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Chapter 1

Introduction

Creative coding is an application of computer programming where the goal is to
create something expressive or artistic. Through the use of software, code and
computational processes, it aims to create results that are not necessarily prede-
fined and rather based on discovery, variation and exploration that can sometimes
produce unexpected results.[1, 2]

Even when the goal of creative coding is not really to create something strictly
functional, that does not mean there aren’t any applications or functions to it. Since
the origin of the practice of creating art through coding during the 1960s, people
have found uses to it, such as creation of live visuals for VJing [3] (VeeJay-ing, from
Video Jockey), which includes the ‘creation or manipulation of imagery in realtime
through technological mediation and for an audience, in synchronization to music’
[4], projections and projection mapping, art installations, entertainment such as
video games, sound art, etc. Lately, its use is becoming increasingly common in
fields like advertising, branding and the design industry in general, where even
sometimes mass production of various designs for products is assisted by creative
coding. [1]

The growth in its popularity and applicability makes creative coding a relevant
and very interesting field to look at, analyze and learn more about. And, more-
over, its existence also goes to show the capabilities of computers that go beyond
functional purposes.

Nowadays, creators publish and share their creative coding projects online. Many
artists have their own websites where they portray their projects that use and
apply creative coding. But what a lot of creators are doing nowadays, is publish
and share their creative coding projects on open source platforms. One of the
main platforms where this is done is OpenProcessing, a website that hosts over one
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Introduction

million projects and invites creative coders, educators and designers to explore,
experiment and play, and where creators can share their projects as open source and
collaborate with the community. Each project can be shared, downloaded, liked
and commented on by other users of the website, who can also fork the projects to
further work on them or add their own twists to what other creators have done.

1.1 Goal
The goal of this thesis is to better understand the state of the art and the current
way creative coding is being done. The objective is to understand and characterize
what it is that creators are doing and how they are creating, what programming
languages they are using, how they are structuring their code and projects, see if
there are common patterns between different creative coding projects, what these
patterns are and how many share them, etc. After this analysis, the goal is to
evaluate how well these creators are programming based on measurements like
lines of code (LOC), lines of comments, amount of files per project, complexity of
projects as a whole and of functions, parameters used in functions, variation of
functions, and other maintainability and complexity indexes.

To accomplish these goals, a quantitative analysis was conducted over a set of
thirty thousand projects publicly available on OpenProcessing. Static code analyses
were conducted on the projects and the whole data set to provide insights on the
various source code metrics mentioned above.

Lastly, the discussion and understanding on how artists are working and creating
in this field provides insights as to what new tools could be useful for them to
further explore and create with the assistance of coding.

1.2 Thesis structure
This thesis is composed of three main parts:

• Scraping; why it was done; how it was done; results.

• Analysis; how it was done; factors analyzed; results.

• Discussion; discussion of the results; conclusions.
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Chapter 2

Scraping

Web scraping, or scraping for short, is the practice of extracting or “scraping” data
from the web. Even though web scraping can be done manually, the term usually
refers to the use of automation tools to collect data from the web, be it a software
script that simulates a human’s interaction with the website, a browser extension
or a different tool. It essentially is a form of gathering and copying data from
the web, into a local or central database where it can later be retrieved from or
analyzed. [5, 6, 7, 8]

Although to some people the idea of scraping the web might seem unethical or
even illegal, the reality is that as long as the data to be retrieved from the web is
of public access, they are free to be scraped. [5]

The applications of web scraping reach a big range of sectors with many different
purposes. The different sectors that consume web data go from real estate, travel
agencies, recruitment firms to research, e-commerce industry being the biggest
consumer. The uses for web scraping include, news and other content scraping,
contact scraping, research, price comparison, market study, brand monitoring,
website change detection, among others. [6, 7]

The reason why scraping was necessary and how it was done for this thesis are
discussed in the following sections, along with the results of the process.

2.1 Goal
In the case of this thesis, the use of web scraping that was applied is research, with
the purpose of better understanding the state of the art of creative coding and
mainly to understand how creating coding is being done and how artists are using
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it to create.

In order to achieve a proper analysis, and to have a good representation of
creative coding projects, a big enough set of data was needed. In this case, an
amount of projects to be analyzed was expected to be in the order of thousands,
and since this was a task that is essentially impossible to accomplish manually,
another way had to be found.

The idea of getting the data needed directly from the database where the projects
available in the website OpenProcessing are kept was the first option considered.
After some research and contacting the people involved in the maintenance and
creation of the website, the conclusion that doing such a thing was not possible
was reached, given the lack of a public API that could provide the desired data.
For this reason, the need of web scraping came to light as the indicated method to
obtain the needed data.

2.2 Tools and procedure
The scraping, as mentioned before, was done over the website OpenProcessing, with
a script that works directly on a web browser and simulates what a person would do
while navigating the site. In this case, the script was written in the programming
language python and the library Selenium [9] was used to perform the different
actions on the website and everything related to the scraping itself, and it was
programmed to run on the web browser Firefox.

In OpenProcessing, the projects are called sketches so this term will be used
from now on interchangeably with creative coding projects, along with the term
project.

Given how the website is organized and how the list of all sketches can be
accessed, the whole process had to be run in two phases. The first phase consisted
on collecting the links to the individual projects, and the second consisted in
downloading the projects themselves among some other data related to them. Both
these phases will be explained in detail in the following sections.

2.2.1 First phase: link collection
As previously stated, the first step to actually obtain the source code of the projects
to analyze themselves was to obtain the links that refer to where the projects can
be downloaded from.
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The ‘browse’ tab of OpenProcessing displays a grid, initially of 10 rows of 12
squares, each showcasing a thumbnail of a project and when hovered over, its
creator-given name and creator (see figure 2.1). In order to see an expanded list
of sketches, the button “Show more” must be pressed, which loads an extra 10
rows of sketches. Each of these squares, when clicked, guides you to the page of an
individual sketch, which is where the source code can be downloaded. These links
are what needed to be collected in mass to then access and download the source
code of the sketches.

Figure 2.1: browse tab, showcasing grid of sketches

Since the squares representing the sketches are clickable and guide to a different
part of the website, they have a reference link and therefore this information
could be obtained by looking at the html attribute href of each sketch, which is
represented in the html by the class ‘sketchThumbContainer’ as can be seen in
figure 2.2.
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Figure 2.2: part of the html of the browse tab of OpenProcessing

Given all this information and structure, in order to obtain the sketches’ links,
the function on the script to collect links was programmed to open the url cor-
responding to the sketch grid and then click the “Show more" button to load
more sketches into the grid until the amount of desired sketches is loaded. Once
this point is reached, a list of all the html objects of the class ‘sketchThumbCon-
tainer’ is obtained, and then iterated to extract the information regarding the
link itself. Finally, when all the links are extracted, they are exported into a csv file.

To have variation of the sample of projects to analyze, and also to have an extra
factor to consider afterwards, the links collected were taken from 2 different sets
within the same website. The first one, corresponding to the sketches that have
been created, and the second one corresponding to the sketches that have received
hearts. The goal was to get around 15 thousand sketches for each set, totaling 30
thousand. This meant running the script to collect the links twice.

The created sketches were accessed by the script through the following url https:
//openprocessing.org/browse/?time=anytime&type=all&q=#, that sets the fil-
ter terms to “are created” and “anytime” resulting in “Sketches that are created
during anytime”. In this version of the sketches grid, OpenProcessing orders the
sketches in order of creation, from newest to oldest. For this reason, the sketches
obtained from this set consisted of the 15 thousand most recently created at the
moment of execution. In reality, 15216 links were collected for this set.

On the other hand, the sketches that have received hearts were accessed by the
script through the following url https://openprocessing.org/browse/?time=
anytime&type=hearts, that sets the filter terms to “receive hearts” and “anytime”
resulting in “Sketches that receive hearts during anytime”. In this case, the sketches
are ordered from the one that has received the most hearts, or in other words, likes,
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to the one that has received the least, with the minimum of 1 heart. Hence, the
sketches expected to be obtained from this set correspond to the 15 thousand most
liked sketches at the moment of execution. In practice, in this case, 14602 links
were collected.

2.2.2 Second phase: projects downloading
The second part or phase of the scraping consisted of acquiring the creative coding
projects themselves, this is accessing the links previously collected and from there,
downloading the source code of the project.

Each link collected corresponds to one sketch page, where the name of the sketch,
the author, the amounts of likes, comments and forks it has received and the sketch
itself are displayed, as it can be seen in figure 2.3. Additionally, an extra tab can
be opened from where, amongst other options, the possibility to download the link
is shown. This, essentially, is the goal of this phase. For each sketch, the amount
of likes and comments were collected and saved, and the sketch’s source code was
downloaded.

Figure 2.3: example of page of a sketch

To achieve this for all the links previously collected, they were split in groups of
2500 links each. These groups were run in parallel, firstly all the ones related to
the set of links for created sketches, and then the groups of links from the hearted
sketches. Each run taking approximately 5 hours.

Some of the projects failed to be recovered from the links, resulting in 14559
downloaded sketches from the created set, which means a loss of 657 sketches,
equivalent to the 4.3% of links, and 14199 sketches downloaded from the hearted
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set, which means a loss of 403 sketches, equivalent to the 2.8% of links. Given the
small percentage they represent, and in the grand scheme of things there’s still
over 28 thousand sketches, these were neglectable and the script was not run again
to try and recover those sketches.

The failure to recover some sketches can be explained by a few reasons: the
sketch getting eliminated between link collection and attempt to download, hence
giving a not found page; the source code of the sketch being hidden from the public
and therefore not downloadable (see 2.4); or the sketch page taking to long to load,
making the scraping script skip it altogether.

Figure 2.4: example of a sketch with hidden source code

2.3 Results
The result obtained after both phases of scraping was 28758 zip files, still sepa-
rated into created and hearted sketches, each containing one full creative coding
project, with the entire source code and everything else needed for the sketch to
function. The sketches are identifiable by their id which is a number (in the form
sketch<number>) generated by the site at the moment of creation of the project.

In order to analyze the source code, and proceed to the main part of this thesis,
each project needed to be unzipped so that the tools used for the analysis could
access the files and code of the sketch.

In the process of unzipping, from the 14559 total sketches of the created set,
14542 were successfully unzipped and, from the 14199 sketches corresponding to
the hearted set, 14196 were successfully unzipped. That constitutes a total of 20
unsuccessfully unzipped projects, which is less than 1% of projects and a clearly
neglectable amount.

To sum up, from the scraping executed, the final result is a total of 28738 creative
coding projects, fully contained and including all files that compose it, ready to be
analyzed by different tools. The analysis and its results will be explained in the
following section.
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Chapter 3

Analysis

After having the source code of a considerable amount of creative coding projects
after completing the scraping step, comes the next step and the main part of this
thesis, the analysis of the sketches.

This section will show a deep dive into the analysis done over these projects.
A detailed explanation on what the goal of this research is, a description of what
tools were implemented and how they were used to carry it out, an explanation on
what factors were analyzed and why, and finally the results of the analysis will be
presented.

3.1 Goal

The main goal is to get a feeling and general understanding of how creators are
making and developing their creative coding projects. To achieve this, the aim is
to look at two general main things, what creators use, and how creators develop.

Therefore, the objective is to firstly understand what tools and languages creators
are coding with, and understand why these are popular or most used. Secondly, by
looking into and with a deeper analysis of the source code, find general patterns
that appear in the great scheme of things when looking at the creative coding
projects in an aggregated way. In both cases, the aim is to also find what differences
exist between the most liked sketches, denominated the hearted subgroup, and the
newer ones, the created subgroup.
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3.2 Tools and procedure

3.2.1 CLoC: Count Lines of Code

As mentioned before, the first thing that was to be looked at and analyzed was the
wider level of information available. This is, what creators are using to develop their
creative coding projects. The objective was to have a broad, aggregated description
of the files used in these projects, that would give information on what languages
are being used and which types of files are being used to assist on development
and creation.

After some research, the tool cloc - Count Lines of Code [10] was found to
categorize files in the way that was described above. Additionally, this tool also
gives information about lines of code, that will also be talked about further in this
document.

From the tool’s github page [11], we can describe cloc as a command line
program that takes files, directory and/or archive names as inputs, on which
it then counts blank lines, comment lines and physical lines of course code. It
recognizes and works on over three hundred languages, that are listed in detail
with the corresponding file extensions in the section languages from the tool’s
page, which makes it a very versatile and reliable tool for the objective wanted at
this stage of the analysis. Here, language is used to refer to both programming
languages or types of file, such as text or css. Cloc also has some advanced fea-
tures and uses that, as they were not used in this investigation, will not be discussed.

The tool in question also has many options that can be applied when running
the command, like for example options regarding the output file or what things
should be excluded or included when running the analysis. One option in particular
presented itself to be very relevant in this case, --skip-uniqueness, which is used
to, as the name implies, skip the uniqueness check on files and force all copies of
files to be included in the report. After a quick look into a sample of the sketches,
it was easy to notice that in a lot of them, the html file index.html was solely
used to embed the contents of the javascript file mySketch.js hence there being
many equal copies of this file. The comparison of results with and without this
option will be presented later in this document (see section 3.4.1). But for the
analysis done over the information, the results applying this option were preferred,
since they give a truer overview of how many files exist.
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Figure 3.1: example of an index.html file, showing its simplicity and single purpose

Besides the many options and uses that this tool offers, it has some limitations.
The ones relevant to us are mainly, taken from the tool’s github page, in the section
limitations [11]:

• Lines containing both source code and comments are counted as lines of code.

• Embedded languages are not recognized. For example, an HTML file containing
JavaScript will be counted entirely as HTML.

• cloc treats compiler pragma’s, for example #if / #endif, as code even if
these are used to block lines of source from being compiled; the blocked lines
still contribute to the code count.

• cloc’s comment match code uses regular expressions which cannot properly
account for nested comments using the same comment markers (such as
/* /* */ */)

And some others that are not relevant to this research, are related to options that
were not used or refer to very particular cases, and therefore won’t be mentioned.

These limitations might make the results, mainly of line counts, a bit inaccurate,
but on a neglectable level, given that they mostly describe very specific cases.

cloc was used to generate 4 files, in this case csv files that were further analyzed.
It was run four times, twice for each group of sketches, hearted and created, and
with and without the option mentioned above, --skip-uniqueness. The files
generated have the following format: the columns describe amount of files of the
language, language, amount of blank lines aggregated from all files of the lan-
guage, amount of comment lines aggregated from all files of the language, amount
of code lines aggregated from all files of the language. Each row corresponds
to one language. As mentioned before, language is used to describe and refer to
both programming languages or any type of file in general, such as text, css, svg, etc.

From this information, the factors more deeply analyzed, that will be further
discussed and presented in a following section (see 3.4.1), include: types of files
and languages used, most popular languages and file types, amounts of files and
percentages, lines of code and lines of comments.
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3.2.2 CR - Complexity Report
After having some data from the first level inspection of the files done with cloc
(see 3.4.1), it was evident that the three most common languages that appeared
were JavaScript, HTML and Arduino Sketch (Processing), together corresponding
to about 97% of all files. That other 3%, corresponding mainly to media and
stylesheet type files, was immediately deemed as not worth for analysis, given the
types of files and neglectable quantity.

In the case of HTML files, as mentioned before, many of the files correspond to
a copy of the same file shared among different sketches, and when not an exact
copy, most of the apparitions of HTML files, they are used to embed code from
JavaScript files. For this reason, and having a total of only 2198 unique HTML
files from the over 19000 HTML files in total, it was also considered that these files
were not worth analyzing further.

Being left with only the Arduino Sketch and JavaScript files, it was easy to see
that a great number of the files correspond to JavaScript files. To be more precise,
in the subgroup of hearted sketches there’s almost twice as many JavaScript files
as there’s Arduino Sketch ones and almost three times as many in the subgroup of
created sketches. In the case of all sketches collected, there’s more than twice as
many JavaScript files as Processing files.

The fact that JavaScript files outnumbered Processing files this much, and
given that the newest sketches (subgroup created) have a higher difference in this
sense, were a pretty good indicator that creators are leaning towards this as their
preferred language for creative coding. Additionally, after some extensive research
on available tools for source code analysis, that lead to almost exclusively finding
tools designed for JavaScript, and none for Processing files, it was decided that a
further analysis of metrics and other characterizations of creative coding projects
was going to be done exclusively on JavaScript files.

The tool selected to carry out this analysis was cr - complexity-report [12] which
gives a very exhaustive report of various metrics commonly used to determine
complexity of software, such as cyclomatic complexity, or Halstead complexity
measures. Additionally, information about file composition, mostly related to
functions, is implicitly given.

The way cr works, from it’s github page [12]:

“complexity-report is just a node.js-based command-line wrapper around
escomplex, which is the library that performs the actual analysis work.
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Code is passed to escomplex in the form of syntax trees that have been
generated with esprima, the popular JavaScript parser.”

In general terms, after receiving either the path of a single module or a folder
containing many modules, “the tool will recursively read files from any directories
that it encounters automatically”[12] and produce, from the escomplex function,
the corresponding report in the desired output format. In this case, the output for-
mat chosen was json, the main reason being its easy for further analysis with a script.

This tool was chosen because, besides the extensiveness of the results it delivers,
it was very easy to install, given that it works like a node module, simple to use, and
manageable to read and further process the results, given the tree-like organization
it produces.

Amongst the many command-line options that cr offers, for the case of this
research, the option --ignoreerrors was used. This option ignores the parser
errors and includes the files that raise these errors in the report.

Given the large number of sketches from each subgroup, hearted and created,
they had to be subdivided in 2 smaller halves for cr to run in a reasonable time
and for it to produce a json file of manageable size, totaling 4 individual runs. To
get an idea of the size of these files, the smallest of these 4 files generated has more
than 2.5 million lines, and the largest one has more than 10 million lines, so this
split was needed.

The files generated have a dictionary-like format, organized as follows:
1 {
2 reports : [
3 {
4 aggregate : {
5 <report . aggregated .metrics >
6 }
7 functions : [
8 {
9 name

10 <function .metrics >
11 },
12 ...
13 ]
14 <report .metrics >
15 path
16 },
17 ...
18 ],
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19 <general .metrics >
20 }

where reports is a list of dictionaries where each represents a module or, in
this case, a JavaScript file. Each report contains a dictionary aggregate with
<report.aggregated.metrics>, a list of functions, each containing their name
and <function.metrics>, and an extra set of <report.metrics>. There’s also
<general.metrics> associated with all of the modules analyzed.

This format is further described and explained in detail in the result format
section of the tool CR is built on [13] and it was a bit modified to exclude the
adjacency and visibility matrixes, that were of no use given the disconnection
between modules belonging to different sketches.

The various metrics this tool reports on, and that are further analyzed in this
research are, from the file ’METRICS.md’, found on escomplex’s github page [13]:

• Lines of code: Both physical (the number of lines in a module or function)
and logical (a count of the imperative statements). A crude measure.

• Number of parameters: Analysed statically from the function signature, so no
accounting is made for functions that rely on the arguments object. Lower is
better.

• Cyclomatic complexity: Defined by Thomas J. McCabe in 1976, this is a count
of the number of cycles in the program flow control graph. Effectively the
number of distinct paths through a block of code. Lower is better.

• Cyclomatic complexity density: Proposed as a modification to cyclomatic
complexity by Geoffrey K. Gill and Chris F. Kemerer in 1991, this metric
simply re-expresses it as a percentage of the logical lines of code. Lower is
better.

• Halstead metrics: Defined by Maurice Halstead in 1977, these metrics are
calculated from the numbers of operators and operands in each function. Lower
is better.

• Maintainability index: Defined by Paul Oman & Jack Hagemeister in 1991,
this is a logarithmic scale from negative infinity to 171, calculated from the
logical lines of code, the cyclomatix complexity and the Halstead effort. Higher
is better.

14



Analysis

The reports and metrics generated with cr were further looked into, aggre-
gated, and analyzed with the help of python and the use of jupyter notebook, an
interactive web application that makes data analysis easier to visualize and organize.

The factors analyzed from the results given by complexity-report, that will be
further discussed later include: patterns in file and function names, repetition of
function names, lines of code of files and functions, number of parameters in files
and functions, amount of files per sketch, cyclomatic complexity, Halstead metrics,
among others.

3.3 Factors analyzed

3.3.1 Factors from Cloc
The first factor to be analyzed is the type of files present in the sketches. This is
to understand what languages the creators are using and what other types of files
they are including in the development of their sketches.

The amount for each type of file will be observed, in an quantitative and per-
centage manner. From this, the aim is to see what languages are more popular,
if there’s any differences in the different subsets of sketches, created and hearted,
and why these differences exist.

For the most relevant languages, the lines of code and comments will be looked
at. These are to get an idea of general patterns and judge the complexity and level
of documentation, organization and manageability of the projects. [14]

3.3.2 Factors from CR
The factors analyzed with the help of CR are divided in three sub groups; general
patterns, to get an idea of the general skeleton of sketches; parameters and lines
of code, to observe the behavior of functions and files in relation to these metrics;
and lastly metrics, where commonly known metrics will be described.

General patterns

By counting files per sketch, functions per file and functions per project, it is
possible to get an approach as to how sketches are organized. With all these
statistics, an idea of how modularized these sketches are can be obtained. Also,
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by looking at differences of created and hearted sketches, more insights on what
makes them different can be found.

Another factor that helps define the sketches skeleton is the function names
and the occurrences of these among sketches. This information can give insight on
which functions are common, and how common they are, and what functions are,
in a way, the essential ones for sketches.

Lines of code and Parameter counts

One of the factors analyzed in this section is the amount of parameters, for both
files and functions. This can give insight on how the functions used in sketches
work and relate to each other.

The other factor that will be looked at is the lines of code. In this case, physical
and logical lines of code, for both functions and files. The lines of code per function
give information on how long and complex these are [14]. The combination of lines
per function and per file give insights on how modularized functions are and how
many functions are being used in files.

Lastly, a these factors mentioned above will be studied for the functions setup and
draw, the two main functions in which the library p5.js and therefore JavaScript
based projects are built upon. Also, a look into the count of these functions will
be executed and analyzed to see how common they truly are.

Metrics

The first factor to be analyzed in this section is cyclomatic complexity. It is defined
as a quantitative metric that counts the amount of linearly independent paths
through a program’s code. It is usually associated with complexity, readability,
maintainability and portability of a program. In general, a lower value is better.
[15, 16, 17, 18]

The second factor analyzed is cyclomatic complexity density. This is derived
from cyclomatic complexity and it is defined simply as cyclomatic complexity/lines
of code , resulting in a sort of rate or percentage way of viewing and interpreting
cyclomatic complexity. For this reason, it is also associated with the same qualities
as cyclomatic complexity, and once again, a lower value is generally seen as bet-
ter.[19]

The next factor is the Halstead metrics. This once again is a metric created
to measure code complexity, with emphasis on computational complexity. It is
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conformed of different metrics that are defined each by a formula combining pre-
defined parameters and other Halstead metrics [20, 21, 22].

The parameters used to calculate the metrics are defined as follows:

• n1 = Number of distinct operators

• n2 = Number of distinct operands

• N1 = Number of operator instances

• N2 = Number of operand instances

And the metrics are defined as:

Metric Meaning Formula
n Vocabulary n1 + n2
N Size/Length N1 + N2
V Volume N * log2 n
D Difficulty n1/2 * N2/n2
E Effort V * D
B Bugs V / 3000
T Testing time E / k

Table 3.1: halstead metrics, showing their symbol, name and formula used to
calculate it

Lastly, the maintainability index. This index represents the relative ease of
maintaining the code, where a higher number is better [17]. Originally, and in the
definition that’s going to be used for the purpose of the thesis, this metric ranges
from minus infinity to 171. Newest definitions of this metric normalize it to be
contained in a range from 0 to 100. The calculation of this index takes into account
the Halstead volume, cyclomatic complexity and lines of code, and it’s defined by
the following formula [23]:

MaintainabilityIndex = 171 − 5.2 ∗ ln(HalsteadV olume)−
0.23 ∗ (CyclomaticComplexity) − 16.2 ∗ ln(LinesofCode) (3.1)

3.4 Results
In this section, the results of the analysis of the factors mentioned before are
presented. They are divided in two main subsections, one per each tool used in
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the initial generation of data. In the case of both subsections, the original data
collected was further analyzed, grouped and worked on with the help of python, and
then organized and presented with the help of jupyter notebook, both with the
libraries pandas, specialized in data analysis and manipulation, and matplotlib,
specialized in the creation of static, animated and interactive visualizations.

Before diving into the deeper analysis, it can be useful to have in mind the
amount of sketches present in each subgroup and in total (see table 3.2). These
are used for some calculations of averages per sketch in the following sections.

group amount of sketches
created 14542
hearted 14196

total 28738

Table 3.2: Amount of sketches for each subgroup and total aggregated amount

3.4.1 Results from CLoC
The information presented here is related to languages, types of files, amount of
files and finally line counts for code, comments and blank lines. The results are
presented firstly on a general basis, for each subgroup, created and hearted sketches,
and then in an aggregated manner, and then a further analysis is carried out for
the languages that have the higher file count.

Types of files and languages

For each subgroup of the sketches, three tables are presented. The first two show
the total counts of files and lines for each language present within the projects.
The first one, shows the results generated by cloc, without using the option
--skip-uniqueness, which makes it so that the tool performs a uniqueness check
to ignore ‘repeated’ files thus counting only unique files. The second table shows
the results generated using the option --skip-uniqueness, which makes it so that
the tool skips the uniqueness check and includes all the existing files, hence giving
a count of all files. Lastly, the third table shows a comparison of the count of files
from the previous two tables, along with the difference and percentage difference
for each language.
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language files blank comment code
SUM 16219 188494 164785 1911725
JavaScript 10911 145423 146168 936677
Arduino Sketch 4213 38810 17951 275735
HTML 862 1991 200 57084
CSS 100 405 153 2715
Text 51 1308 0 593871
GLSL 32 426 169 1219
SVG 22 1 3 466
JSON 19 7 0 21152
CSV 4 0 0 21779
Java 1 81 123 941
Python 1 40 18 76
INI 1 1 0 4
Markdown 1 1 0 4
Properties 1 0 0 2

Table 3.3: Count of files and lines for languages present in created sketches.
Results without the use of –skip-uniqueness option
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language files blank comment code
SUM 28367 232606 196620 2353688

JavaScript 12860 174290 175887 1109659
HTML 10241 12166 453 126201

Arduino Sketch 4572 42917 19439 309369
CSS 402 601 209 5737
Text 112 1368 0 599420

GLSL 83 1123 486 2993
SVG 37 2 5 824

JSON 25 7 0 26973
CSV 21 0 0 171449

Markdown 10 10 0 40
Java 1 81 123 941

Python 1 40 18 76
INI 1 1 0 4

Properties 1 0 0 2

Table 3.4: Count of files and lines for languages present in created sketches.
Results with the use of –skip-uniqueness option

language files no skip check files skip check delta percentage delta (%)
SUM 16219 28367 12148 42.82

JavaScript 10911 12860 1949 15.16
Arduino Sketch 4213 4572 359 7.85

HTML 862 10241 9379 91.58
CSS 100 402 302 75.12
Text 51 112 61 54.46

GLSL 32 83 51 61.45
SVG 22 37 15 40.54

JSON 19 25 6 24.00
CSV 4 21 17 80.95
Java 1 1 0 0.00

Python 1 1 0 0.00
INI 1 1 0 0.00

Markdown 1 10 9 90.00
Properties 1 1 0 0.00

Table 3.5: Comparison of count of files for languages present in created sketches
from the results generated by not using and using the –skip-uniqueness option.
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language files blank comment code
SUM 19035 359313 277420 2585817

JavaScript 11119 206546 210616 1333197
Arduino Sketch 5784 119444 64690 702280

HTML 1556 3219 586 16498
GLSL 118 1680 634 4854

Text 114 26681 0 271245
SVG 102 2 49 8030
CSS 85 235 78 2049

JSON 57 19 0 49356
Java 53 1486 767 7955
CSV 38 0 0 190324

Properties 6 0 0 11
XML 1 1 0 13

Markdown 1 0 0 4
PHP 1 0 0 1

Table 3.6: Count of files and lines for languages present in hearted sketches.
Results without the use of –skip-uniqueness option

language files blank comment code
SUM 28213 410405 327733 3022307

JavaScript 12220 235742 254824 1530422
HTML 8873 10793 681 68436

Arduino Sketch 6295 133002 70553 785111
GLSL 197 2023 758 6006

CSS 178 266 80 3272
Text 154 27068 0 290111
SVG 123 2 70 8367

JSON 62 21 0 86908
Java 53 1486 767 7955
CSV 46 0 0 235673

Properties 8 0 0 15
XML 2 2 0 26

Markdown 1 0 0 4
PHP 1 0 0 1

Table 3.7: Count of files and lines for languages present in hearted sketches.
Results with the use of –skip-uniqueness option
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language files no skip check files skip check delta percentage delta (%)
SUM 19035 28213 9178 32.53

JavaScript 11119 12220 1101 9.01
Arduino Sketch 5784 6295 511 8.12

HTML 1556 8873 7317 82.46
GLSL 118 197 79 40.10

Text 114 154 40 25.97
SVG 102 123 21 17.07
CSS 85 178 93 52.25

JSON 57 62 5 8.06
Java 53 53 0 0.00
CSV 38 46 8 17.39

Properties 6 8 2 25.00
XML 1 2 1 50.00

Markdown 1 1 0 0.00
PHP 1 1 0 0.00

Table 3.8: Comparison of count of files for languages present in hearted sketches
from the results generated by not using and using the –skip-uniqueness option.

language files blank comment code
SUM 34353 535755 434201 4413283

JavaScript 21461 342046 350000 2201278
Arduino Sketch 9937 156764 81560 966442

HTML 2198 4900 754 71704
Text 161 27985 0 864609
CSS 161 586 223 4361

GLSL 129 1835 704 5263
SVG 124 3 52 8496

JSON 75 26 0 70070
Java 54 1567 890 8896
CSV 41 0 0 212051

Properties 6 0 0 11
Markdown 2 1 0 8

Python 1 40 18 76
XML 1 1 0 13

INI 1 1 0 4
PHP 1 0 0 1

Table 3.9: Count of files and lines for languages present in all sketches. Results
without the use of –skip-uniqueness option
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language files blank comment code
SUM 56580 643011 524353 5375995

JavaScript 25080 410032 430711 2640081
HTML 19114 22959 1134 194637

Arduino Sketch 10867 175919 89992 1094480
CSS 580 867 289 9009

GLSL 280 3146 1244 8999
Text 266 28436 0 889531
SVG 160 4 75 9191

JSON 87 28 0 113881
CSV 67 0 0 407122
Java 54 1567 890 8896

Markdown 11 10 0 44
Properties 9 0 0 17

XML 2 2 0 26
Python 1 40 18 76

INI 1 1 0 4
PHP 1 0 0 1

Table 3.10: Count of files and lines for languages present in all sketches. Results
with the use of –skip-uniqueness option
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language files no skip check files skip check delta percentage delta (%)
SUM 34353 56580 22227 39.28

JavaScript 21461 25080 3619 14.43
Arduino Sketch 9937 10867 930 8.56

HTML 2198 19114 16916 88.50
Text 161 266 105 39.47
CSS 161 580 419 72.24

GLSL 129 280 151 53.93
SVG 124 160 36 22.50

JSON 75 87 12 13.79
Java 54 54 0 0.00
CSV 41 67 26 38.81

Properties 6 9 3 33.33
Markdown 2 11 9 81.82

Python 1 1 0 0.00
XML 1 2 1 50.00

INI 1 1 0 0.00
PHP 1 1 0 0.00

Table 3.11: Comparison of count of files for languages present in all sketches from
the results generated by not using and using the –skip-uniqueness option

After a quick look at these tables, it is easy to see that the results generated
with the uniqueness check include a significantly less amount of files than the ones
generated without uniqueness check, meaning that a considerable quantity of files
constitutes non unique files. The biggest difference in quantity can be seen in
HTML files, meaning that most of these files are not unique (see 3.5, 3.8 and 3.11).
From a total of 19114 HTML files, only 2198 are unique.

Given that we are interested in the total number of files, the results of only
the second table for each subset (tables 3.4, 3.7 and 3.10) will be further looked
into. From this, we are interested in seeing how many different types of files are
used, which are the most popular, how many files not directly related to coding
the sketch itself are used, and the amount of files per sketch on average.

By looking at table 3.10, it is possible to see that the three main languages among
sketches are JavaScript (js), HTML and Arduino Sketch (in this case, Processing
or pde), in that order. For this reason, some rates and statistics will be obtained
for this group. And, given that the heavy part of the programming of the sketches
relies on the JavaScript and Processing languages, this group will also be looked at.

From observing tables 3.4 and 3.7, it is possible to see that hearted sketches
have more GLSL files than created sketches. GLSL is a high-level shading language,
used to shade 3D graphics, so it could be associated with more complex shading
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created hearted all
avg files per sketch 1.95 1.987 1.969

total not js/pde/html files 694 825 1519
avg not js/pde/html files per sketch 0.048 0.058 0.053

percentage not js/pde/html files over total files 2.44% 2.92% 2.68%
total js/pde/html files 27673 27388 55061

avg js/pde/html files per sketch 1.903 1.929 1.916
percentage js/pde/html files over total files 97.55% 97.07% 97.32%

total js/pde files 17432 18515 35947
avg js/pde files per sketch 1.199 1.304 1.25

percentage js/pde files over total files 61.45% 65.63% 63.53%
percentage js files over js/pde files 73.8% 66% 69.77%

js over pde files relation 2.8 1.94 2.3

Table 3.12: average files per sketch in total and for groups of languages and rate
between the JavaScript and Processing languages

and animations that could result in more appealing and popular sketches. On the
other hand, more css files can be seen in created sketches than in hearted sketches.
Css files also define visuals, but for HTML and in a less complex way. The higher
existence of HTML files in created sketches can explain why there’s also more css
type files.

From table 3.12, we have that the group corresponding to all JavaScript, HTML
and Arduino Sketch (Processing) together, correspond to about 97% of all files,
whereas the other files, that correspond mostly to media, styling type files or data
files, together correspond to less than 3% of the total files.

From this same table (3.12), it is possible to see that every sketch, has on
average 1.25 files of type JavaScript or Processing, which makes sense given that
these sketches are either based on Processing or JavaScript for its development.

The rate between JavaScript files and Processing files presents to be greatly
favored towards JavaScript, with this language outnumbering verb|pde| files by
almost three times in the case of created sketches, almost two times for hearted
sketches, and more than two times in the case of all sketches (see 3.12), showcasing
JavaScript as the prominent language.
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Top Languages

After seeing the results from the previous section mainly from table 3.11, it is
pretty clear that there’s essentially just 3 languages that are common occurrences
amongst sketches. These languages are, in order of most common to less common,
JavaScript, HTML, Arduino Sketch. These types of files are what essentially can
be used to create a creative coding project, and therefore, will be looked at in more
detail in the following part.

JavaScript

Group total files JavaScript files % JavaScript files avg JavaScript files per sketch total loc JavaScript avg loc per file total comments JavaScript avg comments per file
created 28367 12860 45.33 0.884335 1109659 86.29 175887 13.68
hearted 28213 12220 43.31 0.860806 1530422 125.24 254824 20.85

total 56580 25080 44.33 0.872712 2640081 105.27 430711 17.17

Table 3.13: JavaScript language statistics per subgroup: file and line count and
averages and percentage of files corresponding to JavaScript

From this table it is possible to see that created sketches have a higher relative
percentage of JavaScript files. In all cases, almost one in every two files is a
JavaScript file. This shows a clear popularity of this language and the higher
percentage in newer sketches could indicate that this language is gaining more
popularity.

HTML

Group total files HTML files % HTML files avg HTML files per sketch total loc HTML avg loc per file total comments HTML avg comments per file
created 28367 10241 36.10 0.704236 126201 12.32 453 0.04
hearted 28213 8873 31.45 0.625035 68436 7.71 681 0.08

total 56580 19114 33.78 0.665112 194637 10.18 1134 0.06

Table 3.14: HTML language statistics per subgroup: file and line count and
averages and percentage of files corresponding to HTML

It can be seen that the percentage of HTML files is greater in the case of created
files. This can be explained by the pairing that happens with JavaScript files,
where, for each HTML file, there usually is at least one JavaScript file. The later’s
percentage is also higher in created files (see 3.13).

An interesting thing to look at here is the fact that these files don’t really have
many comments at all. This can be explained by the nature of html files in general,
in which comments are rarely seen. Also, after some inspection, it was evident that
most html files represent a basic embed and render of the sketch developed in the
js file (see 3.1).
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Arduino Sketch

Group total files Arduino Sketch files % Arduino Sketch files avg Arduino Sketch files per sketch total loc Arduino Sketch avg loc per file total comments Arduino Sketch avg comments per file
created 28367 4572 16.12 0.314400 309369 67.67 19439 4.25
hearted 28213 6295 22.31 0.443435 785111 124.72 70553 11.21

total 56580 10867 19.21 0.378140 1094480 100.72 89992 8.28

Table 3.15: Arduino Sketch language statistics per subgroup: file and line count
and averages and percentage of files corresponding to Arduino Sketch

For the case of Arduino Sketch files, the percentage over all files is higher for
hearted sketches. This subgroup of sketches has older sketches that were created
before popularity of JavaScript and the library p5.js, so it is reasonable that
theres more sketches developed using that language.

Looking at the data in general, it makes sense that the percentage of HTML
files is close to the one from JavaScript files, because, as explained beforeJavaScript
based sketches function with one HTML, but can have more js files than just the
mySketch.js file. On the other hand, the percentage of Arduino Sketch files is
more isolated, given that Processing based sketches mostly only contain the one
pde file.

When considering that Arduino Sketch based sketches tend to have only one
file corresponding to this language, and that JavaScript based sketches tend to
contain only one HTML file, its reasonable to consider these as an approximate
count of sketches belonging to either type. By looking at the average of those types
of files per sketch, and interpreting it as a percentage of sketches of either type, its
possible to see that about 38% of all sketches correspond to Arduino Sketch based
projects, while about 66% of all sketches correspond to JavaScript based projects.
This clearly is not an exact percentage, but its a good approximate of the general
distribution, that about two thirds of sketches are JavaScript based.

With the exception of html files, which are as mentioned before almost solely
used to embed js, files from hearted sketches are on average longer, having more lines
of code, almost double than what created files have. More lines of code can be an in-
dicator of more complex software that produces, in this case, more appealing results.

In general, hearted files have more lines of comments, which usually indicates a
more documented and organized code, which is commonly associated with more
readable and maintainable code, that can lead to better quality results.
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3.4.2 Results from CR Report
The information presented here is a further analysis on the results given by the
cr tool. As it was mentioned and explained before (see 3.2.2), this is an analysis
only for the JavaScript files that exist within the sketches and only sketches that
include JavaScript files are being considered. This is relevant for statistics like
the amount of files per project, where the count of projects is a subsection of all
existing sketches that were downloaded during the scraping (see section 2).

This section is divided into 3 subsections. The first section is a look into general
patterns that appear within the sketches, including amount of files per project,
functions per file and most common names of functions. The second section is
related to lines of code and parameter count of both files and functions. The
third and final section is related to various metrics, like cyclomatic complexity and
Halstead metrics, both at file and function level.

It is important to note that, after a first inspection of the results generated, it
came to light that some sketches included files that essentially represented a copy
or a subsection of the files that form the library p5.js. As these files are not really
created by the people developing the creative coding projects, it was decided to
ignore these files for the further analysis that was then carried out.

General patterns

The statistics described in this section represent the general patterns that exist
among the JavaScript based creative coding projects. Firstly, a look into counts
of functions per file and per project and amount of files per project. Then an
inspection on function names, and which of them are the most common.

Each of these analyses is split into the subgroups created sketches, hearted
sketches, and then looked at in an aggregated way.

File and function counts

As mentioned before, this section presents a description and analysis of the
amount of functions per file, functions per project and files per project. Firstly,
separated by subgroups created and hearted sketches, and then in an aggregated
way.
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files_per_project funcs_per_file funcs_per_project
mean 1.24 3.76 4.67
std 1.03 27.24 35.14
min 1.00 0.00 0.00
25% 1.00 2.00 2.00
50% 1.00 2.00 2.00
75% 1.00 3.00 4.00
max 14.00 1916.00 2591.00

Table 3.16: statistics for files per project and functions per file and per project
for created sketches

files_per_project funcs_per_file funcs_per_project
mean 1.37 6.75 9.28
std 1.13 49.99 74.65
min 1.00 0.00 0.00
25% 1.00 2.00 3.00
50% 1.00 3.00 4.00
75% 1.00 5.00 6.00
max 19.00 2196.00 4202.00

Table 3.17: statistics for files per project and functions per file and per project
for hearted sketches

files_per_project funcs_per_file funcs_per_project
mean 1.30 5.22 6.81
std 1.08 40.10 57.11
min 1.00 0.00 0.00
25% 1.00 2.00 2.00
50% 1.00 3.00 3.00
75% 1.00 4.00 5.00
max 19.00 2196.00 4202.00

Table 3.18: statistics for files per project and functions per file and per project
for all sketches

By looking at these tables, it’s observable that both created and hearted sub-
groups of sketches have very similar statistics. The exception being the amount of
functions, but, by looking at percentiles, it seems to be a case of a few escaped
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values that throw off the calculations of mean. In the following graphs, showing the
concentration of the data for created, hearted and all sketches, this can be checked.

Figure 3.2: graph showing the amount of functions per file for created subset
sketches
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Figure 3.3: graph showing the amount of functions per project for created subset
sketches

Figure 3.4: graph showing the amount of files per project for created subset
sketches
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Figure 3.5: graph showing the amount of functions per file for hearted subset
sketches

Figure 3.6: graph showing the amount of functions per project for hearted subset
sketches
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Figure 3.7: graph showing the amount of files per project for hearted subset
sketches

Figure 3.8: graph showing the amount of functions per file for all subset sketches
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Figure 3.9: graph showing the amount of functions per project for all subset
sketches

Figure 3.10: graph showing the amount of files per project for all subset sketches

In these graphs, the yellow line represents the mean of the data, the red lines
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represent the mean plus and minus the standard deviation, and the green lines
represent the mean plus and minus two times the standard deviation. If these
exceed the range of the graph, the corresponding line is simply not shown.

By looking at the graphs that show files per project (figures 3.4, 3.7 and 3.10),
it is possible to see that the majority of sketches contain 1 single JavaScript file.
Some, containing 2 or 3, this being more common among Hearted sketches, which
can indicate a better modularization being carried out in these sketches, which
usually leads to more readable and organized code and therefore, in most cases,
better output.

For the case of functions these graphs confirm the theory that there are some
values that escape the normal for these projects. Given the ‘escaped’ values, the
y axis, representing the count of functions, will be limited on the top, to have a
better view of the data, by limit equal to percentile 99, which means 99% of the
data will still be shown.

Figure 3.11: graph showing the amount of functions per file for created subset
sketches, with y axis limited on top by percentile 99
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Figure 3.12: graph showing the amount of functions per project for created subset
sketches, with y axis limited on top by percentile 99

Figure 3.13: graph showing the amount of functions per file for hearted subset
sketches, with y axis limited on top by percentile 99
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Figure 3.14: graph showing the amount of functions per project for hearted
subset sketches, with y axis limited on top by percentile 99

Figure 3.15: graph showing the amount of functions per file for all subset sketches,
with y axis limited on top by percentile 99
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Figure 3.16: graph showing the amount of functions per project for all subset
sketches, with y axis limited on top by percentile 99

When looking at the differences of concentration of data between functions per
project in created (graph 3.12) and hearted (3.14) sketches, it can be seen that
the sketches in general present a higher total count of functions, where for created
sketches it mainly concentrated between 2 and 4 functions per project, whereas
the hearted sketches move between 2 and 6 functions per project. This makes a
lot of sense having in mind that hearted sketches present on average a higher file
per project amount. This information can be in a way, translated to all sketches,
where sketches present more repetitions of functions per project between 2 and 6.

Function names and occurrences

This section aims to have a general idea of how many functions are ‘shared’
between sketches. As realistically it is not really possible to fully have identical
functions between different sketches to compare, the names of functions will be
used to get some idea of possible sketch patterns.

The data obtained will be presented numerically, for created, hearted and all
sketches, and the 20 most common function names will be shown for each set of
sketches.
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created hearted total
total amount of function names 6972 16719 19818

function names with more than 1 occurrence 2714 6826 8278
function names with more than 10 occurrences 200 490 1064
function names with more than 50 occurrences 36 72 103

function names with more than 100 occurrences 16 38 55
function names with more than 500 occurrences 6 10 13

function names with more than 1000 occurrences 5 7 7
function names with more than 5000 occurrences 2 3 3

Table 3.19: total count of unique function names and amounts of functions names
with multiple occurrences, for all sets of sketches

Figure 3.17: 20 most common names of functions among created sketches
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Figure 3.18: 20 most common names of functions among hearted sketches

Figure 3.19: 20 most common names of functions among all sketches

By looking at all the information in the tables and lists, it is possible to see that
in the case of hearted sketches, there is a larger amount of unique function names
in general than in the created sketches. This could be explained by a higher rate of
modularization of functions, and a better application of simplified functions that
have one purpose, instead of functions that execute many things at once. This is,
in a way, considered better and more manageable coding, which usually leads to
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better results, which in this case, could turn into popular sketches.

It can also be seen that in the case of hearted sketches, there are more functions
that are repeated and more repetitions of the functions in general. A possible
explanation of this, is a better understanding of the tool being used and what
different things can be achieved, which leads to using all the available resources
that, in this case, the p5.js library offers.

Lines of code and Parameter counts

In this section, a deeper look into the physical and logical lines of code, and
parameter count is presented, both in the file and function levels. The analysis is
split into the subgroups created sketches and hearted sketches, and then looked at
in an aggregated way. Lastly, a description of the “setup” and “draw” functions
that constitute the base of how the p5.js library works will be presented.

File level

sloc_physical_mod_list sloc_logical_mod_list param_mod_list
count 12009.00 12009.00 12009.00
mean 87.67 61.36 2.86
std 447.41 264.66 42.12
min 1.00 0.00 0.00
25% 21.00 11.00 0.00
50% 43.00 23.00 0.00
75% 87.00 50.00 0.00
max 29837.00 13492.00 3296.00

Table 3.20: statistics for total physical and logical lines of code and parameters
per module/file for created sketches
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sloc_physical_mod_list sloc_logical_mod_list param_mod_list
count 11566.00 11566.00 11566.00
mean 141.76 92.45 7.09
std 655.62 625.40 72.53
min 1.00 0.00 0.00
25% 42.00 19.00 0.00
50% 76.00 42.00 0.00
75% 128.00 75.00 4.00
max 47549.00 34121.00 3296.00

Table 3.21: statistics for total physical and logical lines of code and parameters
per module/file for hearted sketches

sloc_physical_mod_list sloc_logical_mod_list param_mod_list
count 23575.00 23575.00 23575.00
mean 114.21 76.61 4.94
std 559.97 477.28 59.07
min 1.00 0.00 0.00
25% 29.00 13.00 0.00
50% 58.00 31.00 0.00
75% 110.00 64.00 2.00
max 47549.00 34121.00 3296.00

Table 3.22: statistics for total physical and logical lines of code and parameters
per module/file for all sketches

From looking at the statistics presented in these tables (3.20, 3.21 and 3.22),
it is possible to identify that there are some values escape a lot from the others,
so, the following graphs are limited to show only the majority of the data that
explains general patterns. In the case of the graphs related to lines of code, given
the larger values, the y axis will be limited to be at most the value of percentile 95,
this means, still 95% of the data is shown. In the case of parameters, the values
are much smaller and easier to see on a graph, so the y axis will be limited to
percentile 99, showing 99% of the data.

In the following graphs, the yellow line represents the mean of the data, value
which is shown in the tables presented above.
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Figure 3.20: graph showing the physical lines of code count per file for created
sketches, with y axis limited on top by percentile 95

Figure 3.21: graph showing the logical lines of code count per file for created
sketches, with y axis limited on top by percentile 95
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Figure 3.22: graph showing the parameters count per file for created sketches,
with y axis limited on top by percentile 99

Figure 3.23: graph showing the physical lines of code count per file for hearted
sketches, with y axis limited on top by percentile 95

44



Analysis

Figure 3.24: graph showing the logical lines of code count per file for hearted
sketches, with y axis limited on top by percentile 95

Figure 3.25: graph showing the parameters count per file for hearted sketches,
with y axis limited on top by percentile 99
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Figure 3.26: graph showing the physical lines of code count per file for all sketches,
with y axis limited on top by percentile 95

Figure 3.27: graph showing the logical lines of code count per file for all sketches,
with y axis limited on top by percentile 95
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Figure 3.28: graph showing the parameters count per file for all sketches, with y
axis limited on top by percentile 99

In the case of lines of code, the following observations can be made:

From graph 3.21, it can be seen that there is a cluster of sketches at around
the 165 logical lines of code. This could indicate that a few of the newly created
sketches either take inspiration and fork from an existing sketch with a file with
those qualities, or that the people developing these sketches are opting to download
files from the library they’re working with and adding it directly to their project,
instead of importing the module from an external source.

From comparing graphs 3.21 and 3.24, it can be observed that the files from
hearted sketches present in general higher count of lines that the ones from created
sketches. This could be explained by what was discussed in previous section 3.4.2,
where hearted sketches presented a higher rate of functions per file, which typically
translates into more lines of code.

In general, (see 3.26 and 3.27) it is possible to see that most sketches files have
a logical line count lower than 50, and a physical line count lower than 100, which
is in general, very readable and manageable code.

In the case of parameters per file, it is possible to see on graph 3.28, that
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there is a very high concentration of files that have at most 5 parameters among
their functions, being the most common having no parameters at all. With the
knowledge from section 3.4.2, where it was discussed that a large percentage of
files are formed by the functions setup and draw, functions that commonly don’t
receive parameters, this observation makes sense and leads to conclude, that most
files are versions of mySketch.js, which commonly only has these two functions.

Function level

sloc_physical_func_list sloc_logical_func_list param_func_list
count 45151.00 45151.00 45151.00
mean 19.36 13.18 0.76
std 109.13 84.65 1.48
min 1.00 0.00 0.00
25% 3.00 2.00 0.00
50% 6.00 5.00 0.00
75% 17.00 12.00 1.00
max 10722.00 13465.00 18.00

Table 3.23: statistics for total physical and logical lines of code and parameters
per function for created sketches

sloc_physical_func_list sloc_logical_func_list param_func_list
count 78045.00 78045.00 78045.00
mean 22.38 11.85 1.05
std 267.66 125.38 1.52
min 1.00 0.00 0.00
25% 2.00 2.00 0.00
50% 6.00 5.00 0.00
75% 17.00 12.00 2.00
max 47549.00 27827.00 18.00

Table 3.24: statistics for total physical and logical lines of code and parameters
per function for hearted sketches
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sloc_physical_func_list sloc_logical_func_list param_func_list
count 123196.00 123196.00 123196.00
mean 21.28 12.33 0.94
std 223.05 112.18 1.52
min 1.00 0.00 0.00
25% 3.00 2.00 0.00
50% 6.00 5.00 0.00
75% 17.00 12.00 1.00
max 47549.00 27827.00 18.00

Table 3.25: statistics for total physical and logical lines of code and parameters
per function for all sketches

Once again, it’s possible to see from the data on tables that some values escape
the norm a lot, so, some of the following graphs are limited to show only the
majority of the data that explains general patterns. In the case of the graphs
related to lines of code, given the larger values, the y axis is limited to be at most
the value of percentile 95, this means, still 95% of the data is shown. In the case of
parameters, since the maximum value does not surpass 18, the graph will be left
unlimited, showing all the available data.

In each of the following graphs, the yellow line represents the mean of the data,
value which is shown in the tables presented above. The red line represent the mean
plus the standard deviation, and the green line represent the mean plus two times
the standard deviation. If these exceed the range of the graph, the corresponding
line is simply not shown.
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Figure 3.29: graph showing the physical lines of code count per function for
created sketches, with y axis limited on top by percentile 95

Figure 3.30: graph showing the logical lines of code count per function for created
sketches, with y axis limited on top by percentile 95
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Figure 3.31: graph showing the parameters count per function for created sketches

Figure 3.32: graph showing the physical lines of code count per function for
hearted sketches, with y axis limited on top by percentile 95
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Figure 3.33: graph showing the logical lines of code count per function for hearted
sketches, with y axis limited on top by percentile 95

Figure 3.34: graph showing the parameters count per function for hearted sketches
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Figure 3.35: graph showing the physical lines of code count per function for all
sketches, with y axis limited on top by percentile 95

Figure 3.36: graph showing the logical lines of code count per function for all
sketches, with y axis limited on top by percentile 95
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Figure 3.37: graph showing the parameters count per function for all sketches

After observing these graphs, the following comments can be made:

From comparing graphs 3.30 and 3.33, it can be observed that, contrary to the
results observed at module/file level, the functions from hearted sketches present in
general a lower count of lines than functions from created sketches. This, together
with the information from 3.4.2, could be correlated to more modularized functions
being present in hearted sketches, having shorter functions with less lines of code,
but longer files with more lines due to the use of more functions in general.

In general, (see 3.36 and 3.35) it is possible to see that most sketches functions
have a logical line count lower than 25, and a physical line count lower than 40,
which is in general, readable and manageable functions.

It is possible to see on graph 3.37, that there is a very high concentration of
functions that only take at most 5 parameters, being the most common functions
taking no parameters at all. This makes sense having in mind what was presented in
sections 3.4.2 and 3.4.2, where it was observed that the majority of total functions
corresponds to functions setup and draw, these being the most common among
sketches, and that these functions unusually receive no parameters as input.
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Functions setup and draw

The functions setup and draw represent a very important part of JavaScript
based creative coding projects. These two functions are the base for developing with
the p5.js (figure 3.38) library, and therefore the most commonly used functions
among sketches (as seen in 3.4.2). For this reason, it seemed like an interesting
thing to further look at.

Figure 3.38: basic skeleton of a p5.js based sketch

Firstly, a look into just quantities. While going through the information for
each file, it was counted how many of them had both setup and draw functions.
Also, the total amount of draw and setup functions was obtained.

group files with setup and draw funcs setup funcs draw number files % files with both number sketches % sketches with both
created 8840 9439 8941 12009 73.61 9673 91.39
hearted 7625 7978 7708 11566 65.93 8414 90.62

all 16465 17417 16649 23575 69.84 18068 91.13

Table 3.26: count of setup and draw functions, files containing both, and percent-
age of files and sketches containing them

A great majority of all JavaScript files contain both these functions, and assum-
ing each sketch has only one file with both functions in it, around 9 in every 10
sketches uses these (see table 3.26).

Now, a further look into how these functions are coded will be presented. The
following tables present statistics on parameter count and logical and physical lines
of code for both setup and draw functions, for created, hearted, and all sketches.
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params_setup loc_logical_setup loc_physical_setup
count 9439.00 9439.00 9439.00
mean 0.00 10.49 12.72
std 0.01 141.19 43.88
min 0.00 0.00 1.00
25% 0.00 2.00 4.00
50% 0.00 3.00 5.00
75% 0.00 7.00 11.00
max 1.00 13465.00 3546.00

Table 3.27: statistics for setup function for created sketches

params_draw loc_logical_draw loc_physical_draw
count 8941.00 8941.00 8941.00
mean 0.00 26.05 36.32
std 0.02 116.03 132.05
min 0.00 0.00 1.00
25% 0.00 5.00 8.00
50% 0.00 10.00 17.00
75% 0.00 23.00 35.00
max 2.00 5714.00 6588.00

Table 3.28: statistics for draw function for created sketches

params_setup loc_logical_setup loc_physical_setup
count 7978.00 7978.00 7978.00
mean 0.00 11.33 16.71
std 0.03 45.54 48.89
min 0.00 0.00 1.00
25% 0.00 4.00 6.00
50% 0.00 7.00 11.00
75% 0.00 13.00 18.00
max 1.00 3755.00 3819.00

Table 3.29: statistics for setup function for hearted sketches
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params_draw loc_logical_draw loc_physical_draw
count 7708.00 7708.00 7708.00
mean 0.01 22.36 32.55
std 0.20 51.90 54.73
min 0.00 0.00 1.00
25% 0.00 6.00 11.00
50% 0.00 14.00 21.00
75% 0.00 25.00 36.00
max 4.00 1985.00 1533.00

Table 3.30: statistics for draw function for hearted sketches

params_setup loc_logical_setup loc_physical_setup
count 17417.00 17417.00 17417.00
mean 0.00 10.88 14.55
std 0.02 108.41 46.29
min 0.00 0.00 1.00
25% 0.00 2.00 4.00
50% 0.00 5.00 8.00
75% 0.00 10.00 15.00
max 1.00 13465.00 3819.00

Table 3.31: statistics for setup function for all sketches

params_draw loc_logical_draw loc_physical_draw
count 16649.00 16649.00 16649.00
mean 0.01 24.34 34.57
std 0.14 92.09 103.70
min 0.00 0.00 1.00
25% 0.00 5.00 9.00
50% 0.00 12.00 19.00
75% 0.00 24.00 35.00
max 4.00 5714.00 6588.00

Table 3.32: statistics for draw function for all sketches

From all these tables, it is easy to see that in all cases, both setup and draw
functions unusually don’t take parameters, with few exceptions, so it’s not worth it
to look into or further analyzing this metric.
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In relation to both logical and physical lines of code, it is possible to see that in
all subgroups, the ‘draw’ function is, on average, about twice as long as the ‘setup’
function. This can be explained by what these functions do, what they achieve and
how they work. The draw function more often contains further calculations and
even conditional code, and is run repeatedly, whereas the setup function is only run
once, at initialization. This can be seen in more detail in https://github.com/
processing/p5.js/wiki/p5.js-overview [24] where there’s a detailed overview
explanation of the library used to create these sketches.

Also, the difference between logical and physical lines is greater in the draw
function. This again can be explained by the fact that the draw function more
often contains further calculations and even conditional code, which leads to more
lines dedicated to separating sections or comments explaining functionalities.

It is also possible to observe that in all cases, the maximum value escapes the
other statistics by a lot, which gives the implication that these are isolated and
specific cases. Either way, next, graphs are presented to show the concentration of
the data for the total amount of sketches. For these, given the ‘escaped’ values,
the y axis, representing the count of logical lines of code, will be limited on the top
by the value percentile 99, showing still 99% of the data.

Figure 3.39: graph for logical lines of code for function setup for all sketches
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Figure 3.40: graph for logical lines of code for function draw for all sketches

In these graphs, each dot represents a sketch, the y axis represents the amount
of lines, and the x axis, as in this case it’s just an index for sketches, it is irrelevant.
The yellow line represents the mean of the data.

It is possible to notice that for the setup function, there’s a big concentration of
sketches with under 10 lines, and under 20 lines for the draw function, leading to
think that these functions are in most cases, very readable.

Metrics

In this last section, a further analysis is presented for various metrics. The
metrics being looked at are cyclomatic complexity, cyclomatic complexity density,
maintainability and Halstead metrics. These are presented and described both in a
module or file level and function level.
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Cyclomatic complexity and density

cyclomatic per file cyclomatic function avg per file cyclomaticDensity per file
count 12009.00 12009.00 11313.00
mean 8.47 2.65 15.55
std 48.31 6.08 16.32
min 1.00 1.00 0.02
25% 1.00 1.00 7.14
50% 2.00 1.50 12.50
75% 5.00 2.40 18.75
max 3376.00 138.00 180.00

Table 3.33: statistics for cyclomatic complexity and density for files and average
of cyclomatic complexity of functions per file from created sketches

cyclomatic per file cyclomatic function avg per file cyclomaticDensity per file
count 11566.00 11566.00 10905.00
mean 13.25 2.64 18.33
std 82.74 4.20 18.74
min 1.00 1.00 0.01
25% 2.00 1.27 9.09
50% 5.00 2.00 13.33
75% 10.00 3.00 19.64
max 3376.00 240.00 160.00

Table 3.34: statistics for cyclomatic complexity and density for files and average
of cyclomatic complexity of functions per file from hearted sketches

cyclomatic per file cyclomatic function avg per file cyclomaticDensity per file
count 23575.00 23575.00 22218.00
mean 10.82 2.65 16.91
std 67.47 5.24 17.61
min 1.00 1.00 0.01
25% 1.00 1.00 8.33
50% 3.00 1.75 12.82
75% 7.00 2.67 19.15
max 3376.00 240.00 180.00

Table 3.35: statistics for cyclomatic complexity and density for files and average
of cyclomatic complexity of functions per file from all sketches
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cyclomatic per func
created

cyclomaticDensity per func
created

cyclomatic per func
hearted

cyclomaticDensity per func
hearted

cyclomatic per func
all

cyclomaticDensity per func
all

count 45151.00 44658.00 78045.00 77081.00 123196.00 121739.00
mean 2.98 50.08 2.81 54.04 2.88 52.59
std 7.04 45.91 6.23 51.75 6.54 49.72
min 1.00 0.03 1.00 0.00 1.00 0.00
25% 1.00 20.00 1.00 20.00 1.00 20.00
50% 1.00 34.21 2.00 35.00 1.00 34.62
75% 3.00 66.67 3.00 100.00 3.00 100.00
max 234.00 1000.00 954.00 1000.00 954.00 1000.00

Table 3.36: statistics for cyclomatic complexity and density per function from
created, hearted, and all sketches

It is important to notice that in the case of cyclomatic complexity density, the
functions with no lines are ignored, given that the value of lines of code is used
as the divisor in the calculation of the rate. That’s why it can be observed that
in the tables 3.33, 3.34, 3.35 and 3.36, the ‘count’ value is lower for cyclomatic
complexity density than for cyclomatic complexity.

In all these metrics, for both file and functions, it can be seen in the tables that
the maximum value escapes the mean and percentile data. For this reason, it’s
sensible to assume that these are extreme cases that escape the norm. For this
reason, for the following graphs, the information will be capped on the top by the
value equal to percentile 95. In other words, 95% of the lower-valued data will be
shown.

Additionally, after observing that the statistics are very similar between hearted
and created sketches, the graphs will only be presented for the aggregated data,
that is, for all sketches.
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Figure 3.41: graph showing the cyclomatic complexity metric score for all sketches,
with y axis limited on top by percentile 95

Figure 3.42: graph showing the cyclomatic complexity density for all sketches,
with y axis limited on top by percentile 95
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Figure 3.43: graph showing the average of cyclomatic complexity for the functions
per file for all sketches, with y axis limited on top by percentile 95

Figure 3.44: graph showing the cyclomatic complexity of functions for all sketches,
with y axis limited on top by percentile 99
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Figure 3.45: graph showing the cyclomatic complexity density of functions for all
sketches, with y axis limited on top by percentile 95

From graphs 3.41 and 3.44, its possible to see that for both functions and
files, the cyclomatic complexity mostly stays under a value of 10, which is usually
considered to describe well written and structured code, that’s highly testable and
has low cost to modify.

For the case of average of functions (graph 3.43), and for the cyclomatic com-
plexity density (graphs ?? and 3.45), some clusters can be seen, which can be
explained by the standardized ’skeleton’ of creative coding projects, that in general
consists of very similar style code with functions setup and draw, and some other
common functions. (see 3.4.2, 3.4.2).
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Halstead

Per Module or File

length
per file

vocabulary
per file

difficulty
per file

volume
per file

effort
per file

bugs
per file

time
per file

count 12009.00 12009.00 12009.00 12009.00 1.200900e+04 12009.00 12009.00
mean 411.59 78.74 17.01 3306.01 4.933051e+05 1.10 27405.84
std 2456.67 576.71 30.02 27146.96 1.285014e+07 9.05 713896.71
min 0.00 0.00 0.00 0.00 0.000000e+00 0.00 0.00
25% 51.00 25.00 3.25 237.74 9.874200e+02 0.08 54.86
50% 123.00 45.00 9.65 670.64 6.361770e+03 0.22 353.43
75% 297.00 77.00 19.63 1849.58 3.283469e+04 0.62 1824.15
max 122886.00 35103.00 1351.35 1454096.52 9.509604e+08 484.70 52831135.65

Table 3.37: statistics of halstead metrics for files of created sketches

length
per file

vocabulary
per file

difficulty
per file

volume
per file

effort
per file

bugs
per file

time
per file

count 11566.00 11566.00 11566.00 11566.00 1.156600e+04 11566.00 1.156600e+04
mean 706.86 120.23 29.30 6540.80 1.349422e+06 2.18 7.496791e+04
std 5985.68 1263.02 62.26 88255.62 3.107965e+07 29.42 1.726647e+06
min 0.00 0.00 0.00 0.00 0.000000e+00 0.00 0.000000e+00
25% 107.00 42.00 9.73 582.23 5.809420e+03 0.19 3.227500e+02
50% 252.00 71.00 20.52 1549.49 3.224142e+04 0.52 1.791190e+03
75% 481.00 103.00 34.48 3209.55 1.093308e+05 1.07 6.073930e+03
max 340332.00 71958.00 4530.28 5435206.91 2.631289e+09 1811.74 1.461827e+08

Table 3.38: statistics of halstead metrics for files of hearted sketches

length
per file

vocabulary
per file

difficulty
per file

volume
per file

effort
per file

bugs
per file

time
per file

count 23575.00 23575.00 23575.00 23575.00 2.357500e+04 23575.00 2.357500e+04
mean 556.45 99.10 23.04 4893.01 9.133201e+05 1.63 5.074001e+04
std 4546.73 975.92 48.97 64801.08 2.362562e+07 21.60 1.312535e+06
min 0.00 0.00 0.00 0.00 0.000000e+00 0.00 0.000000e+00
25% 65.00 29.00 4.89 320.21 1.833180e+03 0.11 1.018400e+02
50% 179.00 58.00 14.15 1052.82 1.430778e+04 0.35 7.948800e+02
75% 404.00 93.00 28.34 2633.34 7.134817e+04 0.88 3.963790e+03
max 340332.00 71958.00 4530.28 5435206.91 2.631289e+09 1811.74 1.461827e+08

Table 3.39: statistics of halstead metrics for files of all sketches
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Per Function

length
per function

vocabulary
per function

difficulty
per function

volume
per function

effort
per function

bugs
per function

time
per function

count 45151.00 45151.00 45151.00 45151.00 4.515100e+04 45151.00 45151.00
mean 94.06 25.41 7.91 594.14 4.619183e+04 0.20 2566.21
std 876.12 235.12 12.86 9306.29 3.923135e+06 3.10 217951.93
min 0.00 0.00 0.00 0.00 0.000000e+00 0.00 0.00
25% 10.00 8.00 1.20 30.00 3.619000e+01 0.01 2.01
50% 30.00 16.00 4.00 123.19 5.180000e+02 0.04 28.78
75% 81.00 30.00 10.00 398.51 3.720100e+03 0.13 206.67
max 106746.00 35101.00 542.08 1082219.96 5.754927e+08 360.74 31971816.96

Table 3.40: statistics of halstead metrics for functions of created sketches

length
per function

vocabulary
per function

difficulty
per function

volume
per function

effort
per function

bugs
per function

time
per function

count 78045.00 78045.00 78045.00 78045.00 7.804500e+04 78045.00 78045.00
mean 93.74 27.81 9.75 623.21 2.620433e+04 0.21 1455.80
std 1029.82 353.70 15.51 14901.38 9.531585e+05 4.97 52953.25
min 0.00 0.00 0.00 0.00 0.000000e+00 0.00 0.00
25% 14.00 9.00 2.18 44.97 1.007700e+02 0.01 5.60
50% 37.00 18.00 5.60 155.32 8.579200e+02 0.05 47.66
75% 87.00 31.00 12.00 432.66 4.965350e+03 0.14 275.85
max 166959.00 55549.00 1100.56 2631519.82 1.392335e+08 877.17 7735196.72

Table 3.41: statistics of halstead metrics for functions of hearted sketches

length
per function

vocabulary
per function

difficulty
per function

volume
per function

effort
per function

bugs
per function

time
per function

count 123196.00 123196.00 123196.00 123196.00 1.231960e+05 123196.00 123196.00
mean 93.86 26.93 9.08 612.56 3.352969e+04 0.20 1862.76
std 976.30 315.46 14.62 13130.51 2.493253e+06 4.38 138514.05
min 0.00 0.00 0.00 0.00 0.000000e+00 0.00 0.00
25% 13.00 9.00 1.80 39.86 7.430000e+01 0.01 4.13
50% 35.00 17.00 5.09 143.40 7.057200e+02 0.05 39.21
75% 85.00 31.00 11.25 422.34 4.483670e+03 0.14 249.09
max 166959.00 55549.00 1100.56 2631519.82 5.754927e+08 877.17 31971816.96

Table 3.42: statistics of halstead metrics for functions of all sketches

By looking at these tables a few observations can be made:

• The difficulty metric, which is generally interpreted as the difficulty to write
or understand the code, presents on average low values, for all sets of sketches,
for both functions and files, with an expected higher value for files. This is a
good indicator that creators are writing manageable, readable code, which is
specially relevant for open source code.

66



Analysis

• On average, hearted sketches present a higher value of length and vocabulary,
with a more noticeable difference when it comes to files. This can indicate
more complex code that uses more variables, operands and operators. But,
this could also mean a better use of different variables for different purposes.

• The bugs or errors, defined as an estimate for the number of errors in the
implementation, presents expected larger values on file level than at function,
but at file level, this metric shows to be higher in hearted sketches. Again,
this can indicate more complex program.

• The effort and time measures, that represent the estimated mental effort and
time for implementation in seconds respectively, show on average a lower value
for functions in hearted sketches than in created sketches. This can signify
simpler more atomized functions being implemented in hearted sketches. On
the other hand, in the case of files, it’s the opposite, where created sketches
show lower values. This could indicate that files from hearted sketches are
more complex as a whole.

• The time measure,on average it’s set at around 14 hours for files and around
30 minutes for functions, which, including debugging and considering that
creators could be inexperienced and the fact that sometimes a single file
constitutes as a result a fully functioning sketch, these seem like reasonable
times.

From the tables presented above, it can be seen that, as is common by now, the
maximum value of all the different measures escapes the rest of the statistics by a
lot, so it’s reasonable to assume that these are extreme cases that escape the norm.
For this reason, for the following graphs, the information will be capped on the top
by the value equal to percentile 95. In other words, 95% of the lower-valued data
will be shown.

Moreover, given the great amount of data and the fact that in general, created
and hearted sketches present fairly similar statistics, graphs will be presented only
for all sketches aggregated.
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Per File

Figure 3.46: graph showing the length halstead metric scores for per file for all
sketches, with y axis limited on top by percentile 95
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Figure 3.47: graph showing the vocabulary halstead metric scores for per file for
all sketches, with y axis limited on top by percentile 95

Figure 3.48: graph showing the difficulty halstead metric scores for per file for all
sketches, with y axis limited on top by percentile 95
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Figure 3.49: graph showing the volume halstead metric scores for per file for all
sketches, with y axis limited on top by percentile 95

Figure 3.50: graph showing the effort halstead metric scores for per file for all
sketches, with y axis limited on top by percentile 95
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Figure 3.51: graph showing the bugs halstead metric scores for per file for all
sketches, with y axis limited on top by percentile 95

Figure 3.52: graph showing the time halstead metric scores for per file for all
sketches, with y axis limited on top by percentile 95
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Per Function

Figure 3.53: graph showing the length halstead metric scores for per file for
function sketches, with y axis limited on top by percentile 95
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Figure 3.54: graph showing the vocabulary halstead metric scores for per function
for all sketches, with y axis limited on top by percentile 95

Figure 3.55: graph showing the difficulty halstead metric scores for per function
for all sketches, with y axis limited on top by percentile 95
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Figure 3.56: graph showing the volume halstead metric scores for per function
for all sketches, with y axis limited on top by percentile 95

Figure 3.57: graph showing the effort halstead metric scores for per function for
all sketches, with y axis limited on top by percentile 95

74



Analysis

Figure 3.58: graph showing the bugs halstead metric scores for per function for
all sketches, with y axis limited on top by percentile 95

Figure 3.59: graph showing the time halstead metric scores for per function for
all sketches, with y axis limited on top by percentile 95
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In all these graphs it is possible to see that, in general, the values of the metrics
presented, both at file and function levels, tend to stay towards lower values, which
in the case of halstead metrics, lower values indicate better, more readable and
maintainable code. The values show mostly around or lower than the mean (the
yellow line in the graphs) and rarely coming close or over the value of mean plus
standard deviation (represented by the red line in the graphs). This goes to show
that the values are very concentrated, with a few cases of values that escape the
norm a lot.

Maintainability

maintainability per module
created sketches

maintainability per module
hearted sketches

maintainability per module
all sketches

count 12009.00 11566.00 23575.00
mean 115.49 112.23 113.89
std 27.59 25.60 26.68
min -30.08 -31.27 -31.27
25% 98.93 96.72 97.55
50% 114.00 107.65 110.47
75% 130.59 121.16 126.63
max 171.00 171.00 171.00

Table 3.43: statistics for maintainability index per module for created, hearted,
and all sketches

By looking at this table it is clear that the statistics for the maintainability index
across all types of sketches are very similar. In all cases, the maximum achievable
‘score’ is obtained. In the following graphs, it is possible to see the distribution of
sketches in the range of values.
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Figure 3.60: graph showing the maintainability index scores for created sketches

Figure 3.61: graph showing the maintainability index scores for hearted sketches
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Figure 3.62: graph showing the maintainability index scores for all sketches

In these graphs, the yellow line represents the mean of the data, the red lines
represent the mean plus and minus the standard deviation, and the green lines
represent the mean plus and minus two times the standard deviation. If these
exceed the range of the graph, the corresponding line is simply not shown. Each
dot represents a file whose y axis value represents the score obtained, while the x
axis, as in this case it’s just an index for sketches, is irrelevant.

It is possible to see that the majority of files, in all cases, obtain a score that
ranges between 75 and 130, which is commonly considered as good scores. A
significant amount of files can be seen obtaining the maximum score which means
these are very maintainable and readable programs. A few files can be seen in
the lower part of the score range, even into the negatives, but, from table 3.43,
it’s possible to see that less than 25% percent of the data falls under a score of
90, which is still considered a high score, so it’s safe to say, that the low scoring
modules are isolated cases that deviate from the norm.
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Chapter 4

Discussion

In this section, the results of the research and analysis that was carried out and
detailed in the section above (3) will be presented and discussed in a summarized
and conclusive manner, showing the main takeaways and observations obtained.

Additionally, some general conclusive comments and observations will be pre-
sented along with a brief proposal of some possible future research and work that
could extend the results obtained in this thesis.

4.1 Results
After the analysis was carried out and its results presented, there are two main
themes on which some conclusive observations can be made. These two being; the
general patterns found in creative coding projects, with a more detailed description
of a typical JavaScript based project, and observations in relation to metrics.

In relation to the general patterns and layout of the source code of creative
coding projects, the first thing to mention is the fact that there are two types of
projects. Sketches are either based and developed on the Processing language (file
extension being pde), also referred to as Arduino Sketch, or they are based and
developed on the language JavaScript (file extension being js), in conjunction with
HTML.

In terms of the use of other languages or different media files other than
JavaScript, HTML or Processing, to complement the creation of the sketch, it was
found that the absolute majority of projects don’t have any of these files present,
with only about a 3% of total files belonging to these. It was observed that hearted
sketches have a slightly higher percentage of these files in comparison to created
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sketches, with the difference being about only 0.5%.

When it comes to Processing based projects, a higher percentage of these files
is found among the subgroup of sketches denominated as hearted, with about 5%
more files found than in the subgroup of created sketches. In general, considering
all subgroups, about 20% of all existing files correspond to Arduino Sketch files.
When considering the total number of sketches, about one third of sketches were
found to be Processing based. This information is only an approximation based on
the information that Processing based projects contain a single pde file, and that
JavaScript based files tend to contain only one HTML file (more details on section
3.4.1).

The previously stated observation, and the fact of there being no tools for
Arduino Sketch static code analysis, lead to only carrying a further analysis for
JavaScript based projects. The following observations are made having only files
from this language in mind.

If the typical ‘skeleton’ of a JavaScript based project wants to be defined, the first
thing to mention is the fact that they are composed of at least one main JavaScript
file, commonly named ‘mySketch.js’ (or in some cases ‘sketch.js’). Some sketches
contain more than only this JavaScript file, these extra files corresponding to
either definition of functions then used by the main file or different semi-individual
components to the sketch.

In all cases, the JavaScript file(s) is accompanied by one HTML file, that is
in charge of embedding the script that defines the sketch written usually in the
‘mySketch.js’ file, into the web browser. Sometimes, the HTML will embed content
from multiple JavaScrip files if the sketch’s components are defined separately in
different JavaScript files.

When it comes to the main file, ‘mySketch.js’, it is usually conformed by the setup
and draw functions (see 3.4.2 and 3.4.2), sometimes exclusively or sometimes in-
cluding other functions defined by the library p5.js, or other user defined functions.

In the case of hearted sketches, when compared with the created subgroup of
sketches, a higher percentage of functions per file and per project was observed.
They also presented a higher rate of files per project on average. Both of these
observations can implicate a higher modularization, both of components of sketches
and functions in general, and also possible a higher complexity of the sketches
developed. (see 3.4.2)
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In relation to different metrics analyzed in detail in section 3.4.2, it was observed
that among all subgroups of sketches, the statistics and values obtained showed to
be very similar. In the case of the hearted subgroup of sketches, they showed, on
average, slightly higher values on metrics related to complexity, which goes along
with the results and conclusions mentioned above.

When it came to the values of the metrics themselves, all the data showed on
average what would be considered as “good and acceptable ranges”. With the
exception of a few records that ‘escaped’ the tendencies of all other records, for
complexity related metrics, the values were on average low, and in the case of
maintainability indexes sketches showed values tending to the higher segment of
the range. All this implies that creators in general have code that is maintainable,
readable, manageable and not too complex.

4.2 Conclusion and Future Research
After the research done in this thesis, observing the state of the art and the results
obtained and presented, it appears that JavaScript, along with the library p5.js, is
a language and way of developing creative coding projects that is gaining popularity
over the Processing language among creators. The library in question seems to be
a very accessible way for people with no expertise in programming to be able to
code and experiment with creative coding.

It is important to notice, that even though at source code level, these projects
seem to have a very similar structure and characteristics, the results are very
dynamic and diverse, and many of them involve the interaction of the user to
actually create a meaningful result. For this reason, it is very hard to discern and
actually identify what makes a good sketch good by just looking at the code alone.
In general, it’s hard to obtain many concrete conclusions without also analyzing
visually what the result of these projects is.

The only differentiation in use was the division of sketches into hearted sketches
and created or recent sketches. When using this as a factor to determine ‘good’
sketches, it seems that better, more modularized but at the same time more complex
code, seems to lead to more appealing sketches that receive more hearts.

The problem that only having the source code of projects without the output of
it could present an opportunity for further research in the future, where more data
about the popularity and visual results of the sketches is considered.
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For the case of this thesis, it was deemed that only the JavaScript files were
worth looking at and analyzing in detail, leaving the Processing sketches out of the
research, since, besides the great difference in quantity, there were no tools found
that could analyze this language for the factors desired. This could also be an
opportunity for further future research, along with the creation of a tool to analyze
this language.

Finally, a possible area to further investigate is the use of external files (not
JavaScript, HTML or Processing). The functions and uses of these could be
investigated, how they can help the creation of better creative coding projects and
why they are currently not being used much. Furthermore, from that investigation,
tools to help creators take advantage of these types of files could be created and
developed.
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