
POLITECNICO DI TORINO

MSc’s Degree in ICT for smart societies

MSc’s Degree Thesis

Indoor BLE localization system for
building facilities improvement

Supervisors

Prof. Fabio DOVIS

Prof. José-Fernán MARTÍNEZ-ORTEGA

Candidate

Riccardo NICOLICCHIA

July 2023

Abstract

Over the past few years, the concept of IoT has become more and more widespread.
Many different kinds of systems can be categorized under this topic. Each of these
systems stands out thanks to the variety and heterogeneity of sensors and actuators
that make it possible to monitor and analyze systems in real-world settings. The
support of this technology could be crucial for enhancing, say, some facets of
building management. By incorporating the concept into so-called Iot4FM, for
example, a company building may use it to improve staff productivity. The Facility
Management methodology makes sure that all services and goods are maintained
and even enhanced. Modern technology, particularly wireless ones, enables this.
Significant aspects, such as the environment condition or occupancy, could be
measured, for example. A substantial amount of data is generated as a result
of several sensors constantly collecting data —in this project’s case, the gateway
collecting BLE (Bluetooth Low Energy) tags signal. This brings up data analysis,
which is yet another important consideration. It helps you understand how to
leverage the data and existing technologies to their fullest potential in order to
provide high-quality services. The most effective way to accomplish the overall goal
of enhancing the administration and use of office spaces is through the combination
of new technologies and data analysis. This master’s thesis attempts to use a
localization infrastructure that is already in place by employing an innovative
approach. In order to provide a better, more dynamic localization system, the
project offers a full-stack solution that uses the BLE tags and gateways supplied by
the company. The application generates the raw localization data, displays it using
a straightforward user interface, and further elaborates it. This offers better control
over the building’s current occupancy as well as fast indications on potentially
essential issues like room reservations or long-term hints, like in building security.

Acknowledgements

This work marks the completion of one of the final steps of an academic career
that years ago I would not have imagined taking, after all the past difficulties and
downfalls. Despite everything I’m here talking about it, and if all this was possible
I have a few people to thank. Mine is an international route, and each one deserves
a particular thanks in a different language, to better appreciate the gratitude I
want to show.

A Miguel Ángel López Peña y Juan Sebastián Ochoa Zambrano por su paciencia,
disponibilidad y profesionalidad que hicieron posible el desarrollo de este proyecto.

A todos los amigos de Madrid, españoles, internacionales y italianos, que me
hicieron enamorar de la ciudad que se está convirtiendo cada vez más en mi segunda
casa.

Agli amici di Torino che nonostante il mio espatrio mi vogliono sempre bene, che
rendono la fredda e nordica Torino un posto meraviglioso dove ritornare e sentirmi
a casa.

A Vincenzo e Gianluca, due amici che tutti sperano prima o poi di incontrare
nella propria vita. Nonostante la distanza che ci separa rimaniamo sempre quelli
di Villa Claretta, cresciuti come uomini a pane (duro della mensa ...) e sketch di
Aldo Giovanni e Giacomo.

A Valentina la persona che in questi anni, più di chiunque altro, è riuscita, anche
con piccoli gesti, a tirare fuori il meglio di me, che mi ha sempre supportato e mi
ha aiutato a non mollare nonostante tutti gli ostacoli che mi si sono posti davanti.

Alla mia famiglia, che mi ha appogiato sempre, in ogni scelta e che nonostante
la distanza riesce ad essermi sempre vicina.

A mio padre, con la speranza che da lassù vedendo i miei traguardi e la persona
che sono diventato, continui a essere fiero di me. La dedica più grande, per i
traguardi raggiunti e che raggiungerò andrà sempre a te...

i

Table of Contents

List of Tables v

List of Figures vi

Acronyms ix

1 Introduction 1
1.1 Conceptual framework . 1

1.1.1 IoT & indoor tracking . 1
1.1.2 Indoor tracking & Facility Management 2

1.2 Data streaming . 3
1.3 Data analytic . 4

1.3.1 Exploratory Data Analysis 4
1.4 Motivation and justification . 4
1.5 Objectives . 4

2 State of the art 6
2.1 System hardware . 6

2.1.1 BLE gateway: iGS01S . 6
2.1.2 BLE lanyard tag . 7

2.2 System backend . 8
2.2.1 Python and libraries used 8
2.2.2 Docker and Docker compose 11
2.2.3 Apache Kafka . 11

2.3 User interface: Frontend and Backend 13
2.3.1 Backend core: Express.js, Node.js & Javascript 13
2.3.2 Leaflet.js . 14
2.3.3 KafkaJS . 14

3 Development 15
3.1 Microservice architecture . 16

iii

3.1.1 Development methodology: CI/CD 17
3.2 System configuration . 19

3.2.1 Gateway setting . 19
3.2.2 Tags settings . 22
3.2.3 Apache Kafka broker . 24

3.3 Services developed . 25
3.3.1 Deployment . 25
3.3.2 HTTP server for gateways 26
3.3.3 Localization engine . 29
3.3.4 Occupation calculator engine 53
3.3.5 Real time map . 57

3.4 Exploratory data analysis . 62

4 Results and conclusions 72
4.1 Results . 72

4.1.1 Localization engine results 72
4.1.2 Occupation engine results 75
4.1.3 User Interface . 75

4.2 Conclusions . 76
4.2.1 Future works . 78

A Kafka broker settings 80

B Localization services settings 83

Bibliography 84

iv

List of Tables

2.1 iGS01S gateway fields description 7

3.1 Beacon’s transmission power description 23
3.2 Kafka topics characterization . 25
3.3 Gateway reference information . 63
3.4 Kalman filter use cases . 68

v

List of Figures

2.1 iGS01S gateway architecture . 7
2.2 Docker stack . 12
2.3 Apache Kafka architecture . 12

3.1 System overview . 15
3.2 Monolithic architecture vs microservices architecture 17
3.3 CI/CD GitLab tool . 18
3.4 iGS01S gateway WiFi settings . 19
3.5 iGS01S gateway network settings 19
3.6 iGS01S gateway HTTP configurations 20
3.7 iGS01S gateway RSSI signal configuration 20
3.8 iGS01S gateway timing settings . 21
3.9 Tag setting app general view . 22
3.10 Setting panel single tag . 22
3.11 Advertising interval and signal stability 24
3.12 Topics dashboard overview . 25
3.13 Base stations map . 27
3.14 Localization engine operation flow 30
3.15 Dataframe of tags information . 31
3.16 Dataframe of tags current status . 32
3.17 Dataframe for Kalman filter calculation support 32
3.18 Dataframe for current RSSI tracking 33
3.19 Dataframe for last valid RSSI fingerprint tracking 33
3.20 RSSI Tag packet structure . 35
3.21 One station trilateration . 41
3.22 Two stations trilateration . 41
3.23 Geometrical representation of trilateration 41
3.24 Localization engine JSON packet structure 45
3.25 Reference systems of developement maps 55
3.26 Architectural overview of real-time map 58
3.27 Process diagram of real-time map 59

vi

3.28 Views on real-time map . 61
3.29 EDA context . 62
3.30 Signal evolution of ap_194 . 64
3.31 Signal evolution of ap_196 . 64
3.32 Signal evolution of ap_199 . 65
3.33 Signal evolution of ap_206 . 65
3.34 Signal evolution with Q=0.01 and R=5 68
3.35 Signal evolution with Q=0.05 and R=5 69
3.36 Signal evolution with Q=0.5 and R=5 69
3.37 Signal evolution with Q=0.1 and R=0.5 70
3.38 Signal evolution with Q=0.1 and R=1 70
3.39 Signal evolution with Q=0.1 and R=10 71
3.40 Signal evolution with Q=0.1 and R=5 71

4.1 One day position tracking . 73
4.2 Error overview of the trace . 73
4.3 Temporal improvements of position 74
4.4 Single tag position track . 74
4.5 Layer control panel . 75
4.6 Marker information showed . 75
4.7 Only markers view . 76
4.8 Only occupation view . 76

vii

Acronyms

AP
Access Point

API
Application Programming Interface

BLE
Bluetooth Low Energy

CI/CD
Continous Integration and Continous Deployment

CSV
Comma-Separated Values

CSS
Cascading Style Sheets

dBm
deciBel milliwatt

DHCP
Dynamic Host Configuration Protocol

DNS
Domain Name System

EDA
Exploratory Data Analysis

ix

EJS
Embedded JavaScript Templating

HTML
HyperText Markup Language

HTTP
HyperText Transfer Protocol

HTTPS
HyperText Transfer Protocol Secure

ICT
Information and Communication Technology

IoT
Internet of Things

IoT4FM
Internet of Things For Facilities Management

IP
Internet Protocol

JSON
JavaScript Object Notation

MSE
Mean Square Error

OS
Operating System

Paas
Platform as a Service

QoS
Quality of Service

x

REST
REpresentational State Transfer

RSSI
Received Signal Strength Indicator

SQL
Structured Query Language

SSE
Server-Sent Event

TCP
Transmission Control Protocol

UI
User Interface

URL
Uniform Resource Locator

xi

Chapter 1

Introduction

For many years, the IoT (Internet of Things) has been collecting more and
more attention from the ICT (Information and Communication Technology)
sector. Although the market for this technology is currently enormous, the growth
projections indicate an exponential upward trajectory[1]. According to its definition,
the IoT environment consists of a wide range of smart devices that talk to each
other.IoT offers a wide range of applications, including industrial automation,
healthcare, environmental monitoring ... These applications are enabled by the
momentum generated by artificial intelligence, data analytics, and new technologies
(particularly wireless ones). In principle, the devices are used to track a range of
factors, from the simplest to the most complex. If the information was kept on
hand, it could be examined to look for patterns and trends. Even a single device
with a reasonable sample rate can generate data that can be used to understand
the current condition of the environment and to determine how to improve it. This
data can inspire various actions, which can be translated by the users themselves
or automatically by actuators. These broad assumptions lead us to the project’s
objective, which is to use wireless enabled devices to track employee activity in
the workplace and provide management guidance for the building’s spaces. The
entire development was carried out in the central building of the company SATEC
- Sistemas Avanzados de Tecnología S.A., which provided the facilities, the existing
hardware structure and the company server and repository to support this project.

1.1 Conceptual framework

1.1.1 IoT & indoor tracking
The IoT technology [2][3][4] is a network of physical objects that contain embedded
technology that allows them to communicate, sense, or interact with their internal

1

Introduction

states or the external environment. Sensors can use communication channels [5]
to send collected data to storage, interact with one another, or possibly with
other actuators. As a result, they have generally embedded a minimum level of
intelligence. Standards for IoT technology include ISO/IEC 21823-1:2019 [6] for
systems interoperability, ISO/IEC TR 30166:2020[7] for industrial IoT ISO/IEC
WD 30162 [8] for device compatibility within industrial IoT systems, and ISO/IEC
AWI 30165 [9] for the real time frameworks.

One of the uses for IoT technology is indoor tracking, which gives businesses
the ability to monitor the movement of workers, and other assets inside a building.
Indoor tracking systems can give real-time information on the position of people
and can be combined with other information like temperature, humidity, and air
quality by using sensors and other tracking devices. These systems can interface
with other equipment and systems in a building thanks to IoT technology, giving a
more thorough view of facility operations. Organizations may increase the efficacy
and efficiency of their operations by connecting indoor tracking with other IoT-
enabled equipment and gaining even more insights into facility operations. These
enhancements could be found throughout the scope of a smart building, such as
increased energy efficiency, better space utilization, and enhanced user experience
[10]. In the manufacturing application, the scope might be shifted as well. In this
context, integrating indoor tracking with other IoT devices might assist increase
safety, decrease downtime, and increase production process efficiency [11].

1.1.2 Indoor tracking & Facility Management
Facilities management and indoor tracking are two distinct domains that can
be linked to improve the efficiency and efficacy of facility management activities.
Facility Management [12][13] is a methodology for managing buildings facilities1 and
services. This methodology ensures that people working in a building are functional,
comfortable, and safe. There are standards for facility management such as ISO
41001:2018[14], ISO 41011:2017[15], ISO 41012:2017 [16], ISO/TR 41013:2017[17],
ISO/CD 41014 [18] and ISO/AWI 41015 [19]. Hence, integrating indoor tracking
with facility management can offer a number of advantages. Facility managers
can make the best use of available space within a facility by using indoor tracking
data. They can identify inefficient locations and take action to better utilize space
by analyzing how people and assets move throughout a facility. Indoor tracking
can be utilized to boost facility security and safety. For instance, monitoring the
movements of staff members and guests can assist uncover potential safety risks,
and monitoring the movements of equipment and assets can help reduce theft and

1Facilities: the buildings, equipment, and services provided for a particular purpose

2

Introduction

maximize asset use. Indoor tracking data can be utilized to determine trends of
equipment usage allowing facility managers to more effectively schedule maintenance
actions. Administrators can prevent breakdowns by proactively identifying when
maintenance is necessary on their equipment by tracking how it is being used
[20][21][22]. Supervisors can spot areas of congestion and take action to enhance
traffic flow by monitoring how people move around a facility. Better user experiences
may result from this, especially in settings like airports, hospitals, and shopping
malls.

1.2 Data streaming

The term data streaming [23][24] describes the method of continuously processing
and analyzing data as it comes in real-time from many sources. In the data stream
scenario, input comes in very quickly and can only be temporarily stored in memory.
The data must be processed by algorithms in a single or multiple passes, taking
significantly less time or less space than the input size. A different approach to
thinking about algorithms that adhere to these limitations on space, time, and
the number of passes has recently been developed. Some of the techniques rely
on pseudo-random computations and metric embeddings. In contrast to batch
processing, which processes data in huge quantities at once, data streaming processes
data in small, incremental bits or data chunks. With real-time data processing
and receiving, data streaming enables quick detection and reaction to dynamic
environment, trends, or abnormalities. In industries like finance, healthcare, and
transportation, where the prompt identification and response to events can have a
substantial impact on business outcomes, this real-time processing and analysis of
data is frequently crucial. Data collection, data transformation, and data analysis
are just a few of the procedures involved with data streaming. Applications for
this set of circumstances, then, include processing enormous amounts of data in
general, text message stream mining, and IP network traffic analysis. These data is
gathered from a variety of sources, including sensors, programs, and databases. The
data is then processed in real-time after being translated into a format that allows
for processing and analysis. To enable data streaming, sophisticated software tools
and platforms built to handle the constant flow of data are employed. Technologies
like Apache Kafka [25][26][27], Apache Flink, or Apache Spark Streaming are some
of the most used. Data streaming is becoming more and more crucial as businesses
try to make sense of the enormous amounts of data produced by IoT [28][29] devices
and other sources. Real-time processing and analysis of streaming data may help
organizations make better decisions, identify issues earlier, and generate greater
revenue.

3

Introduction

1.3 Data analytic

1.3.1 Exploratory Data Analysis
EDA (Exploratory Data Analysis)[30][31][32] is a critical phase in any Data Anal-
ysis or Data Science project. It is the process of analyzing a dataset from as many
different perspectives as possible in order to uncover patterns and abnormalities
(outliers) and generate hypotheses based on our understanding of the dataset. The
only constraints on such an analysis are those imposed by time constraints and
the data analyst’s creativity. In fact, as the acronym EDA implies, one is free to
choose any process to analyze the data, and the key goals are to look at the data
and think about it from various perspectives. This is due to the fact that EDA
is not supported by a statistical model that includes a mathematical equation for
such an impact. In order to better comprehend the data, graphical visualization is
typically the early step. In order to grasp the trend and relationships between all
the variables that are related to enhance the office environment, different visual
representations of the data as well as specific numerical statistics will be shown in
this project.

1.4 Motivation and justification
The management of a company office and the improvement of working conditions
are two areas where the integration of IoT technology into Facility Management
methodologies offers significant benefits. It is possible to get a sense of the current
state of the office by continuously monitoring the environment. In particular, you
get three benefits: you have a clear view of the state of occupation of the building,
you can avoid unoptimized use of office spaces and you earn in terms of security
planning in the company.

1.5 Objectives
The objectives of this thesis are to improve SATEC - Sistemas Avanzados de
Tecnología S.A. company office’s location solution, developing a full-stack solution
(from data collection to data visualization) to improve the office environment
in terms of occupancy and space management. The following milestones were
developed to achieve these goals:

• Demonstrate the reliability of the data sources. Ensure that the data obtained
are reasonable and adequately calibrated is critical in localization, therefore
the pre processing stage has an impact on the subsequent steps. In addition

4

Introduction

to this in the scope of this project is important to ensure a good timing
management of all the measurements;

• Make a backend architecture to easily sink sensor data and make it accessible.
The quality of the results need to allow you to have data almost in real time.
In the specific case of use of location, the timing management of the data is
crucial;

• Make the system modular so that it is feasible to make changes to the various
parts without affecting how the system as a whole functions.

• Parameter the system, accurately to allow access to different QoS (Quality of
Services);

• Create an algorithm providing a reasonable accuracy, that can instantly
manage the calculation and publication of calculated positions, to make them
available in a short time.

• Make the final results easier to interpret by visualizing them, and make it
available in almost real-time.

5

Chapter 2

State of the art

2.1 System hardware

2.1.1 BLE gateway: iGS01S

The BLE/WiFi Gateway iGS01S[33] is utilized as a sink for all of the RSSI signals
from all of the tags. It serves as a bridge to connect nearby WiFi-enabled or
BLE devices, sensors, or beacons to the internet. One can configure the internet
connection to a general cloud server, such as TCP (Transmission Control Protocol),
HTTP(S), or MQTT(Message Queue Telemetry Transport), through a web UI
interface. The general behavior of an iGS01S-enabled system is depicted in Fig. 2.1.
The iGS01S gateway, so, can read beacons, and iBeacon compatibility is crucial
for this project. This positioning system tool will be discussed in depth in the
section that follows. This gateway offers Station mode and AP (Access Point)
mode for WiFi connections. The device functions as a basic AP that supports
DHCP (Dynamic Host Configuration Protocol) when in AP mode. This mode’s
primary function is configuration. In Station mode, a client device repeatedly
attempts to connect to the WiFi AP that you specified. Once you’ve connected
to the AP, the gateway can connect your BLE devices to a local TCP server for
management. BLE is often in listening mode. It gathers the messages that other
BLE devices advertise. The user-configured cloud server receives these messages
once they have been transferred over WiFi. The packet will have the following
format, and the fields are described in Table 2.1:

$”report_type”, ”tag_id”, ”gateway_id”, ”RSSI”, ”raw_data”, ”timestamp”

6

State of the art

report_type GPRP: general purpose report.
SRRP: active scan response report

tag_id MAC address or ID of tag/beacon
gateway_id MAC address of gateway’s BLE

RSSI RSSI of tag/beacon
raw_data Raw packet received by the gateway
timestamp Unix epoch timestamp when NTP is enabled

Table 2.1: iGS01S gateway fields description

Figure 2.1: iGS01S gateway architecture

2.1.2 BLE lanyard tag
The system is supported by the use lanyard tags named kontakt.io KHWPO400F001
Lanyard Tag [34]. These tags transmit Bluetooth signals continuously for tracking
reasons. The device is set up for use right out of the box. As soon as the device is
assembled and programmed, it is ready to work. You can configure the transmission
power, the advertising interval, and the type of packet using the kontakt.io settings
app. You can use the kontakt.io format, Eddystone, or iBeacon for packets. The
last one is the one that is used and will therefore get more attention. The iBeacon
[35] is a technology that allows applications to be aware of their position using
BLE . This gives to the device the ability to tell when it has arrived or departed
the region and estimate its distance from a beacon. It’s crucial, so, to think about
how beacon signals are recognized and used to assess accuracy when working to
guarantee a positive user experience. RSSI is frequently used to detect a beacon’s
signal and to assess both the accuracy of the beacon’s estimated distance and the
distance to the beacon itself. The stronger the signal, the more confident you can
be about the beacon’s proximity. The weaker the signal, the harder to predict you

7

State of the art

are of the beacon’s presence. Bluetooth Low Energy is therefore used by iBeacon
devices to transmit signals. Since BLE operates at 2.4 GHz, it can be attenuated
by a variety of physical objects, including walls, doors, and other buildings. Water
can interfere with 2.4 GHz transmissions, hence the human body will likewise
interfere with signals. This is important to know because weakening or attenuating
the Bluetooth signal impacts the signal strength received. As results it affect the
deployment of the application and the performance. Calibration in your deployment
environment is essential for delivering the optimal user experience. A calibration
step should be carried out as each beacon is placed. The estimation model needs
to be calibrated at a distance of 1 meter from the beacon. To sum up, it is a very
powerful resource that should be treated carefully. Finally, this technology also
has the significant benefit of allowing devices to run on solely coin-cell batteries for
up to a month, this make this technology really suitable for IoT applications that
need good performances in terms of energy savings.

2.2 System backend

2.2.1 Python and libraries used
Python [36] is the programming language utilized to develop the application for
this thesis project. It is a general-purpose, high-level, interpreted programming
language. This language contains a large number of compatible packages and
libraries, making it appropriate for a wide range of applications. The libraries used
in this project are described in detail in the following sections.

NumPy and SciPy

Two related Python libraries for numerical computing and scientific computing,
respectively, are NumPy [37] and SciPy [38]. While SciPy offers sophisticated
mathematical functions and methods for scientific computing, NumPy supports
massive, multi-dimensional arrays and matrices as well as a variety of mathematical
functions to operate on these arrays. Since its creation, NumPy has grown into
a popular open-source library for scientific computing and data analysis. It is
extensively used in disciplines including data science, engineering, and physics.
The ndarray is the main data structure of NumPy, and it offers quick and effective
numerical operations on arrays of any dimension, which are essential in EDA
(Exploratory Data Analysis) or data management for input into a mathematical
model. In addition, NumPy offers a number of mathematical operations, including
trigonometric, statistical, and linear algebra functions. On the other hand, SciPy
was developed as a NumPy extension. It offers sophisticated mathematical functions
and algorithms for scientific computing, including as statistics, signal processing,

8

State of the art

optimization, and interpolation functions. Moreover, it has modules for machine
learning, image processing, and working with sparse matrices. For data analysis
and modeling, SciPy is widely utilized in the scientific and engineering disciplines.
For scientific computing and data analysis in Python, NumPy and SciPy provide a
robust ecosystem.

Pandas

Pandas [39][40] is a Python library for analyzing and manipulating data. For
handling and processing structured data, such as tables, time series, and matrices,
it offers data structures and operations. Because of its versatility and usability,
Pandas—which is developed on top of the NumPy library—is a popular tool in
data science and analytics. DataFrame and Series are the two main data structures
in Pandas.The data frame is a two-dimensional object with rows and columns, but
the series is a one-dimensional object with an array-like structure that may hold
any form of data. Moreover, Pandas has many tools for interacting with these
structures, such as grouping, indexing, merging, and reshaping. Data formats that
Pandas can handle include CSV (Comma-Separated Values) files, Excel, SQL
(Structured Query Language) databases, and JSON (JavaScript Object Notation)
files. Additionally, it offers resources for conducting statistical analysis and dealing
with missing data.

Matplotlib & Seaborn

Two popular open-source Python libraries for data visualization are Matplotlib [41]
and Seaborn [42]. These libraries are well-liked among data scientists, engineers,
and academics because they offer a variety of options for producing static and
interactive visualizations of data. Matplotlib is a low-level Python toolkit for
making visualizations. Line plots, scatter plots, bar plots, histograms, and more
types of plots are available. Users of Matplotlib can easily modify the color schemes,
axes labels, legends, and other aspects of their plots. Matplotlib is a flexible tool
for data visualization because it also allows for the creation of animations and 3D
visuals. On the other hand, Seaborn, which is developed on top of Matplotlib, offers
a more advanced interface for producing statistical visualizations. A variety of
visualization options are offered by Seaborn, including heat maps, violin plots, and
box plots. Pandas data structures and Seaborn were created to complement one
other flawlessly. Both Matplotlib and Seaborn offer a plethora of documentation
and documentation, making them both potent data visualization tools.

9

State of the art

Falcon & bjoern

Bjoern [43] is a fast and lightweight Python web server built in C that can handle a
high volume of requests with low overhead. It offers a straightforward, minimalist
interface for serving web pages and applications and is built on top of the libev1

event loop.
Falcon [44] is a high-performance Python web framework intended for creating
API (Application Programming Interfaces). It offers a variety of tools for creat-
ing RESTful (REpresentational State Transfer) APIs and microservices and is
designed for speed and efficiency. Falcon and Bjoern can process a lot of requests
quickly and effectively because they are built to be quick and effective. Both are
straightforward to understand and alter due to their small code bases and minimal
dependencies. Bjoern offers an easy-to-use interface with support for fundamental
HTTP (HyperText Transfer Protocol) methods and request handling for serving
web pages and apps. Falcon offers a number of tools for developing RESTful APIs
and microservices and is built around the REST architectural style. In addition,
the middleware architecture offered by Falcon makes it simple to integrate bespoke
functionality into API endpoints. Together, Bjoern and Falcon offer a strong basis
for creating high-performance APIs that can process numerous requests quickly
and efficiently.

Confluent’s Python Client for Apache Kafka

The Confluent Kafka Python library [45] is a client library that provides a simple
and efficient way to connect with Kafka clusters using the Python programming
language. It offers a high-level interface for sending and receiving messages from
Kafka topics and is built on top of the librdkafka2 C library. The library offers simple
Producer and Consumer APIs so that programmers can publish and subscribe to
Kafka topics. Avro, JSON, and plain text are just a few of the message formats
that are supported by the library. The library comprises a high-level Consumer
API that offers message delivery assurances, automatic offset management, and
partition rebalancing. For sending and receiving messages, the library supports
both synchronous and asynchronous Interfaces. A variety of configuration options
and tweaking settings are offered by the library to help users maximize performance
and scalability.

1libev reference
2librdkafka: the Apache Kafka C/C++ client library

10

http://software.schmorp.de/pkg/libev.html
https://github.com/confluentinc/librdkafka

State of the art

Shapely

A toolkit for manipulating and analyzing planar geometric objects is the Shapely
Python library. It is constructed on top of the computational geometry techniques
provided by the GEOS (Geometry Engine - Open Source) package3. Shapely offers
classes for expressing geometric objects like Points, Lines, Polygons, and MultiPoly-
gons as well as operations for analyzing and manipulating these objects, including
union, intersection, buffer, centroid, area, length, and many other operations. The
library offers a straightforward and understandable interface for designing and
modifying geometric objects.

2.2.2 Docker and Docker compose
Docker [46] is a set of Paas (Platform as a Service) solutions that provide software
in containers via OS-level (Operating System-level) virtualization. A container
is a standard unit of software that contains the code to be run as well as all
of its dependencies, allowing the program to operate rapidly on various types
of machines or operating systems while also providing considerable scalability.
To run a Docker container, you have to create an image, which is a lightweight,
standalone, executable package of software that includes everything needed to run
the application: code, runtime, system tools, system libraries, and settings. Because
containers isolate software from its environment, containerized software will always
run the same, regardless of the infrastructure. They actually run directly in the
host’s kernel as if they were another application, but in isolation from the rest (Fig
2.2).

Docker Compose [47] is a tool provided by the Docker framework that assists in
the definition and sharing of multi-container applications. Compose allows you to
declare all of the services of a composite application in a single YAML4 file and
start it with a single command.

2.2.3 Apache Kafka
Apache Kafka [48][49] is a popular open-source distributed streaming platform that
was created by the Apache Software Foundation. Apache Kafka is fundamentally a
distributed messaging system that enables numerous producers to deliver messages
to numerous consumers in a fault-tolerant and scalable manner. This is accom-
plished by employing a publish-subscribe approach, in which message publishers
send messages to Kafka topics, and message subscribers receive the messages. As

3GEOS reference
4YAML format

11

https://libgeos.org/
https://yaml.org/

State of the art

Figure 2.2: Docker stack

Figure 2.3: Apache Kafka architecture

indicated in Fig.2.3, the structure is very solid, with each topic representing a
highly precise form of data stream; it functions similarly to a queue, receiving and
delivering messages. Each topic can have one or more partitions; you must provide
such number while creating the topic. A topic is divided into partitions. You
can specify a key when creating a message for a certain topic to allocate it to the
same partition. By default, the producers will deliver a message in a round-robin
fashion if you do not provide a key. A message will be delivered to each partition
(even if they are sent by the same producer). Due of this, ordered delivery is not

12

State of the art

guaranteed at the partition level, therefore you have to include a key to messages if
you want to send a message to the same partition every time. Each communication
is going to be kept in the broker disk and given an offset (unique identifier). At
the partition level, this offset is distinct; every partition has a different offset. As a
result, Kafka is a reliable solution for managing enormous amounts of data, as it
also provides strong durability and data retention assurances. Unlike a messaging
system, which deletes the message after it has been read. Scalability is one of
Apache Kafka’s prominent characteristics. Kafka can readily scale horizontally
by adding more brokers (nodes) to the cluster because it is made to operate as a
distributed system. Because of this, it is able to manage vast volumes of data and
serve an increasing number of users without suffering a significant performance hit.

Moreover, Apache Kafka has a variety of integration options, making it simple
to integrate with other programs and systems. There are several client libraries
included for Python, and it can also be coupled with a number of other big data
technologies available in the Apache stack. ts ability to support multiple producers
and consumers, combined with its durability and data retention guarantees, make
it a popular choice for building real-time streaming applications.

2.3 User interface: Frontend and Backend
2.3.1 Backend core: Express.js, Node.js & Javascript
Express.js [50] is a popular open-source web application framework for Node.js
[51]. It is built on top of Node.js, a JavaScript runtime environment for servers
that enables programmers to create scalable network applications. Conversely,
JavaScript [52] is a high-level, dynamic, interpreted programming language that is
frequently employed for creating websites among other things.

With its event-driven, non-blocking I/O (Input/Output) approach, Node.js is
quick and effective. It executes JavaScript code on the server-side using Google’s
V8 JavaScript engine, which is also utilized by the Chrome web browser. Using
Node.js, you can create real-time, high-performance apps that can manage numerous
concurrent connections. Built on top of Node.js, Express.js offers a variety of tools
for creating online apps and APIs. Express.js provides a simple and intuitive
API for creating routes and controlling HTTP requests. Middleware, or methods,
are supported and enable you to modify request and response objects as well as
add new functionality to web applications and APIs. EJS(Embedded JavaScript
Templating)[53] is one of the template engines provided by Express.js that can be
used to produce dynamic HTML (HyperText Markup Language) content. It also
provides a robust framework for handling errors with built-in error handlers and
the choice to add special error-handling middleware. JavaScript is a powerful and
versatile programming language that is used for web development. It is the only

13

State of the art

programming language that can be executed natively in web browsers, and has
become the de facto language for building client-side web applications. In summary,
Express.js, Node.js, and JavaScript provide a powerful and versatile stack for
building web applications and APIs. Node.js provides a fast and efficient runtime
environment for executing JavaScript code on the server-side, while Express.js
provides a feature-rich web application framework for building APIs and web
applications. JavaScript provides a powerful and versatile programming language
that is used for client-side and server-side web development, among other things.

2.3.2 Leaflet.js
Leaflet.js [54] is a well-known open-source JavaScript library used to create inter-
active maps and web-based geographic applications. It offers a simple, modular,
and adaptable APIs for making maps and adding interactive features like layers,
markers, popups, and other interactive elements to them. It supports a broad range
of basemaps and tile suppliers, including OpenStreetMap, Google Maps, as well as
custom maps, and renders the maps using web technologies including HTML, CSS
(Cascading Style Sheets), and SVG (Scalable Vector Graphics). Zooming, panning,
dragging, and clicking are just a few of the interactive features that Leaflet.js
offers, allowing users to explore and interact with maps in a broad range of ways.
Using CSS and JavaScript, developers can alter the look and behavior of maps
and markers. With a focus on speed and effectiveness, Leaflet.js uses methods like
vector rendering and tile caching to enhance map rendering and reduce network
queries.

2.3.3 KafkaJS
KafkaJS[55] is an open-source JavaScript client library for Apache Kafka that lets
developers to create Kafka consumers and producers in Node.js and browser-based
applications. It offers an effective and simple API for working with Kafka brokers,
getting messages from topics, sending messages to topics, and maintaining consumer
groups. You can use it to interact with Kafka clusters that are set either locally or
in the cloud. With npm5, KafkaJS may be quickly added to Node.js applications.
In order to achieve low latency and high throughput, KafkaJS uses Node.js streams
in addition to additional performance enhancements. Developers can quickly handle
and recover from common Kafka issues including network timeouts, partition rebal-
ancing, and producer failures thanks to KafkaJS’s comprehensive error handling
capabilities. KafkaJS supports both secure and non-secure connections and works
with a variety of Kafka brokers and versions.

5npm:JavaScript Package Manager

14

https://github.com/npm

Chapter 3

Development

In this chapter, the system as a whole and each of its parts will be thoroughly
discussed. The development process and design decisions will also be covered, in
addition to the component structure. The overall layout of the system is depicted
in Fig. 3.1. You can see the path taken by the BLE signal as it leaves the BLE tag

Figure 3.1: System overview

and arrives to the visualization. The Apache Kafka broker serves as the system’s
brain. For many different types of information necessary for the proper system’s
functioning, it serves as both a source and a sink. The HTTP server is a further
vital component. The management of the packets coming in from all the BLE
gateways depends on this. The combination of Bjoern and Falcon enables the very

15

Development

quick and trustworthy management of a large number of requests, as was discussed
in Section 2.2.1. This feature is crucial because each tag will communicate with
the nearby gateways every 100 milliseconds since its communication is in advertise
mode. With an average latency of less than 1 second, gateways will POST all the
data they have gathered from the other side. The massive amount of data produced
every second explains the use of the Apache Kafka platform, which, as stated in
Section 2.2.3, is ideal for this use case. The localization engine and the occupation
engine are the two functional components of the system. They are Docker-deployed
microservices developed in Python. They enable the system to achieve its goal,
namely to calculate the person’s position in the office and track the use of various
office spaces. Real-time visualization mapping is the final service. The system’s
frontend is quick and responsive thanks to Express.js and Docker. Results are
almost instantaneously visualized on the map as soon as the other services push
them for the topic of interest. In order to summarize the entire project, it offers an
end-to-end solution for analyzing, filtering, and visualizing the position calculated
by localization engine, using the BLE tag signals.

3.1 Microservice architecture
Microservice architecture [56][57][58][59] is a design approach that emphasizes
building software applications as a group of tiny, independent services. This
architecture separates the application into discrete services, each of which is in
charge of manage a specific feature, which is opposed to conventional monolithic
architectures, where the entire application is built as a single, tightly connected
unit.

Each service may be built, deployed, and scaled separately under a microservice
architecture and operates as a distinct entity. This degree of freedom enables
parallel development by allowing development teams to work on various services at
once. Developers also have the freedom to select the many programming languages,
frameworks, and technologies that best meet the needs of each service.

Scalability is one of the microservice architecture’s key benefits. Services can be
scaled separately depending on the precise demand they encounter because they
are separated from one another. It is particularly helpful for managing fluctuating
loads, seasonal spikes, or rapid user base growth. Better fault isolation is an
additional benefit. A flaw or failure in one area of the system might spread and
affect the entire application in a monolithic design. Failures, however, are contained
to the single service where they occur in a microservice design. Furthermore,
independent service deployment enables quick and frequent updates, allowing
businesses to react swiftly to shifting business needs and customer feedback. Despite
the benefits, implementing a microservice design adds complexity to network

16

Development

connection, service coordination, and data consistency. Careful planning and
execution are necessary for the management of inter-service communication and
guaranteeing data consistency across services. A technology that enables you
to accomplish these task is Docker, including its extension, Docker compose.
As described in Section 2.2.2, it is a virtualization technology that enables the
development of independent containers and their intuitive connection to a digital
networking system. The architectural choice made for this project is consistent
with the concept of microservice architecture, as seen in Fig. 3.1, in order to take
full advantage of the benefits of this technology, particularly with regard to fault
tolerance.

Figure 3.2: Monolithic architecture vs microservices architecture

3.1.1 Development methodology: CI/CD
The software development landscape is dominated by the Continuous Integration
and Continuous Deployment (CI/CD) practice, which focuses on automating crucial
processes including build, testing, and deployment. By streamlining operations and
fostering better teamwork, this method strengthens the entire software delivery
process. It improves problem fixes by minimizing dependency on manual testing and
automating the development process and deliveries. Through fast and consistent
configuration of new environments and a reduced chance of unintentional changes

17

Development

or inconsistencies, this method simplifies the software development process. As a
result, the developer can perform frequent releases and updates, test new versions,
and undertake experiments. Additionally, CI/CD tools offer useful data for tracking
development and pinpointing potential areas for improvement, such as build times,
test coverage, defect rates, and test fix times. Development teams can identify
possible areas for improvement and gauge how CI/CD processes are affecting
company objectives by reviewing this data. The benefits offered by this approach,
have been taken into account in this project, both to facilitate the development
of the individual project, but also to make available the various updates to the
working team. The project itself is part of a framework to improve the quality
of work, the larger, of which the improvement of the building space management
is only one module. The tools used to make it possible are those offered by the
provider GitLab1 , as you can see in Fig. 3.3.

Figure 3.3: CI/CD GitLab tool

1GitLab CI/CD tool

18

https://docs.gitlab.com/ee/ci/

Development

3.2 System configuration
3.2.1 Gateway setting
System analysis and setting are the first, and most crucial, steps. Understanding
the capabilities and features of the resources you are working with is crucial before
you begin. The BLE gateways are the first resource to be considered, as mentioned
in Section 2.1.1. To connect with another device, you must first reset each of them
so that it acts as a standalone access point. After a quick authentication, you can
connect to one of them and access the settings. To begin with, you must switch
the gateway mode from AP—which is only practical for the initial connection—to
station. The screen that appears when you do this is the one in Fig. 3.4. Entering
the SSID(Service Set IDentifier,) and password in this area will enable WiFi.

Figure 3.4: iGS01S gateway WiFi set-
tings

Figure 3.5: iGS01S gateway network
settings

It is clear from Fig. 3.5 that the DHCP (Dynamic Host Configuration Protocol)
protocol is not active. DHCP [60] is a network management protocol that adds
the ability to automatically allocate reusable network addresses, i.e., IP addresses,
as well as additional configuration options to the IP (Internet Protocol). The
technology eliminates the need for network devices to be manually configured. If
you want to have complete control over IP address assignment, you must remove it
so that each device is assigned a unique IP address. The assigned IP is implied
by the parameter "Static IP". The "Static Default Gateway" and "Static Netmask"
specify the local network node that acts as the forwarding host and the range of
addresses connected to the local network, respectively. 8.8.8.8 is the main DNS
server for Google DNS when "Static DNS Server" is selected. Google DNS is a

19

Development

public DNS service offered by Google that aims to make the Internet and the
DNS system faster, safer, more secure, and more reliable for all Internet users. In
the local company network, this configuration enables easy access to them, but it
requires initial careful configuration. The following setting panel, depicted in Fig.

Figure 3.6: iGS01S gateway HTTP
configurations

Figure 3.7: iGS01S gateway RSSI
signal configuration

3.6, highlights all the settings required to connect to the server and send all the
data collected by BLE devices. The host/IP designates the server’s address, which
may be a number or a string of letters. In the latter scenario, DNS consequently
solves the address. Typically, the port is 80, the HTTP standard port, or 443, if
the connection is encrypted using HTTPS. The URL (Uniform Resource Locator)
path refers to the web server’s route through which data is sent. Serving content at
a specified URL is the fundamental idea behind every web framework. The term
"routes" refers to the URL patterns used by an app to enable the content, such as
a webpage or API response, to be served at these URLs. In this application, new
data will induce Apache Kafka to take action, as will be explained later. As was
mentioned in the previous section, each gateway is distinguished by a distinct IP
address. As a result, it is possible to take advantage of this feature to simplify the
following procedure by including a new field in the packet with the name "nameAp"
and a value that refers to the final portion of the IP address. The JSON format
for the packet is a development choice. Last but not least, the parameter request
interval measures the space in seconds between requests. Because the device only

20

Development

accepts integer values, it was set to the minimum value, i.e. 1, in order to have
very responsive behavior and avoid creating a large data queue at the edge. In
this manner, the system almost immediately picks up tag signals on the previously
mentioned assigned server.

Figure 3.8: iGS01S gateway timing settings

The final two interface settings in Figs. 3.7 and 3.8 allow you to fine-tune
two crucial technical elements. The first, respectively, enables you to apply a
filter to the received packets’ RSSI. To filter out all the packets and signals from
other devices—such as smartphones, smartwatches, and other ones—present in the
office that are completely irrelevant to the localization system, this is extremely
important. The second make you able to reliably timestamp each packet, you
can connect to an ntp.pool.org2 server using the last setting panel. Every IoT
application depends on time, but this one in particular depends on it to function.
It is impossible to trilaterate the position without knowledge of the precise time of
each signal.

2The NTP pool is a dynamic collection of networked computers that volunteer to provide
highly accurate time via the Network Time Protocol to clients worldwide.

21

https://www.ntppool.org/en/
https://www.ntppool.org/en/

Development

3.2.2 Tags settings
The tags are another essential part of the system because they allow for the location
of individuals within the workplace. For a trustful result, these devices must be
used properly. In this section, the emphasis will shift to the settings; the general
functionality of these devices is covered in Section 2.1.2. As seen in Figs. 3.9 and
3.10, the manufacturer kontakt.io provides a simple but effective mobile app to
both set up and monitor all of the nearby tags that are close to the phone. The
actual settings of the tags can be seen in Fig. 3.10.

Figure 3.9: Tag setting app gen-
eral view

Figure 3.10: Setting panel sin-
gle tag

The advertising interval and the transmission power are the two variables to
take into account during setup for this project. Given that they will have an
impact on the performance of the entire application, these parameters should be

22

Development

selected as the network operates. There isn’t a general use case, so every setup
must be customized for each scenario. As consequence the system can function
more effectively in terms of signal range, signal stability, and battery life with the
right configuration. You couldn’t have the best performances in all three fields in
the large majority of applications. You have to choose the best trade off in order
to reach the performance that best fit your needs. The actual needs that must
be met in this project are essentially three. The first is adequate coverage with a
radius of about 15–20 meters. The second is a quick packet transmission in order
to have a strong and trustable cornerstone to ensure the data is published in almost
real-time. The final one, signal stability, is influenced by both parameters, but the
advertising interval has a greater impact. Therefore, in this situation, the need for
faster data sinking will have a positive impact on the signal’s stability. As shown
in Fig. 3.11, the lower the interval, the better the stability. The use of quite high
transmission power and a faster advertising interval unfortunately impact battery
life. Although the battery life is not particularly brief, in the order of 1 year in
duration, even if the settings do require battery effort.

Tx power dBm Expected range
1 -20 4 m
4 -8 30 m
7 4 70 m

Table 3.1: Beacon’s transmission power description

The advertising interval is set to 200 ms while taking into account all of these
technical considerations. This value provides sufficient packet flow and acceptable
signal stability, which are both necessary for the system to function properly.
Because the system gateways must deal with so many tags, there is actually a
chance that some packets will get lost. Thus, following several experiments, this
value is shown to be the appropriate trade off for a reliable but not particularly
energy-consuming system. The transmission power setting, on the other hand,
determines how powerfully the signal is transmitted by beacons. This is expressed
in dBm (deciBel milliwatt) and ranges from 0 to 7 with 0 being the least powerful
and 7 being the most powerful. As can be seen in Table 3.1, increasing the power
of your transmission will broaden the reach of your signal. However, it is also true
that a stronger transmission results in a greater energy drain and, as a result, a
shorter battery life. The transmission power value selected for the purposes of this
project is 4, or -8 dBm.

23

Development

Figure 3.11: Advertising interval and signal stability

3.2.3 Apache Kafka broker
The Kafka broker is a neural point in the system. It is the module that allows the
exchange of data between the various components of the system. The communica-
tion paradigm is publish/subscribe as described in Section 2.2.3. The framework in
question basically allows for a very high horizontal scalability and also an excellent
fault tolerance. The presence in an architecture of multiple brokers and certain
retention policy, allow to have a strong availability of the data. In the context of
the system developed, there was no need at this stage of development of scalability
and fault tolerance, because the type of data collected even if lost in part does not
compromise the system’s functioning. In addition, the data managed by the system
is not excessive, so this justifies the choice of a single broker for the management
of the data collected. From a technical point of view, the broker used is the one
provided by Confluent [61], because among the open-source solutions it is one that
provides a more accurate documentation and a more extensive set of compatible
tools. With regard to the graphic display of information by the broker Kafka,
an open source solution [62] has been used that provides the broadest level of
customization. The set of the broker Kafka, the Zookeeper3 coordinator and the
dashboard has been deployed using Docker Compose to allow easy interconnection
of the 3 services, and manage it as a single stack, independent of the rest of
the services developed. The structure of the deployment can be appreciated in
Appendix A.
As a specific structure of this broker, from the point of view of the organization, the
stream of data is managed by redirecting it to the topics defined arbitrarily. Each of
them will have a defined structure, i.e. a predetermined number of partitions and a
specific retention policy that allows to manage data storage as needed. From some
points of view, a Kafka broker, within the limits, can be exploited as a database to
accumulate data. It is possible to retain the data without deleting or compressing
it automatically, indefinitely. In the case of this project, the defined topics can be
seen in Table 3.2. As you can see, the retention policies are the same for each one,
because the needs of data availability and storage are similar. In addition, as you
can see in Fig. 3.12, the number of partitions is also different. The reasons for
these choices will be discussed in the next sections. It will also be discussed how to

3Apache ZooKeeper is an open-source server for highly reliable distributed coordination of
cloud applications

24

https://github.com/apache/zookeeper
https://github.com/apache/zookeeper

Development

assign messages to the topics, in relation to the process performed.

Topic name Partition Retention Policy Description

bleRSSI 5 DELETE Sink continously all BLE RSSI
data from HTTP

bleRSSI 5 DELETE Sink continously all BLE RSSI
data from HTTP

bleLocalization 1 DELETE Receive all the calculated position

bleOccupation 1 DELETE
Receive all the occupation

information in
geoJSON format

Table 3.2: Kafka topics characterization

Figure 3.12: Topics dashboard overview

3.3 Services developed
In this section, all microservices related to the system’s business logic for data
collection from gateways, position and occupancy calculation, and visualization
services will be described and detailed.

3.3.1 Deployment
All services developed, described in this section, have been containerized and treated
as a single stack, within a Docker compose file. All of the services in question are

25

Development

closely related to each other, and the malfunctioning of one may in some cases lead
to malfunctions of the others. This can be seen from the architectural structure in
Fig. 3.1. The structure of the deployment can be found in Appendix B

3.3.2 HTTP server for gateways
The web server used to sink all BLE packets was the first service produced. The
fact that this web server is the node that must control the entire information flow
arriving from all BLE gateways makes it a neuralgic point. It is because of this
function that this component requires a specific design. The node should have
a very quick response time when handling API calls from gateways and should
be capable of handling numerous requests more or less simultaneously. These
characteristics are fundamental because the webserver needs to manage dozens of
gateways that continuously send HTTP requests every few seconds, and none of
them are synchronized to send data with the others. The combination of Falcon, a
WSGI4 framework for creating extremely fast REST APIs, and the library bjoern,
an HTTP/1.1 WSGI server, is the design choice that satisfies these requirements.
They both and how they were used together were already covered in Section 2.2.1.
The web server’s actual operation is described in code snippet 3.1. As you can
see, the code also makes use of the Producer module from the Apache Kafka
Python library of Confluent in addition to the bjoern and Falcon libraries that
were previously mentioned. A Falcon instance is started with the name "app" as
the first step in the main (line 50). You should first develop a special class that will
control the request for a particular route in order for the API to function. In this
instance, catching the post requests is within the scope of the class KafkaRedirect.
Line 51 is essential because it enables body data to be retrieved from each HTTP
post request. Following the setting of this crucial feature, you must define the
route, as seen in line 52. You specify the URL of the route and the custom object
that must handle the packet arriving through this route using the instantiated
Falcon object. Last but not least, you launch the bjoern WSGI HTTP server by
binding the freshly created route. You have to indicate the web host on which
the server is mounted, and specify the port to expose in order to listen to the
requests. The kafkaRedirect serves as the web server’s brains. It is a clear and
simple Python class with the initial topic name, "bleRSSI," a counter that is an
environment variable, and the flag requestStatus that can be used to identify errors
in packet delivery to the Kafka broker as attributes. The on_post method, which
defines the route for POST requests, is the main method defined in the class. When
a new message is received, it is first parsed into JSON before being produce() and

4The Web Server Gateway Interface is a simple calling convention for web servers to forward
requests to web applications or frameworks written in the Python programming language

26

https://peps.python.org/pep-0333/
https://peps.python.org/pep-0333/

Development

flush() into the active Kafka topic. The first will direct the JSON payload to a
particular key and topic. In this instance, the custom name (ap_N) of the gateway
that originated the post request serves as the key’s representation. The N will
be a value between the ones in shown in Fig. 3.13. The second method keeps
trying until every message in the producer queue is delivered. The value in seconds
enclosed in the brackets indicates the timeout.

Figure 3.13: Base stations map

The production to Kafka broker is not always for the same topic, as the snippet
demonstrates. Every time 250 messages are sent to the broker, the system will
switch production between two topics, bleRSSI and bleRSSISupport, using an
environmental variable, i.e., the object attribute counter. This design decision was
made to offer a means of preventing the accumulation of excessive amounts of data.
This mechanism takes advantage of topics’ cleanup policies. The messages are
stored in the topics for a maximum of 10 seconds before being completely deleted.
Following a number of tests, the value of 250 was selected because it ensured both
enough time to free the unused topic and enough time to ensure the system’s proper
operation. In summary, it takes the topic more than 10 seconds to accumulate 250
messages. By doing this, the unused topic will have enough time after switching to
the other topic to be cleaned up and prevent data accumulation. The value of 250 is
ideal for this use case, but in a more extensive scenario, it ought to be higher. This
design decision was made for two reasons. Since there is a lot of data generated,
clearing the space occasionally is a good practice to prevent system congestion.
The final justification is that data collected after 4-5 seconds is completely useless
for the system’s goals. In the paragraph that follows, this statement will be better
supported.

1 import bjoern , f a l c o n
2 from conf luent_kafka import Producer
3

27

Development

4 # Create Producer i n s t ance
5 producer = Producer (c o n f i g)
6

7 c l a s s ka fkaRed i rec t (ob j e c t) :
8 de f __init__(s e l f) :
9 s e l f . topicName = ’ bleRSSI ’

10 s e l f . counter = 0
11 s e l f . r eque s tS ta tu s = 1
12

13 de f de l i v e ry_ca l l back (s e l f , err , msg) :
14 i f e r r :
15 s e l f . r eque s tS ta tu s = 0
16 s e l f . e r r = e r r
17 e l s e :
18 s e l f . r eque s tS ta tu s = 1
19

20 de f on_post (s e l f , req , re sp) :
21 data = req . media
22 j sonPayload = ujson . dumps(data)
23 i f (s e l f . counter == 250) :
24 i f (s e l f . topicName == ’ bleRSSI ’) :
25 s e l f . topicName = ’ bleRSSISupport ’
26 e l s e :
27 s e l f . topicName = ’ bleRSSI ’
28 s e l f . counter = 0
29

30 s e l f . counter += 1
31

32 producer . produce (
33 t op i c=s e l f . topicName ,
34 value=jsonPayload ,
35 key=req . headers [’NAMEAP’] ,
36 c a l l b a c k=s e l f . d e l i v e ry_ca l l back)
37 i f s e l f . r eque s tS ta tu s == 0 :
38 re sp . t ex t = "ERROR"
39 re sp . s t a tu s = f a l c o n .HTTP_500
40 e l s e :
41 re sp . t ex t = "SUCCESS"
42 re sp . s t a tu s = f a l c o n .HTTP_200
43 producer . f l u s h (0 . 5)
44

45 i f __name__ == "__main__" :
46 # i n s t a n t i a t e a c a l l a b l e WSGI app
47 app = f a l c o n . API ()
48 # long−l i v e d r e sou r c e c l a s s i n s t anc e
49 kafka = kafkaRed i rec t ()
50 # handle a l l r e que s t s to the ’/ b l e ’ URL path
51 app . req_options . auto_parse_form_urlencoded = True
52 app . add_route (’ / b l e ’ , kafka)

28

Development

53 bjoern . run (app , WEB_HOST, PORT, reuse_port=True)

Listing 3.1: HTTP server code

3.3.3 Localization engine
localizationEngine

libraries
bleTagUtilities.py
filterLib.py
kafkaManager.py
triangulationCore.py

usefulFiles
images
maps_features.json
settings.json
tagsSpecification.xls

debugUtilities
EDA_script.py
positionVisualizer.py

localizationEngine.py

The system’s functional center, which determines and handles the positions, is
the localization engine. It makes use of Python libraries for the confluent Kafka
client and Pandas. The actions of this element depends on the data consumed from
bleRSSI and bleRSSISupport generated by the Bjoern/Falcon HTTP server. In
essence, it converts the data from the unprocessed tag signals into positions that
can be consumed. Fig. 3.14 gives a description of the overall operation flow.

To be clear in the description of the action performed by this service, it is
necessary to define the four main structures that are essential to the system’s
operation, namely, bleTagInfo, dfTagStatus, dfKalmanFilters dfRSSICurrentFP,
and dfRSSIBackupFP. Additionally, the parameters that are used to fine-tune the
algorithm will be discussed. Understanding these parameters will allow you to
comprehend how the algorithm works.

Structures

The first one is bleTagInfo. This dataframe includes the key information for each
tag currently in use. Its structure is depicted in Fig. 3.15. It is essential to

29

Development

Figure 3.14: Localization engine operation flow

recognize which devices must have their signals discarded and which must have
their signals analyzed by the system. The Excel file tagsSpecification.xls (that
was provided to the system as input) and the data that were accessed directly
through an API call from the Kontakt.io server make up the data that are stored

30

Development

in this data structure. Recurrent API calls enable access to updated information
regarding each tag’s transmission feature. As you can see, it merely includes the
details needed to identify each tag. The MAC address is the piece of information
used to identify the target device. Each message that is received from gateways
contains the MAC of the corresponding tag that sent the packet, as explained in
Section 2.1.1. The MAC is linked to the tagID and it is the unique number that is
written on each tag. You can find out who the owner is by using this information.
Last but not least, for each device, the default RSSI signal at 1m as defined by the
manufacturer is also available in addition to the current transmission power (the
meaning is reported in Section 3.2.2).

Figure 3.15: Dataframe of tags information

The second dataframe is dfTagStatus. This data structure is in charge of
recording the historical position calculated and the adjusted RSSI at 1 meter. A
new row is added when the system recognizes a new tag. Each line is distinguished
by its distinct identifiers, MAC and tagID, as seen in Fig. 3.16. As previously
stated, each tag has a default RSSI value at 1 m that varies depending on the
transmission power. The manufacturer sets this value as a general guideline, but
depending on the environment in which the device is used, it frequently needs to
be modified. In the case of this project, the office context could result in extremely
unstable signal propagation depending on the presence of barriers and windows.
This is the rationale behind maintaining and updating the RSSI at 1 meter value
in accordance with the situation. The last valid value discovered by the algorithm
is represented on each line, along with the timestamp that goes with it. Overall,
this data structure is crucial for tracking the adjusted RSSI at 1 meter and the
historical position of detected tags. It allows for adjustments to be made based
on the environment and ensures that the most recent valid RSSI value is used in
calculations. This information is stored in a table with unique identifiers for each
tag and timestamped values for each adjustment made.

31

Development

Figure 3.16: Dataframe of tags current status

The management of the Kalman filter algorithm depends on the structure that
is shown in Fig. 3.17. In the broader context of the trilateration algorithm, the
algorithm provides the basis for denoising and signal tracking. Each cell in the
dataframe has a KalmanFilterObj with the structure shown in Listing 3.2. For
each gateway and tag pair, it is defined as an object. This is due to the fact that
each tag’s signal propagation in relation to each station is unique and requires a
particular type of modeling. In the section that follows, the parameters of such an
object will be described.

1 c l a s s KalmanFilterObj :
2 de f __init__(s e l f , in i t_va lue , A=1, H=1, Q=0.1 , R=20) :
3 s e l f .X = in i t_va lue
4 s e l f .P = 0
5 s e l f .__A = A
6 s e l f .__Q = Q
7 s e l f .__H = H
8 s e l f .__R = R
9 s e l f .__K = None

Listing 3.2: Kalman filter object

Figure 3.17: Dataframe for Kalman filter calculation support

The last two data structures are the ones that store a record of each tag’s RSSI
signal that the system has identified. The ID given to each BLE gateway is used
to name the columns. The MAC address of the particular device serves as the
row identifier for each MultiIndex row in this structure, which adds the RSSI
value and the associated timestamp to this value. To be more specific, each cell
contains the RSSI value of a specific station, identified by an ID, as received by a
device, identified by the MAC, as well as the timestamp, which is critical in the

32

Development

trilateration algorithm. The timestamp is updated with the one from the packet
each time a new RSSI value arrives, replacing the previous one. Figures 3.19 and
3.19 depict the structures.

Figure 3.18: Dataframe for current RSSI tracking

Figure 3.19: Dataframe for last valid RSSI fingerprint tracking

The principal distinction between the two structures is that dfRSSICurrentFP
merely contains all new RSSI that arrived from the gateway associated with a
specific tag, including any that are outdated or unusable for the calculation. Thus,
it is a sort of buffer where all of a tag’s RSSI values are sinking. The other,
dfRSSIBackupFP, holds the arrays of valid values that were utilized in the most
recent trilateration calculation, each referring to a particular tag.

Parameters

1. DBM_STARTER_TX_POWER_[NUM]_CORR : RSSI at 1m is not stable
so each time is adjusted. This parameter refers to the dBm added to the
kontakt.io standard to have a chance to find the correct one. Higher the value
make possible to have a safer check, but a longer process to find optimal;

2. TIME_BOUNDARY_S : maximum time a Kafka packet is considered valid.
Packets with timestamp older than this parameter w.r.t. current time are
discarded ;

3. POSITION_VALIDITY_S: maximum time a position is valid. If a position for
the same tag is retrieved in a time lower or equal to POSITION_VALIDITY_S
then the last position retrieved still is valid, otherwise it is considered expired
so next time is calculated again;

33

Development

4. POSITION_TRACKER_BUFFER_LEN: length of buffer where the most
recent positions are saved to evaluate movement/ adjust near position. Longer
buffer means more stable positioning system but slower to recognize a change.
Shorter buffer means more dynamical, so position could oscillate more fre-
quently but the change are recognized faster;

5. MOVEMENT_THRESHOLD_PIXEL: maximum pixel distance to consider
position static. If the difference between the position under exam and a
new one is greater than MOVEMENT_THRESHOLD_PIXEL, the system
consider this as a movement. To have an idea of the order in meters of this
distance in pixel you have to take into account this equality:

distance[m] = distance[pixel] ∗ MAP_LENGTH[m]
MAP_LENGTH[pixel]

6. NEAR_POS_VALIDITY_PIXEL: maximum pixel distance to consider new
position calculated not an outlier w.r.t. the buffer ones. To have an idea of
the order in meters of this distance in pixel you have to take into account the
previous point equality.

7. ROOM_THRESH: threshold of signal strength in dBm that allows to recognize
the occupation of a room, so skip the trilateration process;

8. MAP_PRODUCTION_TIME: it is the time set to trigger the production on
Kafka topic bleLocalization;

9. TIME_VALIDITY_TO_PRODUCE: the time in seconds to consider a posi-
tion valid to be produced on Kafka. Position older than this parameter w.r.t.
current time are not produced;

10. Q and R: parameteres for tuning Kalman filter, that respectively are the
measurement noise and the system noise;

11. N: parameter useful to calculate distance using the RSSI thar represents the
path-loss exponent.

Process flow description

The algorithm 1, represents the pseudo-code of the entire algorithm, which high
level representation is shown in Fig. 3.14. The process start at the first run by
setting all the parameters mentioned in the previous subsection. To make possible
the application to communicate with Kafka broker, it is fundamental to configure
the producer and consumer. Notice that these operation are managed using the
custom library kafkaManager. In this case the producer point to bleLocalization

34

Development

topic. This topic presents only one partition (as shown in Fig. 3.12), because it has
to manage not a large number of messages. Regarding the consumer it is connected
to the two topic bleRSSI and bleRSSISupport, and to each of the partitions (5 for
each one), to receive all the message that are published. From the lines 8/9 of
the algorithm, it can be noticed that the consumer is configured inside a infinite
loop, because if something wrong happen, in the communication with the broker,
the consumer will be restarted and all the operations can continue as usual. The
producer doesn’t need this kind of treatment. Opposite to the consumer that has
this pull behavior, so can suffer of critical interruption, the producer has push
behavior, and if something is wrong, the worst scenario is that the message is not
published, but it doesn’t get stuck.

After that the operative part of the algorithm starts. Each 100 ms the consumer
polls the broker to receive a message. As shown in Fig. 3.20 each message, that
is consumed from Kafka, is a list of strings. Each message need to be iterated to
analyze each packet. After a little processing, the key information, i.e. MAC, RSSI
value and timestamp, are extracted. After this extraction, the MAC brought by
packet is analyzed, and compared to the ones that are stored in bleTagInfo.

Figure 3.20: RSSI Tag packet structure

If message refers to a recorded BLE tag, the packet is analyzed, otherwise is
discarded. At the beginning the system has only the knowledge about the identity
of the BLE tag involved by the system (bleTagInfo), but nothing about their
current status. So each time a tag is detected for the first time, it is recorded in
dfTagStatus, by adding a new row to the dataframe , and inserting the information
arrived with the packet. If it is not the first time, that a sepcific tag is detected by
the system, at this stage, dfTagStatus is not touched. The other two structures i.e.
dfRSSICurrentFP and dfKalmanFilters, are also filled at this stage. In both case
the dataframes have a structure in which , it has to be take into account not only
the MAC but also the gateway from which the signal arrives. If it is the first time
that a specific value referred to a tag-gateway pair:

35

Development

• A KalmanFilterObj (as shown in the Listing 3.2) is initialized, using the RSSI
value just arrived. This object then is stored in the cell of dfKalmanFilters,
corresponding to tag-gateway pair.

• The RSSI value is directly stored in the corresponding to tag-gateway cell of
dfRSSICurrentFP.

On the other hand if a value, of the corresponding pair, already arrived:

• The KalmanFilterObj contained is fed with the newly arrived RSSI value, so
the algorithm can be run.

• The value calculated with the Kalman filter is retrieved and stored in the
tag-gateway cell of dfRSSICurrentFP.

After the saving of data from Kafka has been defined, you have to calculate the
positions.In the algorithm when a position is calculated, two fields are used for
each tag in the dfTagStatus dataframe. The first is position_tracker, a list that
contains the last positions calculated. Among these positions are also possible
outliers, therefore non-validated positions. The function of this list is to support the
detection of movements, detection of invalid positions and to help refine the position
in case of close measurements. The length of this list will be equal to the parameter
POSITION_TRACKER_BUFFER_LEN. The second field is position_history.
That simply keeps track of all valid positions calculated. This allows you to have a
clear idea of all the movements carried out by the tag. A position is calculated in
these cases:

• It is the first time that the position for a particular tag is calculated, that is,
that the position_history relative to that tag in the dfTagStatus dataframe is
empty. In this case the position is saved both in the position_tracker, and in
the position_history, it is then considered a valid position;

• The position is too old so it must be recalculated;

• The position_tracker has reached its maximum length so you have to check if
there has been a movement or it is needed a correction of the current position.
The check is performed using the function shown in Listing 3.3. How is it
possible to see the control is done on the last valid position (current_pos),
that is the last one present in the position_history and all position_tracker
positions (track_history). In addition you need an input parameter called
move_tresh was also passed to determine a unit of measurement to detect
movement, which refers to MOVEMENT_THRESHOLD_PIXEL. As final
parameter validity_thresh for distinguishing outliers from the positions to be
taken into account, namely the constant NEAR_POS_VALIDITY_PIXEL.

36

Development

This function returns two flags to report if a movement (isMovement is True)
has been detected, or if the position needs to be corrected (adjustPosition
is True), or none of the two operations. If a movement is detected then the
returned position will be equal to the average of the position values in the
position_tracker. If a position correction is needed, then the average will be
made between the position tracker positions and the last valid position.

1 de f detect_movement (current_pos , t rack_history , move_thresh , v a l i d i t y _ t h r e s h) :
2 isMovement=False
3 a d j u s t P o s i t i o n=False
4 # Create a boolean l i s t that c a l c u l a t e s the e u c l i d e a n d i s t a n c e s in p i x e l and
5 # then check i f t h i s overcome the des igned movement t h r e s h o l d
6 movement_bool_list =[(euc l idean_di s tance (current_pos [0] , current_pos [1] , pos [0] ,

pos [1])>move_thresh) f o r pos in t rack_hi s to ry]
7 # I f a l l the d i s t a n c e s o f the new p o s i t i o n w. r . t . the ones o f the t rack
8 # h i s t o r y overcome the t h r e s h o l d i t i s a probable movement
9 i f movement_bool_list . count (True) == len (t rack_hi s to ry) :

10 # The f l a g g l o b a l V a l i d i t y makes p o s s i b l e to d e t e c t p o s s i b l e o u t l i e r s .
11 # I f the new p o s i t i o n i s f a r from t r a c k e r p o s i t i o n doesn ’ t mean that i t
12 # i s a movement . I t i s a movement i f the prev ious p o s i t i o n are near to
13 # each others , so i f r e s p e c t the v a l i d i t y t h r e s h o l d o f proximity
14 g l o b a l V a l i d i t y=True
15 f o r item in t rack_hi s to ry :
16 itemCheck =([(euc l idean_di s tance (item [0] , item [1] , pos [0] , pos [1])<=

v a l i d i t y _ t h r e s h) f o r pos in t rack_hi s to ry] . count (True)== len (t rack_hi s to ry))
17 g l o b a l V a l i d i t y=g l o b a l V a l i d i t y and itemCheck
18 i f g l o b a l V a l i d i t y :
19 isMovement=True
20 # I f a l l the d i s t a n c e s o f the new p o s i t i o n w. r . t . the ones o f the t rack

h i s t o r y
21 # stay beyond the t h r e s h o l d i t i s a probable that p o s i t i o n need to be adjusted
22 e l i f movement_bool_list . count (Fa l se) == len (t rack_hi s to ry) :
23 # The f l a g itemCheckGlobal makes p o s s i b l e to d e t e c t p o s s i b l e o u t l i e r s
24 # I f the t r a c k e r p o s i t i o n s are near to each ot h e r s the p o s i t i o n ad jus t
25 # could be performed .
26 # Otherwise i t i s not performed because could be i n f l u e n c e d by some

o u t l i e r .
27 itemCheckGlobal=True
28 f o r item in t rack_hi s to ry :
29 itemCheck =([(euc l idean_di s tance (item [0] , item [1] , pos [0] , pos [1])<=

v a l i d i t y _ t h r e s h) f o r pos in t rack_hi s to ry] . count (True)== len (t rack_hi s to ry))
30 itemCheckGlobal = itemCheckGlobal and itemCheck
31 i f itemCheckGlobal :
32 a d j u s t P o s i t i o n=True
33 r e turn isMovement , a d j u s t P o s i t i o n

Listing 3.3: Movement detection function

After being clear on the modalities and calculation context of the location, it is
important to draw attention to an essential distinction in the type of computation
that the algorithm performs. This check has to be made in connection to the value
of the RSSI before calculating a position and checking the situations studied above.
In general the types of localization offered are two, the occupation of the rooms
and the localization in the open space, calculated by trilateration. The first type of
localization is priority, so an initial check is done in this regard. The control over

37

Development

the occupancy of the room is performed while looking at what kind of gateway the
signal comes from. Information about gateway types and zone characterization is
contained in the file maps_features.json, that is a geoJSON. Each zone is described
as follows:

1 { "type": " Feature ",
2 "id": "01",
3 " properties ": {
4 "name": " ZONE_NAME ",
5 " occupation ": 0,
6 " assigned_station ": "ap_XXX",
7 " open_zone ": 0
8 },
9 " geometry ": {

10 "type": " Polygon ",
11 " coordinates ": [[[1108, 18],
12 [1108, 198],
13 [903, 198],
14 [903, 18],
15 [1108, 18]]]
16 }
17 }

Listing 3.4: GeoJSON fragment

The file also contains a list of all the gateways that record you and the corresponding
locations. Considering the description presented above, if the signal comes from a
gateway assigned to a zone where the open_zone flag is set to 0, then you have
to consider the scenario that the placement of the tag in question is inside the
same room. To understand if this signal refers to the occupancy of a room, you
have to consider the ROOM_THRESH parameter. If the value of RSSI is higher
than this threshold, you can assume that the tag is very close to the gateway
in question, then inside the room. This constant was determined after several
tests, and therefore valid in the context of the office. In a different environment,
with different conditions, this value may be different. The position will then be
given by the known position of the gateway, plus the addition of a random range
useful to drop the position inside the geo fences of the room, and not allow the
overlap in the case of multiple surveys of occupation in that room. It is possible
to see that the controls mentioned above are applied at line 40 of the algorithm
1. The first relates to the position_tracker’s buffer’s size. In this instance, simply
the detection of a hypothetical movement is carried out. First off, it’s crucial to
remember that if the buffer has become too long, you must erase the oldest item
(line 48). In the event that a movement is discovered, you must first empty the

38

Development

position_tracker list, restart it with the newly determined position value, then
save the actual record in the position_history. Another thing to check is whether
the calculated location is the first for this tag; in that case, you need to save the
location directly in the position_history. Another significant instance is out there.
It is pointless to recalculate the location if the tag is stationary in the room and
a position is already existing in the history and no movement has been observed.
The most recent one found in position_history is maintained.

The second type of localization is that concerning the open-space part of the
office. In this case, the calculation is more complicated. First, you must have at
least 3 valid values referring to the tag in question in order to be able to calculate
the trilateration. Valid value refers to those measurements whose timestamp minus
the current timestamp (time.now()) is lower than the threshold given in input,
TIME_BOUNDARY_S. After proving that you have the necessary information
to locate the tag in question then, you proceed to the next steps, i.e. see if this
is the first time that the position is calculated or if it is a re-calculation because
the position has been lost. When calculating a position for the first time, the
dfRSSIBackup dataframe needs to be examined. If a location has already been
determined, it signifies that the dataframe line corresponding to the tag under
investigation already has at least 3 values. The control will return in this situation
with flag noBackup equal to True. The position_history is examined when a
position is lost. Every time a position is lost, a standard value, that’s (-1, -1), is
put to the bottom of the list to signal that the position needs to be recalculated
and that the previously saved position is no longer valid. This temporary value is
deleted from the list prior to recalculation, and the new value is then stored. In
this case the value returned by the check isPositionLost equal to True.

At this point begin the procedures of calculation of the distances described in
the listing 3.5. In this fragment you can see that given the list of values RSSI,
and note the of RSSI to 1 meter and the coefficient N, it is possible to calculate
the distance between the tag and the gateway that recorded the RSSI value. The
relationship between the RSSI value and the distance is described below [63][64][65]:

RSSId = −10 ∗ n ∗ log(d

d0
) + RSSId0 (3.1)

d = d0 ∗ 10
RSSId0 −RSSId

10∗N (3.2)

You can see that the signal strength of the BLE Beacons decreases exponentially.
The strength of the signal is affected by the signal strength that the BLE beacon
has, and that is quantified at a distance of one meter. In the above equation this
value refers to the value of RSSI at d0, which is then 1 meter in this case. So this
becomes a fundamental parameter in calculating distance, and it’s important to
calibrate it correctly. Its value obviously depends on the environment in which

39

Development

the signal diffusion takes place and therefore you cannot assign a standard value
a priori. Finally, the coefficient N represents the path-loss exponent defining the
rate at which the power falls. Multiple values in the range of 2 to 3 were evaluated.
The distances got dilated when the values were too close to 2, which increased the
errors in the trilateration that resulted. With values near 3, the distances were
underestimated making it challenging to calculate the trilateration because the
algorithm’s convergence took longer and the positions discovered were actually
more erroneous.The values that have provided a more accurate solution are around
2.4. The final value chosen is 2.4.

1 de f d istanceCalculat ionWithN (RSSI , RSSI1m , N) :
2 # Retr i eve the d i s t a n c e o f the TAG us ing the c l a s s i c a l propagat ion model o f

the s i g n a l in RSSI
3 r e turn 10∗∗ ((RSSI1m − RSSI) / (10 ∗ N))
4
5 de f ge tD i s tance s (RSSI_values , RSSI1m ,N) :
6 #Calcu la te d i s t a n c e s o f the l i s t o f RSSI in input
7 d i s t a n c e s =[]
8 f o r RSSI in RSSI_values :
9 d i s t a n c e = (distanceCalculat ionWithN (RSSI , RSSI1m ,N) ∗ 1564) / 51 .83

10 d i s t a n c e s . append (d i s t a n c e)
11 r e turn d i s t a n c e s

Listing 3.5: RSSI distance calculation

The position can be trilaterated using the distances once they have been computed.
A clear assumption must be made before the description can move forward. The
z-axis distances are treated as constants in this calculation. The stations are all
located at the same height for two reasons, and localized tags can typically be
assumed to be at the same altitude as well. Localization tags can be placed on a
table, in a pocket, or through a tie that is fastened around the neck. This lowers
the cost of computing for a size that is difficult to estimate and is meaningless
in practical applications. The function takes a list of calculated distances and an
identifier of the plane to which it corresponds in order to load the information
for the same, as shown in the X fragment of code. The Cartesian coordinates of
the plan’s stated input gateways are first loaded and saved in a list. We can say
that every point in the Cartesian plane, whether the calculated position or the
position of a gateway can be indicated as P = (x, y). To have an idea on how the
trilateration works it can be helpful analyze the geometrical meaning. A point
P = (x, y) on the Cartesian plane lies on a circle of radius d centred at (xi, yi) if
and only if is a solution to this equation:

(x − xi)2 + (y − yi)2 = d2 (3.3)

With only one station available, we cannot identify the exact position of P. What
we know, however, is how close it is. Each point that is at distance d from L is a
potential candidate for P. This means that with only one beacon, our guess of P is

40

Development

limited to a circle of radius d around P (Fig. 3.21). By employing not one, but
two station, L1 and L2 ,the situation is better. Only the area inside the red circle
can contain our object P. However, for the same reason, it can only be around the
green circle’s perimeter. This implies that it must be at the points where the two
circles converge. Our hypothesis is immediately constrained to just two potential
sites (in grey)(Fig. 3.22).

Figure 3.21: One station trilatera-
tion

Figure 3.22: Two stations
trilateration

Figure 3.23: Geometrical representation of trilateration

41

Development

The actual geometrical representation of the trilateration is shown in Fig. 3.23.
In this figure it is observed because there is the need to know the distance from at
least three known points. The problem of trilateration is solved mathematically by
finding the point P = (x, y) that simultaneously satisfies the equations of these
three circles.

(x − x1)2 + (y − y1)2 = d2
1

(x − x2)2 + (y − y2)2 = d2
2

(x − x3)2 + (y − y3)2 = d2
3

(3.4)

The goal of the initial position calculation method was to address the geometric
issue. Trilateration can undoubtedly be seen (and solved) as a geometrical problem,
but this is frequently not feasible. In order to use this mathematical modeling,
measurements must be extremely accurate. In the worst situation, the set of
equations will not have a solution if the circles do not converge to a single point.
You haven’t calculated a position in this situation. Even if we do have perfect
accuracy, the mathematical method does not scale well. In fact, taking into account
more than three stations makes the computations extremely complicated. So, it is
possible to approach the trilateration problem from an optimisation perspective.
Without considering circles and intersections, it can be viewed as a minimisation
problem. Given a point P̂ , it is possible to estimate the point that minimizes
this problem and best approximates the true P. This is easily accomplished by
figuring out its distance from each station, Li. If such distances exactly match
the corresponding distances di (as determined by RSSI), then P̂ is in fact P. It is
presumed that P̂ is further away from P the more it deviates from these distances.
With this new formulation, it is necessary to define and minimize a specific error
function while taking into account one source of error for each station. So the idea
it is the following, i.e. define a contribution error for each station:

e1 = d1 − dist(P̂ , L1)
e2 = d2 − dist(P̂ , L2)

. . .

en = dn − dist(P̂ , Ln)

(3.5)

To combine them you can use the average of these contributions’ squares. Due
to the fact that squares are always positive, the prospect of negative and positive
errors canceling each other out is eliminated. The result is the so called mean
squared error (MSE), that is presented below:

q[di − dist(P̂ , Li)]2
N

(3.6)

42

Development

In the code snippet 3.6 these calculations described can be seen in the first
lines of code(1-18) in which the functions euclidean_distance and __mse are
defined, and in the function trilaterate (42-49). In addition, it can be noticed that
first value assigned to P̂ is (0,0). Focusing on the rows 42-49 you can see that a
minimize5 function is used that is part of the Scipy library. The parameters set are
respectively:

• ftol: aim for accuracy while determining the stop criterion’s value. It is set
at 10−2 because it is a reasonable value related to the desired outcome and
allows for completion in a limited number of iterations.

• maxiter : it is the maximum number of iterations. It is set to 104 because
it allows for the exclusion of erroneous calculations, given that during this
calculation, convergence must occur fairly quickly. Iterating for a very high
number of iterations, and consequently for a very high amount of time, becomes
counterproductive and can result in the calculation of incorrect positions.

1 # This method r e t r i e v e the Eucl idean d i s t a n c e g iven two p o i n t s
2 de f euc l idean_di s tance (x1 , y1 , x2 , y2) :
3 p1 = np . array ((x1 , y1))
4 p2 = np . array ((x2 , y2))
5 r e turn np . l i n a l g . norm(p1 − p2)
6
7 # Mean Square Error
8 # l o c a t i o n s : [(x1 , y1) ,]
9 # d i s t a n c e s : [d1 ,]

10 de f __mse(x , l o c a t i o n s , d i s t a n c e s) :
11 mse = 0 .0
12 # Given the p o s i t i o n o f the gateways (l o c a t i o n s) and a given po int (x) i t

c a l c u l a t e s the
13 # e u c l i d e a n d i s t a n c e s between a l the se p o i n t s . Then i t c a l c u l a t e s the MSE

between these d i s t a n c e s
14 # and the ones c a l c u l a t e d with rhe va lue s o f RSSI
15 f o r l o c a t i o n , d i s t a n c e in z ip (l o c a t i o n s , d i s t a n c e s) :
16 d i s t a n c e _ c a l c u l a t e d = euc l idean_di s tance (x [0] , x [1] , l o c a t i o n [0] , l o c a t i o n

[1])
17 mse += math . pow(d i s t a n c e _ c a l c u l a t e d − di s tance , 2 . 0)
18 r e turn mse / l en (d i s t a n c e s)
19
20
21 de f t r i l a t e r a t e (d i s tance sTota l ,FLOOR) :
22 # d i s t a n c e s T o t a l ==> [1 2 , 5 6 , nan , 5 6 7 , . . .]
23 # These value i s ordered , so f i r s t va lue i s r e f e r r e d to ap_1 ,
24 # second to ap_2 and so on . The order r e s p e c t the way in which i s wr i t t en
25 # in u s e f u l F i l e s / maps_feature . j son under the key gateways
26 l o c a t i o n s =[]
27 d i s t a n c e s =[]
28 gatewayPos=load_gateway_posit ions (FLOOR=FLOOR)
29 i n i t i a l _ l o c a t i o n =(0 ,0)
30 l o c a t i o n s T o t a l= [(gatewayPos [item] [0] , gatewayPos [item] [1]) f o r item in

gatewayPos]

5Scipy minimization function with SLSQP[66]

43

https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html

Development

31 # Prepare the two l i s t s that w i l l be used in the minimizat ion p r o c e s s .
32 # Append only the gateway p o s i t i o n s (l o c a t i o n s) o f the one that has a

correspondant
33 # value o f d i s t a n c e g iven by the RSSI c a l c u l a t i o n (va lue o f d i s t a n c e s T o t a l in

not NaN)
34 f o r i , d i s t in enumerate (d i s t a n c e s T o t a l) :
35 i f not pd . i s n a (d i s t) :
36 l o c a t i o n s . append (l o c a t i o n s T o t a l [i])
37 d i s t a n c e s . append (d i s t)
38
39 # i n i t i a l _ l o c a t i o n : (x , y)
40 # l o c a t i o n s : [(x1 , y1) , . . .]
41 # d i s t a n c e s : [d1 , . . .]
42 r e s u l t = minimize (
43 __mse, # The e r r o r f u n c t i o n
44 i n i t i a l _ l o c a t i o n , # The i n i t i a l guess
45 args =(l o c a t i o n s , d i s t a n c e s) , # Addi t iona l parameters f o r mse
46 method=’SLSQP ’ , # The o p t i m i s a t i o n a lgor i thm
47 opt ions={
48 ’ f t o l ’ : 1 e −2, # Tolerance
49 ’ maxiter ’ : 1 e+4 # Maximum i t e r a t i o n s
50 })
51 r e turn (i n t (r e s u l t . x [0]) , i n t (r e s u l t . x [1]))

Listing 3.6: Trilateration core function

Therefore, the function trilaterate will return a correct position or, in the unlikely
event of non-convergence, a value of none. At this point, a check is made (getCon-
sistency() line 78 pseudo-code 1) to ensure that the calculated position is consistent
given the data for the calculated position and the Cartesian boundary of the floor
plan under analysis. To be more clear, given Cartesian boundary, Xmax and Ymax,
all points included in the area delimited by the points (0,0), (0,Xmax), (Ymax,Xmax),
(Ymax,0) are considered. Where Xmax and Ymax refer to the numerical values for
the length (from 0 to Ymax) and width (from 0 to Xmax) of the floor plan under
examination.

If the validity check is positive, the position is valid. If the check fails to pass,
the position is calculated iteratively, increasing of one the initial RSSI value at
1m each time, until either the consistency condition is satisfied or the time limit
provided in the input is exceeded. This last condition was added to prevent the
flow of operations getting blocked in an infinite loop. As previously discussed, the
value of RSSI at 1 meter must be calibrated based on the environment in which the
tag emits the signal. As a result, it is impossible to determine an initial value that
is equal across all tags. Every time the position is calculated for the first time, or
every time it is lost and recalculated, the check and, in the case of a negative result,
this iterative correction, is done. It is important to note that when the condition
is satisfied, before exiting the loop, the RSSI at 1 m value, at which convergence
occurs after iterations, is saved in the dataframe dfTagStatus and replaces the
previously saved value. All of these considerations are based on positions that have
been calculated in the office’s open space. Consequently, additional examinations

44

Development

must be made to determine whether the calculated position is in a room, where it
must be calculated using the previously described procedure, or it’s in a location
on the map where no localization is planned (such as the bathrooms). The control
is carried out within the loop if the consistency requirement is satisfied, because,
this kind of check is meaningless if the position is inconsistent, due to exceeding
the calculation time limit. If the position is within a room or an area that is not
authorized, the value taken into consideration is the most recent one that is still
valid in the position_history of dfTagStatus. A null value is assigned if a valid
position is not available. Following this, if the position’s calculation did not exceed
the time limit, the same checks described before for calculating the occupancy of
the room are performed to detect any movement or the need for a position adjust.

When the position calculation is complete, the algorithm’s 1 line 134 is reached.
At this point, all the columns in the dataframe dfTagStatus are analyzed, specifically
the field pos_history, to find all the tags with validation positions by examining
the timestamps in each column. All viable positions are saved in positionListTo-
Produce. The positions are not published each time they are calculated but rather
accumulate and are published at regular intervals determined by the constant
MAP_PRODUCTION_TIME. This ensures that production does not delay the
calculation of positions excessively. The position list is converted to JSON at the
time of publication and take the form seen in Fig. 3.24. The publication of the
Kafka message will take place on the topic "bleLocalization," and each message
will include as its key the name of the floor to which the location calculation is
connected. After publication, the described process is repeated in an iterative
fashion for Kafka’s subsequent package to arrive. If there is no fault related to
the connection to Kafka or if the algorithm is not manually stopped, the process
will run endlessly. In the event of error in computation, calculation, or overall
algorithm with runtime errors, the process is restarted, allowing calculations to
continue without the application crashing. It should be noticed that each time
the algorithm is permanently stopped, the customer is also disconnected from the
group of consumers.

Figure 3.24: Localization engine JSON packet structure

Kalman filter

Given the very variable and unstable nature of the RSSI values, it was decided to
adopt a correction and filtering of these values using a mathematical support. The

45

Development

options you could use were different. Before the choice of the Kalman filter, several
tests were carried out with the particle filter and the fast fourier transform. But
the performance and flexibility provided by the Kalman filter made the decision
hang on it [67]. In wireless communication systems, RSSI Kalman filtering has
various advantages [68][69], including:

• Noise reduction: environmental factors, interference, and noise frequently
affect RSSI measurements. The noisy RSSI observations can be filtered using
a Kalman filter, producing an estimate of the solid RSSI value that is smoother
and more precise.

• Adaptability: in wireless contexts, interference, multipath fading, and signal
intensity attenuation can all affect RSSI measurements. By revising its
estimations in light of newer measurements, the Kalman filter is able to adjust
to these variances.

• Real-time estimation: as newer data become available, the recursive Kalman
filter updates the state estimate and error covariance in real-time. This
characteristic makes it ideal for real-time systems where prompt or almost
prompt updates are needed.

The Kalman filter [70][71][72] is a state estimator that uses noisy observations
to estimate some unobserved variable. As it takes into consideration the past
measurements, it is a recursive algorithm. In the scope of this project the filter is
used to estimate the actual RSSI. There are different variation of this algorithm,
but it was chose the classical one, that relies on linear models. In other words, the
change from one state to the next and from measurement to state should both be
linear. The transition model’s general form is as follows:

xt = Atxt−1 + Btut + ϵt (3.7)

The current state vector xt is affected by the noise contribution ϵ. This contribution
ϵ is known as process noise. It refers to the ambiguity or variability in the system’s
evolution that is being modelled. It quantifies the difference between the expected
and actual state transitions while taking into account variables that the model
does not explicitly account for, such as outside disruptions, unmodeled dynamics,
or innate system variability. To account for the innate unpredictability in RSSI
observations that the model cannot fully capture, the Kalman filter for RSSI
filtering integrates process noise. Process noise is represented as a random variable
with Q as its covariance matrix (Equation 3.8).

p(ϵ) ∼ N (0, Q) (3.8)

It is assumed that all estimates have been performed considering that there are
no movements occurring within the system during a estimate. As a result, during

46

Development

each calculator the filter take a snapshot of the real environment and calculates
the new RSSI measurement. In the proposed arrangement, component ut, i.e. the
control input (includes knowledge or information about the dynamics of the system
or outside factors that have an impact on the evolution of the state), is regarded
as zero.In accordance with the choice to take into account the static system, the
matrix A, i.e. state transition matrix (captures the linear relationship between the
present state and the following state),is regarded as an identity matrix. A relatively
straightforward model is produced by these two changes:

xt ≈ xt−1 + ϵt (3.9)

Following the definition of the transition model, the observation model must be
defined in the manner described below.

zt = Ctxt + δt ≈ xt + δt (3.10)

The zt stands for the measurements vector, and as shown is affected by the noise
contribution δ. The δ is the measurement noise. It describes the uncertainty or
error underlying measurements obtained from real-world systems. When measuring
RSSI, noise takes into consideration numerous kinds of interference and represents
the difference between the real signal strength and the measured RSSI value. The
filter can balance the projected RSSI value and the measured RSSI value by taking
into account the measurement uncertainty in order to get a more precise estimation
of the real signal strength. Measurement noise is modeled as a random variable,
precisely a normal random variable (Equation 3.11) characterized by its covariance
matrix R.

p(δ) ∼ N (0, R) (3.11)

Both the error covariance matrix and the estimation of the true signal strength are
updated using it. By taking measurement noise into account can reduce the impact
of measurement fluctuations and improving the overall accuracy of RSSI-based
localization or tracking applications. It is expected that the state variables can
be directly measured, the matrix C is regarded as an identity matrix.In practice,
each component of the state vector xt immediately correlates to the corresponding
component of the measurement vector zt. The algorithm splits into two phases
prediction and update.Taking into account that the previously stated conditions,
namely A = I, u = 0, and C = I, are still valid and in addition the value of Q and
R are assumed constant.The following operations define the prediction operations:

State Prediction

µ̄t = µt−1 (3.12)

47

Development

Error Covariance Prediction

Σ̄t = Σt−1 + Q (3.13)

It is crucial to keep in mind that xt represents the true value of the state and µ̄t

is the actual prediction. So, based on the prior state estimate, at time step t-1, the
µ̄t represents the expected state estimate at time step t. The matrix Σ̄t represents
the estimated error covariance matrix at time step t based on the actual error
covariance matrix and the uncertainty introduced by the process noise covariance
matrix Q.

Then the update steps:

Kalman gain

Kt = Σ̄t(Σ̄t + R)−1 (3.14)

The Kalman gain is calculated using the covariance prediction estimate while
also assuming the contribution of measurement noise R. The Kalman gain is
then applied as a weight on the estimated state and measurement residual. The
measurement residual is the difference between the actual measurement, zt and the
predicted measurement, µ̄t. Gain is crucial since it measures the accuracy of the
measurements and modifies the measurement residual’s contribution to the state
update. A lower Kalman gain emphasizes the anticipated state estimate more while
a higher Kalman gain lends more weight to the measurement residual, indicating
greater confidence in the measurements.

State update

µt = µ̄t + Kt(zt − µ̄t) (3.15)

Error Covariance Update

Σt = Σ̄t − (KtΣ̄t) (3.16)

Finally, after adding the measurement data, the updated error covariance
embodies the reduction in uncertainty regarding the state estimate. The metrics
that will be used as filtered value in the calculation of position is the µt of Equation
3.15. In the context of this project, the algorithm’s steps are completed in real

48

Development

time. In other words, each time a new measurement comes along, an algorithm
step is run while keeping the parameters and historical data from previous steps
saved, and a new value of µt to use in the calculation is retrieved.

49

Development

Algorithm 1 Localization engine algorithm: procedure to calculate the positions
given the raw RSSI values
1: procedure Localization engine()
2: programStarter() ▷ Initialize all global variables
3: ▷ Initialize kafkaManager obj
4: dfTagInfo ← Excel+Kontakt data
5: dfTagStatus, dfKalmanFilters,dfRSSICurrentFP,dfRSSIBackupFP ← []
6: producer ← configP roducer
7: while True do
8: consumer ← configConsumer
9: kafkaManager.assignConsumerToPartition(consumer)
10: try
11: while True do
12: consumer.poll(0.1)
13: if msg is None then
14: continue
15: else if msg is Error then
16: raise Exception
17: else
18: for packet in msg do
19: try
20: if MAC is Valid then
21: if MAC first time record then
22: dfTagStatus[MAC] ← packet
23: else
24: continue
25: end if
26: if (MAC,AP) first time record then
27: KalmanFilterObj(packet[RSSI], A, H, Q, R)
28: ▷ Related to (MAC,AP) cell
29: dfKalmanFilters ←KalmanFilterObj
30: ▷ Related to (MAC,AP) cell
31: dfRSSICurrentFP ← packet[RSSI]
32: else
33: dfKalmanFilters[MAC,AP].run_algorithm(packet[RSSI])
34: ▷ Related to (MAC,AP) cell
35: dfRSSICurrentFP← dfKalmanFilters[RSSI]
36: end if
37: roomOccupied = check_room_occupancy()
38: if roomOccupied then
39: ▷ Calculate pos
40: dfTagStatus[MAC,ts] ← time.now
41: dfTagStatus[MAC,pos_track] ← pos
42: if dfTagStatus[MAC,pos_track] = MAX then
43: isMovement = detect_movement()
44: if isMovement then
45: ▷ Calculate pos by average
46: ▷ all position in tracker
47: end if
48: dfTagStatus[pos_track].pop(0)
49: end if
50: if isMovement then
51: dfTagStatus[MAC,pos_track].clear()
52: dfTagStatus[MAC,pos_track] ← pos
53: dfTagStatus[MAC,pos_his] ← pos
54: else if len(dfTagStatus[MAC,pos_his])==0 then
55: dfTagStatus[MAC,pos_his] ← pos

50

Development

56: else
57: pos=dfTagStatus[MAC,pos_his][-1]
58: end if
59: else
60: if trilateration is feasible then
61: RSSITmp← dfRSSICurrentFP[MAC]
62: ▷ Get value isPositionLost
63: ▷ Get value noBackup
64: if noBackup or isPositionLost then
65: d=getDistances(RSSITmp,RSSI1m,N)
66: pos = trilaterate(d)
67: ▷ If the RSSI at 1m makes possible to
68: ▷ have a consistent position, given X-Y limits
69: ▷ in input, otherwise adjust the RSSI
70: ▷ till a consistent result is reached
71: consistent=getConsistency(pos,lim)
72: ▷ In addition to consistency also a
73: ▷ timer is set to avoid infinite loop
74: while not consistent & TIME_LIM do
75: RSSI1m = RSSI1m - 1
76: d=getDistances(RSSITmp,RSSI1m,N)
77: pos = trilaterate(d)
78: consistent=getConsistency(pos,lim)
79: if consistent is True then
80: dfTagStatus[MAC,RSSI1m]=RSSI1m
81: ▷ Check the zone and return
82: ▷ flags closedRoom
83: ▷ and noTrack
84: checkZone(pos,map)
85: end if
86: end while
87: if closedRoom or noTrack then
88: pos=dfTagStatus[MAC,pos_his][-1]
89: ▷ If position history is empty
90: pos= None
91: end if
92: if pos not None TIME_LIM then
93: dfTagStatus[MAC,ts] ← time.now
94: dfTagStatus[MAC,pos_track] ← pos
95: if dfTagStatus[MAC,pos_track]= MAX then
96: ▷ Calculate isMovement
97: ▷ adjustPosition with
98: detect_movement()
99: if adjustPosition then
100: ▷ Calculate pos by average
101: ▷ between last position in history
102: ▷ and all position in tracker
103: end if
104: if isMovement then
105: ▷ Calculate pos by average
106: ▷ all position in tracker
107: end if
108: dfTagStatus[MAC,pos_track].pop(0)
109: end if

51

Development

110: if isMovement or adjustPosition then
111: dfTagStatus[MAC,pos_track].clear()
112: dfTagStatus[MAC,pos_track] ← pos
113: dfTagStatus[MAC,pos_his] ← pos
114: else if noBackup then
115: dfTagStatus[MAC,pos_his] ← pos
116: else
117: pos = dfTagStatus[MAC,pos_his][-1]
118: ▷ If position history is empty
119: pos= None
120: end if
121: dfRSSIBackupFP.at[MAC,AP]← RSSITmp
122: else
123: dfTagStatus[MAC,ts] ← time.now
124: pos = dfTagStatus[MAC,pos_his][-1]
125: ▷ If position history is empty
126: pos= None
127: end if
128: else
129: dfTagStatus[MAC,ts] ← time.now
130: pos= dfTagStatus[MAC,pos_his][-1]
131: end if
132: end if
133: end if
134: ▷ Search in dfTagStatus[pos_his] the position associated to
135: ▷ each tag that respect the condition:
136: ▷ dfTagStatus[ts]-time. now < TIME_VALIDITY_TO_PRODUCE
137: ▷ and save then as JSON in positionListToProduce
138: cond1=len(positionListToProduce)>0
139: cond2=time.now-REFRESH_POSITION_TIMER>MAP_PRODUCTION_TIME
140: if cond1 and cond2 then
141: for item in positionListToProduce do
142: msg ← JSON(floor,x,y,id,name,ts)
143: end for
144: end if
145: producer.produce(topic,value = message,key = floor)
146: producer.flush(0.5)
147: REFRESH_POSITION_TIMER = time.time()
148: kafkaManager.counter += 1
149: else
150: continue
151: end if
152: catch Exception
153: MESSAGE PROCESSING ERROR!
154: exit(104)
155: end try
156: end for
157: end if
158: end while
159: catch KeyboardInterrupt
160: PROGRAM MANUALLY STOPPED
161: exit(0)
162: catch Exception as whatever_it_is
163: KAFKA PROCESS ERROR
164: finally
165: consumer.close()
166: kafkaManager.updateConsumerGroup()
167: end try
168: end while
169: end procedure

52

Development

3.3.4 Occupation calculator engine
Another part of the framework is the occupation engine. It is built on top of the
services previously mentioned. It particularly depends on the message generation
of the localization engine provides. The directory demonstrates that the service
manages the connection to the Kafka broker using the KafkaManager library. The
script also makes use of the same geoJSON description of the map that is found in
maps_feaure.json.

occupationEngine
libraries

kafkaManager.py
usefulFiles

maps_features.json
settings.json

occupationEngine.py

This module’s settings are less complicated. It only requires the default Kafka
settings the default Kafka settings to publish to the topic bleOccupation and to
read from the topic bleLocalization . The snippet of code 3.7 explains the behavior.
All connection options to the Kafka broker are first loaded. The connection to
Kafka is then established, allowing for both consumption and production. Just
after those initial operations, an infinite loop that periodically polls the Kafka
broker to receive and process packets is started. Upon arrival, a valid message has
the structure shown below:

1 [{"floor": 1, "x": 1530, "y": 230,"id": "XXXX", "name":
"XXXX", "ts": "1998-03-02T00:00"},

2 {"floor": 1, "x": 1545, "y": 233, "id": "YYYY", "name":
"YYYY", "ts":"1998-03-02T00:00"}, ...]

The message is a list of precise coordinates referring to a particular floor, as you
can see. Thus, the algorithm begins by checking the floor number. The following
step involves iterating through the various floor zones that are represented in
the floor features object, which was defined in line 17. The data is taken from
the mapsFeature.json file (structure highlighted in the listing 3.4). Because the
information published on the broker is a modified version of the original geoJSON
obtained from the aforementioned JSON file, the data is kept in an object called
geoFenceManager. In order to restart with the initial data when another message

53

Development

arrives, you must in practice have two operational versions of these data that you
can modify at runtime. As you can see from the snippet, the geoFenceManager
is a very simplistic Python class. You have two attributes: backupCopy, which
is private, and features, which is public. The first is initialized at the start of
the algorithm and is never changed after that. The second one is the one that
undergoes runtime changes and is refreshed with the help of the class method
refreshValues. This class employs the deepcopy technique. Normally, a shallow
copy of the data is made when you copy or initialize a variable. An object that
contains the reference to the original elements is created by a shallow copy. A
shallow copy merely copies the reference to nested objects; it does not actually
copy the nested objects themselves. This indicates that the reference to the same
nested objects is shared by the original variable and the copy. A deep copy, on
the other hand, creates a new object and adds copies of nested objects that were
present in the original elements in a recursive manner. This indicates that the copy
and the original variable are independent.

To summarize, you move on to the next step when one of the items on the
list in the Kafka message matches the floor number of a floor specified in the
geoJSON (always same structure of listing 3.4) saved in the geoFenceManager. You
repeat this process for all of the floor’s zones that are defined by geofences and
other features. They outline the building’s perimeter based on a predetermined
reference system. You use the library Shapely that is described in Section 2.2.1 to
determine whether a position coming from Kafka fits inside a particular region. The
coordinates of a point are used to define a point object. You must be aware that
this point is made using the Figure 3.25’s pixel map reference system. Applying a
correction factor to the y coordinate will make it a valid point in the live map’s
reference system. The new point will be equal to (xp,Cp − yp) given a point (xp,yp),
where Cp is the length in pixels of the short side of the map.

54

Development

Figure 3.25: Reference systems of developement maps

You now define a Polygon object and use the method contains() to determine
whether the point is contained within the polygon. When the true condition is
discovered, you add one to the geoFanceManger object’s correspondent occupation
field. Finally, after iterating through each position in the Kafka packet’s list, the
entire geoJSON is produced using the floor number as a key, and the runtime
modified geoJSON is reset.

1 from copy import deepcopy
2 from shape ly . geometry import Point
3 from shape ly . geometry . polygon import Polygon
4 import l i b r a r i e s . kafkaManager as kM
5 from conf luent_kafka import Consumer , Producer
6 import j son
7 c l a s s geoFenceManager :
8 de f __init__(s e l f ,FLOORS_FEATURES) :
9 s e l f . __backupCopy=deepcopy (FLOORS_FEATURES)

10 s e l f . f e a t u r e s=FLOORS_FEATURES
11 de f r e f r e shVa lu e s (s e l f) :
12 s e l f . f e a t u r e s=deepcopy (s e l f . __backupCopy)
13 i f __name__ == ’__main__ ’ :
14 programStarter ()
15 f l o o r _ f e a t u r e s = geoFenceManager (FLOORS_FEATURES=FLOORS_FEATURES)
16 kafkaManager = kM. kafkaManager (
17 BROKER_LINK,
18 CONSUMER_TOPICS,
19 INITIAL_CONSUMER_TOPIC,
20 PRODUCER_TOPICS,
21 INITIAL_PRODUCER_TOPIC)
22 configConsumer = kafkaManager . chargeConsumerSett ings ()
23 con f igProducer = kafkaManager . chargeProducerSet t ings ()

55

Development

24 producer = Producer (con f igProducer)
25 consumer = Consumer (configConsumer)
26 consumer . sub s c r i b e (kafkaManager . consumerTopicList)
27 kafkaManager . ass ignConsumerToPart it ion (consumer)
28 t ry :
29 whi le True :
30 msg = consumer . p o l l (1)
31 i f msg i s None :
32 pr in t (" Waiting . . . ")
33 e l i f msg . e r r o r () :
34 pr in t ("ERROR: %s " . format (msg . e r r o r ()))
35 e l s e :
36 f o r item in j son . l oads (msg . va lue () . decode ()) :
37 LOCALIZED = False
38 f o r f l o o r in f l o o r _ f e a t u r e s . f e a t u r e s :
39 i f (item [’ f l o o r ’]== f l o o r [’ floor_number ’]) :
40 f o r zone in f l o o r [’ areasGeoFences ’] :
41 po int = Point (item [’ x ’] ,
42 FLOOR_Y_ADJUST − item [’ y ’])
43 polygon = Polygon (zone [’ shape ’])
44 i f polygon . conta in s (po int) :
45 zone [’ occupat ion ’]+=1
46 LOCALIZED=True
47 i f LOCALIZED:
48 break
49 i f LOCALIZED:
50 break
51 f o r f l o o r in f l o o r _ f e a t u r e s . f e a t u r e s :
52 message = j son . dumps(f l o o r [’ areasGeoFences ’])
53 producer . produce (
54 t op i c=kafkaManager . actualProducerTopic ,
55 value=message ,
56 key=f ’ f l oor_ { f l o o r [" floor_number "] } ’ ,
57 c a l l b a c k=de l i v e ry_ca l l back)
58 producer . f l u s h (0 . 5)
59 f l o o r _ f e a t u r e s . r e f r e shVa lue s ()
60

61 except KeyboardInterrupt :
62 e x i t (0)
63 except Exception :
64 e x i t (103)

Listing 3.7: Occupation calculator engine

56

Development

3.3.5 Real time map

mapServer
node_modules
src

routes
index.js

static
css

main.css
favicon.ico
images
js

geoFences.js
main.js

views
index.ejs

consumerMarkers.js
consumerOccupation.js
index.js

package.json
package-lock.json

The system’s real-time map module enables a live display of the obtained
outcomes. The system is web-based and the map has been defined using the
JavaScript library Leaflet.js (described in section 2.3.2). The map defined is the
non-geographical category, according to the definition on Leaflet.js. The map is
non-geographical because, the library in question is used, usually, to display and
customize real maps that take advantage of those provided by the major providers
of this type of content such as Google Maps, OpenStreetMap etc. In the case of
this project, the potential of this library has been exploited to manage an indoor
plant of a building. The map on which you are based will then be the loaded
building plant, which will then present a custom reference system, different from
the classical latitude and longitude used in the usual applications of this library.
This reference system in practice is defined by a system of cartesian axes that
originate from the lower left side of the building plant. Each pixel of the image will
be mapped as coordinates in the order and the abscissa. This allows you to easily
view the results calculated by the other modules. The results are the calculated

57

Development

individual positions and occupation levels of the office areas and rooms. These
findings will be displayed as in Fig. 3.28, where you can see that the individual
places are represented by the blue icons on the map. If you select one of these
icons, the timing and person with whom the location is related will be shown. The
occupation is represented by the various colored zones, which become more intense
as the number of individuals identified rises. At the upper right of the map, it also
displays the precise number of people found out. This system module is composed
of many components and is directly connected to the broker Kafka, which is the
source of the displayed data. This module’s central point is the Express.js server.
This manages all of the static resources that will be made available to users, when
they use the service, and communicates with the two Javascript modules which
aim to capture the information provided by the Kafka broker. The relationships
between the various components are depicted in a general way in Fig. 3.26.

Figure 3.26: Architectural overview of real-time map

58

Development

Figure 3.27: Process diagram of real-time map

Two stages—the initial setting and the functioning after first boot—can be seen
if you pay close attention to Fig. 3.27. When the system is begun, it will run
indefinitely, independent of the rest of the system, even if the other modules fail.
The following stages are taken during the first setup:

• At the beginning, the engine of the Express.js app, which works as core server
in this module, is started. You must define links to static files and routes of
the server. In terms of static files, they merely have a file that serve as display
engine and a Javascript file pertaining to the map itself.The first, is EJS file.
EJS is a JavaScript templating engine that allows you to insert JavaScript
code within HTML templates to generate dynamic information on the server
side. It is commonly used to render dynamic data and to create reusable
components. So this will format the interface and provide a dynamically
enabled interface. The second is the JavaScript file that is written using the

59

Development

Leaflet.js library, which allows you to define and customize the interactive
map as defined previously. With regard to the routes what is defined are the
one that redirect to the main page (the root ’/’), and also the two routes,
i.e. ’topic/bleLocalization’ and ’topik/bleOccupation’, to which listeners are
associated, fundamental for the operation of the system, whose role will be
described in the next steps.

• In the subsequent stage, Kafka consumers defined in the consumerMarkers.js
and consumerOccupation.js files using KafkaJs, a package that allows you
to manage Kafka connections using JavaScript (described in Section 2.3.3),
are initialized. The processes show that the first phases of these components
include, above all, the linkage of a function with the matching GET route.
This recursive code, given in the 3.8 sample, creates a route that sends periodic
Server-Sent Events (SSE) to the client every 5 seconds until the session is
terminated. The events are sent in text format and can be processed on the
client side with JavaScript to handle real-time server updates. SSE is a web
technology that allows servers to provide real-time updates to clients across a
long-lived HTTP connection, providing real-time communication without the
need for frequent client requests.

1 route r . get (’ROUTE’ , j sonParser , f unc t i on (req , r e s) {
2 r e s . setHeader (’ Cache−Control ’ , ’ no−cache ’) ;
3 r e s . setHeader (’ Content−Type ’ , ’ t ex t / event−stream ’) ;
4 r e s . setHeader (’ Access−Control−Allow−Orig in ’ , ’ ∗ ’) ;
5 r e s . setHeader (’ Connection ’ , ’ keep−a l i v e ’) ;
6 r e s . f lu shHeader s () ;
7 l e t interVal ID = s e t I n t e r v a l (() => {
8 r e s . wr i t e (’ data : ’+body+’ \n\n ’) ;
9 c l e a r I n t e r v a l (interVal ID) ;

10 r e s . end () ; // te rminate s SSE s e s s i o n
11 re turn ;
12 } , 5000) ;
13

14 }) ;

Listing 3.8: Function related to GET route

At this point the system is settled and functioning, it will remain static until it
receives information from Kafka. In short, loading the web page will only load the
map, with no marker and with the zones set to a zero occupation level. At the
same time, the two consumers will continue to be in a poll status. When a message
of interest is published„ respectively, in the topic bleLocalization, for markers,
and bleOccupation for occupation levels, with intervals of 5 seconds, this will be
transformed into an action that will modify the map appropriately. Updated map
that is instantly returned to the user. If a bleLocalization message arrives, a marker

60

Development

is generated or moved, in the latter case the color level and the number relating
to the occupation of the affected areas will be increased/reduced. The instant
trigger of these actions is made possible by using Eventsource in the index.js related
JavaScript code written using Leaflet.js library. In JavaScript, the EventSource
interface is used to connect to a server that supports SSE. It enables the client
to receive real-time updates or events from the server without having to poll the
server continuously. It makes it easier to create real-time applications. The system
in any case will remain in this state of infinite loop in the background, ensuring
that every user access has an updated version of the environment under analysis.

Figure 3.28: Views on real-time map

61

Development

3.4 Exploratory data analysis

This section will outline the methods followed for a consistent system configuration,
with a focus on the analysis of the tag signal and how the filtering was improved
using Kalman filter. The system, as described in the preceding section, is extensively
parametrized. Other parameters unrelated to the RSSI signal and the linked filtering
have been described in previous sections. For them, a on-field calibration based
on real-world proof, in relation to the development scenario, was performed. This
was because statistically assessing every component of the system would have been
impossible because the development scenario involving fading, shadowing, and
other phenomena would have been too difficult to model. The selection of these
parameters was primarily based on practical tuning, but on the other hand, the
signal processing was given greater consideration because it affects every other
system behavior. Regarding the raw RSSI signal of the tags, a methodical analysis
was performed in order to understand its evolution and time behavior, and thus
to discover an appropriate filtering solution. Because the development scenario
includes numerous tags and a quite large number of gateways, a smaller context will
be examined as an example to demonstrate the methods used. More specifically,
a single tag in relation to four gateways for signal behavior analysis and a tag’s
behavior in relation to a single gateway for Kalman filter parameters analysis
applied to the RSSI signal. The above context is shown in Fig. 3.29, and the
corresponding key information is presented in Table 3.3.

Figure 3.29: EDA context

62

Development

Gateway name Color Figure
ap_194 Red 3.30
ap_196 Green 3.31
ap_199 Orange 3.32
ap_206 Magenta 3.33

Table 3.3: Gateway reference information

The signal received from the tag by each gateway is rather unsteady, as seen
in Figs 3.30 to 3.33. It should be noted that the signal associated with this tag
pertains to a static context, i.e., the tag is left standing in a known location (the
blue cross in Fig. 3.29), free to broadcast to any gateway in its line of sight. As you
can see, by left-side images, the signal varies by 15 dBm points and also drastically
in the majority of the data being analyzed. Even the KDE distribution 6 , as
shown by the figures to the right of each picture, exhibits very irregular behavior,
as evidenced by the presence of many peaks, a non-uniform distribution, and a
rather broad range of values. This is due to physical impediments, interferences, or
changes in the environment. As a result, a mathematical model capable of filtering
the signal while also being flexible and reactive is required. The Kalman filter,
whose algorithm is explained in Section 3.3.3, is the natural choice. To go deeper in
the motivations of the choices made regarding the parameters of the Kalman filter
only a signal is evaluated. The one chosen is the received one by the bluetooth
gateway ap_194.

6Kernel density estimate: Smoothly estimate the shape of a distribution by placing smooth
curves (kernels) on data points and summing them up.

63

https://en.wikipedia.org/wiki/Kernel_density_estimation
https://en.wikipedia.org/wiki/Kernel_density_estimation

Development

Figure 3.30: Signal evolution of ap_194

Figure 3.31: Signal evolution of ap_196

64

Development

Figure 3.32: Signal evolution of ap_199

Figure 3.33: Signal evolution of ap_206

65

Development

Considering the simplifications and assumptions to linearize filter modeling,
described in section 3.3.3, the only two parameters to be set to change filter behavior
are Q, related to process noise, and R, linked to measurement noise. Table 3.4
describes the various tests that are taken as examples to guide the final choice
made, i.e. the one described by the test number 7 of the table. Before analysing the
tests carried out, it is necessary to analyze the meaning of these two parameters.
For the explanation, the values that have been defined as optimal for this system
will be taken into account.

When the process noise in a Kalman filter for RSSI filtering is increased, it
signifies that additional uncertainty or variability is introduced into the presumed
signal propagation model. Process noise in RSSI filtering represents errors or
variations in RSSI readings that are not accounted for by the filter’s prediction
model. By increasing the process noise, you are effectively implying that you have
less confidence in the model’s precision and reliability. The increase in process noise
indicates that you believe signal propagation characteristics such signal attenuation,
multipath fading, or interference are less predictable or more likely to alter over
time. It means that variations in RSSI readings may be influenced by elements not
explicitly considered or modeled by the filter. The Kalman filter gets increasingly
responsive to measured RSSI values as the process noise is increased. It gives
more weight to current measurements than to forecasts from the inner model.
This greater responsiveness enables the filter to respond faster to changes in the
signal propagation environment, such as abrupt interference or signal strength
shifts. A variation of 0.1 in an RSSI tracking system, generally, is considered
to be high. A fluctuation of 0.1 dBm may be perceived excessive if the tracking
system is designed for fine-grained precision or is utilized in applications where
minor changes in signal strength are crucial, such as localization or proximity-based
systems. In such instances, it is critical to reduce noise, calibrate the system, and
assure high-quality signal measurements in order to achieve consistent tracking
performance. If the system is operating in a high-noise environment or the needed
precision is not excessive, a difference of 0.1 dBm may be reasonable and deemed
within an acceptable range. This is because there may be many types of interference
and signal attenuation owing to ambient conditions in a tracking system that uses
RSSI data for approximate localisation. In this case, the RSSI tracking system’s
primary purpose is to convey a general sense of location or closeness rather than
pinpoint accuracy. Small changes in RSSI values are unlikely to have a substantial
impact on overall tracking performance. To adjust for 0.1 dB changes as a natural
component of system operation, techniques such as filtering or averaging could
be used. However, it is crucial to highlight that overly raising process noise can
present the risk of overreacting to measurement noise or outliers. Over time, the
filter’s ability to reliably track the true signal strength may deteriorate.

66

Development

By purposefully adding extra uncertainty or inaccuracy to the RSSI measure-
ments the Kalman filter uses, the measurement noise in the filter can be increased.
This can be done to test the filter’s robustness, evaluate its performance in chal-
lenging circumstances, account for unknown factors influencing measurements, and
assess worst-case scenarios. Given a variation range of 20 units more or less (82
- 62), as seen in Fig. 3.30 in a measurement noise value of 5 could indicates a
large fraction of the system’s dynamics. It accounts for 25% of the overall range,
indicating that the measurements are subject to significant ambiguity or error. It is
normal for measurements to have a higher level of uncertainty or variability in an
unstable system with considerable signal changes.Setting the measurement noise to
5 acknowledges and accounts for the system’s inherent instability and fluctuation.
A larger measurement noise value can assist the Kalman filter in adapting to the
system’s rapid changes and providing a more responsive assessment of the state.
It enables the filter to be less reliant on measurements and more impacted by the
expected state, which can be useful in dealing with signal instability and dramatic
changes. It is crucial to remember, however, that increasing the measurement noise
generally results in lower estimating accuracy and a smoother, but potentially less
accurate, estimation of the genuine RSSI values. The filter’s responsiveness may
also be reduced, resulting in slower updates and a more filtered output.

Given these broad considerations, it is reasonable to presume that the values
selected are adequate. But, to understand why these were picked, look at the
visuals connected with the various tests. The R value was fixed in the first three,
thus create variation of Q. If you select a lower number, at 0.1 as you can see, the
signal is over-filtered and may provide an issue in the event of movement since the
convergence to the new signal may be too delayed (Figs. 3.34 and 3.35). A number
larger than 0.1 implies that the system will react excessively to measurement noise
or outliers (Fig. 3.36).

In the second set of tests, on the contrary, Q is fixed at 0.1 and R is varied.
In this case, taking values below 5 means that you give too much confidence to
the measurements, and therefore the filtration will be very reduced, making this
passage almost useless (Figs. 3.37 and 3.38). In the case of higher values, however,
the signal is simplified too much and can cause problems in dynamic contexts (Fig.
3.39).

As previously stated, the test 7 illustrated in Fig. 3.40, with Q=0.1 and R=5,
was chosen as the optimum combination to track the system’s evolution. This
option allows you to a compromise of precision for practical limits.

67

Development

Test N. Q R Figure N.
1 0.01 5 3.34
2 0.05 5 3.35
3 0.5 5 3.36
4 0.1 0.5 3.37
5 0.1 1 3.38
6 0.1 10 3.39
7 0.1 5 3.40

Table 3.4: Kalman filter use cases

Figure 3.34: Signal evolution with Q=0.01 and R=5

68

Development

Figure 3.35: Signal evolution with Q=0.05 and R=5

Figure 3.36: Signal evolution with Q=0.5 and R=5

69

Development

Figure 3.37: Signal evolution with Q=0.1 and R=0.5

Figure 3.38: Signal evolution with Q=0.1 and R=1

70

Development

Figure 3.39: Signal evolution with Q=0.1 and R=10

Figure 3.40: Signal evolution with Q=0.1 and R=5

71

Chapter 4

Results and conclusions

4.1 Results
This part will review all of the project’s findings, both numerical and the ensuing
visual interface to support the user experience.

4.1.1 Localization engine results
The localization engine as described in section 3.3.3 as a result gives an always-
running system capable of determining positions from RSSI raw data in a few
milliseconds. The end result is a system that, in line with the project’s goal, can
calculate the positions statically, e.g., whether the tag stays in place. Given the
non-critical nature of the system’s application, the specifications actually do not
call for a fine-grained location but rather a system that provides basic directions on
occupation of the building. Given the physical restrictions imposed by the stability
of the tag’s signal, dynamic tracking is possible, but the computations’ convergence
is not immediate. Fig. 4.1 depicts a day’s worth of activity of the system. As
you can see, despite the noisy nature of the tag signals, the estimated positions
generally have a good quality and do not vary significantly over the day. The
average accuracy level, as well as the minimum and maximum values, are shown in
Fig. 4.2. Generally speaking, it should be noted that the system can accurately
determine a position between 1 and 5 meters away. The analysis also includes
information on tags that moved, for which the correctness of the calculation of the
positions cannot be precisely verified because there are no knowledge about their
real position. Fig. 4.4 depicts the tracking of a single tag, which demonstrates the
system’s convergent behavior. In fact, the first unstable position is quickly rectified
and maintained, as seen in Fig. 4.3. This phenomenon is caused by the application
of the Kalman filter, which, despite being initially unconditioned, quickly converges
to the right value.

72

Results and conclusions

Figure 4.1: One day position tracking

Figure 4.2: Error overview of the trace

73

Results and conclusions

Figure 4.3: Temporal improvements of position

Figure 4.4: Single tag position track

74

Results and conclusions

4.1.2 Occupation engine results

The occupation calculator, as detailed in section 3.3.4, allows you to compute build-
ing occupation levels very accurately and fast using simple geometric calculations.
From an organizational standpoint, the module is autonomous from the rest of the
system, and its operational precision is extremely high. It should be mentioned
that it operates on the basis of data supplied by the localization engine. As a result,
if the aforementioned module functions well, the overall accuracy of the occupation
computation achieves high levels.

4.1.3 User Interface

Another significant final achievement in this project is the resultant user interface for
monitoring real-time data, which will assist facility management staff in preserving
the quality of the environment, as described in Section 3.3.5. The final result is a
web app that allows you to see the location and occupation of the building in real
time. The user can zoom to distinguish the different markers, click on the markers
to see the information (Fig. 4.6), select a specific floor or data layer (Fig. 4.5). In
fact, you can choose to show only the layer that highlight the occupation (Fig.4.8),
or that one layer which shows only the markers (Fig. 4.7), and obviously both (Fig.
3.28).

Figure 4.5: Layer con-
trol panel

Figure 4.6: Marker information showed

75

Results and conclusions

Figure 4.7: Only markers view

Figure 4.8: Only occupation view

4.2 Conclusions
To conclude the analysis of this project, it is good to reanalyze the goals that were
defined at the beginning of this paper in Section 1.5. More precisely:

• After careful analysis of the available hardware, it was possible to take action
on the calibration of the various components. The field trials to understand
the correct settings, of both the stations and the tags, have been crucial in

76

Results and conclusions

order to achieve reasonable results. In the specific scenario considered, the
levels of transmission power of tags and the filter level of received power of
gateways were analyzed. In addition, a reasonable timing of transmission has
been found, in order to proceed to the following steps of localization. Not
taking into account these factors would lead to a poor accuracy given by wrong
signal setting, and in the latter case of timing to a bad convergence of the
trilateration.

• A real-time localization application needs a solid backend to function. First off,
the flexibility and responsiveness of the lightweight HTTP API used for data
sinking allowed for the millisecond-accurate data redirecting from gateways.
To meet the necessary delivery and time constraints, it was essential to use
stream processing to connect the computing core. The entire architecture is
the result of multiple revisions and efforts to discover an appropriate structure
for developing a non-monolithic tool. Even on less capable hardware (such
as an edge solution), this structure, helped by the virtualization offered by
the containers, allows a high level of scalability and portability. Additionally,
opting to use the CI/CD approach for micro-service-oriented development
enabled for the creation of a system that was always up to date, simple to
change, and error-free. Each module was created as a distinct connected
entity.The components of the architecture were each independently created
and are formally autonomous. They communicate effectively, in part because
of Docker’s networking capability but also because of Apache Kafka’s great
potential;

• The localization system has been completely parametrized in order to allow
for varying QoS levels and application adaptation on different deployment
scenarios. The parameters for the system strongly depend on the circumstance
in which it is being utilized, as was mentioned when examining the system.
This is a result of the BLE technology’s physical constraints, which were
utilised in the creation of this system. To give you complete control over
the system customisation, a highly extensive parametrification was used
(Section 3.3.3). These adjustments cover everything from specifications for tag
transmission, Kalman filter settings, needed spatial and temporal accuracy
requirements, through consumption management and publication on the Kafka
broker criteria;

• The developed algorithm effectively and almost instantly manages the con-
siderable amount of data gathered and forwarded by the HTTP server. The
objective has always been to reduce the amount of time required to perform
the position calculation after receiving the raw RSSI data from a tag. As

77

Results and conclusions

previously stated, a first bottleneck was removed by improving the data col-
lection server. The second time barrier has been broken by making the most
of Kafka’s capabilities, utilizing topic and partition division, as well as the
outstanding reactivity provided by its request pull behavior. The algorithm
itself, which rapidly calculates using a direct and quick approach, minimizes
unnecessary and redundant calculations, is the latest improvement. In this
approach, a valid position can be calculated quickly and with fair precision
thanks to the Kalman filter’s operation. Additionally, you can observe the
location associated with a tag in a matter of seconds by constantly combining
the strength of Kafka with the responsiveness offered by the actual real time
mapping module;

• It is not sufficient on its own to have strong results and a supported system
that measures metrics in a reliable way. For this type of monitoring program,
having a distinct and well-defined user interface is crucial. This unlock the
possibility to examine the office system in real-time comprehensive viewpoint.

It should be noted that possible performance limitations in terms of timing or
accuracy are closely related to the technology used. The devices used are of entry-
level quality and therefore do not provide the best possible performance. The
aim of this project, however, was not to create a performance solution at the top,
but rather to demonstrate and analyze the feasibility of such a system even with
non-advanced hardware. The current system from a software point of view is barely
portable. To adjust it, you only need to reason in terms of setting with regard to the
above mentioned parameters. With hardware improvements, i.e. more performing
transmitters, better results could be achieved, both in terms of speed in returning
positions, as well as accuracy, and adjustment to change of location. In addition,
although the entire system developed refers to a single floor of the building, the
structure of the system has been thought to be scaled to more elaborate scenarios.

In conclusion, all of the planned milestones were met in the manner intended.
This allows for the return of a comprehensive solution that allows for an office envi-
ronment monitoring system, as well as assistance in improving working environment
space management.

As stated before, the current solution rather than a finished product is a proof
of concept of a possible applicable solution, so, may be improvable in its current
condition, and the next and last part will outline possible future enhancements
that can be done.

4.2.1 Future works
The developed solution is still in its development because there is still much space
for improvements.The first natural progression is surely the upgrade of part of

78

Results and conclusions

the hardware used. The receivers utilized are adequate, however the transmitters
provide a highly unstable signal that is difficult to track in the case of very quick
movements. There are more efficient options available on the market. One option
is to use cellphones’ Bluetooth Low Energy (BLE) transmission. In advertisement
mode, the smart phone can be used as a tag. Both Android [73] and iOS [74]
support the use of BLE low energy in the background, ensuring low battery use.
The problem in this situation is more than technical; it is basically "human" because
it deals with concerns linked to convincing individuals to download an app and, in
some ways, handling personal data. You must ensure that the individual utilizing
the app is someone known to the company. However, by providing lower latency and
higher transmission quality, this sort of solution may enable further applications,
such as automating the work badge check for entering or departing from work using
a position-type solution.

All of these operations should be defined in as lightweight and portable a manner
as possible. By keeping the amount of memory to a minimum, all of these procedures
might be performed at the edge, decreasing the amount of data bulk handled by the
server. This would allow the solution to be extended to cover more instances than
it now does.This could be accomplished by investigating new communication bus
technologies. NATS.io [75] might be used to make the system lighter, or Apache
Pulsar [76] could be used to include serverless computing functionality directly into
the context of service communication (e.g. on-the-fly filtering).

The user interface is the portion of the system that needs to be completely
updated, because the one established is only a showcase that should be integrated
into a more comprehensive graphic solution, preferably with an authentication
system to protect the information.

The final value you may include is data saving with the integration of a database.
At the time, this is not established because the data is handled as ephemeral data,
with a life of a few seconds, to prevent overloading corporate systems, without
a solid plan for optimally saving all or part of the data. This could open up
data analytics scenarios providing a more detailed historical view of this type of
monitoring.

All of these long-term objectives were established with future integration of
two SATEC wider products in mind, namely SATEC Health.Track/Monitor and
SATEC Location System/Monitor (SALOS). As noted above, all the methods
currently specified in this project will be analyzed and then incorporated while also
looking at potential upgrades that might enhance performance.

79

Appendix A

Kafka broker settings

1 −−−
2 v e r s i o n : ’ 3 . 6 ’
3 volumes :
4 zookeeper−data :
5 d r i v e r : l o c a l
6 zookeeper−l og :
7 d r i v e r : l o c a l
8 kafka−data :
9 d r i v e r : l o c a l

10 networks :
11 kafka_net :
12 name : kafka_network
13
14 s e r v i c e s :
15 # ===============================
16 # =======KAFKA ENVIRONMENT=======
17 # ===============================
18 zookeeper :
19 image : c o n f l u e n t i n c /cp−zookeeper
20 container_name : zookeeper
21 r e s t a r t : always
22 networks :
23 − kafka_net
24 volumes :
25 − zookeeper−data : / var / l i b / zookeeper / data : Z
26 − zookeeper−l og : / var / l i b / zookeeper / log : Z
27 environment :
28 ZOOKEEPER_CLIENT_PORT: 2181
29 ZOOKEEPER_TICK_TIME: 2000
30 broker :
31 image : c o n f l u e n t i n c /cp−kafka : l a t e s t
32 container_name : broker
33 r e s t a r t : always
34 networks :
35 − kafka_net
36
37 volumes :
38 − kafka−data : / var / l i b / kafka / data : Z
39 por t s :
40 − " 9092:9092 "
41 − " 9101:9101 "

80

Kafka broker settings

42 expose :
43 − " 9093 "
44 depends_on :
45 − zookeeper
46 environment :
47 KAFKA_BROKER_ID: 1
48 KAFKA_ZOOKEEPER_CONNECT: ’ zookeeper : 2181 ’
49 KAFKA_LISTENERS: INSIDE_VIEW: / / 0 . 0 . 0 . 0 : 9 0 9 3 ,OUTSIDE_VIEW: / / 0 . 0 . 0 . 0 : 9 0 9 2
50 KAFKA_ADVERTISED_LISTENERS: INSIDE_VIEW:// broker : 9093 ,OUTSIDE_VIEW://

COMPANY_HOST:9092
51 KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: INSIDE_VIEW:PLAINTEXT,OUTSIDE_VIEW:

PLAINTEXT
52 KAFKA_INTER_BROKER_LISTENER_NAME: INSIDE_VIEW
53 KAFKA_AUTO_CREATE_TOPICS_ENABLE: " t rue "
54 KAFKA_OFFSETS_RETENTION_MINUTES: 5
55 KAFKA_OFFSETS_RETENTION_CHECK_INTERVAL_MS: 60000
56 KAFKA_LOG_RETENTION_MS: 30000
57 KAFKA_LOG_RETENTION_CHECK_INTERVAL_MS: 5000
58 KAFKA_GROUP_INITIAL_REBALANCE_DELAY_MS: 0
59 KAFKA_CONFLUENT_LICENSE_TOPIC_REPLICATION_FACTOR: 1
60 KAFKA_CONFLUENT_BALANCER_TOPIC_REPLICATION_FACTOR: 1
61 KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1
62 KAFKA_TRANSACTION_STATE_LOG_MIN_ISR: 1
63 KAFKA_TRANSACTION_STATE_LOG_REPLICATION_FACTOR: 1
64 KAFKA_JMX_PORT: 9101
65 KAFKA_JMX_HOSTNAME: l o c a l h o s t
66 KAFKA_CONFLUENT_SCHEMA_REGISTRY_URL: http :// schema−r e g i s t r y :8081
67 CONFLUENT_METRICS_REPORTER_BOOTSTRAP_SERVERS: broker :9093
68 CONFLUENT_METRICS_REPORTER_TOPIC_REPLICAS: 1
69 CONFLUENT_METRICS_ENABLE: ’ true ’
70 CONFLUENT_SUPPORT_CUSTOMER_ID: ’ anonymous ’
71 KAFKA_AUTHORIZER_CLASS_NAME: ’ kafka . s e c u r i t y . a u t h o r i z e r . AclAuthorizer ’
72 KAFKA_ALLOW_EVERYONE_IF_NO_ACL_FOUND: ’ true ’
73 KAFKA_CONFLUENT_SUPPORT_METRICS_ENABLE: ’ f a l s e ’
74 l i n k s :
75 − zookeeper
76 i n i t −kafka :
77 image : c o n f l u e n t i n c /cp−kafka : l a t e s t
78 container_name : i n i t i a l _ b o o t s t r a p
79 networks :
80 − kafka_net
81 depends_on :
82 − broker
83 ent rypo int : [’/ bin /sh ’ , ’−c ’]
84 command : |
85 "
86 # blocks u n t i l kafka i s r eachab l e
87 s l e e p 15
88 echo −e ’SHOW PRE−EXISTENT TOPICS’
89 kafka−t o p i c s −−bootstrap −s e r v e r broker :9093 −− l i s t
90
91 echo −e ’ Creat ing kafka top i c s ’
92 s l e e p 5
93 kafka−t o p i c s −−bootstrap −s e r v e r broker :9093 −−c r e a t e −−i f −not−e x i s t s −−t o p i c

bleRSSI −−r e p l i c a t i o n −f a c t o r 1 −−p a r t i t i o n s 5
94 kafka−t o p i c s −−bootstrap −s e r v e r broker :9093 −−c r e a t e −−i f −not−e x i s t s −−t o p i c

bleRSSISupport −−r e p l i c a t i o n −f a c t o r 1 −−p a r t i t i o n s 5
95 kafka−t o p i c s −−bootstrap −s e r v e r broker :9093 −−c r e a t e −−i f −not−e x i s t s −−t o p i c

b l e L o c a l i z a t i o n −−r e p l i c a t i o n −f a c t o r 1 −−p a r t i t i o n s 1
96 kafka−t o p i c s −−bootstrap −s e r v e r broker :9093 −−c r e a t e −−i f −not−e x i s t s −−t o p i c

bleOccupation −−r e p l i c a t i o n −f a c t o r 1 −−p a r t i t i o n s 1

81

Kafka broker settings

97
98 echo −e ’ Conf igur ing kafka top i c s ’
99 s l e e p 5

100 kafka−c o n f i g s −−bootstrap −s e r v e r broker :9093 −−ent i ty −type t o p i c s −−ent i ty −
name bleRSSI −−a l t e r −−add−c o n f i g r e t e n t i o n . ms=10000

101 kafka−c o n f i g s −−bootstrap −s e r v e r broker :9093 −−ent i ty −type t o p i c s −−ent i ty −
name bleRSSISupport −−a l t e r −−add−c o n f i g r e t e n t i o n . ms=10000

102 kafka−c o n f i g s −−bootstrap −s e r v e r broker :9093 −−ent i ty −type t o p i c s −−ent i ty −
name b l e L o c a l i z a t i o n −−a l t e r −−add−c o n f i g r e t e n t i o n . ms=10000

103 kafka−c o n f i g s −−bootstrap −s e r v e r broker :9093 −−ent i ty −type t o p i c s −−ent i ty −
name bleOccupation −−a l t e r −−add−c o n f i g r e t e n t i o n . ms=10000

104
105 echo −e ’ S u c c e s s f u l l y c r ea ted the f o l l o w i n g t o p i c s : ’
106 kafka−t o p i c s −−bootstrap −s e r v e r broker :9093 −− l i s t
107 "
108 kafka−ui :
109 container_name : kafka−ui
110 r e s t a r t : always
111 image : p r o v e c t u s l a b s / kafka−ui
112 por t s :
113 − 8994:8080
114 networks :
115 − kafka_net
116 depends_on :
117 − i n i t −kafka
118 environment :
119 KAFKA_CLUSTERS_0_NAME: l o c a l f i r s t
120 KAFKA_CLUSTERS_0_BOOTSTRAPSERVERS: broker :9093
121 KAFKA_CLUSTERS_0_METRICS_PORT: 9101
122 KAFKA_CLUSTERS_0_SCHEMAREGISTRY: http :// schema−r e g i s t r y :8990
123 KAFKA_CLUSTERS_0_KAFKACONNECT_0_NAME: f i r s t
124 KAFKA_CLUSTERS_0_KAFKACONNECT_0_ADDRESS: http :// connect :8992
125 −−−

Listing A.1: Apache Kafka services stack YAML file

82

Appendix B

Localization services settings

1 v e r s i o n : ’ 3 . 6 ’
2 networks :
3 i n t e rna l_net :
4 name : kafka_network
5 s e r v i c e s :
6 bjoern_server :
7 image : COMPANY_CONTAINER_REGISTRY/ bjoern_server
8 container_name : b joern_server
9 r e s t a r t : always

10 networks :
11 − i n t e rna l_net
12 por t s :
13 − " 8989:8989 "
14 map_server :
15 image : COMPANY_CONTAINER_REGISTRY/map_server
16 container_name : map_server
17 r e s t a r t : always
18 volumes :
19 − . / mapServer : / app/
20 networks :
21 − i n t e rna l_net
22 por t s :
23 − " 8995:8995 "
24 l o c a l i z a t i o n _ e n g i n e :
25 image : COMPANY_CONTAINER_REGISTRY/ l o c a l i z a t i o n _ e n g i n e
26 container_name : l o c a l i z a t i o n _ e n g i n e
27 r e s t a r t : always
28 depends_on :
29 − bjoern_server
30 networks :
31 − i n t e rna l_net
32 occupation_engine :
33 image : COMPANY_CONTAINER_REGISTRY/ occupation_engine
34 container_name : occupation_engine
35 r e s t a r t : always
36 depends_on :
37 − bjoern_server
38 networks :
39 − i n t e rna l_net

Listing B.1: Localization services stack YAML file

83

Bibliography

[1] Shadi Al-Sarawi, Mohammed Anbar, Rosni Abdullah, and Ahmad B Al
Hawari. «Internet of things market analysis forecasts, 2020–2030». In: 2020
Fourth World Conference on smart trends in systems, security and sustain-
ability (WorldS4). IEEE. 2020, pp. 449–453 (cit. on p. 1).

[2] In Lee and Kyoochun Lee. «The Internet of Things (IoT): Applications,
investments, and challenges for enterprises». In: Business horizons 58.4 (2015),
pp. 431–440 (cit. on p. 1).

[3] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. «Internet of Things (IoT): A vision, architectural elements,
and future directions». In: Future generation computer systems 29.7 (2013),
pp. 1645–1660 (cit. on p. 1).

[4] ISO/IEC 30141:2018 Internet of Things (IoT) — Reference Architecture.
International Organization for Standardization (ISO), 2018 (cit. on p. 1).

[5] Somayya Madakam, Vihar Lake, Vihar Lake, Vihar Lake, et al. «Internet of
Things (IoT): A literature review». In: Journal of Computer and Communi-
cations 3.5 (2015), p. 164 (cit. on p. 2).

[6] ISO/IEC 21823-1:2019, Internet of things (IoT) — Interoperability for IoT
systems — Part 1: Framework. International Organization for Standardization
(ISO), 2019 (cit. on p. 2).

[7] Internet of things (IoT) — Industrial IoT. International Organization for
Standardization (ISO), 2020 (cit. on p. 2).

[8] ISO/IEC 30162:2022, Internet of Things (IoT) — Compatibility require-
ments and model for devices within industrial IoT systems. International
Organization for Standardization (ISO), 2022 (cit. on p. 2).

[9] ISO/IEC 30165:2021, Internet of Things (IoT) — Real-time IoT framework.
International Organization for Standardization (ISO), 2021 (cit. on p. 2).

84

BIBLIOGRAPHY

[10] Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari,
and Moussa Ayyash. «Internet of things: A survey on enabling technologies,
protocols, and applications». In: IEEE communications surveys & tutorials
17.4 (2015), pp. 2347–2376 (cit. on p. 2).

[11] Ulises Carrasco, Pedro Daniel Urbina Coronado, Mahmoud Parto, and Thomas
Kurfess. «Indoor location service in support of a smart manufacturing facility».
In: Computers in Industry 103 (2018), pp. 132–140 (cit. on p. 2).

[12] A. Brooks B. Atkin. Total Facilities Management (Third edition). Oxford:
Wiley-Blackwell, 2009 (cit. on p. 2).

[13] Keith Alexander. «Facilities management practice». In: Facilities 10.5 (1992),
pp. 11–18 (cit. on p. 2).

[14] ISO 41001:2018, Facility Management — Management systems — Require-
ments with guidance for use. International Organization for Standardization
(ISO), 2018 (cit. on p. 2).

[15] ISO 41011:2017, Facility Management — Vocabulary. International Organi-
zation for Standardization (ISO), 2017 (cit. on p. 2).

[16] ISO 41012:2017, Facility management — Guidance on strategic sourcing and
the development of agreements. International Organization for Standardization
(ISO), 2017 (cit. on p. 2).

[17] ISO/TR 41013:2017, Facility management — Scope, number concepts and
benefits. International Organization for Standardization (ISO), 2017 (cit. on
p. 2).

[18] ISO 41014:2020, Facility management — Development of facility management
strategy. International Organization for Standardization (ISO), 2020 (cit. on
p. 2).

[19] ISO/FDIS 41015, Facility management — Influencing behaviours for im-
proved facility outcomes and user experience. International Organization for
Standardization (ISO), 2018 (cit. on p. 2).

[20] M Tscherkassky-Aleksić. «Internet of Things for Facility Management». In:
Journal for Facility Management 1.16 (2018) (cit. on p. 3).

[21] How IoT can benefit a facility. Nov. 2018. url: https://www.facilitie
snet.com/maintenanceoperations/article/How-IoT-Can-Benefit-a-
Facility--18125 (cit. on p. 3).

[22] Energy sources and power management in IoT sensors and edge devices.
url: https://devm.io/iot/energy-sources-power-management-iot-
sensors-edge-devices-145006 (cit. on p. 3).

85

https://www.facilitiesnet.com/maintenanceoperations/article/How-IoT-Can-Benefit-a-Facility--18125
https://www.facilitiesnet.com/maintenanceoperations/article/How-IoT-Can-Benefit-a-Facility--18125
https://www.facilitiesnet.com/maintenanceoperations/article/How-IoT-Can-Benefit-a-Facility--18125
https://devm.io/iot/energy-sources-power-management-iot-sensors-edge-devices-145006
https://devm.io/iot/energy-sources-power-management-iot-sensors-edge-devices-145006

BIBLIOGRAPHY

[23] Shanmugavelayutham Muthukrishnan et al. «Data streams: Algorithms and
applications». In: Foundations and Trends® in Theoretical Computer Science
1.2 (2005), pp. 117–236 (cit. on p. 3).

[24] Charu C Aggarwal. Data streams: models and algorithms. Vol. 31. Springer,
2007 (cit. on p. 3).

[25] Paul Le Noac’H, Alexandru Costan, and Luc Bougé. «A performance eval-
uation of Apache Kafka in support of big data streaming applications». In:
2017 IEEE International Conference on Big Data (Big Data). IEEE. 2017,
pp. 4803–4806 (cit. on p. 3).

[26] Guenter Hesse, Christoph Matthies, and Matthias Uflacker. «How fast can we
insert? an empirical performance evaluation of apache kafka». In: 2020 IEEE
26th international conference on parallel and distributed systems (ICPADS).
IEEE. 2020, pp. 641–648 (cit. on p. 3).

[27] Shubham Vyas, Rajesh Kumar Tyagi, Charu Jain, and Shashank Sahu. «Lit-
erature Review: A Comparative Study of Real Time Streaming Technologies
and Apache Kafka». In: 2021 Fourth International Conference on Computa-
tional Intelligence and Communication Technologies (CCICT). IEEE. 2021,
pp. 146–153 (cit. on p. 3).

[28] Keiichi Yasumoto, Hirozumi Yamaguchi, and Hiroshi Shigeno. «Survey of real-
time processing technologies of iot data streams». In: Journal of Information
Processing 24.2 (2016), pp. 195–202 (cit. on p. 3).

[29] Adnan Akbar, Abdullah Khan, Francois Carrez, and Klaus Moessner. «Pre-
dictive analytics for complex IoT data streams». In: IEEE Internet of Things
Journal 4.5 (2017), pp. 1571–1582 (cit. on p. 3).

[30] Mark Baillie, Saskia le Cessie, Carsten Oliver Schmidt, Lara Lusa, Marianne
Huebner, and Topic Group “Initial Data Analysis” of the STRATOS Initiative.
Ten simple rules for initial data analysis. 2022 (cit. on p. 4).

[31] Frederick Hartwig and Brian E Dearing. Exploratory data analysis. 16. Sage,
1979 (cit. on p. 4).

[32] Stephan Morgenthaler. «Exploratory data analysis». In: Wiley Interdisci-
plinary Reviews: Computational Statistics 1.1 (2009), pp. 33–44 (cit. on p. 4).

[33] BLE/WiFi Gateway iGS01S User Guide. url: https://www.ingics.com/
doc/Gateway/GW0002_BLE_WiFi_Gateway_iGS01S_User_Manual.pdf (cit.
on p. 6).

[34] kontakt.io KHWPO400F001 Lanyard Tag User Manual. url: https : / /
manuals.plus/kontakt-io/khwpo400f001-lanyard-tag-manual#axzz7u
8XXg0ak (cit. on p. 7).

86

https://www.ingics.com/doc/Gateway/GW0002_BLE_WiFi_Gateway_iGS01S_User_Manual.pdf
https://www.ingics.com/doc/Gateway/GW0002_BLE_WiFi_Gateway_iGS01S_User_Manual.pdf
https://manuals.plus/kontakt-io/khwpo400f001-lanyard-tag-manual#axzz7u8XXg0ak
https://manuals.plus/kontakt-io/khwpo400f001-lanyard-tag-manual#axzz7u8XXg0ak
https://manuals.plus/kontakt-io/khwpo400f001-lanyard-tag-manual#axzz7u8XXg0ak

BIBLIOGRAPHY

[35] iBeacon specifications. url: https://developer.apple.com/ibeacon/ (cit.
on p. 7).

[36] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. Scotts
Valley, CA: CreateSpace, 2009. isbn: 1441412697 (cit. on p. 8).

[37] NumPy: The fundamental package for scientific computing with Python. url:
https://numpy.org/doc/stable/ (cit. on p. 8).

[38] SciPy documentation. url: https://docs.scipy.org/doc/ (cit. on p. 8).
[39] Pandas documentation. url: https://pandas.pydata.org/docs/ (cit. on

p. 9).
[40] Wes McKinney et al. «Data structures for statistical computing in python».

In: Proceedings of the 9th Python in Science Conference. Vol. 445. 1. Austin,
TX. 2010, pp. 51–56 (cit. on p. 9).

[41] Matplotlib documentation. url: https://matplotlib.org/stable/index.
html (cit. on p. 9).

[42] Seaborn documentation. url: https://seaborn.pydata.org/api.html
(cit. on p. 9).

[43] Bjoern repository. url: https://github.com/jonashaag/bjoern (cit. on
p. 10).

[44] Falcon documentation. url: https://falcon.readthedocs.io/en/stable/
(cit. on p. 10).

[45] Confluent Kafka Python client documentation. url: https://docs.confl
uent.io/kafka-clients/python/current/overview.html#python-demo-
code (cit. on p. 10).

[46] Docker website. url: https://www.docker.com/resources/what-contain
er/ (cit. on p. 11).

[47] Docker Compose documentation. url: https://docs.docker.com/get-
started/08_using_compose/ (cit. on p. 11).

[48] Apache Kafka documentation. url: https://kafka.apache.org/documenta
tion/ (cit. on p. 11).

[49] Nishant Garg. Apache kafka. Packt Publishing Birmingham, UK, 2013 (cit. on
p. 11).

[50] Express.js API reference. url: https://expressjs.com/en/4x/api.html
(cit. on p. 13).

[51] Node.js documentation. url: https://nodejs.org/dist/latest-v18.x/
docs/api/ (cit. on p. 13).

87

https://developer.apple.com/ibeacon/
https://numpy.org/doc/stable/
https://docs.scipy.org/doc/
https://pandas.pydata.org/docs/
https://matplotlib.org/stable/index.html
https://matplotlib.org/stable/index.html
https://seaborn.pydata.org/api.html
https://github.com/jonashaag/bjoern
https://falcon.readthedocs.io/en/stable/
https://docs.confluent.io/kafka-clients/python/current/overview.html#python-demo-code
https://docs.confluent.io/kafka-clients/python/current/overview.html#python-demo-code
https://docs.confluent.io/kafka-clients/python/current/overview.html#python-demo-code
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://docs.docker.com/get-started/08_using_compose/
https://docs.docker.com/get-started/08_using_compose/
https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/
https://expressjs.com/en/4x/api.html
https://nodejs.org/dist/latest-v18.x/docs/api/
https://nodejs.org/dist/latest-v18.x/docs/api/

BIBLIOGRAPHY

[52] JavaScript website. url: https://developer.mozilla.org/en-US/docs/
Web/JavaScript (cit. on p. 13).

[53] EJS template engine documentation. url: https://ejs.co/#docs (cit. on
p. 13).

[54] Leaflet.js documentation. url: https://leafletjs.com/reference.html
(cit. on p. 14).

[55] KafkaJS documentation. url: https://kafka.js.org/docs/getting-
started (cit. on p. 14).

[56] Grzegorz Blinowski, Anna Ojdowska, and Adam Przybyłek. «Monolithic
vs. microservice architecture: A performance and scalability evaluation». In:
IEEE Access 10 (2022), pp. 20357–20374 (cit. on p. 16).

[57] Konrad Gos and Wojciech Zabierowski. «The comparison of microservice and
monolithic architecture». In: 2020 IEEE XVIth International Conference on
the Perspective Technologies and Methods in MEMS Design (MEMSTECH).
IEEE. 2020, pp. 150–153 (cit. on p. 16).

[58] Nicola Dragoni, Ivan Lanese, Stephan Thordal Larsen, Manuel Mazzara, Rus-
lan Mustafin, and Larisa Safina. «Microservices: How to make your application
scale». In: Perspectives of System Informatics: 11th International Andrei P.
Ershov Informatics Conference, PSI 2017, Moscow, Russia, June 27-29, 2017,
Revised Selected Papers 11. Springer. 2018, pp. 95–104 (cit. on p. 16).

[59] Omar Al-Debagy and Peter Martinek. «A comparative review of microservices
and monolithic architectures». In: 2018 IEEE 18th International Sympo-
sium on Computational Intelligence and Informatics (CINTI). IEEE. 2018,
pp. 000149–000154 (cit. on p. 16).

[60] Ralph Droms. RFC2131: Dynamic Host Configuration Protocol. 1997 (cit. on
p. 19).

[61] Apache Kafka broker - Confluent documentation. url: https://docs.confl
uent.io/kafka/overview.html (cit. on p. 24).

[62] UI for Apache Kafka - Provectus documentation. url: https://docs.kafka-
ui.provectus.io/overview/readme (cit. on p. 24).

[63] Yapeng Wang, Xu Yang, Yutian Zhao, Yue Liu, and Laurie Cuthbert. «Blue-
tooth positioning using RSSI and triangulation methods». In: 2013 IEEE
10th Consumer Communications and Networking Conference (CCNC). IEEE.
2013, pp. 837–842 (cit. on p. 39).

[64] KW38/KW36 Localization base on RSSI ranging. url: https://www.nxp.
com/docs/en/application-note/AN12977.pdf (cit. on p. 39).

88

https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://ejs.co/#docs
https://leafletjs.com/reference.html
https://kafka.js.org/docs/getting-started
https://kafka.js.org/docs/getting-started
https://docs.confluent.io/kafka/overview.html
https://docs.confluent.io/kafka/overview.html
https://docs.kafka-ui.provectus.io/overview/readme
https://docs.kafka-ui.provectus.io/overview/readme
https://www.nxp.com/docs/en/application-note/AN12977.pdf
https://www.nxp.com/docs/en/application-note/AN12977.pdf

BIBLIOGRAPHY

[65] ChihKun Ke, MeiYu Wu, YuWei Chan, and KeCheng Lu. «Developing a BLE
beacon-based location system using location fingerprint positioning for smart
home power management». In: Energies 11.12 (2018), p. 3464 (cit. on p. 39).

[66] Sequential Least SQuares Programming algorithm. url: https://github.
com/scipy/scipy/blob/main/scipy/optimize/slsqp/slsqp_optmz.f
(cit. on p. 43).

[67] Paolo Bellavista, Antonio Corradi, and Carlo Giannelli. «Evaluating filtering
strategies for decentralized handover prediction in the wireless internet». In:
11th IEEE Symposium on Computers and Communications (ISCC’06). IEEE.
2006, pp. 167–174 (cit. on p. 46).

[68] Kalman filters explained: Removing noise from RSSI signals. url: https:
//www.wouterbulten.nl/posts/kalman-filters-explained-removing-
noise-from-rssi-signals/ (cit. on p. 46).

[69] Guoquan Li, Enxu Geng, Zhouyang Ye, Yongjun Xu, Jinzhao Lin, and Yu
Pang. «Indoor positioning algorithm based on the improved RSSI distance
model». In: Sensors 18.9 (2018), p. 2820 (cit. on p. 46).

[70] Qiang Li, Ranyang Li, Kaifan Ji, and Wei Dai. «Kalman filter and its appli-
cation». In: 2015 8th International Conference on Intelligent Networks and
Intelligent Systems (ICINIS). IEEE. 2015, pp. 74–77 (cit. on p. 46).

[71] Dan Simon. «Kalman filtering». In: Embedded systems programming 14.6
(2001), pp. 72–79 (cit. on p. 46).

[72] Greg Welch, Gary Bishop, et al. «An introduction to the Kalman filter». In:
(1995) (cit. on p. 46).

[73] Android API: Bluetooth Low Energy Advertising. url: https://source.
android.com/docs/core/connect/bluetooth/ble_advertising (cit. on
p. 79).

[74] Apple iOS API: Advertising Data. url: https://developer.apple.com/d
ocumentation/corebluetooth/cbperipheralmanager/advertising_data
(cit. on p. 79).

[75] NATS.io official website. url: https://nats.io/ (cit. on p. 79).
[76] Apache Pulsar documentation. url: https://pulsar.apache.org/docs/3.

0.x/ (cit. on p. 79).

89

https://github.com/scipy/scipy/blob/main/scipy/optimize/slsqp/slsqp_optmz.f
https://github.com/scipy/scipy/blob/main/scipy/optimize/slsqp/slsqp_optmz.f
https://www.wouterbulten.nl/posts/kalman-filters-explained-removing-noise-from-rssi-signals/
https://www.wouterbulten.nl/posts/kalman-filters-explained-removing-noise-from-rssi-signals/
https://www.wouterbulten.nl/posts/kalman-filters-explained-removing-noise-from-rssi-signals/
https://source.android.com/docs/core/connect/bluetooth/ble_advertising
https://source.android.com/docs/core/connect/bluetooth/ble_advertising
https://developer.apple.com/documentation/corebluetooth/cbperipheralmanager/advertising_data
https://developer.apple.com/documentation/corebluetooth/cbperipheralmanager/advertising_data
https://nats.io/
https://pulsar.apache.org/docs/3.0.x/
https://pulsar.apache.org/docs/3.0.x/

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Conceptual framework
	IoT & indoor tracking
	Indoor tracking & Facility Management

	Data streaming
	Data analytic
	Exploratory Data Analysis

	Motivation and justification
	Objectives

	State of the art
	System hardware
	BLE gateway: iGS01S
	BLE lanyard tag

	System backend
	Python and libraries used
	Docker and Docker compose
	Apache Kafka

	 User interface: Frontend and Backend
	Backend core: Express.js, Node.js & Javascript
	Leaflet.js
	KafkaJS

	Development
	Microservice architecture
	Development methodology: CI/CD

	System configuration
	Gateway setting
	Tags settings
	Apache Kafka broker

	Services developed
	Deployment
	HTTP server for gateways
	Localization engine
	Occupation calculator engine
	Real time map

	Exploratory data analysis

	Results and conclusions
	Results
	Localization engine results
	Occupation engine results
	User Interface

	Conclusions
	Future works

	Kafka broker settings
	Localization services settings
	Bibliography

