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Abstract

Human Sleep is the cyclic repetition of states characterized by different processes
which play an important role in a wide range of activities, such as restoring
the body’s energy as well as supporting memory consolidation, and clearance of
metabolic waste products generated by awake brain neural activity. It is mainly
divided into two macro-stages, namely Rapid-Eye movement (REM) sleep and non-
Rapid-Eye movement (NREM) sleep which, accordingly to the American Academy
of Sleep Medicine (AASM) guidelines, is further characterized by three stages N1,
N2, and N3 (or Slow Wave Sleep).

In recent years, Sleep Disorders got the researchers’ attention and some studies
demonstrated a strong correlation with some types of Neurodegenerative Disease
pathogenesis. Remarkably, Idiopathic REM Sleep Behavior Disorder (iRBD) shows
the strongest correlation with the family of α-synucleinopathies, e.g. Parkinson’s
Disease (PD), Dementia with Lewy Bodies (DLB), and Multiple System Atrophy
(MSA), and it is supposed to represent an early symptom of these neurodegenerative
conditions with particularly high rate of phenoconversion into PD (up to 80% after
14 years). Recent studies also highlighted the potential role of disturbed Slow Wave
Sleep (SWS) as a predictive biomarker of neurodegenerative processes that involve
both PD and Dementia.

This work aims to overcome the limits of the to-date available diagnostic tools
proposing a fully-automatic EEG-based strategy able to detect RBD exploiting
segments recorded during both REM and SWS sleep. Supervised Machine Learning
models were trained and tested in a Leave-One-Out cross-validation framework,
obtaining values of accuracy up to 91% and of sensitivity up to 94% (RBD class) and
hence highlighting REM and SWS microstructures capabilities as RBD biomarkers.
These results point to the potential of an EEG-based, low-cost, automatic RBD
detection system which can be used in early diagnosis of neurodegeneration in order
to spot prone individuals, and allowing them to join clinical trials of neuroprotective
therapies to halt or at least delay the progression.

The last part of the work concerns the development of a three-stages semi-
supervised-based method to qualify REM Sleep without Atonia (RSWA) as an
intermediate pathological state supporting a finer characterization of the neurode-
generative progression from Healthy to RBD. The achieved values of Rand-Index
(0.97) and Clustering Purity (0.99) confirm the existence of peculiar RSWA EEG-
patterns as well as suggest the reliability of the process as a basis from which to
carry out deeper analysis.
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Chapter 1

Sleep and REM Sleep
Behavior Disorder

From a physiological perspective, sleep is the cyclic succession of states characterized
by different physiological, biochemical, and psychological processes resulting in a
complex neurological condition. Although its exact function is not totally explored
yet, it is possible to state that the main role played by sleep concerns providing
rest and restoring the body from an energy level and homeostatic point of view
as well as supporting memory consolidation, and clearance of metabolic waste
products generated by awake brain neural activity. Spending a sufficient amount
of time in sleep is essential and sleep deprivation, resulting both from lifestyle or
sleep disorders, may negatively affect different processes such as attention, blood
pressure regulation, immune control, hormone production, and memory, worsening
physical and mental health and bringing to a wide spectrum of causes ranging from
short-term (impaired attention) to long-term consequences (neurological disorders,
strokes, and depression)[1], [2]. In general it is estimated that about one-third of
life is spent sleeping even if there is a wide variation in quality and amount among
individuals, based on various factors like age, sex, and habits.

1.1 Sleep Macrostructures
Based on physiological Polysomnographic measurements involving Electroencephalog-
raphy (EEG), Electrooculography (EOG), and Electrocardiography (EKG) normal
human sleep is divided into two macro-stages (sleep macrostructures) with indepen-
dent function and control mechanisms, namely non-Rapid-Eye movement (NREM)
sleep and Rapid-Eye movement (REM) sleep which alternate defining sleep cycles
that in adult humans can last an average of 90-110 minutes for a total of 4-6 cycles
per night.
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Sleep and REM Sleep Behavior Disorder

Figure 1.1: Sleep cycle division.
https://www.sleepfoundation.org/stages-of-sleep/nrem-sleep

In physiological conditions, NREM sleep accounts for about 75% of the total
sleep time and according to American Academy of Sleep Medicine (AASM) is
subdivided into three stages N1, N2, and N3 or Slow Wave Sleep (SWS) while REM
sleep (R) accounts for the remaining 25% (according to the old RK the stages are
more finely divided into N1-N4 and R). Normally each cycle begins in NREM sleep
starting with N1 and switching to deeper stages (N2, and then N3), before finally
reaching REM sleep. In healthy adult humans the first one-third of sleep is mainly
dominated by SWS while the last one-third by REM sleep [3] as it is possible to
notice by analyzing a Hypnogram (Figure 1.2) i.e. the Medical representation of
the cyclic progression of the various sleep stages over time.

Figure 1.2: Hypnogram of physiological sleep.

From the EEG analysis, each sleep stage can be associated with a specific
spectral power content, characterized by frequencies and amplitudes of the brain
waves which occupy the following bands: δ(0.5-4 Hz, 20-100 uV), θ(4-8 Hz, 10 uV),
α(8-13 Hz, 2-100 uV), β(13-30 Hz, 5-10 uV), and γ(>30 Hz, <2 uV).

2



Sleep and REM Sleep Behavior Disorder

1.1.1 NREM

During NREM sleep, EEG waves show increased voltage and lower frequency
components as the sleep goes from N1 to N3, representing progressively deeper sleep
stages characterized by a reduced responsiveness to external stimuli. Throughout
the deeper phases the muscles are relaxed, the heart rate and blood pressure decline,
while the gastrointestinal mobility and the parasympathetic activity become higher.

N1 (5% of sleep) is the lightest stage of sleep and is mainly characterized by
low-amplitude mixed-frequency activity (4-7Hz). During this stage muscle tone is
present and breathing rate is regular.

In N2 (45% of the sleep) the heart rate and the temperature drop, and charac-
teristic structures such as K-complexes (long δ waves) and Sleep Spindles (powerful
bursts in β band) are present, coupled or alone. Different studies suggest that these
structures play an important role in memory consolidation while only the former
has been shown to perform a sleep stabilization function [4].

N3 (25% of sleep) is the deepest stage of sleep with activity in δ band, where
the body repairs and regrows tissues as well as builds bones and muscles and
strengthens the immune system. This stage is the most difficult to interrupt with
subjects awoken during this phase experiencing transient mental fogginess (sleep
inertia) and moderately impaired mental performances for up to one hour.

Figure 1.3: Typical brain waves of NREM [5].

3
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1.1.2 REM
REM (25% of sleep) contains low-amplitude mixed-activity in almost all the
fundamental frequency bands. It is associated with the most intense dreaming
activity and it is not considered a restful stage. While REM EEG activity presents
similarities with wake (for this reason is also said paradoxical sleep) (Figure 1.4),
muscle activity is almost absent (atonia) due to brainstem-mediated inhibition
of motor neurons, except for peripheral muscle twitches, burst-like saccadic eye
movements, and diaphragmatic breathing muscles involved in irregular breathing
rate. Moreover, phasic swings in blood pressure and heart rate are present as well
as potentially a few periods of apnoea and hypopnoea [2].

Figure 1.4: Comparison of Awake, NREM and REM wave shapes [6].

This stage usually starts at the end of the first sleep cycle and gets longer
throughout the night, lasting about ten minutes in the first cycle up to one hour
in the final one after which people tend to awaken spontaneously [4]. The large
amount of REM sleep in mammals led to different hypotheses about the importance
of its role in brain maturation, concerning the development of the sensorimotor
system and ranging from “basic mechanisms such as regulation of brain temperature,
modulation of receptor sensitivity, and synaptic plasticity to more complex processes
such as procedural and declarative learning, emotional memory processing, or the
development of consciousness” [7].

Although commonly treated as a homogeneous state mainly characterized by
desynchronized EEG activity, REM is based on the alternation of two different

4
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microstructures namely phasic and tonic REM periods which in recent years have
attracted the attention of researchers thanks to their relevance in the study of sleep
disorders. Phasic REM (FREM) periods are mainly characterized by bursts of eye
movements (REMs) related to so-called ponto-genicular-occipital (PGO) waves,
contraction of the ear muscles, myoclonic (brief, involuntary, and irregular) twitches
of skeletal muscles, sawtooth waves (triangular, 2-4Hz), and irregularities in both
respiratory and cardiac activity. On the other hand, tonic REM (TREM) periods
concern longer and quiescent segments mainly present in between periods of phasic
activity and are characterized by feature muscle atonia and no significant ocular
movements. Although the latter seems a less activated state, studies demonstrated
its higher behavioral alertness and stimuli responsiveness, lower arousal threshold,
as well as external information processing, in contrast to the phasic state that
appears pretty incompatible with sensory stimulation (high arousal threshold) as
this may inhibit REMs and promote the transition to the tonic state suggesting
phasic REM as the one linked to intense dream experiences [7]. These findings
seem coherent with the studies on EEG Power Spectral Density (PSD) in REM
microstates characterized by a decrease in α-β activity and a predominance of
activity in δ and θ bands (2-8 Hz) for FREM, with the last presumably involved in
memory consolidation processes and neuronal plasticity, as well as a prevalence in
α and β bands (7-16 Hz) for TREM [8], [9]. Another interesting finding concerns
the FREM power relative increase in higher frequencies included in the γ band,
assumed “to reflect intense sensorimotor, emotional and cognitive processes that
individuals experience in the form of vivid dreams” [7]. The coexistence of both slow
frequency oscillations (sensory disconnection) and high-frequency power (intense
cortical activity) in FREM activity as well as the contrast between the quiescent
character of TREM and its high stimuli responsiveness, suggests the paradoxical
denomination attributed to REM can be extended also to its microstates.

The focus on the heterogeneity of REM through the partition into its two sub-
states may be relevant in some diagnostic contests since they show very recognizable
characteristics helping the classification of different sleep disorders, like REM sleep
behavior disorder (RBD) [8]. For example, RBD patients show a loss of distinction
between the brain’s tonic and phasic REM sleep activity as well as a reduced
decrease in β activity during phasic compared to tonic REM sleep suggesting “a
reduction of the normal arousal suppression that protects active dreaming states”
[9].

1.2 Sleep Disorders
Sleep Disorder is a term used to describe each anomaly that results in changes in
the physiologic way to sleep and in its macrostructure, reducing the proportion
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of restorative sleep and thus worsening the Quality of Life (QoL). They can be
caused by a wide spectrum of physical (e.g. respiratory problems, chronic pain),
psychic (e.g. depression, stress, and anxiety disorders), environmental, circadian
(e.g. working the night shift), genetic, and aging factors, as well as the use of
medications like antidepressants. Subjects with sleep disorders often experience
struggle to stay awake when inactive, difficulties in paying attention, reduced
work/school performances, and memory issues.

Although the current work will focus on a specific type of sleep disorder i.e.
RBD, it can be useful to know other families of sleep anomalies to contextualize the
general framework and to highlight elements that may be useful for the discussion.
Following the International Classification of Sleep Disorders 3 ed. (ICSD)-3 more
than 80 different Sleep Disorders exist, and they are mainly classified into seven
sections [10], [11]:

1. Insomnia: it includes difficulty starting and/or maintaining sleep despite
adequate time and opportunity to do so, which results in an increased propor-
tion of nocturnal wakefulness and a worse sleep quality, bringing to daytime
impairment. In ICSD-2 insomnia is divided into primary (isolated from any
possible other overt disorder) and secondary or comorbid (due to drugs, medi-
cal conditions, or neurological disorders) although in ICSD-3 these diagnoses
are grouped under the name of “chronic insomnia”, next to “short-term insom-
nia” and “other insomnia”. Insomnia is mainly associated with daily activities
which are incompatible with good quality sleep like irregular sleep onset and
wake times, stimulation of activities before bedtime, or the usage of substances
such as alcohol and caffeine near sleep time

2. Sleep-related breathing disorders: this family comprises a large variety
of disorders like Central Sleep Apnea Syndrome (CSAS) which includes all
problems in which respiratory effort diminishes or is absent, cyclically or
intermittently, as a result of dysfunction in the central nervous system due (in
its secondary form) to pathological and environmental causes (Cheyene-Stokes
breathing pattern, high-altitude periodic breathing), medical disorders, or
medication/substance use. When CSAS is primary, its causes are unknown and
recurrent episodes of cessation of sleep-breathing without associated ventilatory
effort occur with patients complaining of excessive daytime sleepiness, insomnia,
or difficulty breathing during sleep.
Another category belonging to the current family concerns Obstructive Sleep
Apnea Syndromes (OSAS) characterized by obstruction in the airway and
resulting in increased breathing effort and non-adequate ventilation. Due to
different diagnosis and treatment requirements, OSAS are classified in adult
and pediatric forms. OSAS in adults are marked by frequent episodes of apnea
(cessation of breathing) or hypopneas (partial upper airway obstruction) and
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are thus associated with reduced blood saturation which causes snoring and
sleep disruption (due to increased breathing effort), resulting in excessive
daytime sleepiness or insomnia. Pediatric OSAS features are similar to the
adult ones, but cortical arousals do not occur, possibly due to a higher arousal
threshold.

Sleep-related hypoventilation/hypoxemia syndromes comprise six disorders
whose hallmark is hypoventilation or hypoxemia during sleep (elevated ar-
terial carbon dioxide pressure PaCO2 and reduced oxygen saturation). The
idiopathic form concerns alveolar hypoventilation “resulting in sleep-related
arterial oxygen desaturation in patients with normal mechanical properties
of the lungs” while congenital central alveolar hypoventilation syndrome is
related to a failure in automatic central control of breathing in infants. The
other four subtypes of this syndrome are related to medical conditions such as
obesity, hypothalamic dysfunction, medical disorders (pulmonary parenchymal
or vascular pathologies), or medication or substances.

3. Central disorder of hypersomnolence: it is a group of disorders character-
ized by excessive daytime sleepiness (inability to stay awake and alert during
the primary waking periods of the day) not attributable to other sleep disor-
ders, specifically those resulting in nocturnal sleep disturbance or a misaligned
circadian rhythm. The main exponent of this subgroup is Narcolepsy divided
into “Narcolepsy type 1” and “Narcolepsy type 2” (ICSD-3) whose main cause
is a deficiency in the Hypocretin (or Orexin) levels which in physiological
conditions regulate circadian rhythm. Other forms of Hypersomnia exist, like
idiopathic Hypersomnia, caused by medical disorders, due to medication or
substances, and associated with psychiatric disorders.

4. Circadian rhythm sleep-wake disorders: all the disturbs belonging to this
category share a common underlying chronophysiologic basis i.e. persistent or
recurrent mismatch between the sleep pattern experienced by the patient and
the one desired or suggested as the societal norm, making it impossible for the
subject to sleep when desired, needed or expected and resulting in Insomnia
and excessive sleepiness. The wake-sleep schedule disorders can be primary
(malfunction of the biological clock per se) or they could be secondary when
associated with environmental causes such as lack of synchronized factors
(light, physical and social activities), as well as jet lag, shift work, personal
behavior, or medical conditions (neurological disorders) [1]. The most common
types of circadian disorders are Delayed Sleep-Phase Syndrome (DSPS) and
Advanced Sleep-Phase Syndrome (ASPS) which cause patients to fall asleep
late (early respectively) and rise late (early) and more frequently brought on
by the person’s decision to stay up late or by setting an earlier bedtime.
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5. Parasomnias: these Sleep Disorders are undesired occurrences that pre-
dominately happen during sleep rather than being anomalies of the systems
responsible for sleep and awake states per se. They consist of abnormal
sleep-related movements, emotions, behaviors, dreaming, perceptions, and
autonomic nervous system functioning which result from disorders of arousal
and transitions of sleep stages. Autonomic nervous system changes and skele-
tal muscle activity are the main features of this category of sleep disorders.
Parasomnias are divided into three clusters i.e. NREM related, REM related,
and “other”.
NREM-related are linked to disorders of arousal commonly from SWS (Confu-
sional arousal, Sleepwalking, Sleep terrors with the last two often coexisting
together, blending in a unique phenomenon) or to activity like recurrent eating
and drinking episodes occurring during arousals from nocturnal sleep.
REM-related comprise REM Sleep Behavior Disorder which involves the
absence of normal muscle atonia and abnormal and injurious behavior during
REM sleep, Recurrent Isolated Sleep Paralysis characterized by the inability
to perform voluntary movements and by hallucinatory experiences (occurs
in REM during sleep onset or at awakening), and Nightmare Disorder which
brings patients to wake up with intense anxiety, fear, and other negative and
involving feelings (occurs in REM and N2). In contrast to arousal disorders
which in the majority of cases involve healthy individuals, many cases of REM-
related disorders arise from serious neuropathology (RBD) or psychopathology.
The last category concerns all parasomnias not fitting the previous classification
and comprises disorders in which the integrative components of consciousness,
memory, identity, and perception of the environment are disrupted, sleep
enuresis, Exploding Head Syndrome, sleep-related hallucinations, parasom-
nias due to drugs or substances, or due to underlying psychiatric disorders
(unspecified parasomnia).

6. Sleep-related movement disorders: are characterized by sleep-related
relatively simple, elementary, and stereotyped movements, which may result
in arousal and hence sleep disturbance and decreased sleep quality. The
most common are Periodic Limb Movement Disorder (PLMD) concerning
repetitive, highly stereotyped limb movement, and Restless Legs Syndrome
(RLS) which consists of a strong urge to move the legs accompanied often by
painful or uncomfortable symptoms which can be relieved through walking or
leg movements. Sleep-related cramps, sleep-related bruxism, and sleep-related
rhythmic movement disorder (during drowsiness or light sleep) belong to this
subgroup as well as unspecified, due to medical disorders and to a drug or
substance sleep-related movement disorders. Head and limb injuries can be
the result of violent movements.
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7. Other Sleep Disorders: all the Sleep-related Disorders which not fit inside
the above classification.

1.2.1 REM Sleep Behavior Disorder
RBD is a type of Parasomnia of the REM stage mainly characterized by the loss of
the normal REM sleep muscle atonia which manifests itself through vocalization
and dream enactment [12]. The dream content reported by patients is often vivid,
violent, and emotionally involving, concerning recurrent themes of being chased
or protecting themselves or a loved one from an attack, which makes the motor
activity range from elementary and simple limb twitches to complex and violent
movements (punching or kicking) that may represent a danger for patients and
also for their sleeping partners [13]. The dream enactment occurrences, if present,
can vary in frequency (nightly to annually) and appear at least 90 minutes after
sleep onset and more often during the last half of the sleep.

Population-based, although not numerous epidemiologic studies on RBD suggest
a prevalence of 0.5-1.25% in the general population which remarkably increases in
the elderly population where RBD turns out to be present between 5% and 13%
in adults aged 60-99 years old. Among the older adult population, approximately
60% of cases are idiopathic, or isolated RBD (iRBD) while 40% are more likely to
be suggestive of an underlying neurological disorder [14]. The incidence of RBD is
higher in the male population after 50 years old with a male-to-female predominance
which can rise to 8:1 in some sleep-clinic ascertained cohorts, although these results
can be affected by biases related to the often more aggressive and violent RBD
episodes in male with respect to female population [15], and to the fact older
adult females RBD is less likely to be witnessed considering that statistically
they outlive their male bed partners more frequently. The distribution tends
to be equal between males and females under 50 years with RBD female adults
more commonly associated with autoimmune disorders, antidepressant medication
exposure, or narcolepsy [16]. Some works reported links between RBD in childhood
and narcolepsy with 30% of young subjects with narcolepsy type I having RBD
or idiopathic hypersomnia even if RBD in young children can be considered rare.
Patients with REM sleep without Atonia (RSWA) but without any overt clinical
RBD symptom are common, about 2% of the general population, 12% among
antidepressant exposed pones, and up to 25% in older men [14].

As mentioned before a prime feature of RBD is the intermittent loss of atonia
during REM sleep present instead in normal and healthy subjects both as a
protective measure to avoid acting of what one dreams and as a way to facilitate
the sleep-memory consolidation mechanisms. This physiologic motor activity
suppression during REM sleep is the result of multiple neuronal circuits located
in the brainstem which mainly originate in the pons and terminate in the spinal
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cord motor neurons, namely Sublaterodorsal Tegmental Nucleus (SLD) also called
Subcoeruleus Nucleus (SubC), and Ventromedial Medulla (VMM) forming what is
called REM sleep atonia circuitry (fig. 1.5) [17].

Figure 1.5: REM atonia circuitry schemes [17], [18].
REM atonia circuitry basic scheme [17] (left), comparison of pathways and circuits that regulate

atonia during Healthy/Control (H/C) REM sleep and RBD in the rodent brain [18] (right).

Different studies on animal models, post-mortem analysis, and diagnostic imaging
of case reports suggest the interruption or the disinhibition of these brainstem
areas preclude normal REM sleep paralysis thus highlighting them as the main
pathophysiological causes of RBD onset [14]. However this malfunction alone does
not account for the wide number of other non-motor symptoms seen in RBD which
seem instead somehow related to synuclein deposition in other brainstem nuclei
(Braak’s ascending model), suggesting that many aspects of neurodegeneration in
RBD are not clear yet [9]. The failure of the above-mentioned systems in secondary
RBD may be due to different factors like α-synuclein-based (formation of insoluble
protein aggregates within neurons or glial cells) or other neurological disorders
(lower prevalence), structural lesions of pontine regions (vascular, demyelinating,
and traumatic etiologies), narcolepsy (deficit of Orexin), medications (especially
antidepressant like Serotonin reuptake inhibitors and tricyclic antidepressants),
and autoimmune disorders which hence represent RBD risk factors.

RBD shows the strongest correlation with the so-called α-synucleinopathies, a
family of degenerative disorders related to intracellular accumulation due to the
non-correct disposal of α-synuclein. Secondary RBD is identified in 25-58% of
patients already diagnosed with Parkinson’s Disease (PD), up to 80% of those with
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Dementia with Lewy Bodies (DLB), and in 80-100% of those already diagnosed
with Multiple System Atrophy (MSA) [15]. Recent studies demonstrate iRBD is
a prodromal syndrome of some α-synuclein degeneration subtypes, representing
hence an early symptom of these neurodegenerative conditions, with a particularly
high rate of phenoconversion into PD and DLB [16] (more than 50% and 40%
respectively, after 10 years fig. 1.6). Longitudinal studies on patients diagnosed
with iRBD showed in fact that the risk of developing a neurodegenerative disease
was about 32% with a follow-up duration of approximately 5 years, and the most
frequent condition represented by Parkinson’s disease (44% of converters), followed
by Dementia with Lewy Bodies (25%), no better-specified Dementia (7%), Multiple
System Atrophy (5%), Mild Cognitive Impairment (3%), Alzheimer’s disease (3%)
and by other types of degenerative diseases (0.5%). The overall estimated conversion
risk for RBD is higher than 90% throughout a long-term follow-up (97% after 14.2
years) suggesting also a strong positive correlation between follow-up duration and
conversion rate [12].

Figure 1.6: Kaplan-Meier curve for RBD phenoconversion rate [12].
The Kaplan-Meier Curve represents the probability for a RBD patient to remain disease-free

after a certain follow-up time, stratified for different neurodegenerative diseases (can be
interpreted also as the risk of conversion from RBD to a neurodegeneration). For Parkinson’s

Disease this probability is halved after 10 years from RBD diagnosis.

These findings, confirmed by different studies involving video-Polysomnography
(vPSG), suggest iRBD features as early biomarkers for the onset of the above-
mentioned neurodegenerations, preceding often the characteristic neurological
manifestations of such disorders by several years. Early identification of patients

11



Sleep and REM Sleep Behavior Disorder

with RBD provides a unique opportunity to spot individuals who are prone to
develop α-synucleinopathy neurodegenerative disorders allowing them to join clinical
trials of neuroprotective therapies to stop or halt the progression at a point before
serious motor/cognitive consequences develop, or to postpone the emergence of
these symptoms. Moreover, it would allow contrasting RBD symptoms like injuries
by advising environmental measures to ensure bedroom safety or to reduce frequency
and severity of RBD episodes through an appropriate administration of medication,
overall improving the QoL of patients and their familiar [13].

Although the presence of this correlation seems clear, its nature should be further
investigated. In fact, RBD symptoms can rise years before (iRBD) or years after
(secondary RBD) such neurodegenerations highlighting two main plausible paths.
On one hand, iRBD progresses from RSWA to RBD that hence causing loss of sleep
architecture, sleep efficiency, and reduced restorative sleep, bringing consequences
like impairing daytime cognitive functions and other pathological problems like
a non-correct nocturnal clearance of α-synuclein, and other proteins implicated
in pathologies like PD and DLB. On the other hand, RBD can rise as effect of
lesioning of brainstem structures responsible for atonia during REM (SubC and
VMM) due to spreading α-synuclein pathology, which leads to impaired function in
related neuronal networks and impaired daytime cognitive functions [15]. Knowing
better these mechanisms may be important since there is evidence that patients
who convert from RBD to PD (PDRBD+) have α-synuclein pathology with a likely
greater pathological burden with respect to those who present neurodegeneration
without RBD prodrome, with the RBDPD+ phenotype characterized by faster
progression of cognitive impairment, less response to treatment, depression, anxiety,
autonomic dysregulation, and other non-motor symptoms.

1.2.2 Role of Slow Wave Sleep in Neurodegeneration
Based on the idea NREM sleep modulates the clearing of the brain from toxic
metabolites accumulated during the wake period and which may contribute to
neurodegenerative processes, some studies highlighted an interesting connection
between poor SWS quality (which causes a higher neuronal activity) and the
accumulation of Amyloid-β protein which if not cleared has proven to be correlated
with aging-symptoms of cognitive impairment and brain atrophy [19],[20], and with
a higher risk of developing cognitive decline in PD [21]. Two probable simultaneous
working mechanisms are suggested for explaining the correlation between sleep and
the accumulation of Amyloid-β: on one hand, Amyloid-β is removed from the brain
during sleep (glial-lymphatic system) while their creation also declines as a result
of decreased synaptic activity. On the other hand, if Amyloid-β is not sufficiently
removed from the brain or is created in large amounts as a result of prolonged
wakefulness or sleep disruption, it may raise the risk of cognitive impairment.
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Long-term studies suggested a negative correlation between Amyloid-β and
the SWS frequency below 1Hz (SOs microstructure) and a positive correlation
between Amyloid-β and the SWS frequency between 1-4Hz (SWA microstructure),
in the sense both a lower activity in SOs and a higher activity in SWA brings to
increased metabolite deposition in the long run [19]. These analyses thus highlight
the potential role of disturbed-NREM activity in the onset/worsening of some
brain disorders and suggest SWS microstructures as predictive biomarkers of some
neurodegenerative processes. Moreover, EEG analyses of the distribution of slow
wave amplitude performed during NREM sleep highlighted abnormal pattern in
RBD phenotype which did not show any reduction in δ and θ band activity as sleep
went from the first to the last cycle, in contrast to what occurs in healthy subjects
[9]. These results imply that SWS sleep homeostasis may be harmed when RBD is
present, suggesting EEG abnormalities during NREM exist and that together with
REM ones can be exploited to detect RBD.

1.3 How Sleep is Analyzed
The diagnosis of a certain number of sleep disorders (as well as the plain study
of sleep macrostructures and cycles) can be accomplished through a wide number
of methodologies, comprising clinical interviews based on history and physical
examination, questionnaires for the evaluation of strange and unusual sleep-related
behaviors as well as in-lab tests that help to quantify and analyze the presence and
the severity of the underlying pathology discriminating it from others which can
potentially mimic some features making the diagnosis challenging. History should
include details about sleep-wake habits, present or past medical, neurological, and
psychiatric illness, substance abuse, and even family history with a particular
focus on the frequency, type, and time of symptoms onset. It is important also to
interview the patient’s bed partner (or caregiver) since frequently sleep disorder-
related subjects cannot recall or be aware of abnormal behaviors. Completing
questionnaires can be useful to keep track of sleep habits and sleep hygiene, followed
by careful physical examination to document the evidence of some medical disorders
(respiratory, cardiovascular, endocrinological, or neurological) especially brain and
neuromuscular related [2].

1.3.1 Polysomnography
As an extension of the previously-mentioned analysis sequence, hospital/in-lab
sleep monitoring should be taken into consideration to highlight the presence of
primary conditions causing secondary (or comorbid) sleep disturbances as well as to
study the disorder itself. Among the most important monitoring methods it can be
possible to mention Multiple Sleep Latency Testing (MLST) which records multiple
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naps during the day, Maintenance of Wakefulness Testing (MWT) which determines
how long wakefulness can be maintained, and overnight Polysomnography (PSG)
which is the most comprehensive, and used laboratory test allowing to obtain
simultaneously records of different physiological variables like EEG, EMG, EOG,
EKG, airflow (nose and mouth), respiratory effort (Oxygen saturation), body
position, and considered the diagnostic gold standard for the most common sleep
disorders such as Insomnia, OSAS, RLS, Sleep Epilepsy, and Narcolepsy diagnosis
as well as essential for some diseases such as RBD (ICSD-3) [2]. Some sleep
disturbances require video recording (vPSG) to be confirmed. The complete
clinical guidelines about recommended PSG parameters, event measures, technical
specifications, and montage settings are described in detail in the AASM Manual
for the Scoring of Sleep and Associated Events of 2007 [22], updated in 2015.

Figure 1.7: Standard Polysomnography configuration [23].
Electroencephalography (EEG), measuring brain activity, Electrooculography (EOG), helping in

sleep staging, Electromyography (EMG), recording muscle tone in the chin and limbs,
Electrocardiography (EKG), measuring cardiac activity, and respiratory channels (which depict
airflow and effort with pulse oximetry, useful for detecting sleep-disordered breathing) make up a

standard PSG configuration [23].

Standard PSG analysis consists in reviewing each of the above-mentioned
parameters (and related reference values) following the AASM sleep disorders
scoring guidelines, on each of the 30s-epochs in which the total overnight record is
divided. Although it is usual practice to diagnose a sleep disorder based on a single
recording (about eight hours long), some authorities warn that more than one night
of recordings may be required so the patient can get used to novel surroundings
and sleep more naturally, reducing biases the environment may produce (first-night
effect). The most common polysomnographic parameters are Sleep onset latency
(normally less than 20 minutes), and Sleep efficiency (normally 85-90%) which
respectively indicate the time between lights are turned off and sleep onset, and the
ratio between sleep time and total time in bed, objectively assessing sleep quality.
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As far as PSG-related (Level I) EEG montage is concerned, the electrodes
position is determined according to 10-20 System criteria with a minimum of three
derivations (six electrodes), recommended to extract activity from the frontal (F),
central (C), and occipital (O) regions. AASM-advised electrodes (Figure 1.8, left)
are F4, C4, O2 (exploring), and M2 (reference) coupled forming the channels
F4-M1, C4-M1, and O2-M1 while taking into account F3, C3, and O1 referenced to
M2 as backups electrodes (F3-M2, C3-M2, and O1-M2). As alternative acceptable
derivations (Figure 1.8, right) Fz-Cz, Cz-Oz, and C4-M1 can be set, with backup
electrodes placed at Fpz, C3, O1, and M2 which can substitute respectively Fz, Cz,
Oz, and M1 in case of malfunction [24].

Figure 1.8: AASM electrodes guidelines (10-20 criteria) for standard PSG-related EEG
configuration [22].

1.3.2 Emerging Alternative Technologies
The fact patients around the world face significant obstacles (shortage of specialists,
heavy financial burden, and lengthy wait times) to receive vPSG when they
exhibit symptoms that could be related to sleep disorders, makes it exceedingly
difficult for neurologists to examine symptoms and establish a diagnosis in their
patients. To slightly alleviate this burden and improve early diagnosis in the at-risk
population, in the last years, different alternative methods have been studied and
implemented. One of the most common examples is related to home-based PSG
(type II) approaches with studies showing their reliability, efficiency, low-failure
rate, and robustness (with respect to hospital/in-lab PSG) on respiratory sleep
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disorders patients such as OSAS, as well as greater cost-effectiveness ratio. From
these studies, it is evident patients experience a more comfortable sleep (as far as
quality and quantity are concerned) in their home instead of hospital or laboratory
environments.

Some recent research focused on implementing new computer-based technologies
which offer lower cost, easier accessibility, and user-friendliness as Actigraphy which
exploits movement analysis and Artificial Intelligence (AI) technologies implemented
in a watch-styled non-invasive device, able to give a good measurement of sleep
patterns continuously over time (days and weeks). AI algorithms estimated sleep
parameters (e.g. total time sleep, sleep percentage, wake after sleep onset) are useful
for sleep disorder assessment, particularly when concerning sleep-wake disturbances
of circadian disorders.

Interesting recent studies compared sleep parameters obtained through smart-
phone accelerometers (in different settings configurations), commercial wrist ac-
celerometers, and actigraphy against PSG on sleep-disordered breathing subjects,
discovering good accordance between the different sources and evidencing there is
a need for more studies into alternative technologies for measuring sleep disorders
(such as iRBD), as it is possible that combining different sensors (none of which fits
the accepted guidelines diagnostic criteria) may yield the ideal PSG substitute [3].

1.4 RBD Diagnosis
The initial suspect of iRBD is usually raised by the patient’s bed partner who
has noticed some unusual behavior during sleep. This can make the diagnosis
problematic since there is the possibility for the subject to be left unattended
for many years in the case iRBD symptoms fluctuate, are considered medically
irrelevant, or if there is no bed partner at all. Misdiagnoses may occur due to
a lack of awareness of iRBD and/or symptoms that mimic other sleep disorders.
These factors may also contribute to diagnostic delay with recent studies revealing
31% of the patients do not receive a timely diagnosis of iRBD due to the failure
of their specialist to recognize symptoms (mean delay 8.7 years from symptom
onset). All these findings suggest thus the importance of clinical assessment when
a patient shows iRBD symptomatology since lack of initial recognition can reduce
the possibilities for management, neurodegenerative diseases (ND) identification,
and treatments [3].

RBD can be diagnosed through the evaluation of its main features like RSWA,
vocalization, and dream enactment behavior which represents the more evident
symptoms usually triggering the suspicion of RBD. The ICSD-3 produced by AASM
in association with the European, Japanese, and Latin American Sleep Research
Societies proposes the following RBD diagnostic criteria [25]:”
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1. Repeated episodes of sleep-related vocalization and/or complex motor behav-
iors.

2. These behaviors are documented by polysomnography to occur during REM
sleep or, based on clinical history of dream enactment, are presumed to occur
during REM sleep.

3. Polysomnographic recording demonstrates REM sleep without Atonia (RSWA).

4. The disturbance is not better explained by another sleep disorder, mental
disorder, medication, or substance abuse.”

These criteria should be necessarily satisfied and require history and physical
examination to verify the disease suspicion, then hospital/in-lab confirmation
through PSG (type I) to ensure definitive diagnosis of RBD, also distinguishing
it from other conditions which mimic RBD like non-REM parasomnias, OSAS,
PLMD, sleep-related-hypermotor epilepsy, or drug-induced RBD.

1.4.1 Screening Questionnaires
Unfortunately accessing PSG is problematic for most clinicians due to expense or
to the fact is unavailable in many locations, hence various questionnaires have been
developed to try to avoid PSG. Commonly used questionnaires aim at assessing the
symptoms which have arisen during the patient’s lifetime as well as their occurrence
frequency (RBDQ Hong Kong Sensitivity 98% and Specificity 87%, Mayo Sleep
Questionnaire Sensitivity 98% and Specificity 74%, RBD Single-Question Screen
Sensitivity 98% and Specificity 87%, RBD Screening Questionnaire Sensitivity 96%
and Specificity 96%, Innsbruck Questionnaire RBD-I Sensitivity 91% and Specificity
86%) and sometimes can be completed by bed partners, being more efficient in
cases where patients do not correctly or completely recall their dreams [16]. Some
questionnaires such as RBDSQ have been found with a specificity drop when
including patients with other sleep disorders, showing the low reliability of such
clinical step in differentiating iRBD from these states [3]. Moreover, recent studies
and evidence have highlighted that uncritical and non-expert use of questionnaires
may lead to results that in some cases turn out to be incoherent with PSG findings
producing high false-positive rates, thus suggesting they just should be used as
screening or for diagnosis of “probable RBD” and not as a sole diagnostic criterion
[25], emphasizing the irreplaceable importance of PSG evaluation.

1.4.2 RSWA Visual Scoring Methods
PSG can be often accompanied by video recordings (vPSG) in order to identify
iRBD by capturing RSWA and/or dream enactment, although evidence shows that
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even in severe RBD patients, the majority of motor events are small and involve
elementary movements, suggesting the dramatic “violent” behaviors are rare and
may be interpreted as the “tip of the iceberg”. While video analyses rely upon the
occurrences of these unpredictable, not always visible, and possibly rare events,
the PSG quantification through EMG has the advantage that RSWA exhibits high
night-to-night stability giving the possibility to adequately diagnose RBD even
through just a single-PSG night suggesting the promise for such a criterion [25].

RSWA is the polysomnographic hallmark of RBD and it is crucial for its diag-
nosis but may be also present in subjects without clinical symptoms or overt RBD
behavior like dream enactment (isolated RSWA) introducing further difficulties [17].
Although the significance of RSWA alone is uncertain some evidence suggests it is
a precursor of RBD representing in some way a prodromal form of REM disorder
helping though in predicting future neurodegenerations like α-synucleinopathies.
RSWA manifests through constant excessive muscle tone during REM sleep, re-
sulting in either (alone or coupled) REM sleep-related increased sustained (tonic)
activity in the chin EMG, intermittent (phasic) excessive activity in the chin or limb
EMG, or both [15]. The current in-use visual scoring approaches for PSG-based
RSWA quantification mainly exploit the differentiation between tonic and phasic
muscle activity although there is no general consensus about the definition of tonic
and phasic activity nor about how scores and cutoff values are computed. Following
AASM’s latest scoring manual [17]:”

• A 30s-epoch of REM sleep is defined as tonic when at least 50% of its duration
is related to a chin EMG amplitude greater than the minimum amplitude
present in NREM sleep.

• The phasic RSWA components are excessive transient muscle activity bursts
(in chin and limb EMG channels) lasting 0.1-5.0s with an amplitude at least 4
times higher with respect to the background EMG. A 30s REM sleep epoch
(divided into 3s mini epochs) is considered to contain excessive phasic activity
if at least 50% of these 3s mini epochs contain the above-mentioned bursts of
transient EMG activity.”

While AASM does not provide any established cut-off values for RSWA, other
methods like the currently in use in the clinic SINBAR proposed a slightly different
and more detailed definition of EMG activity division in tonic and phasic, suggesting
submentalis muscle and bilateral Flexor Digitorum Superficialis (FDS) as the best
muscle channels combination, as well as defining thresholds (EMG amplitude-based)
with the best specificity and sensitivity to identify RBD and distinguish RBD
patients from their controls, provided that other diagnostic clinical and videographic
criteria are fulfilled.

18



Sleep and REM Sleep Behavior Disorder

1.4.3 RSWA Semi-Automatic Scoring Methods
One of the main disadvantages of manual EMG quantification during PSG is that it
is time expensive and requires high technical demands on the scorer. For this reason,
recent studies have proposed automatic computed-assisted scoring approaches like
Ferri’s REM Atonia Index (RAI), which works just on the amplitude of the rectified
submentalis EMG signal in 1s-mini epochs reaching performances comparable to
that of visual methods. This score ranges from 0 (complete loss of atonia) and 1
(total atonia) and the proposed threshold under which RSWA can be defined is 0.8.
Despite the promise of simple indices and computer-assisted RSWA quantification
methods, stable raw data analysis and precise artifact elimination (instrumentation,
or patient movement) are necessary to avoid false positives which makes these
approaches semi-automatic rather than automatic, slowing down the process anyway
[25]. Like RSWA visual methods, computer-assisted ones exploit the EMG signal
amplitude thresholds, which create three main issues to the automation task [26]:

• Exogenous/endogenous noise and interference affect amplitude in a way that is
impossible to be totally removed, exacerbated by the long continuative duration
of the Polysomnographic recordings. If expert “manual” evaluation succeeds
in overcoming these issues, on the other hand, automatic threshold-based can
have some difficulty.

• Signal processing applied to remove artifacts changes the amplitude of the
EMG signal.

• Thresholds are chosen based on operator-made visual assessments rather than
objective quantification. Moreover, surface EMG is believed to show high
inter- and intra- subject variability which in turn causes variability of both
threshold and scoring criteria.

• Amplitude can be affected by pathological phenomena related to a patient
medical condition.

1.5 RBD Treatment
The first measure that can be adopted to manage RBD cases (improving also the bed
partner’s QoL) concerns the establishment of a safe sleeping environment to reduce
or avoid sleep-related injuries possibly caused by dream enactment behaviors and,
for patients in whom RBD episodes are significant, pharmacotherapy treatment.

Preferred pharmacological treatments involve the administration of Melatonin
(circadian rhythm regulator) or Clonazepam (anxiolytic, anticonvulsant, and muscle
relaxant) with the former to be better tolerated in particular among neurodegener-
ative adult patients [14]. Some retrospective cohort studies report (in both cases)
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67% of the patients experience at least a mild improvement of symptoms while
12% had complete resolution of RBD abnormal behavior even if for Clonazepam
some additional follow-up studies showed more mixed results [16].

Although the action mechanism is unclear, 3 to 12 mg of Melatonin at bedtime
(increased nightly until disruptive and injurious behaviors have ceased) has been
proven to augment REM sleep atonia and to improve RBD symptoms both in
the frequency of occurrence and severity, even if behaviors tend to come back
once Melatonin use is reduced or discontinued, suggesting the need of a lifelong
therapy for the patients. Observed common side effects are mild and concern
gastrointestinal distress, headache, sleepiness, fatigue, and cognitive alteration even
if in general Melatonin tends to be well tolerated at the above-mentioned doses.

Clonazepam is well-recognized for RBD management with nightly administra-
tions consisting of an initial dose of 0.25 mg which increases progressively to a
maximum of 2.0 mg [15]. Like Melatonin, the therapeutic mechanisms in RBD are
not fully understood even if some studies reported reduced frequency of unpleasant
dreams hence decreased possibility of violent dream enactment behavior as benefits.
Side effects have been observed including as most common residual morning sleepi-
ness, increased fall risk, memory dysfunction, impotence, and unstable gait. These
might be problematic, especially in older adults, and in some cases may limit the
treatment’s utility since lower doses are suggested in those situations [16].

1.6 A Fully-Automated Diagnostic Tool
As mentioned in the previous sections PSG type-1 is the gold standard for RBD
diagnosis but is expensive both in terms of time and money, not always available
around the world, invasive for the patients, concerns wait times varying from
weeks to more than 12 months [3], and requires specialized technical personnel for
the manual score, which significantly hinders the diagnostic process. In the last
decade, different alternatives aimed to replace PSG and lighten its load have been
studied showing good results in the context of some disorders (e.g. OSAS, circadian
rhythms, and sleep-wake disturbances) but encountering criticism when applied to
others. Home-based PSG (type II) for example does not routinely include video
recording and lacks a series of features which create some dubs about diagnostic
powers in sleep disorders such as RBD. In fact type II PSG settings do not comprise
a complete array of data montages (lack of EMG) required for iRBD diagnosis.
Different studies performed through questionnaires and Actigraphy (compared to
vPSG) on H/C and sleep disorders-related subjects, indicate that actigraphy has a
high potential as an extra method for detecting iRBD, especially when extensive
clinical data is available [3], thanks to the fact in iRBD characteristics sleep-wake
patterns exist, which can help clinicians to identify possible diseased patients and
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to increase the confidence of diagnosis of “probable iRBD”. On the other hand, a
diagnosis from this device should be cautious since also other sleep disorders may
show up with similar patterns highlighting the limited accuracy of this method in
some situations, being not able to catch all the standard PSG parameters needed for
a complete and exhaustive RBD diagnosis and producing misclassifications. As far
as RSWA scoring methods is concerned, in recent years, different studies promoted
semi-automatic diagnosis of RBD through a computer-assisted manual evaluation
which speeds up the diagnosis but requires fine artifact removal to produce reliable
results.

The current work aims to overcome the cost, time, accuracy, and robustness limits
of the to-date available diagnostic tools, proposing a fully-automatic diagnostic
approach, which through the usage of a single EEG channel without any particular
nor deep pre-processing, reaches in classifying reliably and efficiently healthy
patients from RBD ones, exploiting underlying characteristics of PSG-based EEG
signal instead of classical EMG one. RSWA is thought to be a dissociative state,
characterized by a mismatch between brain (REM) and muscular activity (non
REM) which is however linked to the former to some extent [27]. Basing the current
strategy on EEG signal instead of EMG would avoid to perform a classical two-steps
approach concerning the chain of sleep study and muscular activity evaluation,
working directly on the source of the phenomena i.e. the brain. EEG signal-based
approach allows thus to simplify the overall pipeline, relying on some recently
discovered evidence about EEG abnormalities in RBD patients with respect to
H/C ones (mainly concerning differences in δ and β power during phasic and tonic
REM, in δ and θ power during the first and the last sleep cycle in NREM, and in
Slow-wave amplitude during NREM [9]).

Moreover, the last part of the work concerns the development of a three-stages
semi-unsupervised method that can qualify REM Sleep without Atonia (RSWA)
as an intermediate pathological state (isolated RSWA) supporting the development
of a metric that tries to more finely characterize the neurodegenerative progression
from Healthy to RBD.
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Chapter 2

Material and Methods

2.1 Databases

2.1.1 CAP
The CAP Sleep Database (https://physionet.org/content/capslpdb/1.0.0/)
is a public collection of 108 polysomnographic recordings supplied by the Sleep
Disorders Center of Ospedale Maggiore of Parma (Italy). Each record, stored
in European Data Format (EDF) files, contains at least three monopolar EEG
channels (F3, C3, and O1 or F4, C4, and O2, with A1 or A2 as references) and
additional bipolar EEG traces, in line with 10-20 system (Fp1-F3, F3-C3, C3-P3,
P3-O1 and/or Fp2-F4, F4-C4, C4-P4, P4-O2) as well as two EOG channels, chin
and tibial (submentalis muscle and bilateral anterior tibial respectively) EMG,
respiratory signals (airflow, abdominal and thoracic respiratory effort, Oxygen
saturation SaO2), and ECG data, all complemented by annotations such as scored
sleep stages (30s-epoch, R&K rules, W=wake, S1-S4=sleep stages, R=REM)
provided by expert neurologists and stored in TXT files [28], [29]. EDF files include
information regarding channel labels, sample frequency (Fs), Unit of Measure
(UoM), filtering information, and recording duration. They contain PSG recordings
from subjects affected by different sleep-related pathologies although just H/C
subjects (16 recordings, labeled as n*) and RBD patients (22 recordings, labeled as
rbd*) were taken into account, considering only EEG signals.

Given the interest of the current work toward a single-channel EEG approach,
only recordings from the central EEG channel were used (less subject to artifacts
and with a higher signal-to-noise ratio with respect to other channels). As a result,
the C3-A2 channel, or C4-A1 if the former was unavailable, were chosen for the
succeeding analysis. Moreover, the work aims to study the effect of REM and SWS
as potential RBD biomarkers, so just segments classified as R and N3 (AASM
rules) are extracted from the database and used for the following steps. All the
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recordings features are resumed in Table 2.1.

Table 2.1: CAP Database technical information.

Filters: LP=Low-Pass, HP=High-Pass, BP=Band-Pass, BS=Band-Stop
ID Selected channel UoM Pre-filter Hz Fs Hz
n1 C4-A1 uV LP:30 HP:0.30 BS:50 512
n2 C4-A1 uV LP:30 HP:0.30 BS:50 512
n3 C4-A1 uV LP:30 HP:0.30 BS:50 512
n4 C4-A1 uV ... 100
n5 C4-A1 uV LP:30 HP:0.30 BS:50 512
n6 C3-A2 uV ... 128
n7 C3-A2 uV ... 128
n8 C3-A2 mV ... 100
n9 C3-A2 uV ... 128
n10 C4-A1 uV LP:30 HP:0.30 BS:50 512
n11 C4-A1 uV LP:30 HP:0.30 BS:50 512
n12 C3-A2 uV BP:0.10-100 100
n13 C3-A2 ... ... 200
n14 C3-A2 ... ... 200
n15 C3-A2 ... ... 200
n16 C4-A1 uV ... 100

rbd1-rbd22 C4-A1 uV LP:30 HP:0.30 BS:50 512

Table 2.2: TuSDi Database technical information.

Filters: LP=Low-Pass, HP=High-Pass, BP=Band-Pass, BS=Band-Stop
ID Selected channel UoM Pre-filter Hz Fs Hz

n1-n10 C3-A2 uV LP:50 HP:0.30 BS:50 256
rbd1-rbd10 C3-A2 uV LP:50 HP:0.30 BS:50 256
rswa1-rswa9 C3-A2 uV LP:50 HP:0.30 BS:50 256

2.1.2 TuSDi
The Turin Sleep Disorders Database (TuSDi) is a private collection of 29 polysomno-
graphic recordings gathered and provided by the Center for Sleep Disorders at
Molinette Hospital (Turin, Italy). The process was carried out in conformity with
the Helsinki Declaration and was authorized by the "Ethics Committee of the
A.O.U. Città della Salute e della Scienza di Torino (approval No. 00384/2020)"
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[27]. Recordings of 10 Healthy individuals (label n*), 10 RBD patients (label,
rbd*) as well as 9 subjects with isolated RSWA (label, rswa*), are included. Like
CAP Database, waveforms and technical information about recordings (Table 2.2)
are stored in EDF file, while TXT files contain annotations related to specific
within-recording episodes (e.g. arousal, bruxism, apnea, artifacts, movements) and
scored sleep stages (hypnogram) produced by expert neurologists. Also in this case
C3-M2 channel (or C4-M1, if the former was unavailable) was chosen for the study
and just REM and SWS segments (according to AASM criteria) were extracted.

2.2 RBD and RSWA Quantification Pipeline
The current work aims to use Machine Learning (ML) algorithms to automatically
classify new samples into healthy or pathological classes in the context of both binary
or multiclass problems. To achieve this purpose, some fundamental characteristics
of the EEG signals (features) were characterized from a quantitative point of view
(i.e. extracted in the form of a number). This process consists of many different
and sequential steps which range from signal numerical preparation to the effective
AI application [27].

In this regard the first part of this chapter (developed in MATLAB Version:
9.11.0.2022996, R2021b software) will explore all the pre-processing solutions that
were exploited to uniform the available waveforms as far as UoM and Fs are
concerned, and to remove unnecessary noise with the help of filtering techniques
which are deliberately kept basic in order to stress the robustness of the approach
which thus relies on raw EEG data (no spatial filtering nor artefact removal).
Consequently, signals were subjected to a multi-domain feature extraction process
ending up with matrices containing fundamental parameters providing both physical
and medical interpretations of subjects’ health conditions, and that in the end were
necessary to feed ML models. Thereby, the last part of this section (developed
in Python 3.11 software) will focus on the Machine Learning models’ training
and testing process together with the development of evaluation techniques useful
for quantifying the achieved performances, opening a wide range of analysis,
comparisons, and comments.

2.2.1 Pre-Processing
This step includes preliminary adjustments of the signals to fit some uniformity
requirements, the creation of time series used in the subsequent analysis, and the
filtering process. First, the annotations concerning the sleep-stage scoring (of both
CAP and TuSDi) were changed from R&K rule to AASM rule, by merging N3 and
N4 stages in a unique one called N3 (or SWS). All the signals with UoM different
from uV were converted to this order of magnitude, and all recordings sampled at
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Fs different with respect to 512Hz were re-sampled. With these two last expedients,
all the samples are unified to avoid errors during the division in epochs and to
prevent the presence of outliers in the Machine Learning part.

Moreover, (for each subject) only 30s-epochs scored as REM (R) or SWS (N3)
were selected to form unique time series (called REM and SWS respectively). One
interesting idea characterizing the current work and inspired by the research of
Rechichi et al. (2022) [27], concerns the creation of a third segment-type (called
REM+SWS) (Table 2.3), built as the combination of REM and SWS ones, and used
to potentially enhance the overall classification performances since exploiting at the
same time the power of both REM and SWS stages as potential RBD biomarkers
(Section 4.1).

Table 2.3: Time-series used in the current Thesis work (for each individual).

R and N3 refer to the sleep-stage scoring (AASM rules) present in .txt annotations included in
the Databases and performed by expert neurologists.

Description Time-Series Name
Built merging all the 30s-epochs classified as R REM
Built merging all the 30s-epochs classified as N3 SWS

Built merging all the REM and the SWS time-series REM+SWS

Following physiological studies on sleep EEG spectral composition, the filtering
process was thought and developed to extract the significant band comprised
between 0.01 and 40 Hz and to increase the signal-to-noise ratio by removing both
low frequency signals that are of non-neural origin (e.g. electrodermal activity,
drying, or chemical stability of the electrolyte as a result of heat changes and skin
contact) and unnecessary high components which are indeed rare in the REM and
NREM activity. In particular, for REM segments the used stopband frequency
values are 0.01 Hz (HPF) and 40 Hz (LPF) while for SWS segments 0.01 Hz (HPF)
and 30 Hz (LPF) were employed. The choice of these values is based on a couple
of main simple facts:

• Although most of the existing literature on EEG proposes (0.5-4 Hz) as the δ
band frequency range, the study of Acunzo et al. (2012) suggests zero-phase
HPF cut-off frequencies should be kept as low as possible and in no case
greater than 0.1Hz. According to the research findings, High Pass filtering
an EEG signal is a critical step that "can generate a systematic bias easily
leading to misinterpretations of neural activity", since increasing the cut-off
frequency may perturb and distort the signal with the presence of offsets and
time delays [30] (Figure 2.3, middle). Different trials were made using cut-off
frequencies of 0.01 Hz, 0.05 Hz, 0.1 Hz, and 0.5 Hz, with 0.01 Hz providing
the best results i.e. almost absent distortion (Figure 2.3, bottom).
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• As mentioned in Section 1.1.2, REM sleep is characterized by TREM and
FREM microstructures which in general occupy (7-16 Hz) and (2-8 Hz) re-
spectively, with FREM power having relative increase in higher frequencies
included in the γ band, which thus makes it reasonable to pick LPF cut-off
frequencies up to 40 Hz for REM sleep.

The filtering action was implemented through the cascade of Low-Pass (LP) and
High-Pass (HP) filters, instead of a unique Band-Pass (BP) one, to not constrain
the stages to the same order or filter type. This allowed to customize the filter mask
directly on the specific purpose which required an highly asymmetrical frequency
response, as far as roll-off is concerned. At this part of the project, there are no
specific requirements about the computational cost, so the entire filtering process
was set favoring performances, and only in the second instance lightening offline
operations and computational cost, then converging these two points in a unique
trade-off.

A crucial goal of EEG-related filters is to guarantee stopband/passband ripples
are as low as possible since nothing must happen to the informative part of the
signal whose amplitude is usually of the order of uV. Different digital filters were
tested (both IIR and FIR) and compared based on some criteria like execution time
(speed), order, bandpass/stopband ripples amplitude, and stopband attenuation.
The best compromise which optimally fulfilled the above-mentioned requirements
was the Butterworth filter-type (Figure 2.1) well-known for its "no-ripple" features,
used then for implementing minimum-order zero-phase LPF and HPF to be applied
on both REM and SWS segments (MATLAB R2021b). The technical parameters
and information about the designed Butterworth filters are grouped in Table 2.4.

Table 2.4: Stopband frequency values.

Ap=Passband ripples, Fp=Passband frequency, Fst=Stopband frequency, Ast=Attenuation in
stopband. In Butterworth ("no-ripple" filter) Ap changes the slope in the transition band

identifying the attenuation associated to the bandpass frequency
Filter Order Cut-off-3dB Ap Fp Fst Ast
HPF 2 0.01 Hz 0.01 dB 0.05 Hz 0.01 Hz 3 dB
LPF 26 26.5 Hz 0.1 dB 25 Hz 30 Hz 25 dB
LPF 35 36.5 Hz 0.1 dB 35 Hz 40 Hz 25 dB
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Figure 2.1: Implemented Butterworth filters.

As it is relevant for EEG processing, a zero-phase anti-causal filter was applied to
remove (or at least attenuate) the nonlinear time shift (Figure 2.3, top) introduced
by the not symmetric nor centered IIR impulse response [30], and to avoid the
so-called Edge effects1 which results in a phenomenon that distorts the boundaries

1These almost-unavoidable effects are due to the fact that each time point in the filtered signal
is defined as the linear combination (through Kernel coefficients) of previous values of the original
signal (FIR), and for IIR also of past samples of the filtered signal. For this reason, the filtered
signal can really only begin after a delay of one kernel length with respect to the original time
series, since before that, the filter Kernel could not exploit past information. This effect has
consequences also on the end of the filtered waveform since it is actually shorter with respect to
the original one.
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of the filtered signal. The basis of this zero-phase anti-causal filter is the Reflection
algorithm, a bidirectional approach (implemented here in a "home-made" fashion
exploiting the MATLAB function filter()), which involves the following steps [31]:

1. A number of samples of the signal equal to the order of the filter is picked
both at the beginning and at the end of the time series.

2. These parts are concatenated (in a backward i.e. mirrored, fashion) before
and after the signal in order to avoid discontinuities in the junctions.

3. The new merged signal is filtered. Now the edge effect will be present but on
the reflected parts.

4. The reflected parts are cut off, leaving only the true filtered signal.

These steps are graphically shown in Figure 2.2. The overall process produced
filtered signals like the one illustrated in Figure 2.3 (bottom), whose effect in
frequency domain can be appreciated through Power Spectral Density estimates
(Figure 2.4).

Figure 2.2: Reflection algorithm scheme.
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Figure 2.3: Filtered SWS signal.
Patient n1, channel C4-A1. Top: Conventional Filtering, HPF @0.01 Hz.

Middle: Zero-phase Filtering, HPF @0.5 Hz.
Bottom: Zero-phase Filtering, HPF @0.01 Hz (correct).
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In Figure 2.3 (middle), they are shown the effect of using a cut-off frequency
higher than 0.1 Hz, confirming Acunzo et al. (2012) [30] research work findings, and
suggesting the reliability of the proposed guidelines, along with the effectiveness
of keeping the influence of High-Pass filter as low as possible to avoid EEG signal
distortions (Figure 2.3, bottom).

Figure 2.4: Power Spectral Density of filtered REM and SWS segments.
Patient n1, channel C4-A1, averaged across all the 2s-epochs.

2.2.2 Feature Extraction
In this section, relevant sleep features are analyzed and manually extracted in MAT-
LAB (R2021b) environment, to quantitatively characterize both the Polysomno-
graphic and Electroencephalographic "information" about the individuals contained
in the databases. An important aspect of this step concerns keeping as simple as
possible the interpretability of the results by focusing on features that have a clear
meaning in the medical field or at least have a tight link with it, to be interpreted
by expert clinician personnel. Starting from the works of Rechichi et al. (2021) [8],
(2022) [27] and following the existing literature about this topic [32], [33], [34], [35],
[36], [37], [38], [39], a review of the most commonly used features in the field of
EEG-based sleep study was performed, ending up with an omni-comprehensive list
of multi-domain attributes to be used in the context of automatic classification of
healthy and sick patients. Features have been divided into Polysomnographic and
Electroencephalographic features.

Polysomnographic Features. Concern parameters that were extracted from
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the hypnogram, which define the quality, duration, and characteristics of sleep
macrostructures [27] (Table 2.5).

Table 2.5: Polysomnographic features, adapted from [27]

Feature Description

Sleep Onset Latency (SOL) The amount of time required for transi-
tioning from awake to N1 (min)

Wake After Sleep Onset (WASO) The amount of time the subject stays
awake during the night (min)

Total Sleep Time (TST) Total number of hours of sleep (h)

Time in Bed (TIB) Lights-off lights-on interval (h)

Sleep Efficiency (SE) The percentage of time spent sleeping in
bed (%)

Arousal Index (ARI) The frequency of arousals events2

Minutes of REM Sleep (MREM) Total number of REM epochs (min)

Sleep Stage Proportion (SSP) Ratio of each sleep stage (N1, N2, SWS,
R) to TST (%)

NREM Fragmentation Index (NFI) The number of transitions from NREM
to any other NREM stage (per hour of
NREM sleep)

REM Fragmentation Index (RFI) The number of transition from REM to
any other stage (per hour of REM sleep)

Proportion of Wake (WP) Time spent awake during the night (%)

Sleep Transitions Index (STI) The count of transitions from REM to
NREM (and vice versa) per hour of sleep

Average Length (AL) The average length of segments classified
as the same sleep stage (N1, N2, SWS, R)
(min)

2Arousals are interruption of the sleep (lasting 3-15s) which consist in abrupt change from
SWS (or REM) to light sleep and that can lead to awakening if lasting more than 15s.
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Electroencephalographic Features. They were extracted from both REM
and SWS segments using the available EEG channel (C3-A2 or C4-A1). The
extraction was performed in an epoch-wise fashion according to the division into
four domains (Table 2.10):

• Time (TD): focuses mainly on the shape and statistical characteristics of the
waveforms.

• Frequency (FD): analyzes the spectral properties of the signals through the
estimation of the spectrum and its division in sub-bands.

• Time-Frequency (TFD): analyzes the spectrum properties of the signal ac-
counting for the non-stationary nature of brain processes.

• Nonlinear (NND): focuses on the complexes and nonlinear brain mechanisms.

Given that the AASM criteria evaluate the EEG signal in 30s macro-epochs to score
sleep3, the data in this study (both for REM and SWS segments) were processed in
this manner, at least for TD analysis. In FD, TFD, NND features were extracted
on mini-epochs of 2s to ensure stationarity for the EEG (which is indeed inherently
non-stationary) and allowing to analyze some phenomena more in detail.

A common procedure in this context consists in averaging the feature extracted
on these 2s min-epochs across the corresponding 30s macro-epoch, to uniform the
overall framework as well as achieve a better spectral frequency resolution. It
is worth noticing that averaging requires data on 2s-epochs should be normally
distributed along the correspondent 30s epoch, to avoid the mean to bring biased
information. Such analysis was performed through a three-step process comprising
the Shapiro-Wilk normality test with alpha = 0.01 (Ahmed BenSaïda (2023).
Shapiro-Wilk and Shapiro-Francia normality tests, MATLAB Central File Exchange.
Retrieved June 26, 2023 ) which produces a null hypothesis rejection rate, and
the graphical inspection of both PP-plots and frequency distribution histograms
(accompanied by normal and kernel distribution fitting) (Figure 2.5) through which
the previous results were checked4 [40].

3Initially, the R&K guidelines (Rechtschaffen & Kales 1969) suggested separating the PSG
sleep record into 30 s epochs. The 30s interval was chosen because one page equated to 30 seconds
of recording at a paper speed of 10 mm/s (ideal speed for viewing alpha and spindles).
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Figure 2.5: Example of normality-test results.
Patient n1, channel C4-A1. The green line on the histogram plots is the kernel fitting curve,

while the red one is the normal fitting curve (for comparison purposes). The plots display fifteen
2s epochs features (across the correspondent 30s macro-epoch):

Top: wrongly classified as not-normal by Shapiro-Wilk test.
Middle: correctly classified as not-normal by Shapiro-Wilk test.

Bottom: correctly classified as normal by Shapiro-Wilk test.

From this process it was possible to state not all 2s epoch-data were normal
across their correspondent macro-epoch, and for this reasons they were not averaged
confirming that in some cases the Mean value was not a good indicator of the
underlying distribution.

4Shapiro-Wilk test is a statistical test used for assessing if the analyzed data come from a
normal distribution. It is based on the null hypothesis (H0) data are sampled from a population
following a normal distribution, and produces a significance value (p-value) which if greater than
a threshold value (alpha, default 0.05) states there are no enough evidence to reject the null
hypothesis, confirming the distribution is not significantly different from normal. PP-plots display
the cumulative distribution function (CDF) from the sample data on the x-axis, and the CDF
from a normal distribution on the y-axis. If the obtained data points lie on a straight line, the
distribution under-analysis is normal. As far as histograms are concerned, normal distributions
are displayed through a bell-shaped curve.

33



Material and Methods

Time Domain

This family of features comprises different parameters which work directly on the
time-series x(t) (t = 0, ..., N −1 with N the epoch length in samples) characterizing
the EEG signal from different perspectives, highlighting the underlying shape,
amplitude, and amplitude variations, or extracting other information like energy
and frequency-related ones.

Concerning statistical measures, it is possible to mention the standard moments
like Mean (a measure of the central tendency of a finite set of numbers), Mode
(the most common number in a dataset), Median (also called 50th-p, is the value
below which the 50% of the population of a certain distribution stays), Standard
Deviation (a measure of the dispersion of a set of values with respect to the mean
value), Skewness (a measure of the asymmetry of a distribution about its mean),
and Kurtosis (a measure of the "tailedness" of a distribution with higher Kurtosis
concerning a higher number of outliers) which are graphically depicted in Figure 2.6.

Figure 2.6: Statistical moments.
https://www.biologyforlife.com/skew.html

Zero-Crossing rate (ZCR): is the number of times the signal crosses the x-axis
and reflects the frequency of the signal (high ZCR means the signal is dominated
by high frequencies), computed as

Zero Crossing Rate = 1
N − 1

NØ
t=1

⊮{x(t)x(t − 1) < 0} (2.1)

where ⊮(X) is the indicator function (1 if X true, 0 else).
Hjorth parameters: Activity, mobility, and complexity collectively account for

the EEG waveform variability describing its pattern in terms of amplitude, temporal
scale, and complexity (Figure 2.7). They are defined in time-domain exploiting
the first and second derivative of the EEG signal epoch x(t), and create a sort
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of "bridge between the physical time domain interpretation and the conventional
frequency domain description" [41], allowing to extract some features about power
spectrum i.e. spectral moments, defined as

mn =
Ú ∞

−∞
wn ∗ S(w) dw (2.2)

where w is the frequency of interest, and S(w) is the correspondent value of the
power spectrum.

While Activity represents the variance of the signal amplitude sometimes referred
to as the mean power i.e. the surface of the power spectrum of the EEG signal,
Mobility provides the average rapidity of the amplitude changes (in time) and it is
linked to the variance of the power spectrum along the frequency axis. Complexity
gives a measure "of excessive details with reference to the "softest" possible curve
shape, the sine wave", which hence corresponds to unity.

Activity = var(x(t)) = m0 (2.3)

Mobility =

öõõôvar(dx(t)
dt

)
var(x(t)) =

ó
m2

m0
(2.4)

Complexity =
Mobility(dx(t)

dt
)

Mobility(x(t)) =

öõõôm4/m2

m2/m0
(2.5)

Figure 2.7: Hjorth parameters schematic interpretation [41].

From Hjorth parameters, it was possible to derive additional features concerning
the spectral characterization of the EEG signal, defined in the following way

Sparseness = m0ñ
(m0 − m4)(m0 − m2)

(2.6)

35



Material and Methods

Irregularity = m2√
m0 ∗ m4

(2.7)

Spectrum Bandiwdth =
ó

1 − m2
2

m0 ∗ m4
(2.8)

Average Zero Up Crossing Period = 2π ∗
ó

m0

m2
(2.9)

Peak To Peak Period = 2π ∗
ó

m2

m4
(2.10)

where Sparseness quantifies how much energy of the overall signal (considered as
a vector) is packed into only a few components, and Irregularity (I) defines the
ratio between the number of upward zero-crossing and the number of peaks. The
Spectrum Bandwidth (B) is a parameter comprised in the range [0, 1] and indicates
a broadband (narrowband) signal if B ≥ 0.5 (B ≤ 0.5). Moreover, Average Zero-up
Crossing Period (AZCP) and peak-to-peak Period (A3P) quantify the periods
between two zero-crossing points and two peaks respectively.

Percentiles: these statistical measures give information about the range of a
dataset as well as quantify data denseness. In this project, 25th-p and 75th-p
were computed, together with the Interquartile range (IQR) which measures the
difference between them characterizing the dispersion of the data with respect to
the central value.

Form (FF), Crest (CF) and Impact Factors (IF) are impulsive metrics that were
extracted from the EEG records to describe the peak amplitude and the waveform
properties exploiting measures of RMS (Root Mean Square).

Form Factor = xRMS

|x|mean

(2.11)

Crest Factor = xpeak

xRMS

(2.12)

Impact Factor = xpeak

|x|mean

(2.13)

Coastline: is defined as the cumulative length of the waveform (i.e. length of
the "stretched" version of the signal) over time, giving simultaneously a measure of
the signal amplitude, frequency and duration.

Coastline =
NØ

t=1
|x(t) − x(t − 1)| (2.14)
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Rechichi et al. (2021) [8] proposed envelope-based measures to characterize
the morphology and the extrema of the EEG signal by analyzing instantaneously
its amplitude changes. This characterization was then performed through three
measures namely Number of peaks (NP, number of local extrema), Peaks Promi-
nence (PP, how much a peak stands out with respect to nearby extrema), and
Peak Width (PW, distance between peaks defined as the length of the segment
created when lines tangent to the peak’s left and right inflection points intersect
the baseline) (Figure 2.8).

Figure 2.8: Envelope-based parameters.
https://it.mathworks.com/help/signal/ref/findpeaks.html

In the context of this work two novel statistical features were extracted since
they have been proved to have a positive impact on the context of sleep stage
classification performance [34]. The first feature is "Maximum-minimum Distance
(MMD)" which exploits a sub-segmentation of the 30s macro-epoch in λ=3s mini-
epochs. The parameter λ is defined by the authors as the "wavelength parameter of
the EEG signal" useful for the computation of the second feature called "EnergySis
(ESis)".

MMD (Figure 2.9) relies upon the Pythagorean Theorem using the maxima and
minima present in each sub-epoch for computing the slope changes in the EEG
pattern fluctuation which may be also interpreted as the signal speed changes.

d =
√

∆t2 + ∆a2 (2.15)

where (on each sub-window) ∆t indicates the time difference between maxima and
minima points while ∆a express their amplitude difference. The obtained values
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are then averaged across the correspondent 30s epoch

Maximum Minimum Distance = 1
W

∗
WØ

i=1
|d|i (2.16)

with W referring to the total number of sliding sub-windows in an epoch.

Figure 2.9: Maximum-minimum Distance (MMD) [34].

In signal theory the Energy of a continuous time signal x(t) is defined as q |x(t)|2.
ESis determines the energy of the EEG signal by considering the formula λ = f /ν
which defines the relationship between wavelength (λ), mean frequency (f ), and
propagation speed (ν) of a radiation, and which allowed to compute the speed of
the signal. The feature was then computed as

Energy Sis =
NØ

t=1
|x(t)2| ∗ ν (2.17)
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Frequency Domain

The first step to extract features in FD encompasses the estimation of the Power
Spectral Density (PSD)5 which represents the distribution of the power content of
a signal with respect to frequency, and that will be the main analysis object. In
this regard, it is essential to consider that EEG signal is inherently non-stationary6

since its source system (the brain) is characterized by activity that is mixed in
frequency and which can also change in time based on internal/external stimuli.
The mathematical basic foundation of PSD estimation is the Fourier Transform
(FT) which does not work well with non-stationary processes since relies on the
fundamental idea every signal can be decomposed in a sum of sine waves (which
are perfectly stationary) and thus intrinsically assuming that in terms of statistical
properties, each frequency component remains as it is permanently [35]. In the
case of EEG, this assumption brings to fail some important information about the
time location of spectral events which in turn brings to biased results about the
Power content.

The solution to overcome this limit involves (as mentioned in the previous section)
the segmentation of the signal in mini-epochs before performing FD analysis since
here the EEG signal can be considered stationary (WSS) (Figure 2.10). In literature,
it exists a widespread consensus about the choice of the values of sleep EEG time
windows (T), which usually range from 1s to 5s. To have a good compromise
between temporal resolution (T), theoretical frequency resolution (rt = 1/T ), and
other parameters related to spectral estimation will be discussed in detail later
(Table 2.6), T = 2s (N = 1024) was chosen which moreover, turned out to be
suggested in different topic-related research works [42], [43].

5EEG signal is a power signal since its energy is theoretically infinite (practically very big)
while its power is finite. This is the reason why spectral analysis relies upon PSD rather than
Energy spectrum Density (ESD) estimation. It is a matter of estimate since the EEG exhibits
stochasticity (due to properties of the brain) but can be analyzed through finite length single
realization only.

6A stationary signal is a process whose time period, frequency, and spectral content do not
change with time. More specifically the stationarity property requires certain mathematical
time-invariance conditions to be satisfied which allow to define two types of stationarities namely
strict-sense (SSS) and wide-sense (WSS) stationarity. The second comprises less stringent
requirements since requires a time series x(t) to have time-constant mean and variance, and
autocorrelation function which depends only on the time difference τ = t2 − t1 which means
correlation between points of a signal x(t) depends only on how far apart they are in time (τ),
not where they are in time.
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Figure 2.10: Stationarity.

Spectral estimation is a tool introduced to overcome some limitations of TD
analysis since breaks down the signal into its constitutive frequency components
allowing to discover inner mechanisms and to more accurately distinguish between
information of interest from confounding factors such as noise and artifacts [44].

Among the various existing non-parametric techniques to produce spectral
estimates, the Multitaper method (Thomson, 1982) was implemented due to its
advantages with respect to other common approaches like classical Periodogram and
Welch’s method, concerning a better trade-off of spectral resolution (narrowband
bias7), spectral leakage (broadband bias) reduction, theoretical frequency resolution,
and variance reduction. Moreover, it results more efficient in dealing with non-
stationarity also compared to parametric methods [45] and is particularly suitable
for those signals (such as EEG) having power spectra of the form f−b where b is a
positive power-low exponent [46].

The Multitaper method produces a power estimate by averaging across K (and
not one) modified Periodograms of the same signal x(t), each obtained exploiting a
different taper sequence as window function (Figure 2.11):

S(MT )(f) = 1
K

K−1Ø
k=0

Sk(f) (2.18)

Sk(f) = |
N−1Ø
t=0

hk(t)x(t)e−j2πft|2 (2.19)

7Theoretically the spectrum of a sinusoid of frequency f is a single vertical peak at that
frequency. In practice, any estimate exhibits a main lobe centered @f and is affected by a ringing
effect which creates infinite side lobes. The fact central lobe has a bandwidth [−W, W ] creates
the so-called narrowband bias, which affects spectral resolution since all the frequencies within
the small range of its bandwidth are blurred and multiple frequency peaks occurring within this
bandwidth appear unified. On the other hand, the side lobes create the so-called broadband bias,
due to the fact the power that should be centered @f is transmitted to false sides-frequencies
producing then spectral leakage.
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where S(MT )(f) is the Multitaper spectrum estimate and Sk(f) denotes the modified
periodogram (of the signal epoch x(t) of length N) obtained with the kth taper
sequence hk(t) (k = 1, ..., K).

Figure 2.11: Multitaper method [44].

The smooth functions used in the context of this work are the Discrete Prolate
Spheroidal Sequences (DPSS) or Slepian tapers (Slepian and Pollak, 1961) which
are a particular choice of taper functions, characterized by two main properties
that make the real strength of Multitaper method [47], [48]:

1. They have optimal spectral concentration properties since remove the power
from the side lobes concentrating it in the main lobe, where is the true
frequency. This expedient reduces the broadband bias, at a cost of a slightly
larger narrowband one (trade-off).

2. They form an orthogonal set of sequences i.e. the tapers produce estimates of
the data which are completely uncorrelated from a statistical point of view, in
such a way when the tapered versions of the signal are averaged, the variance
is reduced.

Designing a DPSS set means finding the time series h(t) of length N such that the
energy of its Fourier transform H(f)

H(f) =
NØ

t=1
h(t)e−j2πft (2.20)

is maximally localized on a given frequency interval [−W, W ].
The optimality condition ends up with a matrix eigenvalue equation for the

sequence h(t) whose eigenvectors are the DPSS, and whose eigenvalues

λk(N, W ) =
s W

−W ||H(f)||2 dfs Fs/2
−Fs/2 ||H(f)||2 df

∈ (0, 1) (2.21)

define the spectral concentration (ratio between the power contained in the fre-
quency interval [−W, W ] and the power contained in the entire frequency band
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[−Fs/2, Fs/2]). The remarkable fact is that these sequences do not have equal
energy concentration in the frequency range of interest. The first K eigenvalues
λk(N, W ) (sorted in descending order) are each almost close to unity, while the
others are approximately zero (Figure 2.12).

Figure 2.12: Slepian Tapers [47].
The left figure shows the Slepian sequences energy concentration for T=15s, nw=2.5 and K=4. It
is possible to notice that the Slepian sequences after the 4th start to concentrate less energy in

the interval [−W, W ].

The parameter values chosen through the followed design procedure are grouped
in the Table 2.6. They were tuned in order to obtain a balanced trade-off of
an acceptable broadband bias reduction at a cost of a limited narrowband bias
(W=1.5Hz), a good variance decrease (T = 2s and W = 1.5Hz ensure at least a
couple of tapers), an adequate temporal resolution (T = 2s) as well as satisfac-
tory spectral theoretical (rt = 0.5Hz) and apparent (ra = 0.125Hz) resolutions8

(Figure 2.13).

8The number of points used to compute the DTFT was selected considering the relationship
rt ⩾ ra, where rt is the theoretical resolution i.e. the max resolution can be obtained and it
is uniquely dependent on the length of the mini-epoch (rt = 1/T )), while ra is the apparent
resolution which is related to the fact DTFT requires a certain number of points to represent
the spectrum and it is defined as ra = Fs/nfft. Following the first expression, the minimum
number of DTFT points that should be used to not have visualization problems is nfft = N
(N = 1024, nfft chosen as a power of 2). Since T = 2s and rt = 0.5Hz, the apparent resolution
was enhanced to ra = 0.125Hz increasing nfft to 4096.
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Table 2.6: Thomson’s Multitaper parameters

Parameter Value Description
Epoch length T

(N)
2s
(1024)

chosen to ensure the stationarity of EEG
and to balance the trade-off with the the-
oretical frequency resolution rt = 1/T .

Resolution band-
width

W 1.5Hz width of the Multitaper estimate central
lobe i.e. the minimum distance between
frequency peaks is expected to be resolved.
It is chosen smaller than the minimum
frequency range in the signal spectrum
(i.e. δ band).

Time-
halfbandwidth
product

nw 1.5 determines the number of tapers that will
be used and hence influences the variance
reduction of the estimate. It is defined as
nw = W ∗ T/2.

Number of Slepian
tapers

K 2 number of tapers for which the energy
concentration in [−W, W ] is close to unity.
It is defined as K = ⌊2 ∗ nw⌋ − 1

Figure 2.13: Comparison of Spectral estimation methods.
PSD of the first 2s mini-epoch of a REM segment, patient n1, channel C4-A1. Welch’s method is

performed on the total signal exploiting segmentation of T=2s and 50% of overlapping.
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After the power spectra of all REM and SWS 2s epochs were computed (in
uV 2/Hz and not in dB in order to work with non-negative power values only),
it was possible to enter in more detail with the quantification of some spectral
properties which are widely used in the field of EEG-based automatic sleep analysis
but also with features commonly exploited in more general biosignals studies.

As mentioned in Table 2.10, spectral features were computed (for both REM
and SWS segments) on the total spectrum (0.01 − 30/40Hz) but also on each EEG
sub-band to highlight those mechanisms that are characteristics of just a reduced
portion of the overall spectral activity. Beside classical EEG sub-bands (δ, θ, α, β,
γ), additional frequency ranges (TREM , FREM , SWA, and SOs) were studied
since in some research works they exhibited very recognizable characteristics whose
anomalies and deviations can be exploited as sleep disorder indicators [8], [9], [19].
Moreover, the choice to extend frequency bands which are characteristics of REM
(like TREM and FREM) also to SWS segments, and vice-versa, was inspired by
the results achieved by the work of Buettner al. (2020) [49] which states that
information with respect to RBD disorder may be hidden in frequency ranges within
θ, δ, and α bands, hence suggesting that a finer division of the EEG spectrum
during the feature extraction process can improve the performances in healthy-RBD
classification problems (Figure 2.14).

Figure 2.14: EEG spectrum partition.

Absolute Power Spectrum (AP): it describes the power of the signal and it is
defined as the area under the PSD curve (or a portion of it) which in this work
is computed through numerical integration exploiting the trapezoidal method. It
belongs to the family of spectral moments (0th order) and from a conceptual point
of view AP is computed as

Absolute Power =
b2Ø

j=b1
Sj b1, b2 ∈ [1, M ] (2.22)

where Sj is the PSD value at the jth bin, and b1 and b2 are the (bin) band edges
over which perform the computation (if b1 = 1 and b2 = M the power is related to
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the total spectrum, since M is the bin corresponding to the last frequency of the
PSD).

Mean Power Spectrum (MP): it characterizes the average spectrum content asso-
ciated to each frequency bin, and it is particularly useful for resuming information
about power when frequency bands are not equally occupied.

Mean Power = 1
b2 − b1

b2Ø
j=b1

Sj (2.23)

Spectral Crest (SCr): it is an indicator of the peakiness of the spectrum (or a
portion of it), since compares its maximum and average values

Spectral Crest = max{Sj∈|b1,b2|}
1

b2−b1
qb2

j=b1 Sj

(2.24)

Peak Frequency (PKF): it is the frequency at which the maximum of the Power
spectrum in a certain frequency band occurs.

Peak Frequency = max
j∈[b1,b2]

Sj (2.25)

Spectral Centroid (SCe): it is also called Mean Frequency and represents an
average frequency. Some works highlighted its reliability in characterizing EEG
synchronization during deep sleep, which makes it a good tool in classification
contexts [39]. It belongs to the family of spectral moments (1st order).

Spectral Centroid =
qb2

j=b1 fjSjqb2
j=b1 Sj

∝ SM1 (2.26)

where fj is the frequency value corresponding to the jth bin.
Median Frequency (MDF or SEF50): it is the frequency below which the 50% of

the total power in a certain frequency band is contained, or in other words it is the
frequency that divides the power spectrum into two regions with equal amplitude.

MDF = f s.t.
MDFØ
j=b1

Sj =
b2Ø

j=MDF

Sj = 1
2

b2Ø
j=b1

Sj (2.27)

In MATLAB this feature was implemented by computing the cumulative sum of
PSD values and using it to find (through interpolation) the frequency value which
corresponds to half the above-mentioned cumulative sum (query point).

Spectral Edge Frequencies (SEFxx): percentile measurements in the frequency
domain, in addition to MDF. They denote the lowest frequency below which
the xx% of the total power in a certain frequency band is contained, with xx
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typically chosen equal to 25, 75, and 95 (SEF25, SEF75, and SEF95 respectively)
(Figure 2.15).

Figure 2.15: Spectral Edge Frequencies [50].

Spectral Edge Frequencies differentials (SEFd): defined as the difference of
SEFxx measures. It is a pretty novel features family in the context of sleep studies,
used for the first time by Imtiaz et al. (2014) [51], which highlighted its great
ability, together with SEF50 and SEF95, in discriminating REM with respect to
other sleep stages, especially if applied on TREM (specifically in the band 8-16
Hz), resulting however more powerful compared to SEF.

Following the above-mentioned findings all these edge frequencies metrics were
used on REM and SWS segments, and in both total and relative spectral ranges
of the EEG in order to exploit their discrimination capabilities in the current
healthy/sick classification problem.

Relative Power Spectrum (RP): it is extracted just for the EEG sub-bands and
expresses (in percentage) their power content relative to the power of the entire
spectrum, indicating how much of the total power is packed in the various relevant
EEG frequency ranges.

Relative Power(%) =
qb2

j=b1 SjqM
j=1 Sj

∗ 100 (2.28)

Spectral moments (SM): it is an alternative statistical way to extract features
from the power spectrum, accounting for its arrangement along the frequency axis.
Like in TD, these metrics provide information about the shape (center, dispersion,
symmetry, and flatness) of the PSD on average [52], [53]. In the current work
these measures were normalized with respect to the Absolute Power (i.e. the 0th

order moment SM0) and centered around the Spectral Centroid (called µ1 in this
context) defining:
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Spectral Spread (SSp), representing the spread of the power with respect to SCe

µ2 =

öõõôqb2
j=b1(fj − µ1)2Sjqb2

j=b1 Sj

∝ SM2 (2.29)

Spectral Skewness (SSk), representing the spectrum symmetry around its SCe

µ3 =
qb2

j=b1(fj − µ1)3Sj

(µ2)3 qb2
j=b1 Sj

∝ SM3 (2.30)

Spectral Kurtosis (SK), representing the flatness of the spectrum around its SCe

µ4 =
qb2

j=b1(fj − µ1)4Sj

(µ2)4 qb2
j=b1 Sj

∝ SM4 (2.31)

Exploiting SM0, SM1, and SM2 instead, the Variance of the Central Frequency
(VCF) is computed, as

V CF = SM2
SM0 − (SM1

SM0)2 (2.32)

which represents a slightly different way to define the Spectral Spread.
Entropy Measures: in some recent work about the automatic detection of

pathological patterns in EEG signals it has been proven the optimality of entropy
measures in increasing the performances of the diagnostic system [54] suggesting
that diseased states affect the signal complexity. For this reason, a couple of such
metrics (namely Spectral Entropy and Renyi’s quadratic Entropy) were added to
the feature set. Spectral Entropy measures reflect the spectral complexity of the
EEG signal i.e. they quantify the peakedness or flatness (density) of the distribution
of the EEG power spectrum [55], in such a way higher entropy values correspond
to increased pattern irregularity [38]. Different logarithmic bases can be exploited,
but natural logarithm was used as suggested in the work of Kristína Šušmáková et
al. (2008) [39].

Spectral Entropy (SEN): it is a modified version of the Shannon Entropy in
which the normalized Spectrum is treated as a probability distribution

Spectral Entropy = −
b2Ø

j=b1
Pj ln Pj (2.33)

where P is the PSD normalized with respect to the Absolute Power

Pj = Sjqb2
j=b1 Sj

s.t.
b2Ø

j=b1
Pj = 1 (2.34)

47



Material and Methods

Low values of SEN mean the spectrum is dense in some frequency regions since
there will be more frequency bins with low power and fewer frequency bins with
high power, while high values of SEN mean the spectrum is more or less uniformly
distributed. This is the reason why sine wave has SEN=0 (narrow and peaked
spectrum), while white noise has SEN=1 (flat spectrum since containing power in
all frequencies) [38], [56]. This allows to state that lower SEN values correspond to
signals that are more regular and predictable, rather than complex.

Renyi’s quadratic Entropy (REN): compared to SEN, the sum is weighted toward
lower frequencies which is particularly useful for sleep EEG, which typically exhibits
more power in lower frequency bands.

Renyi′s quadratic Entropy = − ln
b2Ø

j=b1
P 2

j (2.35)
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Time-Frequency Domain

Until now the EEG signal was segmented in mini epochs to fulfill the stationarity
conditions of the FT, however, the obtained results brought in some sense an
average aspect of the spectral activity, ignoring remarkable temporal information
like the time-location of oscillatory events and time-evolution of the frequency
content. A key aspect of biomedical signals is indeed that they are the combination
of both transient and diffuse phenomena which may exist in the time-frequency
domain. A powerful approach to overcome these limits encompasses the Wavelet
Transform (WT) analysis which exploits the property of low-frequency signals to be
widespread over time, and of high-frequency bursts occurring during short intervals
[57], for implementing a tailored time-frequency localization tool [58] particularly
appropriate for processes which show frequencies that vary over time, transients,
or slowly varying trends, such as EEG signals.

This method divides the signal under analysis into different frequency compo-
nents each of which can be studied at a resolution matched to its scale thanks to the
suitable variation of the time-frequency aspect ratio (Figure 2.16, left) providing:

• good time resolution and "poor" frequency resolution @ high frequencies.

• good frequency resolution and "poor" time resolution @ low frequencies.

which results in a non-uniform tiling9.
WT replaces sine waves of FT by translations (by a time factor) and dilation

(by a scaling factor) of window functions called wavelets which are finite-energy
wave-like oscillations with zero mean [35] (Figure 2.16, right).

9FT shows high frequency resolution but zero time resolution, STFT provides a better trade-
off between time and frequency resolutions however it is restricted by the Fourier "uncertainty
principle", for which there exists a limit to what it is possible to know simultaneously in time and
frequency domain since small time windows allow to know more about the location of a frequency
event in time, but not on the frequency value itself, and large time windows allow to know about
the frequency value and less about the time occurrence. WT leads to the best trade-off since
it not only indicates which frequencies are present in a signal, but also when these frequencies
occur in time thanks to the fact it provides high frequency resolution and low time resolution
for small frequency values as well as low frequency resolution and high time resolution for large
frequency values.
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Figure 2.16: Comparison among various time and frequency tiling approaches.
https://ataspinar.com/2018/12/21/a-guide-for-using-the-wavelet-transform-in-machine-

learning/ https://www.researchgate.net/.

The family of wavelets comprises a Father Φ(t) wavelet and "different" Mother
wavelets Ψ(t), whose linear combination (by wavelet coefficients) reconstructs the
signal. Each scaled version of the wavelet is shifted along (and correlates with) the
entire signal length, and this process is repeated for all the scaled versions creating
what are called "levels of decomposition" which (through wavelet coefficients) allow
decomposing the signal into a pre-defined number of frequency components (HP
and LP) which depends on the number of levels.

The Father wavelet is built by dilating (large scale factor) the mother wavelet
and is responsible for the low frequency components i.e. it is good in representing
the smooth and low-frequency part of the signal. On the other hand, compressing
(small scale factor) the Mother wavelet produces other window functions which are
responsible for the high frequency components i.e. they are good at representing
the detailed and high-frequency part of the signal.

From a conceptual point of view, the scaling factor s characterizes the frequency
action of the wavelet, and it is defined as

s s.t. Ψ( t

s
), s > 0 (2.36)

the smaller the scaling factor, the more the wavelet will be compressed. A com-
pressed wavelet helps in capturing the abrupt changes of a signal. The reciprocal
relationship between the scale and the frequency of the wavelet involves a pro-
portionality constant called "center frequency of the wavelet" which accounts for
the fact that, unlike sine waves, wavelets have a bandpass behavior in frequency
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domain i.e. they are characterized by a range of frequencies.

Feq = Cf

sδt
(2.37)

where s is the scaling factor, Cf is the center frequency of the wavelet, δt is the
sampling interval, and Feq is the equivalent frequency [59]. According to this
statement, the relationship scale/frequency is defined in Table 2.7.

Table 2.7: Scale/Frequency relationship

Scaling factor 2 4 8 16
Frequency reduction Feq/2 Feq/4 Feq/8 Feq/16

Figure 2.17: Relationship between the scaling factor and the wavelet frequency
https://medium.com/

On the other hand, the shifting factor k defines the time onset of the wavelet
along the length of the signal

k s.t. Ψ(t − k), k > 0 (2.38)

In the context of this thesis project, Discrete Wavelet Transform (DWT) was
exploited since presenting some advantages with respect to Continuous Wavelet
Transform (CWT) [60]:

• it enables a sparser representation in which redundancies are discarded (com-
pression and noise reduction), producing a high quality signal approximation.

• the number of output coefficients is equal to N (epoch length), and at each
decomposition stage the signal is downsampled10 (by 2) thus implying a lower
computational burden.
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• it does not require an explicit definition of the wavelet functions but exploits
just discrete filter banks (LPF and HPF) thus it is equivalent to pass many
times (i.e. for many levels of decomposition) the signal through LPF (Father
wavelet) and HPF (Mother wavelet). LPF stage produces "approximation
coefficients" while HPF produces "detail coefficients".

• the scale parameter s = 2j is an integer power of 2 and the translation
parameter k = 2j ∗ m is always proportional to it (dyadic scaling and shifting).

Ψ( 1
2j

(t − 2j ∗ m)) j, m = 1, 2, 3, ... (2.39)

Moreover, among the different types of existing Wavelet functions (Figure 2.18),
Daubechies wavelets of order 4 (db4) were used (Figure 2.21) as suggested in the
work of Abdulhamit Subasi (2007) [58].

Figure 2.18: Wavelet types.
https://medium.com/

Considering Fs = 512Hz, the initial spectrum was defined by the Nyquist
frequency (the maximum frequency that may be accurately represented, ≤ Fs/2)
FN = 256Hz. It was then divided by filtering the original signal multiple times,
and choosing a level of decomposition equal to 6 an almost exact decomposition of
the EEG spectrum into its relevant frequency bands was provided (Figure 2.19).

52



Material and Methods

Figure 2.19: Tree structure for EEG discrete wavelet decomposition.

The coefficients (Table 2.8 and Figure 2.20) were computed for each 2s mini-
epoch and then statistical measures like Mean, Standard Deviation, Coastline
(defined in the TD section), and the ratio between successive sub-bands (RASb)
were extracted in order to decrease the dimensionality of the obtained vectors [58].
The latter metrics is defined as

RASb = |coef1|mean

|coef2|mean

(2.40)

where coef1 and coef2 are couples of successive coefficients.

10Assume the original sampling rate of the signal is Fs (thus FN = Fs/2) and that the filters
perfectly divide the band into two portions at each stage. After the first LPF the frequency
content will range from ∈ (0, Fs/4) and thus the sampling rate can be reduced to Fs/2 maintaining
compliance with the Nyquist theorem. For the HPF, the frequency content lies in ∈ (Fs/4, Fs/2)
and there is no content in the range ∈ (0, Fs/4). For this reason also in this case it is possible
to downsample by a factor of 2. With this expedient DWT reduces the overall computational
burden.
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Table 2.8: Wavelet coefficients

Coefficient Frequency Range (Hz) EEG relevant band
d3 32-64 ≈ γ

d4 16-32 ≈ β

d5 8-16 ≈ α

d6 4-8 ≈ θ

a6 0-4 ≈ δ

Figure 2.20: Wavelet coefficients evolution in time.
DWT coefficients computed for the first 2s mini-epoch of a SWS segment, patient n1, channel

C4-A1
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Figure 2.21: Wavelet functions (db4).
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Nonlinear Domain

Besides assuming stationarity of the EEG signal, conventional Fourier-based EEG
analysis techniques rely on the hypothesis of linearity of the signal under study.
This is however in contrast with the well-established knowledge that the EEG
is a signal originated by complex desynchronized oscillatory mechanisms related
to the combination of its relevant frequency sub-bands. This complexity may
arise from interactions among several brain control nodes that operate together at
multiple time scales making the brain a system with nonlinear (chaotic) dynamics,
source of signals that change amplitude randomly with respect to time [61],[62].
Nonlinear analysis allows to better understand these complex fluctuations of EEG
dynamics across the various sleep stages, and results in features which may be
efficiently exploited for studying sleep mechanisms. Moreover, they show good
diagnostic capabilities, since may evaluate deviations from physiologic conditions
highlighting specific sickness states that typically demonstrate a gradual loss of
complexity, a symptom of systems’ diminished adaptation to stimuli [61]. This
power is demonstrated by different works that used nonlinear features in sleep-
related H/C-sick classification problems, or automatic sleep staging processes [62],
[63].

Among the several ways to estimate signal complexity, mainly divided into
two families namely Fractal-based methods and Entropy-based methods, the more
commonly used in the context of sleep EEG analysis, which also provide the best
results [61] and for this reason exploited in this work, are Detrended Fluctuation
Analysis (DFA, Peng et al. 1994), Higuchi Fractal Dimension (HFD, Higuchi,
1990), Sample Entropy (SampEn, Richman and Moorman, 2000), and Taiger-
Kaiser Energy Operator (TKEO, Kaiser, 1990 and 1993) which instead does not
belong to any of the above-mentioned family, being an energy measure [27].

Fractal-based methods rely upon two main aspects of fractal theory i.e. long-
range correlation (linked to self-similarity)11 and fractional dimensionality.

DFA (Martin Magris (2023). Detrended fluctuation analysis (DFA), MATLAB
Central File Exchange. Retrieved June 26, 2023 ): The degree of long-range
correlation and self-similarity can be quantified through the Detrended Fluctuation
Analysis (DFA) which, by estimation of the so-called scaling exponent α, identifies
trends in the signals’ variance when analyzed with different time-block lengths
[64]. DFA evaluates signal fluctuations across different time window lengths by
computing the Root Mean Squared error (RMSe) of linear fits over successively
bigger bins (which are overlapped boxes of equal size) of the detrended and
integrated time series, allowing the discovery of intrinsic long-range correlations
present in it (Figure 2.22).

11Long-range correlations refer to the property of some time-series to exhibit correlation between

56



Material and Methods

Figure 2.22: Detrended Fluctuation Analysis (DFA) [64].
(A) Time-series x(t). (B) Integration of the signal (cumulative sum, which defines the signal

profile y(t)) and removal of global trends by subtracting the signal mean. (C) y(t) is divided into
sub sequences of equal length n and is deprived of any linear trend to avoid spurious detection of

apparent long-range correlations. Detrending the signal profile makes the robustness of DFA
since reveals its true scaling properties. (D) The previous step produced F (n) which is the

average fluctuation as a function of the box size. F (n) is then computed for different values of n
and displayed in a log(F (n)) − log(n) plot whose slope is the scaling exponent α.

The range of window lengths was chosen according to the procedure proposed
by Hardstone et al. (2012) [64]. Besides the fact windows should be logarithmically
spaced in order to give the same weight to all the time scales (in the log-log

values that do not decay (or decay slowly) as the time lag between them increases (i.e. at different
time scales). On the other hand, self-similarity is a fractal property related to the presence of
repeated patterns at various temporal scales. In other words, patterns or features that are present
in the data at one scale also appear at other scales, and for this reason, self-similar processes are
often referred to as scale-free. Both properties can be identified as scaling properties since related
to characteristics of the signal that may vary when the time scale of the data is changed.
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plot), the lower fitting range was chosen of at least four samples (since it has been
demonstrated linear detrending with n < 4 produces poor results) while the higher
fitting range was picked n < 10% of the signal size avoiding DFA estimates to be
too noisy due to the small number of the available windows. DFA is inherently
robust against non-stationarities thus T = 30s is picked. The above-mentioned
process results in the range (8 − 1536) samples which means (0.016 − 2s).

The results of DFA can be interpreted as follows [61],[64]:

• If 0 < α < 0.5 the process has-short range memory thus it not exhibits
long-range correlations. This means that "large fluctuations are not followed
by similar-sized fluctuations in the future".

• If 0.5 < α < 1 the process has long-range memory thus it exhibits long-range
correlations. This means that "large fluctuations are more likely to be followed
by similar-sized fluctuations in the future".

• If 1 < α < 2 the process is non-stationary.

• If α = 0.5 the process is indistinguishable from white noise

• If α = 1 the process corresponds to pink noise which exhibits perfect self-
similarity.

• If α = 1.5 the process corresponds to a Brownian noise.

In general, it is possible to state that complex time series have lower α, while
non-complex signals have higher α. Yan Ma et al. (2018) [61], in their work about
sleep EEG, demonstrated that healthy subjects are characterized by α > 1 when
passing from wake to NREM sleep (N3, α ≈ 1.3 − 1.5) and this values decrease
during REM (α ≈ 1 − 1.2) suggesting that "the dynamics of the sleep EEG is
like a Brownian noise process in deeper sleep stages", probably due to the greater
neuronal synchronization they are associated with (Figure 2.26).

DFA is more efficient with respect to other classical estimation approaches like
R/S analysis (Hurst exponent), being more robust against non-stationarities, not
overestimating the scaling exponent, and requiring lower sample size to reduce the
estimate variance, what allows it to be applied also on short portions of the signal
[65].

HFD (Jesús Monge-Álvarez (2023). Higuchi and Katz fractal dimension mea-
sures, MATLAB Central File Exchange. Retrieved June 26, 2023 ): It is another
member of the family of Fractal-based approaches, and focuses on the fractional
dimensionality estimation (topological dimension of the attractor12) as a way to
characterize the complexity of the system that generates the signals under study.
When using such a nonlinear approach (but also SampEn relies on the same assump-
tion) an irregular EEG waveform is frequently considered as a consequence of the
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existence of a strange attractor in the state-space of an underlying system. It is then
possible extracting information about this attractor directly from the signal thanks
to the embedding theorem (Takens, 1981) which looks at the one-dimensional time
series as the compressed information of higher dimensional space (i.e. information
from the state-space) [39].

The algorithm builds partial time series from the signal x(t) (N samples) by
exploiting two parameters k = 1, ..., kMAX and m = 1, 2, ..., k where the former
defines the width of the time window, and the latter refers the point of the
original time-series from which the time-window starts. For fixed k and m values,
i-differences between k-spaced samples of x(t) are computed, defining the "height"
between the extrema of the time windows, and obtaining what is called mean
segment length Lm(k) (Figure 2.23)

Lm(k) = 1
k

(
⌊(N−m)/k⌋Ø

i=1
|x(m + i ∗ k) − x(m + (i − 1) ∗ k)|) N − 1

⌊(N − m)/k⌋ ∗ k
(2.41)

where ⌊(N − m)/k⌋ ∗ k is a normalization factor.
These mean segment lengths are then averaged across various values of initial

points m obtaining a function of k, called length of the curve L(k)

L(k) = 1
k

(
kØ

m=1
L(m, k) (2.42)

If L(k) follows a power law of the type L(k) ∝ kDf then the underlying process is
fractal-like with dimension Df . In this case, the straight line fitting log(L(k)) as a
function of the time delay log(k) is computed and its slope is the HFD [33].

As well as indirectly representing the dimension of the system attractor, HFD
can be seen as a measure of the self-similarity of the underlying process, since
trying to quantify its property to exhibit pattern at different time scales.

HFD is pretty sensitive to the values of k and N . The parameter kMAX should be
estimated from data, and in its original work Higuchi (1989) suggested kMAX = 211

(for N = 217) as the best value, since it performed better when applied on EEG
analysis. Starting from the fact there is no general consensus on the choice of such

12A dynamical system is characterized by its state (m-dimensional vector in the phase, or
state space) and its dynamics (set of equations describing how the state changes over time i.e.
defining the system trajectories). Trajectories in some cases can converge to a bounded subspace
of the state space called attractor since "attract" them from their initial conditions. Based on the
dimension of the resultant geometric object, attractors are grouped into various categories (0-D
steady state, 1-D limit cycle, 2-D limit torus, and non-integer dimension strange attractors which
are hence fractal objects). Attractors analysis can be useful for characterizing system complexity
and stability.
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a parameter, Wanliss et al. [66] proposed an efficient and reliable approach for
estimating it through the usage of an empirical relationship involving the length of
the time series, obtaining kMAX = 28 (with N = 1024 samples).

kMAX = A1 ∗ sin(B1 ∗ N + C1) + A2 ∗ sin(B2 ∗ N + C2) (2.43)

Table 2.9: Fitting parameters for kMAX estimation [66]

Parameter Value
A1 129.8 ± 3.0
B1 (1.292 ± 0.045) ∗ 10−5

C1 0.04488 ± 0.0255
A2 18.82 ± 2.56
B2 (6.488 ± 0.280) ∗ 10−5

C2 1.332 ± 0.220

Figure 2.23: Higuchi Fractal Dimension (HFD) [67].
In this graph the name hi is used to indicate Lm(k).

HFD was used in several studies concerning brain pathologies (like Parkinson’s
Disease and Epilepsy) [67], in classification problems involving Healthy subjects
and depressive patients [68], and for the analysis of other pathological conditions
[62] showing as one of the most promising nonlinear features. In sleep-related
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studies, it is revealed a complementary behavior with respect to DFA (Figure 2.26),
with higher values during REM and lower during N3 [61]. In their work, Accardo et
al. (1997) [67] suggested that the lower values of HDF (lower complexity) for Slow
Wave Sleep may be due to the higher neural synchronization of this stage, which
produces more synergism and less chaos. Similar observations can be found in the
work of Yan Ma et al. (2018) [61] which state that a lower fractal dimension (less
complexity) is associated with sleep-deprived subjects while higher HFD values are
typical of narcoleptic patients with respect to control ones.

SampEn (Flood, Matthew W., and Bernd Grimm, EntropyHub (2021)): the
other family of nonlinear features comprises Entropy-based methods (called em-
bedding entropies to distinguish them from the spectral entropies computed in
Section 2.2.2). Such measures do not result in the computation of the exponent of
a power law distribution but in the characterization of the time-series self-similarity
properties by assessing the uncertainty regarding its information source offering
a measure of the system’s complexity, randomness and irregularity [61]. Entropy
measurements are based on the assumption that time series with repeated elements
are associated with ordered systems (low entropy values), whereas more irregular
patterns (arising from less ordered systems) are related to high entropy values [69].
Literature is full of entropy measures, but one of the most effective and simple is
the Sample Entropy (SampEn) which thus was implemented in this work.

SampEn quantifies time-series complexity and self-similarity by computing the
conditional probability that two sequences of the original signal (template vectors)
of a given length m, similar for m data points, remain arbitrarily similar within
tolerance r at the (m + 1)th point (Figure 2.24).

Considering the following template vector definition

u(i) = [x(i) x(i + 1) ... x(i + m − 1)]T (2.44)

and the conditional probability (self-similarity measure) of the pair u(i) and u(j)
as

Φm(r) =
N−mØ

j=0,j /=i

N−mØ
i=0

H(r − ||u(i) − u(j)||∞) (2.45)

where H(x) is the Heaviside function (1 if x ≥ 0, 0 otherwise), and ||x||∞ is the
infinity norm (maxi|xi|), the SampEn can be computed as [33], [70]

SampEn(m, r) = −ln(Φm+1(r)
Φm(r) ) = −ln(

q
i Aiq
i Bi

) = −ln(A
B

) (2.46)

This process is performed for all the possible template vectors pairs u(i) and u(j)
and the results are then averaged. If the time series is perfectly ordered, templates
that are similar for m points stay similar also for m + 1 points (i.e. A = B) and
thus SampEn = −log(1) = 0.
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Figure 2.24: Sample Entropy (SampEn) [70].
The template length is m = 2, the tolerance for accepting matches is r times the standard

deviation (error bars), and the time series begins with the ith template. The template is matched
both by the 11th and 12th points (represented by the solid box), and by the (m + 1)th points

(dashed box), thus Bi and Ai are increased by one.

SampEn shows advantages with respect to other Entropy-based methods like
ApEn [54], [71], reason why it was chosen for the current analysis. In fact, SampEn
is less sensitive to the choice of the parameters m, and r, does not consider self-
matches (producing a lower bias) [70] works well even with short time series, and
is robust against noise, producing lower results.

SampEn relies on the choice of three parameters:

• N, the length of the time series. It has not great impact on the final estimate
and can be chosen just to satisfy the stationarity condition of the EEG.

• m, the length of the template vectors.

• r, the threshold of similarity between template vectors.

There are no established guidelines for selecting these parameters but most of the
works present in literature use m = 2, and r = 0.1−0.2 times the standard deviation
of the original time-series [54], [56], [68]. The estimation method proposed by
Castiglioni et al. (2013) [69] was applied in this work, together with the suggestion
of Yentes et al. (2013) [71] to avoid (m, r) couples that cause abrupt changes in
SampEn results (Figure 2.25).

The estimation process relies upon the idea that escaping vectors (i.e. template
vectors that are similar for m points but not for the m + 1th) are those effectively
contributes to the estimation of SampEn, and that the number of escaping vectors
E(m, r) ∝ B − A is linked the choice of r:

(a) If r is too small, few vectors have neighbours, so few vectors escape from a
neighborhood even if m increase to m + 1, and thus E(m, r) approaches 0.
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(b) If r increases, the tolerance is too high and then almost all vectors remain
similar even if m increases to m + 1 (there are few escape vectors), and also
in this case E(m, r) is close to 0.

The goal is thus to find r such that E(m, r) is maximum i.e. to find r in order to
work between two extrema situations (a) and (b). The analysis was performed with
r ∈ [0.01, 5] and m ∈ [1, 11]. The obtained values, m = 2 and r = 0.26 ∗ std(x(t)),
are also coherent with the above-mentioned literature.

Figure 2.25: E(m,r) curves and SampEn(m,r) curves.
(right) E(m, r) curves, (left) SampEn(m, r) curves for different values of m and r.

Studies computed on different categories of subjects such as adults, children and
new-borns [61] reveal that (like HFD) the Entropy measures of physiological EEG
signals gradually decrease going from Wake to N1-N3 stages and increase in REM,
suggesting that during NREM the brain activity is more regular and coherent with
respect to Wake and REM sleep (Figure 2.26).

Figure 2.26: Relationship between Nonlinear features and sleep stages [61].
These findings support the prevailing idea that NREM sleep phases entail more organized,

coordinated, and regular, or less-involved, brain cell activity. CD stands for Correlation
dimension and behaves like HFD.
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TKEO (Hooman Sedghamiz (2023). Teager Keiser Energy Operator Vectorized,
MATLAB Central File Exchange. Retrieved June 26, 2023 ): Typically, instanta-
neous energy measures used in signal processing just include amplitude information.
However, it has been demonstrated that measures that additionally include fre-
quency details do a better job in assessing the energy required by a system to
generate a signal, resulting in a more sensitive analysis. This job is accomplished via
the Teiger-Kaiser Energy Operator (TKEO)13, a frequency-weighted metric often
used in EEG research since characterizes the system’s "true" energy. Being based on
the second derivative of the time series, it is capable to detect instantaneous signal
changes such as discontinuities and amplitude and frequency alteration, allowing
to better and more finely characterize the energy content of a system.

For discrete signals TKEO is defined as

Ψ [x(t)] = x(t)2 − x(t + 1)x(t − 1) (2.47)

Some works highlighted that post-processing TKEO can increase the perfor-
mances in detection problems, bringing to similar results with respect to other
methods, while keeping the algorithm simple [72], [73]. For this reason after energy
was estimated, the absolute value of TKEO was considered (Figure 2.27) and then
statistical measures like Mean, Standard Deviation, Skewness, Kurtosis, and Max
were computed, in order to reduce the dimensionality of the obtained objects.

Figure 2.27: Teiger-Kaiser Energy Operator.
TKEO computed for the first 2s mini-epoch of a SWS segment, patient n1 (top) and rbd1

(bottom), channel C4-A1.

13For a signal of the type x(t) = Acos(ω0)t + ϕ, the TKEO outcome is proportional to both
amplitude and frequency, Ψ [x(t)] = A2ω2

0 .
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Table 2.10: Electroencephalographic features

Domain Features

Time Mean, Mode, Median (50th-p), Standard Devia-
tion, Skewness, Kurtosis, Maximum and Minimum
values, Range, Zero-crossing rate, Hjorth Parame-
ters (Activity, Mobility and Complexity), Hjorth-
based (Sparseness, Irregularity, Spectrum Band-
width, Average-Zero-up, Crossing period, Average-
peak-to-peak period), Percentiles (25th-p, 75th-
p), Interquantile range, Form Factor, Crest Fac-
tor, Impact Factor, Coastline, Coefficient Varia-
tion (std/mean), Energy of the signal, Envelope-
based (Number of peaks, Peaks Prominence, Peak
Width), Maximum-minimum-distance, EnergySis.

Frequency (total) Absolute Power Spectrum, Mean Power Spec-
trum, Peak Frequency, Mean Frequency (Spectral
Centroid), Median Frequency (SEF50), SEF25,
SEF75, SEF95, SEFd75-25, SEFd95-25, SEFd95-
50, Spectral Crest, Spectral Entropy, Renyi’s
quadratic Entropy.

Frequency (sub-bands) Max Value, Relative Power Spectrum, Mean
Power Spectrum, Absolute Power Spectrum,
Spectral Centroid, Spectral Spread, Spectral
Skeweness, Spectral Kurtosis, Variance of Cen-
tral Frequency, Peak Frequency, Median Fre-
quency (SEF50), SEF95, SEFd95-50, Bandpower-
ratios, θ/α, β/α, (θ+α)/β, θ/β (θ+α)/(α+β),
TREM/FREM, SWA/SOs, Spectral Entropy,
Renyi’s quadratic Entropy.

Time-Frequency 6 levels Discrete Wavelet Analysis (DWT), db4
(Mean, Standard Deviation, Coastline, Ratio of
absolute mean values of adjacent sub-bands).

Nonlinear Detrended Fluctuation Analysis (DFA), Higuchi
Fractal Dimension (HFD), Sample Entropy,
Taiger-Kaiser Energy Operator (TKEO) (Mean,
Standard Deviation, Skeweness, Kurtosis, Maxi-
mum value).
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After the feature extraction process, for each variable, the values corresponding
to the 30s macro-epochs (for TD) or to the 2s mini-epochs (for the other domains)
were collected into a feature array, and then statistics such as Mean, Standard
deviation, 75th-p, and Main Mode were computed, to sum up all the information in
just a value that catches salient peculiarities about the underlying distributions of
the data (Figure 2.28), obtaining 883 features. This process was then repeated for
all the patients and segment types, forming three features matrices Uk, k = 1,2,3
(with features columns ui and patients rows sh).

Figure 2.28: Features matrices structure.

At the end of this stage, three feature sets were obtained (Table 2.11).

Table 2.11: Feature Sets employed in this work

FeatSet Description
FeatSet1 Polysomnographic + REM Sleep Features
FeatSet2 Polysomnographic + SWS Sleep Features
FeatSet3 Polysomnographic + (REM+SWS) Sleep Features

2.3 Binary Classification: H/C and RBD
This section comprises all the steps necessary for implementing an automatic
system that through the help of supervised ML models can exploit the available
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patients labels to build classification rules that discriminate between healthy and
RBD subjects. In this part of the work, H/C and RBD patients from both CAP
and TuSDi databases were employed, resulting in three matrices Uk ∈ R(58,883)

as inputs, and a target vector y ∈ R(58,1) that contains the labels (0 and 1 for
H/C and RBD respectively). These FeatSeti were exploited in a pipeline (Python
environment) that aims to standardize the data, reduce the dimensionality of the
dataset, optimize the hyperparameters of the ML models used for the analysis,
and evaluate the performances through the use of standard supervised ML metrics.
All these steps were performed in a Leave-one-out cross-validation framework to
overcome the limited number of available patients and decrease the risk of data
leakage.

2.3.1 Data Scaling
All the analyzed features come from various domains that are difficult to be
compared and have heavily different order of magnitudes that can create imbalanced
situations in the models tuning part. Some ML models (e.g. Support Vector
Machines, and K-Nearest Neighbors) do not work well with such data since they
use distance metrics in the definition of their classification rules. Distance-based
algorithms assume in fact, that larger values should be given greater weights
bringing them to be more significant with respect to smaller values, and hence
playing a more decisive role during the training phase. To overcome this bias source,
the data were standardized in such a way each sample contributes approximately
proportionally to the final distance, in some cases improving the classification
performances and the convergence properties of the algorithms.

There are two big groups of data scaling approaches namely Normalization and
Standardization. The latter has different advantages compared to the former e.g. it
allows for the presence of outliers more than the normalization family does, making
the algorithms less sensitive to anomalies, and it is more robust on new data since
relies upon statistical (i.e. global) features rather than local ones (like min and
Max). Since features along all the samples (patients) follow a normal distribution,
Standardization (also called Z-score normalization) was used (StandardScaler in
Python framework).

It works independently on each feature along patients, performing the following
steps

1. Centering the data by removing the mean.

2. Scaling the data by dividing for the standard deviation.

u
(i)
stnd = u(i) − µu

σu

(2.48)
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where µu is the mean of a certain column of features ui, and σu is the corresponding
standard deviation (u(i) is the generic element of the vector ui). The resulting
scaled data follow a normal distribution and have mean = 0 and std = 1 (not
limited to a certain range).

The effect of such procedure on data can be appreciated in Figure 2.29 where
two features and their scaled versions were displayed on a 2-dimensional scatter
plot. It can be noticed that the relative position of each data point is maintained as
far as the presence of outliers, keeping the relationship between features unaffected.

Figure 2.29: Data Scaling effects.
The range of the original features passed from (7.1, 7.8) and (25.0, 225.0) to (−2.0, 2.0) and

(−1.3, 2) for the first and the second features respectively.

2.3.2 Feature Selection
Working with a big number of features can increase the complexity of the ML
models, rising the chance of overfitting14 [74]. Selecting a subset S of the overall
dataset U with dim(S) < dim(U) through feature selection strategies becomes thus
a fundamental step in every classification framework, reducing the computational
cost, attenuating the noise brought by non-necessary features, improving the
accuracy thanks the more understandable and clear relationship between features
and target, and speeding up the training procedure.

14A supervised learning pipeline consists in building a model on a portion of the original data
(training set) and making predictions on new unseen data (test set). When the model can reach
good classification performances on the test set it is said it has good generalization capabilities
since it is able to build a rule which is pretty accurate but general enough to fit well with data it
does not know. To build such a model, a trade-off between model complexity and performance
should be performed, finding a sweet spot between the following situations

• Overfitting. Too complex models (high variance) are too adherent to the training set,
performing well on it but failing in generalizing on new data. This condition causes high
train accuracy but low test accuracy.
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Figure 2.30: Complexity and performances trade-off.
https://towardsdatascience.com, https://medium.com

A lot of methods exist, but filter methods were chosen thanks to their speed,
computational lightness, and independence from any kind of ML model reducing any
potential overfitting problem. Moreover, they shine when the number of features
in the original dataset is massive. The key idea they rely upon is to capture
the discriminating capability of each feature by statistically quantifying their
relationship with the target variable (univariate feature selection) and assigning a
score used in heuristic fashion to rank them. Starting from the evidence that “the
m best features are not the best m features” [75] Minimum Redundancy Maximum
Relevance (mRMR) method was exploited. This approach condenses as much
information as possible in a small number of significant features overcoming the

• Underfitting. Too simple models (high bias) are expected to generalize better on new unseen
data even if they may fail in catching the variability and the subtle relationship details of
the features, being in some sense incomplete and not precise. This condition causes both
low train and test accuracy.

Complexity is intimately related to the dimension of the input training dataset (a higher number
of samples allow the model to be more complex without overfitting) and with the size of each
data point (a higher number of features increase the model complexity bringing to overfitting).
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main limitation of a quite large number of basic feature selection methods i.e. they
do not account for redundancy of features, which may bring to:

• The poor efficiency through which the resources (features) are used.

• The limited generalization abilities of the resulting feature set. If the features
are chosen only on the basis of their individual discriminative power, the
resultant subset is not maximally representative of the original space made up
of the total number of features.

Being a multivariate approach, mRMR uses more than one statistic, for both
establishing the link between features and target as well as taking into consideration
the relationship among the features. It belongs to the class of methods that seek
the minimal-optimal set, which is defined as the set of all relevant features from
which redundant and hence unneeded features are deleted, and having the smallest
possible dimension while keeping the highest possible predictive ability [76], [77].

It works in an iterative way choosing at each step the best feature and adding it
to the previously selected ones following two criteria, namely Max-Relevance and
Min-Redundancy [75].

1. Relevance of each feature with respect to the target. It must be maximized
to guarantee the selected features carry important discriminant information
(relationship features-target)

max
Ø

ui∈S

I(ui; y) (2.49)

where y is the target vector, and ui is the ith feature column.

2. Redundancy with respect to features selected in previous steps. It must be
minimized to discard all the irrelevant features (relationship feature-feature)

min
Ø

ui,uj∈S

I(ui; uj) (2.50)

where ui and ui are two different feature columns.

I(a; b) represents the Mutual Information15 (MI) which captures any sort of
connection between two random variables. Hence, the correspondent feature-
selector belongs to the sub-group of Mutual Information-based Feature Selection
(MIFS) methods (implemented in Python through the package https://github.
com/danielhomola/mifs).

These criteria can be merged in the form of incremental search (mutual infor-
mation difference, MID)

maxuj∈U−Sm−1 [I(uj; y) − 1
m − 1

Ø
ui∈Sm−1

I(uj; ui)] (2.51)
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where m is the number of selected features from the original feature space.
In Equation (2.51) MI between each taken-individually feature and the target is

computed, and the feature with the highest MI is placed in the subset S. In each
consecutive step a greedy search is performed, picking the features that have the
minimum MI with the already selected ones, and the maximum MI with the target.

In their research works, Hanchuan Peng et al. (2005) [75], Ding et al. (2005) [76],
and Z. Zhao at al. (2019) [77] proven that, given the same amount m of features,
mRMR makes the resultant subset more representative of the target, allowing to
use a smaller number of features to effectively cover the same space as the original
entire dataset does. Moreover, compared to univariate methods, mRMR improves
the performances in terms of classification error, and does not show any kind of
model dependency.

After accomplishing the mRMR procedure (with m = 30), the following steps
and heuristic criteria were performed, ending up with an appropriate small subset
of features:

1. For each FeatSeti, the mRMR scores (which are values of I(ui; y)) are nor-
malized to be more comparable and easier to interpret from a numerical point
of view.

2. A minimum number of mmin = 5 is chosen, according to the fact that for all
the FeatSeti, the first features carry the majority of MI with the target.

3. When a drastic drop in the value of MI was encountered the m searching was
stopped (since the range of the values, also a drop of 0.1 − 0.2 was considered
sufficient).

4. A couple of features were added to include some additional information,
remaining above the fixed limit of mMAX = 10, necessary for keeping the
feature interpretability as high as possible. This method helped to increase
the performances and also to have the same dimension for all the FeatSeti.

This process resulted in m = 8 top features for each segment type, bringing to
three updated FeatSeti ∈ R(58,8) (Table 2.12).

15According to information theory, MI derives from Entropy H(X), and conditional Entropy
H(X|Y ). The former quantifies the uncertainty present in a distribution of the variable X, the
latter defines the degree of uncertainty remaining in X after Y is known. Hence MI between two
variables X and Y can be computed as the intersection of the above-mentioned sets, representing
the amount of uncertainty in X that is removed after Y is known or in other words the amount of
shared information between the two data sets, I(X; Y ) = H(X) − H(X|Y ).
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Table 2.12: Updated FeatSeti with the top-8 ranked features

FeatSet1 FeatSet2 FeatSet3

SEFd(95-50) θ [75th-p] SCe FREM [Mean] PKF FREM [Mean]
SK SOs [75th-p] SSp β [Std] SEF95 β [Std]
Ssp θ [75th-p] PP (envelope) [75th-p] IQR [Std]

(θ + α)/(α + β) [75th-p] REN2 SOs [75th-p] SSp θ [Std]
SEFd(95-50) SWA [Mean] SEFd(95-50) SWA [75th-p] SEN β [Mean]

SK FREM [75th-p] SEFd(95-50) β [Mean] SEFd(95-50) SOs [Std]
Sce Gamma [Std] PW [Std] SEF(95-50) FREM [75th-p]

WP REN2 β [Std] VCF SWA [75th-p]

Figures 2.31, 2.32, and 2.32 graphically display the feature selection procedure,
with a distinction between the discarded attributes (light blue), the ones chosen
through a score threshold (blue) and the additional ones (pink).

Figure 2.31: Selected Features FeatSet1.
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Figure 2.32: Selected Features FeatSet2.

Figure 2.33: Selected Features FeatSet3.
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2.3.3 Machine Learning models
The new FeatSeti were used to train and test eight different supervised binary
classification algorithms (sci-kit learn Python library https://scikit-learn.org/
stable/) whose results were exploited to highlight the segment type that best
discriminates between H/C and RBD subjects.

K-Nearest Neighbors (K-NN): It is a non-parametric learning method that
classifies data points by computing their distances with respect to near training
points (neighbors). According to these distances, a weight is assigned to each
observation, and the closest K-top observations are then selected. Any new sample
is then classified as the most recurrent label within its neighbors. One of the
KNN hyperparameters is the number of neighbors K whose values change the
complexity of the resultant model (Figure 2.34). If K is small the decision boundary
follows too closely the training data, increasing the complexity and the chance of
overfitting. On the other hand, as K increases the boundary becomes smoother
until the extrema case in which it equals the number of samples in the dataset
(the new point is classified based on the most recurrent label in the whole dataset).
The optimal is between the two conditions [74].

Figure 2.34: Relationship between K and model complexity.
https://medium.com

Another hyperparameter is the distance definition, according to the Table 2.13
(ai and bi are the coordinates of the data samples involved in the computation i.e.
the patients).

Table 2.13: KNN distances

Distance Definition
Minkowski (q

i |ai − bi|p)1/p p /= 1,2
Euclidean (q

i |ai − bi|p)1/2

Manhattan q
i |ai − bi|

Chebyshev maxi(|ai − bi|)
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Support Vector Machines (SVM): it exploits (m − 1)-dimensional space
hyperplanes (where m is the dimension of the feature space) and seeks for the one
which optimally separates the features in such a way data points falling on different
sides of the hyperplane are attributed to different classes. More specifically SVM
seeks the hyperplane with the maximum margins which are the distances between
the hyperplane and the so-called support vector points (data points of both classes
which are closer to the hyperplane and in some sense the trickiest to be classified,
thus basing a decision rule on these points allows to build a robust algorithm).
The result is said Maximum Margin classifier. When data are not strictly linearly
separable it is possible to relax the problem, creating what is called a Soft Margin
Classifier, which allows for misclassifications and accepts points to be inside the
margin. The hyperparameter of SVM is the term C which tunes the strength of
the above-mentioned regularization introducing a penalty term proportional to its
value (Figure 2.35).

• For small C the regularization is heavy, and the decision boundary will allow
for misclassifications by imposing big margins and thus making the algorithm
more robust and generalizable. Increases the chances of underfitting.

• For big C the regularization is soft and the SVM will try to fit the training
data as best as possible imposing smaller margins and thus not allowing
misclassified points. Increases the chances of overfitting.

Figure 2.35: Relationship between C and model complexity.
https://dinhanhthi.com/support-vector-machine/

Kernelized Support Vector Machines (k-SVM): There are situations in
which samples cannot be linearly separated at all. In these cases may be convenient
to bring the data into a higher-dimensional space in which they are linearly separable.
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This is done using nonlinear functions of similarity called kernels (Table 2.14),
which look for higher-dimensional relationships between the variables, without
actually mathematically transforming them (kernel trick).

Table 2.14: SVM kernels

Kernel Definition
Linear Φ(ui, uj) = uT

i uj

Polynomial n-degree Φ(ui, uj) = (r + γuT
i uj)d d > 1

Radial Basis Function (RBF) Φ(ui, uj) = exp(−γ||ui − uj||22)
Sigmoid Φ(ui, uj) = tanh(γuT

i uj + r)

The main two hyperparameters of k-SVM are C (as in the linear SVM) and
γ which tunes the kernel action. It determines the number of data points to be
taken into consideration for building the hyperplane by scaling the influence each
sample has on others. In RBF (Figure 2.36) for high γ the radius of the kernel
is small and only points that are strongly near to each other will be considered
similar, looking at the similarity concept in a strict sense, and significantly fitting
the decision boundary to the training data (high chance of overfitting). In other
words, a new observation can be classified in a group only if it is strongly near to
the points of that class.

Figure 2.36: Relationship between γ and model complexity.
https://dinhanhthi.com/support-vector-machine/

Naive Bayes Classifiers (NB): It is a probabilistic classifier based on the Naive
Bayes Theorem which defines the change in the probability an event happens after
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some data evidence is known. This algorithm relies on an optimization problem
that seeks to find the outcome y is more probable to be obtained from the model
scheme represented by the dataset (features). In practice, the classifier computes
the probability distribution of each feature individually (along the training samples
of the same class) and makes predictions by comparing the new data points with
the statistics of these distributions (in the case of Gaussian NB, the statistics are
mean and std) predicting the best matching class. The main disadvantage of this
classifier is that it assumes that the features are independent, which is not properly
true as demonstrated in Section 2.3.2.

Decision Trees (DT): This supervised method uses a top-down approach
to progressively divide the feature space into small groups based on descriptive
conditions until at the end each group contains data that predict in a non-ambiguous
way the label. In its standard form, DT are made up of nodes (each node represents
a feature), branches (representing the decision rule), and leaves (representing the
outcome of the decision) which form layers. At each layer, the algorithm splits the
feature set in such a way data points falling into the same group are most similar
to each other and creating groups that are as different as possible from each other
following a within-homogeneity criterion (Figure 2.37).

Figure 2.37: Binary bi-dimensional example of DT splitting.
In a bi-dimensional case, the tree splits the feature space into areas in which data points are

grouped on the basis of characteristics reflecting the class they belong to. Each node is used as a
test condition and each branch as one of the possible answer to that question.

As the number of splits increases, the complexity of the model increases as well
as the chance of overfitting. Two common strategies are used to avoid this condition
and to keep the DT simple, namely pre-pruning and post-pruning. The first aims
to stop the creation of the tree early (e.g. by limiting the maximum depth of the
tree or limiting the maximum number of leaves) while the second waits for the
completed building and then removes the nodes that contain little information. As
all the regularization techniques they decrease the training performances since a
smaller tree is like an approximation of the completed one, but bring big advantages
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as far as the testing performances are concerned.
In this work, just pre-pruning techniques were employed, and the related limit

values (i.e. max depth and max number of leaves) were tuned as hyperparameters.
Another hyperparameter is related to the splitting criterion. Among the various
possibilities just Gini impurity and Information gain were taken into consideration
since they are the most commonly used and considered the most reliable approaches.

Gini impurity is a measure of non-homogeneity and quantifies how fine a split is
on the basis of how mixed the classes are within the two groups that originated
from the split. In a binary classification problem, it is defined as

Gini index = p1(1 − p1) + p2(1 − p2) (2.52)

where pi is the probability of class i. When the classes are equally distributed in
the after-split group, p1 = p2 = 0.5 thus Gini index = 0.5. On the other hand, if
the after-split group contains just one class, one of the two probabilities is 0 and
thus Gini index = 0.

Information Gain derives from Entropy (H) which measures the amount of
randomness in a dataset. Perfectly homogeneous groups have H(y) = 0, while
groups that are perfectly divided into two classes have H(y) = 1.

IG(y, A) = H(y) − H(y|A) (2.53)

If H(y|A) is the homogeneity in the after-split group after knowing the attribute
A, IG quantifies the expected entropy reduction caused by splitting according to
this feature.

In both cases, the features which are associated to the biggest after-split ho-
mogeneity are chosen as nodes for the ith split. The main disadvantage of DT is
related to their high variance since they are prone to overfit and their intrinsic
instability since an error in the top splits propagates down to all the next steps.

Random Forests (RF): It belongs to the family of ensemble methods since
based on the combination of different DT, obtaining performances are better than
the ones achieved by each single weak model. They rely on the concept of Bootstrap
aggregation (BAG) which creates parallel training procedures, proposing for each
rail a random subset of the original data, sampled by means of bootstapping
approach16. Each collection of data is then used to train a DT ending up with
an ensemble of different classifiers. The final prediction is performed as majority
voting of the single predictions. (Figure 2.38). Moreover, RF considers random
subset of features during the splitting process, and not the overall feature set as
DT does.

16Bootstrap allows to draw new datasets with the same size of the original one, by randomly
sampling the original dataset with replacement (so some points can miss and other can be
repeated).
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Figure 2.38: Random Forest scheme.

The most important RF hyperparameters to be tuned are the same as in the
DT together with:

• The number of features to be randomly selected from the original space. Good
rules of thumbs are sqrt(n.features) and log2(n.features).

• The number of independent estimators to be trained simultaneously. The
higher the parameter, the lower the variance.

Boosting Techniques: These strategies work sequentially on different models
Mi, training the ith models on a subset of observations that are randomly selected
from the original dataset, and then building the (i + 1)th by rectifying the mistakes
of the previous one. Each observation is associated with a weight that at first
is equal for all of them, meaning that at the beginning all the samples have the
same probability to be chosen for the training. Before feeding M(i + 1), the
dataset is updated in such a way that misclassified points weights are increased
and correctly classified points weights are decreased. In this way the probability to
select a misclassified observation for building the next training set is higher, making
M(i+1) more focused on mistakes of the previous steps. This process (Figure 2.39)
is repeated for each weak model until some stop condition is verified, and the
dataset is predicted as best as possible. All these models create an ensemble such
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that when new data are passed, each model gives its classification "opinion" and at
the end, the class with the majority vote is chosen.

Figure 2.39: Boosting technique scheme.

The core of boosting techniques can be enriched by additional details, defining
various algorithms which mainly differ on the way the weights are updated, and
on the way model’s classification opinions are exploited to produce predictions. In
this works these approaches were used with DT weak models (boostDT).

• Adaptive Boosting DT (ADAboostDT): works with weak learners that are
particular DT called stumps, which have only one node and two leaves. The
first stump is built exploiting the attribute with the lower Gini index. Each
ith built model is associated to a metric called "Amount of say" α, which is a
weight that will influence the final voting part

α = 1
2 ln(1 − Total Error

Total Error
) (2.54)

where the Total Error is the sum of the weights of misclassified points and
ranges between 0 (perfect stump) and 1 (terrible stump). This metric is also
used to update the sample weights according to the adaptive strategy

new weight = old weight±α (2.55)

+α is used for misclassified points, while −α is used for correctly classifications.
Each (i + 1)th stump is trained on a new dataset built by randomly selecting
observations from the dataset favouring those that received higher weights in
the previous steps (also duplicates may be present), and giving them the same
weights to restart the process. At the end a forest of different stumps is built,
each of whom has different “Amount to say” values. When a new data is put
in this serial algorithm, it will be classified on the basis of the weighted (α)
majority votes of all the stumps.
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• Gradient Boosting DT (GboostDT): In this case each weak learner (full
DT) is fitted on the residual error made by the previous DT (and not on the
data). At the first iteration a baseline prediction is built through the log of
the odds of the target features

log(odds) = log(n. of samples in class1
n. of samples in class0) (2.56)

then converted to a probability value c. If c > 0.5 then every instance is
predicted as belonging to class 1 (otherwise to class 0). For every instance the
algorithm computes the residual observed − predicted and each (i + 1)th DT
does predictions as

prediction = F0 + lr ∗ residual (2.57)

where F0 is the baseline of log(odds), and lr is the learning rate. It is like
each new DT is fit on the gradient of the error to introduce correction in the
opposite direction with respect to the previous done mistakes.

The hyperparameters to be tuned are the number of estimators, and the learning
rate which quantifies the correction strength each ith DT is allowed to impose to
solve the mistakes of the (i − 1)th tree. There is a strong relationship between
these parameters since if the learning rate is low, then more trees are needed to
achieve good performances. In contrast with RF, for which the more estimators
the better the performances, for boostDT too high estimators may increase the
chance of overfitting. Moreover, since GboostDT uses full DT, also pre-pruning
parameters can be tuned.

2.3.4 Pipeline
As mentioned at the beginning of Section 2.3, each model classification pipeline
(encompassing all the bricks described in the current section) was inserted in a
Leave-One Out Cross Validation (LOO-CV) framework.

CV is an expedient exploited to assess the generalization capabilities of a model
by training it on just a portion of the data (training set) and evaluating it on the
remaining part (test set) in such a way the latter contains new and never seen
data. Evaluating the models’ performances on data that have already been used
for other steps (like training or hyperparameters optimization), may in fact bring
to the phenomenon of data leakage which in turn can produce too optimal results.
The most common form of CV is the k-fold CV where the dataset is divided into
k-folds. At each iteration k − 1 parts are used for training and the remaining one
is used for testing, in such a way data are more effective with respect to the single
split e.g. in a 75 − 25 single split, the model uses 75% of the data for training and
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25% for testing, while in a 10-CV at each iteration the model uses 9/10 = 90% of
the data for training, which results in a more accurate model.

LOO-CV is a special case of CV particularly suitable for tiny datasets, like the
ones often encountered in the medical field, which exploits a finer division of the
dataset treating each sample as a fold. It thus performs CV for n iterations, each
time taking n − 1 patients as the training set, and leaving 1 for testing purposes
(where n is the number of samples, in this work n = 58, 38 form CAP and 20 from
TuSDi databases).

This approach was particularly beneficial coupled with the hyperparameters17

optimization step, since dividing the original dataset multiple times (one part for
training, one for testing, and one for hyperparameters optimization) to avoid data
leakage, would have brought to poor results, due to the limited number of samples.

For each features set (FeatSeti, with i = 1,2,3) the overall pipeline was developed
in an iterative fashion, encompassing the following steps:

1. Data are split in n − 1 training samples and 1 testing sample.

2. Data are scaled on the training set.

3. Hyperparameters are optimized through a 10-CV grid search on the training
set, using as choice-criterion the F1-score.

4. The best parameters are found and the corresponding best model is fit on the
training set.

5. The test sample is used to make a single prediction, stored in a vector ypred.

6. 1-5 are repeated for all the samples (n = 58), and for all the algorithms (8).

For each FeatSeti, this procedure ended up with 58 different best models per
algorithm type (one for each LOO-CV fold). Nevertheless, each classifier was
summarized through an unique representative model (Section 3.1), chosen as the
one producing the higher F1-score among all the LOO-CV folds best models.

2.3.5 Performance Metrics
The vectors ypred, containing n = 58 predictions, were used then to evaluate the
models through standard Biomedic-related ML metrics. Considering a generic
confusion matrix

17This process exploits a grid search approach which consists in trying all the possible com-
binations of pre-selected parameter vectors in a CV framework in such a way at the end the
parameters corresponding to the best models are chosen on the basis of the best value of some
predetermined score metric. It is a time-consuming process but if properly done it allows to
significantly improve the performances of all the models reducing the chances of overfitting.
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Figure 2.40: Confusion matrix scheme.

the following performances indicator were computed:

• Accuracy: It is a measure of the classification error

Acc = TP + TN

TP + TN + FP + FN
(2.58)

• Sensitivity (Recall, TPR)18: Defines the test’s ability to correctly identify ill
patients out of healthy ones

TPR = TP

TP + FN
= 1 − FNR (2.59)

• Specificity (TNR): Defines the test’s ability to correctly reject healthy subjects
which do not present the condition

TPR = TN

TN + FP
= 1 − FPR (2.60)

18A test which reliably detects the presence of a condition (i.e. positive patients) resulting in
high TP and low FN has high sensitivity while a test which efficiently excludes subjects who
do not have the condition (i.e. negative patients) resulting in high TN and low FP has high
specificity. The weight of these two metrics is different on the basis of the diagnostic application.
In all the cases in which failing to treat a condition is serious, high sensitivity is preferred, while
situations in which patients classified as positive are subject to more testing, expense, or anxiety,
a high specificity is favourite. In the under study case of early diagnostic of neurodegeneration
high sensitivity is a must.
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• ROC curve and AUC: Represent the graphical ways to display the Sensitivity-
Specificity trade-off. Making predictions can be seen as thresholding the
degree of uncertainty associated to each outcome (Figure 2.41), whenever
the computed predicted probability is under the threshold, the samples are
classified as negative and vice-versa. For balanced dataset this threshold
γ = 0.5. In order to define the threshold such that the working point of the
classification algorithm reflects the above-mentioned trade-off basing on the
specific application needs, it is possible to plot the FPR i.e. 1−TNR, against
the TPR for all the possible decision thresholds. The resulting curve is said
Receiving Operating Characteristic (ROC) and when associated to a reliable
classifier, it stays above a straight 45° line which represents a model that does
not perform better of a coin toss. ROC quality can be summarized in an
unique metrics called Area Under the Curve (AUC).

Figure 2.41: ROC and confusion matrix.

• Precision: It is the rate of the actual positive samples

P = TP

TP + FP
(2.61)

• F1-score: It is the harmonic mean of recall and precision

F1 = 2TP

2TP + FP + FN
(2.62)
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2.4 Three-Stages Classification: H/C, RSWA,
and RBD

To date, the majority of works about the automatic score of sleep EEG signals
are conducted exploiting supervised machine learning approaches (Section 2.3)
which have a series of advantages since by simply employing a sufficient quantity of
manually labeled EEG samples, they allow to train models able to make accurate
predictions on new unlabelled data. On the other hand, unsupervised methods like
clustering are less performant on classification tasks since in general do not exploit
any pre-knowledge of data and require an appropriate feature selection processing
to be reliable, which makes the training part tedious and complex.

However, the performances of the supervised methods are strictly linked to the
quality of the training dataset, since their classification capabilities depend on what
they learn in the training phase. They in fact may perform worse whenever fed
(test) with new samples containing structures that are slightly different compared
to the training data (e.g. if a supervised model is trained on healthy subjects,
its performances can degrade as soon as it is fed with test data from a clinical
population since the inherent structure of such patients is out of the pattern
the model has learned to recognize). In such situations, to obtain acceptable
performances, there is the need to re-training the models.

This still works well if the goal is to mimic the human expert identification
(Section 2.3) where supervised approaches outperform unsupervised ones, although
it may be not the right way e.g. for unknown-data-patterns discovering purposes.

The main advantage of unsupervised techniques is their focus on grouping similar
samples from a data-driven point of view, which makes them independent with
respect to any particular dataset, and thus pretty suitable for signal exploring
of clinical population and for the detection of anomalies. This fact provides
these methods with the ability to recognize signal patterns and characteristics
which overcome any strict prior knowledge, but that rise from the true inherent
and underlying structure of the samples, looking at patterns hidden in data and
potentially discovering novel ones in a way that is independent of the subject’s
health status, age, recording device goodness, and other blurring parameters.

According to the rationale followed by Alireza Kazemi et al. (2022) [78] in this
research a semi-supervised-based approach was exploited. This method aims to
pick the best of both worlds by using the prior knowledge contained in labeled data
for boosting the performances of a clustering framework, able then to generate more
stable centroids that can help any type of future unlabelled classification or data-
exploring task. The current study can be seen as the first step of a more complex
process that aims to qualify REM Sleep without Atonia (RSWA) as an intermediate
pathological state, supporting a finer characterization of the neurodegenerative
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progression from Healthy to RBD (Section 1.4.2). The cluster foundation set in
this work will avoid the need for annotations in data, speeding up the analysis and
reducing the overall costs.

2.4.1 Pipeline
The semi-supervised procedure, implemented in a Python framework, used the
features extracted in Section 2.2 from both CAP (16 healthy, and 22 RBD) and
TuSDi (10 healthy, 10 RBD, and 9 RSWA) databases just for the feature set
obtained by the union of REM and SWS segments (FeatSet3), resulting in n = 67
samples labeled as 0 (H/C), 1 (RBD) and 2 (RSWA). It encompasses two macro
stages (fig. 2.42):

1. A supervised pre-processing stage exploiting available data labels for data
scaling (as in Section 2.3.1), and dimensionality reduction (feature projection,
and feature selection) in such a way data are compliant with Clustering needs.

2. An unsupervised clustering task which exploits the information obtained in
(1) to study how samples group themselves, and to quantify the classification
capabilities of the trained model through unsupervised metrics. Moreover, the
stability of the clusters centroids was tested in a LOO-CV framework, aiming
to establish the robustness of the approach.

Figure 2.42: Semi-supervised-inspired pipeline scheme.

2.4.2 Feature Selection
The feature selection step is of paramount importance in clustering frameworks,
since different feature sets can lead to different grouping results and hence different
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performances. Moreover, irrelevant features add noise that can blur or make difficult
any clusters revealing.

A comparison among some filter-based univariate selectors was performed, in
order to highlight the method that, coupled with LDA (Section 2.4.3), would have
allowed to retain the most information about the data structure using the smallest
number of features m. It was performed by running, for each method, K-Means
clustering (Section 2.4.4) with K = 3 for different numbers of features ranging
in (1, 100], then reduced to two LDA components, and computing the ARi score.
The best results were achieved by MultiSURF especially in the range m ∈ [28, 34],
which is an acceptable features number range to keep high the data interpretability,
while ensuring optimal performances. After m = 50, all the methods behaved in
the same manner.

MultiSURF is one of the core feature selection methods belonging to the
family of Relief-based algorithms (RBAs), a bunch of filter strategies that are
computationally efficient, and sensitive to the interaction between features avoid-
ing mistaken eliminations of relevant attributes (sci-kit Rebate Library https:
//epistasislab.github.io/scikit-rebate/ in Python framework). In their
work, Ryan J. Urbanowicz et al. [79] suggest MultiSURF as able to catch multi-
dimensional interactions between features (up to 3-way complex pattern associations
between attributes) while determining the feature importance. Moreover, it turns
out to be the most general and flexible among the RBAs algorithms, with no need
of hyperparameters optimization.

The algorithm works iteratively through b random training instances Ri that
are picked from the dataset (b chosen equal to the number of samples n) and a
features, defining the weight associated to each feature A as W [A]. At each cycle
Ri is referred as the target instance and the distances between this point and the
other b − 1 ones are computed. On the basis of these distances, MultiSURF defines
two types of nearest neighbours of the target sample:

• One belonging to a different class, called nearest missing M .

• One belonging to the same class, called nearest hit H.

The weight updating strategy is based on the idea that useful attributes should
discriminate between samples from different classes and should assume the "same"
value for instances of the same class. For this reason if the A value differs between
Ri and M , W [A] is increased by a term +1/b (supporting the hypothesis that A
discriminates well between classes). On the contrary, if A differs between Ri and H,
W [A] is decreased by a factor −1/b (Figure 2.43). This process is repeated until a
pre-determined number of features to be selected is reached, each accompanied by
its weight (relevance score) which ranges from −1 to 1.
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Figure 2.43: MultiSURF weight updating [80].
"Relief updating W[A] for a given target instance when it is compared to its nearest miss and hit.
In this example, features are discrete with possible values of X, Y, or Z, and endpoint is binary

with a value of 0 or 1."

The algorithm determines the instances that can be considered neighbours
using threshold parameters T which creates a hyper-circle in the a-dimensional
feature space around each "target" within which all the instances are said “near
instances”. Moreover, it defines a dead-band zone which extends to the internal
side of the hyper-circle and excludes all the instances in the neighbour (near) which
are ambiguously far from the target (Figure 2.44).

Figure 2.44: MultiSURF neighbours definition [79].

In order to define the optimal number of features m to be selected, the feature
selection process was coupled with the optimization of the hyperparameter K
(number of clusters). The search was performed by exploiting an unsupervised
hyperparameter optimization approach named Elbow method which runs K-Means
for different values of K, and reveals the optimal number of clusters as the one
related to the elbow point of the objective function curve. All the values of
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K ∈ [1, 10] were considered to not influence this step with any prior-knowledge
about the existent classes (H/C, RBD, and RSWA), and to highlight potential
underline abnormal patterns. This process was performed for different number of
features m ∈ (1, 100] (then reduced through LDA) to spot the optimal number of
clusters in the majority of cases (Figure 2.45, left). The obtained result K = 3
was confirmed also from ARi values computed for different number of features and
different number of clusters19 (Figure 2.45, right).

Figure 2.45: Optimal number of clusters.

The optimal number of features was chosen as the minimum value of m for
which it was possible to reach the best trade-off between both high ARi score and
data interpretability. Already at m = 45 (Figure 2.45, orange line) the score index
reaches its maximum but pretty similar results can be found also at m = 30 that
hence seems to be the best compromise.

The optimal results are resumed in Table 2.15, while the best m features scored
through MultiSURF selection method are listed in Table 2.16.

Table 2.15: Optimal values for the number of features and clusters

Optimal m Optimal K
30 3

19The small number of K = 4 initial cases (k = 4, 5, 7 in Figure 2.45, left) were discarded due
to the fact that a number of features smaller than k=10 was not sufficient to efficiently grasp the
structure of the data, resulting in a not satisfying clustering result.
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Table 2.16: Selected Features for REM+SWS segment (updated FeatSet3)

Feature Score
PKF FREM [MM] 0.4048
SSk FREM [Mean] 0.3556

SSk β [Std] 0.3546
PKF FREM [Std] 0.3542

REN2 β [Std] 0.3534
SCe FREM [Mean] 0.3506

SEF50 FREM [Mean] 0.3487
SEN β [Std] 0.3485

SEFd(95-50) δ [Mean] 0.3414
SSk FREM [75th-P] 0.3317
SCe FREM [75th-P] 0.3249

SEFd(95-50) θ [Mean] 0.3243
SEFd(95-50) θ [75th-P] 0.3223
SEFd(95-50) δ [75th-P] 0.3175

PKF FREM [Mean] 0.3137
SEF50 FREM [Std] 0.3128

SK β [Std] 0.3116
REN2 FREM [Std] 0.3060

SEFd(95-50) FREM [Mean] 0.3016
SK FREM [Mean] 0.3011

SEF50 FREM [75th-P] 0.2976
SK FREM [Std] 0.2908

SK FREM [75th-P] 0.2890
SEFd(95-50) FREM [Std] 0.2855

SK FREM [MM] 0.2838
SEN FREM [Std] 0.2798
PKF θ [75th-P] 0.2794

SEN FREM [Mean] 0.2791
Coastline DWT δ [Std] 0.2777
PKF FREM [75th-P] 0.2771
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2.4.3 Feature Projection
In order to further manage the curse of the dimensionality problem, and to graph-
ically visualize the effects of the clustering action, the number of features was
reduced to be smaller or equal than three. It was demonstrated that reducing the
dimensionality just by exploiting a feature selection strategy was not sufficient,
since the resulting number of attributes required to both guarantee good classes
separability and high data interpretability, was still too high. To resume the largest
information in the smallest number of components, Linear Discriminant Analysis
(LDA) was exploited then.

This supervised linear transformation technique removes redundant attributes
and noise by weighting the features and linearly combining them into new com-
ponents which contain a lot of the original information in a smaller dimension
framework, while maximizing the linear separability among classes. LDA extracts
information from data to create new low-dimensional axes (linear discriminants)
onto which project the data in such a way, on those directions, the classes are
maximally separated. The maximum number of allowed new axes is C − 1, with C
the number of classes. Since in this work C = 3, at most two LDA components
could be exploited [81].

The transformation of the original axes is based on the ratio of two criteria that
should be simultaneously true once data are projected (Fisher’s criterion):

• Maximization of the distance between the classes means (between-class vari-
ance).

• Minimization of the variance (or scatter) within each class (within-class
variance).

The maximization of Fisher’s criterion brings to an eigenvalues problem20 whose
c eigenvectors (corresponding to the largest c eigenvalues) are the projection axes
i.e. the columns of an optimal projection matrix Θ∗ ∈ Rm,c used to transform the
original features space as following

LDAs = (Θ∗)T UT (2.63)

where U ∈ Rn,m is the features matrix, LDAs ∈ Rc,n are the C − 1 projections,
n is the number of samples, m is the number of features, and c is the number of
classes minus one.

20The eigenvectors determine the direction of the axes of the new feature subspace i.e. the
directions where the maximum class separation is permitted, while the associated eigenvalues tell
how “informative” the new axes are or, in other words, they give the amount of between-class
variance that each LDA components bring.
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Figure 2.46 resumes the overall dimensionality reduction process, which comprises
the cascade of MultiSURF and LDA.

Figure 2.46: Dimensionality reduction cascade.

By checking the explained variance (that is the ratio between the cth eigenvalue
and the sum of all the eigenvalues), it was possible to quantify how much information
about the variability between the categories was captured by each LDA component
(Table 2.17).

Table 2.17: LDA components explained variance

Component Explained variance
LDA1 84.55%
LDA2 15.45%

Figure 2.47: Box plots of data on LDA components.
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From these results, it is possible to learn just c = C − 1 eigenvectors bring most
of the information about the separability of the data. The first component is by
far the most informative one, and it is possible to not lose much information by
forming a 1D-feature spaced based on this eigenpair. Nevertheless, the information
brought by the second component has proved to be almost crucial in terms of
discriminability power. Hence, starting from the idea that a clustering procedure
would have surely benefited of both components in terms of performance, the
number of LDA axes was chosen equal to c = 2 (Figure 2.47).

2.4.4 K-Means Clustering
Clustering algorithms aim to partition a dataset into groups according to some
similarity criterion. This family comprises several techniques which differ in the
way the data similarity is quantified (e.g. distance, density, hierarchical grouping).
In this work, K-Means clustering was developed since considered the most simple
and widespread clustering algorithm (as well as the one that provided the best
results). Moreover, it has high interpretability and requires the optimization of
just a hyperparameter (Section 2.4.2), speeding up the overall approach.

K-Means algorithm clusters data separating samples in groups with the same
variance, simultaneously fulfilling intra-class similarity and inter-class dissimilarity
criteria, which result in the definition of clusters’ centers (or centroids) that are
somehow representative of certain regions of the data. The process concerns
the minimization of the so-called within-cluster sum-of-square criterion (inertia
criterion) defined as follows

nØ
h=0

minµj∈C(||sh − µj||2) (2.64)

where n is the number of samples contained in the feature matrix, sh is the hth

patient row, C is the number of distinct not overlapping clusters, and µj is the
centroid computed as the mean of the data contained in the jth cluster.

The inertia is a measure of the internal coherence of cluster, and works well
with isotropic clusters (like the ones related to this work). The main disadvantage
of this criterion is that, since based on Euclidean norm, it can become inflated
when applied to high-dimensional data (curse of dimensionality), which however
was solved in Sections 2.4.3, and 2.4.2.

The algorithms relies upon an initialization procedure (1) and a looping between
two steps (2 − 3):

1. Initial definition of the centroids through basic methods like random choice of
C samples from the dataset.

2. Allocation of each data point in its closest centroid cluster.
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3. Update of centroids computed as the mean values of the samples contained in
each previously defined cluster.

This process is repeated until the centroids stop to change in a significant manner
(convergence).

Figure 2.48: K-Means scheme.
https://ludovicarnold.com/teaching/optimization-machine-learning/unsupervised-example-

clustering-k-means/

K-Means suffers from the random initialization of the centroids, in terms of
convergence speed and reliability of the results. To solve this aspect two strategies
were adopted i.e. initializing the centroids in such a way they start far from each
other (K-Means++ in sci-kit learn Python environment), and running the algorithm
several times with different initialization of centers, collecting the performances
as mean ± std. The centroids corresponding to the best run i.e. the one related
to the highest Adjusted Rand Index score (ARi)(Section 2.4.5), were selected as
representative results of the clustering part.

2.4.5 Performance Metrics
The obtained clustering results were used to quantify the performance of the current
approach. The result of such a technique is not an estimation of the class to which
the point is intended to belong, but rather the labeling of each sample based on its
cluster membership, which may or may not agree with the labels used as target
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variables (ground truth) and may change from one run to the next. For this reason,
the performance scores should focus on aspects like the shape and the coherence of
the final clusters, and the separation quality of the space. They can be divided into
two main categories namely External criteria, which exploit label prior-knowledge,
and Internal criteria, which do not.

External Criteria:

• Adjusted Rand-Index (ARi): It measures the similarity between the ground-
truth and the clustering assignments, ignoring permutations. It is proportional
to the number of sample pairs with identical labels in both ground truth and
clustering assignments, with values ranging from -1 (poor agreeing labels) to 1
(perfect matching), where ARi = 0 defines a random matching.

Ri = a + b

Cn
2

(2.65)

ARi = Ri − E[Ri]
max(Ri) − E[Ri] (2.66)

where C is the ground truth class assignment, K is the clustering, a (b) is
the number of pairs of elements that are in the same (different) C and in the
same (different) K, Cn

2 it the number of possible pairs in the dataset (with n
samples), and E[Ri] is the expected Ri of random labelings.

• V-Measure (V): Is the harmonic mean of homogeneity (the cluster contains
members of a single class) and completeness (all members of a given class are
assigned to the same cluster). V ∈ [0, 1] and is defined as

V = 2 ∗ homogeneity ∗ completeness

β ∗ homogeneity + completeness
(2.67)

• Confusion Matrix: Displays the true class on the rows and the clustering
assignments on the columns, to spot dispersion along different clusters of data
belonging to the same class.

• Purity (P): Each cluster ωk is assigned to the class cj which is most frequent
within it. The related accuracy is evaluated by counting the number of correct
assignments (i.e. the number of samples with ground truth cj contained in
the cluster associated with that class), and dividing the obtained value for
the number of samples in the dataset. It can be derived directly from the
confusion matrix by dividing the sum of the maximum values of each row for
the total number of samples in the dataset. Perfect clustering has P = 1 (each
cluster contains only elements of a single class).
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Internal Criteria:

• Silhouette Coefficient: It ranges between −1 and 1, where higher scores are
associated with a better cluster definition.

s = b − a

max(a, b) (2.68)

where a (b) is the mean distance between a sample and all other points in the
same class (next nearest cluster). The metric s is computed for each sample
and then averaged.

• Davies-Bouldin Index (DBi): This score quantifies the average similarity
between clusters by comparing the distance between clusters and the distance
within each cluster. Defining the similarity between two clusters through the
measure Rij

Rij = si + sj

dij

(2.69)

where si is the average distance between each point of cluster i and its centroid,
and dij is the distance between cluster centroids i and j, then DBi may be
computed as

DBi = 1
K

KØ
i=1

maxi /=jRij (2.70)

where K is the number of clusters. Since maxi /=jRij is the measure of the
similarity between the ith cluster and the jth cluster most similar to it, the aim
is to keep it as low as possible to ensure the best inter-cluster discrimination,
and for this reason, good clustering is associated to lower values of DBi.

2.4.6 Centroids Stability
To test the stability of the cluster centroids against different training sets and
initialization (and thus to quantify the reliability of the current semi-supervised-
based approach), the extracted LDA components were used in a LOO-CV framework,
and the obtained clusters were evaluated through Accuracy and ARi scores. This
was performed starting from the assumption that if clusters are well formed and
stable, then the classification results obtained by using each time a slightly different
training set (differing just for one sample at a time) for classifying a new sample,
should not dramatically change with respect those achieved without LOO-CV.

As mentioned in Section 2.4.5, each sample is labeled based on its cluster
membership, which may or may not agree with the labels used as target variables
(ground truth), and that may change from one run to the next. For this reason, the
Accuracy score required a suitable label mapping to force the coherence between the
values used as targets (0 H/C, 1 RBD, and 2 RSWA) and clustering assignment.
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Results

As previously stated, the models described in Sections 2.3, and 2.4 were used in a
binary and three-stages classification assignment respectively, to distinguish healthy
from diseased (RBD, and RSWA) participants (CAP Sleep Database and TuSDi
Database). The first part of this section displays the categorization performance for
each FeatSeti evaluated (Table 2.11), while the second part resumes the clustering
capabilities of the data belonging to FeatSet3.

3.1 Binary problem
Each FeatSeti was used to train, test, and evaluate eight different supervised
models, following the pipeline described in Section 2.3.4. All the models were
then compared focusing on the trade-off between high sensitivity score and overall
balance. This was done to reduce false negatives as much as possible (of paramount
importance in the diagnostic field) without neglecting other metrics that still bring
important information.

3.1.1 REM Features

This feature set comprised EEG features extracted from REM segments and PSG
features. Table 3.1 shows the classification performance of the eight models exam-
ined; the results refer to a LOO-CV framework (one iteration). The macro-averaged
accuracy computed across all classifiers evaluated is 86.85%±0.03. The k-SVM clas-
sifier reached the best overall performance (accuracy: 89.66%, sensitivity: 93.75%).
As far as the model optimization is concerned, the employed hyperparameters were
C (regularization term), γ (kernel action) both with search range [0.0001, 1000],
and the kernel type among Polynomial, RBF, and Sigmoid.
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The grid search resulted in the optimal representative model k-SVM(C: 2.5, γ:
0.01, kernel: Sigmoid).

Table 3.1: FeatSet1(PSG+REM) classification performances (%)

Score KNN SVM k-SVM DT NB RF GbD ADAb
Accuracy 89.66 87.93 89.66 86.21 87.93 89.66 79.31 84.48
Sensitivity 90.63 87.50 93.75 84.38 93.75 90.63 81.25 84.38
Specificity 88.46 88.46 84.62 88.46 80.77 88.46 76.92 84.62
Precision 90.63 90.32 88.24 90.00 85.71 90.63 81.25 87.10

F1 90.63 88.89 90.91 87.10 89.55 90.63 81.25 85.71
AUC 0.94 0.93 0.91 0.75 0.96 0.94 0.85 0.92

3.1.2 SWS Features

In the second feature set, the EEG features were extracted from SWS segments
and were exploited (together with PSG features) in order to quantify the capability
of SWS as an RBD biomarker (Section 1.2.2), and to compare it with REM sleep.
Table 3.2 shows the classification performance of the eight models examined; the
results refer to a LOO-CV framework (one iteration). The macro-averaged accuracy
computed across all classifiers evaluated is 79.09%±0.02. The RF classifier reached
the best overall performance (accuracy: 81.03%, sensitivity: 87.50%). As far as
the model optimization is concerned, the employed hyperparameters were:

• The number of estimators with search values [10, 50, 100, 150].

• The splitting criterion among Gini, Entropy, and log-loss.

• The maximum depth of each weak DT, with search range [1, 10].

• The number of randomly selected features to be exploited at each split, between
sqrt(n.features), and log2(n.features).

The grid search resulted in the optimal representative model RF(n.estimators: 10,
criterion: Gini, max depth: 5, features: log2).
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Table 3.2: FeatSet2 (PSG+SWS) classification performances (%)

Score KNN SVM k-SVM DT NB RF GbD ADAb
Accuracy 79.31 81.03 81.03 77.59 79.31 81.03 77.59 75.86
Sensitivity 84.38 90.63 84.38 84.38 87.50 87.50 81.25 78.13
Specificity 73.08 69.23 76.92 69.23 69.23 73.08 73.08 73.08
Precision 79.41 78.38 81.82 77.14 77.78 80.00 78.79 78.13

F1 81,82 84.06 83.08 80.60 82.35 83.58 80.00 78.13
AUC 0,84 0.76 0.84 0.67 0.85 0.86 0.79 0.79

3.1.3 REM+SWS Features
The last feature set encompassed PSG features and EEG features that were
extracted from the new segment type built by merging REM and SWS epochs.
This expedient allowed to slightly improve the classification performance of some
of the analyzed models, although the results are, overall, quite comparable with
those of FeatSet1. Table 3.3 shows the classification performance of the eight
models examined; the results refer to a LOO-CV framework (one iteration). The
macro-averaged accuracy computed across all classifiers evaluated is 86.21% ±
0.03. The KNN classifier reached the best overall performance (accuracy: 91.38%,
sensitivity: 90.63%). As far as the model optimization is concerned, the employed
hyperparameters were K (number of neighbors) with search range [1, 30], and the
distance metric among Minkowski, Euclidean, Manhattan, and Chebyshev.

The grid search resulted in the optimal representative model KNN(K:15, metric:
Manhattan).

Table 3.3: FeatSet3 (PSG+[REM+SWS]) classification performances (%)

Score KNN SVM k-SVM DT NB RF GbD ADAb
Accuracy 91.38 87.93 87.93 79.31 87.93 82.76 86.21 86.21
Sensitivity 90.63 84.38 90.63 87.50 87.50 84.38 81.25 81.25
Specificity 92.31 92.31 84.62 69.23 88.46 80.77 92.31 92.31
Precision 93.55 93.10 87.88 77.78 90.32 84.38 92.86 92.86

F1 92.06 88.53 89.23 82.35 88.89 84.38 86.67 86.67
AUC 0.91 0.92 0.93 0.79 0.89 0.90 0.89 0.93

In Figures 3.1, 3.2, 3.3 they are displayed the ROC curves (with the corresponding
operating point), and the confusion matrices for each Feati best model.
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Figure 3.1: FeatSet1 best model’s ROC curve and Confusion Matrix.

Figure 3.2: FeatSet2 best model’s ROC curve and Confusion Matrix.

Figure 3.3: FeatSet3 best model’s ROC curve and Confusion Matrix.
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3.2 Three-stages problem

The two LDA components enclosing the best 30 features from the REM+SWS
segment (FeatSet3) obtained following the pipeline described in Section 2.4.1, were
used to define the space within which performing data samples grouping.

As mentioned in the related section, K-Means was run multiple times on the
dataset, in order to decrease the effect of the initial centroids initialization. The
average results obtained from these executions are resumed in Table 3.4.

Table 3.4: FeatSet3 average clustering performances

Score Value
Adjusted Rand Index (ARi) 0.962 ± 0.021

Silhouette score 0.554 ± 0.001
V-measure 0.937 ± 0.025

Purity 0.983 ± 0.008
Davies-Bouldin Index (DBi) 0.696 ± 0.011

The ground truth points and the clusters obtained from the best K-Means run
are displayed in Figure 3.4, together with the Elbow method procedure to define
the optimal number of clusters (Figure 3.5).

Figure 3.4: Ground truth data (left), clustered data (right) with m = 30, and K = 3.
The red triangles represent the centroids obtained through the clustering model.
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Figure 3.5: Elbow method definition of the optimal number of clusters K = 3.

The performances reached by this model and the related centroids coordinated
are highlighted in Table 3.5, and Table 3.6 respectively.

Table 3.5: FeatSet3 clustering performances

Score Value
Adjusted Rand Index (ARi) 0.967

Silhouette score 0.554
V-measure 0.944

Purity 0.985
Davies-Bouldin Index (DBi) 0.693

Table 3.6: Best model’s centroids

Cluster Centroids Coordinates
Cluster 0 +2.619, −0.059
Cluster 1 −2.482, −0.899
Cluster 2 −2.175, +2.437

It is possible to further assess the quality of the obtained clusters by exploiting a
confusion matrix (Figure 3.6), and a bar graph which plots the silhouette coefficients
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for each data sample contained in the dataset, referenced to the average silhouette
coefficient (Figure 3.7).

Figure 3.6: Clustering confusion matrix.

Figure 3.7: Silhouette coefficients for each sample.

The last step of the current pipeline, comprised the evaluation of the clusters’
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centroids’ stability in a LOO-CV framework, in order to prove the reliability of
the current semi-supervised-based strategy. After the labels mapping mentioned in
Section 2.4.6 was performed, the following performance values were obtained

Table 3.7: Clusters centroids stability

Score Value
Accuracy 0.985

Adjusted Rand Index (ARi) 0.967

fulfilling the main assumption this expedient was based on. In fact, the classifi-
cation error (red circle) made by applying this procedure was the same obtained in
Figure 3.4 (right).

Figure 3.8: LOO-CV clustering error.
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Discussion

4.1 Binary problem

From the results obtained in Section 3.1 it is possible to appreciate that the
developed classifiers generally achieved good overall performances, with macro-
averaged Accuracy of 80% and 87%, and Sensitivity of 85% and 88% when using
FeatSet1 and FeatSet2 respectively, supporting the belief about the capabilities
of both REM and SWS sleep as potential RBD biomarkers [9], [49], [19].

The findings related to Section 3.1 were compared with those obtained by
Rechichi and colleagues (2022) [27] (which exploited the same databases used in the
current analysis), and then used to highlight differences and discrepancies between
the studies.

Metric New Old
Accuracy 89.66 83.91
Sensitivity 93.75 86.46
Specificity 84.62 80.77
Precision 88.24 84.78
F1-score 90.91 85.55

AUC 0.91 0.87

Figure 4.1 & Table 4.1: FeatSet1 comparison with previous work [27]

with macro-averaged Accuracy values of 86.85%±0.03 of the new FeatSet1-based
best model against 80.29% ± 0.03 of the old one.
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Metric New Old
Accuracy 81.03 86.21
Sensitivity 87.50 91.23
Specificity 73.08 83.36
Precision 80.00 76.92
F1-score 83.58 83.36

AUC 0.86 0.94

Figure 4.2 & Table 4.2: FeatSet2 comparison with previous work [27]

Although the new FeatSet2-based best model capabilities are generally worse
with respect to those of the previous work, it is worth noting that the macro-
averaged Accuracy value related to the new FeatSet2 (79.09% ± 0.02) is pretty
near to the 81.10% ± 0.03 associated with the old one, suggesting that the higher
performances linked to the latter may be related to a finer tuning of the model
rather than a concrete increased features’ power.

Metric New Old
Accuracy 91.38 90.80
Sensitivity 90.63 95.83
Specificity 92.31 84.62
Precision 94.55 88.54
F1-score 92.06 91.99

AUC 0.91 0.92

Figure 4.3 & Table 4.3: FeatSet3 comparison with previous work [27]

with macro-averaged Accuracy values of 86.21%±0.03 of the new FeatSet3-based
best model against 85.70% ± 0.04 of the old one.

In contrast with the previous work, REM features outperformed SWS ones with
averaged-accuracy improvement of 8%, +4% on averaged-Sensitivity, and +13% on
averaged-Specificity (Figure 4.4). Nevertheless, the SWS-based best model defined
in Section 3.1 proved to be effective in dealing with the binary classification job,
reaching values of Accuracy and Sensitivity above 80%.
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As noticed in the above-cited comparison, the performances achieved by FeatSet1
have experienced a sharp increase with respect to those obtained on the same
subset in the previous work (Figure 4.1), diminishing the discriminatory power gap
with respect to FeatSet3. For this reason, the global performances obtained with
FeatSet1 and FeatSet3 are now almost comparable. Despite these findings, and
that the highest Sensitivity value is associated with the best REM-based model,
KNN fed with REM+SWS data has proved to be the most balanced among all the
best classifiers (Figure 4.4, pink), confirming that REM and SWS segments may
bring complementary information about the characterization of RBD and healthy
differences, allowing to smoothly boost the approach performances when coupled.
Moreover, KNN fed with REM+SWS data reached a value k = 82.64% of Cohen’s
Kappa, showing optimal agreement with the manual H/C-RBD scores.

k = 2(TP ∗ TN − FN ∗ FP )
(TP + FP ) ∗ (FP + TN) + (TP + FN) ∗ (FN + TN) (4.1)

with k ranging from 0 (no agreement) to 1 (perfect agreement).
The evaluation results as well as the comparison between the presented best

models can be graphically appreciated in Figure 4.4

Figure 4.4: Binary classifiers comparison plots.

The fact that the new FeatSet3 allowed to obtain results that were similar or
slightly better (in terms of balance) with respect

• Those achieved with the old one (Figure 4.3).

• Those reached by exploiting FeatSet1,2 (Figure 4.4).
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highlights a potentially crucial aspect of the idea of the current thesis work, strictly
linked with the decision to define FeatSet3 starting from the union of REM and
SWS segments, rather than from the union of the features sets found from REM
and SWS segments taken alone [27]. The achieved higher performances in fact
create the chance to distinguish between H/C and RBD subjects without the need
of further segmenting a PSG-related EEG signal in N3 and REM sleep stages,
hence reducing the in-lab pre-processing steps required for the classification task,
as well as both the computational and time burden.

The obtained results point to the potential of an EEG-based, low-cost, automatic
RBD detection system that can be used in early diagnosis of neurodegeneration in
order to spot prone individuals, and allow them to join clinical trials of neuropro-
tective therapies to halt or at least delay the progression. Moreover, they are more
or less aligned (and show coherence) with the ones found in previous works on the
same topic [27], [49], suggesting the reliability and the robustness of the current
strategy.

4.2 Three-stages problem
The results obtained in Section 3.2 seem to suggest the ability of the developed
approach to extract useful unlabeled data pattern information, and to exploit them
for grouping samples according to their membership to a certain clinic class. Despite
the small dataset size, the clusters are pretty dense and allow the almost univocal
discrimination between the three classes performing just one misassignment, as
shown by the confusion matrix in Figure 3.6, and reaching a value of Accuracy of
99% even when the training and testing sets slightly changed (Figure 3.8).

It is interesting to note that the existence of a small subset of features able to
clearly discriminate samples in a clustering framework is not trivial nor obvious and
increases the confidence level about the reliability of the followed semi-supervised-
based approach. The main factors which contribute to achieve these results may
be related to:

1. The true inherent discriminatory power of the exploited features (Table 2.16)
in underlying and highlighting the differences in the data structure of healthy
and clinical populations, as well as in spotting the subtle characteristics of
intermediate conditions such as RSWA.

2. The power of LDA in amplifying the capabilities of such features while removing
all the blurring aspects that may confound the final results, creating highly
discriminatory components.

By reaching satisfactory technical properties, the developed pipeline allows qual-
ifying the presence of RSWA as a separate condition with respect to H/C and RBD.
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This seems coherent with the results of some studies which suggest isolated RSWA
as the starting point for the iRBD progression, hence representing a prodromal
form of such REM sleep-related disorder able to predict future neurodegenerations
like those belonging to the α-synucleinopathies family [15]. Overall, these findings,
may highlight RSWA as the intermediate stage of a neurodegenerative path that
can be thus finely characterized through the implementation of a continuous metric
that, ranging from 0 (Healthy) to 1 (RBD) and passing through milder bricks
(like RSWA, 0.5) [82], characterizes the whole "spectrum" of the above-mentioned
cognitive impairment process, allowing to discover even earlier prone subjects, and
increasing the chances of improving their QoL.

4.3 Selected Features
The top-m features selected in both Section 2.3 and Section 2.4 may technically
assist medical personnel in their studies and evaluation, illustrating which EEG
attribute clinicians should look for in order to diagnose the disease, and therefore
it is extremely important to assess their consistency with the existent physiology
and clinic literature about the EEG abnormalities in RBD subjects.

The obtained subsets encompass different features in FREM (δ + θ), SOs (low
δ), SWA (high δ), and θ bands which are consistent with the work of Buettner and
colleagues (2020) [49] performed on the same dataset (CAP, REM sleep), which
state that information with respect to RBD disorder may be hidden in frequency
ranges within θ, and δ bands with a relative importance that decreases as the
Hz range becomes higher, findings that also inspired the idea of performing a
more granular division of the EEG spectrum (Figure 2.14). Similar results can
be found in the research of Ngo et al. (2020) [19] which related an irregular
Amyloid-β deposition with non-physiologic SOs and SWA activities, and Valomon
et al. (2021)[9] which spotted abnormal RBD-related patterns in δ and θ bands
(N3 sleep), and FREM band (REM sleep). The obtained FREM band classification
capabilities are also in line with what was suggested by the studies of Rechichi et
al. (2021) [8].

Features contained in FeatSet2 associated with β activity, can be somehow
related to Sleep Spindles. These wave patterns mainly occur during N2 sleep, even
though it cannot be excluded that both imperfections in sleep staging and the
existence of activity residues from one stage to the next, have led to the appearance
of such phenomena also during slow wave sleep. Moreover, the reliability of such
features seems to be supported by the works of O’Reilly et al (2015) [83] which
discovered that sleep spindle density is changed in RBD patients, with clinical cases
showing densities considerably lower for fast spindles and higher for slow spindles,
compared to H/C one.
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The effectiveness of RBD-related anomalies in δ, θ, and β frequency bands
during N3 sleep is supported also by the research work of Kazemi et al. (2022)
[78], which proposes novel EEG characteristics in subjects with RBD concerning a
much reduced power in the δ band and significantly higher power in the α, β, and
θ bands compared to typical N2 and N3 stages.

The presence of SEFd(95-50), SEF50, and SEF95 in the above-mentioned subsets
is perfectly consistent with what is stated in topic-related works, confirming the great
capability of these features in discriminating between Healthy and RBD/RSWA
states [8], [27], and more generally in detecting any substantial deviation from
normal REM sleep pattern [51]. Moreover, spectral moments (SCe, SSp, SSk, and
SK) have been proven to be reliable in the current classification tasks, suggesting
that remarkable changes in EEG spectrum shape are present in RBD and RSWA
compared to H/C [9], [49].

It can be interesting to notice that among all the updated subsets (both for
binary and clustering problems), just a single feature came from PSG metrics
(Wake Proportion, WP), highlighting the power and effectiveness of the exploited
EEG-based approach as a valuable substitute of classic PSG-based analysis.

The discriminatory power of the top-1 best features of each FeatSeti in the binary
problem, and of the LDA components in the three-stage study, can be appreciated
by analyzing their probability density functions (Gaussian fit) computed along all
the patients coherently with class labels, and displayed in Figure 4.5 and Figure 4.6
respectively.

Figure 4.5: Best features discriminatory power.
(left) FeatSet1, (middle) FeatSet2, (right) FeatSet3
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Figure 4.6: LDA components discriminatory power.

As mentioned in Section 2.4.3 the first LDA component separates the samples
belonging to H/C and RBD classes, while the second component is crucial to
discriminate between H/C-RBD and the RSWA class.

111



Chapter 5

Conclusions and Future
Works

Overnight PSG type-1 is the gold standard for RBD diagnosis but shows a certain
number of limitations concerning availability, time and money burden, number
of used sensors, discomfort for the patient which in turn may create biases in
recordings, and the need for specialized health care staff for the manual scoring
that can be laborious and which may significantly hinder the diagnostic process.
Moreover, it is usually coupled with additional screening questionnaires and medical
history interviews which further increases the expected work load. Given the
well-established knowledge about RBD as early biomarker for the onset of α-
synucleinopathies (up to 14 years), accelerating the entire prediction process
through alternatives to classical manual or semi-automatic RSWA scoring methods
becomes crucial.

The current work aimed to overcome the cost, time, accuracy, and robustness
restrictions of the to-date available diagnostic tools, proposing a fully-automatic
diagnostic approach, which through the usage of a single EEG channel, reaches in
classifying reliably and efficiently healthy patients from diseased ones, exploiting
underlying characteristics of PSG-based EEG signal instead of classical EMG one.
RSWA is thought to be a dissociative state, characterized by a mismatch between
brain (REM) and muscular activity (non REM) which is however linked to the
former to some extent. Basing the current strategy on EEG signal instead of EMG
would avoid performing a classical two-steps approach concerning the chain of
sleep study and muscular activity evaluation, working directly on the source of the
phenomena i.e. the brain.

Data were taken from REM and SWS Sleep recordings. The trained ML methods
(both supervised-binary and unsupervised-multiclass) achieved high performances
which are also in line with other topic-related works, supporting the reliability
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and robustness of the single-channel EEG approach to accomplish healthy-diseased
classification tasks. For the two-stages problem, the feature set derived from the
segment REM+SWS outperformed the others, reaching high overall balance, values
of Accuracy and Sensitivity above 90%, and optimal inter-rater reliability with
manual scoring (Cohen’s Kappa= 83%) indicating its relevance to the investigation
of RBD and the associated neurodegenerative process. Moreover, exploiting EEG-
based data in a semi-supervised-based framework, allowed to reveal some inherent
patterns of such pathological conditions, useful for more finely characterizing the
neurodegeneration process from healthy to RBD.

The obtained results point to the potential of an EEG-based, low-cost, automatic
RBD/RSWA detection system that can be used in early diagnosis of neurodegener-
ation in order to spot prone individuals in advance and make follow-up procedures
easier, allowing patients to join clinical trials of neuroprotective therapies to halt
or at least delay the progression, thus leading to an improvement in the QoL of
these subjects and their loved ones.

Besides the increase in the size of the exploited dataset in order to generalize
and validate the obtained results, further works may encompass the lightening
and optimization of the overall approach in terms of computational efficiency, and
its real-time implementation on a wearable user-friendly device able to facilitate
diagnostics in hospital and in home environments, reducing the level of invasiveness
for the patients and decreasing the number of undiagnosed cases.
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