
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Enabling Multi-Provider Service
Composition Among Different

Kubernetes Clusters

Supervisor

Prof. Fulvio RISSO

Dott. Alessandro CANNARELLA

Candidate

Andrea COLLI-VIGNARELLI

July 2023

Summary

The digital landscape has witnessed a shift towards cloud-based computing, making
cloud computing an integral part of the modern era. This transition has led to
increased demand for managing computational resources in the cloud. Kubernetes
has emerged as a game-changer in meeting this demand. By breaking applications
into microservices, Kubernetes ensures high availability and accessibility across
multiple replicas, decoupling applications from specific infrastructures and enabling
workload distribution across hosts.

The Liqo project, an open-source initiative from Politecnico di Torino, comple-
ments Kubernetes by connecting disparate cloud systems. It allows the aggregation
and movement of resources across various cloud environments, facilitating resource
and application sharing. With Liqo, multiple Kubernetes clusters can participate,
enabling an application hosted on one cluster to be utilized by another.

This innovative approach enables different Kubernetes clusters to incorporate
services offered by independent providers into their ecosystems. This is particularly
useful in cluster federation scenarios where entities operate independently but need
to utilize third-party services while maintaining control over their data.

The objective of the present work is to establish a functional model for of-
fering, purchasing, and deploying services across multiple Kubernetes clusters.
The OpenService Broker API specifications provide a similar solution, but their
application is limited to single-cluster, single-user scenarios.

To overcome these limitations, a custom catalog software was developed, en-
hancing and customizing the OpenService Broker API specifications. This catalog
software operates as a web server, extending the REST APIs with additional
endpoints for managing service purchasing and Liqo peering with specific clusters.

To ensure a secure environment, the OpenID Connect protocol was integrated,
enabling a multi-user scenario within the same catalog. Additionally, an automated
mechanism was incorporated to link purchased and deployed services to microser-
vices. This streamlined approach empowers users to maximize the potential of
their cloud-based operations.

ii

Ringraziamenti

Vorrei dedicare un momento speciale per ringraziare tutte le persone incredibili
che hanno reso possibile il raggiungimento di questo traguardo. Innanzitutto, il
professor Fulvio Risso, il mio relatore, per avermi guidato nella tesi ed avermi
trasmesso la sua passione.

Ringrazio anche TOP-IX, l’azienda che mi ha accolto per questo lavoro e il mio
supervisore aziendale, Alessandro Cannarella, il quale mi ha guidato passo dopo
passo nell’intero percorso.

Sicuramente, non posso lasciare da parte le persone che sono sempre state al
mio fianco, quelle che mi hanno sostenuto nei momenti più belli e anche in quelli
più difficili della mia vita, quelle che mi hanno ispirato e motivato a dare sempre il
massimo: Mamma e Papà, grazie di essere sempre stati lì per me. Grazie di cuore
anche al resto della mia famiglia, compresi Ale, Giulia e Davide, siete stati una
guida e una fonte di ispirazione in tutti questi anni.

Un grazie speciale ai miei amici e coinquilini, Daniel e Pagus, che hanno con-
diviso con me questa avventura per anni, sapendomi regalare momenti di gioia
anche negli attimi più difficili. E non posso dimenticare di ringraziare tutti i miei
amici e compagni di università che mi hanno ispirato ed aiutato in questi anni, in
particolare Teo, colui che mi ha accompagnato passo dopo passo in ogni avventura
universitaria.

iv

Table of Contents

List of Tables x

List of Figures xi

Acronyms xiii

1 Introduction 1
1.1 The issue . 1
1.2 Thesis structure . 2

2 Kubernetes 4
2.1 History . 4
2.2 Kubernetes Architecture . 5

2.2.1 Control Plane . 5
2.2.2 Nodes . 6

2.3 Kubernetes Fundamentals . 7
2.3.1 Resources . 7
2.3.2 Networking . 10

2.4 Custom Resources, CRDs and Operators 12
2.4.1 Custom Resources in Kubernetes 12
2.4.2 CustomResourceDefinitions (CRDs) 12
2.4.3 Kubernetes Operators . 13

2.5 Security . 13
2.5.1 Service account . 13
2.5.2 Role and ClusterRole . 14

2.6 Managing Load and Scaling . 14
2.6.1 Vertical and Horizontal Scaling 15
2.6.2 The Concept of Replicas . 15
2.6.3 Microservices Management 16

vi

3 Liqo 17
3.1 Introduction . 17
3.2 Concepts and Fundamental Mechanics 18

3.2.1 Discovery . 18
3.2.2 Peering . 19

3.3 Main components . 21
3.3.1 Virtual Kubelet . 21
3.3.2 Foreign Cluster . 21
3.3.3 Virtual Node . 22
3.3.4 Namespace Offloading . 22

4 Open Service Broker API 23
4.1 Overview . 23
4.2 Specifications . 24
4.3 Use Cases . 26
4.4 Concepts . 26

4.4.1 Catalog . 26
4.4.2 Service . 27
4.4.3 Plan . 27

4.5 Operations . 28
4.5.1 Provisioning . 28
4.5.2 Updating . 29
4.5.3 Deprovisioning . 29
4.5.4 Binding . 29
4.5.5 Unbinding . 29

5 Design 31
5.1 Contextual Overview . 31
5.2 Potential Use Case . 32
5.3 Overview of the Challenges . 32
5.4 Mechanisms of Transaction . 33
5.5 The Essentiality of Control over Services and Data 34

5.5.1 Ownership of Services: A Provider’s Perspective 34
5.5.2 Data Privacy: A User’s Perspective 35

5.6 Communication and Deployment 36
5.6.1 The Customer-centric Model 37
5.6.2 The Service Provider-centric Model 39
5.6.3 The Hybrid Model: A Comprehensive Approach 42

5.7 Liqo: An Equitable Selection . 44
5.8 Service to Application Binding Automation 46

vii

6 Implementation 48
6.1 Elements of the System . 49

6.1.1 Customer Elements . 50
6.1.2 Service Provider Elements 50
6.1.3 Common Elements: Liqo . 50

6.2 Catalog Server . 51
6.2.1 Deployment within the K8s Cluster 51
6.2.2 A CRD for configuration: ServiceBrokerConfig 51
6.2.3 Namespace Configuration 57

6.3 Limitation of the original specifications 58
6.3.1 Lack of Multi-User Support 58
6.3.2 Static Tokens and Limited Authorization 59
6.3.3 Security Challenges in a Distributed Environment 59
6.3.4 Need for a Centralized Authentication and Authorization

Server . 59
6.3.5 Proposed Solution: Centralized Authentication and Autho-

rization Server . 59
6.3.6 Integration with the Catalogue Server 60

6.4 Liqo Technology Integration . 61
6.4.1 Unraveling the Operational Framework 61
6.4.2 Unpacking the OSBAPI Protocol and Context Specification 61
6.4.3 Understanding Namespace Offloading and Resource Direction 62
6.4.4 Significant Modification in the Original Design 62
6.4.5 Introduction of Database: A Major Paradigm Shift 63
6.4.6 Liqo’s Role in Namespace Creation 64
6.4.7 Namespace and Resource Deployment 64
6.4.8 Service Instance Creation 64

6.5 Elaboration on the Security Configuration 65
6.5.1 Adapting the Bearer Token Mechanism 65
6.5.2 OpenID Connect (OIDC) Protocol 65
6.5.3 Keycloak: The OIDC Implementation 66

6.6 The Marketplace . 67
6.6.1 Platform Development . 67
6.6.2 User Interface and Experience 67
6.6.3 Service Deployment . 69

7 Measurements 74
7.1 Benchmarking . 74

7.1.1 Benchmark Results . 74
7.1.2 Resource Consumption . 75

viii

8 Conclusions 77
8.1 What’s next? . 77

Bibliography 79

ix

List of Tables

5.1 Summary of pros and cons of the customer-centric model 39
5.2 Summary of pros and cons of the service provider-centric model . . 42
5.3 Summary of pros and cons of the hybrid model 45

7.1 Duration of various asynchronous operations by the catalogue server. 75

x

List of Figures

2.1 Kubernetes architecture scheme . 6
2.2 Communication between pods in different nodes 10
2.3 Horizontal Pod Autoscaler schema 15

3.1 Liqo peering scheme . 19
3.2 Namespace offloading scheme between local and remote clusters . . 22

4.1 General Open Service Broker API operating schema 28

5.1 Schema of the customer-centric model 37
5.2 Schema of the service provider-model 40
5.3 Schema of the hybrid model . 43

6.1 Schema of all the elements involved in the implementation and their
main interactions . 49

6.2 marketplace dashboard home page 68
6.3 Marketplace dashboard catalog registration form 68
6.4 Marketplace dashboard catalog registration, security configuration . 69
6.5 Marketplace dashboard service details 70
6.6 Marketplace dashboard deployment requirements 71
6.7 Marketplace dashboard Liqo peering information form 72
6.8 Marketplace dashboard service creation information form 73
6.9 Marketplace dashboard deployment completed 73

7.1 Temporal trends in CPU and memory consumption by the service
catalog pod. 75

8.1 Proposed operational scheme with the inclusion of the hosting provider 77

xi

Acronyms

K8s
Kubernetes

CRD
Custom Resource Definition

CIDR
Classless Inter-Domain Routing

CR
Custom Resource

HPS
Horizontal Pod Autoscaler

DNS
Domain Name System

mDNS
Multicast Domain Name System

LAN
Local Area Network

NAT
Network Address Translation

IPAM
IP Address Management

xiii

REST
Representational state transfer

API
Application Programming Interface

OSBAPI
Open Service Broker API

KIND
Kubernetes IN Docker

QoS
Quality of Service

OIDC
OpenID Connect

xiv

Chapter 1

Introduction

In recent years, the digital landscape has gradually transitioned towards a cloud-
based computing model, making cloud computing an essential part of the modern
digital era. The trend of software shifting towards cloud platforms has opened
up new avenues for user interaction through any network-connected device. This
evolution has amplified the demand for managing computational resources in the
cloud.

Amongst potential solutions to meet this demand, Kubernetes has emerged as
a game-changer. Kubernetes revolutionizes how applications are managed in the
cloud by breaking them down into multiple microservices, thereby ensuring high
availability and accessibility across various replicas. The beauty of this approach is
that applications are no longer bound to specific infrastructure but are tethered to
the cloud. Consequently, workloads can be distributed across numerous hosts and
moved as needed.

Complementing this approach, the Liqo project, an open-source initiative from
Politecnico di Torino, allows the aggregation and movement of resources across
various cloud environments. This innovative tool connects disparate cloud systems,
enabling the sharing of resources and applications. For instance, multiple Kuber-
netes clusters can participate, allowing an application hosted on one cluster to be
utilized by another cluster via Liqo.

1.1 The issue
Starting with the Gaia-X project, the TOP-IX consortium with which this thesis
work was carried out, an attempt was made to understand how in a federation
of clusters, these can have useful interactions. The need for various entities to
communicate between their separate clusters, ignoring the existence of each other,
was thus observed. This communication is designed not only to share resources,

1

Introduction

but also to facilitate the transfer of applications or services and microservices. This
need drives the search for effective ways to connect these clusters and make this
sharing of services possible.

The premise of this concept lies in the interaction between two primary players:
customers and service providers. Customers, in search of specific services, peruse
through a platform presenting a multitude of offerings from various providers,
whose identities are initially unknown. Once the most fitting service is pinpointed,
customers purchase it and seek immediate integration into their respective clusters.

This process necessitates a standardized procedure to craft and deliver the
desired application in a cluster that the provider doesn’t own. The primary concern
is the communication between these different parties, but another critical issue is
finding a method that permits an actor to install a service in an unowned cluster.
Liqo emerges as an effective tool to indirectly facilitate this action.

The entire operation calls for standardization and simplification to ensure
seamless and uncomplicated interaction between the involved parties. All the while,
it must be remembered that the interaction involves parties unfamiliar to each
other and sharing minimal data is of utmost importance.

There is undoubtedly a requirement for a shared platform to promote service
providers and function as an intermediary, facilitating the interaction between
supply and demand. Essentially, this platform would serve as a marketplace.

Finally, it is crucial to develop a secure and reliable specification, leveraging
security standards tailored to a distributed model involving mutually unfamiliar
entities.

1.2 Thesis structure
The thesis is structured into several chapters which are the following:

• Chapter 2 - Kubernetes: an overview of Kubernetes, the technology that
provided the orchestration and the deployment of any application compatible
in the cloud-native standards

• Chapter 3 - Liqo: an overview of Liqo, its main concepts and components

• Chapter 4 - OpenService Broker API: the introduction of the OpenService
Broker API standard and specifications, its components and main concepts

• Chapter 5 - Resolution Characteristics: the characteristics of the resolu-
tion to the main goal of the thesis

• Chapter 6 - Implementation: the effective implementation developed to
demonstrate the theoretical resolution

2

Introduction

• Chapter 7 - Measurements: the results of the performances and resource
consumption of the solution developed

• Chapter 8 - Conclusion: introduction to the possible next steps of the work

3

Chapter 2

Kubernetes

Kubernetes, colloquially known as K8s, has redefined containerization, providing a
scalable platform for managing and deploying applications. It leverages a container-
centric infrastructure, simplifying the complexities of development and deployment
processes.

Following this introduction, we will examine K8s’ architecture, networking
model, components and security features in detail. By doing so, we will gain an in-
depth understanding of this tool’s significance in the sphere of modern application
development.

2.1 History
K8s is an open-source container orchestration platform that has revolutionized the
way applications are deployed and managed at scale. The history of K8s begins with
Google’s internal system, Borg, which was developed to manage their vast number
of applications [1]. In 2014, Google released a paper on Borg, which caught the
attention of the technology community and served as a basis for the development
of K8s.

K8s was officially launched in June 2014 by Google, in collaboration with other
major industry players like Red Hat, IBM and Microsoft, as part of the Cloud
Native Computing Foundation (CNCF). The goal was to create a portable and
extensible platform that would enable developers to automate the deployment,
scaling and management of containerized applications across various environments.

The initial codebase of K8s was largely influenced by Google’s experience with
Borg, but it was redesigned to be more modular and accessible to a wider audience.
The project quickly gained momentum and attracted a vibrant community of
contributors, who added new features, improved scalability and enhanced security.

K8s provides a powerful set of features, including automatic scaling, service

4

Kubernetes

discovery and load balancing, rolling updates and self-healing capabilities. It
abstracts the underlying infrastructure and provides a declarative approach to
managing applications, allowing developers to define the desired state of their
applications and letting K8s handle the details of deployment and maintenance.

Since its launch, K8s has become the de facto standard for container orchestration,
adopted by organizations of all sizes and industries. Its popularity can be attributed
to its ability to simplify application deployment and management, increase resource
utilization and enable seamless scaling of applications.

Numerous case studies and success stories highlight the benefits of K8s in
real-world scenarios. For example, Spotify migrated its infrastructure to K8s,
which enabled them to reduce deployment time and increase developer productivity
[2]. Similarly, The New York Times adopted K8s to streamline their deployment
processes and improve scalability [3].

In conclusion, K8s has emerged as a game-changer in the world of container
orchestration, providing a scalable and flexible platform for managing containerized
applications. Its journey from Google’s internal system to a widely adopted open-
source project has been marked by collaboration, innovation and community-driven
development.

2.2 Kubernetes Architecture
K8s is an open-source container orchestration platform designed to automate
the deployment, scaling and management of containerized applications [4]. Its
architecture is based on a distributed system composed of a master node, called
the Control Plane and multiple worker nodes, called simply Nodes.

2.2.1 Control Plane
The Control Plane is responsible for maintaining the desired state of the K8s
cluster, such as the number of deployed replicas of an application, the network
configuration and other global settings. It consists of several components that work
together to achieve this goal:

• API Server: The Kubernetes API server is the main entry point for all
administrative tasks in the cluster. It exposes the Kubernetes API, which
allows users to interact with the cluster and manage its resources.

• etcd: A distributed key-value store that stores the configuration data of the
cluster, representing the overall state of the system. etcd is used by the K8s
components to persistently store and retrieve data.

5

Kubernetes

Figure 2.1: Kubernetes architecture scheme

• Controller Manager: A daemon that runs various controllers responsible
for managing the state of the cluster. These controllers monitor the desired
state of resources and take corrective actions whenever necessary .

• Scheduler: Responsible for allocating resources and assigning newly created
Pods to Nodes based on resource availability and other constraints. The
Scheduler ensures that each Pod is placed on the most suitable Node for
optimal performance.

2.2.2 Nodes
Nodes are the worker machines that run containerized applications in a Kubernetes
cluster. Each Node is responsible for running the containers, monitoring their
health and reporting back to the Control Plane. Several key components are present
on each Node:

• Kubelet: An agent that runs on every Node in the cluster, ensuring that
containers are running in a Pod and monitoring their status. It communicates

6

Kubernetes

with the Control Plane to report the status of the Node and receive instructions.

• Container Runtime: The software responsible for running containers on
the Node. Kubernetes supports several container runtimes, including Docker,
containerd and CRI-O.

• Kube-proxy: A network proxy that runs on each Node and maintains network
rules for communication between Pods and external clients. It ensures that
the network traffic is properly routed and load-balanced across the Pods in
the cluster.

In summary, Kubernetes architecture relies on a distributed system comprising
the Control Plane and Nodes. The Control Plane is responsible for managing the
global state of the cluster, while Nodes host the containerized applications and
ensure their proper execution.

2.3 Kubernetes Fundamentals
Kubernetes concepts will be the focus of this section. We will delve into the
fundamental units of K8s, known as resources, as well as its internal networking
structures. By doing so, we will be able to comprehend the practical operation and
the rationale behind the existence of specific resources.

2.3.1 Resources
In K8s, resources are the computing units that are allocated to different components
of an application. These resources can include CPU, memory, storage and network
bandwidth. By properly managing and allocating resources, Kubernetes ensures
optimal utilization and performance of the cluster.

K8s allows you to define the resource requirements and limits for pods, deploy-
ments and other components. Resource requirements specify the minimum amount
of resources that a component needs to function properly, while limits define the
maximum amount of resources that a component can consume. By setting these
values appropriately, K8s can schedule and allocate resources effectively, preventing
resource starvation or overutilization.

Additionally, K8s provides features like horizontal scaling and autoscaling,
which allow applications to dynamically adjust their resource allocations based on
demand. This ensures that resources are efficiently distributed among the running
components, providing scalability and high availability.

7

Kubernetes

Pods

Pods are the smallest and simplest unit in K8s. A pod represents a running process
in the cluster and can contain one or more containers that share storage and
network resources.

1 apiVersion: v1
2 kind: Pod
3 metadata:
4 name: nginx
5 spec:
6 containers:
7 - name: nginx
8 image: nginx:1.14.2
9 ports:

10 - containerPort: 80

Listing 2.1: An example of a Kubernetes pod in a YAML file

Deployments

Deployments in K8s allow you to declare the containers that should be run on your
cluster. By specifying the Deployment specifications, K8s can automatically handle
changes and service disruptions for your containers.

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: nginx - deployment
5 labels:
6 app: nginx
7 spec:
8 replicas: 3
9 selector:

10 matchLabels:
11 app: nginx
12 template:
13 metadata:
14 labels:
15 app: nginx
16 spec:
17 containers:
18 - name: nginx
19 image: nginx:1.14.2
20 ports:
21 - containerPort: 80

8

Kubernetes

Listing 2.2: An example of a Kubernetes deployment in a YAML file

Services

A Service in K8s is an abstraction that defines a logical set of pods and a policy to
access them, sometimes referred to as a microservice. Services can be exposed in
different ways by specifying a type policy in the ServiceSpec: ClusterIP, NodePort,
LoadBalancer and ExternalName.

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: my - service
5 spec:
6 selector:
7 app. kubernetes .io/name: MyApp
8 ports:
9 - protocol: TCP

10 port: 80
11 targetPort: 9376

Listing 2.3: An example of a Kubernetes service in a YAML file

Secrets

A Secret is an object that holds a small amount of sensitive data, such as a password,
token, or key. This information can be injected into a Pod for use by running
applications/containers.

1 apiVersion: v1
2 kind: Pod
3 metadata:
4 name: mypod
5 spec:
6 containers:
7 - name: mypod
8 image: redis
9 volumeMounts:

10 - name: foo
11 mountPath: "/etc/foo"
12 readOnly: true
13 volumes:
14 - name: foo

9

Kubernetes

15 secret:
16 secretName: mysecret
17 optional: true

Listing 2.4: An example of a Kubernetes secret in a YAML file

Namespaces

Namespaces provide a way to divide cluster resources among multiple users (via
resource quotas). In terms of development environments, a namespace can be
considered as a virtual environment that segregates application resources, users
and environments.

2.3.2 Networking
Networking in K8s plays a crucial role in ensuring seamless connectivity and reliable
communication between containers, services and other resources. In this section, we
will explore how networking works in K8s, the different types of networks involved
and how they interact with each other.

Figure 2.2: Communication between pods in different nodes

10

Kubernetes

Cluster Network

The cluster network in K8s is responsible for communication between various nodes
within the cluster. It allows pods running on different nodes to reach each other.
The cluster network is typically implemented using a network plugin or a container
network interface (CNI) plugin. Some popular network plugins for K8s include
Calico, Flannel, Weave and Cilium [5, 6, 7, 8]. These plugins provide networking
features such as IP address management, network isolation and routing.

Pod Network

Pods are the basic units of deployment in K8s and each pod has its own unique
IP address. The pod network facilitates communication between pods running on
the same node or different nodes within the cluster. It allows pods to discover and
communicate with each other using their IP addresses. Pod networks are usually
implemented using overlay networks, which encapsulate pod traffic within virtual
networks.

Service Network

Services in K8s provide a stable endpoint for accessing a set of pods. The service
network allows communication between services and pods. When a service is
created, K8s assigns it a unique IP address. This IP address is used as a stable
endpoint to access the service, regardless of the underlying pods’ IP addresses.
K8s uses a service discovery mechanism to dynamically route traffic to the pods
associated with a service.

Network Policies

Network policies in K8s provide fine-grained control over network traffic within
the cluster. They allow administrators to define rules that govern which pods can
communicate with each other and the types of traffic that are allowed or denied.
Network policies operate at the pod level and are enforced by the network plugin
or CNI plugin used in the cluster.

DNS Resolution

K8s provides a built-in DNS service that enables pods to discover other services
and pods using their DNS names. Each service created in K8s is assigned a DNS
name, which can be resolved to the corresponding service IP address. This DNS
resolution mechanism simplifies service discovery and allows pods to communicate
with each other using meaningful names rather than IP addresses [9].

11

Kubernetes

These are some of the key aspects of networking in K8s. Understanding how
the different networks in K8s interact and how they can be configured and secured
is essential for building scalable and resilient applications on the platform.

2.4 Custom Resources, CRDs and Operators
In the realm of container orchestration, Kubernetes has emerged as the undisputed
leader, offering an array of features that handle the deployment, scaling and
management of containerized applications. One of the strengths of Kubernetes
lies in its extensibility, a core aspect of which is the use of Custom Resources,
CustomResourceDefinitions (CRDs) and Operators. This section delves into these
three key concepts, their purpose and the interaction among them in extending the
Kubernetes API.

2.4.1 Custom Resources in Kubernetes
Custom Resources in Kubernetes provide an extension mechanism that allows you
to define your own resources, which the Kubernetes API server can then handle [10].
By leveraging this mechanism, developers can model and manage their applications
according to their needs, without requiring modifications to the core Kubernetes
codebase.

Custom resources are a powerful and flexible feature that come into play when
the built-in resources of Kubernetes are insufficient to implement the desired
functionality. For instance, a developer might create a custom resource to represent
an application’s components, with attributes such as versioning or replication that
are not covered by built-in resources.

2.4.2 CustomResourceDefinitions (CRDs)
While Custom Resources represent the instances of a new resource type, Custom-
ResourceDefinitions (CRDs) define the schema and characteristics of these new
resource types. CRDs are a particularly powerful feature in Kubernetes, enabling
developers to declare new resource types with the same degree of freedom as the
built-in types.

Once a CRD is created, the Kubernetes API server starts serving the defined new
resource. This new resource can then be managed through kubectl, just like built-in
resource types. The CRD mechanism provides a rich ecosystem for extending
Kubernetes, allowing for greater adaptability to various application deployment
scenarios.

12

Kubernetes

2.4.3 Kubernetes Operators
Operators in Kubernetes are a design pattern meant to manage complex, stateful
applications. They are built using Custom Resources and leverage the inherent
Kubernetes mechanisms to manage services and perform automated tasks.

An Operator extends Kubernetes to automate the management of the entire
lifecycle of a particular application, service, or component. It encapsulates the op-
erational knowledge typically provided by human operators into software, enabling
Kubernetes to automatically handle tasks such as deployment, scaling, upgrades,
backups and recovery [11].

2.5 Security
Kubernetes places considerable emphasis on security, offering mechanisms to control
and manage access to resources within a cluster. This section delves deeper into
two vital elements of Kubernetes security: Service Accounts and Role-Based Access
Control (RBAC) via Roles and ClusterRoles.

2.5.1 Service account
Service accounts in Kubernetes signify a specialized type of account meant for
processes, such as pods, that are running inside the Kubernetes cluster. This
distinguishes them from regular user accounts, which are intended for human users.
Service accounts are namespaced, implying that they exist and can be assigned
to pods within a specific namespace. If a pod doesn’t explicitly associate with
a service account, the ‘default‘ service account of its namespace is automatically
assigned to it at creation time.

The significance of service accounts extends to managing permissions and
controlling access within a Kubernetes cluster. These accounts play a vital role in
providing identity for applications running within the cluster, thus determining
what these applications can or cannot do. For instance, a service account could be
used to control an application’s permissions to read from or write to a Kubernetes
API. It is through service accounts that applications can authenticate to the
API server and consequently, the API server can both authenticate the incoming
requests and enforce policies that limit the actions that can be performed by
different applications.

More specifically, service accounts are tied with secrets that contain credentials
for API authentication. These secrets can be automatically mounted into the pods at
specific paths, allowing applications running inside the pods to use them to interact
securely with the API server. This forms a fundamental part of Kubernetes security

13

Kubernetes

architecture, ensuring that only authorized entities can access and manipulate the
cluster’s state [12].

2.5.2 Role and ClusterRole

Role-Based Access Control (RBAC) is the method used by Kubernetes to regulate
the permissions of different entities, including users, groups and service accounts
within the cluster. This is achieved through two Kubernetes objects: Role and
ClusterRole [13].

A Role is used to grant permissions to resources within a particular namespace.
A Role can outline which operations are allowed (such as get, list, create, update and
delete) on which resources within the namespace. These resources can encompass a
wide variety of Kubernetes objects, including pods, services, secrets and others. It
is important to note that Roles grant permissions to perform actions only within
the same namespace, limiting the potential for unauthorized access or actions across
different parts of the cluster.

ClusterRole, conversely, works at the cluster level, applying across all names-
paces. A ClusterRole can grant the same permissions as a Role but, as it is not
restricted to a specific namespace, it can also provide access to cluster-scoped
resources (like nodes) or non-resource endpoints (such as ‘/healthz‘). This can be
particularly useful for defining permissions for cluster-wide administrative tasks
or for applications that need to interact with resources in multiple namespaces or
with the cluster itself.

RoleBinding and ClusterRoleBinding are used respectively with Role and Clus-
terRole to bind those permissions to certain subjects. These bindings connect the
set of permissions defined in a Role or ClusterRole with one or more subjects,
enabling fine-grained control over who or what can perform which actions within
the cluster.

2.6 Managing Load and Scaling

One of the prominent benefits of a cluster environment is its capacity for effective
load management. This capability becomes particularly valuable when an appli-
cation starts to expand in scope and user requests begin to surge. Under such
circumstances, the single application might start to require more resources. The
typical response to this situation is scaling, which is an umbrella term encompassing
a couple of different strategies, namely, vertical and horizontal scaling [14].

14

Kubernetes

2.6.1 Vertical and Horizontal Scaling
Vertical scaling refers to an approach where resources are increased on the single
instance of an application. Essentially, the amount of assigned CPUs or memory is
increased until it reaches the maximum quantity available on the node. However,
this strategy may have its limitations, especially when resources are constrained or
the application demands exceed the node’s capacity.

Horizontal scaling, on the other hand, emerges as a more viable solution in a
cloud environment. Instead of focusing on a single instance of the application, the
cloud orchestrator initiates and manages multiple instances of the same application,
effectively distributing the load amongst them. This strategy significantly enhances
the system’s scalability and resilience.

Figure 2.3: Horizontal Pod Autoscaler schema

2.6.2 The Concept of Replicas
At the heart of the horizontal scaling model lies the concept of replicas. The
application that needs to be scaled is "replicated" into multiple instances, effectively

15

Kubernetes

amplifying its processing capabilities. The strength of this model in a cluster
environment is the ability to distribute the replicas across different nodes, rather
than being restricted to the resources of a single node.

In the Kubernetes platform, for example, the individual replica is a concept
encapsulated within the "Replica set" resource. This resource, in turn, is a part of
the "Deployment" resource (as mentioned previously, 2.3.1). This replica set can
be established with a fixed starting amount and a maximum limit of replicas. The
scaling process can be handled manually, or it can be automated via a mechanism
called a horizontal pod autoscaler (HPA).

The Horizontal Pod Autoscaler (HPA) is designed to respond to an increasing
load on a deployment by scaling the load across new replicas. Kubernetes’ scheduler
will allocate these replicas across the most suitable nodes. It’s possible to set specific
limits for the deployment regarding CPU and memory usage. Once these limits
are surpassed, the HPA will take over and scale the deployment across additional
replicas.

2.6.3 Microservices Management
Modern web applications tend to be designed using a microservice architecture.
This consists of a collection of microservices, ideally stateless, each responsible
for handling smaller, more specific tasks. This model aligns with the "Divide and
Conquer" strategy. Instead of one large monolithic system, a collection of services
collaboratively completes tasks, passing necessary information from one to another
[15].

In the context of Kubernetes, this model translates to multiple pods that
communicate with each other. Each individual microservice can be encapsulated
within a containerized application inside a Kubernetes pod. Kubernetes’ service
resource offers a single entry point that can be accessed by different pods within the
cluster. Various microservices can be deployed into separate Kubernetes namespaces.
Thanks to Kubernetes’ integrated DNS, it’s straightforward to reach services within
different namespaces.

16

Chapter 3

Liqo

In this chapter, we introduce Liqo, an innovative open source project that was born
out of the Politecnico di Torino. This unique project paves the way for Kubernetes
to share resources and services smoothly and securely. We will be delving into its
architectural components, shedding light on some key features that were pivotal in
the formulation of this thesis.

3.1 Introduction
In the world of Kubernetes clusters, there exists an inherent variability in computing
load. It fluctuates, characterized by peaks and lows that depend on several factors,
such as the time of day, the demands of the business and other determinants. As a
consequence, these clusters are often provisioned with an abundance of computing
resources to ensure that full utilization can be achieved during peak demand
periods.

However, a significant drawback is the emergence of spare resources that remain
untapped and unutilized. These resources, unfortunately, cannot be leveraged by
the cluster and could potentially be shared with other organizations who are in
need.

This is where Liqo comes into play. Inspired by the concept of liquid computing,
Liqo seeks to interconnect clusters, allowing them to share computing resources and
services amongst themselves. The outcome is what we refer to as "opportunistic
data centers". In these centers, clusters can offer their unused resources at any
given time, reducing infrastructure costs for their peers and in turn, opening new
possibilities in the realm of edge computing.

The underlying modus operandi of Liqo is the well-established paradigm of
peering. This paradigm permits a diverse array of topologies, whether centralized
or decentralized. What this means is that individual clusters, at the most basic

17

Liqo

level, maintain absolute control over the resources they choose to share and the
entities with whom they decide to share.

One of the notable attributes of Liqo is its capability to expand the standard
Kubernetes APIs in a manner that remains transparent to applications and, to a
certain extent, Kubernetes administrators. Indeed, as we will demonstrate, the
resources that were detailed in Chapter 2 are not only applicable in this new
environment but are often enhanced to suit the specific objectives of Liqo. As
a consequence, user applications need not undergo any alterations to operate in
conjunction with Liqo.

3.2 Concepts and Fundamental Mechanics

This section delves into the core principles and mechanics that underpin the
functionality of the Liqo project. The two fundamental aspects to be discussed
include the Discovery and Peering concepts that underscore the Liqo project’s
operation.

3.2.1 Discovery

The Discovery aspect of Liqo forms the bedrock of the intercommunication capability
between clusters [16]. Clusters can be discovered through several methods. The most
straightforward method is the manual addition of clusters via their IP addresses.
This method allows users complete control over the process, though it might require
a higher degree of technical knowledge and effort.

However, Liqo aims for convenience and user-friendly experiences as well. It
achieves this by advertising its presence over a local network through the use
of Multicast DNS (mDNS). This feature is particularly useful in setting up a
Liqo federation in a Local Area Network (LAN) environment as it automates the
discovery process.

Yet another method Liqo employs for discovery is through Domain Name System
(DNS) records that specify the cluster IPs for a specific domain. This method is
particularly relevant in scenarios where an organization manages multiple clusters,
which may be provisioned dynamically.

Regardless of the method employed for cluster discovery, the end objective is the
creation of a custom resource, referred to as ForeignCluster, within the local cluster.
This ForeignCluster resource symbolizes the remote cluster and holds essential
information about it, forming a crucial part of the discovery process.

18

Liqo

3.2.2 Peering
The Peering model is another fundamental pillar of Liqo. As mentioned in the
introduction, Liqo utilizes this model to delineate and manage the relationships
between distinct, administratively separate clusters.

Figure 3.1: Liqo peering scheme

Peering is a process that establishes a connection between two clusters, each
with a different role: one requesting resources and the other offering them. This
mechanism comes into play after the discovery process, leveraging the IP endpoint
found in the preceding stage. The peering process can be subdivided into three
essential steps:

• Authentication: In this step, clusters validate each other’s identity. This
ensures security and trust between the clusters.

• Networking: Here, the clusters discover each other’s IP ranges and configure
Network Address Translation (NAT) rules. This forms the foundation of
inter-cluster communication.

• Resource Sharing: This final step is where clusters communicate the quantity
and type of resources they wish to exchange. This process underlies the core
functionality of Liqo.

Authentication

The initial step in the peering process is the validation of identities of the clusters.
In this step, the clusters verify each other’s identity to ensure the security and
integrity of the subsequent processes. This is crucial to prevent unauthorized access
and to maintain the integrity of the data and resources that will be shared.

19

Liqo

Networking

Following successful authentication, the clusters proceed with the discovery of each
other’s IP ranges and the configuration of Network Address Translation (NAT)
rules. NAT rules help in routing the packets correctly between the different clusters,
thereby maintaining an efficient communication network.

The foundation for this process is the Kubernetes networking model. In this
model, the cluster administrator defines a "pod CIDR" and a "service CIDR".
These are private subnets, for instance, the default values on K3s are respectively
10.42.0.0/16 and 10.43.0.0/16, from which IP addresses are assigned to each pod
or service.

The IPs assigned from these CIDRs are unique within the cluster and reachable
from every node within the cluster. However, this model, designed for a single
cluster, faces challenges when used in a setup with multiple clusters. This is because
there is no guarantee that the pod CIDR of one cluster does not overlap with that
of its peers. To address this issue, Liqo uses Network Address Translation as part of
the peering process. The IP Address Management (IPAM) module reserves a new
subnet that maps to the peer’s pod CIDR by means of an iptables rule. Packets
addressed to remote clusters are then tunneled via a Wireguard VPN.

Resource Sharing

The final stage of peering is the determination of resources to be shared between the
clusters. For this, Liqo implements a request-response model. In this model, the
consumer cluster requests a list of resources (a ResourceRequest) and the provider
cluster responds with an offer for a certain amount (a ResourceOffer).

At present, it is not possible to ask for specific resources, implying that only
generic ResourceRequests can be sent. However, despite this limitation, the model
ensures that the right amount of resources can be provisioned, maintaining the
overall efficiency and performance of the federated cloud platform.

Service Offloading

With the establishment of a Liqo federation, Kubernetes services created in one
cluster become accessible to pods in the peer cluster. This mechanism is due to a
unique feature of Liqo known as ’service offloading’.

In service offloading, when a service is created within a Kubernetes namespace
that is offloaded on a remote cluster, a "shadow" copy of the service is also created on
the remote cluster. Thus, when a pod in the remote cluster wishes to communicate
with the service, it communicates with the "shadow" service. This communication
is then forwarded to the original service in the source cluster, effectively enabling

20

Liqo

communication between the pod and the service, even though they are in different
clusters.

This offloading feature essentially extends the reach of services beyond the
confines of a single cluster and into the federated clusters, thereby further enhancing
the interoperability and seamless integration capabilities of the Liqo system.

3.3 Main components
In the architecture of Liqo, several key components enable its unique functionality
of connecting disparate Kubernetes clusters. This section delves into the technical
specifics of these major components: the Virtual Kubelet, the Foreign Cluster,
the Virtual Node and Namespace Offloading. Each of these plays a crucial role in
providing the seamless experience of federated clusters.

3.3.1 Virtual Kubelet
The Virtual Kubelet is a core component of the Liqo system. Acting as a "virtual
node," the Virtual Kubelet, by implementing the Kubelet API, masquerades as
a node in the Kubernetes system. This allows the Virtual Kubelet to perform
operations in the cluster as if it were a node, including creating, managing and
deleting pods and other resources. This gives Liqo the ability to control the cluster
resources in a granular and efficient manner, increasing the overall utility of the
federated clusters.

It’s crucial to note that while the Virtual Kubelet presents itself as a node to
the Kubernetes API server, it doesn’t manage any physical machine itself. Instead,
it delegates this task to other software components, enabling an additional layer of
abstraction and versatility in handling resources.

3.3.2 Foreign Cluster
The Foreign Cluster component in Liqo serves as a representation of a remote
cluster in a local cluster’s context. It holds the necessary information about the
remote cluster, which the local cluster requires to establish a connection and
maintain communication. This includes the network details of the remote cluster,
the resources it offers and the status of the peering relationship between the two
clusters.

A Foreign Cluster resource is automatically created in the local cluster during
the discovery process. The resource is then used during the peering process to
establish and maintain the connection between the local and remote clusters. It
provides a single point of reference for the remote cluster, facilitating the effective
management of federated resources.

21

Liqo

3.3.3 Virtual Node
In the context of Liqo, a Virtual Node is a representation of a remote cluster in
the local cluster’s context. Each Virtual Node is associated with a Foreign Cluster
resource and provides a node-like abstraction for the remote cluster’s resources in
the local cluster. This allows the local cluster’s scheduler to schedule pods on the
remote cluster, as if it were scheduling them on a node of its own.

A Virtual Node is created during the peering process and serves as a bridge
between the local and remote clusters. It translates the local cluster’s commands
into actions in the remote cluster, providing seamless interaction and resource
management across the federated clusters.

3.3.4 Namespace Offloading
Namespace Offloading is a process in Liqo that enables the transparent execution of
pods in remote clusters. When a namespace is marked for offloading, Liqo ensures
that any pod scheduled in that namespace is executed in one of the connected
remote clusters.

Figure 3.2: Namespace offloading scheme between local and remote clusters

This mechanism enables transparent scalability and resource optimization across
the federated clusters. Pods can be offloaded to clusters that have more available
resources, thereby enhancing the efficiency and performance of the overall system.
This feature, combined with Liqo’s ability to dynamically discover and peer with
clusters, provides a powerful tool for creating a truly distributed and scalable
Kubernetes environment.

22

Chapter 4

Open Service Broker API

This chapter provides an in-depth exploration of the Open Service Broker API
(OSBAPI), a fundamental protocol that served as the foundational model for the
development of the thesis solution. Although highly functional in its original form,
it was found that certain adaptations of this protocol were necessary to adequately
cater to the specific requirements of our work. Throughout this chapter, we will
discuss the details of OSBAPI, its essential concepts, operations, use cases and the
modifications made to customize it for our unique context.

4.1 Overview
The Open Service Broker API (OSBAPI) is an open and standardized protocol for
managing services in the marketplace of a cloud platform [17]. Originally designed
by the Cloud Foundry community, it has been widely adopted by many platforms
and service providers due to its platform agnosticism. It provides a unified way of
delivering services to applications regardless of the underlying cloud platform.

The core concept of OSBAPI is to simplify the process of delivering services to
applications running in the cloud. By providing a standardized interface between
cloud platforms and service providers, OSBAPI allows developers to consume
services without needing to understand details about how services are provisioned
and managed.

The API is built around a set of well-defined objects, such as services, service
plans and service instances, as well as operations on these objects, like provision,
bind, unbind and deprovision.

• Services are the software or infrastructure components that applications can
consume. Examples of services include databases, message queues and other
backend APIs.

23

Open Service Broker API

• Service Plans define different tiers of a service, such as the difference between
a free tier and a premium tier of a database service.

• Service Instances are provisioned plans that applications can consume. An
instance represents a reserved resource on the service for the application.

In the next sections, we will delve deeper into the specifications, use cases and
core concepts of the Open Service Broker API.

4.2 Specifications
The Open Service Broker API is designed around RESTful principles, with resources
and methods defined for provisioning, deprovisioning, binding and unbinding service
instances [17]. The API makes use of HTTP methods such as GET, PUT, DELETE
and PATCH to interact with these resources. These endpoints are all implemented
inside a REST API server called service broker.

The main resources involved in the API are:

• Catalogs: Collections of services that a service broker offers.

• Service Instances: Representations of provisioned services that applications
can use.

• Service Bindings: Representations of the credentials and connection details
an application needs to use a service instance.

To start the provisioning of a service instance, the API consumer sends a PUT
request to the service instance resource. This request includes details of the chosen
service plan and any parameters required for provisioning. The service broker then
provisions the service instance and returns a response. This response can either be
synchronous, providing the status of the operation immediately, or asynchronous,
providing a way for the API consumer to poll for the status of the operation [18].

Binding a service instance is similar, with a PUT request being sent to the
service binding resource. The service broker returns the connection details and
credentials needed to use the service instance.

For deprovisioning and unbinding, DELETE requests are used. It is also possible
to update a service instance using a PATCH request.

The API also includes error handling mechanisms, with standardized HTTP
status codes and error messages being returned when things go wrong.

This flexible and extensible architecture of the Open Service Broker API allowed
us to adapt it to the specific needs of our work. By extending the API, we were able
to introduce new operations and resources, providing greater control and flexibility
over service management.

24

Open Service Broker API

Here we provide a detailed list of the API endpoints:

• /readyz: This endpoint is used by the platform to fetch the status of the
server.

GET /readyz

• /v2/catalog: This endpoint is used by the platform to fetch the service
catalog of the broker. It is a GET request that returns a list of all services
and their plans that the broker offers.

GET /v2/catalog

• /v2/service_instances/{instance_id}: This endpoint is used for provi-
sioning (PUT), updating (PATCH) and deprovisioning (DELETE) service
instances. The instance_id is a unique identifier provided by the platform for
the instance to be provisioned.

PUT /v2/service_instances/{instance_id}

• /v2/service_instances/{instance_id}/service_bindings/{binding_id}:
This endpoint is used for creating (PUT) and deleting (DELETE) service
bindings. The binding_id is a unique identifier provided by the platform for
the binding to be created. The PUT request returns the connection details
and credentials needed to use the service instance.

PUT /v2/service_instances/{instance_id}/service_bindings/{binding_id}

• /v2/service_instances/{instance_id}/last_operation: This endpoint
is used for getting (GET) the status of a specific operation. The operation id
to insert in the query URL is retrieved from a previous PUT call on service
instance or service binding endpoint.

GET /v2/service_instances/{instance_id}/last_operation

25

Open Service Broker API

4.3 Use Cases
There are numerous use cases for the Open Service Broker API, particularly in
environments where services need to be provisioned and consumed in a standardized
and controlled way [19].

One primary use case is in Platform as a Service (PaaS) environments, like
Cloud Foundry and Kubernetes. Here, developers deploy applications that need
to consume services like databases, messaging systems, or other APIs. Using the
Open Service Broker API, these services can be provisioned and managed in a
standardized way across different cloud environments, improving portability and
reducing vendor lock-in.

Another use case is in providing Software as a Service (SaaS) offerings. A SaaS
provider can implement the Open Service Broker API to allow their customers to
provision and manage instances of the SaaS offering. This can be integrated into
the customer’s existing service management infrastructure, providing a seamless
user experience.

In a multi-cloud environment, the Open Service Broker API provides a standard-
ized way of provisioning and managing services across different cloud providers. This
can simplify operations and improve interoperability in multi-cloud deployments.

For our specific work, we utilized and adapted the Open Service Broker API
to manage the provisioning and consumption of services in a complex, multi-
component architecture. By extending the API, we were able to implement specific
controls and operations needed for our use case, demonstrating the flexibility and
extensibility of the API.

4.4 Concepts
The Open Service Broker API is built around several key concepts that are essential
to understand for effective use of the API. These concepts include the Catalog,
Service and Plan.

4.4.1 Catalog
The Catalog is a fundamental concept in the Open Service Broker API. It represents
a comprehensive list of all the services that a service broker can provide [18]. The
catalog acts as a central repository of service offerings, allowing platform users to
browse and select the services they need for their applications.

Each service listed in the catalog is characterized by a set of attributes. These
attributes typically include a name, a unique ID, a description and a list of service
plans. The catalog should be designed in a self-descriptive manner, providing clear

26

Open Service Broker API

and concise information about each service. It serves as a crucial resource for
platforms to understand the capabilities and offerings of a particular service broker.

The catalog is fetched by making a GET request to the /v2/catalog endpoint.

4.4.2 Service
In the Open Service Broker API, a Service represents a manageable piece of
software that can be provisioned and bound to an application [18]. It is an abstract
representation of a functional component that an application may depend on, such
as a database, a message queue, an API gateway, or any other service that provides
specific functionalities.

A Service is uniquely identified within the service broker’s catalog and offers
a range of plans. Each plan corresponds to a specific configuration or tier of the
service, allowing users to choose the most suitable option for their application
requirements. Services can also be associated with tags, facilitating categorization
and discovery.

When a service instance is provisioned, the service broker allocates the neces-
sary resources and provides the application with a URL or other relevant access
information. Binding a service instance enables the application to securely access
the service by providing the required credentials.

4.4.3 Plan
A Plan represents a particular tier or configuration offered by a service in the
catalog [18]. It enables users to select the desired level of resources, features, or
pricing options associated with a specific service.

Plans are defined within the catalog and are uniquely identified. Each plan
has a name, a description and potentially additional metadata, such as cost or
trial period information. By offering different plans, service brokers provide users
with flexibility and choice in tailoring their service usage according to their specific
needs.

When requesting the provisioning of a service instance, users must specify the
ID of the desired plan. This information allows the service broker to provision the
instance with the appropriate configuration and resource allocation.

Understanding the concepts of Catalog, Service and Plan is crucial for effectively
utilizing the Open Service Broker API. These concepts form the foundation of the
API’s service management capabilities, providing a structured and standardized
approach for offering, provisioning and managing services.

By leveraging the power of these concepts, platforms can streamline the in-
tegration and consumption of services, facilitating seamless interoperability and
enhancing the overall user experience.

27

Open Service Broker API

4.5 Operations
The Open Service Broker API defines a set of operations that enable the management
and lifecycle of services and their instances. These operations provide a standardized
way to interact with the service broker and enable seamless integration with various
platforms.

Figure 4.1: General Open Service Broker API operating schema

4.5.1 Provisioning
Provisioning is the process of creating and allocating resources for a service instance.
It involves requesting the service broker to instantiate a new instance of a particular
service and configure it according to the specified plan and parameters. The
provisioning operation typically requires the following information:

• Service Details: The unique ID of the service from the catalog, the desired
plan ID and any additional parameters required for provisioning.

• Contextual Information: Contextual details such as the organization, space
and user requesting the provisioning operation.

Once the provisioning request is initiated, the service broker handles the necessary
steps to create and configure the service instance. The response may include the
provisioned service instance details, including connection information and any
additional metadata.

28

Open Service Broker API

4.5.2 Updating
The updating operation allows for modifying the configuration and settings of a
service instance. It enables users to adapt the service instance based on changing
requirements or evolving business needs. The updating operation typically involves
providing new configuration details or parameters for the service instance.

Users can send a request to the service broker with the updated information,
including the unique identifier of the service instance to be modified and the desired
changes. The service broker processes the request and updates the service instance
accordingly. The response may include confirmation of the successful update and
any relevant updated information.

4.5.3 Deprovisioning
Deprovisioning refers to the process of removing a service instance and releasing the
associated resources. It is the reverse operation of provisioning and involves cleaning
up and deallocating any resources allocated to the service instance. Deprovisioning
can be triggered by a user or an automated process.

To deprovision a service instance, users send a request to the service broker
with the unique identifier of the instance to be deprovisioned. The service broker
handles the deprovisioning process, ensuring the release of resources and cleaning
up any associated artifacts. The response confirms the successful deprovisioning of
the service instance.

4.5.4 Binding
Binding is the process of establishing a connection between a service instance and
an application. It enables the application to access the resources and functionalities
provided by the service. During the binding operation, the service broker generates
credentials and connection details specific to the bound application.

To bind a service instance, users send a request to the service broker, specifying
the unique identifiers of both the service instance and the application. The
service broker generates and provides the necessary credentials, such as usernames,
passwords, or access tokens, along with any connection details or configuration
specific to the bound application.

4.5.5 Unbinding
Unbinding refers to the process of disconnecting an application from a previously
bound service instance. It revokes the credentials and connection details associated
with the application’s access to the service. Unbinding can be triggered by a user
or an automated process.

29

Open Service Broker API

Users send a request to the service broker with the unique identifiers of the
service instance and the application to be unbound. The service broker handles the
unbinding process, invalidating the credentials and revoking the application’s access
to the service. The response confirms the successful unbinding of the application
from the service instance.

Understanding and utilizing these operations empowers users to manage the
lifecycle of service instances effectively. The Open Service Broker API provides a
standardized way to perform these operations, ensuring consistency, interoperability
and ease of integration with various platforms and service brokers.

30

Chapter 5

Design

This chapter aims to provide a comprehensive and technical examination of the
problem previously introduced, proposing different design ideas and solutions. We
will delve into the details of the problem, further breaking it down into sub-problems
for more focused examination.

5.1 Contextual Overview

In a typical cluster environment, an application is composed of multiple components
that work in unison. These include databases, front-end interfaces, message brokers
and more. All these components can be considered as microservices, functioning as
integrated services within a larger application structure.

However, there may be instances where hosting or deploying a service is not
feasible or desirable. This could be due to various reasons: limited computational
resources, excessive costs, or the proprietary nature of a service which the provider
wants to maintain control over. Therefore, there arises a necessity for a service
which, while not residing in your cluster environment, remains under your partial
control.

In this complex network, the same service may be utilized by multiple ap-
plications, or a single service may leverage other services provided by different
entities. While this chain of interdependencies can potentially extend indefinitely,
the fundamental challenge lies in integrating an external component within your
environment and application - a component over which direct control may not be
possible and whose availability is subject to specific commercial agreements.

31

Design

5.2 Potential Use Case
This context sets the stage for a potential use case. Imagine a user, representing
either a major corporation or a fledgling startup, operating their own cluster. The
user develops a web application that requires a database for data storage. Now,
the user is faced with a few choices. They could:

• Deploy a database within their own cluster, thus utilizing their existing
resources,

• Opt for a serverless solution, which would entail sending all data to a third-
party database with limited visibility on the data processing operations.

Another scenario presents itself where a service provider offers a proprietary
database (possibly with unique optimizations or features) for a fee. Following
a purchase agreement, this database can be deployed directly within the user’s
cluster. However, the provider wishes to retain a certain level of control over the
service offered, while also granting the user visibility into the service’s operation.
This situation forms the crux of the use case we aim to resolve.

5.3 Overview of the Challenges
In the course of our comprehensive exploration and through the illustration of a
particularly pragmatic use-case scenario, a series of formidable obstacles requiring
our attention and effort have crystallized. The challenges that stand out and need
to be addressed are as follows:

• Developing a sophisticated, yet user-friendly, mechanism that effectively fa-
cilitates the purchase and sale of services within the ecosystem. This not
only involves the transaction itself but also includes aspects such as service
discovery, comparison and selection.

• Building a robust, trustworthy framework that retains complete transparency
over the services sold by the service provider. This transparency is a crucial
element that boosts user trust and confidence in the system. Alongside this,
we must also consider the user’s vested interest in understanding how their
data is being handled, stored and processed, thereby ensuring privacy and
data security.

• Devising an efficient protocol that allows seamless interaction and communi-
cation between the provider’s cluster and the consumer’s cluster. This area
presents a triad of critical sub-issues that need special focus:

32

Design

– Security - Our communication protocol must prioritize the security of
data transmission, guaranteeing that the exchanged information is safe
from potential breaches or attacks.

– Reliability - A reliable system is a trustworthy one. Hence, our com-
munication protocol should be built to ensure consistent performance,
stability and dependability in the communication process.

– Latency and Speed - In the era of high-speed communication, delays
can be costly. Therefore, our protocol must ensure efficient and swift
transmission of data with minimal latency.

• Ensuring that the procured service can interact smoothly, seamlessly and
with minimal interference or intervention with the user’s application. This
essentially involves developing standards, interfaces and procedures that can
integrate the new service within the existing user application framework
without causing disruption or requiring extensive user interaction.

The aforementioned challenges, having been identified and outlined, will be
dissected and examined in greater detail in the following sections of this document.

5.4 Mechanisms of Transaction
Our proposed model must integrate a mechanism that can effectively associate an
application with a user, an action that occurs subsequent to a successful transaction.
This association is fundamental in ensuring the correct delivery and utilization of
the procured services. It is important to underline that our model operates within
a commercial setting, where services are traded, often in a competitive environment.
The pricing of these services is a critical aspect and is typically determined by the
provider.

The pricing strategy can be influenced by numerous factors such as market
demand, cost of provision and competitive landscape. It could potentially be a
usage-based cost, predicated on measurable parameters like data traffic or the
number of service API calls. Alternatively, it could adopt a subscription model,
constituting a fixed cost linked to time, such as a monthly or an annual subscription.
Or, it might just be a one-time, flat initial cost, often seen in software licensing
scenarios.

To facilitate the user’s purchase decision, the service that the user is interested
in procuring must be adequately advertised and made known to the potential user.
For this, we require a system that can disseminate relevant information about the
impending application purchase. This may include details about the price, available
plans, configuration information, user testimonials and so on.

33

Design

Essentially, this would require the development of a comprehensive service
catalogue that not only lists the available services but also presents associated
information in a clear, concise and accessible manner. This catalogue would play
a vital role in guiding user decision-making and hence, must be designed with a
user-centric approach.

It is not enough to merely provide the necessary functionalities and information;
the manner in which they are presented and accessed by the user is equally
important. Our aim should be to deliver all the discussed elements through a
user-friendly, intuitive and engaging user experience.

Indeed, the development of an interface that can effectively showcase all offered
services, their features, benefits and pricing would be the ideal scenario. This
interface should aim to simplify the decision-making process for the user, making
it easier to compare, select and purchase the services.

Our ultimate vision should be to create a dynamic platform that serves as a
bridge between supply and demand, effectively connecting providers with potential
consumers. This platform, if executed well, can not only facilitate service transac-
tions but also play a critical role in shaping user perceptions, fostering relationships
and driving user loyalty towards the service providers and the platform itself.

5.5 The Essentiality of Control over Services and
Data

In the digital era, data has emerged as a critical asset, often regarded as the
lifeblood of businesses. The operational model under discussion is situated within
a complex interplay of two independent entities. These entities, though agnostic
of each other’s internal workings, are tied together by a shared business interest.
They aim to establish a mutually beneficial business relationship, each striving to
minimize the disclosure of proprietary information and maintain the highest degree
of control over their respective assets.

To create a conducive environment for this exchange, a nuanced understanding
of both entities’ perspectives is imperative. The task at hand involves reconciling
fundamentally contrasting viewpoints. Arriving at a model that satisfies both par-
ties is a complex negotiation process that necessitates a willingness to accommodate
and sometimes relinquish certain demands.

5.5.1 Ownership of Services: A Provider’s Perspective
Envision a service provider with a state-of-the-art application ready to make
a mark in the competitive market landscape. This application, potentially a
carefully crafted and protected product, could house proprietary knowledge or

34

Design

unique functionalities that set it apart from competitors. Such information becomes
accessible to the user only after a successful purchase operation.

To safeguard the proprietary knowledge and the competitive advantage that it
offers, the service provider would ideally want to keep the application’s codebase
and its operational intricacies confidential. The user is expected to interact with
the application’s functionalities without encroaching upon its inner workings. This
ensures the provider’s intellectual property remains secure, while users still derive
value from the application.

However, the service provider’s control needs extend beyond mere intellectual
property protection. They often have technical requirements that necessitate
maintaining a certain degree of authority over the service even post-sale. These
requirements could be driven by factors such as the need to guarantee Quality of
Service (QoS), ensure consistent application availability, or maintain the applica-
tion’s overall operational efficiency. Such control over the deployed environment is
crucial for the provider to deliver a seamless user experience, manage updates and
mitigate any potential issues, thereby translating to an indirect form of control
over the service.

In an ideal world, the application remains completely under the control of
its creator and provider even after being sold. The customer’s interaction with
the service is confined to predefined and approved touchpoints for data input,
preventing unauthorized access or tampering.

5.5.2 Data Privacy: A User’s Perspective

Switching perspectives, consider a customer or user who decides to leverage a cluster
service procured from a third party. The act of utilizing the service implicitly
involves entrusting their data to the third-party service for processing. The service
must accept this data input and process it as per the user’s needs.

However, data privacy concerns often surface when the data in question is highly
sensitive. It could be personally identifiable information, financial data, or any
information the user does not wish to be stored or managed by third parties, let
alone be transmitted beyond their control. In an age where data breaches are
unfortunately commonplace, these concerns are far from unfounded.

In such situations, the user would ideally prefer to have absolute control over the
procured service. The service should operate within an environment that allows the
customer to oversee and control all operations being performed. This ensures that
the user’s data doesn’t disappear into a technological ’black box’, but is processed
transparently and in accordance with the user’s wishes. This not only mitigates the
risk of unauthorized data access but also ensures the user remains in the driver’s
seat when it comes to their data.

35

Design

5.6 Communication and Deployment
The progression of current technological advancements is undeniably shifting to-
wards a distributed model. The emphasis within this framework rests notably on
effective and efficient communication strategies. One of the key challenges herein
lies in the necessity for the consumer and producer to identify a safe and reliable
mode of interaction.

Consider the Internet, an omnipresent yet potentially perilous medium for such
interaction. Here, the question is not whether it can be used, but rather, how to
harness its potential while ensuring secure communication. Given this dilemma, it
becomes prudent to consider an arrangement akin to a Virtual Private Network
(VPN).

A VPN offers the allure of secure communication, even within an insecure
medium. It cleverly mimics a local network environment, allowing two entities to
interact as though they were physically connected on the same local network. This
setup provides a significant layer of security, but it does not eliminate the need for
security protocols during communication.

In fact, these protocols should be implemented even outside the VPN when
necessary and it’s highly recommended within it. Establishing such practices aids
in reinforcing the security of the communication, thereby mitigating any potential
risks.

An additional matter to consider in the context of deployment methodology
pertains to the connection between the purchased service and the application
intended to use it. The conceivable scenarios are numerous, each with its unique
implications. Ideally, placing both service and application within the same cluster
significantly simplifies communication. Yet, even if they reside in different clusters,
a connection between the two entities is feasible. However, in such instances, the
need for a secure form of communication, as discussed previously, becomes even
more critical.

Given the above considerations, a range of potential scenarios emerges for
thorough analysis. These are not merely for defining a communication model, but
also for striking a balance between the stated requirements.

1. The use of VPN: A system resembling a VPN can create a pseudo-local network
that offers increased security. However, this is not a foolproof solution and
additional security measures are necessary.

2. The implementation of security protocols: These should be used both within
and outside the VPN as required to further enhance communication security.

3. Interconnecting service and application: Ideally, these should reside within
the same cluster. However, secure communication protocols must be in place

36

Design

if they are in different clusters.

These considerations highlight the complex nature of the task at hand and the
need for a comprehensive analysis to establish a viable model for secure and efficient
communication and deployment methodology.

5.6.1 The Customer-centric Model
This model places the customer at the heart of the service deployment process.
Two clusters are involved in this model: one belonging to the service provider and
another that is owned by the customer who purchases the service.

Service Provider Cluster

Customer Cluster

Service

Connect to application Application

Pull service image

Figure 5.1: Schema of the customer-centric model

Service Deployment and Hosting

Upon purchasing, the customer is entrusted with creating and hosting the service
in their cluster. They acquire an ’image’ of the service from the provider. This

37

Design

image is essentially a snapshot of the service that can be loaded onto the customer’s
system. Only authorised customers, who have completed a purchase, can acquire
this image. After acquisition, the customer is responsible for instantiating this
image in their environment, essentially creating a working copy of the service on
their own cluster.

This model requires the customer to prepare their environment to host the
purchased service. This preparation is primarily related to the resources that the
service will consume. For instance, if the purchased service is a microservice such
as a database, the required computational resources may be quite manageable.
However, more complex services, such as machine learning software, may necessitate
a much larger and more capable hosting environment, which may not be feasible
for all customers.

Service Connection

Beyond hosting, the customer is also in charge of connecting the instantiated
service with their application. This connection process is a manual one, as the
exact location and creation method of the service cannot be known in advance. This
further places the responsibility for successful service integration on the customer.

Role of the Provider

From the provider’s perspective, the responsibilities are considerably less under
this model. The provider’s primary task is to ensure that only authorised users can
obtain a copy of the purchased service. One potential method to achieve this is
via a Docker repository that contains an image of the service. While the provider
may offer some level of support, their ability to do so is limited, as they do not
have control over the customer’s hosting environment and hence cannot rectify all
potential issues.

Despite these restrictions, the provider can attempt to provide as much support
as possible, even if they cannot control all the aspects that may lead to potential
malfunctions. However, a significant amount of the responsibility for successfully
deploying and running the service lies with the customer.

Pros and Cons

This customer-centric model has several advantages and disadvantages for both
parties, but the primary focus is the customer.

The main benefits involve data privacy and secure communication. Since the
customer directly creates the service within their cluster, communication between
their application and the service is secure. The customer maintains full control over
their data, as all communication occurs within the customer’s cluster. Furthermore,

38

Design

PROS CONS

Secure connection &
communication Traffic is all inside the

customer cluster
Control over service

ownership
Service provider after
pull operation loses all

the control
Control over private

data
Data remain within the

customer cluster
Service guarantees Can be ensure with

typical K8s techniques
(HPA, replicas, load

balancer, etc)

Difficulties to determine
service problems if not
working (i.e. firewall

outside service provider
control)

Table 5.1: Summary of pros and cons of the customer-centric model

if there are concerns about the service sending data externally, the customer can
restrict the service’s connectivity to their cluster only.

However, there are also certain downsides to this model. Once the service
software is transmitted, the provider loses visibility into how it’s used, meaning
they cannot understand or analyse the usage patterns of the service. Furthermore,
given the lack of knowledge about the customer’s environment, the provider’s ability
to offer support for the service is severely limited. All prerequisites required by the
software may not be available or met in the customer’s environment. Consequently,
the success of the service largely depends on the customer’s resources and abilities.

In conclusion, while this model grants the customer greater control over their data
and enhances the security of communication, it also places a greater responsibility
on them to host, deploy and connect the service successfully. Thus, it may be more
suitable for technically adept customers with sufficient resources. On the other
hand, providers have lesser responsibilities but also face limitations in providing
comprehensive support and gaining insights into the service usage.

5.6.2 The Service Provider-centric Model
In the second model under consideration, we again have two distinct entities: the
service provider’s cluster and the customer’s cluster. This model presents a different
arrangement, in that the purchased service resides exclusively within the provider’s
cluster.

39

Design

Service Provider Cluster

Customer Cluster

Service

C
on

ne
ct

 to
 a

pp
lic

at
io

n

Application

VP
N

Figure 5.2: Schema of the service provider-model

Service Access and Communication

Once the service has been purchased, the customer gains ’access’ to it. However,
this access differs fundamentally from that of the customer-centric model. Instead
of receiving an image to instantiate on their own cluster, the customer now interacts
with the service as it resides on the provider’s cluster.

This arrangement brings to the fore a crucial issue: communication. From the
customer’s perspective, the service they wish to utilise is situated in an unfamiliar
environment. More importantly, this environment is different from the one in
which their application resides. It is therefore imperative to establish a secure
communication channel, possibly a VPN, between the customer’s application and
the service. The responsibility for the creation of this VPN rests with both parties,
but it is particularly crucial for the service provider to ensure the integrity of the
communication channel.

40

Design

Provider Responsibilities

The service provider, in this model, finds themselves in complete control of the
provided software. This control, however, comes with its own set of responsibilities.
The provider must establish secure and controlled access to the service. In terms
of firewall configuration, it becomes critical to expose the service to the customer
but only through the VPN communication channel established earlier.

Moreover, any issues related to the service, such as quality of service (QoS),
availability and the installation of prerequisites for the proper functioning of the
software, fall squarely on the service provider’s shoulders. As the service resides
entirely under the provider’s control, they bear full responsibility for its smooth
operation.

Impact on Provider and Customer

This model effectively flips the roles seen in the customer-centric model. The
burden that once fell upon the customer now rests with the provider, including the
resource consumption of hosting the service software. As each sale may correspond
to a deployment of a dedicated service for each user, the hosting burden could
become unsustainable as the number of users grows over time. This could lead to
considerable consumption of the provider’s computational resources.

The advantages and disadvantages of this model are pronounced. On the one
hand, the provider gains full control over the service, enabling them to ensure its
optimal functioning. On the other hand, the situation becomes darker from the
customer’s perspective.

Privacy and Connectivity Concerns

Given that the customer’s data needs to be sent to the provider’s service for
processing, the service might appear as a ’blackbox’ to the customer. As such, the
customer relinquishes control over their data, which could lead to potential privacy
concerns.

Additionally, connectivity and communication complications may arise. A VPN
between the two clusters could secure the communication and with appropriate
tools, satisfactory performance could be achieved. However, the fact that the
service is located on a cluster at the other end of the VPN from the customer
implies that the communication channel is always active. As this channel operates
outside the customer’s cluster, outgoing traffic could be a concern. If traffic is
heavy, the associated costs could pose a significant disadvantage for the customer.

In summary, this service provider-centric model offers the advantage of total
control over the service for the provider, leading to potential quality improvements.
However, it increases the responsibilities of the provider and could pose privacy and

41

Design

PROS CONS

Secure connection &
communication

Traffic is inside a VPN Traffic to service is
external the cluster
(possible traffic cost

problems)
Control over service

ownership
Service provider

completely owns and
controls the service, all
inside its cluster. It can
be created as it wants.

Control over private
data

Data are sent to service
provider’s cluster, no

control
Service guarantees Service provider

guarantees with its
standard the service and

its availability

Table 5.2: Summary of pros and cons of the service provider-centric model

communication challenges for the customer. Hence, the suitability of this model
could vary depending on the specific needs and capabilities of the customers and
providers.

5.6.3 The Hybrid Model: A Comprehensive Approach
Two common models have been analysed: the customer-side and service provider-
side models. Each model has its distinct advantages and challenges. However,
neither provides an all-encompassing solution, hence the exploration of a third
model that merges the benefits of both. This final proposal aims to establish
a hybrid model, a balanced paradigm that provides a certain degree of control
over the service to the provider and concurrently maintains transparency for the
customer regarding their data usage.

Utilising Liqo for Seamless Integration

In order to facilitate the seamless operation of this hybrid model, we turn to a
technology that has shown immense potential in bridging the gap between disparate
clusters: Liqo. This innovative tool enables communication between two distinct

42

Design

Service Provider Cluster

Customer Cluster

Li
qo

co
nn

ec
tio

n

Service

Application

Connect to application

O
ffl

oa
d

se
rv

ic
e

to
 c

us
to

m
er

Service

Figure 5.3: Schema of the hybrid model

clusters - in our case, the customer’s and service provider’s. Specifically, the service
provider’s cluster initiates a peering operation towards the client’s cluster. This
creates a secure and effective communication channel, inherent in Liqo technology.

Within this secure environment, the service provider creates a namespace within
its cluster. This namespace essentially serves as an isolated environment for the
provider to deploy the service. Importantly, Liqo offers the distinct capability for
the provider to delegate the resource consumption that is typically associated with
the namespace to the client’s cluster. With the correct policies in place, the service
provider’s cluster generates the service, but the actual instantiation and resource
consumption occurs within the client’s cluster.

Balancing Resource Management and Service Accessibility

This hybrid approach, although promising, is not without its potential drawbacks.
A key consideration is the sustainability of significant resource consumption on the

43

Design

client side. Liqo’s unique technology, however, offers flexibility in adjusting the
distribution of resource consumption between the client and the service provider.
Despite the physical location of resource consumption, the service is designed to
remain accessible as if it were within the client’s cluster. This negates the need for
creating or maintaining an additional secure connection, as the secure connection
is intrinsic to the Liqo communication channel.

Navigating Control and Visibility

The balancing act within this hybrid model extends beyond resource consumption.
There is also a balance to be found in the control and visibility of the service. On
the one hand, the service remains under the provider’s control and can be created
and manipulated as if it were within its cluster. This alleviates the provider’s
concerns around prerequisites or other requirements on the client side. Moreover,
the provider maintains the capability to discontinue the service for the user as they
see fit, with Liqo recognising the service as owned by another cluster.

From the client’s perspective, this hybrid model provides an essential measure of
visibility and control. By executing the service within their cluster, customers are
granted a clear view of its various components. Theoretically, this should ensure
that data remains within their cluster. However, this is not an entirely perfect
solution, as any resources that cannot be instantiated within the customer’s cluster
might necessitate a transfer of data outside the customer’s purview.

Assuring Quality and Embracing Scalability

A notable advantage of this hybrid model is its adherence to the quality standards
set by the provider. By leveraging the powerful capabilities of K8s and its scheduler,
the service can utilise inbuilt tools such as replicas, the HPA and more. This not
only ensures a robust, scalable service but also allows the provider to maintain
quality in accordance with their standards.

In summary, the hybrid model offers a balanced pathway for both customers and
providers, merging control, visibility, resource management and quality assurance
into a single paradigm. Although not without potential challenges, it represents a
significant step towards achieving a flexible, balanced and effective service provision
model that meets the evolving demands of customers and providers alike.

5.7 Liqo: An Equitable Selection
After extensive and meticulous analysis of all three presented models, the final
selection was made in favor of the third model, known as Liqo. This decision was
made with a profound understanding that every solution comes with its unique set

44

Design

PROS CONS

Secure connection &
communication Traffic is all inside the

customer cluster Liqo
VPN for

cluster-to-cluster
communication

Control over
service ownership Service provider keeps

control over service
resources visible to

customer

Control over
private data Data should remain

inside customer cluster
Some data may leak out-
side the control of cus-
tomer. Smart network
analyser needed to en-
force this requirement

Service
guarantees Can be ensured with

typical K8s techniques
(HPA, replicas, load

balancer, etc.)

Difficulties to determine
service problems if not
working (i.e. firewall

outside service provider
control)

Table 5.3: Summary of pros and cons of the hybrid model

of pros and cons. It is inherently impossible to devise a solution that caters solely
to the benefits of both parties without making certain compromises.

Therefore, rather than adhering strictly to one end of the spectrum, an interme-
diate approach was adopted – a balanced compromise which neither tilts extremely
towards one party nor the other. The crux of the matter lies in finding a solution
that upholds the needs and interests of both the user and the service provider in
an equitable manner.

The resulting solution, hybrid through the use of Liqo, is a model that does not
undermine either party’s importance. It balances two pivotal aspects: firstly, the
value of the user’s data and secondly, the service provider’s rights and ownership
over the service.

• Customer-centric approach: Liqo offers a transparent environment where

45

Design

users have full visibility of their purchased service. Users can monitor the
service in real-time, understanding how their data is being utilized and can
also observe the effects and results of the service.

• Service provider-oriented approach: Concurrently, Liqo offers service
providers the ability to maintain an oversight of the service that they have sold,
without entirely relinquishing control. Providers can track usage, optimize
service delivery and respond swiftly to issues, even while the user maintains a
degree of autonomy.

In conclusion, Liqo harmoniously merges the benefits derived from both user-
centric and service provider-centric models, delivering a comprehensive solution
that caters to the needs of both parties effectively.

5.8 Service to Application Binding Automation
In the conventional model we propose, we postulate that a client procures a service
intending to leverage it within its proprietary application. This application could, for
instance, be a web application requiring interaction with a database (the procured
service). A sequence of information becomes necessary for effective communication
between these two entities. As the scenario is described currently, the client
manually executes this step, primarily focusing on identifying the information
requisite for service connection. Upon extraction, this data is input into the
application to establish a connection.

The primary ambition of this thesis is to automate, to the greatest extent
possible, the process described above. The underlying assumption here is that
we possess a service, potentially deployed within the client’s cluster and a client
application desiring to exploit it. In isolation, these software entities are agnostic
of each other, implying a conspicuous need for an intermediary that can establish a
connection between them. This intermediary can provide the application with the
necessary guidance on where and how to establish a connection with the intended
service.

However, this approach is not without complications:

• Not all services can connect in a standard manner.

• More importantly, not every application requires the same set of information
to establish a connection.

One plausible solution to these challenges is to have a shared resource accessible
from both sides, for instance, a K8s Secret. By maintaining the connection

46

Design

information within this shared resource, the client application can reference it,
potentially even before the actual service is created.

Expanding on this idea, the process of integrating the service with the application
can be broken down into several distinct steps:

1. The client identifies the necessary connection information for the service.

2. This information is extracted and input into the application to facilitate a
connection.

3. An intermediary is introduced that knows how and where to instruct the
application to connect to the service.

4. Connection details are stored in a shared resource, like a K8s Secret.

5. The client application references the shared resource, even possibly before the
service is actually instantiated.

This method aims to automate the process of binding services to applications,
thereby minimizing the manual effort required and ensuring a seamless integration
process. While the practical implementation might encounter certain complications,
addressing them could pave the way for a more streamlined and efficient interaction
between applications and services.

47

Chapter 6

Implementation

This chapter is dedicated to the practical application of the theoretical model
previously discussed. It aims to delve into the tangible aspects of the proposed
solution, which hitherto has been dissected only from an analytical standpoint.
This materialisation of theory into practice is far from being a mere juxtaposition of
elements, but a systematized assemblage informed by the concepts and hypotheses
discussed until now.

The system at hand is distributed in nature, a feature that endows it with
unique characteristics and challenges. To fully understand this construct, it is
essential to scrutinize its constituent parts and their mutual interaction.

• Component Description: Each component of the system will be defined in
detail, providing an in-depth understanding of their function and relevance
within the larger construct.

• Interactions: The system’s components do not exist in isolation. Thus, their
interaction will be detailed, exploring the effect of various interactions on the
overall system behaviour.

• System Behaviour: By observing the outcome of these interactions, we can
infer the system’s behavioural traits, enabling us to understand the overall
system dynamics.

Further, as the system is fortified with security protocols, the complexities
regarding its integration are worth mentioning. This includes the technical nuances
and challenges faced during the implementation of these security measures.

In conclusion, this chapter serves to translate theory into practice, bringing into
focus the actual dynamics of the proposed solution. A comprehensive understanding
of these aspects would provide valuable insights into the practical implications and
challenges of implementing such a distributed system.

48

Implementation

6.1 Elements of the System
The foundational assumption of the system under study is the existence of at
least two autonomous and independent entities: a service provider and a customer.
These entities, distinguished by their unique roles and completely agnostic of each
other’s internal operations, each possess a minimum of one Kubernetes (K8s)
cluster. These clusters are capable of interfacing with the wider Internet and
serve as the critical environments where the applications that are central to our
study are deployed. These applications consist of the service on the provider’s
end and the client application on the customer’s end. In an effort to simplify the
development and testing process during this research study, these K8s clusters
were substituted with more manageable single node clusters implemented using
Kubernetes IN Docker (KIND).

Customer cluster

Service provider cluster

myapp namespace default namespace

Refers to

Wordpress pod Wordpress service

db-secret

Clone secret to namespace

Cloning operator pod

N
am

es
pa

ce
 o

ffl
oa

de
d

w
ith

 L
iq

o

default namespace

Service catalog pod

Creates service resources
Service catalog svc

Refers to

MySQL pod MySQL service

db-secret

Refers to

MySQL pod MySQL service

Cloning operator copy the secret

db-secret

Figure 6.1: Schema of all the elements involved in the implementation and their
main interactions

49

Implementation

6.1.1 Customer Elements
In more specific terms, the K8s cluster belonging to the customer contains a
namespace. This namespace serves as a designated environment within which the
customer deploys its proprietary application. For the purposes of this discussion,
this application is referred to as "myapp". At the outset, "myapp" is designed to be
dependent on a service that it will purchase at a later time. Despite this future
dependency, the application is capable of referencing this yet-to-be-acquired service
by setting the necessary credentials via a secret. This secret, however, is yet to be
instantiated, which adds a layer of complexity to the initial deployment process.

The deployment of "myapp" is conducted within a K8s Pod. Once deployed,
this pod may be exposed to the wider Internet via a K8s Service for example.
During this deployment and exposure process, the Pod enters an error state due
to its inability to retrieve the necessary credentials from the non-existent secret.
While this may appear to be an anomaly at first glance, this behavior is fully
anticipated and indeed desired as it provides valuable diagnostic information. The
resultant error condition is defined as CreateContainerConfigError in the
system terminology.

In addition to the namespace containing "myapp", the customer’s K8s cluster
also contains a secondary namespace which houses a specific component referred
to as the "Cloning operator". This operator is a K8s operator that is designed
to perform a very specific task: to automatically copy certain secrets within the
system. We will delve deeper into the workings and implications of this operator
later in the discussion.

6.1.2 Service Provider Elements
Transitioning over to the service provider side, a separate K8s cluster exists. This
cluster hosts a critical system component known as the "Catalog server". The
Catalog server is the central figure in the creation of the desired service. It provides
the interface through which peering with Liqo is established, enabling the purchase
and deployment of services.

The Catalog server is implemented within a K8s Pod. To ensure seamless
interaction with all the components and actors involved in the system, it is crucial
that the Catalog server be accessible remotely. Specifically, it must be reachable
from the Internet, which necessitates the exposure of the Catalog server through a
K8s Service.

6.1.3 Common Elements: Liqo
A key component common to both the service provider and customer clusters is
Liqo. Liqo plays a crucial role in the system’s operation as it facilitates the peering

50

Implementation

between the service provider’s cluster and the customer’s cluster when needed.
Upon successful installation of Liqo and establishment of peering, a bridging

element between the two clusters is created. This element is a specifically designed
namespace, created by the service provider in its cluster and accompanied by
the addition of the Liqo NamespaceOffloading. This resource must report with a
specific selection of the client cluster, providing a bridge for interactions between
the two parties.

The implemented model of this system envisions a unique peering for each client.
Consequently, for every service chosen by a client to be deployed, a unique K8s
Namespace and the corresponding NamespaceOffloading are created by the service
provider, ensuring a tailored service delivery for each client.

6.2 Catalog Server
The Catalog Server is a critical component in the system, responsible for managing
and coordinating all operations. It serves as the central hub, leveraging the OSBAPI
protocol integrated within the Kubernetes (K8s) environment. By combining the
power of the OSBAPI protocol with the flexibility of K8s, the Catalog Server
provides a robust and efficient solution for creating and managing services within a
K8s cluster.

6.2.1 Deployment within the K8s Cluster
To ensure seamless integration with the K8s cluster, the Catalog Server is deployed
as a pod within the cluster. It is exposed through a K8s service, allowing it to
communicate with other components in the cluster. By utilizing a dedicated library,
the Catalog Server can interact with the K8s API, enabling it to perform various
operations within the cluster. These operations include creating, updating and
deleting services, as well as managing the lifecycle of service instances and service
bindings. In order to execute these actions, the Catalog Server requires appropriate
permissions, which are granted through the deployment of a K8s Service Account
and associated ClusterRoles. These roles define the level of access and control that
the Catalog Server has over the K8s cluster, ensuring that it can perform its duties
effectively.

6.2.2 A CRD for configuration: ServiceBrokerConfig
The configuration of the Catalog Server is defined using the ServiceBrokerConfig
custom resource, which is created based on the corresponding Custom Resource
Definition (CRD). This resource encapsulates the settings and parameters that
govern the behavior of the Catalog Server.

51

Implementation

Catalog Configuration

One of the key aspects of the ServiceBrokerConfig resource is the catalog con-
figuration. The catalog represents a collection of services that are available for
provisioning within the K8s cluster. Each service in the catalog is accompanied by
a set of plans, which define different configurations or offerings for that particular
service. The catalog configuration within the ServiceBrokerConfig resource includes
details such as the service ID, plan ID and other metadata associated with each
service and plan. This information is essential for users to understand and select
the appropriate service and plan during the provisioning process.

The catalog configuration also allows for the specification of parameters required
for each service and plan. In particular, parameters for the creation of the service
instance and for the service binding may be required and inserted inside the service
broker configuration file.

1 serviceBinding:
2 create:
3 parameters:
4 $schema: ’http :// json - schema .org/draft -07/ schema #’
5 type: object
6 required:
7 - User name
8 - Database credentials secret name
9 - Destination namespace

10 properties:
11 Root password:
12 description: Administrator password
13 type: string
14 User name:
15 description: User name
16 type: string
17 User password:
18 description: User password
19 type: string
20 Database name:
21 description: Database name
22 type: string
23 Port:
24 description: Port
25 type: integer
26 Database credentials secret name:
27 description: >-
28 Name of the secret that will contain the database

credentials .
29 type: string

52

Implementation

30 maxLength: 253
31 pattern: ’^[a-z0 -9][a-z0 -9 -.]*[a-z0 -9]$’
32 Destination namespace:
33 description: >-
34 Namespace where client application is running .
35 type: string

Listing 6.1: Example of parameters schema for service binding creation

These parameters define the customizable options that users can choose when
provisioning a service. For example, a database service may have parameters such
as storage size, replication factor, or backup frequency. The ServiceBrokerConfig
resource captures these parameters and their corresponding values, allowing for
dynamic and flexible service provisioning.

Template Specification

Another crucial aspect of the ServiceBrokerConfig resource is the template specifi-
cation. Templates are used to define the resources and configurations required for
each service and plan. They provide a standardized way to create and manage the
necessary K8s resources, such as Deployments, Services, ConfigMaps and Secrets.
Templates can be customized to suit the specific requirements of each service and
plan. They allow for the dynamic configuration of resource properties, such as the
number of replicas, resource limits and volume mounts. By utilizing templates, the
Catalog Server ensures consistent and reproducible deployment of services within
the K8s cluster.

1 templates:
2 - name: database - deployment
3 singleton: true
4 template:
5 apiVersion: apps/v1
6 kind: Deployment
7 metadata:
8 name: ’{{ registry "instance -id" }}’
9 spec:

10 replicas: 1
11 selector:
12 matchLabels:
13 app: ’{{ registry "instance -id" }}’
14 template:
15 metadata:
16 labels:
17 app: ’{{ registry "instance -id" }}’
18 spec:

53

Implementation

19 containers:
20 - name: ’{{ registry "instance -id" }}’
21 image: ’mysql :5.6 ’
22 env:
23 - name: MYSQL_ROOT_PASSWORD
24 valueFrom:
25 secretKeyRef:
26 name: ’{{ registry "secret -name" }}’
27 key: MYSQL_ROOT_PASSWORD
28 - name: MYSQL_USER
29 valueFrom:
30 secretKeyRef:
31 name: ’{{ registry "secret -name" }}’
32 key: MYSQL_USER
33 - name: MYSQL_PASSWORD
34 valueFrom:
35 secretKeyRef:
36 name: ’{{ registry "secret -name" }}’
37 key: MYSQL_PASSWORD
38 - name: MYSQL_DATABASE
39 valueFrom:
40 secretKeyRef:
41 name: ’{{ registry "secret -name" }}’
42 key: MYSQL_DATABASE
43 ports:
44 - containerPort: 3306
45 name: mysql

Listing 6.2: Example template for MySQL deployment

The template specification within the ServiceBrokerConfig resource includes
YAML representations of the resources to be created. It defines the structure,
properties and relationships of these resources. For example, a template for a
database service may include a Deployment resource, a Service resource and a
ConfigMap resource. The template specifies the desired configuration for each
resource, including labels, selectors, ports and environment variables. By using
templates, the Catalog Server simplifies the provisioning process and ensures
consistent deployment across different services and plans.

Bindings and Registry

The ServiceBrokerConfig resource also includes the bindings configuration. Bindings
define the actions and operations that are performed when creating or updating
a service instance or service binding for each service plan. They specify the
relationship between the service instance and its associated resources, such as secrets,

54

Implementation

configuration files, or other dependencies. Bindings ensure that the necessary
resources are provisioned and properly connected to the service instance.

The bindings configuration within the ServiceBrokerConfig resource includes
details about the specific resources that are bound to each service instance or
service binding, as well as the parameters and values that are required for proper
configuration. For example, a database service may require a secret for storing
database credentials. The bindings configuration specifies the secret that should
be created and associated with the service instance or service binding.

1 bindings:
2 - name: SuperDB -Demo - binding
3 service: MySQLDatabase
4 plan: Basic
5 registryScope: InstanceLocal
6 serviceInstance:
7 registry:
8 - name: secret -name
9 value: ’{{ parameter "/ Database credentials secret name

" }} ’
10 steps:
11 - name: database - cluster
12 templates:
13 - database - deployment
14 serviceBinding:
15 registry:
16 - name: port
17 value: ’{{ parameter "/ Port" | default 3306 }}’
18 - name: host
19 value: ’{{ printf "%s.%s" (registry "instance -id") (

registry " namespace ") }}’
20 - name: binding - namespace
21 value: ’{{ parameter "/ Destination namespace " }}’
22 - name: secret -name
23 value: ’{{ parameter "/ Database credentials secret name

" }} ’
24 templates:
25 - database - service
26 - database -secret - binding

Listing 6.3: Example template for MySQL deployment

Additionally, the bindings configuration also involves the use of a registry. The
registry serves as a storage mechanism for holding information related to the service
instances and service bindings. It acts as a centralized repository for storing critical
data, such as credentials, connection details, or any other information required

55

Implementation

by the services or applications. The registry is implemented as a Kubernetes
secret, ensuring the secure storage of sensitive information. The Catalog Server
populates the registry with the necessary data during the creation or update of
service instances and service bindings. This allows the services and applications
to access the required information at runtime, enabling seamless integration and
functionality.

Integration of the Cloning Operator: Synator

The catalogue server, equipped with the knowledge to initiate the service, utilizes
templates to describe the necessary resources. The primary function of these
templates is to facilitate the sharing and cloning of the secret, which contains the
access credentials, into the customer’s preferred namespace. This is the namespace
where the customer’s application will be executed and which needs access to the
service. To perform this task, a cloning operator, specifically the Synator, is
employed.

Operator Functionality and Resource Structuring The Synator operator
exclusively runs on the customer’s cluster. However, it’s crucial for the service
provider to understand its functionality to properly structure its resources. These
resources will be later utilized by the customer’s application. The process specifically
involves labelling the resources that the service provider anticipates to be useful
for the customer’s application. Subsequently, these resources will appear in the
Kubernetes (K8s) namespace of the customer’s application, thereby enabling
immediate access.

• The operator on the customer side operates by identifying resources labelled
appropriately.

• Upon completion of the identification, it determines the namespaces into which
the resources should be cloned.

1 - name: database -secret - binding
2 template:
3 apiVersion: v1
4 kind: Secret
5 metadata:
6 name: ’{{ registry "secret -name" }}’
7 annotations:
8 synator /sync: ’yes ’
9 synator /include - namespaces: ’{{ printf "%s,%s" (

registry " namespace ") (registry "binding - namespace ") }}’
10 stringData:

56

Implementation

11 MYSQL_ROOT_PASSWORD: ’{{ parameter "/root - password "
| generatePassword 32 }}’

12 MYSQL_USER: ’{{ parameter "/user -name" | default "
myuser " }}’

13 MYSQL_PASSWORD: ’{{ parameter "/user - password " |
generatePassword 32 }}’

14 MYSQL_DATABASE: ’{{ parameter "/ database -name" |
default "mydb" }}’

15 MYSQL_HOST: ’{{ registry "host" }}’
16 MYSQL_PORT: ’{{ printf "%s" (registry "port ") }}’
17 MYSQL_HOST_PORT: ’{{ printf "%s:%s" (registry "host

") (registry "port ") }}’

Listing 6.4: Example of catalogue resource template as secret implementing the
synator label

Resource Cloning and Namespace Identification These namespaces are
detailed within the label itself, allowing for pre-entry by the service provider at the
time of resource creation. As this information can vary, it is stored as a register
value within the namespace. This value is populated priorly by a value derived
from the parameters of the API endpoint request.

6.2.3 Namespace Configuration
The Catalog Server relies on the concept of namespaces within the K8s cluster. A
namespace is a virtual environment that provides a level of isolation and resource
management within the cluster. When a PUT request is received by the Catalog
Server via the REST API, it automatically creates the corresponding namespace
based on the provided context. The context includes information about the desired
namespace name, allowing for the proper organization and segregation of resources
within the cluster.

The namespace configuration is crucial for ensuring the proper deployment and
management of resources. Each service instance and service binding is associated
with a specific namespace, ensuring that the resources are deployed and managed
within the designated environment. The Catalog Server validates the namespace
specified in the PUT request and ensures its existence within the K8s cluster. This
ensures that resources are deployed in the correct namespace and are accessible to
the corresponding service instances and service bindings.

1 {
2 " service_id ": " superdb 01",
3 " plan_id ": " superdb 01-demo",
4 " context ": {

57

Implementation

5 " namespace ": "customer -3038488c-3d4d-43c2-9800"
6 },
7 " parameters ": {
8 "secret -name": "db - secret "
9 }

10 }

Listing 6.5: Example of the body of a PUT request to /v1/service_instances

In the provided example, the PUT request body includes the service ID, plan ID
and the desired namespace within the context. Additionally, it specifies parameters
relevant to the request, such as the name of the secret binding.

The Catalog Server’s ability to seamlessly integrate with K8s and leverage the
OSBAPI protocol empowers organizations to effectively manage services within
their K8s clusters. By utilizing the ServiceBrokerConfig resource and the associated
CRD, administrators can configure the catalog, templates and bindings to suit their
specific needs. This flexibility enables the seamless deployment and management
of services, ensuring optimal utilization of resources and efficient provisioning.

In summary, the Catalog Server acts as the central hub for managing services
within a K8s cluster, leveraging the OSBAPI protocol to deliver comprehensive
service management capabilities. Its integration with K8s, combined with the
configurability offered by the ServiceBrokerConfig resource, provides organizations
with the necessary tools to orchestrate services effectively. By facilitating the
creation, configuration and management of services, the Catalog Server plays a
critical role in streamlining operations and enabling organizations to make the most
of their K8s environments.

6.3 Limitation of the original specifications
The implementation of our catalogue server is based on the ’Couchbase Service
Broker’, which adheres to the original OSBAPI (Open Service Broker API) speci-
fications. While these specifications served their purpose in a local environment,
they exhibit certain limitations when it comes to multi-user support and robust
security mechanisms. This section aims to highlight these limitations and explore
potential solutions.

6.3.1 Lack of Multi-User Support
The original OSBAPI specifications were primarily designed for environments where
an OSBAPI service broker operates within its own controlled setting. However, in
practical scenarios involving multiple users, these specifications fall short. Currently,
there is no mechanism to differentiate between individual users and access control

58

Implementation

is limited to distinguishing between authorized and unauthorized users. This lack
of multi-user support poses challenges in environments where fine-grained access
control and user-specific privileges are required.

6.3.2 Static Tokens and Limited Authorization
In the existing implementation, the API tokens used for authentication and au-
thorization are static. Once a user possesses a valid token, they gain access to all
protected APIs, without any further differentiation or granular permissions. This
approach lacks the ability to recognize individual users and their associated roles,
resulting in a binary authorized/unauthorized distinction. Furthermore, if an API
token is intercepted, it can lead to unauthorized access and potential financial
damage.

6.3.3 Security Challenges in a Distributed Environment
The original specifications suggest two methods for secure access to protected
APIs: HTTP basic authentication or HTTP bearer token. However, HTTP basic
authentication is not recommended in distributed environments due to the potential
interception of requests. As a result, the preferred method is to use bearer tokens.
While this offers a more secure option, it introduces additional challenges, such as
token management, token issuance and maintaining associations between tokens
and users.

6.3.4 Need for a Centralized Authentication and Autho-
rization Server

To address the limitations mentioned above, our research has shifted towards
a solution involving a centralized authentication and authorization server. By
implementing this server, we can introduce user recognition, role-based access
control and fine-grained permissions. This section aims to provide an overview
of the proposed solution, highlighting its benefits and its adherence to industry
standards.

6.3.5 Proposed Solution: Centralized Authentication and
Authorization Server

In our pursuit of an improved security mechanism, we have turned to the OIDC
(OpenID Connect) standard. The OIDC standard offers a robust framework
for implementing authentication and authorization in distributed systems. By

59

Implementation

leveraging OIDC, we can establish a centralized authentication and authorization
server that provides enhanced security features and user-centric access control.

By adopting a centralized authentication and authorization server, we can
overcome the limitations of the original specifications. This approach offers several
benefits, including:

• User Identity Management: The centralized server enables the manage-
ment of user identities, including authentication and user-specific information.

• Role-Based Access Control: With the introduction of the centralized
server, we can implement role-based access control, allowing for fine-grained
permissions based on user roles and responsibilities.

• Secure Token Issuance: The centralized server can handle token issuance,
ensuring that each user is assigned a unique and secure token.

• Reduced Token Management Overhead: With a centralized server, the
client no longer needs to store and manage thousands of individual tokens
associated with multiple catalogue servers. Instead, a single token from the
centralized server provides access to the necessary resources.

• Enhanced Security: The adoption of OIDC and the centralized server
approach improves the overall security of the system, reducing the risk of
unauthorized access and potential financial losses.

6.3.6 Integration with the Catalogue Server
The proposed solution involving a centralized authentication and authorization
server would seamlessly integrate with the existing catalogue server. The catalogue
server would communicate with the centralized server during authentication and
authorization processes, verifying user identities, roles and permissions before
granting access to protected APIs.

The original OSBAPI specifications, while suitable for local environments, lack
support for multi-user scenarios and robust security mechanisms. By exploring
alternative solutions, such as a centralized authentication and authorization server
based on the OIDC standard, we can address these limitations and provide a more
secure and scalable system. The proposed solution offers benefits such as user
recognition, role-based access control, reduced token management overhead and
enhanced security. The integration of the centralized server with the catalogue
server ensures a seamless authentication and authorization process. Through these
enhancements, we aim to create a more comprehensive and secure environment for
multi-user access to the catalogue server.

60

Implementation

6.4 Liqo Technology Integration
The inherent capacity of the proposed model, which has been elucidated upon in our
previous discussions, is majorly anchored upon the integration of Liqo technology.
This amalgamation is a strategic maneuver, deliberately orchestrated with a view
to bridging the latent disconnect between the provider’s cluster and that of the
client. This effectively enhances the operational capabilities of the catalog server,
as well as broadens the scope of service delivery.

6.4.1 Unraveling the Operational Framework
The operational blueprint upon which Liqo runs is a captivating one that merits
due attention. Let’s picture a service that at first glance seems to be local to the
catalog server. However, upon more careful scrutiny, one realizes that this service
has been remotely fashioned within the client’s cluster. This smartly executed
process leverages the power of Liqo technology, demanding the implementation
of some very specific measures. The outcome is the virtual creation of a cluster,
defined by a singular node that distinctly portrays the client’s cluster with which
peering was initiated.

On the surface, this newly-conceived virtual cluster bears no apparent deviation
from a typical cluster. However, it is this uniformity that plays a pivotal role in
ensuring the smooth operation of the "Couchbase Service Broker" even under these
conditions. It is noteworthy that the original service broker continues its operation
within its cluster, but with a key twist: it is explicitly instructed about the specific
K8s namespace where the requisite resources are meant to be instantiated.

6.4.2 Unpacking the OSBAPI Protocol and Context Speci-
fication

Before we proceed, it’s pertinent to revisit the specifics of the OSBAPI protocol
we examined earlier. You may recall that amongst the two potential PUT requests,
there exists a JSON field tagged ’context’ within the body of the request. This
ostensibly trivial parameter plays a critical role within the service broker developed
by Couchbase. Encapsulated within this ’context’, we discover another parameter
known as the "namespace". This parameter essentially guides the server in deciding
the suitable namespace within which resources are to be created.

Here’s a quick run-through of how it works: the server merely requires the
referenced namespace to pre-exist and be available within the cluster. Once this is
confirmed, the server is at liberty to create resources within this namespace. It is
at this juncture that Liqo technology swings into action. With the namespace in

61

Implementation

place, the catalog server is enabled to create a Liqo resource within it, referred to
as the Namespace Offloading.

6.4.3 Understanding Namespace Offloading and Resource
Direction

The creation of a Namespace Offloading is essentially a command to Liqo, instructing
it to direct or offload resources deployed within it to a remote cluster that has
previously been peered with. It is important to underscore that offloading must
be restricted to a particular remote cluster. Absence of this restriction could
potentially lead to each cluster that has been peered with the cluster provider
offloading resources. This could result in a service meant for a specific client ending
up in a different user’s cluster, an eventuality that we are determined to evade.

To counteract this possibility, Liqo provides a feature known as "Cluster selector"
label for Namespace Offloading. This allows us to specifically designate the cluster
ID to which offloading is to be performed. As such, when a request is made to
create resources for a certain service, the namespace name is specified within the
request. This ensures the precise identification of the client cluster to which the
resources are to be deployed.

6.4.4 Significant Modification in the Original Design
The described operational behavior necessitates a marked modification in the
original design of the Couchbase service broker. It calls for the inclusion of a
logic that informs the catalog server (which now assumes a new role) about the
correlation between the clusterID and the user. This starts with the introduction of
a feature into the catalog server, which is not catered for in the standard OSBAPI.
This feature is the creation of a Liqo peering. To accomplish this, we introduce the
following protected API:

1 POST "/ peering "

The body of this API is structured to encapsulate all the necessary data for
Liqo peering: cluster id, cluster name, authentication URL and the authentication
token. In the grand scheme of things, some fields have a critical role: offloading
policy and prefix namespace.

To gain a deep understanding of their function, we need to delve into the
behavior of the catalog server when this specific endpoint is invoked. On its call,
the server initially verifies the identity of the user attempting to initiate the peering.
By inspecting the security token sent, the server infers the user ID and proceeds
with the initiation of the peering.

62

Implementation

6.4.5 Introduction of Database: A Major Paradigm Shift
The introduction of a database marks a significant departure from the Couchbase
Service Broker. This database stores vital information such as the association
between cluster ID and user ID, effectively linking a specific peering to a particular
user ID. While the Couchbase’s service broker also retains static information, it is
reliant on K8s structures and the secrets it directly creates. This method, albeit
straightforward and effective, necessitates constant calls to the cluster to retrieve
resources. In the absence of knowledge of the specific namespace to search, this
process could become notably more complex and potentially resource-intensive.

By bringing a database into the picture, the process of searching and integrating
with existing code is greatly simplified. The catalog server logs the user ID, peering
information and the association with a set of namespaces in the database.

Sequence of Creation for Namespace and Peering

However, the creation of the namespace isn’t instantaneous as the process mandates
that several steps be carried out in a particular sequence:

1. Creation of peering

2. Creation of the namespace

3. Creation of the offloading namespace linked with the cluster ID of the previ-
ously established peering

Despite these operations being sequential and dependent, they are time-consuming.
As such, the catalog server delegates the entire series of operations to a separate
thread, which records the status in the database. This strategy leverages an already
present and inherently thread-safe component. The presence of ’ready’ fields for
peering and namespace, coupled with the ’error’ field, provides a detailed status of
the overall progress of the peering operation.

Given the asynchronous nature of this operation, the user receives the ID of
the peering request made, linked to the specific namespace to be created, upon
calling this specific API. To monitor its progress, a simple yet effective solution
was implemented in the form of a REST API endpoint on the catalog server which
is useful for polling the status. The protected API endpoint is as follows:

1 GET "/ peering /:id"

The server first verifies if it can provide the information to the requesting user.
It then fetches the overall status of the request associated with the ID from the
database. For it to be fully ready, both the peering and namespace creation must

63

Implementation

be completed. If an error occurs at either phase, the API response will reflect the
error detail and ’not ready’ status. If the entire operation is successful, the real
name of the namespace created by the catalog server is retrieved.

In the peering request, an optional field, known as "prefix namespace", can be
defined. This field acts as a prefix for the namespace name that will be returned.
However, the actual name is generated by the catalog server based on the cluster ID
and the user ID. This random composition is necessary to create a namespace that
is unique within the provider’s cluster and potentially unique within the client’s
cluster as well.

6.4.6 Liqo’s Role in Namespace Creation
Liqo plays a substantial role in namespace creation. With namespace offloading,
the server can abstract the remote namespaces, making them appear as if they are
locally available. This unique capability allows us to implement Liqo’s innovative
namespace offloading strategy. In this scenario, namespaces created are actually
intended for remote clusters and the peering process is implemented via the use of
the Catalog API.

6.4.7 Namespace and Resource Deployment
Once created, the namespace is prepared for resource deployment. The Couchbase
Service Broker requires certain information about the client cluster. To achieve this,
the OSBAPI protocol is slightly extended to provide all the necessary information.
Specifically, an API endpoint is introduced to notify the catalog server when a
service instance is being created in the cluster. This service instance is created
with a PUT request to the broker, using the following endpoint:

1 PUT "/v2/ service_instances /: instance_id "

6.4.8 Service Instance Creation
In the request body, the field ’context’ is used to specify the namespace in which the
service instance creation occurs. The catalog server checks whether the namespace
is associated with a specific user in the database and then verifies if the namespace is
ready. If it is, the namespace name is replaced with the real name in the provider’s
cluster. This way, the broker continues with the resource creation as if they were
to be deployed within the provider’s cluster, oblivious to the fact that they are
being offloaded to the client’s cluster. The resources created in this manner can be
viewed through Liqo’s K8s APIs as if they were present in the provider’s cluster.

64

Implementation

In summary, the integration of Liqo technology with the Couchbase Service
Broker in the context of OSBAPI provides a compelling example of a broader theme:
how technology can transcend the boundaries of traditional operational constraints,
connecting distinct, distributed systems into a seamless, virtual construct. Liqo
offers an exceptional platform for facilitating this process, bringing together various
clusters and broadening the scope of capabilities in a distributed and scalable
manner.

6.5 Elaboration on the Security Configuration

The structure of the implementation was thoughtfully devised to ensure optimal
security. Initially, the implementation was built around a standard protocol that
inherently provided a level of security. However, this was only the first layer of the
security strategy. The mechanisms involved simple bearer tokens or username and
password, both transmitted via HTTP requests to the API.

Although these approaches are suitable in a closed and isolated environment,
they can show significant weaknesses in a distributed model, as the one our
implementation is based on. A simple token could be intercepted and reused
unauthorizedly and the use of username and password could potentially lead to
security risks.

6.5.1 Adapting the Bearer Token Mechanism

The implementation in question extends the bearer token mechanism. Instead of
a permanent bearer token, as per the original standard, the revised mechanism
employs a temporary token. This approach significantly mitigates the risk of
leakage or misuse of a ’passkey’ to the catalogue server, ensuring optimal security.

6.5.2 OpenID Connect (OIDC) Protocol

The OpenID Connect protocol was employed to enhance the security model. This
modern, industry-standard protocol allows clients to verify the identity of the
end-user based on the authentication performed by an authorization server.

OIDC is essentially a simple identity layer built on top of the OAuth 2.0 protocol.
It enables clients to verify the identity of an end-user based on the authentication
performed by an authorization server and to obtain basic profile information about
the end-user in a secure and REST-like manner.

65

Implementation

Key Features of the OIDC

OIDC boasts the following key features that make it an ideal choice for our security
implementation:

• Standardized: It uses web-friendly JSON-based identity tokens (JWTs) with
a broad industry support.

• Secure: Identity data is carried in the token, reducing the need for multiple
calls to the server.

• Flexible: It supports a range of applications, including mobile apps, browser-
based Single Page Applications (SPAs) and traditional web apps.

• Interoperable: It can smoothly operate with any system that supports HTTP
and JSON.

6.5.3 Keycloak: The OIDC Implementation
Keycloak is an open-source Identity and Access Management solution aimed at mod-
ern applications and services. It primarily provides mechanisms for authentication,
single sign-on and authorization.

Keycloak stands out for its ability to secure modern applications and services
with little to no code. Some of its main features include:

• User Authentication: Keycloak can handle user authentication, including
single sign-on (SSO), two-factor authentication (2FA) and password policies.
It can also integrate with third-party identity providers such as Google and
Facebook.

• User Federation: Keycloak can federate external user databases. It supports a
variety of providers like LDAP and Active Directory and can also work with
custom user storage.

• Authorization Services: Keycloak handles centralized authorization policies
and decision making, which applies even in federated environments.

• Security Token Service: Keycloak can issue tokens for applications to use. It
supports standard protocols such as OpenID Connect and SAML.

In our security model, Keycloak plays an integral role as the server that truly
implements the security configuration. Acting as the OIDC authorization server, it
is contacted by the customer to obtain the token. Keycloak ensures that the login
process is secure and that the token provided is temporary, thereby fulfilling the
desired extension of the bearer token mechanism we previously discussed.

66

Implementation

Keycloak in the Marketplace and Dashboard Implementation

Keycloak, along with the OIDC protocol, has been significantly useful in imple-
menting the security mechanism for the dashboard through the Marketplace. The
ability to login through any registered client allows third-party entities to interact
on behalf of the logged-in user. This is precisely how the Marketplace operates,
promoting seamless interaction and enhanced security.

Keycloak serves the dual purpose of not only providing the necessary security
layer but also streamlining the user interaction process. Its ability to work with
OIDC and facilitate secure token-based user authentication makes it a critical
component of our security framework.

6.6 The Marketplace
The final component of this thesis implementation is the ’Marketplace’ – a central
platform bridging the gap between demand and supply. It is a stage where service
providers can showcase and promote their services, while potential customers can
discover the most suitable solutions for their specific needs. These needs can be
both technical and commercial in nature.

6.6.1 Platform Development
The Marketplace platform is developed as a Single Page Application (SPA) using
ReactJS. Alongside, a backend was developed using GoLang, serving as a REST
API server. These two components together form the Marketplace. As previously
stated, this platform contacts Keycloak for user authentication.

6.6.2 User Interface and Experience
Upon accessing the Marketplace, the user is prompted to choose the action they
wish to perform: either search for a service or offer one. Selecting the first option
allows the user to view all registered catalogues, while the second guides the user,
post-login, through the process of adding their catalogue server to the Marketplace.

Login and Catalogue Server Registration

The login phase redirects the user to the authentication server (Keycloak in our
case), where an authentication token is obtained. This token is then used to contact
the Marketplace backend server, which further verifies the token at the Keycloak
server.

Subsequently, information about the catalogue server to be registered is obtained.
It should be noted that users have the option to register their own custom catalogue

67

Implementation

Figure 6.2: marketplace dashboard home page

server (assuming it adheres to the expanded version of the OSBAPI specifications)
or use the one created for this thesis work.

Figure 6.3: Marketplace dashboard catalog registration form

Following the collection of data about the catalogue server, security configuration
information is provided and registration is carried out on the OIDC authentication
server, i.e., Keycloak. Reachability and protected APIs functionality is confirmed
via a token issued by the agreed OIDC server.

68

Implementation

Figure 6.4: Marketplace dashboard catalog registration, security configuration

Exploring the Catalogue

Once registered, other users can explore the catalogue to find the service that best
suits their needs. Detailed information, including available plans, hosting options
and relevant details, are displayed. These are directly related to the policy that
will be adopted for offloading the service with Liqo. Accordingly, the service can
be:

• Maintained locally in its own cluster (where Liqo will offload all resources to
the customer’s cluster)

• Maintained remotely (where Liqo will adopt a ’Local’ offloading policy to keep
all resources on the origin cluster, i.e., the provider’s cluster)

• Given a hybrid function, where only certain resources, as determined by the
service provider, will be hosted by the customer, while others will remain on
the provider’s cluster

6.6.3 Service Deployment
After the purchase, the actual deployment of the service can begin. The process
emulates a ’wizard’, guiding the user through the deployment and creation of

69

Implementation

Figure 6.5: Marketplace dashboard service details

resources in a step-by-step manner.

Prerequisites

Firstly, the user is prompted to verify the prerequisites, including a K8s cluster,
Liqo and the cloning operator: Synator. The latter was specifically implemented
to allow the automatic copying of the secret containing service access credentials
into the client application’s namespace.

Initiating Liqo Peering

Next, information for starting Liqo peering between the service provider and
the customer’s cluster is requested. The Marketplace then begins pulling on the
provider’s catalogue server endpoint about the peering. Once the namespace related
to the deployment being done is obtained, the next operation is unlocked.

70

Implementation

Figure 6.6: Marketplace dashboard deployment requirements

Service Creation

Then, information for creating the service and, if necessary, the name of the secret
to which the client application will refer to access the service credentials is requested.
Similar to the previous step, the Marketplace sends a request to the endpoint of
the catalogue server and, given the operation ID, starts pulling until the operation
is successful.

Binding and Finalization

The last step involves binding and entering all necessary information required by
the provider. Subsequently, the Marketplace replicates the same requesting and
polling behaviour as before, then directs the user to the final page, indicating the
name of the namespace they will find in their cluster with any resources related to
the deployed service. Note that the resources found depend on the chosen hosting
policy and thus, in the case of opting for completely remote hosting, no resources
will be found in that namespace.

At the end of this procedure, the customer will have a fully functional application
that can connect to the purchased and deployed service through the Marketplace
platform.

71

Implementation

Figure 6.7: Marketplace dashboard Liqo peering information form

72

Implementation

Figure 6.8: Marketplace dashboard service creation information form

Figure 6.9: Marketplace dashboard deployment completed

73

Chapter 7

Measurements

In this chapter, we examine the performance of our model implementation, devel-
oped in the previous chapter, through a series of tests. These tests were performed
in a local environment, implying that the service-provider cluster and the customer
cluster were both implemented as single node clusters using KIND, which runs on
a local machine in Docker. It is worth mentioning that in a real-world environment,
the data may be considerably affected by higher latencies.

7.1 Benchmarking
To gauge the efficiency of our catalogue server implementation, we simulated the
entire procedure from purchase to deployment. Specifically, we measured the time
taken by our catalogue server implementation for the peering, service creation and
binding phases. In order to ascertain any significant variations, the operations
leading to a complete deployment were also performed on a customer cluster with
which peering had been carried out previously. Two such tests were conducted.

7.1.1 Benchmark Results
The results, as shown in the table 7.1, indicate that the peering phase is faster
when the cluster has previously been peered. This is because the same foreign
cluster is reused, leading to only the creation of the namespace and namespace
offloading within this time frame.

Regarding the service creation phase, it is important to note that the duration
is highly dependent on the nature of the resources to be created. In this particular
test case, a deployment was created with just a single replica of the MySQL Docker
image. There was no significant variation in this phase between a previously peered
cluster and one that was not.

74

Measurements

Peering [s] Service
Creation [s]

Binding Phase
[s]

Initial Peering 10.538720 4.422730 0.000160
Already Peered

Test #1
6.367760 4.385800 0.000120

Already Peered
Test #2

4.148930 4.391170 0.000110

Table 7.1: Duration of various asynchronous operations by the catalogue server.

In contrast, the binding phase was considerably faster than the other two
operations. This can be attributed to the specific design of our catalogue server
implementation. Even though the specifications allow for the binding operation to
be asynchronous, our implementation does not implement this feature. Instead, all
resources necessary for this phase are created during the API call, since they are
supposed to be fast to deploy resources. This includes the K8s service for displaying
the database service pod and the secret containing credentials and data for access.

7.1.2 Resource Consumption

In terms of resource consumption, the memory usage gradually increased over time
but ultimately stabilized at a very low and constant value, as depicted in Figure 7.1.
CPU consumption, on the other hand, exhibited occasional peaks, primarily during
the peering phase. Despite these peaks, the overall CPU consumption remained
remarkably low.

Figure 7.1: Temporal trends in CPU and memory consumption by the service
catalog pod.

75

Measurements

The relatively low resource consumption by the service catalogue can be explained
by its role as an orchestrator in resource creation. The heavy lifting in terms of
resource consumption is delegated to the newly created resource pods, since K8s is
responsible for actual resource creation.

In conclusion, the implemented model has produced satisfactory results, both in
terms of request processing times and resource consumption. These results validate
our implementation approach and suggest that the model is ready for deployment
in larger-scale real-world scenarios.

76

Chapter 8

Conclusions

This thesis project has indeed accomplished its initial objective, which was to
establish a model tailored to specified requirements. Despite its raw state, with
multiple areas for potential improvement, the model fosters a viable and beneficial
basis for collaboration among numerous entities. The ultimate goal is to acquire
beneficial services within their cloud environments.

8.1 What’s next?
The model, even if functional, still has a considerable scope for refinements and
enhancements, which can greatly add to its value and utility.

Host its service requested

Service
provider

Hosting
provider

Sell and buy service

Access to the service

Customer

Figure 8.1: Proposed operational scheme with the inclusion of the hosting provider

As a preliminary step, it is suggested to introduce a new actor into the framework.
To elaborate, the service provider so far is considered as the entity owning the
source code of the software service intending to commercialize it and the customer

77

Conclusions

as the one desiring the service for internal purposes within his cloud environment.
The new actor introduced can be labeled as the ’hosting provider’.

This entity is envisaged to offer hosting space for the deployed purchased service.
The hosting provider can either be chosen by the customer or the service provider.
The addition of this third party could bring forth several benefits, especially in
terms of resource utilization. For instance:

• The service provider, by delegating this potentially burdensome task to the
hosting provider, can solely focus on the commercialization of the service
without the concern of providing and managing the required space in its
cluster.

• The customer, on the other hand, could potentially host part of his application
needing the service on this hosting provider’s infrastructure.

Certainly, these propositions should be analyzed in-depth, yet they could be
presented as alternative options within the model. This addition not only enriches
the model but also offers more flexibility and options to the parties involved.

78

Bibliography

[1] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John
Wilkes. «Borg, Omega, and Kubernetes». In: ACM Queue 14 (2016), pp. 70–
93. url: http://queue.acm.org/detail.cfm?id=2898444 (cit. on p. 4).

[2] Spotify Case Study | Kubernetes. url: %5Curl%7Bhttps://kubernetes.io/
case-studies/spotify/%7D (cit. on p. 5).

[3] CNCF. The New York Times. url: https://www.cncf.io/case-studies/
newyorktimes/ (cit. on p. 5).

[4] Kubernetes: Production-Grade Container Orchestration. url: https://kube
rnetes.io/ (cit. on p. 5).

[5] Project Calico. Calico - Networking and Network Security for Containers.
url: https://www.projectcalico.org/ (cit. on p. 11).

[6] CoreOS. Flannel - Network Fabric for Containers. url: https://github.
com/coreos/flannel (cit. on p. 11).

[7] Weaveworks. Weave - Simple, resilient networking and monitoring for con-
tainers and microservices. url: https://www.weave.works/ (cit. on p. 11).

[8] Cilium. Cilium - Network and API-Aware Security for Containers. url:
https://cilium.io/ (cit. on p. 11).

[9] Kubernetes. DNS for Services and Pods. url: https://kubernetes.io/
docs/concepts/services-networking/dns-pod-service/ (cit. on p. 11).

[10] Kubernetes Documentation. 2023. url: https://kubernetes.io/docs/
(cit. on p. 12).

[11] Kubernetes Blog. 2023. url: https://kubernetes.io/blog/ (cit. on p. 13).
[12] Liz Rice and Michael Hausenblas. Kubernetes Security. O’Reilly Media, 2021

(cit. on p. 14).
[13] Using RBAC Authorization. url: https://kubernetes.io/docs/referenc

e/access-authn-authz/rbac/ (visited on 06/14/2023) (cit. on p. 14).

79

http://queue.acm.org/detail.cfm?id=2898444
%5Curl%7Bhttps://kubernetes.io/case-studies/spotify/%7D
%5Curl%7Bhttps://kubernetes.io/case-studies/spotify/%7D
https://www.cncf.io/case-studies/newyorktimes/
https://www.cncf.io/case-studies/newyorktimes/
https://kubernetes.io/
https://kubernetes.io/
https://www.projectcalico.org/
https://github.com/coreos/flannel
https://github.com/coreos/flannel
https://www.weave.works/
https://cilium.io/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/
https://kubernetes.io/blog/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/

BIBLIOGRAPHY

[14] Kubernetes Scaling: The Comprehensive Guide to Scaling Apps. https://
bluexp.netapp.com/blog/cvo-blg-kubernetes-scaling-the-comprehe
nsive-guide-to-scaling-apps. (Accessed on 06/16/2023) (cit. on p. 14).

[15] Deploying Microservices on Kubernetes | by Mehmet Ozkaya | aspnetrun |
Medium. https://medium.com/aspnetrun/deploying-microservices-on-
kubernetes-35296d369fdb. (Accessed on 06/16/2023) (cit. on p. 16).

[16] Liqo Documentation. Liqo Documentation. 2020. url: https://doc.liqo.
io/ (cit. on p. 18).

[17] Open Service Broker API. url: https://www.openservicebrokerapi.org/
(cit. on pp. 23, 24).

[18] Open Service Broker API Specification. 2023. url: https://github.com/
openservicebrokerapi/servicebroker/blob/v2.16/spec.md (visited on
06/29/2023) (cit. on pp. 24, 26, 27).

[19] Open Service Broker API Use Cases. 2023. url: https://www.openservice
brokerapi.org/use-cases.html (visited on 06/29/2023) (cit. on p. 26).

80

https://bluexp.netapp.com/blog/cvo-blg-kubernetes-scaling-the-comprehensive-guide-to-scaling-apps
https://bluexp.netapp.com/blog/cvo-blg-kubernetes-scaling-the-comprehensive-guide-to-scaling-apps
https://bluexp.netapp.com/blog/cvo-blg-kubernetes-scaling-the-comprehensive-guide-to-scaling-apps
https://medium.com/aspnetrun/deploying-microservices-on-kubernetes-35296d369fdb
https://medium.com/aspnetrun/deploying-microservices-on-kubernetes-35296d369fdb
https://doc.liqo.io/
https://doc.liqo.io/
https://www.openservicebrokerapi.org/
https://github.com/openservicebrokerapi/servicebroker/blob/v2.16/spec.md
https://github.com/openservicebrokerapi/servicebroker/blob/v2.16/spec.md
https://www.openservicebrokerapi.org/use-cases.html
https://www.openservicebrokerapi.org/use-cases.html

	List of Tables
	List of Figures
	Acronyms
	Introduction
	The issue
	Thesis structure

	Kubernetes
	History
	Kubernetes Architecture
	Control Plane
	Nodes

	Kubernetes Fundamentals
	Resources
	Networking

	Custom Resources, CRDs and Operators
	Custom Resources in Kubernetes
	CustomResourceDefinitions (CRDs)
	Kubernetes Operators

	Security
	Service account
	Role and ClusterRole

	Managing Load and Scaling
	Vertical and Horizontal Scaling
	The Concept of Replicas
	Microservices Management

	Liqo
	Introduction
	Concepts and Fundamental Mechanics
	Discovery
	Peering

	Main components
	Virtual Kubelet
	Foreign Cluster
	Virtual Node
	Namespace Offloading

	Open Service Broker API
	Overview
	Specifications
	Use Cases
	Concepts
	Catalog
	Service
	Plan

	Operations
	Provisioning
	Updating
	Deprovisioning
	Binding
	Unbinding

	Design
	Contextual Overview
	Potential Use Case
	Overview of the Challenges
	Mechanisms of Transaction
	The Essentiality of Control over Services and Data
	Ownership of Services: A Provider's Perspective
	Data Privacy: A User's Perspective

	Communication and Deployment
	The Customer-centric Model
	The Service Provider-centric Model
	The Hybrid Model: A Comprehensive Approach

	Liqo: An Equitable Selection
	Service to Application Binding Automation

	Implementation
	Elements of the System
	Customer Elements
	Service Provider Elements
	Common Elements: Liqo

	Catalog Server
	Deployment within the K8s Cluster
	A CRD for configuration: ServiceBrokerConfig
	Namespace Configuration

	Limitation of the original specifications
	Lack of Multi-User Support
	Static Tokens and Limited Authorization
	Security Challenges in a Distributed Environment
	Need for a Centralized Authentication and Authorization Server
	Proposed Solution: Centralized Authentication and Authorization Server
	Integration with the Catalogue Server

	Liqo Technology Integration
	Unraveling the Operational Framework
	Unpacking the OSBAPI Protocol and Context Specification
	Understanding Namespace Offloading and Resource Direction
	Significant Modification in the Original Design
	Introduction of Database: A Major Paradigm Shift
	Liqo's Role in Namespace Creation
	Namespace and Resource Deployment
	Service Instance Creation

	Elaboration on the Security Configuration
	Adapting the Bearer Token Mechanism
	OpenID Connect (OIDC) Protocol
	Keycloak: The OIDC Implementation

	The Marketplace
	Platform Development
	User Interface and Experience
	Service Deployment

	Measurements
	Benchmarking
	Benchmark Results
	Resource Consumption

	Conclusions
	What's next?

	Bibliography

