
Politecnico di Torino

Master’s Degree in Mechatronic Engineering

Enhancing UAV Autonomous Indoor Flight
with Visual Odometry Techniques

Riccardo Catania

Supervised by
Prof. Alessandro Rizzo
Dr. Stefano Primatesta

Dr. Orlando Tovar Ordoñez

July 13, 2023

Abstract

In the rapidly evolving industrial landscape, Unmanned Aerial Vehicles
(UAVs) have emerged as a pivotal component in enhancing operational ef-
ficiency and safety. These autonomous systems are particularly crucial in
environments where direct human intervention is challenging or risky. The
ultimate goal of this project is to assist human operators in specific missions
by collecting and processing data. The drone should be able to provide sta-
ble flight in GNSS (Global Navigation Satellite System) denied environments
exploiting the visual odometry algorithms and specific sensors. This thesis
is a part of the FIXIT project, an initiative by the Competence Industry
of Manufacturing 4.0 in Turin, Italy. The FIXIT project aims to establish
a cooperative system between a UAV and an Autonomous Ground Vehicle
(AGV), where the UAV can perform autonomous flights in industrial environ-
ments and dock on a moving rover. The drone is equipped with a Jetson Nano
companion computer, a CubeOrange with Ardupilot, and a Lidar. The soft-
ware stack includes Ubuntu 20.04,ROS Noetic, and other necessary software.
An Intel Realsense d435i depth camera is also part of the drone’s equipment,
which is crucial for the implementation of a visual odometry algorithm. The
focus of this thesis is on the development of a localization strategy based on
visual odometry exploiting the depth camera and other sensors to increase
localization accuracy under various conditions. The RTAB-Map ROS algo-
rithm is used for state estimation, and its parameters are tuned to optimize
the speed of state estimation while maintaining an acceptable level of accu-
racy. To ensure smooth drone movement, a Python script was developed to
fuse data from RTAB-Map, Lidar, and IMU using a filtering technique. This
approach enables the drone to operate autonomously in indoor environments
with high levels of magnetic fields, where GPS signals may not be reliable.
Experimental tests were conducted with the drone in an indoor GPS-denied
environment to validate the effectiveness of the proposed solutions. Future
work includes testing more computationally expensive forms of data fusion
algorithms and implementing a YOLO algorithm for object recognition. The
potential applications of this work extend to security and inventory manage-
ment in factories, among others. The findings of this thesis contribute to
the ongoing efforts to enhance the adaptability and flexibility of UAVs in the
context of Industry 4.0.

2

Contents

1 Introduction 5
1.1 UAV Applications and Visual Odometry 5
1.2 The FIXIT Project . 6
1.3 Objective of the Thesis . 7
1.4 Thesis Outline . 8

2 Literature Review 11
2.1 Visual Odometry Algorithms 11

2.1.1 Types and Methodologies of Visual Odometry Algo-
rithms: An In-depth Review 11

2.1.2 Camera Selection for VO 14
2.1.3 Optimal Conditions for VO Algorithms 17

2.2 Data Fusion Techniques . 19
2.2.1 Extended Kalman Filter 20
2.2.2 Dead Reckoning . 21

3 Building the Drone and Software Setup 25
3.1 Drone Frame and Components 25

3.1.1 Drone Frame . 25
3.1.2 Cube Orange . 27
3.1.3 Jetson Nano . 29
3.1.4 Intel RealSense d435i 30
3.1.5 Lidar . 31
3.1.6 Optional sensors and Hardware 32

3.2 Software Installation and Configuration 33
3.3 Reading Data from IMU, Lidar, and Camera on ROS Topics . 35
3.4 RTAB-Map ROS Algorithm for State Estimation 36

3

4 RTAB-Map Parameters and Tuning 41
4.1 Understanding RTAB-Map Parameters 42
4.2 Tuning Parameters for Speed and Accuracy 43

5 Data Fusion and Filtering Techniques 47
5.1 Need for Data Fusion . 47
5.2 Python Script for Data Fusion 48

5.2.1 Use of Lidar for Height Measurement 50
5.3 Implementation of Robot Localization 51
5.4 Tuning of Parameters of the EKF 52

6 Results and Discussions 55
6.1 Experimental Setup . 55
6.2 Testing Methodology . 56

6.2.1 Test Procedures . 56
6.2.2 Performance Metrics 57
6.2.3 Data Analysis . 57

6.3 Performance of Dead Reckoning and EKF 58
6.3.1 Drift from the Ideal Path 58
6.3.2 Noise in Z Position Estimation 63

6.4 Challenges and Exception Handling 65
6.4.1 Handling High-Speed Turns 66
6.4.2 Challenges in Featureless Environments 66
6.4.3 Feature Detection and Closed-Loop Recognition 66
6.4.4 Challenges in Featureless Environments 68
6.4.5 Response of Algorithms to Data Loss from RTAB-Map 70

7 Future Work and Conclusion 73
7.1 Testing More Computationally Expensive Forms of Data Fu-

sion Algorithms . 73
7.2 Implementing YOLO Algorithm for Object Recognition 75
7.3 Use of Drone in High Magnetic Field Environments 75
7.4 Conclusions . 76
.1 Appendix . 81

4

Chapter 1

Introduction

1.1 UAV Applications and Visual Odometry

Unmanned Aerial Vehicles (UAVs), more commonly known as drones, have
seen a significant rise in their application across various sectors. One of the
most promising areas of their use is in the industrial sector. Industries are
increasingly turning to UAVs to enhance operational efficiency, safety, and
productivity. They are being used for tasks such as inspection of infrastruc-
ture, monitoring of production processes, and even in logistics for the delivery
of goods within large industrial complexes.

The ability of drones to operate autonomously is a significant factor driv-
ing their adoption in the industrial sector. Autonomous drones can perform
tasks without the need for constant human intervention, making them ideal
for operations in environments that are hazardous or difficult for humans
to access. For instance, in the case of infrastructure inspection, drones can
easily access high or confined spaces, reducing the risk to human inspectors
and increasing the efficiency of the inspection process.

A key aspect of autonomous operation in drones is their ability to ac-
curately determine their position and navigate through their environment.
This is where Visual Odometry (VO) comes into play. VO is a technique
used for estimating the 3D pose of a robot by analyzing the camera images.
In the context of drones, VO allows them to localize themselves in their
environment using only the images captured by an onboard camera.

The implementation of visual odometry algorithms in drones offers sev-
eral advantages. Firstly, it allows for more precise navigation, especially in

5

environments where GPS signals may be weak or non-existent. This is par-
ticularly useful in indoor environments or in areas with dense infrastructure.
Secondly, visual odometry can provide real-time feedback, allowing for more
responsive control of the drone. This can be crucial in situations where the
drone needs to react quickly to changes in its environment.

Moreover, the combination of autonomous operation and visual odometry
in drones opens up new possibilities for their application. For instance, in
the context of Industry 4.0, drones equipped with VO can work in conjunc-
tion with other autonomous systems, such as ground vehicles, to perform
complex tasks. This cooperative system can lead to even greater efficiencies
in industrial operations.

In conclusion, the use of UAVs, particularly those equipped with visual
odometry algorithms, holds great promise for the future of industrial oper-
ations. Their ability to operate autonomously and navigate accurately in
various environments can lead to significant improvements in operational ef-
ficiency and safety. As research in this area continues, we can expect to
see even more innovative applications of these technologies in the industrial
sector.

1.2 The FIXIT Project

This thesis is centered around the autonomous capabilities of the drone in-
volved in the FIXIT project. Specifically, the emphasis is on the implemen-
tation of Visual Odometry (VO) algorithms to enable the drone to navigate
autonomously in indoor environments. The FIXIT project is an initiative by
CIM 4.0, the Competence Industry of Manufacturing 4.0, based in Turin.

The drone, an Unmanned Aerial Vehicle (UAV), is designed to operate in
various environments, including but not limited to industrial settings, both
indoors and outdoors. The drone’s mission involves not only data collec-
tion and processing but also providing services in various structures, thereby
enhancing operational efficiency and safety.

Upon completion of its mission, the drone’s primary task is to land on
an Autonomous Mobile Robot (AMR). The AMR is equipped with a Lidar
sensor and uses a Simultaneous Localization and Mapping (SLAM) algorithm
to estimate its position, enabling it to navigate autonomously within the
environment.

The drone’s ability to operate autonomously, collect, and process data is

6

vital for the success of the FIXIT project. The data collected by the drone
can offer valuable insights into various processes, facilitating more informed
decision-making and optimization of operations.

The drone’s autonomous capabilities are significantly enhanced by the use
of Visual Odometry (VO) techniques. VO allows the drone to estimate its
position and orientation by analyzing the camera images. This is particularly
beneficial in indoor environments or areas with dense infrastructure where
GPS signals may be weak or non-existent.

In conclusion, the FIXIT project signifies a considerable advancement in
the application of UAVs in various sectors. The combination of autonomous
operation, data collection, and processing capabilities of the drone, along
with the autonomous navigation capabilities of the AMR, can lead to signif-
icant improvements in operational efficiency and safety.

Figure 1.1: The FIXIT Project

1.3 Objective of the Thesis
The primary objective of this thesis is to enable autonomous indoor flight for
Unmanned Aerial Vehicles (UAVs) using Visual Odometry (VO) techniques,
in the absence of GPS. The focus is on creating a balance between the ac-
curacy of the drone’s movements and the speed of its operations, ensuring
smooth navigation while avoiding sluggish performance.

The cornerstone of this project is the implementation of a visual odometry
algorithm. This algorithm is tasked with estimating the drone’s position and

7

orientation using the onboard camera and other sensors. The challenge lies
not only in the successful implementation of the algorithm but also in its
integration with the drone’s existing hardware setup.

The aim is to leverage the data from various onboard sensors to enhance
the accuracy and speed of the drone’s pose estimation. This involves a careful
calibration of the algorithm parameters, ensuring that the drone can navigate
smoothly and swiftly in various indoor conditions.

The experimental tests conducted as part of this thesis aim to validate the
effectiveness of the proposed solutions in real-world scenarios. The ultimate
goal is to enhance the operational efficiency and safety of UAVs in challenging
indoor environments, thereby contributing to the broader field of autonomous
systems and Industry 4.0.

1.4 Thesis Outline
• Chapter 1: Introduction - This chapter provides an overview of the

thesis, including the motivation, objectives, and contributions of the
research. It also presents the organization of the thesis.

• Chapter 2: Literature Review - This chapter delves into the ex-
isting literature on visual odometry algorithms and data fusion tech-
niques. It provides a comprehensive review of different types and
methodologies of visual odometry algorithms, camera selection for VO,
optimal conditions for VO algorithms, and data fusion techniques like
Extended Kalman Filter and Dead Reckoning.

• Chapter 3: Building the Drone and Software Setup - This chap-
ter details the construction of the drone and its components, including
the drone frame, Cube Orange, Jetson Nano, Intel RealSense d435i,
and Lidar. It also explains the software installation and configuration
process, reading data from IMU, Lidar, and Camera on ROS Topics,
and the use of the RTAB-Map ROS Algorithm for state estimation.

• Chapter 4: RTAB-Map Parameters and Tuning - This chapter
focuses on understanding the RTAB-Map parameters and how to tune
them for speed and accuracy.

• Chapter 5: Data Fusion and Filtering Techniques - This chapter
discusses the need for data fusion and presents a Python script for data

8

fusion. It also discusses the use of Lidar for height measurement, the
implementation of Robot Localization, and the tuning of parameters
of the EKF.

• Chapter 6: Results and Discussions - This chapter presents the ex-
perimental setup, testing methodology, and data analysis. It discusses
the performance of Dead Reckoning and EKF, challenges in feature-
less environments, and handling high-speed turns. It also discusses the
response of algorithms to data loss from RTAB-Map.

• Chapter 7: Future Work and Conclusion - This chapter discusses
potential future work, including testing more computationally expen-
sive forms of data fusion algorithms, implementing the YOLO algo-
rithm for object recognition, and the use of the drone in high magnetic
field environments. It also concludes the thesis by summarizing the
findings and contributions of the research.

9

10

Chapter 2

Literature Review

2.1 Visual Odometry Algorithms

2.1.1 Types and Methodologies of Visual Odometry Al-
gorithms: An In-depth Review

Visual Odometry (VO) is a critical technology in numerous applications, such
as autonomous vehicles, robotics, and augmented reality, where the precise
and efficient estimation of the camera’s trajectory is paramount [3, 4, 5, 7,
8, 9]. This comprehensive review delves into the types and methodologies of
VO algorithms, drawing insights from recent papers in the field.

Visual odometry (VO) algorithms have become an integral part of many
autonomous systems, including drones, self-driving cars, and robotic systems.
These algorithms estimate the motion of a camera in real-time by analyzing a
sequence of images, providing crucial information for navigation and control.
In this in-depth review, we will explore the types and methodologies of VO
algorithms, focusing on feature-based methods, dense visual odometry, and
direct visual odometry. We will also delve into the use of RANSAC (RANdom
SAmple Consensus) and SURF algorithms in feature-based VO, and discuss
the impact of various types of noise on visual data [2].

Feature-based VO algorithms, also known as indirect methods, hinge on
the extraction and matching of features between different images. These fea-
tures, such as corners or edges, are invariant to image scale, rotation, and
translation, making them robust to changes in viewpoint. The matched fea-
tures are then used to estimate the camera’s motion. However, feature-based

11

methods are computationally expensive due to the need for feature extraction
and matching, and they may struggle in texture-poor environments.

In the context of feature-based VO, the SURF (Speeded Up Robust Fea-
tures) algorithm is often used to identify and describe distinctive points or
features in an image [1]. The SURF algorithm works by detecting and ex-
tracting a set of interest points in the image, and then describing the appear-
ance of the points using a feature descriptor. This descriptor is a numerical
representation of the appearance of the interest points, which can be used
to compare the points to one another. This method is less computationally
expensive than dense visual odometry algorithms, as it only requires the anal-
ysis of a subset of keypoints or features rather than all pixels in the images.
However, it may be less accurate and less robust than dense visual odometry
algorithms, as it relies on the assumption that the keypoints remain visible
and distinguishable over time. The SURF algorithm is particularly effective
in situations where the scene contains repeating patterns, which can often
lead to incorrect feature matches [1].

RANSAC (RANdom SAmple Consensus) is another crucial component
in feature-based VO. It is an iterative method used to estimate the param-
eters of a mathematical model from a set of data that may contain outliers
or errors [1]. RANSAC is widely used in computer vision and image pro-
cessing applications, particularly in the context of model fitting and data
fitting tasks. The robustness of RANSAC lies in its ability to estimate the
parameters of a model even in the presence of significant amounts of noise
or outliers. RANSAC is used in conjunction with SURF in the process of
feature matching to eliminate incorrect matches and improve the accuracy
of the resulting model [1].

Dense visual odometry, on the other hand, estimates the motion by an-
alyzing the dense correspondence between pixels in the images. This can
be more accurate than feature-based approaches, but it is also more compu-
tationally expensive. Dense visual odometry algorithms are typically more
accurate than feature-based approaches, as they analyze the dense correspon-
dence between all pixels in the images rather than just a subset of keypoints
or features. This can result in more robust and accurate estimates of the
motion of the drone.

Direct visual odometry (DVO) is a type of algorithm that estimates the
motion of a camera by directly aligning the images in the image sequence and
minimizing the photometric error between them. Unlike feature-based visual
odometry algorithms, which extract a set of keypoints or features from the

12

images and track them across successive images, DVO algorithms directly
align the intensity values of the pixels in the images. This allows DVO
algorithms to make use of the dense information available in the images and
produce more accurate motion estimates [4].

The method presented by Angladon et al. [4] presents a VO algorithm for
an RGB-D camera, combining both feature-based and direct methods. The
algorithm uses a feature-based method for initial pose estimation, followed
by a direct method for pose refinement. This hybrid approach leverages the
strengths of both methods, achieving robust and accurate pose estimation.
The authors highlight the importance of the initial pose estimation in de-
termining the success of the subsequent pose refinement, underscoring the
interdependence of the two methods.

Li et al. [5] propose a fully direct VO algorithm for stereo cameras.
The algorithm uses a novel cost function that incorporates both photometric
and geometric consistency, improving robustness to illumination changes and
occlusions. The authors demonstrate the effectiveness of direct methods in
challenging environments, such as low-texture and low-light scenarios. They
also highlight the importance of geometric consistency in maintaining the
accuracy of the estimated motion, particularly in the presence of occlusions.

The paper by Liu et al. [3] provides a comprehensive survey of VO al-
gorithms, covering both feature-based and direct methods. The paper high-
lights the trade-offs between these methods and discusses recent trends in
VO, such as the integration of machine learning techniques. The authors
emphasize the importance of considering the specific requirements of the ap-
plication when choosing a VO algorithm.

The integration of global positional information with visual and iner-
tial measurements in VO algorithms has been underscored in recent studies
[7, 8, 9]. Zhang and Scaramuzza [7] present a novel approach to VO that
leverages both global positional information and visual and inertial measure-
ments. This methodology, designed for long-term autonomous navigation,
uses a tightly-coupled nonlinear-optimization-based estimator to fuse these
different types of data. The authors argue that this approach allows for the
exploitation of the correlations amongst all the measurements, leading to
more accurate and globally consistent estimates.

Arroyo et al. [8] propose a VO algorithm that combines visual, inertial,
and global position measurements in a common optimization problem. This
tightly-coupled approach considers all measurement correlations, which is
crucial for high precision estimates. The authors also highlight the impor-

13

tance of the IMU preintegration algorithm for efficiently deriving the global
positional factors. This allows multiple global factors per keyframe in the
sliding window with negligible extra computational cost.

Finally, the solution proposed by Zhang et al. [9] presents a tightly-
coupled approach for fusing global with visual and inertial measurements in
an optimization-based algorithm. The authors use the IMU preintegration
method to efficiently derive the global positional error terms. This work
demonstrates the potential of tightly-coupled approaches for achieving high-
rate locally and globally consistent pose estimates in long-range navigation.

The choice of VO algorithm depends on the specific requirements of the
application, including the computational resources available, the accuracy
required, and the characteristics of the environment. Feature-based methods,
such as those using SURF and RANSAC, are less computationally expensive
and can be effective in structured environments, but may be less accurate and
sensitive to noise. Dense and direct visual odometry methods can provide
higher accuracy and handle larger motions, but are more computationally
expensive and may require additional sensors.

In conclusion, VO algorithms have evolved significantly, with different
methodologies offering unique advantages and challenges. Hybrid approaches
that combine feature-based and direct methods, as well as the integration
of machine learning techniques, are promising directions for future research
[3, 4, 5, 7, 8, 9].

2.1.2 Camera Selection for VO

Visual Odometry (VO) relies heavily on the type of camera used to capture
visual data. The choice of camera can significantly impact the performance
of VO algorithms. The three primary types of cameras used in VO are
monocular, stereo, and depth cameras, each with its own advantages and
disadvantages.

Monocular Cameras

Monocular cameras capture images from a single viewpoint. They are the
simplest and most cost-effective option for VO. However, they present a
significant challenge in estimating depth, as they lack the stereo disparity that
stereo cameras provide. This results in a scale ambiguity problem, where the
actual distance of an object from the camera cannot be determined based

14

only on the image. Despite this, monocular VO can still provide valuable
information about the relative motion of the camera.

Stereo Cameras

Stereo cameras, consisting of two aligned cameras mimicking human binocu-
lar vision, capture two images of the same scene from slightly different view-
points. This setup allows for the calculation of depth information based on
the disparity between the two images. Stereo cameras can provide accurate
depth information in a wide variety of lighting conditions, as they rely on
geometric principles rather than light intensity. However, they require a tex-
tured environment to calculate disparity effectively. In texture-less or highly
repetitive patterns, stereo cameras might struggle to find correspondences.

Stereo cameras work on the principle of binocular vision, which is similar
to how human eyes perceive depth. They consist of two or more lenses with
separate image sensors for each lens. This allows them to capture the same
scene from slightly different angles, creating a disparity between the two
images. This disparity can be used to calculate depth information.

Advantages of Stereo Cameras in Visual Odometry (VO):

• Stereo cameras can provide accurate depth information in a wide va-
riety of lighting conditions, as they rely on geometric principles rather
than light intensity or time of flight.

• They do not require any additional illumination (like IR projectors),
making them suitable for outdoor use.

• Stereo cameras can be more cost-effective than depth cameras.

Disadvantages:

• The accuracy of depth estimation depends on the baseline (distance
between the two cameras). A larger baseline can provide more accurate
depth information, but it also increases the size of the camera setup.

• Stereo cameras require a good texture in the environment to calcu-
late disparity. In texture-less or highly repetitive patterns, they might
struggle to find correspondences.

15

A study by [10] compared the performance of monocular and stereo Fast-
SLAM implementations. The results showed that the stereo vision imple-
mentation performed significantly better than the monocular one, providing
more accurate and robust estimates. This underscores the advantages of
stereo cameras in VO applications.

Depth Cameras

Depth cameras, such as the Intel RealSense D435i, use active infrared (IR)
stereo technology to calculate depth. They emit a pattern of IR light into
the scene, which is then captured by two IR sensors. The displacement of the
pattern on the object is used to calculate depth, providing a dense depth map.
Depth cameras can work well in texture-less environments, as they do not rely
on finding correspondences between images. However, they can be sensitive
to lighting conditions and may not work well in outdoor environments or in
direct sunlight. They can also have difficulty with reflective or absorbent
surfaces, which can distort the IR pattern.

Advantages of Depth Cameras in VO:

• Depth cameras can provide dense depth maps, as they calculate depth
for each pixel in the image.

• They can work well in texture-less environments, as they do not rely
on finding correspondences between images.

• The Intel RealSense D435i also includes an IMU (Inertial Measurement
Unit), which can provide additional data for VO, such as acceleration
and angular velocity.

Disadvantages:

• Depth cameras can be sensitive to lighting conditions. They may not
work well in outdoor environments or in direct sunlight, as the IR light
from the projector can be overwhelmed.

• They can have difficulty with reflective or absorbent surfaces, as these
can distort the IR pattern.

• Depth cameras can be more expensive than stereo cameras.

16

In the context of Visual Odometry, the choice between a monocular,
stereo, or depth camera depends on several factors, including the lighting
conditions, the texture of the environment, the need for dense depth infor-
mation, and the budget. Each type of camera offers unique advantages, and
the choice should be guided by the specific requirements of the VO applica-
tion.

2.1.3 Optimal Conditions for VO Algorithms

Visual Odometry (VO) algorithms are crucial for various applications, in-
cluding robotics and autonomous vehicles. However, their performance can
be significantly affected by different types of noise and environmental condi-
tions. This section discusses the optimal conditions for VO algorithms and
the types of noise that can impact their performance.

Types of Noise Affecting Visual Data

1. Image Sensor Noise: Image sensors in cameras are susceptible to
several forms of noise, such as thermal noise, read noise, and shot noise.
These can cause variations in the pixel values in the images, affecting
the accuracy of the motion estimates produced by VO algorithms.

• Thermal Noise: Also known as Johnson–Nyquist noise, thermal
noise is caused by the random movement of charge carriers (like
electrons) within a conductor due to thermal agitation. This can
cause variations in the pixel values of the images.

• Read Noise: This type of noise is introduced during the readout
process of an image sensor. Factors such as electronic noise in
the readout circuit, charge leakage, and cross-talk between pixels
cause read noise.

• Shot Noise: Shot noise is caused by the random fluctuations
in the number of charge carriers (like electrons) detected by the
image sensor. This noise is typically more pronounced at low light
levels.

2. Changes in Lighting Conditions: Variations in the scene’s lighting
conditions can also affect the visual data used by the algorithm.

17

3. Reflections and Occlusions: Reflective surfaces or objects that oc-
clude parts of the scene can cause variations in the visual data.

4. Motion Blur: If the camera or the objects in the scene are moving
too quickly, the images may be blurry.

5. Distortion: Distortions in the images, such as lens distortion or per-
spective distortion, can affect the accuracy of VO algorithms.

VO algorithms perform best under stable lighting conditions, with min-
imal occlusion and distortion. The scene should ideally contain a vari-
ety of textures and features that can be easily tracked across multiple
frames. Rapid movements or rotations can cause motion blur, which
can lead to errors in feature tracking and pose estimation. Therefore,
slower camera movements are generally more favorable for VO.

Computational Cost of VO Algorithms

The computational cost of VO algorithms can be quite high, especially
for methods that use dense image data or perform global optimiza-
tion. The computational cost is primarily determined by the following
factors:

• Image Resolution: Higher resolution images contain more pixels
and thus more potential features to track, increasing the compu-
tational cost.

• Number of Frames: Processing more frames per second (FPS)
increases the amount of data that the algorithm needs to handle,
thereby increasing the computational cost.

• Algorithm Complexity: More complex algorithms, such as
those that perform global optimization or use sophisticated mod-
els for motion and structure, can have higher computational costs.

• Hardware Capabilities: The performance of the hardware (e.g.,
CPU, GPU, memory) on which the VO algorithm runs can signif-
icantly impact the computational cost. Faster and more power-
ful hardware can handle higher computational loads, allowing for
more complex algorithms or higher resolution images to be used.

18

Challenges and Limitations of VO Algorithms

Despite their usefulness, VO algorithms face several challenges and
limitations. For instance, they are sensitive to image noise, lighting
conditions, and rapid movements, as discussed above. They also suffer
from drift, where small errors in the estimated motion accumulate over
time, leading to larger errors in the estimated trajectory. Furthermore,
VO algorithms typically assume a rigid world, which may not hold true
in dynamic environments with moving objects.

VO in GNSS-Denied Environments

In environments where Global Navigation Satellite System (GNSS) sig-
nals are unavailable or unreliable (e.g., indoors, underwater, or in urban
canyons), VO provides a valuable means of estimating the camera’s mo-
tion. However, the challenges and limitations mentioned above can be
more pronounced in such environments. For instance, indoor environ-
ments may have more occlusions and dynamic objects, while underwa-
ter environments can have low-light conditions and significant image
distortion.[11]

Moving features, like a person walking close to the camera, can affect the
accuracy of VO algorithms for estimating the position. In such cases, the
YOLOv3 algorithm can be adopted [12]. YOLOv3 (You Only Look Once
version 3) is a real-time object detection algorithm based on convolutional
neural networks (CNNs). It is designed to be fast and accurate, making it
suitable for real-time object detection applications such as drone navigation
and video surveillance. YOLOv3 works by dividing the input image into a
grid of cells and predicting the class and location of objects within each cell.
The CNN, trained on a large dataset of annotated images, is used to extract
features from the input images and classify and localize the objects in the
image.

2.2 Data Fusion Techniques
As shown in the papers [7, 8, 9], fusing visual odometry with Inertial Mea-
surement Unit (IMU) data can be highly beneficial for robust visual-inertial
estimation.

19

Data fusion is a critical aspect of attitude estimation, which involves
the combination of data from multiple sensors to compute the estimation
of the state variable and the environment. Various techniques can be em-
ployed for this purpose, including Kalman Filters, Complementary Filters,
and Particle Filters. These filters are valuable approaches for data fusion
and outlier elimination Pre-processing operations are essential to improve
the quality of sensor measurements. For instance, the raw data from inertial
sensors can be pre-processed using an adaptive variable bandwidth filtering
via sinusoidal data estimation. This technique guarantees less computational
demand, making the filter suitable for real-time applications

Sensor calibration is another crucial operation to enhance the accuracy of
sensor measurements. The calibration process is critical for both magnetome-
ters and accelerometers. One approach is to use after-production calibrated
sensors, although this may increase the cost

In conclusion, data fusion techniques play a pivotal role in enhancing
the performance of attitude estimation systems. By effectively combining
data from various sensors and implementing necessary pre-processing op-
erations, it is possible to achieve more accurate and reliable estimations.
Pre-processing operations are essential to improve the quality of sensor mea-
surements. Even after a thorough calibration, it is crucial to remove the
initial bias from the data coming from IMU and LiDAR. This is typically
achieved by computing the mean of the initial values from the sensor data,
which is then subtracted from the respective data sets. Furthermore, to
smooth out the fluctuations in the sensor readings and reduce the noise, a
moving average filter is applied. This filter works by taking the average of
a certain number of points from the data set to produce each point in the
resulting output. These pre-processing techniques help to enhance the qual-
ity of the sensor data, thereby improving the overall performance of the data
fusion system.

2.2.1 Extended Kalman Filter

The Extended Kalman Filter (EKF) is a variant of the Kalman Filter, which
is a recursive algorithm used for estimating the evolving state of a process in
a way that minimizes the mean squared error. The EKF is particularly useful
when the system is nonlinear, as it linearizes the system dynamics around
the current estimate at each time step.

The EKF consists of two main steps: prediction and update. The pre-

20

diction step uses the system dynamics to predict the state at the next time
step, while the update step uses the new measurement to correct the pre-
dicted state.

The prediction step is given by:

x̂k|k−1 = f(x̂k−1|k−1, uk) (2.1)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk (2.2)

where x̂k|k−1 is the predicted state, f is the system dynamics function, uk

is the control input, Pk|k−1 is the predicted covariance, Fk is the Jacobian of
f with respect to the state, and Qk is the process noise covariance.

The update step is given by:

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1 (2.3)

x̂k|k = x̂k|k−1 +Kk(zk − h(x̂k|k−1)) (2.4)

Pk|k = (I −KkHk)Pk|k−1 (2.5)

where Kk is the Kalman gain, Hk is the Jacobian of the measurement
function h with respect to the state, Rk is the measurement noise covariance,
zk is the measurement, and I is the identity matrix.

The robot_localization ROS package is a highly versatile tool that offers
a suite of state estimation nodes, including those based on the Extended
Kalman Filter (EKF). This package is designed to provide a comprehensive
and flexible solution for robotic state estimation by allowing for the fusion
of an arbitrary number of sensors, each of which may be providing data at
different rates.

2.2.2 Dead Reckoning

Dead reckoning is a method of estimating the current position of a vehicle,
such as a UAV (Unmanned Aerial Vehicle), by using a previously known
position and advancing that position based upon known or estimated speeds
over elapsed time, and course direction.

21

Working Principle

The fundamental principle behind dead reckoning is the use of motion in-
formation to estimate the change in position. The process begins with an
initial position and then advances that position based on known or estimated
speeds and the direction of travel over elapsed time. This is mathematically
represented as:

newposition = oldposition+ velocity × time (2.6)

where velocity is the speed of the vehicle in the direction of travel.

Inertial Navigation Systems and Dead Reckoning

Inertial Navigation Systems (INS) often use dead reckoning to estimate the
position of a vehicle. INS uses the principle of dead reckoning, integrat-
ing information from motion sensors (accelerometers) and rotation sensors
(gyroscopes) to calculate changes in position over time.

The accelerometers measure the accelerations of the vehicle, which, when
integrated over time, give the velocity. The velocity, when integrated over
time, gives the position. The gyroscopes measure the angular rates, which,
when integrated over time, give the orientation of the vehicle. The paper
"Dead Reckoning of a Mobile Robot in 2-Dimensional Special Euclidean
Group" by Da Bin Jeong and Nak Yong Ko [13] presents a unique per-
spective on the use of dead reckoning for mobile robots. The authors argue
that dead reckoning is indispensable for estimating the pose (location and
attitude) of a mobile robot. If there is no information on localization except
for the velocity of the mobile robot, dead reckoning is the only way of pose
estimation.

The paper proposes the use of Lie theory for dead reckoning and formu-
lation of motion model. The method represents the pose of a robot as an
element in a Lie group called the special Euclidean group, SE(2), and the
increment of the pose as an element of se(2) that is the Lie algebra corre-
sponding to SE(2).

The authors argue that proper formulation of dead reckoning is essential
to keep the pose estimation convergent and consistent. Even though dead
reckoning inevitably incurs error, the authors believe that their proposed
method using Lie theory provides exact prediction of robot location and
attitude regardless of the sampling period.

22

The paper concludes that the proposed method can be extended to 3-
dimensional space dead reckoning just by extending the SE(2) to SE(3). The
method and the proposed formulation can be used for predicting the pose at
the prediction step of KF based method. Also, it can be utilized for applica-
tion of KF in Lie group where linearization of the motion model is required.
The Lie group theory facilitates linearization of model and derivation of co-
variance matrix in Lie algebra. It improves the convergence and robustness
of the KF application.

Dead Reckoning in UAVs: A Case Study

In the context of UAVs, dead reckoning is particularly useful when GPS sig-
nals are unavailable or unreliable. The UAV uses the data from its onboard
INS to estimate its current position relative to a known starting point. This
involves measuring the acceleration and angular velocity of the UAV, inte-
grating these values to calculate velocity and change in orientation, and then
integrating again to estimate the change in position.

However, dead reckoning is subject to cumulative errors. Small errors in
the measurement of acceleration or angular velocity can lead to increasingly
large errors in the estimated position over time. To mitigate this, UAVs often
use sensor fusion techniques, combining the INS data with GPS data (when
available) and other sensor data to improve the accuracy of the estimated
position.

The paper "Dead Reckoning of a Fixed-Wing UAV with Inertial Naviga-
tion Aided by Optical Flow" by Lorenzo Fusini, Tor A. Johansen, and Thor I.
Fossen [14] discusses the use of dead reckoning for UAV navigation in detail.
The paper presents experimental results for dead reckoning of a fixed-wing
UAV using a nonlinear observer (NLO) and a more recent tool called the
eXogenous Kalman Filter (XKF). The sensors used for this purpose include
an IMU (accelerometers, inclinometers, and rate gyros), a camera, and an
altimeter. The observed states are position, velocity, and attitude.

A machine vision system provides the body-fixed velocity of the UAV.
This calculated velocity, although affected by a bias, is necessary for esti-
mating the attitude and for bounding the rate of divergence of the position
during dead reckoning.

Gyro, accelerometer, and optical flow (OF) velocity biases are estimated,
but only as long as GNSS is available. When dead reckoning begins, these
biases are frozen at their last calculated value.

23

The experimental results show that the position error grows at a bounded
rate with the proposed estimators. This is important as it helps to under-
stand the accuracy of the dead reckoning approach.

The paper tests an NLO and an XKF for dead reckoning on experimental
data. A machine vision system calculates the body-fixed linear velocity of
the UAV using optical flow. This velocity is used both as a vector for the
injection term of the NLO, and as a correction term, combined with the
estimated attitude, for the estimated NED velocity. The results show that
the inclusion of compensation for the additional biases and for the rotation
of Earth help reduce the position error of the NLO, and that the XKF can
reduce the error even further by providing a better estimate of the velocity
that is less dependent than the NLO on the optical flow velocity bias.

24

Chapter 3

Building the Drone and Software
Setup

3.1 Drone Frame and Components
The design and assembly of a drone involve the careful selection and integra-
tion of various components, each playing a crucial role in the drone’s overall
performance and stability. The choice of these components is particularly
important when implementing and testing algorithms such as visual odom-
etry, where data from various sensors must be accurately fused to provide
reliable results.

The equilibrium and control of an unmanned aerial vehicle (UAV) hinge
on the appropriate integration of a multitude of sensors. The application of
certain sensors, including the accelerometer, magnetometer, and gyroscope,
has been theoretically explored in previous sections of the literature review.
To facilitate a more practical comprehension, this section offers an in-depth
examination of the primary components typically incorporated in drones,
emphasizing those currently accessible in the market.

3.1.1 Drone Frame

The drone frame serves as the backbone of the UAV, providing the necessary
structure to house the various components and systems. It plays a crucial
role in the overall performance and stability of the drone. The choice of the
drone frame configuration significantly influences the drone’s flight capabili-
ties, payload capacity, and resilience to failures.

25

One of the popular configurations is the Octocopter, specifically the
OCTO QUAD X8 configuration. This configuration features eight motors
and propellers arranged in a coaxial setup, with two motors on each arm of
the quad frame. The benefits of this configuration are multifold:

• Enhanced Lift and Payload Capacity: The OCTO QUAD X8
configuration, with its eight motors, can generate a significant amount
of lift. This makes it capable of carrying heavier payloads, which is
beneficial for applications that require additional equipment, such as
cameras or sensors.

• Improved Stability and Control: The Octocopter configuration of-
fers better stability and control during flight, especially in windy condi-
tions. The additional propellers provide more control points, allowing
for more precise maneuvers.

• Redundancy and Reliability: The OCTO QUAD X8 configuration
provides redundancy in the event of a motor failure. If one motor fails,
the drone can still maintain control and land safely, making it a reliable
choice for critical applications.

• Versatility: The Octocopter configuration is versatile and can be used
in a wide range of applications, from aerial photography to surveying
and mapping, due to its stability and payload capacity.

In conclusion, the OCTO QUAD X8 configuration offers a balance of
power, stability, and reliability, making it a suitable choice for a wide range
of UAV applications.

26

Figure 3.1: Photo of the drone

3.1.2 Cube Orange

The Cube Orange, also known as CubePilot, is a highly versatile and powerful
autopilot system designed for unmanned vehicles. It is built on the robust
and open-source ArduPilot software, which provides a solid foundation for
a wide range of applications. The Cube Orange offers several benefits that
make it an excellent choice for UAV systems:

• Advanced Sensors: The Cube Orange includes a suite of advanced
sensors, including a triple redundant IMU system and a barometer.
These sensors provide accurate and reliable data for navigation and
control.

• Versatility: The Cube Orange supports a wide range of vehicle types,
from multirotors and fixed-wing aircraft to rovers and boats. This
versatility makes it a suitable choice for various UAV applications.

• Expandability: The Cube Orange features numerous I/O ports and
interfaces, allowing for the integration of additional sensors, actuators,
and communication devices. This expandability makes it adaptable to
specific application requirements.

27

• Safety Features: The Cube Orange incorporates several safety fea-
tures, such as a built-in vibration isolation system and a dedicated
failsafe co-processor. These features enhance the reliability and safety
of the UAV system.

• Open-Source Software: The Cube Orange is built on the ArduPilot
software, which is open-source and has a large and active community.
This not only ensures continuous development and improvement of the
software but also provides users with extensive resources and support.

In summary, the Cube Orange offers a powerful, versatile, and reliable
solution for UAV autopilot systems. Its advanced features and capabilities
make it a suitable choice for a wide range of UAV applications, from hobbyist
projects to professional and industrial applications.

Figure 3.2: Cube Orange

28

3.1.3 Jetson Nano

The Jetson Nano Developer Kit is a powerful, compact AI computer from
NVIDIA that provides the compute performance to run modern AI workloads
and is highly suitable for visual odometry algorithms. It offers several benefits
that make it an excellent choice as a companion computer for UAV systems:

• High Performance: The Jetson Nano is equipped with a quad-core
ARM Cortex-A57 MPCore processor and a 128-core NVIDIA Maxwell
GPU. This combination provides substantial computational power to
handle demanding tasks, including the processing and analysis of visual
data for odometry algorithms.

• AI Capabilities: The Jetson Nano is designed to support AI work-
loads. It can run multiple neural networks in parallel to process data
and make decisions in real-time. This capability is particularly useful
for implementing advanced navigation and control algorithms based on
machine learning.

• Energy Efficiency: Despite its high performance, the Jetson Nano is
energy-efficient, making it suitable for battery-powered UAV applica-
tions. It offers several power modes, allowing users to choose the right
balance between performance and power consumption.

• Compact Size: The Jetson Nano Developer Kit is compact and lightweight,
which is a critical factor for UAV applications. Its small footprint makes
it easy to integrate into a drone frame without significantly affecting
the vehicle’s weight or balance.

• Software Support: The Jetson Nano supports a wide range of soft-
ware libraries and frameworks, including CUDA, cuDNN, and Ten-
sorRT. These tools make it easier to develop and optimize AI algo-
rithms. Additionally, it supports the Robot Operating System (ROS),
which is widely used in the robotics community.

• Community and Resources: NVIDIA provides extensive documen-
tation and resources for the Jetson Nano, and there is a large and active
community of developers who use and support this platform. This en-
sures that users can find help and resources to overcome development
challenges.

29

The Jetson Nano Developer Kit offers a powerful and efficient solution
for running visual odometry and other AI algorithms on UAVs. Its high
performance, AI capabilities, and software support make it a suitable choice
for advanced UAV applications.

Figure 3.3: Nvidia Jetson nano

3.1.4 Intel RealSense d435i

The Intel RealSense d435i is a depth camera that combines a stereo vision
system with an inertial measurement unit (IMU). This combination allows
the camera to capture high-resolution 3D depth maps while also tracking its
own motion, making it an excellent choice for visual odometry applications.

The camera’s stereo vision system consists of two infrared cameras and
an infrared projector. This setup allows the camera to perceive depth by
triangulating the distance to objects in its field of view, similar to how human
eyes work. The system can capture depth data at a resolution of up to
1280x720 pixels, with a maximum range of approximately 10 meters.

The integrated IMU consists of a 3-axis accelerometer and a 3-axis gyro-
scope. These sensors allow the camera to track its own motion in 3D space,
providing valuable data for odometry and SLAM algorithms. The IMU data
can be used to correct for motion blur in the depth images, improving the
accuracy of the depth data.

The RealSense d435i also supports hardware synchronization, allowing it
to be used in multi-camera setups. This feature can be useful for applications

30

that require a wider field of view or more detailed depth data.
The camera is supported by the Intel RealSense SDK, which provides

tools and libraries for capturing and processing depth data. The SDK also
includes algorithms for aligning the depth and color data, filtering the depth
data, and performing other processing tasks.

Its combination of high-resolution depth sensing and motion tracking ca-
pabilities make it well-suited for implementing visual odometry algorithms,
as discussed in Section 2.1.2. The camera’s capabilities, combined with the
support provided by the RealSense SDK, make it a versatile and capable
component for any UAV system.

Figure 3.4: Intel RealSense d435i

3.1.5 Lidar

Lidar, an acronym for Light Detection and Ranging, is a remote sensing
method that uses light in the form of a pulsed laser to measure distances.
The TFmini Lidar is a single-point micro ranging module designed for use in
UAVs and other systems where accurate distance measurement is required.

The TFmini Lidar operates by emitting a short pulse of infrared light and
then measuring the time it takes for the light to return after bouncing off an
object. This time, known as the time-of-flight, is then used to calculate the
distance to the object.

In the context of a UAV, the TFmini Lidar is typically mounted on the
underside of the drone and pointed towards the ground. This allows the Lidar
to measure the height of the drone above the ground, providing valuable data
for maintaining a stable altitude and for landing procedures.

The TFmini Lidar is capable of measuring distances from 30 cm to 12 m
with a resolution of 1 cm, making it a highly accurate tool for altitude mea-
surement. It operates at a frequency of 40 Hz, providing real-time distance
data for the UAV’s control system.

31

Figure 3.5: TFmini Lidar

3.1.6 Optional sensors and Hardware

Ultrasonic sensors present an affordable alternative to Lidars for providing
drones with environmental awareness, albeit with a significantly restricted
operational range. The HC SR-04 chip, for instance, operates by emitting a
high-frequency sound wave (40 kHz) through one of its piezoelectric trans-
ducers. It then detects the echo or the returning pulse and converts it into a
corresponding voltage fluctuation.

However, the performance of ultrasonic sensors is influenced by several
factors. Light conditions, for example, can significantly impact the sensor’s
effectiveness, making it a critical parameter in both indoor and outdoor en-
vironments. Additionally, the reflectivity of the material off which the sound
wave bounces can also affect the sensor’s readings.

Other factors that can potentially distort the measurements include am-
bient noise, temperature, and humidity. Given these limitations, ultrasonic
sensors are not typically used as the primary device for obstacle avoidance
or altitude measurement. However, they could potentially be implemented
to prevent lateral collisions with unobserved objects.

Figure 3.6: HC SR-04 sensor

Beyond the earlier mentioned sensors, a sound alert system and a pro-

32

tective toggle are also utilized. While these components aren’t indispensable
for the drone and its self-governing capabilities, they significantly enhance
the user’s interaction with the device and comprehension of its varying flight
patterns.

Figure 3.7: Buzzer and safety switch

3.2 Software Installation and Configuration

The software installation and configuration process for the drone involved
several intricate steps, each of which was pivotal to ensure the successful
operation of the drone and the implementation of the visual odometry al-
gorithm. The process commenced with the hardware setup, which entailed
connecting the Cube Orange to the Jetson Nano via USB and the Lidar to
the GPS2 port on the Cube Orange. The Jetson Nano was then connected to
a display using an HDMI cable, and a mouse, keyboard, and ethernet cable
were also connected to facilitate the software setup process.

The software setup process was initiated with the installation of Ubuntu
20.04 on the Jetson Nano. This operating system was selected due to its com-
patibility with ROS Noetic, the framework utilized for the drone’s software.
The installation of ROS Noetic was executed through the terminal.

To enable communication between the Cube Orange and the Jetson Nano,
MAVROS and MAVLink were installed. MAVROS is a ROS package that
provides MAVLink protocol capabilities, which is essential for drone commu-
nication.

The Cube Orange was then configured following the steps outlined in the
previous chapter to establish a MAVROS connection. This involved learning
to use ROS and Mavros, as well as Python to write custom scripts that
subscribe and publish to and from different ROS topics.

The telemetry setup involved connecting the Holybro SiK Telemetry Ra-
dio V3 to the PC and configuring the COM port and baud rate in Mission
Planner. Mission Planner was used as the ground station control, which is

33

a comprehensive open-source software for programming and controlling au-
tonomous vehicles. It provides a user-friendly interface for setting up and
tuning the vehicle, planning and tracking missions, and monitoring the vehi-
cle status and sensor data in real-time. The SERIAL0 BAUD and SERIAL0
PROTOCOL were set to match the baud rate and MAVLink communication
protocol, respectively.

To ensure that data from the Cube Orange was transmitted to the com-
panion computer at a high frequency, the SR0 ADBS to SR0 RAW SENSE
parameters in Mission Planner were set to 50Hz.

The connection between the Jetson Nano and the Cube Orange autopi-
lot was established, user permissions were configured, and MAVROS was
launched. The connection was verified, and the user account on the Jetson
Nano was given access to serial devices by adding the user to the dialout
group.

The Intel RealSense Camera was set up with ROS Noetic on the Jetson
Nano. This involved updating the system and installing dependencies, in-
stalling the librealsense2 SDK, and setting up the ROS Wrapper for Intel
RealSense Devices.

The RTAB-Map Package in ROS Noetic was set up, followed by the setup
of the Robot Localization Package. These packages were crucial for imple-
menting the visual odometry algorithm and ensuring the drone’s stable flight
and accurate data collection.

Figure 3.8: Holybro SiK Telemetry Radio V3

34

3.3 Reading Data from IMU, Lidar, and Cam-
era on ROS Topics

In the context of our drone setup, the Cube Orange, Lidar, and the Intel
RealSense Camera are all significant sources of data, each publishing infor-
mation on different ROS topics at varying frequencies.

The Inertial Measurement Unit (IMU) on the Cube Orange publishes
data at a frequency of 50Hz on the ROS topic /mavros/imu/data. The IMU
data is of the message type sensor_msgs/Imu, which includes orientation
represented in quaternions, angular velocity in rad/s, and linear acceleration
in x, y, and z directions. This data is crucial for understanding the drone’s
motion and orientation in space.

The Lidar sensor, which is used for measuring the distance to the ground,
publishes data at a frequency of 20Hz on the ROS topic /mavros/distance_sensor/
rangefinder_pub. The Lidar data is of the message type sensor_msgs/Range,
which includes the range measurement.

The Intel RealSense Camera, a depth camera, publishes data on several
ROS topics to which the RTAB-Map package subscribes. These topics in-
clude
/camera/color/image_raw, /camera/depth/image_rect_raw, and
/camera/color/camera_info, among others. The camera data is of the mes-
sage type sensor_msgs/Image and sensor_msgs/CameraInfo for the image
data and camera metadata respectively.

The RTAB-Map package, which is used for generating the drone’s map
and estimating its position, publishes odometry data at a frequency of ap-
proximately 3Hz on the ROS topic /rtabmap/odom. The odometry data is of
the message type nav_msgs/Odometry, which includes the drone’s pose and
orientation represented in quaternions.

In order to activate each of these components and start the data flow,
custom launch files are used. These launch files are executed in the ROS
environment and they initiate the respective nodes for the Cube Orange, the
Intel RealSense Camera, and the RTAB-Map package.

To launch the RealSense camera node, the following command is used in
a terminal:

roslaunch realsense2_camera rs_camera.launch align_depth:=true
color_width:=848 color_height:=480 depth_width:=848 depth_height:=480
color_fps:=60 depth_fps:=60

35

This command starts the RealSense camera node and sets the parameters
for depth alignment, color and depth image dimensions, and the frame rate,
which is set to 60Hz.

To launch the RTAB-Map node, navigate to the workspace root in a new
terminal and use the following command:

ros launch my_rtabmap_launch rtabmap_d435i . launch

Finally, to launch the IMU data publisher node for the Cube Orange, the
following command is used in another terminal:

ros launch cube_orange cube_orange_imu . launch

3.4 RTAB-Map ROS Algorithm for State Esti-
mation

RTAB-Map, an acronym for Real-Time Appearance-Based Mapping, is a
sophisticated graph-based SLAM (Simultaneous Localization and Mapping)
methodology. This appearance-based SLAM paradigm leverages data har-
vested from vision sensors to localize the robot and map its surroundings.
The algorithm employs a process known as loop closures to ascertain whether
a location has been previously encountered by the drone. As the UAV moves
into unexplored areas, the map grows, and the number of images that each
new image must be compared to escalates. This results in an increase in
the time taken for loop closures, with complexity growing linearly. However,
RTAB-Map has been optimized for large-scale and long-term SLAM, employ-
ing a variety of strategies to ensure real-time loop closure detection. Loop
closure detection is performed quickly enough to produce results before the
next set of camera images is acquired.

The Dual Structure of RTAB-Map: Front End and Back End

As shown in the article by Shiva Chandrachary [15] front end of RTAB-Map is
primarily concerned with the sensor data used to obtain the constraints that
are utilized for feature optimization approaches. In RTAB-Map, landmark
constraints are not employed. The focus is solely on odometry constraints
and loop closure constraints. The odometry constraints can be derived from

36

a variety of sources such as wheel encoders, IMU, LiDAR, or visual odome-
try. Visual odometry is accomplished using 2D features such as Speeded Up
Robust Features (SURF).

Figure 3.9: Front End of RTAB-Map

The back end of RTAB-Map encompasses graph optimization and the
assembly of an occupancy grid from the data of the graph.

Figure 3.10: Back End of RTAB-Map

37

RTAB-Map is a robust and efficient RGB-D (Red Green Blue - Depth)
Graph-Based Simultaneous Localization and Mapping (SLAM) approach.
This algorithm is underpinned by an incremental appearance-based loop clo-
sure detector, which employs a bag-of-words approach to determine if a new
image captured by the robot matches any previous images. If a loop closure
hypothesis is validated, a new constraint is added to the map’s graph, and a
graph optimizer minimizes the errors in the map.

The RTAB-Map algorithm can be bifurcated into two main components:

1. Mapping: The algorithm fabricates a 3D map of the environment
using the RGB-D data. It employs a graph-based approach, where
each node in the graph represents a place that the robot has visited,
and each edge represents the spatial relation between places.

2. Localization: The algorithm estimates the robot’s pose within the
map. It employs a particle filter to track the robot’s pose, and it uses
the loop closure detector to correct the robot’s drift over time.

One of the salient advantages of RTAB-Map is its capability to handle
large-scale environments. It employs a memory management approach to
maintain the number of locations and the map size constant over time. This
makes it suitable for long-term operation in large environments.

RTAB-Map is an excellent choice for autonomous vehicles due to its ro-
bustness and efficiency. It can handle dynamic environments and recover
from localization failures. Moreover, it has been integrated with the Robot
Operating System (ROS), making it easy to use with a variety of robots and
sensors.

In RTAB-Mapping, loop closure detection employs a bag-of-words ap-
proach. Features, or specific characteristics of an image, are extracted using
a method called Speeded Up Robust Features (SURF). Each feature has a
unique descriptor, and these descriptors are compared to a vocabulary for
faster processing. This vocabulary is a collection of similar features or syn-
onyms. When a feature descriptor matches one in the vocabulary, it’s referred
to as a visual word. An image becomes a bag-of-words when all its features
are quantized. Each word is linked to the images it’s associated with, making
image retrieval more efficient.

38

Figure 3.11: Bag-of-Words approach

To compare a new image with previous ones, a matching score is given to
all images containing the same words. If a word is seen in an image, the score
of this image increases. If an image shares many visual words with the new
image, it scores higher. A Bayesian filter evaluates these scores, and if the
hypothesis that an image has been seen before reaches a certain threshold, a
loop closure is detected.

RTAB-Map also employs a memory management technique to limit the
number of locations considered during loop closure detection. The most
recent and frequently observed locations are kept in the robot’s Working
Memory (WM), while others are transferred into Long-Term Memory (LTM).
When a new image is acquired, a new node is created in the Short Term
Memory (STM), and nodes are weighted based on how long the robot spent
in the location. When STM reaches its capacity, the oldest node is moved to
WM for loop closure detection. Loop closure happens in the WM, and when
the time required to process new data reaches a certain limit, some nodes
are transferred from WM to LTM, keeping the WM size nearly constant. If
loop closure is detected, neighbors in LTM of an old node can be transferred
back to the WM.

39

Figure 3.12: Loop closure disabled/enabled

40

Chapter 4

RTAB-Map Parameters and
Tuning

In Chapter 4, we delve into the crucial aspects of RTAB-Map parameters
and tuning, building upon the foundation laid out in section 3.4. As we
have previously explored, RTAB-Map is an essential component of the ROS
(Robot Operating System) framework, enabling powerful visual odometry
capabilities for a variety of applications.

To harness the full potential of RTAB-Map and achieve optimal perfor-
mance, it becomes essential to fine-tune its parameters. This chapter focuses
on the various factors that significantly impact the accurate functioning of
RTAB-Map in ROS. By understanding and appropriately adjusting these
parameters, you can enhance the results and outcomes of your projects.

Furthermore, the performance of RTAB-Map can be further improved by
adjusting the camera settings. By fine-tuning the camera specifications, you
can unlock even better visual odometry for UAVs or other relevant applica-
tions.

Throughout this chapter, we will explore how RTAB-Map parameters
function, highlighting their significance in generating robust visual odometry.
Additionally, we will discuss how these parameters have been modified and
optimized specifically for our project. Furthermore, we will delve into the
adjustments made to the camera specifications to achieve superior visual
odometry for UAVs.

By the end of this chapter, you will have a comprehensive understanding
of RTAB-Map parameters, their impact on performance, and how they can
be tailored to suit your specific project requirements.

41

4.1 Understanding RTAB-Map Parameters
The RTAB-Map algorithm operates based on a set of parameters, each
of which influences the behavior of the algorithm. Understanding these
parameters is crucial for effectively tuning the algorithm to suit specific
applications. The parameters are defined in the launch file and can be
modified to adjust the performance of the algorithm. Here, we will dis-
cuss some of these parameters in detail, following the guide available at
http://wiki.ros.org/rtabmapros/Tutorials/Advanced

• fcu url: This parameter defines the port at which the flight control unit
(FCU) is connected. The default value is set to /dev/ttyACM0:57600,
but this may need to be changed according to your setup.

• tgt system and tgt component: These parameters define the MAVLink
target system and component ids respectively.

• pluginlists yaml and config yaml: These parameters define the
paths to the yaml files for the MAVROS plugins list and configuration.

• Odom/Strategy: Determines the odometry approach to use. Two
strategies are available:

– Frame-to-Map (0): The current frame is matched directly with
the global map. This method provides more accurate and globally
consistent pose estimation but is computationally expensive.

– Frame-to-Frame (1): The current frame is matched only with the
previous frame. This method is computationally efficient but more
prone to drift and inconsistency.

• Vis/MaxFeatures: This parameter defines the maximum number of
features (keypoints) to extract from each image. Reducing this number
can speed up processing time.

• Rtabmap/DetectionRate: This parameter controls the frequency of
map updates. Reducing this value can lighten the computational load.

• Vis/MinInliers: This parameter defines the minimum number of in-
lier matches required for successful registration. Reducing this number
can potentially increase the speed of the algorithm.

42

• Vis/InlierDistance: This parameter defines the inlier distance thresh-
old used in the RANSAC algorithm for pose estimation.

• Odom/ImageDecimation: This parameter controls the decimation
of the image, effectively reducing its size and speeding up processing.

• Odom/MaxDepth: This parameter defines the maximum depth value
considered by the algorithm.

• camera topic, depth topic, and camera info topic: These argu-
ments set the respective topics for the color image, depth image, and
camera info.

• approx sync: This argument determines whether the synchronization
between RGB and depth images is approximately done or not.

In the context of RTAB-Map, inliers are the set of matches that are con-
sistent with the estimated transformation. When two images are matched,
RTAB-Map extracts features from both images and finds correspondences.
These correspondences are then used to estimate the transformation between
the images. However, not all correspondences are correct due to noise, occlu-
sion, and other factors. The RANSAC algorithm is used to robustly estimate
the transformation by identifying inliers, which are correspondences that are
consistent with the estimated transformation, and outliers, which are not.
The Vis/MinInliers parameter controls the minimum number of inliers re-
quired for a successful registration, and the Vis/InlierDistance parameter
defines the threshold for determining whether a correspondence is an inlier
or an outlier.

4.2 Tuning Parameters for Speed and Accuracy

Tuning the parameters of the RTAB-Map algorithm involves making trade-
offs between speed and accuracy. The goal is to find a balance that best
suits the specific application. Here, we will discuss how to adjust some key
parameters to optimize the speed of the algorithm while maintaining an
acceptable level of accuracy.

In the custom launch file, several parameter values have been modified to
optimize the algorithm’s speed. These changes include:

43

• rtabmap/Odom/Strategy: Initially set to 1, signifying Frame-to-
Frame odometry.

• rtabmap/Vis/MaxFeatures: Adjusted from the default value of 500
to 200. This reduces the number of keypoints extracted from each
image, thereby speeding up the processing time.

• rtabmap/Rtabmap/DetectionRate: Enhanced from the default 2
to 5. This reduces the frequency of map updates, which can lighten
the computational load.

• rtabmap/Vis/MinInliers: This parameter is now set to 5. This
requires fewer inlier matches for successful registration, which can po-
tentially increase the speed of the algorithm.

• rtabmap/Vis/InlierDistance: This parameter, set to 0.1, defines
the inlier distance threshold used in the RANSAC algorithm for pose
estimation.

• rtabmap/Odom/ImageDecimation: Increased from 2 to 4 to re-
duce the image size and speed up processing.

• rtabmap/Odom/MaxDepth: Kept at the default of 4.0, maintain-
ing the maximum depth value considered by the algorithm.

The Vis/CorType parameter, though not explicitly set in the custom
launch file, plays a crucial role in the RTAB-Map algorithm. It determines
the method used to find correspondences between keypoints in the images.
The options are:

• Features Matching (0): In this method, keypoints are extracted and
described using feature descriptors. The descriptors are then matched
between consecutive frames to find correspondences. This method
tends to be more robust as it relies on distinctive descriptors to find
matches.

• Optical Flow (1): This approach estimates the motion of individual
pixels or keypoints between consecutive frames by analyzing the inten-
sity pattern of the images. This method can provide more matches as
it tracks keypoints continuously, even when their appearance changes.

44

However, it may be less robust than Features Matching, as it relies on
the assumption that pixel intensities remain constant between consec-
utive frames.

In addition to the RTAB-Map parameters, the settings for the Intel Re-
alSense camera were also adjusted in the launch file to optimize the perfor-
mance of the mapping algorithm. These changes include:

• align_depth: This parameter is set to true to ensure that the depth
frame is aligned with the color frame. This alignment is crucial for
accurate depth perception and feature matching in the RTAB-Map al-
gorithm.

• color_width, color_height, depth_width, depth_height: These
parameters control the resolution of the color and depth images. They
have been reduced from their default values to speed up image pro-
cessing. Lower resolution images require less computational resources
to process, which can significantly improve the speed of the mapping
algorithm.

• color_fps, depth_fps: These parameters control the frame rate of
the color and depth images. They have been set to 60 frames per second
(fps) to provide a smooth and accurate representation of the environ-
ment. A higher frame rate means that the changes between consecutive
frames are smaller, which can improve the accuracy of feature matching
in the RTAB-Map algorithm. However, it’s important to note that a
higher frame rate also requires more computational resources and can
potentially slow down the algorithm if the system’s processing power
is limited.

These adjustments to the camera settings, combined with the tuning of
the RTAB-Map parameters, aim to provide a balance between speed and
accuracy that is suitable for the specific requirements of the application.

45

46

Chapter 5

Data Fusion and Filtering
Techniques

5.1 Need for Data Fusion

The primary emphasis is that despite the modifications made to the RTAB-
Map parameters in Chapter 4, the topic: /rtabmap/odom - the output of
RTAB-Map that publishes the position and orientation in quaternion form
as an odometry type - only broadcasts at approximately 3Hz. For the drone’s
movements to be smooth and continuous, it is desirable to have an estimate
of the position and orientation at a frequency close to 30Hz.

Furthermore, the script delineated in this section actualizes the dead reck-
oning algorithm, as expounded in Section 2.2.1.

It’s of paramount importance to underscore that the data from the In-
ertial Measurement Unit (IMU) is procured at a swift frequency of 50Hz,
while the Lidar data is disseminated at a rate of 20Hz. These relatively high
frequencies, juxtaposed with the output rate from RTAB-Map, have been
empirically proven to establish an ideal setting for the efficacious implemen-
tation of a dead reckoning algorithm.

This high-frequency data transmission ensures a more fluid and continu-
ous estimation of the drone’s position and orientation, thereby augmenting
the overall efficacy of the navigation system.

In addition, given the proven accuracy of the RTAB-Map algorithm in
estimating the drone’s position, the data from the IMU is integrated and
utilized only in the intervals between the RTAB-Map messages. These RTAB-

47

Map messages continue to serve as the primary reference for the drone’s
position estimation.

5.2 Python Script for Data Fusion
For this reason, a custom script was adopted. Here, we present a simplified
pseudocode that outlines the most important functions and methods used in
the script:

Import nece s sa ry l i b r a r i e s

Def ine a g l oba l v a r i ab l e f o r the l a s t known po s i t i o n

Def ine a func t i on to convert quatern ion to eu l e r

Def ine a func t i on to convert e u l e r to quatern ion

Def ine a c l a s s DroneState with the f o l l ow i ng methods :

− I n i t i a l i z a t i o n : I n i t i a l i z e s t a t e va r i ab l e s , deques f o r
s t o r i n g IMU and LIDAR data , and a pub l i s h e r f o r the drone s t a t e

− publ i sh_state : Publ i sh the cur rent s t a t e o f the drone

− update : Update the drone s t a t e based on the type o f
data r e c e i v ed (odometry , IMU, or LIDAR)

− record_state : Record the cur r ent s t a t e o f the drone

− update_and_save_path : Update the drone s t a t e
and save the cur r ent path

− moving_average : Compute the moving average o f a g iven vec to r

− print_and_plot_state : Pr int the cur rent s t a t e and p lo t the
drone ’ s t r a j e c t o r y

I f t h i s s c r i p t i s the main module :

48

− I n i t i a l i z e a ROS node

− Create an in s t ance o f the DroneState c l a s s

− Def ine ca l l ba ck func t i on s f o r odometry ,
IMU, and LIDAR data

− Subscr ibe to the appropr ia t e ROS top i c s f o r odometry ,
IMU, and LIDAR data

− Set a ROS timer to record the drone s t a t e at a r e gu l a r i n t e r v a l

− Star t the ROS event loop

− I f in te r rupted , shut down the ROS node and pr in t and p lo t
the f i n a l s t a t e o f the drone

This pseudocode provides a high-level overview of the script’s structure
and main operations. For a detailed understanding and to see all the func-
tions and methods, please refer to the full Python script provided in Appendix
1.

This script is designed to fuse data from multiple sources, namely odom-
etry, IMU, and LIDAR, to estimate the drone’s state, which includes its
position and orientation. The state is updated at a frequency of 30Hz, which
is ten times faster than the publishing rate of the RTAB-Map odometry
topic. This higher update rate results in smoother and more continuous
drone movements.

The script first initializes a DroneState object, which maintains the
drone’s current state and a history of its path. The state is represented as
a seven-element array, with the first three elements representing the drone’s
position in the x, y, and z directions, and the last four elements representing
the drone’s orientation in quaternion form.

The script then defines callback functions for the odometry, IMU, and
LIDAR topics. These functions call the update method of the DroneState
object, passing in the message received from the topic and a string indicating
the type of the data.

The update method updates the drone’s state based on the received data.

49

If the data is from the odometry topic, the method updates the drone’s
position in the x and y directions. If the data is from the IMU topic, the
method updates the drone’s orientation and, if accelerometer readings are
available, the drone’s position in the x and y directions. If the data is from
the LIDAR topic, the method updates the drone’s position in the z direction.

The script incorporates a bias removal mechanism. When the script ini-
tially receives data from the IMU topic, it stores the first 10 readings in a
vector. The mean of these readings is then computed and considered as the
bias value. This bias value is subsequently subtracted from all future IMU
readings. This process of bias removal aids in correcting any constant offset
in the IMU readings, thereby enhancing the accuracy of the state estimation.

In addition to the bias removal, the script also utilizes a moving average
filter to smooth the drone’s trajectory. The filter operates by averaging the
most recent readings from the accelerometer and LIDAR. This process of
averaging aids in mitigating the impact of noise in the readings, resulting in
a smoother trajectory.

Finally, the script includes a mechanism for recording the drone’s path.
Every 1/30th of a second, the script adds the drone’s current state to the
path history. This recorded path can then be plotted to visualize the drone’s
trajectory.

In conclusion, this script provides a robust and efficient method for fusing
data from multiple sources to estimate the drone’s state. By employing tech-
niques such as bias removal and moving average filtering, the script ensures
that the estimated state is both accurate and smooth, enabling precise and
controlled drone movements.

5.2.1 Use of Lidar for Height Measurement

Several experiments were conducted to measure the drone’s vertical position
(pos_z) using different methodologies. These included:

1. Double integration of the linear acceleration in the z-direction from the
IMU.

2. Utilizing only Lidar data.

3. A fusion of both IMU and Lidar data.

50

The outcomes of these experiments revealed some noteworthy insights.
The height measurements derived solely from the accelerometer data (the
first method) were found to be the most susceptible to noise and drift. This
method, while straightforward, did not yield the most reliable or stable re-
sults.

Interestingly, there was no significant discrepancy between the measure-
ments obtained using only Lidar data and those obtained from the fusion of
both IMU and Lidar data. Given that the Lidar provides data at a sufficiently
high rate and is highly precise for ranges below 10 meters, it is particularly
suitable for indoor applications.

Therefore, considering these factors,it was decided to rely solely on Lidar
data for estimating the drone’s height. This decision was based on the Lidar’s
precision, reliability, and suitability for the specific application of indoor
flight.

5.3 Implementation of Robot Localization

The implementation of the Robot Localization ROS package, while seemingly
straightforward at first glance, presented a number of challenges that required
additional work and innovative solutions.

One of the primary challenges was the need to publish the lidar data in
a format that could be accepted by the Robot Localization package. The
standard format for lidar data, as published on the topic mavros/distance
_sensor/rangefinder_pub, is the Range message type. However, the Robot
Localization package requires the lidar data to be published as a PoseWithCo-
varianceStamped message type. To address this issue, an additional Python
script was developed to convert the lidar data from the Range format to the
PoseWithCovarianceStamped format.

Another challenge was the inability to set initial biases in the Robot
Localization package. In the dead reckoning script, biases were removed
from the IMU data to improve the accuracy of the position and orientation
estimates. However, the Robot Localization package does not provide a
straightforward way to set these initial biases. To overcome this limitation,
the same approach used in the dead reckoning script was applied, effectively
removing the biases from the IMU data before it was input to the Robot
Localization package.

The final configuration of the Robot Localization package included three

51

main inputs: the RTAB-Map data for pos_x, pos_y, roll, pitch, and yaw
from the topic /rtabmap/odom, the IMU data with biases removed for roll,
pitch, yaw, angular velocity roll, pitch, yaw, and linear acceleration x, y, z
published on the topic /imu_localization, and the lidar data for height
(pos_z) in the PoseWithCovarianceStamped format from the topic

/lidar_localization.
This configuration allowed for the successful implementation of the Robot

Localization package and the effective fusion of data from multiple sensors,
providing a comprehensive and accurate state estimation for the drone.

5.4 Tuning of Parameters of the EKF

The tuning of parameters in the Extended Kalman Filter (EKF) is a crucial
step in achieving accurate state estimation. Two of the key parameters that
require careful tuning are the process noise covariance matrix and the initial
estimate covariance matrix.

The process noise covariance matrix is a representation of the noise that
is added to the total error after each prediction step. This matrix can be
difficult to tune and may vary for each application. The values in this matrix
should ideally be smaller when the omnidirectional motion model matches the
system well. However, if a given variable is slow to converge, one approach is
to increase the diagonal value for that variable in the process noise covariance
matrix. This will cause the filter’s predicted error to be larger, which in turn
will cause the filter to trust the incoming measurement more during the
correction step.

The initial estimate covariance matrix, on the other hand, represents the
initial value for the state estimate error covariance matrix. Setting a diagonal
value (variance) to a large value in this matrix will result in rapid convergence
for the initial measurements of the variable in question. However, care should
be taken not to use large values for variables that will not be measured
directly.

In the context of our implementation, these matrices were carefully tuned
to ensure accurate state estimation. The tuning process involved adjusting
the values in these matrices based on the performance of the EKF in esti-
mating the state of the drone. By carefully tuning these parameters, we were
able to achieve a balance between rapid convergence of the state estimates
and the accuracy of these estimates.

52

During the testing phase, it was observed that the estimation of //the
z-position was not satisfactory and there was noticeable noise in the x and
y positions after small movements, causing them to oscillate. To address
these issues, the values in the process noise covariance matrix and the initial
estimate covariance matrix were adjusted.

In the process noise covariance matrix, the value corresponding to the
z-position was increased. This caused the filter’s predicted error to be larger
in the z-direction, which in turn caused the filter to trust the incoming mea-
surement more during the correction step. This adjustment helped improve
the convergence of the filter in the z-direction.

In the initial estimate covariance matrix, a larger value was set for the
z-position variance. This resulted in rapid convergence for the initial mea-
surements of the z-position.

Despite the initial measurements for pos_x and pos_y being accurate, it
was noticed that after small rapid movements, the noise in these positions
was high, leading to oscillations. To address this, the corresponding values in
the process noise covariance matrix were increased. This adjustment allowed
the filter to trust the incoming measurements more during the correction
step, thereby reducing the noise and oscillations in the pos_x and pos_y
estimates.

These adjustments helped improve the performance of the EKF in esti-
mating the state of the drone, leading to more accurate and reliable results.

53

54

Chapter 6

Results and Discussions

6.1 Experimental Setup

The experimental setup was meticulously designed to test the performance
of the dead reckoning script and the Extended Kalman Filter (EKF) from
the Robot Localization ROS package in an indoor environment. The drone
was placed in a controlled indoor setting, with a clearly defined path for
it to follow. The initial position of the drone was set at the origin of the
coordinate system, (0,0,0), with the drone’s motors turned off. This was
done to ensure that the drone was stationary at the start of each test and
that any movement was manually controlled.

The main focus of these tests was to evaluate the precision of the position
estimates provided by both algorithms. For safety reasons and to ensure the
accuracy of the path followed, the drone’s motors were kept off during the
tests. This also helped to eliminate any potential noise in the sensor data
that could be introduced by the vibrations or other factors associated with
the drone’s motors.

The path chosen for the drone to follow was a rectangular shape with
dimensions of 9.5 meters in the x-direction and 6 meters in the y-direction.
The drone was manually moved along this path, starting from the initial
position and moving ahead to a position of (4 meters on the x-axis, 0 on
the y-axis, and 1.4 meters in height). This path was chosen to provide a
variety of movements, including straight lines and turns, to thoroughly test
the performance of the algorithms. Additionally, the edges of the rectangle
presented different scenarios and light conditions, providing a comprehensive

55

test environment to evaluate how RTAB-Map position estimate reacted to
varying conditions.

The position (4,0,1.4) was not chosen randomly. It was selected to test
the drone with a variety of movements, including straight lines and turns.
Most importantly, upon completing the mission at this position, the drone’s
frontal camera could only see a grid and a glass window on the wall. This
setup provided valuable insights into the physical elements that affected the
state estimation of RTAB-Map, which will be discussed in detail in the next
section.

It’s important to note that every time the script is launched, the drone
starts at the position (0,0,0). In this coordinate system, x represents the
forward direction (in the direction of the drone’s nose), y represents the left
direction, and z represents the upward direction.

In the next section, the testing methodology used to evaluate the perfor-
mance of the dead reckoning script and the EKF will be discussed in more
detail.

6.2 Testing Methodology
The testing methodology was designed to evaluate the performance of the
dead reckoning script and the Extended Kalman Filter (EKF) from the Robot
Localization ROS package under a variety of conditions. The tests were
conducted following a specific set of procedures, and the performance of the
algorithms was evaluated based on a set of predefined metrics.

6.2.1 Test Procedures

The tests were initiated by launching the necessary files for the RealSense
camera, RTAB-Map, CubeOrange, and the dead reckoning script or the
Robot Localization package. The following launch commands were used:

• RealSense: roslaunch realsense2_camera rs_camera.launch
align_depth:=true color_width:=640 color_height:=480
depth_width:=640 depth_height:=480 color_fps:=60 depth_fps:=60

• RTAB-Map: roslaunch my_rtabmap_launch rtabmap_d435i.launch

• CubeOrange: roslaunch cube_orange cube_orange_imu.launch

56

• Dead Reckoning: python dead_reckoning.py

• Robot Localization: python topics_for_ekf.py and
roslaunch my_robot_localization_config localization.launch

Once the necessary files were launched, the drone was manually moved
along the predetermined path. The tests included lifting the drone up and
descending at various rates, moving along straight lines at different speeds,
and turning at the edges of the path at different velocities. The drone was
also exposed to different lighting and environmental conditions to test the
performance of the algorithms under varying scenarios.

6.2.2 Performance Metrics

The primary performance metric was the accuracy of the position estimates
provided by the algorithms. This was measured in terms of how much the
estimated path deviated from the designated path, with the deviation mea-
sured in centimeters. Additionally, the ability of the algorithms to handle
outliers and provide consistent position estimates was also evaluated.

6.2.3 Data Analysis

The data for the tests was collected from the topics published by the dead
reckoning script and the Robot Localization package. The data was recorded
and plotted at the end of each test to visually assess the performance of the
algorithms and to facilitate a detailed analysis of the results. In the next
section, the performance of the dead reckoning script and the EKF will be
discussed in more detail based on the results of these tests.

57

6.3 Performance of Dead Reckoning and EKF
The performance of both the dead reckoning script and the Extended Kalman
Filter (EKF) from the Robot Localization ROS package was evaluated based
on the accuracy of their position estimates and their ability to handle varying
conditions. The results of the tests are discussed in detail in this section.

6.3.1 Drift from the Ideal Path

One of the key performance metrics was the drift from the ideal path in the x
and y directions. Both the EKF and the dead reckoning script were evaluated
based on this metric. The drift was measured in terms of the deviation of
the estimated path from the designated path.

• Dead Reckoning: The performance of the Dead Reckoning algorithm,
as illustrated in the subsequent images, exhibits a linear drift along the
vertical stretches of the x-axis. For instance, from the initial position
to the first corner (top right), the estimated position deviates by 27cm
to the right of the ideal path. Similarly, at the third corner (bottom
left), the estimated position shifts 22cm to the left.

During the straight stretches, the position estimation remains remark-
ably stable, with minimal oscillations. The horizontal drift peaks at a
deviation of approximately ±14cm. This consistency in the horizon-
tal stretches demonstrates the robustness of the Dead Reckoning algo-
rithm in estimating a steady trajectory, despite the inherent challenges
of manual drone navigation.

58

Figure 6.1: Top view of the test path (dead reckoning)

Figure 6.2: Plot of another view of the test path
59

Error in Returning to Initial Position with dead reckoning

It’s crucial to highlight that this approach has consistently yielded im-
pressive results across various tests, particularly in accurately estimat-
ing the target position. This is a key outcome that holds significant
potential for future applications, such as precision landing, which is a
component of the Fixit project. Across different tests, including the one
depicted in the figure below, the maximum average deviation observed
is approximately 10cm. This level of precision underscores the effec-
tiveness of the implemented solution in maintaining close proximity to
the desired path.

Figure 6.3: Plot of the path from an other test

• EKF: The performance of the Extended Kalman Filter (EKF) algo-
rithm, as depicted in the subsequent images, demonstrates a slightly
reduced linear drift along the vertical stretches of the x-axis compared
to the Dead Reckoning algorithm. For instance, the horizontal devia-
tion is only 20cm to the right of the ideal path at the top right corner
and 16cm to the left at the bottom left corner.
During the straight stretches, the position estimation remains remark-
ably stable, mirroring the performance of the Dead Reckoning algo-

60

rithm. The primary differences are observed in the slightly reduced
noise on the straight lines, which is around 10cm, except for the line
going from the top left to the bottom left corner where the noise in-
creases, reaching a deviation of 16cm.

However, it’s important to note that in multiple tests, the EKF al-
gorithm consistently presented outliers. For example, in the top left
corner, the estimated trajectory deviates almost 40cm from the desig-
nated path. This occurrence of outliers is a significant factor to consider
when evaluating the overall performance of the EKF algorithm.

Figure 6.4: Top view of the test path (EKF) from the Robot Localization
package

61

Figure 6.5: Plot of another view of the test path

Error in Returning to Initial Position with robot localization
EKF

The implementation of the Extended Kalman Filter (EKF) algorithm
with Robot Localization, despite its success in reducing noise during
straight-line movements, reveals a significant shortcoming in the ac-
curacy of position estimation when returning to the starting position.
As illustrated in the subsequent figure, the deviation along the vertical
axis (x-axis) is negligible. However, along the horizontal axis (y-axis),
the estimated position deviates to the right by almost one meter.

This substantial deviation could have consequential implications in the
context of the FIXIT project or other applications that demand precise
landing. Therefore, while the EKF algorithm demonstrates strengths
in certain aspects of position estimation, this significant discrepancy in
the final position accuracy underscores the need for further refinement
and optimization of the algorithm.

62

Figure 6.6: Plot of the path from an other prospective

6.3.2 Noise in Z Position Estimation

The estimation of the drone’s position along the z-axis, or its height, is a
critical aspect of the navigation algorithms. However, this estimation can
be subject to noise, which can impact the accuracy of the drone’s perceived
position. In this subsection, we will examine the noise in the z position
estimation for both the EKF and Dead Reckoning algorithms, and discuss
the impact of tuning on the EKF’s performance.

63

Figure 6.7: EKF Z Position Estimation Before Tuning

Figure 6.8: EKF Z Position Estimation After Tuning

As shown in Figure 6.7 and 6.8, the EKF’s initial estimation of the z

64

position exhibited significant noise. This noise could potentially lead to in-
accuracies in the drone’s perceived position and trajectory. However, after
tuning the EKF parameters, as shown in Figure 6.8, the noise in the z po-
sition estimation was significantly reduced. This improvement demonstrates
the importance of tuning in optimizing the performance of the EKF.

Figure 6.9: Dead Reckoning Z Position Estimation

In comparison, the Dead Reckoning algorithm, as shown in Figure 6.9,
exhibited significantly less noise in the z position estimation from the outset.
This suggests that the Dead Reckoning algorithm may provide a more accu-
rate estimation of the drone’s height, potentially making it a more suitable
choice for applications that require precise vertical positioning.

6.4 Challenges and Exception Handling
During the testing phase, we encountered several challenges that tested
the robustness and adaptability of both the Dead Reckoning and Extended
Kalman Filter (EKF) algorithms. These challenges ranged from high-speed

65

turns to signal loss due to passing through featureless zones. In this section,
we discuss how these issues were handled and the measures implemented to
ensure the safety of the drone and its surroundings.

6.4.1 Handling High-Speed Turns

One of the significant challenges was dealing with high-speed turns. Moving
the drone in a straight line or up and down at different speeds did not signif-
icantly impact the quality of the pose estimation. However, executing sharp
turns, such as 180 or 90 degrees, at high speed often led to the algorithm
losing its references. This loss of reference points hindered the closure loop
detection, which is fundamental for the algorithm’s performance.

Despite these challenges, we found that even 90-degree turns could be
executed at a sufficient rate under optimal conditions. However, high-speed
turns often led to critical results, with the position estimation getting lost in
90% of the cases.

6.4.2 Challenges in Featureless Environments

Featureless environments posed a significant challenge for the algorithms.
Instances where there were no objects within a 4-meter range(The depth
range of the intelrealsense d435i) in the camera view often led to the loss
of position estimation. Similarly, environments with monotonous color or
texture, such as a white wall or a large blue curtain, also posed difficulties.

Lighting conditions also played a significant role in the performance of
the algorithms. Soft or low lighting conditions were only manageable when
the environment was rich in features.

In conclusion, the performance of both the Dead Reckoning and EKF al-
gorithms was influenced by a variety of factors, including the drone’s speed,
the richness of features in the environment, and the lighting conditions. Ex-
ception handling measures were implemented to ensure the safety of the
drone and its surroundings, and to improve the robustness of the algorithms
in challenging conditions.

6.4.3 Feature Detection and Closed-Loop Recognition

The performance of the algorithms was also influenced by the environment’s
feature richness. The RTAB-Map algorithm, for instance, relies on detecting

66

features in the environment to estimate the drone’s position. We provide
an example of how RTAB-Map detects features in the environment in the
following figure.

Figure 6.10: All detected Features

Similarly, the algorithm’s ability to recognize loop closure is crucial for
accurate position estimation. An example of which features RTAB-Map uses
when recognizing loopclosure is provided in the subsequent figure.

As depicted in both images, RTAB-Map struggles to identify any dis-
cernible features on the uniform surfaces of the blue curtain and the grey
floor. Consequently, the loop closure detector fails to locate any previous
references in these areas, which hampers its ability to gather data when the
drone navigates around these featureless zones.

67

Figure 6.11: Loop Closure Detector

6.4.4 Challenges in Featureless Environments

Featureless environments posed a significant challenge for the algorithms.
Instances where there were no objects within a 4-meter range (The depth
range of the intelrealsense d435i) in the camera view often led to the loss
of position estimation. Similarly, environments with monotonous color or
texture, such as a white wall or a large blue curtain, also posed difficulties.

Lighting conditions also played a significant role in the performance of
the algorithms. Soft or low lighting conditions were only manageable when
the environment was rich in features. To illustrate the impact of lighting con-
ditions on feature detection, we conducted tests under two different lighting
conditions: light and dark. The following figures show the feature detection
results in these two scenarios.

As shown in Figure 6.12, the feature detection algorithm performs well
under light conditions, identifying a large number of features. However, the
performance significantly decreases under dark conditions, as shown in the
following figure.

As depicted in Figure 6.13, the algorithm struggles to identify features
under poor lighting conditions. This reduction in the number of detected
features directly impacts the quality of odometry, as fewer features mean
fewer potential loop closure detectors. This can lead to inaccurate position
estimation and potential navigation issues.

RTAB-Map evaluates the quality of odometry using a metric called "odom

68

Figure 6.12: Feature Detection in Light Conditions

Figure 6.13: Feature Detection in Dark Conditions

quality". A higher odom quality value indicates a higher number of detected
features and, therefore, a more reliable odometry. For instance, an odom
quality of 500 means that the algorithm has detected 500 distinct features in
the environment, which it can use for position estimation and loop closure
detection. However, under poor lighting conditions, the odom quality can
significantly decrease, leading to less reliable odometry.

69

6.4.5 Response of Algorithms to Data Loss from RTAB-
Map

The reliability and consistency of the data stream from RTAB-Map is of
paramount importance for both the EKF and Dead Reckoning algorithms.
A steady and continuous reference from RTAB-Map significantly mitigates
drift, enhancing the accuracy of position and orientation estimation.

However, there are instances when RTAB-Map may fail to provide data,
and the response of both algorithms to such a situation is crucial. As depicted
in the accompanying image, the EKF, when deprived of data from RTAB-
Map, starts to estimate the position in a spiraling pattern, with the diameter
of the spiral reaching up to 4 meters at its peak. This erratic behavior
underscores the importance of a reliable data source for the EKF algorithm.

Figure 6.14: Spiral Trajectory of EKF Position Estimation during RTAB-
Map Data Loss

On the other hand, the Dead Reckoning algorithm, when faced with a
similar situation, maintains a relatively accurate reference for a longer du-

70

ration, provided the drone remains stationary. However, in both cases, it is
essential to detect such data loss promptly and initiate appropriate measures
to safeguard the drone and its surroundings.

To handle such scenarios, I have implemented a script that continuously
monitors data from the RTAB-Map topic. The script is designed to trigger an
alert when it detects a failure in the data stream for a continuous duration of
3 seconds. This duration was chosen based on multiple tests that showed that
the algorithm could recover and resume position and orientation estimation
after a brief interruption of 1 or 2 seconds. Upon detecting a prolonged
data failure, the script instructs the drone to land, thereby preventing any
potential mishaps due to inaccurate position estimation.

71

72

Chapter 7

Future Work and Conclusion

7.1 Testing More Computationally Expensive
Forms of Data Fusion Algorithms

The exploration of more computationally intensive data fusion algorithms
presents a compelling avenue for future research. While these algorithms
may increase computational costs and potentially slow down the system, they
also hold the promise of delivering more accurate and smoother results and
trajectories. This trade-off between computational efficiency and accuracy is
a central challenge in the field of data fusion and is a key consideration in
the development of advanced navigation systems.

The integration of global positional information with visual and inertial
measurements in Visual Odometry (VO) algorithms has been underscored in
recent studies [7, 8, 9]. These studies present a compelling case for the use of
more computationally intensive, tightly-coupled data fusion algorithms that
can leverage the correlations amongst all the measurements, leading to more
accurate and globally consistent estimates.

One of the most commonly used data fusion algorithms in navigation
systems is the Kalman filter. This algorithm uses a set of mathematical
equations to predict the state of a system at a future time, based on the
current state and the system dynamics. It then updates this prediction with
new measurements, weighting the prediction and the measurements based
on their estimated uncertainties. The Kalman filter is computationally effi-
cient and provides optimal estimates under certain conditions, but it assumes
that the system and measurement noises are Gaussian and that the system

73

dynamics are linear, which may not always be the case.

Particle filters, on the other hand, are a more flexible and powerful alter-
native to Kalman filters. They can handle nonlinear system dynamics and
non-Gaussian noises, and they can represent multi-modal probability distri-
butions. However, particle filters are more computationally intensive than
Kalman filters, and they require careful tuning of the number of particles
and the resampling strategy.

Bayesian networks are another type of data fusion algorithm that can
handle complex, nonlinear relationships between variables. They represent
the joint probability distribution over a set of variables, and they can in-
corporate prior knowledge about the relationships between these variables.
Bayesian networks can provide a more accurate and complete representation
of the system than Kalman filters or particle filters, but they are also more
computationally intensive and require more data to train.

The choice of data fusion algorithm depends on the specific requirements
of the system and the characteristics of the data. For a drone navigation
system, the accuracy and smoothness of the estimated trajectory are of
paramount importance, but the computational cost and speed of the system
are also critical considerations. More computationally intensive algorithms
may provide more accurate and smooth estimates, but they may also slow
down the system and increase the computational cost.

In the future, it would be interesting to explore the use of more computa-
tionally intensive data fusion algorithms in the context of drone navigation.
This could involve implementing and testing different algorithms, comparing
their performance in terms of accuracy, smoothness, computational cost, and
speed, and optimizing their parameters for the specific characteristics of the
drone and its sensors. It would also be interesting to investigate the use of
machine learning techniques for data fusion, such as deep learning algorithms
that can learn complex, nonlinear relationships from data.

In conclusion, the work presented in this thesis represents an important
step towards the development of more accurate and efficient navigation sys-
tems for drones. However, there is still much work to be done. The ex-
ploration of more computationally intensive data fusion algorithms, as well
as the integration of other types of sensors and the use of machine learning
techniques, will be crucial for further improving the accuracy and reliability
of drone navigation systems. [7, 8, 9].

74

7.2 Implementing YOLO Algorithm for Object
Recognition

The advent of Industry 4.0 has ushered in a new era of automation and data
exchange in manufacturing technologies. This revolution is characterized by
the integration of cyber-physical systems, the Internet of Things, and cloud
computing. Unmanned Aerial Vehicles (UAVs), or drones, play a pivotal role
in this transformation, particularly in the realm of data collection.

Drones equipped with advanced object recognition capabilities can sig-
nificantly augment the efficiency and effectiveness of industrial operations.
They can be utilized for tasks such as inventory management, where they
can swiftly and accurately count items in a warehouse, or for surveillance
purposes, where they can monitor and report unusual activities, thereby en-
hancing security.

The integration of the You Only Look Once (YOLO) algorithm into drone
systems can be a game-changer in this context. YOLO, an object detection
system targeted for real-time processing, can identify objects in a scene and
classify them into predefined categories. The latest iterations of this algo-
rithm, such as YOLO v3 or YOLOv8 mini, have demonstrated impressive
accuracy and speed, making them well-suited for implementation in drone
systems.

The integration of advanced object recognition algorithms like YOLO
into drone systems represents a promising avenue for future research and
development. As the capabilities of these algorithms continue to improve, so
too will the potential applications of drones in Industry 4.0 and beyond.

7.3 Use of Drone in High Magnetic Field En-
vironments

Intense magnetic fields can disrupt the functionality of a drone’s Inertial
Measurement Unit (IMU), a critical component for ensuring stability and
navigation. The IMU, which often incorporates a magnetometer, can be
substantially influenced by the presence of potent magnetic fields, resulting
in erroneous readings and potential flight instability.

Despite these hurdles, the potential advantages of deploying drones in
such environments are considerable. Drones could be employed for a mul-

75

titude of tasks, such as inspecting machinery in power plants, monitoring
conditions in scientific research facilities, or even executing tasks in environ-
ments that pose hazards to humans.

To effectively navigate these high magnetic field environments, drones
would likely necessitate specialized hardware and software. For example,
drones could be equipped with shielded IMUs or alternative navigation sys-
tems that are less prone to magnetic interference. In addition, sophisticated
algorithms could be devised to counteract the effects of magnetic fields on
the drone’s sensors, enhancing stability and navigation.

Moreover, machine learning techniques could be utilized to anticipate and
mitigate the effects of magnetic fields on the drone’s operation. By training
a model on data gathered from flights in high magnetic field environments,
it might be feasible to anticipate the impacts of these fields and adjust the
drone’s operation accordingly.

In addition to visual odometry, other methods could be explored for nav-
igation in extreme conditions. Techniques such as LIDAR-based navigation,
radar, or even acoustic sensors could provide alternative means of naviga-
tion when visual methods are not feasible. These alternative methods and
techniques could be tested to see if they can offer a robust solution for navi-
gation in high magnetic field environments, further expanding the potential
applications of drone technology.

7.4 Conclusions

This thesis has explored the development and implementation of a local-
ization strategy for Unmanned Aerial Vehicles (UAVs) operating in indoor
environments where GPS signals may not be reliable. The focus has been
on the use of visual odometry, leveraging a depth camera and other onboard
sensors to enhance localization accuracy under various conditions.

The cornerstone of this project has been the RTAB-Map ROS algorithm,
which has been used for state estimation. The parameters of this algorithm
have been carefully tuned to optimize the speed of state estimation while
maintaining an acceptable level of accuracy. To ensure smooth drone move-
ment, a Python script was developed to fuse data from RTAB-Map, Lidar,
and IMU using a filtering technique.

The drone, equipped with a Jetson Nano companion computer, a CubeO-
range with Ardupilot, and a Lidar, has been tested in an indoor GPS-denied

76

environment. The results have validated the effectiveness of the proposed
solutions, demonstrating that the drone can operate autonomously and nav-
igate smoothly in such environments.

This work has potential applications in security and inventory manage-
ment in factories, among others, contributing to the ongoing efforts to en-
hance the adaptability and flexibility of UAVs in the context of Industry
4.0.

Future work includes testing more computationally expensive forms of
data fusion algorithms and implementing a YOLO algorithm for object recog-
nition. The ultimate goal is to assist human operators in specific missions by
collecting and processing data, thereby enhancing operational efficiency and
safety in challenging indoor environments.

In conclusion, this thesis has demonstrated that with careful calibration
of algorithm parameters and effective data fusion techniques, it is possible
to enable autonomous indoor flight for UAVs using visual odometry tech-
niques, even in the absence of GPS. This contributes to the broader field of
autonomous systems and Industry 4.0, opening up new possibilities for the
use of UAVs in various industrial applications.

77

78

Bibliography

[1] Li, Z., & Zhou, Y. (2022). Feature Extraction and Matching Algorithm
Based on SURF and RANSAC in Monocular Visual Odometry. In 2022 7th
International Conference on Control, Automation and Robotics (ICCAR)
(pp. 1-5). https://doi.org/10.1109/ICCAR54193.2022.9625170Link

[2] Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: a
paradigm for model fitting with applications to image analysis and auto-
mated cartography. In Communications of the ACM (Vol. 24, No. 6, pp.
381-395). https://doi.org/10.1145/358669.358692Link

[3] Liu, H., Chen, X., Zhang, Y., & Su, X. (2019). Visual
Odometry for UAVs: A Review. IEEE Access, 7, 102390-102410.
https://ieeexplore.ieee.org/document/8754671Link

[4] Angladon, V., Gasparini, S., & Charvillat, V. (2018). Video Dataset of
Driving Scenes with Synchronized Visible and Thermal Infrared Videos.
In Proceedings of the 9th ACM Multimedia Systems Conference (pp. 423-
428). https://dl.acm.org/doi/10.1145/3204949.3208124Link

[5] Li, R., Wang, S., Long, Z., & Gu, D. (2019). Undirect: A
Novel Method for Stereo Visual Odometry Estimation by Using Direct
Method to Solve the Scale Problem. arXiv preprint arXiv:1903.02046.
https://arxiv.org/abs/1903.02046Link

[6] Wang, R., Schworer, M., & Cremers, D. (2020). Stereo DSO:
Large-Scale Direct Sparse Visual Odometry with Stereo Cam-
eras. International Journal of Computer Vision, 128, 1014-1027.
https://link.springer.com/article/10.1007/s11263-019-01242-2Link

[7] Zhang, Z., & Scaramuzza, D. (2018). A Tutorial on Quantitative Tra-
jectory Evaluation for Visual(-Inertial) Odometry. In 2018 IEEE/RSJ In-

79

ternational Conference on Intelligent Robots and Systems (IROS) (pp.
7244-7251). IEEE. https://ieeexplore.ieee.org/document/8593949Link

[8] Arroyo, R., Gonzalez, D., & Ollero, A. (2014). Fusion of Visual and
Inertial Data for Robust RGB-D SLAM. In 2014 IEEE International
Conference on Robotics and Automation (ICRA) (pp. 5556-5563). IEEE.
https://ieeexplore.ieee.org/document/6907746Link

[9] Zhang, Z., Scaramuzza, D., & Davison, A. (2020). Tightly-Coupled Fu-
sion of Global Pose and Inertial Measurements for Robust Monocular
Visual-Inertial Estimation. IEEE Transactions on Robotics, 36(4), 1003-
1019. https://ieeexplore.ieee.org/document/9099040Link

[10] Anzalone, S. M., & Dunlap, D. D. (2016). A comparison of monocular
and stereo visual FastSLAM implementations. In 2016 14th International
Conference on Control, Automation, Robotics and Vision (ICARCV) (pp.
1-6). IEEE. doi:10.1109/ICARCV.2016.7838702

[11] J. Szrek, P. Trybała, M. Góralczyk, A. Michalak, B. Ziętek, and R.
Zimroz, "Accuracy Evaluation of Selected Mobile Inspection Robot Local-
ization Techniques in a GNSS-Denied Environment," Sensors, vol. 21, no.
1, p. 141, 2021. https://doi.org/10.3390/s21010141

[12] Z. Menghan, L. Zitian and S. Yuncheng, "Optimization and Compara-
tive Analysis of YOLOV3 Target Detection Method Based on Lightweight
Network Structure," 2020 IEEE International Conference on Artificial In-
telligence and Computer Applications (ICAICA), 2020, pp.

[13] L. Fusini, T. A. Johansen and T. I. Fossen, "Dead reckoning of a fixed-
wing UAV with inertial navigation aided by optical flow," 2017 Interna-
tional Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL,
USA, 2017, pp. 1250-1259, doi: 10.1109/ICUAS.2017.7991433.

[14] D. B. Jeong and N. Y. Ko, "Dead Reckoning of a Mobile Robot in
2-Dimensional Special Euclidean Group," 2022 22nd International Confer-
ence on Control, Automation and Systems (ICCAS), Jeju, Korea, Republic
of, 2022, pp. 1069-1071, doi: 10.23919/ICCAS55662.2022.10003795.

[15] S. Chandrachary, Introduction to 3D SLAM with RTAB-Map, 2021.
[Online]. Available: https://shivachandrachary.medium.com/introduction-
to-3d-slam-with-rtab-map-8df39da2d293. [Accessed: July 2, 2023].

80

.1 Appendix

Python Code

#!/ usr / b in /env python3

import rospy
from sensor_msgs . msg import Imu , Range
from nav_msgs . msg import Odometry
import math
from c o l l e c t i o n s import deque
import numpy as np
from matp lo t l i b import pyplot as p l t
from mpl_toolk i ts . mplot3d import Axes3D
from geometry_msgs . msg import
PoseWithCovarianceStamped , PoseStamped , Quaternion , Pose

last_known_position = None

Function to conver t quatern ion to eu l e r
def euler_from_quaternion (x , y , z , w) :

t0 = +2.0 ∗ (w ∗ x + y ∗ z)
t1 = +1.0 − 2 .0 ∗ (x ∗ x + y ∗ y)
ro l l_x = math . atan2 (t0 , t1)

t2 = +2.0 ∗ (w ∗ y − z ∗ x)
t2 = +1.0 i f t2 > +1.0 else t2
t2 = −1.0 i f t2 < −1.0 else t2
pitch_y = math . a s in (t2)

t3 = +2.0 ∗ (w ∗ z + x ∗ y)
t4 = +1.0 − 2 .0 ∗ (y ∗ y + z ∗ z)
yaw_z = math . atan2 (t3 , t4)

return rol l_x , pitch_y , yaw_z # in radians

81

def get_quaternion_from_euler (r o l l , p itch , yaw) :
qx = np . s i n (r o l l /2) ∗ np . cos (p i t ch /2) ∗ np . cos (yaw/2)
− np . cos (r o l l /2) ∗ np . s i n (p i t ch /2) ∗ np . s i n (yaw/2)

qy = np . cos (r o l l /2) ∗ np . s i n (p i t ch /2) ∗ np . cos (yaw/2)
+ np . s i n (r o l l /2) ∗ np . cos (p i t ch /2) ∗ np . s i n (yaw/2)

qz = np . cos (r o l l /2) ∗ np . cos (p i t ch /2) ∗ np . s i n (yaw/2)
− np . s i n (r o l l /2) ∗ np . s i n (p i t ch /2) ∗ np . cos (yaw/2)

qw = np . cos (r o l l /2) ∗ np . cos (p i t ch /2) ∗ np . cos (yaw/2)
+ np . s i n (r o l l /2) ∗ np . s i n (p i t ch /2) ∗ np . s i n (yaw/2)

return Quaternion (x=qx , y=qy , z=qz , w=qw)

class DroneState :
def _init_ (s e l f) :

s e l f . s t a t e = np . array ([0 , 0 , 0 , 0 , 0 , 0 , 1] , dtype=f loat)
s e l f . imu_acc_deque_x = deque (maxlen=5)
s e l f . imu_acc_deque_y = deque (maxlen=5)
s e l f . last_time = None
s e l f . dt = 0
s e l f . bias_x = None
s e l f . bias_y = None
s e l f . bias_z = None
s e l f . b i a s_ro l l = None
s e l f . b ias_pitch = None
s e l f . bias_yaw = None
s e l f . bias_saved = False
s e l f . path = {"x" : [] , "y" : [] , " z" : [] }
s e l f . yaw_bias = None
s e l f . pub = rospy . Pub l i she r
(’ drone_state ’ , PoseStamped , queue_size=10)
s e l f . l idar_range_deque = deque (maxlen=5)

def publ i sh_state (s e l f) :
msg = PoseStamped ()

82

msg . header . stamp = rospy . Time . now()
msg . header . frame_id = "drone"

msg . pose . p o s i t i o n . x = s e l f . s t a t e [0]
msg . pose . p o s i t i o n . y = s e l f . s t a t e [1]
msg . pose . p o s i t i o n . z = s e l f . s t a t e [2]

msg . pose . o r i e n t a t i o n . x = s e l f . s t a t e [3]
msg . pose . o r i e n t a t i o n . y = s e l f . s t a t e [4]
msg . pose . o r i e n t a t i o n . z = s e l f . s t a t e [5]
msg . pose . o r i e n t a t i o n .w = s e l f . s t a t e [6]

s e l f . pub . pub l i sh (msg)

def update (s e l f , msg , data_type) :
i f s e l f . last_time i s None :

s e l f . last_time = msg . header . stamp

s e l f . dt = (msg . header . stamp − s e l f . last_time) . to_sec ()

i f data_type == "odom" :

s e l f . s t a t e [0] = msg . pose . pose . p o s i t i o n . x
s e l f . s t a t e [1] = msg . pose . pose . p o s i t i o n . y

e l i f data_type == "imu" :
r o l l , p i tch , yaw = euler_from_quaternion
(msg . o r i e n t a t i o n . x ,
msg . o r i e n t a t i o n . y ,
msg . o r i e n t a t i o n . z ,
msg . o r i e n t a t i o n .w)

Save b i a s va l u e s i f not saved ye t
i f not s e l f . bias_saved :

s e l f . bias_x = msg . l i n e a r_a c c e l e r a t i o n . x
s e l f . bias_y = msg . l i n e a r_a c c e l e r a t i o n . y
s e l f . bias_z = msg . l i n e a r_a c c e l e r a t i o n . z

83

s e l f . b i a s_ro l l = r o l l
s e l f . b ias_pitch = pi t ch
s e l f . bias_yaw = yaw
s e l f . bias_saved = True

Sub t rac t b i a s va l u e s from read ings
acc_x = msg . l i n e a r_a c c e l e r a t i o n . x − s e l f . bias_x
acc_y = msg . l i n e a r_a c c e l e r a t i o n . y − s e l f . bias_y
acc_z = msg . l i n e a r_a c c e l e r a t i o n . z − s e l f . bias_z
r o l l −= s e l f . b i a s_ro l l
p itch−=s e l f . b ias_pitch
yaw−=s e l f . bias_yaw

Add the ad ju s t ed a c c e l e r a t i o n data to the deques
s e l f . imu_acc_deque_x . append (acc_x)
s e l f . imu_acc_deque_y . append (acc_y)

Update r o l l , p i t ch , yaw r e g a r d l e s s o f
whether acce l e romete r r ead ings are a v a i l a b l e
quatern ion= get_quaternion_from_euler (r o l l , p i tch , yaw)

s e l f . s t a t e [3] = quatern ion . x
s e l f . s t a t e [4] = quatern ion . y
s e l f . s t a t e [5] = quatern ion . z
s e l f . s t a t e [6] = quatern ion .w

Only update x and y p o s i t i o n s i f acce l e rometer read ings
are a v a i l a b l e
i f s e l f . imu_acc_deque_x and s e l f . imu_acc_deque_y :

s e l f . s t a t e [0] += (s e l f . moving_average
(s e l f . imu_acc_deque_x) ∗ s e l f . dt ∗∗2)/2
s e l f . s t a t e [1] += (s e l f . moving_average
(s e l f . imu_acc_deque_y) ∗ s e l f . dt ∗∗2)/2

e l i f data_type == " l i d a r " :

84

Add LIDAR reading to deque
s e l f . l idar_range_deque . append (msg . range)
Only update z p o s i t i o n i f LIDAR read ings are a v a i l a b l e
i f s e l f . l idar_range_deque :

s e l f . s t a t e [2] = s e l f . moving_average
(s e l f . l idar_range_deque)

s e l f . last_time = msg . header . stamp

s e l f . path ["x"] . append (s e l f . s t a t e [0])
s e l f . path ["y"] . append (s e l f . s t a t e [1])
s e l f . path ["z"] . append (s e l f . s t a t e [2])
s e l f . pub l i sh_state ()

def record_state (s e l f , event) :
s e l f . path ["x"] . append (s e l f . s t a t e [0])
s e l f . path ["y"] . append (s e l f . s t a t e [1])
s e l f . path ["z"] . append (s e l f . s t a t e [2])

def update_and_save_path (s e l f , event) :
s e l f . update ("odom")
s e l f . update ("imu")
s e l f . update (" l i d a r ")
s e l f . path ["x"] . append (s e l f . s t a t e [0])
s e l f . path ["y"] . append (s e l f . s t a t e [1])
s e l f . path ["z"] . append (s e l f . s t a t e [2])

def moving_average (s e l f , vec , n=5):
i f len (vec) > n :

vec . pop (0)
return np . mean(vec)

def print_and_plot_state (s e l f) :
Print s t a t e
print (np . round(s e l f . s ta te , 5))

Plot t r a j e c t o r y
f i g = p l t . f i g u r e ()

85

ax = f i g . add_subplot (111 , p r o j e c t i o n=’ 3d ’)
ax . p l o t (s e l f . path ["x"] , s e l f . path ["y"] , s e l f . path ["z"])
ax . s e t_x labe l (’X ’)
ax . s e t_y labe l (’Y ’)
ax . s e t_z l abe l (’Z ’)
p l t . show ()

i f _name== "main_" :
rospy . init_node (’ s tate_est imator ’)

drone = DroneState ()

def odom_callback (msg) :
drone . update (msg , "odom")

def imu_callback (msg) :
drone . update (msg , "imu")

def l i d a r_ca l l ba ck (msg) :
drone . update (msg , " l i d a r ")

rospy . Subsc r ibe r ("/rtabmap/odom" , Odometry , odom_callback)
rospy . Subsc r ibe r ("/mavros/imu/data" , Imu , imu_callback)
rospy . Subsc r ibe r ("/mavros/ d i s tance_sensor / rangef inder_pub"
, Range , l i d a r_ca l l ba ck)

rospy . Timer (rospy . Duration (1 . 0 / 3 0 . 0) , drone . record_state)

try :
rospy . sp in ()

except KeyboardInterrupt :
rospy . signal_shutdown (’ In t e r rupted ’)

f ina l ly :
drone . print_and_plot_state ()

86

