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Abstract

While machine learning is making significant advances in recent years, the problem of its
theoretical understanding still remains an open challenge. One key aspect is the ability to
predict the generalization of learning algorithms’ predictions, which is crucial for assessing
their reliability in various domains such as medicine, biology, finance, and signal processing.
Previous studies in supervised learning have considered, in the vast majority of cases, Gaus-
sian distributed covariates. However, in practical applications of machine learning, the data
distribution may diverge from Gaussianity in many ways, such as fluctuations, heavy-tails or
structured patterns. This work aim to investigate, employing the heuristic replica method
from statistical physics, the supervised learning of generalized linear models when the co-
variates are distributed according to a superstatistical model, meaning that each covariate is
drawn from a Gaussian distribution with random covariance following a generic probability
distribution ρ. The regime of our interest is the one of finite sample complexity, which is the
ratio of sample size with respect to the covariates’ size, with both of them taken infinitely
large. The choice of ρ can affect drastically the resulting covariates’ distribution, which may
present heavy-tails or even infinite variance. In particular we derive equations to predict the
minimal estimation error that is achievable by any algorithm given the data, studying the
Bayes optimal setting for this problem. We compare these results to the ones of empirical
risk minimization. We then compute the leading order of the estimation error curves with
respect to the sample complexity, showing that it does not depend on the choice of ρ and
it is compatible with the Gaussian covariates’ case. Our findings align with the Gaussian
universality principle, which has been proven rigorously for several problems, stating that
non-Gaussian distributed data can be effectively described by Gaussian distributions with
matching first two moments.
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1 INTRODUCTION

1 Introduction
In recent years, machine learning and artificial intelligence have made significant advances,
leading to remarkable achievements in a wide range of applications. However, the theoretical
understanding of the performance of such algorithms remains an open challenge, especially
in high-dimensional contexts involving large datasets and a high number of parameters.
Establishing the reliability and improving the implementation of these methods requires a deep
understanding of their theoretical limits. Over the last few decades, many aspects of inference
and learning problems have been investigated, including regression, classification and matrix
factorization. While exact results exist for some inference and learning problems [43, 12], part
of the research in this field rely on heuristic tools from statistical physics, such as the replica
method [32, 38]. Despite its non-rigorous nature, the replica method has demonstrated its
reliability whenever analogous exact results are available [6, 7, 18].
This work follows this research direction, with a particular focus on generalized linear models
(GLMs) [36, 30]. Introduced as extensions of linear models, GLMs offer a simple formulation
and high versatility, making them applicable in various fields such as statistics, communication,
signal processing and more [47, 13, 8, 44]. In GLMs, given data composed of predictive features,
referred to as covariates, and response variables, known as labels, each label is obtained as a
scalar activation function (which can be nonlinear) of a linear combination of the covariates.
Learning a GLM involves estimating the weights of this linear combination used to generate the
labels. GLM can be also seen as a single node of a neural network. An illustrative representation
of GLM can be found in fig. 1.

Figure 1: Illustration of a GLM. The covariates are xi = (Xi1, . . . , Xid)
⊤ and the labels yi i ∈ [n],

the weights are θl, l ∈ [d] (drawn from pθ) and the activation function is σξ.

A crucial assumption in many previous studies has been that the covariates are distributed
according to a Gaussian, or at least a mixture of Gaussians [33, 27, 4, 29], with few exceptions
[1, 40]. However, in real-world data, we often observe structural patterns, outliers, non-Gaussian
fluctuations, heavy-tailed distributions and in general deviations from Gaussianity [2, 42].
Therefore, it is important to study GLMs under non-Gaussian assumptions.
In this work, we employ the replica method to provide asymptotic results for the estimation
error in learning GLMs with linear and probit activation functions, relaxing the assumption
of Gaussian covariates. The framework we develop may be useful to extend our results to
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1 INTRODUCTION

different choices of activation functions. Specifically, we assume that the covariates follow a
superstatistical model [10, 9], inspired by the literature in statistical physics. In this model, the
features are drawn from a Gaussian distribution with a covariance matrix equal to ∆Id/d, where
∆ itself is a random variable. By appropriately choosing the distribution of ∆ (e.g., an inverse
gamma distribution in our work), the covariates’ distribution can exhibit heavy-tailed behavior
or even infinite variance. We are interested in the regime of proportionality between the sample
size and the covariates dimension, when both of them are infinitely large.

1.1 Motivations and related works
Our work was inspired by a recent paper [1] studying the task of classificating superstatistical
features and, similarly to it, finds its motivation in the context of Gaussian universality.
This principle implies that in numerous problem, the asymptotic performance of learning
non-Gaussian data can be effectively described by Gaussian distributed data as long as the
first two moments match. A recent work by Montanari and Saed [35], extending a previous
study [20], proved such a principle in the context of GLMs, assuming pointwise normality of
the distribution of the features (see also [16, 14]). Moreover, this universality principle has been
proven rigorously in the context of compressed sensing [34] and lasso regression [39]. Other
related works can be found in [31, 19]. However these proofs require specific assumption and
if they are not satisfied the Gaussian universality principle may break. Therefore we aim to
explore the validity of this principle for GLMs under the assumption of a superstatistical model
for the covariates, which may include distributions with heavy-tails or even infinite covariance.

1.2 Overview and our contributions
We provide an overview of the present research work. We study for the first time the problem of
supervised learning (i.e. learning data with labels) given covariates that follow a superstatistical
distribution and labels generated by a GLM. This problem is tackled by employing the replica
method from statistical physics.We first compute the best achievable estimation error for a given
dataset through Bayes optimal estimation. At a later stage we compare this optimal performance
with usual estimation approaches like empirical risk minimization (ERM) methods, in particular
when the latters are optimized. At last, to validate our results, we show the agreement between
our predictions for the error and numerical exeriments on synthetic data. The main contibutions
of our work are the following ones:

• we study the task of learning a generalized linear model with features distributed according
the aforementioned superstatistical model, aiming to evaluate its asymptotic performance,
in a general framework;

• we focus on computing the theoretical limits of this task, i.e. the best performance any
algorithm can achieve given the data, by studying the problem in the Bayes optimal setting
(see [46], [24] as examples); in particular we find explicit results for the choices of linear
and probit activation function;

• we evaluate the performance of the estimation by empirical risk minimization (ERM) in
particular for ridge and lasso regression;

• we evaluate the decay rates1 of all the learning curves for large sample complexity (number
1By decay rate we mean the leading order of the estimation error curves with respect to the sample complexity.
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2 PROBLEM SETTING

of samples divided by number of features) and show they match the case with Gaussian
covariates;

• we optimize the regression parameter λ in ridge regression and show that this achieve the
same performance as Bayes optimal evaluation even for non-Gaussian covariates.

This manuscript is organized as follows: in section 2 we define the setting of the problem, the
task to achieve and outline the main points of the methodology applied to obtain the results; in
section 3 we present the main results of this work, both the equations that allow to compute the
theoretical performance of the learning algorithms and the numerical solution of these equation,
presenting the plot of the learning curves; we then compare the results of Bayes optimal estima-
tion to the ones of optimized ERM; in section 4 we compare our results to numerical experiments,
using in particular the tool of Generalized Approximate Message Passing (GAMP) algorithms
as a way to perform Bayes optimal estimation. Finally in the appendices we present all the
detailed computations that are not included in the main sections, along with some technicalities
on replica symmetric matrix algebra, Bayes optimal setting and its implications and the choice
of the inverse gamma distribution for the superstatistical model.

2 Problem setting
The data

Consider the supervised learning problem with training data D =
{
(xi, yi) ∈ Rd × Y : i ∈ [n]

}
and with covariates xi indipendently and identically drawn from a superstatistics model:

P (x) =

∫ ∞

0

N
(
x | µ, ∆

d
Id

)
ρ(∆) d∆ = E∆

[
N
(
x | µ, ∆

d
Id

)]
(1)

where Id is the identity matrix of size d, N (x | µ,Σ) is the notation for the Gaussian distribution
with mean µ and covariance matrix Σ and ρ : R+ → R is a probability density function for ∆.
This type of model has been intensively studied by the statistical physics community [10, 9, 25, 45]
and, depending on the choice for ρ(∆), the distribution P (x) can have significantly different
properties from those of a Gaussian distribution. While the derivation of our results will keep
ρ(∆) generic, for the numerical simulations presented in this report, we will consider ∆ following
the inverse Gamma distribution ρ(x | a, b) = ba(1/x)a+1 exp(−b/x)/Γ(a), where Γ(·) denotes the
Gamma function.2 We include further details about the choice of the inverse Gamma distribution
for ρ(∆) in appendix D, where we also show in (40) that it implies power-law tails for P (x)

P (x) ∝
(
2b+ ||

√
d(x− µ)||2

)−a− d
2

.

By varying the shape parameter a and the scale parameter b, we can consider different non-
Gaussian distribution P (x), with heavy-tails or even infinite covariance. In particular, as we
also explain in D, we will consider the case ρ>(∆ | a) := ρ(∆ | a > 1, b = a − 1) with finite
∆ := E∆[∆] = 1, ∀a > 1, and ρ<(∆ | a) := ρ(∆ | a ∈ (0, 1], b = 1) with the first moment
E∆[∆] = +∞ not defined for a ∈ (0, 1]. In fig. 2 we show some examples of P (x) for d = 1.

The labels yi are generated from a generalized linear model (GLM)

yi = σξ

(
θ⊤
∗ xi

)
, i ∈ [n],

2Γ(z) =
∫∞
0 tz−1e−tdt, Re[z] > 0
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2 PROBLEM SETTING

Figure 2: P (x) for d = 1. The left plot is obtained considering ρ>(∆ | a), while the right plot
corresponds to the choice ρ<(∆ | a). Labels in the legend indicate the value of a, in particular
the label a = inf (meaning a→∞) correspond to a Gaussian P (x) = N (x | 0, 1).

where the activation function σξ : R→ R may contain randomness, here parametrized by the noise
ξ ∼ pξ(ξ), pξ : Dξ ⊆ R → R, and θ∗ ∈ Rd is a vector of indipendent and identically distributed
weights θ∗, l ∼ p∗θ(θ) ("prior" distribution), l ∈ [d]. The labels vector y = (y1, . . . , yn)

⊤ is hence
drawn from the conditioned probability distribution (called output channel or likelihood)

P ∗
Y |X(y | Xθ∗) =

∏
i∈[n]

p∗out(yi | θ⊤
∗ xi) =

∏
i∈[n]

∫
Dξ

pξ(ξ) δ(yi − σξ(θ
⊤
∗ xi)) dξ

with X ∈ Rn×d the matrix with the covariate xi as ith row (i ∈ [n]) and δ(·) the Dirac’s delta
distribution.

The task

The aim is to learn the model by reconstructing the weights vector through an estimator θ̂ in
the limit d, n → ∞, with fixed sample complexity n/d = α ∈ R, assuming that the weights θl
(l ∈ [d]) and the labels yi (i ∈ [n]) are respectively generated from some distributions pθ(θl) and
pout(yi | θ⊤xi). This scenario is often referred to as teacher-student setting, where a teacher
generates the labeled data D, drawing the weights from a target distribution p∗θ, called (teacher)
prior in this manuscript, and producing the label through an output channel p∗out (these two are
referred to as teacher distributions), while a student tries to learn the teacher model using the
data and assuming the prior to be pθ and the output channel pout (which are also called strudent
distributions).
Our choice for the estimation error is the mean square error with respect to the true weights
εest(θ̂) := d−1||θ̂− θ∗||2, which is the way we are going to evaluate the performance of differents
methods for estimating the weights θ. The main results shown in this work specifically concern
the Bayes optimal setting, in which the (student) prior distribution pθ and the output channel
pout used in the reconstruction coincide with the (teacher) ones that actually generated the true
weights and the labels, respectively p∗θ and p∗out. In this setting, the optimal estimator for the
weights in the MSE sense, i.e. the one that minimize the square error, is the Minimal Mean
Square Error (MMSE) estimator

θ̂(D) := argmin
θ

Eθ∗|D||θ − θ∗||2= Eθ∗|D [θ∗] , (2)
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2 PROBLEM SETTING

where the latter is the expected value with respect to the posterior distribution

p(θ | D) = 1

Z(D)
∏
l∈[d]

pθ(θl)
∏
i∈[n]

pout
(
yi | θ⊤xi

)
. (3)

In general cases with incomplete information (which means absence of correspondence between
teacher and student distrubutions), the estimator defined in the last equality of (2) is called mean
posterior estimator (MP), but it is not optimal unless teacher and student distributions coincide
(see appendix C.1). The study of the Bayes optimal setting allows us to compute the theoretical
limits of the learning task for a fixed teacher. In comparison, any other estimator would achieve
either worse or, at best, the same performance.
The posterior distribution (3) mantains its relevance also when an estimator different from
the MPE is used, since other estimators are linked to it. Some examples are the maximum
a posteriori estimator θ̂MAP = argmaxθ p(θ | D) and the minimal mean absolute estimator
θ̂MMA = Medianθ|D (θ | D).
Another common procedure to reconstruct the weights vector is the empirical risk minimization
(ERM), whose estimator is

θ̂(D) = argmin
θ

∑
i∈[n]

ℓ(yi,θ
⊤xi) +

∑
l∈[d]

λr(θl). (4)

The functions ℓ : R2 → R and r : R→ R are respectively called loss and regularization and their
expression can be chosen depending on the specific problem considered. The argument of the
minimization in (4) is also called empirical risk, hence the name of this procedure.
We introduce the following Gibbs measure over the weights θ:

µβ(θ | D)dθ =
1

Zβ(D)
∏
l∈[d]

exp(−βλr(θl))︸ ︷︷ ︸
pθ(θl)

∏
i∈[n]

exp
(
−βℓ

(
yi,θ

⊤xi

))︸ ︷︷ ︸
pout(yi|θ⊤xi)

dθ, (5)

where we have also defined the (unnormalised) functions pθ and pout that respectively play an
analogous role to the prior and the likelihood in (3). It is easy to see that in the limit β →∞ the
Gibbs measure concentrates around the configurations defined in (4). Hence, the ERM estimator
can be seen as a MP estimator 3 in the following sense:

θ̂ = lim
β→∞

⟨θ⟩µβ
= lim

β→∞

1

Zβ(D)

∫
dθµβ(θ | D)θ (6)

The method

It is straightforward to estabilish a connection between this learning problem and the statistical
physics of a disordered system. Consider a system with energy for the configuration θ, at fixed
disorder D, given by the following (rescaled4) Hamiltonian:

−βHD(θ) :=
∑
l∈[d]

log pθ(θl)
∑
i∈[n]

log pout
(
yi | θ⊤xi

)
,

3It is clear that, following this approach, the Gibbs measure µβ defined in (5) plays for ERM the same role of the
(student) posterior distribution (3) in MP estimation. Hence we will often refer to both of them as "posterior" for
simplicity. Moreover we will also use the common notation Z(D), droppping the subscript β, when the estimation
method is not specified.

4The factor β, proportional to the inverse of the temperature in statistical physics, has no particular meaning
in general (in particular for the evaluation of the MP estimator). Nevertheless, we choose to write it in order
to estabilish a direct connection to physics’ notation. On the contrary, for ERM we already have introduced a
parameter β and we require β → ∞ for the Gibbs measure to concentrate around the estimator. In physical
language this correspond to say that the ERM estimator is the ground state of the system we have defined.
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2 PROBLEM SETTING

the customary way for a physicist to examine the properties of such systems is to evaluate the free
energy density fD := −β−1d−1 logZ(D), where the partition function Z(D) :=

∫
dθe−βHD(θ) is

precisely the normalization of the posterior defined in (3) and in (5). In fact, the derivatives of
the free energy can give access to the average of the observables of the system, for instance the
energy, the heat capacity or the entropy.
Different specific realizations of the disorder (in our case the data D) result in statistical fluc-
tuations of the free energy density, thus it is assumed that, in the thermodynamical limit
d → ∞, n/d = α ∈ R, the self averaging property holds, i.e. the value of the free energy
density for any D concentrate around its typical value EDfD, which would simplify the study of
the asymptotic performance of the estimators.
Hence, the quantity we are interested in is 5

f = − 1

β
lim
d→∞

1

d
ED logZβ(D), (7)

often called quenched free energy density, where ED represent the average with respect to the
teacher distributions. Note that we should take the limit β → ∞ for ERM (see (6)), while we
don’t need it for Bayes optimal estimation, hence in that case we will consider β = 1.
The logarithm in the expressions in (7) can make the computation of the average hard or un-
feasible. A heuristic tool used in statistical physics to avoid this issue is the replica trick, which
shift the focus of the study from ED logZ(D) to the more tractable EDZ(D)r, r ∈ N. This
corresponds to study r replicas of the system, with configurations θ1, . . . ,θr, each drawn from
the posterior distribution (3) or (5).

The details of the replica method and the explicit computation of the free energy can be found
in appendix A.
The usual procedure during the replica computations is to write (7) as a saddle point problem
(see (14)) in the dimension d with respect to the following overlap parameters:

qab = d−1θa⊤θb, a, b = 0, . . . , r,

where we use the notation θ0 for the true weights θ∗.
The standard procedure at this point is to assume that the self averaging property holds also for
the overlaps, which concentrate around their typical as d → ∞, assuming therefore the replica
symmetric ansatz for solution of the saddle point problem:

q00 = r0 = d−1EDθ
⊤
∗ θ∗, q0a = m = d−1ED

〈
θ⊤
∗ θ

(1)
〉
1
, 1 ≤ a ≤ r,

qaa = r = d−1ED

〈
θ(1)⊤θ(1)

〉
1
, 1 ≤ a ≤ r, qab = q = d−1ED

〈
θ(1)⊤θ(2)

〉
2
, 1 ≤ a < b ≤ r,

where we use the notation ⟨·⟩k , k ∈ N, for the expectation operator with respect to the conditional
posterior distribution p(θ(1) | D) . . . p(θ(k) | D) for MP estimation or µβ(θ

(1) | D) . . . µβ(θ
(k) | D)

for ERM.
The self averaging assumption allows us to evaluate (in the thermodynamical limit) the estimation
error εest as a function of the concentrated overlaps independently from the data D:

εest(θ̂) = ED
||θ̂ − θ∗||2

d
= d−1ED

[〈
θ(1)⊤θ(2)

〉
2
− 2

〈
θ⊤
∗ θ

(1)
〉
1
+ θ⊤

∗ θ∗

]
= q − 2m+ r0

B.O.
= r0 − q, (8)

5We write the limit limd→∞ as a shorthand for limd,n→∞, n/d=α
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3 MAIN RESULTS

The last equality is true only for Bayes optimal setting, since q = m due to the Nishimori identity.
A brief proof can be found in appendix C.2.
In conclusion, the main advantage of the replica approach is that it bypasses the unfeasible
high-dimensional problem of sampling from the posterior distribution, giving direct access to the
overlap parameters, estimated through numerically solvable self-consistent equations.

3 Main results
In this section are reported the self consistent equations obtained through the replica approach
(detailed derivation in appendix A.1) for Bayes optimal estimation and empirical risk minimiza-
tion, for different choices of output channels and risk functions.
For simplicity we have chosen µ = 0 in (1) to derive our results.
The result for the parameter r0 found in (16) is generic and it applies to all cases studied, as
p∗θ(θ∗) = N (θ∗ | 0, 1):

r0 = Eθ∗ [θ∗] = 1.

For each case we also show some plots for the mean square error εest (computed solving nu-
merically the self consistent equations) at varying sample complexity, for different value of a in
ρ>(∆ | a) or ρ<(∆ | a), as defined in section 2. All results are compared to the case of Gaussian
covariates, which in the plots is indicated by the label a = inf. In fact, as discussed in appendix
D, the Gaussian case correspond to ρ>(∆ | a) in the limit a→∞.
In particular we are interested in the dependance of εest from α at large sample complexity
α ≫ 1: considering the leading term of εest = α−c + O(α−c−1), c ∈ R+, we find that in all the
studied cases the decay rate c = 1, as in the Gaussian covariates case, indipendently from the
choice of ρ(∆). We also perform a linear regression of the curves in a log-log plot and measure
the decay rate c as the slope of the fitted lines 6, in order to compare it with our prediction. The
results are reported in Table 1. 7

At a later stage we compare the theoretical performance of the MMSE estimator (i.e. Bayes
optimal eastimation) and ridge regression, after optimizing the rgression parameter λ.

3.1 Bayes optimal setting
3.1.1 Linear channel

The linear output channel corresponds to yi = θ⊤
∗ xi+σξ, where the noise ξ ∼ N (ξ | 0, 1). In this

case pout(y | z) = N (y | z, σ2). The saddle point equations coming from the replica computations
are the following:

q =
q̂

1 + q̂
, q̂ = αE∆

[
∆

∆(1− q) + σ2

]
Their detailed derivation can be found in A.2.
By solving them numerically it is possible to compute the means square error as εest = 1− q (see
(8)). In fig.3, 4, we show some results obtained for noise variance σ2 = 0.1. In particular the
plots on the right of both figures (in log-log scale) shows the behaviour of εest at large sample
complexity.

6In fact εest ∼ αc =⇒ log εest ∼ −c logα+ const.
7Note that the linear fit results strongly depends on the range of values of α and most importantly on the

precision threshold chosen for solving the self consistent equations iteratively. Hence, the value of the slopes are
presented here just as a reference and to compare them with our predictions, but they serve no other purpose.

7



3 MAIN RESULTS

a BO linear BO probit ERM ridge ERM lasso
0.3 -1.0031(6) - -1.0016(3) -

0.5 -1.012(2) - -1.0041(7) -

0.8 -1.049(6) - -1.013(2) -

1.005 -1.088(2) - -1.087(2) -1.089(2)

1.1 -1.050(2) -1.002(3) -1.050(2) -1.050(2)

3 -1.00019(4) -0.9995(2) -1.00016(3) -1.00023(4)

10 -1.00010(2) - -1.00007(1) -1.00015(3)

∞ -1.00009(2) -0.9994(2) -1.00006(1) -1.00014(2)

Table 1: Decay rates (with error) of εest at large α, i.e. the slopes from the linear regression of
the learning curves in the log-log scale (right plots of figs. 3, 4, 5, 6, 7, 8). The distribution ρ(∆)
is ρ<(∆ | a) when a < 1 and to ρ>(∆ | a) when a > 1.

Considering the leading order in εest = 1−q = q0α
−c+O(α−(c+1), c ∈ R+ and q0 ∈ R a constant,

we find that

q̂ =
α

σ2
E∆

[
∆

(
1− ∆q0α

−c

σ2
+O(α−c−1)

)]
=⇒ 1− q =

1

1 + q̂
=

σ2

α∆
+O(α−2) =⇒ c = 1

Figure 3: Estimation error in Bayes optimal setting with linear output channel at varying sample
complexity. The noise variance is σ2 = 0.1. Different colors correspond to different values for
the parameter a in ρ>(∆ | a), as stated in the legend.

3.1.2 Probit channel

The probit output channel corresponds to yi = sign
(
θ⊤
∗ xi + σξ

)
, where the noise ξ ∼ N (ξ | 0, 1).

This is a common way to generate dicotomized labels in classification problems. In this case
p∗out(y|z) = erfc

(
−yz√
2σ

)
/2, y ∈ {−1, 1}. 8 The saddle point equations coming from the replica

8erfc(x) = 2
π

∫∞
x dte−t2 is the complementary error function.
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3 MAIN RESULTS

Figure 4: Estimation error in Bayes optimal setting with linear output channel at varying sample
complexity. The noise variance is σ2 = 0.1. Different colors correspond to different values for
the parameter a in ρ<(∆ | a), as stated in the legend.

computations are the following:

q =
q̂

1 + q̂
, q̂ =

α

q
√
2π

E∆,η

[
kq(∆)

(
1 + kq(∆)2

)
e−

kq(∆)2

2 η2

η log erfc

(
η
kq(∆)√

2

)]
,

where η ∼ N (η | 0, 1) and kq(∆) :=
√
∆q/

√
σ2 +∆(1− q). Their detailed derivation can be

found in A.2.
Again we can solve these equation numerically and in fig. 5 we show some results for noise
variance σ2 = 0.1. In particular the plot on the left (in log-log scale) shows the behaviour of εest
at large sample complexity. Considering the leading order in εest = 1− q = q0α

−c +O(α−(c+1)),
c ∈ R+ and q0 ∈ R a constant, we find that

kq(∆) =

√
∆
(
1− 1

2q0α
−c
)√

σ2 +∆q0α−c
+O(α−c−1) =

√
∆

σ2

(
1− 1

2
q0α

−c

)(
1− ∆

2σ2
q0α

−c

)
+O(α−c−1) =⇒

q̂ =
α√
2π

E∆,η

[√
∆

σ2

(
1 +

∆

σ2

)
e−

∆
2σ2 η2

η log erfc

(
η

√
∆

2σ2

)]
+O(1) =⇒

1− q =

√
2π

α

(
E∆,η

[√
∆

σ2

(
1 +

∆

σ2

)
e−

∆
2σ2 η2

η log erfc

(
η

√
∆

2σ2

)])−1

+O(α−2) =⇒ c = 1,

3.2 Empirical risk minimization
In this section we show the results for the performance evaluation of the estimator (4) in solving
our task, when the teacher distributions are p∗θ and p∗out.

3.2.1 Ridge regression

Ridge regression is a method that considers the risk function composed of quadratic loss ℓ(y, z) =
(y − z)2/2 and L2 regularization r(θ) = θ2/2.9 In this section we consider a teacher model with
the usual Gaussuan prior for the weights and labels generated by a linear output channel (as

9The regularization term in (4) can be seen as the L2 norm acting on θ:
∑

l θ
2
l /2 = ||θ||2/2.
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3 MAIN RESULTS

Figure 5: Estimation error in Bayes optimal setting with probit output channel at varying sample
complexity. The noise variance is σ2 = 0.1. Different colors correspond to different values for
the parameter a in ρ>(∆ | a), as stated in the legend.

defined in section 3.1.1). The saddle points equations coming from the replica computations are
the following:

m =
M̂

R̂+ λ
, r =

M̂2 + χ̂

(R̂+ λ)2
, χ =

1

R̂+ λ
,

M̂ = αE∆
∆

1 +∆χ
, R̂ = αE∆

∆

1 +∆χ
, χ̂ = αE∆

∆(σ2 +∆(1− 2m+ r))

(1 + ∆χ)2
,

where we have defined χ = β(r − q). A detailed derivation can be found in appendix A.3.
These equation can be solved numerically, allowing to compute the mean square error of the
estimator as a function of the overlap parameters εest = 1− 2m+ r, as seen in (29). We show in
fig. 6, 7 some results for εest at varying sample complexity for noise variance σ2 = 0.1 and λ = 0.3.
In particular the plot on the left of both figures (in log-log scale) shows the behaviour of εest at
large sample complexity. Considering the leading order in εest = 1−2m+r = ε0α

−c+O(α−(c+1))
and χ = χ0α

−c +O(α−(c+1)), c ∈ R+ and ε0 ∈ R a constant, we find that

{
M̂ = R̂ = α(∆ +O(α−c))

χ̂ = α(σ2∆+O(α−c))
=⇒


m = M̂

R̂

(
1− λ

α∆

)
+O(α−2)

r = M̂2

R̂2

(
1 + σ2

α∆

)(
1− 2 λ

α∆

)
+O(α−2)

χ = α−1∆
−1

+O(α−2)

=⇒

{
εest = 1− 2m+ r = α−1σ2∆

−1
+O(α−2)

χ = α−1∆
−1

+O(α−2)
=⇒ c = 1

3.2.2 Lasso regression

Lasso regression is a method that considers the risk function composed of the quadratic loss
function ℓ(y, z) = (y − z)2/2 and the L1 regularization r(θ) = |θ|.10 As we did for the ridge
regression, we consider a teacher model with the usual Gaussian prior for the weights and labels

10The regularization term in (4) can be seen as the L1 norm acting on θ:
∑

l|θl|= ||θ||1.
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3 MAIN RESULTS

Figure 6: Estimation error for ridge regression at varying sample complexity. The noise variance
is σ2 = 0.1. Different colors correspond to different values for the parameter a in ρ>(∆ | a), as
stated in the legend.

Figure 7: Estimation error for ridge regression at varying sample complexity. The noise variance
is σ2 = 0.1. Different colors correspond to different values for the parameter a in ρ<(∆ | a), as
stated in the legend.

generated by a linear output channel (as defined in section 3.1.1). The saddle points equations
coming from the replica computations are the following:

m =
M̂

R̂
ϕerfc, r =

1

R̂2
ϕθ, χ =

1

R̂
ϕerfc,

M̂ = αE∆
∆

1 +∆χ
, R̂ = αE∆

∆

1 +∆χ
, χ̂ = αE∆

∆(σ2 +∆(1− 2m+ r))

(1 + ∆χ)2
,

where we have defined

ϕerfc := erfc

 λ√
2(M̂2 + χ̂)

 , ϕθ :=
(
M̂2 + χ̂+ λ2

)
ϕerfc − λ

√√√√2
(
M̂2 + χ̂

)
π

e
− λ2

2(M̂2+χ̂) .

A detailed derivation can be found in appendix A.3.
As in all the other cases, these equations can be solved numerically, and we show in fig. 8
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3 MAIN RESULTS

some results for εest at varying sample complexity for noise variance σ2 = 0.1 and λ = 0.3.
In particular the plot on the left (in log-log scale) shows the behaviour of εest at large sample
complexity. Considering the leading order in εest = 1 − 2m + r = ε0α

−c + O(α−(c+1) and
χ = χ0α

−c +O(α−(c+1)), c ∈ R+ and ε0 ∈ R a constant, we find that 11{
M̂ = R̂ = α(∆ +O(α−c))

χ̂ = α(σ2∆+O(α−c))

=⇒



ϕerfc = 1− 2λ√
2π(α2∆

2
+ ασ2∆)

+O(α−2) = 1−
√

2

π
λα−1∆

−1
+O(α−2)

ϕθ =
(
α2∆

2
+ ασ2∆

)(
1−

√
2

π
λα−1∆

−1

)
− λα∆

√
2

π

(
1 +

σ2

2α∆

)(
1− λ2

2α2∆
2

)
+O(α−2)

= α2∆
2
+ ασ2∆− 2

√
2

π
λα∆+O(1)

=⇒



m = 1−
√

2

π
λα−1∆

−1
+O(α−2)

r =

(
α2∆

2
+ ασ2∆− 2

√
2

π
λα∆+O(1)

)(
α(∆ +O(α−c))

)−2

= 1 + σ2α−1∆
−1 − 2

√
2

π
λα−1∆

−1
+O(α−2)

χ =

(
1−

√
2

π
λα−1∆

−1
+O(α−2)

)(
α(∆ +O(α−c))

)−1
= α−1∆

−1
+O(α−2)

=⇒

{
εest = 1− 2m+ r = α−1σ2∆

−1
+O(α−2)

χ = α−1∆
−1

+O(α−2)
=⇒ c = 1

Figure 8: Estimation error for lasso regression at varying sample complexity. The noise variance
is σ2 = 0.1. Different colors correspond to different values for the parameter a in ρ>(∆ | a), as
stated in the legend.

11We use erfc(z) = 1− 2√
π
z +O(z3)
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4 APPLICATION TO SYNTHETIC DATA

3.3 Comparison and optimization of λ

In this section we consider the same teacher model defined in 3.1.1, 3.2.1 and 3.2.2, with Gaussian
prior pθ(θ) = N (θ | 0, 1) and linear output channel / likelihood pout(y | z) = N (y | z, σ2). We
distinguish the possible estimators of the true weights that have been studied in the previous
sections by tintroducing the notation θ̂BO for the mean posterior estimator in Bayes optimal
setting (i.e. the minimal mean square error estimator), θ̂L2

λ the estimator obtained through the
ridge regression and θ̂L1

λ the one obtained through the lasso regression. By definition of the
MMSE estimator, we expect εest

(
θ̂BO

)
≤ εest

(
θ̂L2

λ

)
, εest

(
θ̂L1

λ

)
, ∀λ. One advantage of having

equations able to predict the performance of ERM is that it is possible to optimize the algorithm
by selecting the parameter λ that minimizes the mean square error:12

λ∗
γ = argmin

λ
εest

(
θ̂
Lγ

λ

)
, γ = 1, 2.

Note that the optimized λ∗
γ is a function of the parameters used to generate the data (in our case

the noise variance σ2 in the output channel and the parameter a in ρ(∆ | a)) and the sample
complexity α. In fig. 9 we show the results of this optimization procedure for ridge regression,
with a comparison to the MMSE

Figure 9: Estimation error for optimized ridge regression (points) compared to Bayes optimal
estimation (lines) at varying sample complexity. The noise variance is σ2 = 0.1. Different colors
correspond to different values for the parameter a in ρ>(∆ | a) (left) or ρ<(∆ | a) (right), as
stated in the legend.

4 Application to synthetic data
In this section we compare numerical experiments to the performance predictions obtained
through the replica approach for all the cases shown in 3. All experiments are done consid-
ering d = 1000 and generating 20 instances of the problem.

12In practical applications of ERM, when precise asymptotics are not known, the choice of λ can be made
through the procedure of cross-validation: the data are divided in k subsets of the same size, training the model
on k− 1 of them and testing the predictions on the remaining one. The procedure can be repeated using each of
the subsets for testing. Eventually one chooses te value of λ minimizing the test error.
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4 APPLICATION TO SYNTHETIC DATA

4.1 Bayes optimal setting
Following previous literature, Bayes optimal estimation for GLM can be efficiently performed
using a Generalized Approximate Message Passing (GAMP) algorithm. This polynomial (with
respect to d) procedure allows to avoid the sampling from the posterior (3), which is computa-
tionally costly in high-dimensions, performing optimal estimation in this specific setting [6]. The
algorithm and further details are shown in C.3, while its derivation and state evolution can be
found in [23, 41].
Fig. 10, 11 show the comparison of these numerical experiments obtained from GAMP and the
estimation error curves shown in 3.1.1.

Figure 10: Estimation error in Bayes optimal setting with linear output channel at varying
sample complexity: theoretical prediction (lines) and average from numerical GAMP experiments
(points) with error. The noise variance is σ2 = 0.1. Different colors correspond to different values
for the parameter a in ρ>(∆ | a) (left) or ρ<(∆ | a) (right), as stated in the legend.

Figure 11: Estimation error in Bayes optimal setting with probit output channel at varying
sample complexity: theoretical prediction (lines) and average from numerical GAMP experiments
(points) with error. The noise variance is σ2 = 0.1. Different colors correspond to different values
for the parameter a in ρ>(∆ | a), as stated in the legend.

4.2 Empirical risk minimization
In fig. 12, 13 we show the comparison between numerical experiments of ERM and the estimation
error curves obtained from replica computations.
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4 APPLICATION TO SYNTHETIC DATA

Figure 12: Estimation error from ridge regression at varying sample complexity: theoretical
prediction (lines) and average from numerical experiments (points) with error. The noise variance
is σ2 = 0.3. Different colors correspond to different values for the parameter a in ρ>(∆ | a) (left)
or ρ<(∆ | a) (right), as stated in the legend.

Figure 13: Estimation error from lasso regression at varying sample complexity: theoretical
prediction (lines) and average from numerical experiments (points) with error. The noise variance
is σ2 = 0.3. Different colors correspond to different values for the parameter a in ρ>(∆ | a), as
stated in the legend.
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5 CONCLUSIONS

5 Conclusions
In this research work we have studied the problem of learning generalized linear models in
high-dimensions when the covariates are drawn from the superstatistical distribution P (x) in
(1). This choice allows to consider very different non-Gaussian covariates’ distributions (heavy-
tails, infinite variance) with the advantage of having a Gaussian conditioned probability density
function P (x | ∆) = N (x | µ, d−1∆Id), which simplifies the computations. We reached our
goal of evaluating the best performance (given the data) any algorithm can achieve in case of
linear and probit labels, considering the Bayes optimal setting. We verified, in the linear case,
that optimized ridge regression and lasso regression performance are comparable to the Bayes
optimal ones. We were also able to show that our predictions obtained through the heuristic
replica method agree with numerical experiments performed on synthetic data. One of the most
important results we have obtained is the computation of the decay rates of the learning curves,
which are the same indipendently of the distribution for ∆ and equal to the known Gaussian
covariates case (where P (x) = N (x | µ, d−1∆Id)) with matching E∆[∆] = ∆. This implies that
even though the covariates’ superstatistical distribution may have heavy-tails or infinite variance,
ultimately this does not affect the performance of the estimation, in particular when the sample
size n is much larger (but still proportional to) the covariates’ dimension d, i.e. the regime of
large sample complexity. This results finds its place in the context of the Gassian universality
principle and represent a further steps towards understanding how learning algorithms perform
on realistic datasets and how much the latters can be described by the first two moments of they
distribution.
The natural progression of this work would be to perform numerical experiments on realistic
data whose features are supposed to follow a superstatistical model and validate the results here
presented. Moreover one could use the results of A.1 and consider different choice for the output
channel or the risk function (e.g., studying ERM for classification). The results presented in this
manuscript can be straightforwardly applied to the case of covariates distributed according to
Huber’s contamination model [21, 22], considering the case where each covariate can be drawn
from a Gaussian or a superstatistical model with probabilities respectively equal to 1− ϵ and ϵ,
for some ϵ ∈ [0, 1]. Further steps can be the introduction of structure in the noise of the output
channel, for instance drawn from a superstatistical distribution (or a contamination model)
likewise. Another development could be a rigorous proof of our results, exploiting previous exact
results on GLMs.
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A REPLICA TRICK AND FREE ENERGY COMPUTATION

A Replica trick and free energy computation
The aim of this section is to compute the quenched free energy density, which is the average
with respect to the training data D of the logarithm of the partition function Z(D), i.e. the
normalization of the posterior distribution p(θ | D):

βf = − lim
d→∞

ED logZ(D).

As stated in section 2, the computation of this quantity can be carried out using the replica
method, commonly employed in statistical physics when dealing with systems that exhibits
quenched disorder. Following this approach one can get rid of the logarithm considering that

Zs = es logZ = 1 + s logZ +O(s2),

hence
E logZ = lim

s→0+

EZs − 1

s
(9)

The main semplification of this method comes from the fact that the average of Zs is performed
assuming s to be an integer: the quantity corresponds physically to the partition function of s
replicas of the original system. This is easier than computing the average of logZ. Nonetheless
one should keep in mind that once obtained the result of this average, the limit in (9) is done
sending continuously s → 0+. This non-rigorousness at the core of the replica method has still
never been formally resolved, but this approach mantain his popularity since in every case where
its results can be compared with exact ones, they are in perfect agreement.

A.1 Generalized linear model with superstatistical covariates
The problem is now reduced to computing the averaged of the replicated partition function. Here
we show the derivation of the replica results in the more general case of "incomplete information",
i.e. without the assumption that the probability distributions used to generate the weights and
the labels coincide with the ones used in the reconstruction. The results for Bayes optimal
estimation and empirical risk minimization will be shown in A.2 and A.3. We start with:13

EDZ
s = ED

s∏
a=1

∫ ∏
l∈[d]

dθal pθ(θ
a
l )
∏
i∈[n]

pout
(
yi | θa⊤xi

)
=

∫ ∏
l∈[d]

dθ∗, l p
∗
θ(θ∗, l)

∫ ∏
l∈[d]

s∏
a=1

dθal pθ(θ
a
l )×

×
∫ ∏

i∈[n]

dyi EX

[
p∗out

(
yi | θ⊤

∗ xi

) s∏
a=1

pout
(
yi | θa⊤xi

)]
(10)

Where we explicited ED as EXEy = EXEθ∗Ey|X`∗ . We then manage to decouple the dependence
on the labels and the weights in the previous expression introducing local fields {ha

i }, i ∈ [n], a =
0, . . . , s. This is done considering that

1 =
∏
i∈[n]

[∫
dh0

i δ
(
h0
i − θ⊤

∗ xi

) s∏
a=1

∫
dha

i δ
(
ha
i − θa⊤xi

)]
13Every integral presented in this work is a definite integral, the notation

∫
has to be intended as a convention

for the integration over (−∞,+∞), e.g.
∫
dsdtf(s, t) =

∫
R2 dsdtf(s, t)
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and rewriting the expected value in (10) as∫
dh0

i dp
∗
out

(
yi | h0

i

) ∫ s∏
a=1

dha
i pout (yi | ha

i )EX

[
δ
(
h0
i − θ⊤

∗ xi

) s∏
a=1

δ
(
ha
i − θa⊤xi

)]
. (11)

The expected value in (11) defines the joint density over the local fields {ha
i }, i ∈ [n], a = 0, . . . , s.

Considering for simpicity µ = 0 in (1), it is easy to verify that - at fixed ∆ - these are Gaussian
variables with zero mean and covariance given by the matrix q∆, whose elements qab∆ , which we
will also call (rescaled) overlap parameters, are defined as follows: 14

EX|∆ha
i h

b
j = EX|∆

[
θa⊤xiθ

b⊤xj

]
= θa⊤EX|∆

[
xix

⊤
j

]
θb

=
∆

d
θa⊤Id θ

b =
∆

d
θa⊤θb =: qab∆ .

It is possible to see why the structure for the distribtion of the covariates xi was chosen as in (1):
conditioning on the value of ∆, it is possible to exploit the fact that P(x | ∆) is a Gaussian density
function to simplify the computations by following a procedure similar to the case with Gaussian
covariates. The only price to pay will be the (numerical) average over ρ(∆) that remains explicit.
At this point, using the notation hi = (h0

i , h
1
i , . . . , h

s
i ) and the shorthand dq =

∏
0≤a≤b≤s dq

ab

for any matrix q ∈ Rs×s, we can rewrite (11) as∫
dh0

i dp
∗
out

(
yi | h0

i

) ∫ s∏
a=1

dha
i pout (yi | ha

i )N (hi | 0,q∆)

=

∫
dh0

i dp
∗
out

(
yi | h0

i

) ∫ s∏
a=1

dha
i pout (yi | ha

i )×

×
∫

dq∆

∏
0≤a≤b≤s

δ

(
qab∆ −

∆

d
θa⊤θb

)
N (hi | 0,q∆) ,

(12)

treating now the overlap parameters as variables and expliciting their connection to the weights
through the Dirac’s deltas. Using their Fourier representation

δ

(
qab∆ −

∆

d
θa⊤θb

)
=

∫ i∞

−i∞
dq̂abeq̂

ab(θa⊤θb− d
∆ qab

∆ ) =

∫ i∞

−i∞
dq̂abe−

d
∆ q̂abqab

∆ +q̂abθa⊤θb

(13)

Putting together (12) and (13), (10) now becomes:

EDZ
s = E∆

∫
dqdq̂ exp

(
− d

∆
trq∆q̂

⊤ + log I
(d)
θ (q̂) + log I(n)y (q)

)
= E∆

∫
dqdq̂ exp

(
d

(
− trq∆q̂

⊤

∆
+ log Iθ(q̂) + α log Iy(q)

))
(14)

=: E∆

∫
dqdq̂ edΦ(q,q̂),

where we have used α = n/d and defined

I
(d)
θ (q̂) :=

∫ ∏
l∈[d]

dθ∗, l p
∗
θ(θ∗, l)

∫ ∏
l∈[d]

s∏
a=1

dθal pθ(θ
a
l ) exp

∑
0≤a≤b≤s

q̂abθa⊤θb

14In order to simplify the notation in the following expessions, we will consider θ0 as equivalent to θ∗
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=
∏
l∈[d]

∫
dθ∗, l p

∗
θ(θ∗, l)

∫ s∏
a=1

dθal pθ(θ
a
l ) exp

∑
0≤a≤b≤s

q̂abθl
a⊤θl

b =: [Iθ(q̂)]
d

I(n)y (q) :=

∫ ∏
i∈[n]

dyi

∫
dh0

i dp
∗
out

(
yi | h0

i

) ∫ ∏
i∈[n]

s∏
a=1

dha
i pout (yi | ha

i )N (hi | 0,q∆)

=
∏
i∈[n]

∫
dyi

∫
dh0

i dp
∗
out

(
yi | h0

i

) ∫ s∏
a=1

dha
i pout (yi | ha

i )N (hi | 0,q∆) =: [Iy(q)]
n.

In eq. (14) we managed to write EDZ
s as a saddle point problem in the dimension d, which

allow us to easily evaluate the integral. In fact, assuming

lim
d→∞

lim
s→0+

EDZ
s − 1

sd
= lim

s→0+
lim
d→∞

EDZ
s − 1

sd
,

we have that, as d → ∞ the integral in (14) is dominated by the configurations (q, q̂) that
extremize the function Φ.

Replica symmetric ansatz

In order to find these extremizing configurations , the usual procedure is to restrict the search
to the subset of replica symmetric solutions, i.e.

q00∆ = r0∆ q̂00 = r̂0

q0a∆ = m∆ q̂0a = m̂ for 1 ≤ a ≤ s

qaa∆ = r∆ q̂aa = −1

2
r̂ for 1 ≤ a ≤ s

qab∆ = q∆ q̂ab = q̂ for 1 ≤ a < b ≤ s.

The factor −1/2 for the parametrization of q̂aa is chosen for convenience, but it will not change
the result, since we will extremize over r̂.
This parametrization correspond to the assumption of invariance of the solution with respect to
the permutation of repica indices. Moreover, in Bayes optimal setting we are sure it holds. In
subsection B is shown that if q∆ is replica symmetryc, the same holds for q−1

∆ . We will refer to
its elements as: (

q−1
∆

)00
= r̃0(

q−1
∆

)0a
= m̃ for 1 ≤ a ≤ s(

q−1
∆

)aa
= r̃ for 1 ≤ a ≤ s(

q−1
∆

)ab
= q̃ for 1 ≤ a < b ≤ s.

On this ansatz, the trace term in Φ(q, q̂) becomes:∑
0≤a≤b≤s

qabq̂ab = r0∆r̂
0 + sm∆m̂−

1

2
sr∆r̂ +

s(s− 1)

2
q∆q̂.
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Similarly we have that the exponent in Iθ becomes:∑
0≤a≤b≤s

q̂abθaθb = r̂0θ2∗ + m̂θ∗

s∑
a=1

θa − 1

2
r̂

s∑
a=1

(θa)2 + q̂
∑

1≤a<b≤s

θaθb

= r̂0θ2∗ + m̂θ∗

s∑
a=1

θa − 1

2
(r̂ + q̂)

s∑
a=1

(θa)2 +
1

2
q̂

s∑
a,b=1

θaθb.

As customary, we decouple different replica indices introducing an Hubbard-Stratonovich field
ϵ ∼ N (ϵ | 0, 1), namely:

e
q̂
2

∑s
a,b=1 θaθb

= Eϵe
√
q̂ϵ

∑s
a=1 θa

.

Putting together, we have that

Iθ =

∫
dθ∗p

∗
θ(θ∗)

∫ s∏
a=1

dxapθ(θ
a)e

∑
0≤a≤b≤s q̂abθaθb

=

∫
dθ∗p

∗
θ(θ∗)e

r̂0θ2
∗Eϵ

∫ s∏
a=1

dxapθ(θ
a)em̂θ∗θ

a− 1
2 (r̂+q̂)(θa)2+

√
q̂ϵθa

= Eϵ

∫
dθ∗p

∗
θ(θ∗)e

r̂0θ2
∗

(∫
dx pθ(θ)e

m̂θ∗θ− 1
2 (r̂+q̂)(θ)2+

√
q̂ϵθ

)s

,

where we were able to remove the dependence of our expression on replica indices and explicit
the dependance on s.
We can repeat a similar procedure for the term in Iy. Recalling that

N (h | 0,q∆) =
e−

1
2

∑
0≤a≤b≤s ha(q−1

∆ )
ab

hb

√
det 2πq∆

,

it is easy to see that

−1

2

∑
0 ≤ a ≤ b ≤ sha

(
q−1
∆

)ab
hb = −1

2
r̃0(h0)2 − m̃h0

s∑
a=1

ha − 1

2
r̃

s∑
a=1

(ha)2 − q̃
∑

1≤a<b≤s

hahb

= −1

2
r̃0(h0)2 − m̃h0

s∑
a=1

ha − 1

2
(r̃ − q̃)

s∑
a=1

(ha)2 − 1

2
q̃

s∑
a,b=1

hahb.

Introducing another Hubbard-Stratonovich field η ∼ N (η | 0, 1) in order to decouple replica
indices in the last expression,

Iy =

∫
dy

∫
dh0dp∗out

(
y | h0

) ∫ s∏
a=1

dhapout (y | ha)N (h | 0,q∆)

= As(r
0,m, r, q)

∫
dh0dp∗out

(
y | h0

)
e−

1
2 r̃

0(h0)2Eη

∫ s∏
a=1

dhapout (y | ha) e−m̃h0ha− 1
2 (r̃−q̃)(ha)2+

√
−q̃ηha

= As(r
0,m, r, q)Eη

∫
dh0dp∗out

(
y | h0

)
e−

1
2 r̃

0(h0)2
(∫

dhpout (y | h) e−m̃h0h− 1
2 (r̃−q̃)(h)2+

√
−q̃ηh

)s

.

In the previous we have defined As(r
0,m, r, q) = (det 2πq∆)

−1/2 computed on the replica sym-
metric ansatz. His explicit definition can be found in B.
In order to lighten the notation, the subscript ∆ in q∆ and its element will not be written in the
remaining part of this appendix. The dependence on ∆ will be reminded and made explicit in
the final result.
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Taking the s→ 0+ limit

At this point, to proceed with the replica approach, one needs to take the limit s → 0+ in (9).
Before doing it, we should check that the function Φ in (14) does not contain any term O(1)
with respect to s, otherwise our quantity of interest will diverge.
We start considering

lim
s→0

logAs = lim
n→0

[
−s+ 1

2
log 2π − s− 1

2
log(r − q)− 1

2
log
(
rr0 + (s− 1)r0q − sm2

)]
= −1

2
log 2πr0,

which implies

lim
s→0

log Iy = −1

2
log 2πr0 + log

∫
dy

∫
Dη

∫
dh0p∗out

(
y | h0

)
e−

1
2 r̃

0(s=0)(h0)
2

= −1

2
log 2πr0 + log

∫
dh0e−

1
2r0

(h0)
2

= −1

2
log 2πr0 +

1

2
log 2πr0 = 0,

(15)

where in the first equality we used the normalization Eη[1] = 1 and
∫
dyp∗out

(
y | h0

)
= 1 and on

the second equality that r̃0 = 1/r0 at s = 0 (see appendix B). Likewise,

lim
s→0

log Iθ = log

∫
dθ∗p

∗
θ (θ∗) e

r̂0(θ∗)
2

.

Therefore

lim
s→0

Φ =
r̂0r0

∆
+ log

∫
dθ∗p

∗
θ (θ∗) e

r̂0(x0)
2

which is only zero if we set r̂0 = 0. It is easy to check that this implies in particular that on the
saddle-point we must have 15

E∆
r0

∆
= Eθ∗ (θ∗)

2
. (16)

Once fixed these consistency conditions, we can study the O(s) terms. We could start by sym-
metrizing the integrals Iθ and Iy.
We let ξ → ξ + q̂−1/2m̂x0, so that

Iθ = Eξ

∫
dθ∗p

∗
θ (θ∗) e

− m̂2

2q̂ θ2
∗+

m̂√
q ξθ∗

(∫
dθpθ(x)e

− 1
2 (r̂+q̂)θ2+

√
q̂ξθ

)s

,

therefore 16

lim
s→0+

1

s
log Iθ = Eξ

∫
dθ∗p

∗
θ (θ∗) e

− m̂2

2q̂ θ2
∗+

m̂√
q̂
ξθ∗

log

∫
dθpθ(θ)e

− 1
2 (r̂+q̂)θ2+

√
q̂ξθ

=: Eξ

[
I
(0)
θ (ξ) log I

(1)
θ (ξ)

]
.

15Making explicit the dependence of r0 on ∆ we notice that the first part of this equality does not depend on
∆

16In the following we are using lims→0 logEfgs = lims→0 logE(f + fs log g), then we expand the external
logarithm.
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A similar but longer procedure can be applied to Iy. We perform the change of variable η →
η − (−q̃)−1/2m̃h0, so that

log IY = logAs + logEη

∫
dyg

(s)
0 (y, η)g

(s)
1 (y, η)s︸ ︷︷ ︸

(⋆)

,

where we have defined

g
(s)
0 (y, η) =

∫
dh0p∗out

(
y | h0

)
e
− 1

2

(
r̃0− m̃2

q̃

)
(h0)

2−
˜

m̃√
−q̃

ηh0

g
(s)
1 (y, η) =

∫
dhpout (y | h)e−

1
2 (r̃−q̃)h2+

√
−q̃ηh

We remind that one needs to be careful in taking the limit s→ 0+ since
(
r̃0, m̃, r̃, q̃

)
all depend

on s.

(⋆) = logEη

∫
dy
[
g
(0)
0 (y, η) +

∣∣∣s∂ng(s)0 (y, η)
∣∣∣
s=0

+ sg
(0)
0 (y, η) log g

(0)
1 (y, η) +O

(
n2
)]

= log

[√
2πr0 + s

∫
dyEη

(
∂ng

(n)
0 (y, η)

∣∣∣
s=0

+ g
(0)
0 (y, η) log g

(0)
1 (y, η)

)
+O

(
s2
)]

= −1

2
log 2πr0 +

s√
2πr0

∫
dyEη

[
∂sg

(s)
0 (y, η)

∣∣∣
s=0

+ g
(0)
0 (y, η) log g

(0)
1 (y, η)

]
+O

(
s2
)
,

where we have used the zeroth order result from (15). The first of the integrals is easy to evaluate.

Using that
∫
Dη
∫
dyg

(s)
0 (y, η) =

√
2π
r̃0 we can exchange derivative and integral arriving to

1√
2πr0

∫
dy

∫
Eη∂sg

(s)
0 (y, η)

∣∣∣∣
s=0

=
1√
2πr0

∂s

[∫
dyEηg

(s)
0 (y, η)

]
s=0

=
1√
2πr0

∂s

√
2π

r̃0

∣∣∣∣∣
s=0

= −1

2

[
q

r − q
− r0q −m2

r0(r − q)

]
Putting all together we arrive to

lim
s→0+

1

s
log IY = −1

2
log 2π(r − q)− 1

2

q

r − q
+

1√
2πr0

∫
dy

∫
D ηg0(y, η) log g1(y, η)

where we have relabelled g0 = g
(0)
0 and g1 = g

(0)
1 , given by

g0(y, η) =

∫
dh0p

(0)
out

(
y | h0

)
e
− 1

2
q

r0q−m2 (h0)
2
+

√
m2

r0(r0q−m2)
ηh0

g1(y, η) =

∫
dhpout (y | h)e

− 1
2

1
r−qh

2+

√
r0q−m2

r0(r−q)2
ηh

Note in particular that g0 = g1 in the Bayes-optimal case, when r = r0 and m = q. We can
still make some cosmetic changes in order to rewrite the above in a compact form. First, we can
make
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h→
√
r − qh+

√
r0q −m2

r0
η

such that, introducing the notation
∫
Dh = (2π)−1/2

∫
dhe−

1
2h

2

g1(y, η) =
√
2π(r − q)e

1
2

r0q−m2

r0(r−q)
η2
∫

Dhpout

(
y |
√
r − qh+

√
r0q −m2

r0
η

)

Therefore,

∫
Dη

∫
dy√
2πr0

g0 log g1 =
1

2
log 2π(r − q)

∫
Dη

∫
dy√
2πr0

g0(y, η) +
1

2

r0q −m2

r0(r − q)

∫
Dηη2

∫
dy√
2πr0

g0(y, η)

+ log

∫
Dη

∫
dy√
2πr0

∫
Dhpout

(
y |
√
r − qh−

√
r0q −m2

r0

)

=
1

2
log 2π(r − q) +

1

2

q

r − q

+

∫
dy√
2πr0

∫
Dηg0(y, η) log

∫
Dhpout

(
y |
√
r − qh−

√
r0q −m2

r0
η

)

where we have used that

∫
Dη

∫
dy

2πr0
η2g0(y, η) =

√
r0q −m2

2πr0q

∫
dηη2e

− 1
2

(
r0q−m2

r0q

)
η2

=
r0q

r0q −m2

putting together and further making a rescaling of the noise,

η →

√
qr0

r0q −m2
η

leads to

lim
s→0+

1

s
log IY =

√
q

r0q −m2

∫
dy√
2π

∫
dη√
2π

e
− 1

2
qr0

r0q−m2 η2

g0

(
y,

√
qr0

r0q −m2
η

)∫
Dhpout (y |

√
r − qh+

√
qη)

Focusing now on g0,

g0

(
y,

√
qr0

r0q −m2
η

)
=

∫
dh0p∗out(y | h)e

− 1
2

q

r0q−m2 (h
0)

2
+

√
m2q

(r0q−m2)2
ηh0

we can make a final change of variables to bring the measure over h0 to a Gaussian form,
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h0 →

√
r0q −m2

q
h0 +

m
√
q
η

leading to

g0

(
y,

√
r0q

r0q −m2
η

)
=

√
2π

r0q −m2

q
e
− m2

2(r0q−m2 η2
∫

Dh0p∗out

(
y |

√
r0q −m2

q
h0 +

m
√
q
η

)

Finally, wrapping it up

lim
n→0

1

n
log IY =

∫
dy

∫
DηI

(0)
Y (y, η) log I

(1)
Y (y, η)

= Eη

[
I
(0)
Y log I

(1)
Y

]
for η ∼ N (0, 1) and

I
(0)
Y (y, η) =

∫
Dh0pout

(
y |

√
r0q −m2

q
h0 +

m
√
q
η

)

I
(1)
Y (y, η) =

∫
Dhpout (y |

√
r − qh+

√
qη)

Summary

As a final step we make the dependence of the overlap parameters on ∆ explicit. Recalling that
qab := ∆d−1θa⊤θb and that we have not written the subscript ∆ in the previous section of this
appendix, with a little abuse of notation we define (r0,m, r, q) as

r0∆ := ∆r0 m∆ := ∆m

r∆ := ∆r q∆ := ∆q

We can finally write the free energy density as the following extremization problem:

βf = extr
m,r,q,m̂,r̂,q̂

ϕ(m, r, q, m̂, r̂, q̂) (17)

ϕ = −mm̂+
1

2
rr̂ +

1

2
qq̂ + Eϵ

[
I
(0)
θ (ϵ) log I

(1)
θ (ϵ)

]
+ αE∆,η

[∫
dy I(0)y (y,∆, η) log I(1)y (y,∆, η)

]
with
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I
(0)
X (ϵ) =

∫
dθ∗p

∗
θ(θ∗)e

− m̂2

2q̂ θ2
∗+

m̂√
q̂
ϵθ∗

I
(1)
X (ϵ) =

∫
dθpθ(θ)e

− 1
2 (r̂+q̂)θ2+

√
q̄ϵθ

I
(0)
Y (y, η) =

∫
Dh0pout

(
y |

√
∆
r0q −m2

q
h0 +

√
∆m
√
q

η

)

I
(1)
Y (y, η) =

∫
Dhpout

(
y |
√
∆(r − q)h+

√
∆qη

)
(18)

and

r0 = Eθ∗
[
θ2∗
]

A.2 Bayes optimal setting
In this section we simplify the results of A.1 and compute the saddle point equations for the
overlap parameters by considering the Bayes optimal setting, meaning pout(y|z) = p∗out(y|z) and
pθ(θ) = p∗θ(θ). This implies in particular r0 = r, m = q, r̂0 = r̂ = 0 and m̂ = q̂; as a consequence
I
(0)
θ = I

(1)
θ and I

(0)
y = I

(1)
y .

All cases considered in this works assume Gaussian prior p∗θ(θ) = N (θ | 0, 1), which means

I
(0)
θ =

1√
2π

∫
dθ exp

(
−1

2
(1 + q̂)θ2 +

√
q̂ϵθ

)
=

1√
1 + q̂

exp
q̂ϵ2

2(1 + q̂)
.

Therefore

Eϵ

[
I
(0)
θ (ϵ) log I

(0)
θ (ϵ)

]
=

1√
2π(1 + q̂)

∫
dϵe−

1
2 (1−

q̂
1+q̂ )ϵ

2

[
q̂ϵ2

2(1 + q̂)
− 1

2
log(1 + q̂)

]
=

q̂ − log(1 + q̂)

2

Hence, the function ϕ in (17) becomes

ϕ(q, q̂) = −1

2
qq̂ +

q̂ − log(1 + q̂)

2
+ αE∆,η

[∫
dy I(0)y (y, η) log I(0)y (y, η)

]
, (19)

and the extremization with respect to q̂ is given by the following saddle point equation

∂

∂q̂
ϕ = −1

2

(
q − 1 +

1

1 + q̂

)
!
= 0 =⇒ q =

q̂

1 + q̂
. (20)

This form for the prior also implies

r0 = r = Eθ∗[θ
2
∗] = 1. (21)

In order to perform the extremization with respect to q, we need to specify p∗out(y|z).
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Linear channel

The linear output channel corresponds to

yi = θ⊤
∗ xi + σξ, ξ ∼ N (ξ | 0, In) .

In this case p∗out(y | z) = N (y | z, σ2). Plugging it into (18) we have

I(0)y =
1

2πσ

∫
dh exp

(
−1

2
h2 − 1

2σ2

(
y −

√
∆(1− q)h−

√
∆qη

)2)
=

1√
2π(σ2 +∆(1− q))

exp
−(y −

√
∆qη)2

2(σ2 +∆(1− q))
.

Therefore, using Eη[k] = k,∀k ∈ R and the following∫
dy I(0)y (y, η) log I(0)y (y, η) =

∫
dy N

(
y |
√
∆qη, σ2 +∆(1− q)

) −(y −√∆qη)2

2(σ2 +∆(1− q))
− 1

2
log(σ2 +∆(1− q))

= −1 + log(σ2 +∆(1− q))

2
,

we can write (19) as

ϕ(q, q̂) = −1

2
qq̂ +

q̂ − log(1 + q̂)

2
− α

2
− α

2
E∆ log(σ2 +∆(1− q))

Then the second saddle point equation for the linear channel case is given by:

∂

∂q
ϕ = −1

2

(
q̂ − αE∆

∆

σ2 +∆(1− q)

)
!
= 0 =⇒ q̂ = αE∆

∆

σ2 +∆(1− q)
(22)

Probit channel

The probit channel corresponds to

yi = sign
(
θ⊤
∗ xi + σξ

)
, ξ ∼ N (ξ | 0, In) .

In this case p∗out(y|z) = erfc
(

−yz√
2σ

)
/2, y ∈ {−1, 1}. 17 Notice that in this classification case the

integral
∫
dy in (17) should be replaced with

∑
y=±1. Plugging this into (18) we have that

I(0)y =
1

2
√
2π

∫
dhe−

1
2h

2

erfc

(
−
√
∆y

√
1− qh+

√
qη

√
2σ

)
=

1

2
erfc

(
−yη

√
∆q

2(σ2 +∆(1− q))

)

where we have used y2 = 1 and the following:

1√
2π

∫ ∞

−∞
dhe−

1
2h

2

erfc

(
Ah+B√

2

)
=

√
2

π

∫ ∞

−∞
dh

∫ ∞

Ah+B√
2

dte−
1
2h

2−t2

=
1

π

∫ ∞

−∞
dh

∫ ∞

0

dte−
1
2 (h

2−(Ah+B+t)2) =

√
2

π(1 +A2)

∫ ∞

0

dte
− (B+t)2

2(1+A2) (23)

17erfc(x) = 2
π

∫∞
x dte−t2 is the complementary error function.
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=
2√
π

∫ ∞

B√
2(1+A2)

dte−t2 = erfc

(
B√

2(1 +A2)

)

(in the second line we performed the change of variable t→ (Ah+B+ t)/
√
2, while in the third

line t→
√

2(1 +A2)t−B).
Therefore, after considering that, since I

(0)
y (y,∆, η) is a function of the product yη,

Eη[I
(0)
y (y,∆, η)] =

1√
2π

∫
dηe−

1
2η

2

I(0)y (y,∆, η)

η→−η
=

1√
2π

∫
dηe−

1
2η

2

I(0)y (y,∆,−η) = Eη[I
(0)
y (−y,∆, η)],

we have that
Eη

∑
y=±1

I(0)y (y,∆, η) = 2EηI
(0)
y (−1,∆, η)

and, defining kq(∆) :=
√
∆q/

√
σ2 +∆(1− q), (19) becomes 18

ϕ(q, q̂) = −1

2
qq̂ +

q̂ − log(1 + q̂)

2
+ αE∆,η

[
erfc

(
η
kq(∆)√

2

)
log erfc

(
η
kq(∆)√

2

)]
− α log 2 (24)

It is possible now to derive the saddle point equation from the extremization with respect to q
19, 20:

q̂ = −2α ∂

∂q
E∆,η

[
erfc

(
η
kq(∆)√

2

)
log erfc

(
η
kq(∆)√

2

)]
= −2αE∆,η

[
∂

∂q

(
erfc

(
η
kq(∆)√

2

))(
log erfc

(
η
kq(∆)√

2

)
+ 1

)]
=

√
2√
π
αE∆,η

[
e−

kq(∆)2

2 η2

η
∂kq(∆)

∂q

(
log erfc

(
η
kq(∆)√

2

)
+ 1

)]
(25)

=

√
2α√
π

E∆,η

[
kq(∆)

2q
(1 + kq(∆)2)e−

kq(∆)2

2 η2

η log erfc

(
η
kq(∆)√

2

)]
=

α

q
√
2π

E∆,η

[
kq(∆)(1 + kq(∆)2)e−

kq(∆)2

2 η2

η log erfc

(
η
kq(∆)√

2

)]
The previous equation appears more complicated than the corresponding one for the linear
channel (22), nonetheless we were able to reduce our high-dimensional problem to a numerically
tractable one.

A.3 Empirical risk minimization
In this section we simplify the results of A.1 and compute the saddle point equation for the
overlap parameters in the case of empirical risk minimization. As we have seen in (5), we can
define distributions pout and pθ that play the role of likelihood and prior in the computations
performed in A.1. Given their association with the selection of loss and regularization functions,
we will address the cases separately, considering various forms that can be employed for these
functions. One difference here is the presence of the parameter β and the additional limit β to
infinity.

18We have used the identity found in (23) to say that Eη erfc(η
kq(∆)√

2
) log 1

2
= − log 2

19 d
dx

erfc(x) = −2 exp(−x2/2)/
√
π

20 ∂
∂q

kq = 1
2kq

(
∆

σ2+∆(1−q)
+ ∆2q

(σ2+∆(1−q))2

)
=

kq

2q
(1 + k2q)
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Ansatz for the overlaps

In all the cases we are going to consider we are going to assume the following ansatz, that defines
the quantities (χ, M̂, R̂, χ̂) independent of β:

χ = β(r − q) m̂ = βM̂ r̂ = βR̂− β2χ̂ q̂ = β2χ̂. (26)

The necessity of these decision will be clear in the next subsections. 21

With this ansatz the trace term becomes

lim
β→∞

1

β

(
−mm̂+

1

2
rr̂ +

1

2
qq̂

)
= lim

β→∞

(
−mM̂ +

1

2
rR̂− β

2
χ̂(r − q)

)
(27)

= −mM̂ +
1

2
rR̂− 1

2
χχ̂, (28)

and, remembering also that r0 = 1 (see (21)), the expression for the MSE in (8) can be written
as

εest = r0 − 2m+ q = 1− 2m+ r − χ

β

β→∞
= 1− 2m+ r. (29)

L2 regularization

A popular choice for the regularization term is r(θ) = θ2/2 22, that corresponds to

pθ(θ) = exp

(
−βλ

2
θ2
)
,

as defined in (5). Plugging it into the expression for I
(1)
θ in (18) we obtain

I
(1)
θ =

∫
dθ exp

(
−βλ

2
θ2 − r̂ + q̂

2
θ2 +

√
q̂ϵθ

)
=

√
2π

r̂ + q̂ + βλ
exp

(
q̂ϵ2

2(r̂ + q̂ + βλ
)

)
(30)

and

I
(0)
θ =

1√
2π

∫
dθ∗ exp

(
−1

2
θ2∗ −

m̂2

2q̂
θ2∗ +

m̂√
q̂
ϵθ∗

)
=

√
q̂

m̂2 + q̂
exp

(
m̂2ϵ2

2(m̂2 + q̂
)

)
. (31)

As a consequence, using the ansatz defined in (26)

EϵI
(0)
θ log I

(1)
θ =

√
q̂

2π(m̂2 + q̂)

∫
dϵ exp

(
−1

2

(
1− m̂2

m̂2 + q̂

)
ϵ2
)

q̂ϵ2

2(r̂ + q̂ + βλ)
+ o(β)

=

∫
dϵN

(
ϵ | 0, m̂

2 + q̂

q̂

)
q̂ϵ2

2(r̂ + q̂ + βλ
+ o(β) =

β2(M̂2 + χ̂)

2β(R̂+ λ)
+ o(β)

Finally

lim
β→∞

1

β
EϵI

(0)
θ log I

(1)
θ =

M̂2 + χ̂

2(R̂+ λ)
. (32)

21One should note that the extremization in (17) should be now performed with respect to (m, r, χ, M̂, R̂, χ̂)
22The factor 1/2 is conventional and does not affect the result of the estimation through ERM.
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The extremization of ϕ in (17) with respect to (M̂, R̂, χ̂), considering also (27), results in the
following self consistent equations:

lim
β→∞

1

β

∂

∂M̂
ϕ = −m+

M̂

R̂+ λ

!
= 0 =⇒ m =

M̂

R̂+ λ

lim
β→∞

1

β

∂

∂R̂
ϕ =

r

2
− M̂2 + χ̂

2(R̂+ λ)2
!
= 0 =⇒ r =

M̂2 + χ̂

(R̂+ λ)2

lim
β→∞

1

β

∂

∂χ̂
ϕ = −χ

2
+

1

2(R̂+ λ)

!
= 0 =⇒ χ =

1

R̂+ λ

(33)

L1 regularization

Another frequent choice for the regularization is r(θ) = |θ|. This choice corresponds to

pθ(θ) = exp (−βλ|θ|) ,

as defined in (5). Plugging it into the expression for I
(1)
θ in (18) and using the ansatz defined in

(26) we obtain:

I
(1)
θ =

∫
dθ exp

(
−βλ|θ|− r̂ + q̂

2
θ2 +

√
q̂ϵθ

)
=

∫
dθ exp

(
−βλ|θ|−βR̂

2
θ2 + β

√
χ̂ϵθ

)

As β →∞, we can perform a saddle-point (S.P.) evaluation of the last integral:

I
(1)
θ

β≫1
≈ exp

(
−βmin

θ

(
λ|θ|+ R̂

2
θ2 −

√
χ̂ϵθ

))
=


exp

(
β

2R̂
(
√
χ̂ϵ− λ)2

)
, ϵ > λ√

χ

exp
(

β

2R̂
(
√
χ̂ϵ+ λ)2

)
, ϵ < − λ√

χ

0, otherwise

The expression for I
(0)
θ is again (31). Therefore, the term we shall compute is 23

lim
β→∞

1

β
EϵI

(0)
θ log I

(1)
θ =

√
χ̂

R̂

√
2π(M̂2 + χ̂)

∫ ∞

λ/
√
χ̂

dϵ exp

(
− χ̂

2(M̂2 + χ̂)
ϵ2

)
(
√
χ̂ϵ− λ)2

=
M̂2 + χ̂+ λ2

2R̂
erfc

 λ√
2(M̂2 + χ̂)

− λ

√
M̂2 + χ̂

R̂
√
2π

exp

(
− λ2

2(M̂2 + χ̂)

)

In order to simplify the notation in the following expressions, we define:

ϕerfc := erfc

 λ√
2(M̂2 + χ̂)

 , ϕθ :=
(
M̂2 + χ̂+ λ2

)
ϕerfc − λ

√√√√2
(
M̂2 + χ̂

)
π

e
− λ2

2(M̂2+χ̂) ,

where we kept implicit the dependance of the two functions on the overlap parameters and λ.
The extremization of ϕ in (17) with respect to (M̂, R̂, χ̂), considering also (27), results in the

23The following computations can be easiy done using trivial changes of variable and using integrations by
parts.
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following self consistent equations:

lim
β→∞

1

β

∂

∂M̂
ϕ = −m+

M̂

R̂
ϕerfc

!
= 0 =⇒ m =

M̂

R̂
ϕerfc

lim
β→∞

1

β

∂

∂R̂
ϕ =

r

2
− 1

2R̂2
ϕθ

!
= 0 =⇒ r =

1

R̂2
ϕθ

lim
β→∞

1

β

∂

∂χ̂
ϕ = −χ

2
+

1

2R̂
ϕerfc

!
= 0 =⇒ χ =

1

R̂
ϕerfc

(34)

Quadratic loss

One of the most common choices for the loss function, when the labels are yi ∈ R, i ∈ [n] and
not dicotomized, is the quadratic loss ℓ(y, z) = (y − z)2/2 24, that corresponds to

pout(y | z) = exp

(
−β

2
(y − z)2

)
,

as defined in (5). Plugging it into the expression for I
(1)
y in (18) we obtain

I(1)y =
1√
2π

∫
dh0 exp

(
− (h0)2

2
− β

2
(y −

√
∆(r − q)h0 −

√
∆q)2

)
=

1√
1 + β∆(r − q)

exp

(
−β

2

(y −
√
∆qη)2

1 + β∆(r − q)

)
.

In order to compare the results of ERM with the Bayes optimal setting, we consider the linear
case with noise variance σ2 for the teacher likelihood (the same used in A.2), as it is the only
likelihood for real non-dicotomized labels that we have presented in this work.
Hence, recalling that r0 = 1,

I(0)y =
1

2πσ

∫
dh exp

−h2

2
− 1

2σ2

(
y −

√
∆
q −m2

q
h−
√
∆m
√
q

η

)2


=
1√

2π
(
σ2 +∆ q−m2

q

) exp

− 1

2
(
σ2 +∆ q−m2

q

) (y − √∆m
√
q

η

)2


= N

(
y |
√
∆m
√
q

η, σ2 +∆
q −m2

q

)
.

Introducing the notation Ey[(·)] =
∫
dyN

(
y |

√
∆m√
q η, σ2 +∆ q−m2

q

)
(·) and the ansatz defined in

(26) 25,this leads to 26

lim
β→∞

1

β
E∆,η

∫
dyI(0)y log I(1)y = −E∆

1

2(1 + ∆χ)
Eη,y

[
y2 +∆rη2 − 2

√
∆ryη

]
= −E∆

1

2(1 + ∆χ)

(
σ2 +∆

r −m2

r
+

∆m2

r
+∆r − 2∆m

)
24The factor 1/2 is conventional and does not affect the result of the estimation through ERM.
25We recall that one of the implications of this ansatz is limβ→∞ q = r.
26We are using Eη [η2] = 1, Ey [y] =

√
∆m√
q

η and Ey [y2] = σ2 +∆ q−m2

q
+ (Ey [y])

2.
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= −E∆
σ2 +∆(1− 2m+ r)

2(1 + ∆χ)

In this ansatz, the extremization of ϕ in (17) with respect to (m, r, χ) results in the following self
consistent equations:

lim
β→∞

1

β

∂

∂m
ϕ = −M̂ + αE∆

∆

1 +∆χ

!
= 0 =⇒ M̂ = αE∆

∆

1 +∆χ

lim
β→∞

1

β

∂

∂r
ϕ =

R̂

2
− α

2
E∆

∆

1 +∆χ

!
= 0 =⇒ R̂ = αE∆

∆

1 +∆χ

lim
β→∞

1

β

∂

∂χ̂
ϕ = − χ̂

2
+

α

2
E∆

∆(σ2 +∆(1− 2m+ r))

(1 + ∆χ)2
!
= 0 =⇒ χ̂ = αE∆

∆(σ2 +∆(1− 2m+ r))

(1 + ∆χ)2

(35)

B Inverse and determinant of a replica symmetrix matrix

Inverse of replica symmetric matrix
Here we aim to compute the elements of q−1. It is easy to see that they can be parametrized
exactly in the same way as q,

(
q−1
)00

= r̃0(
q−1
)a0

= m̃ for 1 ≤ a ≤ s(
q−1
)aa

= r̃ for 1 ≤ a ≤ s(
q−1
)ab

= q̃ for 1 ≤ a < b ≤ s

We know that this satisfy q−1q = Is, which in components read

s∑
c=0

(
q−1
)ac

qcb =
(
q−1
)a0

q0b +

s∑
c=1

(
q−1
)ac

qcb = δab,

where δab is the Kronecker delta.27Separating in components,



r̃0r0 + sm̃m = 1 (a = b = 0)

r̃0m+ m̃r + (s− 1)m̃q = 0 (a = 0, b > 0)

m̃r0 + r̃m+ (s− 1)q̃m = 0 (a > 1, b = 0)

mm̃+ rr̃ + (s− 1)qq̃ = 1 (a = b > 0)

mm̃+ r̃q + q̃r + (s− 2)qq̃ = 0 (1 ≤ a < b ≤ s)

The solution for this system is given by
27δab = 1 iif a = b, otherwise δab = 0.
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(
q−1
)00

= r̃0 = r+(s−1)q
r0(r+(s−1)q)−sm2 ,

(
q−1
)aa

= r̃ = r0r+(s−2)r0q−(s−1)m2

(r−q)(r0r+(s−1)r0q−sm2) ,(
q−1
)a0

= m̃ = m
sm2−r0r−(s−1)r0q ,

(
q−1
)ab

= q̃ = m2−r0q
(r−q)(r0r+(s−1)r0q−sm2) .

In the s→ 0+ limit of the above,

lim
s→0+

r̃0 =
1

r0
lim

s→0+
r̃ =

m2 + (r − 2q)r0

r0(r − q)2
(36)

lim
s→0+

m̃ = − m

r0(r − q)
lim

s→0+
q̃ =

m2 − r0q

r0(r − q)2
(37)

In particular, note that this satisfy

lim
s→0+

(r̃ − q̃) =
1

r − q
.

Determinant of a replica symmetric matrix
The replica symmetric overlap matrix is given by

q =


r0 m m . . . m
m r q . . . q
m q r . . . q
...

...
...

. . .
...

m q q . . . r

 ∈ R(s+1)×(s+1)

In order to compute its determinant, we will attempt to guess its eigenvector. We first try with:


r0 m m . . . m
m r q . . . q
m q r . . . q
...

...
...

. . .
...

m q q . . . r




x
1
1
...
1

 =


r0xsm

mx+ r + (s− 1)q
mx+ r + (s− 1)q

...
mx+ r + (s− 1)q

 !
= λ


x
1
1
...
1

 ,

giving two linear equations for the two unknowns (x, λ),

{
λx = r0x+ sm
λ = mx+ r + (s− 1)q

Inserting the second equation into the first give a quadratic equation for x,

mx2 +
[(
r − r0

)
+ (s− 1)q

]
x− sm = 0.
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The solutions of the system are therefore,

 x± = − 1
2m

[(
r − r0

)
+ (s− 1)q

]
± 1

2m

√
4sm2 + [(r − r0) + (s− 1)q]

2

λ± = 1
2

[(
r + r0 + (s− 1)q

)]
± 1

2

√
4sm2 + [(r − r0) + (s− 1)q]

2

Note that the product of eigenvalues simplifies to

λ+λ− = r0r + (s− 1)r0q − sm2

The other s − 1 eigenvalues can be easily found by checking that the vector v(i) ∈ Rs+1 whose
elements are defined as v

(i)
j = δi,j − δi+1,j is an eigenvector. In fact:


r0 m m . . . m
m r q · · · q
m q r · · · q
...

...
...

. . .
...

m q q · · · r




0
1
−1
...
0

 = (r − q)


0
1
−1
...
0


There are s−1 such independent eigenvectors. Therefore the determinant, which is the products
of eigenvalues, is given by

detq = (r − q)s−1
(
rr0 + (s− 1)r0q − sm2

)
In particular, we have the following useful asymptotic:

log detq = (s− 1) log(r − q) + log
(
rr0 + (s− 1)r0q − sm2

)
= log r0 + s

[
log(r − q) +

r0q −m2

r0(r − q)

]
+O

(
s2
)
.

C Bayes optimal setting: some technicalities
The Bayes optimal setting, as defined in 2, is the supervised learning setting in which the teacher
and the student distributions coincide. Given our choice of using the mean square error (MSE)
as the estimation error, this setting is optimal in the sense that it allows to achieve the minimal
error, meaning that the (minimal mean square error) estimator is

θ̂(D) := argmin
θ

Eθ∗|D||θ − θ∗||2, (38)

where in general the expectation Eθ∗|D refers to the teacher posterior distribution

p∗(θ∗ | D) =
1

Z(D)
∏
l∈[d]

p∗θ(θl,∗)
∏
i∈[n]

p∗out
(
yi | θ⊤

∗ xi

)
.

The latter coincides with (3) only in Bayes optimal setting.
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C.1 Optimality of the mean posterior estimator
The mean posterior (MP) estimator is defined as Eθ|D [θ], where the expectation is done with
respect to the (student) posterior (3).
In this section we show that the MP and the MMSE estimators coincides in Bayes optimal
setting. The minimization of the (averaged) MSE in (38) implies

0
!
= ∇θEθ∗|D||θ − θ∗||2 = ∇θ

∫
dθ∗p

∗(θ∗ | D)||θ − θ∗||2

= 2

(
θ −

∫
dθ∗p

∗(θ∗ | D)θ∗
)

Therefore, θ̂(D) = Eθ∗|D [θ∗], which is the MP estimator only considering the Bayes optimal
setting.

C.2 Nishimori identity
Proposition (Nishimori identity): given a couple of random variable (X,Y ) drawn from the joint
distribution P (X,Y ) and conditional distribution P (X | Y ). Let k ≥ 1 and x(1), . . . , x(k) (the
replicas) be i.i.d. samples from the conditional P (X = · | Y ). Let us denote ⟨·⟩k the expectation
with respect to the conditional distribution P (x(1) | Y ) . . . P (x(k) | Y ) and E the expectation with
respect to the joint distribution P (X | Y ). Then, for any continuous bounded function g,

E
〈
g
(
Y, x(1), . . . , x(k)

)〉
k
= E

〈
g
(
Y,X, x(1), . . . , x(k−1)

)〉
k−1

Nishimori identity is a direct consequence of Bayes’ formula. In fact, sampling (X,Y ) from
P (X,Y ) is equivalent to sampling Y from its marginal distribution P (Y ) =

∫
dxP (x, Y ) and

then sampling X from P (X | Y ). Therefore

E
〈
g
(
Y,X, x(1), . . . , x(k−1)

)〉
k−1

= EY

∫
dXP (X | Y )

∫ k−1∏
i=1

dxiP (xi | Y )g
(
Y,X, x(1), . . . , x(k−1)

)
= EY

∫ k∏
i=1

dxiP (xi | Y )g
(
Y, x(1), . . . , x(k)

)
= E

〈
g
(
Y, x(1), . . . , x(k)

)〉
k
,

where the second equality is just a change of the name of the integration variable X to x(k).
An useful consequence of this identity concerns the overlaps in Bayes optimal setting, more
accurately their typical value.
In fact 28

q = d−1ED

〈
θ(1)⊤θ(2)

〉
2
= d−1ED

〈
θ⊤
∗ θ

(1)
〉
1
= m

and similarly r0 = r, q̂ = m̂ and r̂0 = r̂. Exploiting the Nishimori identity it is also possible to
prove that the overlap matrix is replica symmetric in Bayes optimal setting [7, 5].

28The notation ⟨·⟩k, consistently to the one used in the Proposition, refers to the expectation with respect to
p
(
θ(1) | D

)
. . . p

(
θ(k) | D

)
. Since ED is an expectation with respect to the teacher distributions, it is easy to see

that Nishimori identity can be applied only in Bayes optimal setting.
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C.3 Generalized Aprroximate Message Passing algorithm
Bayes optimal estimation could be performed by sampling from the posterior (3), which is costly
in high-dimensions in general and finding an algorithm that achieves the MMSE in polynomial
time is a hard problem. For this specific setting, an algorithm inspired by statistical physics called
(generalized) Approximate Message Passing can be used to compute marginals of the posterior
and achieve the optimal estimation in polynomial time (with respect to d) [6]. Therefore, we use
it to perform the numerical experiments of section 4. This formulation of the algorithm is the
one presented in [12]. Note that this algorithm assume Bayes optimal setting, hence the output
channel and the prior distributions are the same for the teacher and the student.

Algorithm 1 GAMP

Input: Data X ∈ Rn×d, y ∈ Yn

Define X2 ← X⊙X
Initialize ŵt=0 = 0 ∈ Rd, ĉt=0 = 1 ∈ Rd, gt=0 = 0 ∈ Rn

while t < tmax do:
V t = X2ĉt; ωt = Xŵt−1 − V t ⊙ gt−1;
gt = fout(y,ω

t,V t); ∂gt = ∂ωfout(y,ω
t,V t);

At = −X2⊤∂g; bt = At ⊙ ŵt +X⊤gt;
ŵt+1 = fθ(b

t,At), ĉt = ∂bfθ(b
t,At)

end while
Return: ŵtmax , ĉtmax

where the auxiliary functions fout(y, ω, V ) = ∂ω logZout(y, ω, V ) and fθ(b, A) = ∂b logZθ(b, A)
are scalar functions acting component-wise that depend on the output channel and priors:

Zout(y, ω, V ) =

∫
dz√
2πV

e−
(z−ω)2

2V pout(y|z), Zθ(b, A) =

∫
dθ e−

A
2 θ2+bθpθ(θ) (39)

Note that ŵtmax is an estimator of θ∗.
Our choice of gaussian prior implies

fθ(b, A) =
b

1 +A
.

For the linear channel defined in 3.1.1, with noise variance σ2, we have that

fout(y, ω, V ) =
y − ω

V + σ2
.

For the probit channel defined in 3.1.2, with noise variance σ2, we have that

fout(y, ω, V ) =

√
2

π(V + σ2)
ye

− ω2

2(V +σ2)

[
erfc

(
− yω√

2(V + σ2)

)]−1

.
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D Superstatistical model with inverse Gamma distribution
Consider the inverse Gamma distribution with shape parameter a > 0 and scale parameter b > 0,
namely ρ(∆ | a, b) = ba(1/∆)a+1 exp(−b/∆)/Γ(a), then (1) becomes

P(x) :=
∫ ∞

0

N
(
x | µ, ∆

d
Id

)
ρ(∆ | a, b) d∆

=
ba

Γ(a)

∫ ∞

0

1

∆a+1
√
det(2πd−1∆Id)

exp

(
−

1
2d(x− µ)⊤(x− µ) + b

∆

)
d∆

=
badd/2

(2π)d/2Γ(a)

∫ ∞

0

1

∆a+1+ d
2

exp

(
−

1
2d||x− µ||2) + b

∆

)
d∆

=
baΓ(A)dd/2

(2π)d/2BAΓ(a)

∫ ∞

0

ρ

(
∆ | A = a+

d

2
, B =

1

2
d||x− µ||2+b

)
d∆︸ ︷︷ ︸

=1

=
(2b)aΓ(a+ d

2 )d
d/2

πd/2Γ(a)

(
2b+ ||

√
d(x− µ)||2

)−a− d
2

.

(40)

Different choices of the parameters a and b allows to explore various regimes for the covariates
distribution. In fact, for a > 1 and considering that the average (rescaled) covariance matrix
dE∆[(x−µ)⊤(x−µ)] = E∆[∆] = b/(a−1) =: ∆, by keeping ∆ fixed and sending a→∞ we have
that P(x) → N (x | µ, ∆

d Id, the known Gaussian case, while by approaching the limit a → 1+,
the distribution P(x) get heavier tails. In our simulations we consider the scaling b = a − 1 so
that ∆ = 1 indipendently of a. Instead, for a ∈ (0, 1] the quantity E∆[(x − µ)⊤(x − µ)] is not
finite, hence the covariates’ distribution has infinite covariance.
Moreover, the choice of this distribution finds another motivation in previous works that adopted
it to describe non-Gaussian data in quantitative finance [15], [26] and econometrics [37].
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