v a t i o n ∗)
74 IF (G_manualMovement) THEN

98

SIMOTION codes

75 _startTask (MotionTask_1) ;
76 ELSE
77 (∗ Act ivat ion o f the cam of the miss ion ∗)
78 IF (G_CamMovement) THEN
79 (∗ Check i f the re i s a new miss ion pre sent ∗)
80 IF (G_newMission) THEN
81 _startTask (MotionTask_2) ;
82 END_IF;
83

84 (∗ check f o r automatic or automatic jog ∗)
85 IF (G_missionInCam) THEN
86 // automatic
87 IF (G_auto) THEN
88 _startTask (MotionTask_3) ;
89 END_IF;
90 //manual jog n i te sync cam
91 IF (G_automaticJog) THEN
92 _startTask (MotionTask_4) ;
93 END_IF;
94 //cam v e l o c i t y p r o f i l e (v e l o c i i t y −space)
95 IF (G_automaticVeloc ityPosit ion) THEN
96 _startTask (MotionTask_5) ;
97 END_IF;
98 //cam space p r o f i l e (space−time)
99 IF (G_automaticPositionTime) THEN

100 _startTask (MotionTask_6) ;
101 END_IF;
102 END_IF;
103

104 (∗ add i t i on o f a new cam attached to the ac tua l cam∗)
105 IF (G_attachNewCam) THEN
106 _startTask (MotionTask_7) ;
107 END_IF;
108

109 ELSE
110 FOR i := 0 TO NR_AXIS−1 DO
111 G_EnableAxis [i] := FALSE;
112 END_FOR;
113 END_IF;
114 END_IF;
115

116 END_PROGRAM
117 END_IMPLEMENTATION

1 INTERFACE
2 USELIB Bottero_01 , Cam_01, UDT_gantry ;
3 USES DefGlob ;

99

SIMOTION codes

4

5 PROGRAM automatic ;
6 PROGRAM automaticJog ;
7 PROGRAM automat i cVe loc i tyPos i t i on ;
8 PROGRAM automaticPosit ionTime ;
9 END_INTERFACE

10

11 IMPLEMENTATION
12 PROGRAM automatic
13 // se non sono ancora in movimento ed ho un segna l e d i

partenza , a t t i v o i l pos iz ionamento de l master f i n o a f i n e camma
14 IF (g_automaticMovement = FALSE AND G_automaticStart) THEN
15 ErrorAutomaticPos := _pos (
16 ax i s := Virtual_Master
17 , d i r e c t i o n := POSITIVE
18 , pos i t ioningMode := ABSOLUTE
19 , p o s i t i o n := G_rMasterDistance
20 , ve loc i tyType := DIRECT
21 , v e l o c i t y := G_rMasterVelocity
22 (∗ , pos i t iveAcce lType :=
23 , p o s i t i v e A c c e l :=
24 , negat iveAccelType :=
25 , negat iveAcce l :=
26 , po s i t i veAcce lS ta r tJe rkType :=
27 , p o s i t i v e A c c e l S t a r t J e r k :=
28 , pos it iveAccelEndJerkType :=
29 , pos i t iveAcce lEndJerk :=
30 , negat iveAcce lStartJerkType :=
31 , n ega t i v eAcce lS ta r tJe rk :=
32 , negativeAccelEndJerkType :=
33 , negat iveAccelEndJerk :=
34 , v e l o c i t y P r o f i l e :=
35 , blendingMode :=
36 , mergeMode :=
37 ,nextCommand :=
38 , commandId :=
39 , abo r tAcce l e r a t i on :=∗)
40) ;
41 // v a r i a b i l e a u s i l i a r i a s u l movimento de l master
42 G_automaticMovement := TRUE;
43 END_IF;
44 // se è in movimento , ma ho l o stop de l c i c l o , eseguo i l _stop

(senza abort per poter cont inuare i l movimento)
45 IF (G_automaticMovement AND G_automaticStop) THEN
46 ErrorAutomaticStop := _stop (
47 ax i s := Virtual_Master
48 , stopMode := STOP_WITHOUT_ABORT
49 , s t o p S p e c i f i c a t i o n := ALL_AXIS_MOTION
50 // , s topId :=

100

SIMOTION codes

51 , pos i t iveAcce lType := DIRECT
52 , p o s i t i v e A c c e l := 100
53 , negat iveAccelType := DIRECT
54 , negat iveAcce l := 100
55 , po s i t i veAcce lS ta r tJe rkType := DIRECT
56 , p o s i t i v e A c c e l S t a r t J e r k :=100
57 , pos it iveAccelEndJerkType := DIRECT
58 , pos i t iveAcce lEndJerk := 100
59 , negat iveAcce lStartJerkType := DIRECT
60 , n ega t i v eAcce lS ta r tJe rk := 100
61 , negativeAccelEndJerkType := DIRECT
62 , negat iveAccelEndJerk := 100
63 , v e l o c i t y P r o f i l e := SMOOTH
64 , mergeMode := IMMEDIATELY
65 ,nextCommand := IMMEDIATELY
66 // , commandId :=
67 , movingMode := CURRENT_MODE
68 , abo r tAcce l e r a t i on := NO
69) ;
70 // v a r i a b i l e a u s i l i a r i a s u l movimento de l master
71 G_automaticMovement := FALSE;
72 END_IF;
73 // se l o stop s i è r e s e t t a t o , r i a t t i v o i l pos iz ionamento de l

master f i n o a f i n e camma
74 IF (G_automaticStop = FALSE AND G_automaticMovement = FALSE

AND G_automaticContinue) THEN
75 ErrorAutomaticContinue := _continue (
76 ax i s := Virtual_Master
77 , c o n t i n u e S p e c i f i c a t i o n := ALL_AXIS_MOTION
78 (∗ , cont inueId :=
79 ,nextCommand :=
80 , commandId :=∗)
81) ;
82 // v a r i a b i l e a u s i l i a r i a s u l movimento de l master
83 G_automaticMovement := TRUE;
84 END_IF;
85 END_PROGRAM
86

87

88 PROGRAM automaticJog
89 VAR
90 i : INT ;
91 AutomaticJogDirect ion : EnumDirection ;
92 CammingDirection : EnumCammingDirection ;
93 Automat ic jogPos i t ion : REAL;
94 Automatic jogStart : REAL;
95 END_VAR
96 // se è pre s ente un comando di jog p o s i t i v o / negat ivo
97 IF (G_automaticJogPosit ive XOR G_automaticJogNegative) THEN

101

SIMOTION codes

98 // de s c r i vo i due pos i z ionament i e a t i v a z i o n i d e l l a camma
in base a l l a d i r e z i o n e

99 IF (G_automaticJogPosit ive) THEN
100 AutomaticJogDirect ion := POSITIVE ;
101 CammingDirection := POSITIVE ;
102 Automat ic jogPos i t ion := 3 6 0 . 0 ;
103 Automatic jogStart := 0 . 0 ;
104 ELSE
105 AutomaticJogDirect ion := NEGATIVE;
106 CammingDirection := NEGATIVE;
107 Automat ic jogPos i t ion := 0 . 0 ;
108 Automatic jogStart := 3 6 0 . 0 ;
109 END_IF;
110 // a b i l i t a z i o n e s t e s s a camma per muovermi da 0 in su e 360

in g i ù s u l master
111 FOR i := 0 TO NR_AXIS−1 DO
112 // se l a camma non è p i ù at t iva , ma l a d i f f e r e n z a d i

p o s i z i o n e e t a r g e t è d i v e r s a da zero , r i a t t i v o l a s t e s s a camma
113 IF (G_EnableAxis [i] = TRUE AND SyncStruct [i] . s t a t e =

INACTIVE AND ABS(Virtual_Master . p o s i t i o n i n g S t a t e . a c tua lPos i t i on −
Automat ic jogPos i t ion)> POS_TOLERANCE) THEN

114 ErrorEnableCam [i] := _enableCamming (
115 f o l l ow ingOb j e c t := SyncStruct [i]
116 , d i r e c t i o n := POSITIVE
117 , masterMode := ABSOLUTE
118 , slaveMode := ABSOLUTE
119 , cammingMode := NOCYCLIC
120 , cam := CamStruct [i]
121 , synchronizingMode := IMMEDIATELY
122 , s yncPos i t i onRe f e r ence :=

BE_SYNCHRONOUS_AT_POSITION
123 , s y n c P r o f i l e R e f e r e n c e :=

RELATE_SYNC_PROFILE_TO_TIME
124 , syncLengthType := DIRECT
125 , syncLength := 1 .0
126 , camStartPosit ionMasterType := DIRECT
127 , camStartPos it ionMaster := Automatic jogStart

(∗
128 , syncPosit ionMasterType :=
129 , syncPos i t ionMaster :=
130 , syncPos i t ionSlaveType :=
131 , s yncPos i t i onS lave :=
132 , ve loc i tyType :=
133 , v e l o c i t y :=
134 , pos i t iveAcce lType :=
135 , p o s i t i v e A c c e l :=
136 , negat iveAccelType :=
137 , negat iveAcce l :=
138 , po s i t i veAcce lS ta r tJe rkType :=

102

SIMOTION codes

139 , p o s i t i v e A c c e l S t a r t J e r k :=
140 , pos it iveAccelEndJerkType :=
141 , pos i t iveAcce lEndJerk :=
142 , negat iveAcce lStartJerkType :=
143 , n ega t i v eAcce lS ta r tJe rk :=
144 , negativeAccelEndJerkType :=
145 , negat iveAccelEndJerk :=
146 , v e l o c i t y P r o f i l e :=
147 , mergeMode :=
148 ,nextCommand :=
149 , commandId :=
150 , s ynch ron i z i ngD i r e c t i on :=∗)
151) ;
152 END_IF;
153 END_FOR;
154 // se i l master è fermo e l a d i s tanza t ra p o s i z i o n e e

t a r g e t è dversa da zero , a t t i v o i l pos iz ionamento de l master
155 IF (v i r tua l_master . motionStateData . motionState =

STANDSTILL AND ABS(Virtual_Master . p o s i t i o n i n g S t a t e . a c tua lPos i t i on −
Automat ic jogPos i t ion)> POS_TOLERANCE) THEN

156 ErrorAutomaticJogPos := _pos (
157 ax i s := Virtual_Master
158 , d i r e c t i o n := AutomaticJogDirect ion
159 , pos i t ioningMode := ABSOLUTE
160 , p o s i t i o n := Automat ic jogPos i t ion
161 , ve loc i tyType := DIRECT
162 , v e l o c i t y := 10
163 (∗ , pos i t iveAcce lType :=
164 , p o s i t i v e A c c e l :=
165 , negat iveAccelType :=
166 , negat iveAcce l :=
167 , po s i t i veAcce lS ta r tJe rkType :=
168 , p o s i t i v e A c c e l S t a r t J e r k :=
169 , pos it iveAccelEndJerkType :=
170 , pos i t iveAcce lEndJerk :=
171 , negat iveAcce lStartJerkType :=
172 , n ega t i v eAcce lS ta r tJe rk :=
173 , negativeAccelEndJerkType :=
174 , negat iveAccelEndJerk :=
175 , v e l o c i t y P r o f i l e :=
176 , blendingMode :=
177 , mergeMode :=
178 ,nextCommand :=
179 , commandId :=
180 , abo r tAcce l e r a t i on :=∗)
181) ;
182 END_IF;
183 ELSE

103

SIMOTION codes

184 // se non ho alcun comando di jog , stoppo e a o r t i s c o i l
comando di pos iz ionamento

185 IF (v i r tua l_master . motionStateData . motionState <>
STANDSTILL AND virtua l_master . motionStateData . motionState <>
DECELERATING) THEN

186 ErrorAutomaticJogStop := _stop (
187 ax i s := Virtual_Master
188 , stopMode := STOP_AND_ABORT
189 , s t o p S p e c i f i c a t i o n := ALL_AXIS_MOTION
190 // , s topId :=
191 , pos i t iveAcce lType := DIRECT
192 , p o s i t i v e A c c e l := 100
193 , negat iveAccelType := DIRECT
194 , negat iveAcce l := 100
195 , po s i t i veAcce lS ta r tJe rkType := DIRECT
196 , p o s i t i v e A c c e l S t a r t J e r k :=100
197 , pos it iveAccelEndJerkType := DIRECT
198 , pos i t iveAcce lEndJerk := 100
199 , negat iveAcce lStartJerkType := DIRECT
200 , n ega t i v eAcce lS ta r tJe rk := 100
201 , negativeAccelEndJerkType := DIRECT
202 , negat iveAccelEndJerk := 100
203 , v e l o c i t y P r o f i l e := SMOOTH
204 , mergeMode := IMMEDIATELY
205 ,nextCommand := IMMEDIATELY
206 // , commandId :=
207 , movingMode := CURRENT_MODE
208 , abo r tAcce l e r a t i on := NO
209) ;
210 END_IF;
211 END_IF;
212 END_PROGRAM
213

214

215 PROGRAM automat i cVe loc i tyPos i t i on
216 // c a l c o l o one−shot d e l l a camma v e l o c i t à−spaz i o
217 IF (xCamvelocityCalcDone = FALSE) THEN
218 CamProf i l eVe loc i ty := Calc_Cam_Generic (Cam_Points :=

CamPointVelocity) ;
219 i fb_velocityCam (
220 Profi leCam := CamProf i l eVe loc i ty
221 ,Cam_Id := Cam_velocity_master
222 , CalcOk := xVelocityCamCorrectness
223 (∗ , Result =>∗)
224) ;
225 xCamvelocityCalcDone :=TRUE;
226 END_IF;
227 // eseguo un l a n c i o one−shot de l movimento in camma di v e l o c i t

à

104

SIMOTION codes

228 IF (G_veloc i tyStart AND G_velocityStop = FALSE AND
Virtual_Master . ve loc i tyPos i t ionProf i l eCommand . s t a t e = INACTIVE)
THEN

229 E r r o r V e l o c i t y P r o f i l e := _runPos i t i onLockedVe loc i tyPro f i l e
(

230 ax i s := Virtual_Master
231 , p r o f i l e := Cam_velocity_master (∗
232 , pos i t iveAcce lType :=
233 , p o s i t i v e A c c e l :=
234 , negat iveAccelType :=
235 , negat iveAcce l :=
236 , po s i t i veAcce lS ta r tJe rkType :=
237 , p o s i t i v e A c c e l S t a r t J e r k :=
238 , pos it iveAccelEndJerkType :=
239 , pos i t iveAcce lEndJerk :=
240 , negat iveAcce lStartJerkType :=
241 , n ega t i v eAcce lS ta r tJe rk :=
242 , negativeAccelEndJerkType :=
243 , negat iveAccelEndJerk :=
244 , v e l o c i t y P r o f i l e :=
245 , mergeMode :=
246 ,nextCommand :=
247 , commandId :=
248 , movingMode := ∗)
249) ;
250 END_IF;
251

252 // se v iene l a n c i a t o uno stop
253 IF (G_velocityStop AND Virtual_Master .

ve loc i tyPos i t ionProf i l eCommand . s t a t e <> INACTIVE) THEN
254 ErrorVe loc i tyStop := _stop (
255 ax i s := Virtual_Master
256 , stopMode := STOP_AND_ABORT
257 , s t o p S p e c i f i c a t i o n :=ALL_AXIS_MOTION (∗
258 , s topId :=
259 , pos i t iveAcce lType :=
260 , p o s i t i v e A c c e l :=
261 , negat iveAccelType :=
262 , negat iveAcce l :=
263 , po s i t i veAcce lS ta r tJe rkType :=
264 , p o s i t i v e A c c e l S t a r t J e r k :=
265 , pos it iveAccelEndJerkType :=
266 , pos i t iveAcce lEndJerk :=
267 , negat iveAcce lStartJerkType :=
268 , n ega t i v eAcce lS ta r tJe rk :=
269 , negativeAccelEndJerkType :=
270 , negat iveAccelEndJerk :=
271 , v e l o c i t y P r o f i l e :=
272 , mergeMode :=

105

SIMOTION codes

273 ,nextCommand :=
274 , commandId :=
275 , movingMode :=
276 , abo r tAcce l e r a t i on := ∗)
277) ;
278 END_IF;
279 END_PROGRAM
280

281 PROGRAM automaticPosit ionTime
282 // c a l c o l o one−shot d e l l a camma spaz io −tempo
283 IF (xPosTimeCamCorrectness = FALSE) THEN
284 CamProfilePosTime := Calc_Cam_Generic (Cam_Points :=

CamPointPosTime) ;
285 ifb_PosTimeCam (
286 Profi leCam := CamProfilePosTime
287 ,Cam_Id := X_Cam_PosTime
288 , CalcOk := xPosTimeCamCorrectness
289 (∗ , Result =>∗)
290) ;
291 xCamPosTimeCalcDone :=TRUE;
292 END_IF;
293

294 // eseguo un l a n c i o one−shot de l movimento in camma di
p o s i z i o n e

295 IF (G_PosTimeStart AND G_PosTimeStop = FALSE AND
Virtual_Master . positionTimeProfi leCommand . s t a t e = INACTIVE) THEN

296 E r r o r V e l o c i t y P r o f i l e := _runTimeLockedPosit ionProf i le (
297 ax i s := Virtual_Master
298 , p r o f i l e := X_Cam_PosTime
299 , startTime := 0 .0
300 , prof i leDataMode := RELATIVE(∗
301 , ve loc i tyType :=
302 , v e l o c i t y :=
303 , pos i t iveAcce lType :=
304 , p o s i t i v e A c c e l :=
305 , negat iveAccelType :=
306 , negat iveAcce l :=
307 , po s i t i veAcce lS ta r tJe rkType :=
308 , p o s i t i v e A c c e l S t a r t J e r k :=
309 , pos it iveAccelEndJerkType :=
310 , pos i t iveAcce lEndJerk :=
311 , negat iveAcce lStartJerkType :=
312 , n ega t i v eAcce lS ta r tJe rk :=
313 , negativeAccelEndJerkType :=
314 , negat iveAccelEndJerk :=
315 , v e l o c i t y P r o f i l e :=
316 , mergeMode :=
317 ,nextCommand :=
318 , commandId := ∗)

106

SIMOTION codes

319) ;
320 END_IF;
321 // se v iene l a n c i a t o uno stop
322 IF (G_PosTimeStop AND Virtual_Master .

positionTimeProfi leCommand . s t a t e <> INACTIVE) THEN
323 ErrorVe loc i tyStop := _stop (
324 ax i s := Virtual_Master
325 , stopMode := STOP_AND_ABORT
326 , s t o p S p e c i f i c a t i o n :=ALL_AXIS_MOTION (∗
327 , s topId :=
328 , pos i t iveAcce lType :=
329 , p o s i t i v e A c c e l :=
330 , negat iveAccelType :=
331 , negat iveAcce l :=
332 , po s i t i veAcce lS ta r tJe rkType :=
333 , p o s i t i v e A c c e l S t a r t J e r k :=
334 , pos it iveAccelEndJerkType :=
335 , pos i t iveAcce lEndJerk :=
336 , negat iveAcce lStartJerkType :=
337 , n ega t i v eAcce lS ta r tJe rk :=
338 , negativeAccelEndJerkType :=
339 , negat iveAccelEndJerk :=
340 , v e l o c i t y P r o f i l e :=
341 , mergeMode :=
342 ,nextCommand :=
343 , commandId :=
344 , movingMode :=
345 , abo r tAcce l e r a t i on := ∗)
346) ;
347 END_IF;
348

349 END_PROGRAM
350 END_IMPLEMENTATION

107

Bibliography

[1] Nora Wintour. The glass industry: Recent trends and changes in working
conditions and employment relations. Aug. 2021. doi: 10.1163/2210-7975\
{_}hrd-4022-2015081. url: https://doi.org/10.1163/2210-7975_hrd-
4022-2015081 (cit. on p. 2).

[2] Mikell P. Groover. Fundamentals of modern manufacturing : materials, pro-
cesses, and systems. Jan. 1996. url: http : / / ci . nii . ac . jp / ncid /
BA55024566 (cit. on p. 3).

[3] Reinhard Conradt. «Prospects and physical limits of processes and tech-
nologies in glass melting». In: Journal of Asian Ceramic Societies 7.4 (Sept.
2019), pp. 377–396. doi: 10.1080/21870764.2019.1656360. url: https:
//doi.org/10.1080/21870764.2019.1656360 (cit. on p. 3).

[4] «Review Lecture: The float glass process». In: Proceedings of the Royal Society
of London 314.1516 (Dec. 1969), pp. 1–25. doi: 10.1098/rspa.1969.0212.
url: https://doi.org/10.1098/rspa.1969.0212 (cit. on p. 3).

[5] Charles Angell. «Glass . Nature, Structure, and Properties. Horst Scholze.
Springer-Verlag, New York, 1991. xiv, 454 pp.» In: Science (May 1992). doi:
10.1126/science.256.5057.682.b. url: https://doi.org/10.1126/
science.256.5057.682.b (cit. on p. 5).

[6] W. H. Zachariasen. «THE ATOMIC ARRANGEMENT IN GLASS». In:
Journal of the American Chemical Society 54.10 (Oct. 1932), pp. 3841–3851.
doi: 10.1021/ja01349a006. url: https://doi.org/10.1021/ja01349a006
(cit. on p. 5).

[7] Granger K. Chui. «Heat Transfer and Temperature Control in an Annealing
Lehr for Float Glass». In: Journal of the American Ceramic Society (Nov.
1977). doi: 10.1111/j.1151-2916.1977.tb14086.x. url: https://doi.
org/10.1111/j.1151-2916.1977.tb14086.x (cit. on p. 6).

[8] Float Glass Annealing Lehr | Stewart Engineers. url: https://stewarte
ngineers.com/en/innovations/float-glass-annealing-lehr/ (cit. on
p. 7).

108

https://doi.org/10.1163/2210-7975\{_}hrd-4022-2015081
https://doi.org/10.1163/2210-7975\{_}hrd-4022-2015081
https://doi.org/10.1163/2210-7975_hrd-4022-2015081
https://doi.org/10.1163/2210-7975_hrd-4022-2015081
http://ci.nii.ac.jp/ncid/BA55024566
http://ci.nii.ac.jp/ncid/BA55024566
https://doi.org/10.1080/21870764.2019.1656360
https://doi.org/10.1080/21870764.2019.1656360
https://doi.org/10.1080/21870764.2019.1656360
https://doi.org/10.1098/rspa.1969.0212
https://doi.org/10.1098/rspa.1969.0212
https://doi.org/10.1126/science.256.5057.682.b
https://doi.org/10.1126/science.256.5057.682.b
https://doi.org/10.1126/science.256.5057.682.b
https://doi.org/10.1021/ja01349a006
https://doi.org/10.1021/ja01349a006
https://doi.org/10.1111/j.1151-2916.1977.tb14086.x
https://doi.org/10.1111/j.1151-2916.1977.tb14086.x
https://doi.org/10.1111/j.1151-2916.1977.tb14086.x
https://stewartengineers.com/en/innovations/float-glass-annealing-lehr/
https://stewartengineers.com/en/innovations/float-glass-annealing-lehr/

BIBLIOGRAPHY

[9] Francesco Adamo, Filippo Attivissimo, Attilio Di Nisio, and Mario Savino.
«A low-cost inspection system for online defects assessment in satin glass». In:
Measurement 42.9 (Nov. 2009), pp. 1304–1311. doi: 10.1016/j.measurement.
2009.05.006. url: https://doi.org/10.1016/j.measurement.2009.05.
006 (cit. on p. 8).

[10] V.A. Litvinov, I. A. Maistrenko, E.A. Tarasov, and F. B. Grinberg. «Cutting
glass with a hard-alloy roller». In: Glass and Ceramics 29.12 (Dec. 1972),
pp. 793–795. doi: 10.1007/bf00674317. url: https://doi.org/10.1007/
bf00674317 (cit. on p. 9).

[11] M.I. Smirnov, Yu. A. Spiridonov, and A.R. Karapetyan. «Modern sheet-glass
cutting technologies». In: Glass and Ceramics (May 2011). doi: 10.1007/
s10717-011-9310-3. url: https://doi.org/10.1007/s10717-011-9310-
3 (cit. on p. 9).

[12] P. V. Popov. «CALCULATION OF CONTACT PRESSURE IN CUTTING
SHEET GLASS WITH A HARD-ALLOY METAL ROLLER». In: Glass and
Ceramics (July 2001). doi: UDC.666.1.053.2.001.24 (cit. on p. 10).

[13] Héctor Cañas, Josefa Mula, Manuel Díaz-Madroñero, and Alexandre Dolgui.
«Implementing Industry 4.0 principles». In: Computers Industrial Engineering
158 (Aug. 2021), p. 107379. doi: 10.1016/j.cie.2021.107379. url: https:
//doi.org/10.1016/j.cie.2021.107379 (cit. on p. 14).

[14] Matteo Rossini, Federica Costa, Guilherme Luz Tortorella, and Alberto Porti-
oli Staudacher. «The interrelation between Industry 4.0 and lean production:
an empirical study on European manufacturers». In: The International Jour-
nal of Advanced Manufacturing Technology 102.9-12 (Mar. 2019), pp. 3963–
3976. doi: 10.1007/s00170-019-03441-7. url: https://doi.org/10.
1007/s00170-019-03441-7 (cit. on pp. 14, 16).

[15] Morteza Ghobakhloo. «Industry 4.0, digitization, and opportunities for sus-
tainability». In: Journal of Cleaner Production 252 (Apr. 2020), p. 119869.
doi: 10.1016/j.jclepro.2019.119869. url: https://doi.org/10.1016/
j.jclepro.2019.119869 (cit. on pp. 15, 18).

[16] Brijesh Sivathanu and Rajasshrie Pillai. «Smart HR 4.0 – how industry 4.0
is disrupting HR». In: Human Resource Management International Digest
26.4 (May 2018), pp. 7–11. doi: 10.1108/hrmid- 04- 2018- 0059. url:
https://doi.org/10.1108/hrmid-04-2018-0059 (cit. on p. 16).

[17] Keliang Zhou, Taigang Liu, and Lifeng Zhou. «Industry 4.0: Towards future
industrial opportunities and challenges». In: (2015), pp. 2147–2152 (cit. on
p. 16).

109

https://doi.org/10.1016/j.measurement.2009.05.006
https://doi.org/10.1016/j.measurement.2009.05.006
https://doi.org/10.1016/j.measurement.2009.05.006
https://doi.org/10.1016/j.measurement.2009.05.006
https://doi.org/10.1007/bf00674317
https://doi.org/10.1007/bf00674317
https://doi.org/10.1007/bf00674317
https://doi.org/10.1007/s10717-011-9310-3
https://doi.org/10.1007/s10717-011-9310-3
https://doi.org/10.1007/s10717-011-9310-3
https://doi.org/10.1007/s10717-011-9310-3
https://doi.org/UDC.666.1.053.2.001.24
https://doi.org/10.1016/j.cie.2021.107379
https://doi.org/10.1016/j.cie.2021.107379
https://doi.org/10.1016/j.cie.2021.107379
https://doi.org/10.1007/s00170-019-03441-7
https://doi.org/10.1007/s00170-019-03441-7
https://doi.org/10.1007/s00170-019-03441-7
https://doi.org/10.1016/j.jclepro.2019.119869
https://doi.org/10.1016/j.jclepro.2019.119869
https://doi.org/10.1016/j.jclepro.2019.119869
https://doi.org/10.1108/hrmid-04-2018-0059
https://doi.org/10.1108/hrmid-04-2018-0059

BIBLIOGRAPHY

[18] Lorenzo Ardito, Antonio Messeni Petruzzelli, Umberto Panniello, and Achille
Claudio Garavelli. «Towards Industry 4.0». In: Business Process Management
Journal 25.2 (July 2018), pp. 323–346. doi: 10.1108/bpmj-04-2017-0088.
url: https://doi.org/10.1108/bpmj-04-2017-0088 (cit. on p. 18).

[19] Qinglin Qi and Fei Tao. «Digital Twin and Big Data Towards Smart Man-
ufacturing and Industry 4.0: 360 Degree Comparison». In: IEEE Access 6
(Jan. 2018), pp. 3585–3593. doi: 10.1109/access.2018.2793265. url:
https://doi.org/10.1109/access.2018.2793265 (cit. on p. 18).

[20] Jorge Posada et al. «Visual Computing as a Key Enabling Technology for
Industrie 4.0 and Industrial Internet». In: IEEE Computer Graphics and
Applications 35.2 (Mar. 2015), pp. 26–40. doi: 10.1109/mcg.2015.45. url:
https://doi.org/10.1109/mcg.2015.45 (cit. on p. 18).

[21] Martin Sjarov, Tobias Lechler, Jonathan D. Fuchs, Matthias Brossog, Andreas
Selmaier, Florian Faltus, Toni Donhauser, and Jörg Franke. «The Digital
Twin Concept in Industry – A Review and Systematization». In: Sept. 2020.
doi: 10.1109/etfa46521.2020.9212089. url: https://doi.org/10.1109/
etfa46521.2020.9212089 (cit. on p. 18).

[22] Michael W. Grieves and John Vickers. Digital Twin: Mitigating Unpredictable,
Undesirable Emergent Behavior in Complex Systems. Aug. 2016, pp. 85–113.
doi: 10.1007/978-3-319-38756-7\{_}4. url: https://doi.org/10.
1007/978-3-319-38756-7_4 (cit. on p. 18).

[23] Soumya Singh, Max Weeber, and Kai Peter Birke. «Advancing digital twin
implementation: a toolbox for modelling and simulation». In: Procedia CIRP
99 (Jan. 2021), pp. 567–572. doi: 10.1016/j.procir.2021.03.078. url:
https://doi.org/10.1016/j.procir.2021.03.078 (cit. on p. 19).

[24] Pingyu Jiang, Dewen Wang, Weiming Shen, Quan-Ke Pan, Qiang Liu, and Xin
Chen. «Digital twins-based smart manufacturing system design in Industry
4.0: A review». In: Journal of Manufacturing Systems 60 (July 2021), pp. 119–
137. doi: 10.1016/j.jmsy.2021.05.011. url: https://doi.org/10.1016/
j.jmsy.2021.05.011 (cit. on p. 20).

[25] Tobias Lechler, Eva K. Fischer, Maximilian Metzner, Andreas Mayr, and
Jörg Franke. «Virtual Commissioning – Scientific review and exploratory
use cases in advanced production systems». In: Procedia CIRP 81 (Jan.
2019), pp. 1125–1130. doi: 10.1016/j.procir.2019.03.278. url: https:
//doi.org/10.1016/j.procir.2019.03.278 (cit. on p. 22).

110

https://doi.org/10.1108/bpmj-04-2017-0088
https://doi.org/10.1108/bpmj-04-2017-0088
https://doi.org/10.1109/access.2018.2793265
https://doi.org/10.1109/access.2018.2793265
https://doi.org/10.1109/mcg.2015.45
https://doi.org/10.1109/mcg.2015.45
https://doi.org/10.1109/etfa46521.2020.9212089
https://doi.org/10.1109/etfa46521.2020.9212089
https://doi.org/10.1109/etfa46521.2020.9212089
https://doi.org/10.1007/978-3-319-38756-7\{_}4
https://doi.org/10.1007/978-3-319-38756-7_4
https://doi.org/10.1007/978-3-319-38756-7_4
https://doi.org/10.1016/j.procir.2021.03.078
https://doi.org/10.1016/j.procir.2021.03.078
https://doi.org/10.1016/j.jmsy.2021.05.011
https://doi.org/10.1016/j.jmsy.2021.05.011
https://doi.org/10.1016/j.jmsy.2021.05.011
https://doi.org/10.1016/j.procir.2019.03.278
https://doi.org/10.1016/j.procir.2019.03.278
https://doi.org/10.1016/j.procir.2019.03.278

BIBLIOGRAPHY

[26] Sophie Prat, Jeremy Cavron, Djamal Kesraoui, Philippe Rauffet, Pascal
Berruet, and Alain Bignon. «An Automated Generation Approach of Simula-
tion Models for Checking Control/Monitoring System». In: IFAC-PapersOnLine
50.1 (July 2017), pp. 6202–6207. doi: 10.1016/j.ifacol.2017.08.1014.
url: https://doi.org/10.1016/j.ifacol.2017.08.1014 (cit. on p. 22).

[27] Zheng Liu, Nico Suchold, and Christian Diedrich. Virtual Commissioning
of Automated Systems. July 2012. doi: 10.5772/45730. url: https://doi.
org/10.5772/45730 (cit. on p. 23).

[28] Mathias Oppelt and Leon Urbas. «Integrated virtual commissioning an essen-
tial activity in the automation engineering process: From virtual commission-
ing to simulation supported engineering». In: Oct. 2014. doi: 10.1109/iecon.
2014.7048867. url: https://doi.org/10.1109/iecon.2014.7048867
(cit. on p. 25).

[29] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo. Robotics.
Springer Science Business Media, Aug. 2010 (cit. on pp. 27, 36, 37, 46).

[30] L. Keith Barker. Modified Denavit-Hartenberg Parameters for Better Location
of Joint Axis Systems in Robot Arms. Jan. 1986 (cit. on p. 29).

[31] Robotics System Toolbox Documentation - MathWorks Italia. url: https:
//it.mathworks.com/help/robotics/index.html?s_tid=CRUX_lftnav
(cit. on pp. 32, 33).

[32] Luigi Biagiotti and Claudio Melchiorri. Trajectory Planning for Automatic
Machines and Robots. Springer Science Business Media, Oct. 2008 (cit. on
pp. 48, 49, 62).

[33] Simscape Documentation - MathWorks Italia. url: https://it.mathworks.
com/help/simscape/ (cit. on pp. 67, 68).

[34] Totally Integrated Automation – Product Guide. 2011 (cit. on p. 75).
[35] P. Papcun, Erik Kajati, and Jiri Koziorek. «Human Machine Interface in

Concept of Industry 4.0». In: Aug. 2018. doi: 10.1109/disa.2018.8490603.
url: https://doi.org/10.1109/disa.2018.8490603 (cit. on p. 76).

[36] Enrique García Viñuela, Dániel Darvas, and Gyula Sallai. «Testing Solutions
for Siemens PLCs Programs Based on PLCSIM Advanced». In: Conf. on Acc.
and Large Exp. Physics Control Systems (Aug. 2020), pp. 1107–1110. doi:
10.18429/jacow- icalepcs2019- wepha018. url: https://jacow.org/
icalepcs2019/papers/wepha018.pdf (cit. on p. 79).

111

https://doi.org/10.1016/j.ifacol.2017.08.1014
https://doi.org/10.1016/j.ifacol.2017.08.1014
https://doi.org/10.5772/45730
https://doi.org/10.5772/45730
https://doi.org/10.5772/45730
https://doi.org/10.1109/iecon.2014.7048867
https://doi.org/10.1109/iecon.2014.7048867
https://doi.org/10.1109/iecon.2014.7048867
https://it.mathworks.com/help/robotics/index.html?s_tid=CRUX_lftnav
https://it.mathworks.com/help/robotics/index.html?s_tid=CRUX_lftnav
https://it.mathworks.com/help/simscape/
https://it.mathworks.com/help/simscape/
https://doi.org/10.1109/disa.2018.8490603
https://doi.org/10.1109/disa.2018.8490603
https://doi.org/10.18429/jacow-icalepcs2019-wepha018
https://jacow.org/icalepcs2019/papers/wepha018.pdf
https://jacow.org/icalepcs2019/papers/wepha018.pdf

BIBLIOGRAPHY

[37] Daynier Rolando Delgado Sobrino, Roman Ružarovský, Radovan Holubek, and
Karol Velíšek. «Into the early steps of Virtual Commissioning in Tecnomatix
Plant Simulation using S7-PLCSIM Advanced and STEP 7 TIA Portal».
In: MATEC web of conferences 299 (Jan. 2019), p. 02005. doi: 10.1051/
matecconf/201929902005. url: https://doi.org/10.1051/matecconf/
201929902005 (cit. on p. 79).

[38] Michael Braun and Wolfgang Horn. Object-Oriented Programming with SIMO-
TION. John Wiley Sons, June 2017 (cit. on p. 80).

[39] Mathias Oppelt, Oliver Drumm, Benjamin Lutz, and A G Gerrit Wolf Siemens.
«Approach for integrated simulation based on plant engineering data». In:
2013 IEEE 18th Conference on Emerging Technologies Factory Automation
(ETFA). 2013, pp. 1–4. doi: 10.1109/ETFA.2013.6648156 (cit. on p. 89).

112

https://doi.org/10.1051/matecconf/201929902005
https://doi.org/10.1051/matecconf/201929902005
https://doi.org/10.1051/matecconf/201929902005
https://doi.org/10.1051/matecconf/201929902005
https://doi.org/10.1109/ETFA.2013.6648156

Acknowledgements

First, I would like to express my deep gratitude to Professor Andrea Tonoli, my
thesis advisor, for his patience and invaluable support during the development of
this project.

I would also like to thank all the people in the technical department of flat glass
business unit of Bottero S.p.A. for all the insights and suggestions. In particular, I
am so grateful to Alessio Callegari and Alberto Cigliutti for the chance given to
prove myself with this challenge, to Luca Dardanello, for the technical guidance for
this project and to Pierfranco Bergese for his experience and support.

Thank you to all my colleagues, with whom I shared these fantastic years,
creating a wonderful environment even in a pandemic scenario. To my old and
new friends that helped me in all the stages of this path with laughs and magical
memories that I will preserve for the rest of my life.

A special thanks goes to my granddad, that didn’t had the chance to see me
graduate, but always believed in me and taught me principles and morals of
inestimable value. Then, I must express my profound gratitude to family, that
always supported and encouraged me to pursue my goals.

This accomplishment would not have been possible without you. Finally, thank
you Denise, for the love that you give me every day and for giving me the spark of
hope needed to accomplish this journey that leads to our future together.

Paolo Arnaudo

114

	List of Figures
	Overview on flat glass industry
	Layout of a float glass production line
	Furnace and melting process
	Glass quality defect detection and cut definition
	Cutting and geometry check
	glass plate handling

	Digital twin concept
	Principles of Industry 4.0
	Digital twin concept
	Virtual commissioning

	Kinematics and Dynamics of the Gantry stacker
	Direct Kinematics
	Dynamics of the manipulator
	Lagrange formulation

	Trajectory planning
	Trajectories in joint space
	Polynomial trajectories
	Trigonometric trajectories
	Composite and piece-wise trajectories
	Spline trajectories

	Analysis and comparison between trajectories
	Comparison on the actuation system exploitation
	Comparison on the dynamic frequency response
	Trajectory analysis with MatLab SimScape Multi-body

	Control architecture of the system
	Overview of the hardware adopted
	Siemens TIA Portal - ET200SP CPU
	SIMOTION Control Unit
	SIMIT

	Conclusions
	SIMOTION codes
	Bibliography

