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Abstract

Complex systems are usually composed of many interacting parts which together
give rise to the emergence of collective behaviours and properties that need proper
tools to be analyzed. One of the main examples of complex systems, characterized
by heterogeneous interconnections between their single components, are human
societies and a paradigmatic case study of certain aspects of these systems, particu-
larly in terms of economic interactions, are financial markets. The price of an asset
is indeed just the consequence of the interplay between various agents that act
at different time scales and are influenced by the external environment. Studying
the statistical properties of financial data is therefore an opportunity to figure out
how and why some particular features arise in the context of complex systems, and
which are some effective tools to quantify these peculiarities.

This Master’s Thesis project is about various fundamental tools coming from
statistical physics and complexity science in general, that are used to analyse
economical and financial systems. In particular the dissertation focuses on the
empirical study of financial data, employing different methods and ideas inspired
by a physical approach to the analysis of complex systems: scaling relations, corre-
lations and physics-based modeling. Investigating the scaling properties of financial
time series can give crucial insights about the underlying processes generating the
empirical observations and can provide useful tools to detect consistent patterns
across different scales. The analysis of the statistical relation between the price
of different assets can offer the possibility to quantify their interactions and to
extract the important information contained in the correlation structure of financial
markets. A physics-based modeling approach to financial data may offer a unique
perspective which can provide interesting insights into the underlying mechanisms
and dynamics of the system.

The data used consist of a set containing all the daily closing prices from 1990
to 2022 of the stocks comprised, as of November 2022, in the S&P 500 index.

In the first part of the project, some of the main empirical statistical properties
of financial time series found in literature are retrieved on the data: heavy tails,
aggregational Gaussianity, absence of autocorrelations and volatility clustering. Par-
ticular attention is placed on the estimate of the tails exponents of the distribution
of the returns, hallmark of the non-Gaussianity of financial data.

The second part of the work is about the main ideas behind the emergence of
scaling laws in complex systems and their study. Particular focus is placed on
the multifractal analysis of financial markets, its theoretical foundation and the
methods to apply it. The Generalized Hurst Exponent method, as well as some
of its extensions, is presented and applied to the data set to extract the so called
multiscaling proxy and the Hurst exponents of the time series.

In the third part of the thesis different kind of correlation measures are presented
and exploited to study the statistical relations between the time series of the stocks
in the data set, both statically and dynamically. Moreover, the correlation structure
of the market is represented with a complete graph and an information filtering



technique taken from network theory (Minimum Spanning Tree) is employed to
highlight peculiar clustering properties of the data.

The last part of the project is devoted to the study of a relatively new random
walk model by Takayasu et al. (2010), named the PUCK model, in which the
random walker is subjected to a potential centered at its moving average position.
The model is presented and its application as a novel type of time series data
analysis tool, characterizing the time-dependent stability of markets, is shown.
Finally, its scaling properties are investigated through the previously illustrated
methodology and a relation between its parameters and the scaling exponents is
devised.
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Chapter 1

Introduction

Modern science uses the expression "complex systems" referring to systems typically
made up of multiple interacting components that together give rise to collective
behaviors and properties which need proper tools to be analyzed. One of the main
examples of complex systems are financial systems, being composed of many agents
that interact heterogeneously in a complicated way and the agent themselves being
complex individuals or groups who behave based on both rational decision-making
and emotions [1].

In particular, financial markets are open systems where many subunits interact
nonlinearly in the presence of feedback, and are characterized by many participants
interacting among each others with various strategies at different time scales and
frequencies. The price of an asset is indeed the consequence of this complicated
interplay between the constituent components of the systems and the external
environment; and to provide a more complete picture one also needs to take into
account the structure of dependency between different financial assets. Studying
this kind of systems can therefore be extremely challenging but it could be also
an opportunity to figure out how and why some particular features arise in the
context of complex systems, and which are some effective tools to quantify these
peculiarities [2, 3].

Following these ideas, around 1990, some physicists started to gain interest in
exploring the complexity of financial systems and one of the first works belonging
to this stream was «Lévy walks and enhanced diffusion in Milan Stock-Exchange»
by Rosario Nunzio Mantegna, who published this innovative paper by showing the
violation of the central limit theorem on the stock market [2, 4]. From this point
on, the physics community started to understand the importance of non-Gaussian
processes in financial markets along with their multiscale and scale-free properties,
and many researchers began to work on economics problems to test a variety of
new conceptual approaches deriving from the physical sciences [2, 5].

To be fair, one of the first demonstration of interest in social and economic
systems from a physicist point of view came from Ettore Majorana, who wrote a
pioneering article in which he pointed out the essential analogy between statistical
laws in physics and in social sciences, in a period in which for the first time the
determinism of classical physics was being questioned by the advent of quantum
mechanics [6]. It is however thanks to the growing digitalization of society happened
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in the Nineties, that a very large number of data began to become available in
various fields and particularly in financial markets, for which every single transaction
or changes in financial prices was recorded [2].

According to Bikas Chakrabarti, this new interdisciplinary field was named with
the term "Econophysics" in 1995, at the second Statphys-Kolkata conference in
Kolkata (India), by the physicist H. Eugene Stanley, who was also the first to use it
in print [7, 8]. Econophysics can indeed be defined as an interdisciplinary field that
applies the methods of statistical physics, non linear dynamics, network theory to
macro-micro/economic modeling, financial market analysis and social problems [5,
9].

Many may wonder how two disciplines that appear to be so different can be
related; however making a deeper comparison between economical and physical
systems, one can highlight many analogies that make clear why tools from the
physical sciences are believed to be useful for an economic system. Many tools
of statistical mechanics or statistical physics, are built to extract the average
properties of a macroscopic system from the microscopic dynamics, and a lot of
economical systems are characterized by various agents competing in a dynamically
changing environment. Moreover, economic systems may be investigated on various
size scales and in order to understand their global behavior concepts such as
stochastic dynamics, correlation effects, self-organization, self-similarity and scaling
are needed [8, 10].

One of the biggest contribution of econophysics up to now has been in the data
analysis, thanks to the identification of empirical regularities and stylized facts of
the distributions of the returns of financial assets, and the design of mathematical
models and tools for dealing with such a vast amount of data [2, 8, 11]. It is indeed
extremely important to always take into account, when studying these systems, the
real nature of the underlying processes, that can only be extracted and understood
by beginning the analysis from the statistical properties of real world observations.

From the early onset of this relatively new field, it appeared clearly how real
financial data, in particular in the form of financial time series, are characterized
by non-normal statistical properties and large fluctuations, which must be taken
into account by investigating the so-called "tails of the distribution". The underly-
ing processes in financial markets are indeed frequently characterized by infinite
variance, and for this reason the central limit theorem becomes unsuitable for the
analysis of complex systems especially belonging to this particular framework [4,
2].

If one focuses on the statistical analysis of price fluctuations, it can be very useful
to investigate the so-called scaling relations between their different probability
distributions at different time scales. This features of the price fluctuations can in
fact give useful insights about the aggregate statistics of the underlying process
and its diffusive properties [2, 9].

As the violation of the central limit theorem must necessarily be taken into
account, also the validity of the random walk as the stochastic process describing
price fluctuations has to be questioned, mainly for the fact that most of the real
processes are correlated and not uniscaling. By uniscaling it is meant that, if one
describes the (log) price of an asset with a random process, its scaling properties,
as the scaling of the distribution of the q-moments of the price variation, can be
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simply described by a single parameter which is directly related to the model’s
fractal dimension [2, 9].

It is instead widely accepted nowadays that the kinds of processes encountered
in finance, and in many complex systems, are characterized by scaling relations
which are very complicated and not simply fractal. To describe real world data
are thus needed models with multifractal (or multiscaling) properties where, for
instance, the scaling of the distribution of the q-moments of the fluctuations of the
prices needs a proper function to be characterized, which is simply a spectrum of
scaling exponents. This particular feature is peculiar of complex systems and it
derives from the fact that the systems’ properties at a given scale are not preserved
at different scales [3, 2, 9].

A further peculiarity, which concerns the collective dynamics of financial systems,
is the network of interactions and interdependencies between the elements that
constitute the complex structure that is being analyzed. For instance in financial
markets, different assets display a high cross-dependence due to common flows
of information and similar investment strategies; getting information about this
framework can be challenging but crucial to understand deeply how the systems
evolves as well as how each element can impact on the others in periods of high
instability such as crises or crashes [2, 3, 9].

This thesis project is aimed at reviewing some important results obtained in the
field of econophysics in the last decades, with particular emphasis on the concept
of multiscaling from both a theoretical and an empirical point of view.

In the first chapter it is presented a theoretical review of the already mentioned
"stylized facts", and their retrieval on real financial data. The analysis are com-
pleted with an interpretation of the results in the context of the Global Industry
Classification Standard (GICS), with the purpose of showing the potentiality of
these measures for practical applications.

The second chapter is devoted to the mathematical introduction of the concept
of multiscaling (or multifractality) and the presentation of some stochastic models
which include this feature. Different methods to measure this property on financial
time series are described, and they are tested on real data. The results are reviewed
and employed to point out important traits of financial assets derivable from their
scaling relations.

The third chapter focuses on the measures of correlations between financial time
series belonging to the same market, both dynamically to study their evolution, and
statically in order to highlight the network of interdependencies between different
financial assets.

The last chapter of the project is dedicated to the presentation of a relatively
novel stochastic model by Takayasu et al. (2010) for the price of financial assets
and to its analysis in term of the concepts shown in the preceding chapters. In
particular, its scaling properties are investigated with the objective to associate the
model’s parameters with the well-established scaling measures for financial time
series.
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Chapter 2

Stylized Facts

Since its birth in the nineties, Econophysics has strongly focused on the study of
great amount of financial data both to devise their distinguishing features and to
design effective models. In particular, many studies about the statistical properties
of financial time series have been carried on, revealing a set of features common
across different instruments, markets and time periods which are acknowledged as
stylized facts. Financial time series have indeed always been of great interest both
to practitioners and researchers, but it was thanks to the advent of stock exchange
computerization, happened in the Eighties, that all transactions in financial markets
started to be recorded with great detail [8, 2]. Thanks to this huge data collection
opportunity, it became possible to analyze the sequence of prices of any asset
at different time frequencies and nowadays the so-called high frequency data are
recorded every millisecond [8, 11]. It is therefore important to understand which
are these stylized facts as they are fundamental to describe the empirical properties
of financial systems as well as to figure out the main traits which characterize the
stochastic processes underlying the price movements. These facts are indeed usually
used as a benchmark to test the effectiveness of financial models, which clearly
need to reproduce the features of real data in order to be considered potentially
effective [12, 13].

2.1 The Data Set
In this work all the analyses are performed on the time series of the daily last
traded prices from 02-Jan-1990 to 30-Nov-2022 of the stocks comprised, as of the
last date, in the S&P 500 index. The data is provided by the Bloomberg Inc.
platform and the specific price employed is identified on the database by the label
"PX_LAST". It represents the most recent price at which the security traded
before the market closed and it is commonly used to track the closing prices of
various financial instruments, such as stocks, bonds, commodities, and currencies,
on a daily basis. The choice of using daily data comes from the fact that they are
easier to analyze and it’s simpler to find errors in recorded prices. Moreover, the
algorithms used in this work have been presented and tested in literature using this
specific frequency and there is no particular reason for which a change is needed.

Regarding the decision to study stocks comprised in the S&P 500 index there
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are several reasons:

• The S&P 500 index is widely considered as a benchmark for the overall
performance of the U.S. stock market, as it includes 503 large-cap companies
across various sectors, providing a representative sample of the U.S. economy
[14].

• Stocks in the S&P 500 tend to have higher liquidity and trading volume
compared to stocks outside the index, making it easier to obtain accurate
price data [14].

• The use of S&P 500 stocks as a standard allows for better comparability with
previous existing literature [11, 8].

• The S&P 500 index is widely followed by market participants, analysts, and
investors and by studying the stocks which belong to it, one can gain insights
into market behavior, price dynamics, risk factors, and investor sentiment that
are relevant to investors and policymakers [14, 15].

When dealing with large real world data sets it is necessary to check if the data
are reliable, complete and consistent. In particular, in the case of financial time
series it is important to check if there are missing data or if some of them are wrong
due to some errors performed by the computerized collection system. For the data
set analyzed no missing values are present because automatically the Bloomberg
software can be programmed to fill a gap with the preceding value, avoiding the
extraction of time series with "holes" 1. On the other hand, for some time series
there are long consecutive periods (weeks, months) over which the stock retains
the same exact price, that is probably due to the fact that some portion of these
time series are missing and are filled by the software always with the same value.

To detect which stocks are characterized by this issue a simple algorithmic
procedure is designed and reported in Appendix A.1. The original data set utilized
consists of a 8587 × 503 matrix whose columns are the time series of all the stocks.
For each of them the date of the first recorded price can be different while the
ending date is the same (30-Nov-2022). This is due to the fact that not all stocks
comprised in the index, as of 30-Nov-2022, were traded on the market from the
starting date of the data set (02-Jan-1990). On the Matlab software missing values
are stored as NaNs (not a number), and in the following pages this symbol will be
used to indicate when a value in the data set is not recorded.

Using the code in Appendix A.1 on the initial data matrix and setting dt = 50
days, 9 stocks have been removed: Garmin Ltd, Incyte Corp, Monster Beverage
Corp, Phillips 66, Schwab (Charles) Corp, Skyworks Solutions Inc, Bio-techne
Corp, Take-two Interactive Software, United Airlines Holdings Inc. The validity of
the choice is also confirmed by an accurate visual inspection of the data set, and
given the fact that only a tiny fraction of the total set faces this issue, it has been
chosen to simply exclude these stocks form the analysis.

As an example the time series of United Airlines Holdings Inc is shown:

1When a market holiday is present the reported price is the previous day price.
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Figure 2.1: Time series of United Airlines Holdings Inc in which is clearly visible
an error made by the data recording software.

It appears clear how a section of the time series has faced problems in the
recording and thanks to the devised procedure the issue is detected and thus the
stock is removed.

After the cleaning procedure the data set comprises 494 stocks, which can
be visualized using a pie chart in which the various companies in the data set
are classified according to the sectors of the GICS Global Industry Classification
Standard) [16]. This classification is a widely used framework for categorizing
companies into industry sectors and sub-industries. It was developed by MSCI
(formerly Morgan Stanley Capital International), S&P and Dow Jones Indices to
provide a standardized and globally recognized classification system for investors
and financial professionals [16].

The GICS consists of four hierarchical levels: 11 Sectors, which represent broad
segments of the economy: Communication Services, Consumer Discretionary, Con-
sumer Staples, Energy, Financials, Health Care, Industrials, Information Technology,
Materials, Real Estate, Utilities; each sector is divided into Industry Groups, for
a total of 25 of them; industry groups are further divided into specific Industries,
for a total of 74 of them; at the lowest level, industries are further segmented into
Sub-industries, for a total of 163 of them, providing a more detailed categorization
[16].
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Figure 2.2: Pie chart of the data set employed in the project in which the number
and the fraction of stocks belonging to each GICS Sector is reported.

Given that the S&P 500 index is built in such a way to be a representative
sample of the U.S. economy [14], the data set analyzed includes all the Sectors
present in the market.

2.2 Empirical Stylized Facts
In this section four of the most important empirical stylized facts, which can be
found in literature [8, 11], are reproduced on the data set and also an investigation of
some results within the GICS Sector classification is proposed. Most of the following
analysis are performed on the distribution of the asset returns and therefore a
proper definition of these quantities is needed. Let p(t) be the price2 of a financial
asset at time t, the (log) return over a period of time τ is defined as:

rτ (t) = log p(t + τ) − log p(t) (2.1)

This quantity is nothing but the logarithm of the relative price variation, and it
can assume both positive and negative values depending on the movement of p(t)
over the period τ . If τ = 1 day the quantity r1(t) is referred to as daily return.

2Daily last traded price in the analyzed data set.
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Figure 2.3: Plot of the top 3 most capitalized stocks of the data set: Apple Inc,
Microsoft Corp, Alphabet Inc. On the top the price time series, on the bottom
the daily return time series. The data is shown from Mar-2014, and not from the
beginning of the data set, just to make the plots more clear.

When performing statistical analysis of returns it is important to pay attention to
the presence of trends in the data that could affect the validity of the investigation.
In order to remove this possibility, the best-fit line (in the least-squares sense) is
removed from the log p(t) time series of each stock, and only after this operation the
returns are computed. The idea of this transformation is taken from the works by
Giuseppe Brandi, Tiziana Di Matteo et al. [17, 18, 19]. In this way the properties
of the distribution of the returns of each stock are not affected by the presence
of price trends and their study can give important insights about the empirical
features of the analyzed market.

2.2.1 Heavy Tails
Since the first studies on the empirical distribution of asset returns [20], it appeared
clear that the normal distribution wasn’t valid for modelling and describing financial
processes. Non-normal fluctuations are indeed common in financial systems and in
other quantities relevant to economics, and therefore implementing methods which
can help to estimate the behavior of the probability distributions in the region of
large and rare variations, known as the “tail” of the distribution, is crucial [9, 8,
11, 21]. For instance, within the context of risk management, the study of these
tails can provide a better understanding of the potential magnitude and likelihood
of extreme losses, enabling to make more accurate risk assessments and enhancing
the robustness and accuracy of models [9].
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One way to measure the deviation of a distribution from a gaussian is to compute
the so-called excess kurtosis:

γ = ⟨(rτ (t) − ⟨rτ (t)⟩)4⟩
σ4

τ

− 3 (2.2)

where for the real measures the average values and the variance σ2
τ are replaced

with the empirical averages. Knowing that γ = 0 for a gaussian, it follows that
empirical distributions which show a value higher than 0 are characterized by the
so-called "fat tails" [1, 8, 11].

The results of the excess kurtosis γ for the distributions of the daily return of
the data set are reported in the subsequent plot:

Figure 2.4: Histogram of the excess kurtosis measured on the time series of the
daily returns of the stocks in the data set. Large kurtosis characterize the whole
set meaning that most of the returns distributions are fat tailed.

The bin with the highest relative frequency corresponds to values of γ between
6 and 9, and it can be observed that almost every time series in the data set is
characterized by a large kurtosis compared to the gaussian. Distributions with
this feature are called leptokurtic and in financial systems they imply a larger
probability to have extreme returns, both positive or negative [1].

One of the reason why in these systems empirical distributions deviate from a
gaussian is the violation of the central limit theorem (CLT) [4, 1, 9]. Indeed, the
underlying processes in complex systems frequently do not satisfy the assumptions
of the CLT:

• these processes are usually not purely additive and therefore one cannot assume
that they are a simple sum of variables [12, 22];

• the variables in complex systems are nearly always correlated, making impos-
sible to consider them independent [8, 11];
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• there’s no guarantee that the variance of these processes is finite [1];

• the variables are often not even identically distributed [1].

To get a more quantitative perspective about the tails of these distributions it is
common to study the so-called complementary cumulative distribution, defined as:

P>(s; τ) =
Ú +∞

s
p(rτ )drτ (2.3)

and in different works [11, 23, 24] it has been shown that this quantity can be
assumed to asymptotically follow a power law:

P (rτ > x) = P>(x; τ) ∼ x−α (2.4)

It means that by quantifying the parameter α one can get important insights
about the statistics of extreme values. For instance, if the cumulative distribution
function of a process satisfies equation (2.4), it follows that only the first n < α
moments are finite [1]. It is also significant to underline that the distribution of
the returns depends on the time scale τ over which they are calculated, and in the
next subsection more details on this feature will be presented.

In this work, in order to reproduce the results obtained in literature, it is chosen
to estimate the tail exponents α of the daily returns of all the stocks in the data
set. Instead of simply applying a least square linear fitting in log-log scale, it is
preferred to employ a maximum-likelihood fitting method, which has been proved to
provide more reliable results [24]. Assuming that the daily returns are drawn from
a distribution that follows a power law of parameter α for x > xmin, by maximizing
the likelihood of the observations given the model, the following estimates are
obtained for the exponent of the complementary cumulative distribution functions
[24]:

α̂ = n

C
nØ

i=1
ln xi

xmin

D
(2.5)

σ = α̂ − 1√
n

+ O(1/n) (2.6)

n indicates the number of empirical points used for the fit, and it has been
proved that the estimate is valid for n > 50 [24]. To follow this prescriptions,
stocks for which there are less than 50 points are removed from this analysis
(31 stocks). Regarding xmin it is chosen x such that P (r1 > x) = 10−1, and
thus the computations are performed using all the points falling in the range
P (r1 > x) ∈ [10−3,10−1]. In this way 2 decades of points are used to estimate the
parameters and the large values which usually deviate from the power law are also
taken out. The same quantities and assumptions are also employed for the negative
tails.

As an example, it is displayed the complementary cumulative distribution for
the most capitalized (as of 30-Nov-2022) stock of the data set, namely Apple Inc.
The plot is realized in log-log scale to highlight the power law behaviour, and a
comparison is made with a Gaussian with same average and standard deviation of
real data.
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Figure 2.5: Apple Inc empirical complementary cumulative distribution for daily
returns from 02-Jan-1990 to 30-Nov-2022. In the small figure, over the data points,
a straight line whose slope is −α̂ computed with equation (2.5) is showed both for
positive and negative tails.

It is clear how extreme returns are much more probable for a power law and
why the Gaussian cannot be a valid model to assess risk when dealing with these
kind of systems.

The results for all the considered time series are reported in the following plots:

Figure 2.6: Histogram of the results of the maximum likelihood estimates (2.5) of
the positive and negative power law tail exponents for the daily returns distributions
of all the selected stocks in the data set.
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Figure 2.7: Results of the maximum likelihood estimates (2.5) of the positive
and negative power law tail exponents for the daily returns distributions of all the
considered stocks in the data set; on the x-axis each stocks is identified with a
number between 1 and 494 (alphabetical order). The error bars are the σ in (2.6).

For financial time series the measured values of α approximately fall within the
interval (2,5) [8, 9, 11] and the obtained results are in line with these findings. The
positive and negative tail exponents of the same stock are in some cases also different,
meaning that the empirical analyzed distributions can also be asymmetrical, having
different probabilities for very large or very small daily returns. Just a few values
are slightly smaller than 2 but considering their error bars the measures correctly
exceed this value.

Tail Exponents by Sector

To complete the description about the heavy tails, the results are also presented
within the GICS Sector classification [16], in order to highlight if there are some
groups of stocks characterized by peculiar properties. To take into account the
estimate errors on the exponents a weighted average is performed for each sector
[25]:

α̂sec =
q

i α̂i/σ2
iq

i 1/σ2
i

(2.7)

σ2(α̂sec) = 1q
i 1/σ2

i

(2.8)

having used for αi the simple average between the two tail exponent and as the σi

the squared sum of the two related estimate errors. The subsequent plot displays
the results:
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Figure 2.8: Weighted average tail exponent for each sector in which the companies
in the data set are divided. For each stock it is used the average between positive
and negative tail exponents and the squared sum of the two related errors. The
error bar is the standard error of the mean.

An higher α implies that the corresponding sector contains stocks whose daily
return distribution tails decays on average faster than the one of a sector with
a lower α. In the investigated case, the Real Estate and the Financials sectors
show a lower average α with respect to the others, which instead display similar
values. To make more clear the implications of this property, the results on the
two aforementioned sectors are shown, and for each one of them the daily return
time series of the two stocks with the lowest α̂ and the one with the highest are
presented:
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Figure 2.9: Simple average between positive and negative tail exponent for each
stock considered in the Real Estate sector. The error bar is the squared sum of
the two estimates σ. In correspondence of stocks for which there are not enough
points to estimate α, no measure is reported.

Figure 2.10: Daily returns time series for 3 stocks of the Real Estate sector. It is
clear that when α is smaller (first two plots), the returns can assume more extreme
values compared to cases when α is larger (third plot).
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Figure 2.11: Simple average between positive and negative tail exponent for each
stock considered in the Financials sector. The error bar is the squared sum of the
two estimates. In correspondence of stocks for which there are not enough points
to estimate α no measure is reported.

Figure 2.12: Daily returns time series for 3 stocks of the Financials sector. It is
clear that when α is smaller (first two plots), the returns can assume more extreme
values compared to cases when α is larger (third plot).

It is interesting to observe that potentially these tail exponents could be also
exploited to gather companies, for instance in figure (2.12) both Hartford Financial
Services Group Inc (HIG UN Equity) and Prudential Financial Inc (PRU UN
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Equity) offer services related to Insurances and have a very similar α.

2.2.2 Aggregational Gaussianity
From previous analysis it is clear that studying the distribution of the returns of
financial assets can give crucial insights to take into account extreme events in an
effective way. Since now, the main focus has been placed on daily returns but it is
widely recognized that the time scale τ over which returns are computed strongly
affects the properties of their distribution [8, 11, 1]. Indeed, it has been observed
that when τ increases, the heavy tail property of the distribution weakens, and
it approaches a Gaussian form [8, 11, 26, 27]. This second stylized facts is called
aggregational Gaussianity, and it is somehow the recovery of the validity of central
limit theorem for large time scales. On the top of that, the notable dependence of
(2.3) on τ means that the process underlying prices is not trivial for small time
scales as there are peculiar effects, like the fat tails, which are less evident when τ
increases. In the subsequent plots we can observe a clear example of this tendency
and an overview over the whole data set.

Figure 2.13: Empirical complementary cumulative distribution of Apple Inc
returns from 02-Jan-1990 to 30-Nov-2022. It is evident that increasing the time
scale τ over which returns are computed the distributions get closer to a Gaussian
with average and variance computed on the empirical returns.

It is evident in this example that increasing τ the tails of the return distribution
do not deviate in a consistent way from the Gaussian, and thus the normal
assumption should not be discarded completely to model these quantities. On the
other hand, when the time scales are small, τ = 1 day in the example, the data
strongly deviate from the Gaussian. To get an overview of the data set, the excess
kurtosis γ of the returns distribution for various τ is computed for all the stocks in
the data set.
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Figure 2.14: Excess kurtosis γ for the returns distribution at various time scales
τ = [1, 50, 120] days of all stocks in the data set.

As τ grows the peak of the histogram get closer to 0, meaning that the empirical
distributions get closer to the normal one.

2.2.3 Absence of Autocorrelations
When studying financial data it is fundamental to examine if there exists a cor-
relation between a given time series and a delayed copy of itself. In this way one
can detect if the system has memory and therefore if there are any systematic
relationships, such as trends or patterns, between past and future observations.
Usually the measure that is used to quantify this property is the Pearson correlation
coefficient defined in this way:

Cτ (∆t) = corr(rτ (t + ∆t), rτ (t)) =
= ρ(rτ (t + ∆t), rτ (t)) = (2.9)

= cov(rτ (t + ∆t), rτ (t))
σrτ (t+∆t)σrτ (t)
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that on real data simply becomes the sample correlation coefficient:

ρ(rτ (t + ∆t), rτ (t)) =

= 1
N − 1

T −∆tØ
i=1

A
rτ (t + ∆t) − ⟨rτ (t + ∆t)⟩

σrτ (t+∆t)

BA
rτ (t) − ⟨rτ (t)⟩

σrτ (t)

B
(2.10)

where the averages and the standard deviations are also computed on data [28, 29].
This quantity measures the linear correlation between two variables, that in this
case are rτ (t + ∆t) and rτ (t), and it is practically their normalized covariance. It
can assume values in the interval [−1,1] where 0 means no correlation, +1 positive
linear correlation and -1 negative linear correlation [28, 29].

Regarding financial data, it is well known that returns do no exhibit significant
autocorrelation [8, 11, 30]. The main reason is that if linear correlations between
price variations existed, these could be simply exploited to devise arbitrage strategies
which would immediately reduce them [11]. Therefore the third stylized facts is the
absence of autocorrelations of returns and it is also acknowledged as an evidence of
the validity of the efficient market hypothesis [11, 31]. In fact, this theory states
that it is nearly impossible to consistently outperform the market as all relevant
information about a security is quickly reflected in its traded price [32].

To showcase this property on the data set, the correlation of daily returns of all
the available stocks is computed. The average over the whole data set is reported
in the subsequent plot.

Figure 2.15: Autocorrelation for the daily returns of every stock in the data set
averaged over the whole data set. The error bars are the standard error of the
mean of each correlation measure.

From the plot it is evident that the autocorrelation immediately decays to zero
and oscillates around this value for any time lag ∆t employed for the calculations.
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2.2.4 Volatility Clustering
Having observed absence of autocorrelations for returns one would argue that
also their non-linear functions follow the same property and therefore that price
increments are totally independent [11]. However, if one computes, for instance,
the absolute value or the square of the returns, they exhibit a positive long-range
autocorrelation that slowly decays to zero [8, 11]. This well known property is
widely acknowledged as volatility clustering and was first described as the tendency
of financial markets to experience extended periods of high volatility followed by
extended periods of low volatility [20]. It suggests that large price movements
tend to occur in clusters, rather than being randomly distributed over time, and
together with the heavy tails, described in Section (2.2.1), it is a further evidence
that prices cannot be simply modelled as random walks [11].

As an example the squared daily returns of Apple Inc are plotted and it is
evident that large returns are often part of a cluster of high volatility while flat
regions belong to groups of low price variations.

Figure 2.16: Squared daily returns of Apple Inc’s time series in the period between
2010 and 2022. Many clusters of high or low volatility can be observed along the
period.

To showcase this fourth stylized facts over the whole data set the average
autocorrelation for the absolute and for the squared daily returns is computed for
every stock and averaged over all of them. The results are also compared to the
autocorrelations of the simple returns, already displayed in figure (2.15), in order
to emphasize the described persistence.
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Figure 2.17: Autocorrelation for different functions of the daily returns of every
stock in the data set averaged over the whole data set. The error bars are the
standard error of the mean (standard deviation divided by the square root of the
number of data point) of each correlation measure.

In many past works [8, 11] the autocorrelation of different powers υ of the
absolute returns has been proven to approximately decay as a power law:

ρ(|r1(t)|υ, |r1(t + ∆t)|υ) ∼ (∆t)−β (2.11)

with β roughly in the interval [0.1,0.4] for absolute and squared returns [8, 11,
33], even if this range varies quite a lot across the literature.

With the aim of extracting these values from the analyzed data set, the autocor-
relation of the absolute daily returns of each time series is fitted with a power law of
the form A(∆t)−β and for each estimation ∆t belongs to the set [1, min(∆ti

0,1000)]
where ∆ti

0 is the last time lag for which the autocorrelation function is still positive.
In order to avoid spurious results due to the scarcity of data points in a single time
series, only stocks for which the maximum employed time lag (∆tmax) < 0.3 times
the single time series’ length are considered (93 stocks removed).

By way of illustration the power law fit is showcased again for the most capitalized
stocks of the data set, namely Apple Inc. In this particular case the autocorrelation
remains positive even for ∆t ∼ 1000 days and therefore all the available points are
used for the fit. The standard error reported is simply computed from the 95 %
confidence interval of the fit coefficients’ results.
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Figure 2.18: Example of the power law fit of the autocorrelation of the absolute
daily returns from 02-Jan-1990 to 30-Nov-202 of Apple Inc stock. The red line is
the resulting power law.

The obtained results for all the data set are reported in the following histogram:

Figure 2.19: Histogram of the exponents β of the power law decay fit of the
absolute daily returns autocorrelation of the stocks considered in the analysis.
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The obtained values present a distribution which is sharply peaked around
β ≃ 0.35 while the 2.5 and the 97.5 percentiles are respectively 0.169 and 0.4465.
As a result, the 95% of the obtained values fall approximately in the interval
reported in literature [8, 11]

Figure 2.20: Results of the power law fits exponent for all the stocks considered
in the analysis. Estimates with less points are, as expected, characterized by a
larger standard error.

The results obtained must be taken with care as it is clear that there are also
some estimates which are realized using few hundreds of points and in fact in the
plot above these values are the one characterized by the highest standard errors.
The purpose of these computations is however to give a quantitative estimate of
the phenomenon of volatility clustering and therefore these exponents can in any
case give an idea about how fast the analyzed autocorrelation decays.

Exponents by Sector

Just to complete this part, as done in section (2.2.1), the weighted average of β for
each sector is computed and reported in the subsequent plot:
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Figure 2.21: Weighted average (Equation 2.7) of the exponent β for each sector
in which the companies in the data set are divided. The error bar is the standard
error of the mean according to Equation (2.8).

An higher β implies that the corresponding sector contains stocks whose auto-
correlation of the absolute daily return distribution decays on average faster than
the one of a sector with a lower β. It means that stocks characterized by low values
of the exponent β show longer and more evident clusters of large or small volatility.
It follows that when one models the process underlying volatility this dependence
cannot be neglected and these empirically observed features must necessarily be
included [11].

In the investigated case, the Utilities and the Information Technology sectors
show an average β which is further from the other, respectively higher for the former
and lower for the latter. To make more clear the implications of this property, the
results on the two aforementioned sectors are shown, and for each one of them the
daily absolute return time series of three stocks are shown: the 2 with the highest
(lowest) β and the other with the lowest (highest).
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Figure 2.22: Results for the exponent β in the Information Technology sector.
The larges standard errors are observed when a low number of points is used in
the fit.

Figure 2.23: Absolute daily returns time series for 3 stocks of the Information
Technology sector. It is clear that when β is smaller (first two plots), the volatility
clusters are more evident compared to cases when β is larger (third plot).
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Figure 2.24: Results for the exponent β in the Utilities sector. The lower the
number of points used in the fit, the larger the standard errors observed.

Figure 2.25: Absolute daily returns time series for 3 stocks of the Information
Utilities sector. It is clear that when β is smaller (third plot), the volatility clusters
are more evident compared to cases when β is larger (first two plots).

It is interesting to observe that stocks with β ∼ 0.1 − 0.2 show a lot of clusters
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along all the analyzed period and therefore can be considered to be riskier as the
price is more volatile. On the other hand, time series which give back a value
of β ∼ 0.4 − 0.5 show smaller absolute returns and clusters which persist for
shorter periods. These last type of stocks are thus featured by more contained
price variations and in this sense can be seen as safer assets.

One may wonder if the measures of β are somehow related to the measures of α
previously described. Computing the Pearson correlation coefficient [28]:

ρᾱ,β = cov(ᾱ, β)
σᾱσβ

(2.12)

between the average among the positive and negative tail α and the β for each
stock for which both the estimates have been computed (401 stocks), one gets that
there’s no statistically meaningful correlation. This implies that the two exponents
describe different properties of the assets analyzed and thus must be taken into
account simultaneously when making statistical analysis of financial assets.

2.2.5 Other Important Empirical Properties
Other than the empirical stylized facts presented, there are many other properties
which are shared by financial data [11] and on some of them the next chapters will
be focused. Mainly two empirical aspects of financial time series will be analyzed:
scaling properties and correlations.

Scaling properties are well known in physics, statistics and mathematics and refer
to how a system, a phenomenon, a law or a process behaves when its characteristic
scale or size is modified. In the specific case of financial time series one looks for
patterns or properties that are repeated at different time scales [34] and it will
be shown how to quantify them and the consequence of these measures on the
understanding of financial markets. A great focus will be placed on the concept
of multiscaling and, other than presenting the cutting-edge methods to estimate
it, it will be quantified on the considered data set to further confirm the fact that
financial time series are indeed multiscaling [34, 35]. In a sense, this feature could
have been also presented as the fifth stylized fact in this chapter but, given its
importance in the setup of this work, an entire chapter will be devoted to its
description.

Correlations are instead a measure of the interdependency between financial
assets and can be useful to acquire important information on how much the various
stocks are more or less influenced by the the movement of the others. Moreover, the
study of the correlations of asset returns has been a valid instrument to study the
hierarchical structure of financial markets and the presence of clusters of companies
who share similar traits [8, 11, 36, 37]. In the following chapters this dependency
measures will be presented and employed to get interesting insights about the
market structure and its evolution.
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Chapter 3

Scaling Properties

Scaling properties (or laws) refer to how a system or a phenomenon behaves when
its characteristic scale or size is modified.

These are well known in statistical physics as are vastly used to empirically study
the behavior near critical points of phase transitions. Moreover, their combination
with the concept of universality and with the renormalization group technique has
led to a powerful approach to study critical phenomena and dynamical systems,
enabling researchers to uncover peculiar properties previously unknown [38].

In general, the study of scaling laws is fundamental in the analysis of complex
systems for many reasons: it provides insights into the essential properties and
dynamics of the phenomenon or of the process under examination; it is useful to
make predictions about the behavior of the system at different scales; it may reveal
universal principles that apply across different domains [39].

The study of scaling properties must be introduced giving a rapid overview
about the concepts of self similarity and scale invariance, which are crucial to
understand how profoundly scaling laws can tell about the nature of a process or a
phenomenon under analysis.

3.1 Self-similarity, Fractals, Scale Invariance
This section is a rapid summary of the main concepts related to self-similarity,
fractals and scale invariance exposed in the first chapter of [40], which can be useful
for the next topics presented.

3.1.1 From Geometrical Fractals to Scale Invariance
Definition 3.1.1 A similarity S is a linear transformation obtained as a composi-
tion of translation, rotation and uniform scaling (enlarging or reducing).

It follows that two geometrical objects A and B are similar (∼) if it exists a
couple of similarity transformation S, S′ such that S(A) ∼= B and A ∼= S′(B).

Definition 3.1.2 A generalized similarity transformation Ŝ is the union of n
similarity transformations.

29



Scaling Properties

Definition 3.1.3 A geometrical object O is self-similar if it exists at least a gen-
eralized similarity transformation Ŝ such that Ŝ(O) ∼= O

A peculiar example of self-similar geometrical objects are the so called fractals
defined for the first time by Benoît Mandelbrot in [41]. These objects are charac-
terized by the property that their parts, when magnified by some suitable scale
factor, look similar to the whole, and a fractal can be built recursively applying a
generalized similarity transformation an infinite amount of times to a geometrical
structure.

A typical example is the so called Cantor Set which can be built applying
recursively the following generalized similarity transformation:

Ŝ = S1 ∪ S2, with S1 = 1
3x and S1 = 1

3x + 2
3

to the unitary one dimensional interval I = [0,1]. The fractal object is therefore
defined by Ŝ∞(I).

Definition 3.1.4 The fractal (or Hausdorff) dimension dF of an object O embedded
in Rd is defined as:

dF = − lim
r→0

log N(r)
log r

(3.1)

where N(r) is the minimum number of d-dimensional balls of radius r (Bx0(r) =
{x ∈ Rd : ∥x − x0∥ ≤ r}) necessary to cover the object O (minimum with respect
to the position of ball centers at fixed r);

Definition 3.1.5 A fractal is a subset of an Euclidean space such that

dT < dF ≤ d

where d is its embedding dimension (i.e the dimension of the space in which the
object lives), dT its topological dimension (i.e. the local dimension of each point of
the object).

For instance the Cantor Set is formed by point-like objects (dT = 0) and is
embedded on the real line (d = 1). Its fractal dimension can be simply computed
by analytically defining the quantity N(r) present in Definition 3.1.4. At every
step of the construction of the Cantor Set the geometrical object is covered by 2n

balls of diameter 2r = 3−n. It follows that :

dF = − lim
r→0

log N(r)
log r

= (3.2)

= − lim
n→∞

log(2n)
log(3−n2−1) = (3.3)

= − lim
n→∞

n log(2)
−n log 3 − log 2 = (3.4)

= log 2
log 3 ≃ 0.63 (3.5)
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It is interesting to observe that a scaling law natural arises:

N(r) = 2−1N(r/3) = 3−dF N(r/3) (3.6)

as at each iteration the number of balls to cover the object increases with the
decrease of the size.

Definition 3.1.6 In general a differentiable function is said to be scale invariant
if:

f(x) = λ−αf(x/λ) (3.7)

for every choice of λ and for some choice of α.

In the case of fractals, the self-similarity of the object arises in a relation of this
type that is however valid only for a finite set of scale factors λ that is related to
its fractal dimension(s).

However, it must be underlined that self-similarity leads to power laws of the
type in Equation (3.7) but the opposite is not guaranteed. Nevertheless, it is
already clear that studying the scaling properties of a system can give important
insights about its profound nature [39].

3.1.2 Random Fractals and Statistical Scale Invariance
To complete this introduction, it is important to also describe the so-called random
fractals, which are geometric objects with approximately fractal properties (i.e.
self-similarity) that can be obtained as realizations of stochastic processes with
peculiar features. Indeed, the probabilistic laws governing these processes are
self-similar and these processes are characterized by the so-called statistical scale
invariance.

The simplest example of a random fractal is the realization of a Brownian motion
in Rd which can be approximated by a discrete random walk with a step of length
r0 and directions randomly drawn from a rotationally invariant distribution with
zero average. Let p(x⃗) be the distribution of the individual displacement x⃗, the net
displacement of the walk after m steps is X⃗m = qm

i=1 x⃗i. Having i.i.d. steps and
exploiting the linearity of the expectation, the first and second moment of the net
displacement are simply: K

X⃗m

L
m

= 0 (3.8)

and K
|X⃗m|2

L
m

=
K

mØ
i=1

mØ
j=1

x⃗i · x⃗j

L
m

= (3.9)

=
mØ

i=1
⟨|x⃗i|2⟩ = mr2

0 (3.10)

where the subscript m represent the average computed with respect to the distri-
bution of the the m−step displacement.
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If one wants to compute the fractal dimension dF of the realizations of this
process, it is necessary to compute the minimum number N(r) of 1-balls of length
r needed to cover these paths. Choosing r = r0 one obtains:

N(r0) = nN(
√

nr0) (3.11)

as the first and second moment of the net displacement after m steps are exactly
the same for both a random walk of m steps of length r0 and a random walk of
m/n steps of length

√
nr0. Assuming N(r0) ∼ r−dF

0 one gets dF = 2 and, knowing
that the topological dimension of a random walk path embedded in Rd is dT = 1, it
follows that the realizations of the process are random fractals for d ≥ 2. It means
that the generating process itself is self-similar and this also implies the so-called
statistical scale invariance of the underlying statistical laws.

Supposing for instance that p(x⃗) is a Gaussian distribution:

p(x⃗) = 1
(2πσ2)d/2 e− |x⃗|2

2σ2 (3.12)

the probability distribution of the displacement X⃗n = qn
i=1 x⃗i after n steps is:

pn(X⃗n) =
Ú nÙ

i=1
dx⃗ip(x⃗i)δ(d)(X⃗n −

nØ
i=1

x⃗i) = (3.13)

... (3.14)

= 1
(2πnσ2)d/2 e− |X⃗n|2

2nσ2 (3.15)

which is again a Gaussian with a standard deviation
√

n times larger than the one
of the single step displacement. Performing a rescaling of X⃗n by the quantity

√
n,

in order to recover the original single step scale, one gets x⃗′ = X⃗n/(n)d/2 which ,
due to probability conservation under change of variables, implies:

p(x⃗′)dx⃗′ = pn(X⃗n)dX⃗n =⇒ p(x⃗′) = p(x⃗) (3.16)

It means that the distribution of the new rescaled random variable x⃗′ obtained
from the n steps displacement X⃗n is the same as the individual step one. It follows
that the process is statistically scale invariant.

To conclude, if one assumes a scaling law for the root mean square displacement
of the process after n steps:

R̄(n, σ) =
AK

|X⃗n|2
LB1/2

∼ nν (3.17)

a power law with exponent ν = 1/2 is obtained.

Scaling Properties of a Simple Random Walk

If one considers a simple random walk but expressed by the difference equation:

x(t + 1) = x(t) + f(t) (3.18)
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with f(t) ∼ N(0, σ2), it is simple to extract the scaling properties of the process from
the moments of the distribution of the increments. Defining yτ (t) = x(t + τ) − x(t),
due to the independence of the f(t) variables it is simply distributed as:

yτ (t) ∼ N(0, τσ2) (3.19)

which obviously does not depend on t. It follows that:

E(|yτ (t)|q) = (σ2τ) 1+q
2

2 q
2
√

πσ2τ
Γ
A

1 + q

2

B
∼ τ

q
2 (3.20)

which reveals how the process of the increments scales with τ for a simple random
walk. In the next sections it will be shown the importance of this scaling relation.

3.2 Self-affine Processes and the Hurst Exponent
In order to generalize the previously presented concepts it is important to define
self-affine processes, that are a wider class of processes which also include the
self-similar one. Moreover, one of the most known measure of long-term memory
of time series, called the Hurst exponent, is introduced.

3.2.1 Self-affine Processes
Definition 3.2.1 Granted X(0) = 0, a random process {X(t)} that satisfies:

{X(ct1), ..., X(ctk)} d= {cHX(t1), ..., cHX(tk)} (3.21)

for some H > 0 and all c > 0, is called self-affine.

H is called the self-affinity index or scaling exponent of X(t). To be more clear
one can say that self-affinity allows for different rescalings along the directions of
an orthonormal basis, while self-similarity requires the same rescalings along each
direction. It follows that self-similar objects are invariant under both dilations and
rotations [22, 34]. Typical examples of self-affine processes used in finance are the
L-stable processes and the Fractional Brownian Motions (FBM), BH(t). While
the first are characterized by stable and independent increments, the FBM has
dependent increments with negative autocorrelation for 0 < H < 1/2 and positive
for 1/2 < H < 1. When H = 1/2 the FBM becomes a simple Brownian Motion
[34, 22].

3.2.2 Hurst Exponent
The Hurst exponent is a statistical measure of the long-term memory of time series
and can be obtained from the asymptotic behavior of the autocorrelation function
[34, 42]. For instance, if one considers a stationary standard Gaussian function
X(t) with E[X(t)] = 0 and E[X2(t)] = 1 the autocorrelation function:

C(∆t) = E[X(t)X(t + ∆t)] (3.22)
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can be useful to measure the roughness of the profile X(t) in the Euclidean plane
[34]. Indeed, if the correlation function behaves as

C(∆t) ∼ 1 − |∆t|α, for ∆t → 0 (3.23)

for α ∈ (0,2] one can extract the fractal dimension of the random path of X(t)
with the relation [22, 34]:

dF = 2 − α

2 (3.24)

On the other hand, analyzing the asymptotic behaviour at large time lags of C(∆t),
one can quantify the long-range dependence of the process:

C(∆t) ∼ |∆t|−β, for ∆t → +∞ (3.25)

for β ∈ (0,1). The Hurst exponent is defined from this quantity by the equation
[34]:

H = 1 − β

2 (3.26)

and gives information about the long-memory dependence of the process. It is
important to underline that the fractal dimension is a local property while the
long-memory dependence is a global one.

For self-similar processes (in a n-dimensional space), the local properties are
preserved also at larger scales and it follows that:

dF = n + 1 − H (3.27)

In general processes characterized by H ∈ (0.5,1) are characterized by long-memory
dependence or persistence, while when H ∈ (0,0.5) the process is said to be
anti-persistent [34].

In general, as it will be shown, the Hurst exponent can be measured on time
series regardless the statistical properties of the underlying process generating
them, nevertheless it must be always checked that the assumed scaling relations
are empirically valid [34].

Re-scaled Range Statistical Analysis

Between the Fifties and the Sixties Hurst and his colleagues introduced a statistical
analysis technique to describe the long-term dependence of water levels in various
kind of channels and reservoirs [43, 44]. The methodology is called the re-scaled
range statistical analysis and is a practical tool to extract the Hurst exponent of a
given time series.

Given a time series X(t) defined for t = n,2n,3n, ..., the average and the standard
deviation over a time window are:

⟨X⟩T = n

T

T/nØ
k=1

X(kn) (3.28)

S(T ) =
A

n

T

T/nØ
k=1

[X(kn) − ⟨X⟩T ]2
B1/2

(3.29)
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The range R of the time series is defined as the difference between the maximum
and the minimum values of X(t) in the interval [n, T ] [34]:

R(T ) = max
n≤t≤T

[X(t)] − min
n≤t≤T

[X(t)] (3.30)

The Hurst exponent can be defined from the scaling relation of the following
quantity [34]:

R(T )
S(T ) ∼

A
T

n

BH

(3.31)

This measure can therefore detect the long-range dependence of a signal and, given
the fact that for an independent random process H = 0.5 [34, 19] (see also Equation
(3.20) in the perspective of multiscaling spectrum of self-affine processes as H(q)
and H are related [34]), when the measured H /= 0.5 the underlying process present
non-trivial correlation properties. Obviously this is just the simplest version of the
technique and several extensions and upgrade have been proposed in the years [34].

3.3 Multifractality and Multiscaling Properties
Multifractality was initially observed in the context of turbulence in fluid mechanics
[45, 46]) and was then theoretically defined for random measures and consequently
for random processes [22, 47]. In general, systems which exhibit multifractality
are characterized by scaling laws defined by a spectrum of exponents and not by a
single fractal dimension.

3.3.1 Self-similar Random Measures
A random measure µ defined on an interval X ∈ R is a mapping defined on a
probability space and valued in the class of all measures on X. It is a transition
kernel that assigns random variable to each subset of X.

Definition 3.3.1 A random measure µ satisfying these properties:

• for any affine transformation S on the real line, for any interval I1 ⊆ I2

µ(SI1)
µ(SI2)

and µ(I1)
µ(I2)

(3.32)

are identically distributed whenever I1, I2, SI1, SI2 ⊆ X;

• for all non-decreasing sequence of compact intervals I1 ⊆ ... ⊆ In contained in
X, the random variables

µ(I1)
µ(I2)

, ...,
µ(In−1)
µ(In) (3.33)

are statistically independent;

is self-similar [22].
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If the interval X is of the form [0, T ], 0 < T ≤ ∞, the first property implies the
existence of a positive random process M(c) independent of µ such that [22]:

µ[0, ct] d= M(c)µ[0, t] for 0 < t ≤ T, 0 < c ≤ 1 (3.34)

Given two constants a, b ≤ 1, thanks to the second property it can be written that:

µ[0, abt]
µ[0, t] = µ[0, abt]

µ[0, at]
µ[0, at]
µ[0, t] (3.35)

that implies the following property for process M [22]:

M(ab) d= M1(a)M2(b) (3.36)

where M1 and M2 are two independent copies of M .
To complete, assuming, without loss of generality, X = [0,1], and considering

µ(a) ≡ µ[0, a], Relation (3.36) implies [22]:

E[M(a)q] = aτ(q)+1 (3.37)

and therefore:
E[µ(a)q] = E[µ(1)q]aτ(q)+1 (3.38)

which is the scaling-relation which characterize multifractals. It follows that the
multifractality is a direct consequence of the statistical self-similarity of the random
measure µ [22].

The function τ(q) is the so-called scaling function and satisfies the following
properties [22]: τ(0) = −1, τ(1) = 0, concavity due to Hölder’s inequality [22].

3.3.2 Multifractal Processes
From random measures the multifractality can simply be extended to stochastic
processes.

Definition 3.3.2 A stochastic process {X(t)} is called multifractal if it is station-
ary and satisfies:

E(|X(t)|q) = c(q)tτ(q)+1, for all t ∈ T , q ∈ Q (3.39)

where T and Q are intervals on the real line with positive length such that 0 ∈
T , [0,1] ∈ Q, and τ(q) and c(q) are functions with domain Q [22].

The function τ(q) is the so-called scaling function already defined in the previous
subsection. The concavity implies that the multifractal scaling relation can only
hold for bounded time intervals and therefore multifractal processes must contain
a crossover.

It is interesting to show that self-affine processes are multifractal. Given a self-
affine process {X(t), t ≥ 0}, with self-affinity index H it is known from definition
(3.21) that X(t) d= tHX(1) and thus:

E[|X(t)|q] = tHqE[|X(1)|q] (3.40)
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The scaling defined in relation (3.39) holds and in particular:

τ(q) = Hq − 1 and c(q) = E[|X(1)|q] (3.41)

In this case the scaling function is linear in q and the scaling behaviour only needs H
to be characterized [22]. From this observation comes the subsequent classification
[34, 22]:

• multifractal processes with linear τ(q) are called uniscaling or unifractal;

• multifractal processes with non-linear τ(q) are called multiscaling or multi-
fractal;

Usually, when one retrieves the scaling (3.39) property empirically it is claimed
that the data are multiscaling [34, 18].

3.4 Multifractal Models in Finance
When studying the scaling with time of the process describing the price variation of
a financial asset, the multiscaling properties defined in the preceding sections were
widely observed in different markets[48, 49, 34]. Many researchers thus decided to
devise models which could explain these properties with the help of the theory of
multifractal processes [22].

In the following two of the main models within this framework are presented: the
Multifractal Model of Asset Returns by Mandelbrot et al. [22] and the Multifractal
Random Walk by Bacry et al. [12, 50]. In particular the second one is usually used
as a benchmark to test the effectiveness of multiscaling estimation methods as it
provides an analytical form of the multiscaling spectrum [18].

3.4.1 The Multifractal Model of Asset Returns
In the Multifractal Model of Asset Returns the price of a financial asset is viewed
as multiscaling process with heavy tails and long memory, and the fluctuations
of the volatility are introduced describing the trading time as generated by the
cumulative density function of a random multifractal measure [22].

Given the price of a financial asset {P (t); 0 ≤ t ≤ T}, the process X(t) is defined
as:

X(t) = ln P (t) − ln P (0) (3.42)
Assuming the following properties:

• X(t) is defined as a compound process:

X(t) ≡ BH [θ(t)] (3.43)

with BH(t) fractional Brownian Motion with self-affinity index H, θ(t) stochas-
tic trading time (increasing function of t);

• the trading time θ(t) is the c.d.f. of a multifractal measure defined on [0, T ], it
follows that it is a multifractal process with continuous non-decreasing paths,
and stationary increments;
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• {BH(t)} and {θ(t)} are independent.

With this assumptions the process X(t) is multifractal, with stationary increments
and scaling function τX(q) ≡ τθ(Hq) [22].

The multifractal nature of the process imposes a multiscaling relation (3.39)
and depending on the measure µ that characterizes the trading time and on the
H index of the fractional Brownian motion, the process can assume very different
properties. For instance, when H ≥ 1/2 and E(θHq) is finite, the price process has
long memory in the value of its increments, and in general it is possible to obtain
long tails in the increments distribution, long-dependence in the absolute value
of price increments (i.e. volatility clustering) and absence of correlation in simple
price increments [22].

3.4.2 Modelling Financial Time Series Using Multifractal
Random Walks

A multifractal random walk (MRW) process X(t) is the limit process (∆t → 0) of
a standard random walk X∆t(t) with a stochastic variance:

X(t) = lim
∆t→0

X∆t(t) = lim
∆t→0

t/∆tØ
k=1

ϵ∆t[k]eω∆t[k] (3.44)

in which eω∆t[k] is the stochastic volatility, and ϵ∆t is a Gaussian white noise
of variance σ2∆t independent of ω∆t. In order to obtain an exact multiscaling
spectrum for time scales smaller than the integral scale L, the process ω∆t must be
a stationary Gaussian process such that:

• E(ω∆t[k]) = −V ar(ω∆t[k]);

• Cov(ω∆t[k], ω∆t[l]) = λ2 ln ρ∆t[|k − l|] where

ρ∆t[k] =


L
(|k|+1)∆t

for |k| ≤ L/∆t − 1
1 otherwise

From the last relation it follows that the volatility is correlated up to a time
lag L.

From this properties the following multiscaling spectrum follows:

E(|X(t + l) − X(t)|q) = Kql
ζq (3.45)

ζq = (q − q(q − 2)λ2)/2 (3.46)

The parameter λ2 is called the intermittency factor and controls the non linearity of
ζq, when λ2 = 0 the process X(t) is a Brownian motion with linear scaling function
[12, 50].

This process can thus be used to describe the return fluctuations of financial
time series: the price of an asset P (t) is modelled by eX(t) where X(t) is a MRW
[12]. From data one can extract the parameters of the model in the following way:
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• the variance σ2 can be extracted using the relation V ar(X(t)) = σ2t;

• L and λ can be obtained from the approximated form of the magnitude
correlation of the process:

Cω(τ, l1, l2) = Cov(ω(t, l1), ω(t + τ, l2)) ≃ −λ2 ln( τ

L
), L > τ ≫ max(l1, l2)

What makes this model very interesting is that it reproduces the main observed
empirical stylized facts : absence of correlation between price variations, long-range
volatility correlations, linear and non-linear correlation between assets. Furthermore,
the multiscaling spectrum is exactly known and just three parameters are needed
to control the properties of time series generated with this model: σ2 controls the
variance of the fluctuations, λ2 controls the scale invariance properties and the
volatility correlation, L controls the volatility decorrelation scale [12].

3.5 Methodologies to Measure Scaling Properties
in Time Series

As showed in many works [49, 34, 19, 18, 35, 51] multiscaling is a widely accepted
stylized fact in financial time series and many different tools to measure this
properties have been tested and devised. In this work it is placed focus on the
Generalized Hurst Exponent method [34, 35] and on a variation of this technique
[19] that is more well-founded from the point of view of statistical significance.

3.5.1 Generalized Hurst Exponent Method
This method is a generalization of the previously shown R/S method to measure the
standard Hurst exponent, and employs the q-th order moments of the distribution
of the increments of a time series (i.e. returns for financial time series) to extract
its scaling behaviour [34]. Moreover, with this tool one can study the functional
behavior of the scaling exponents and detect if the observed time series presents
multiscaling properties.

Given X(t) a process with stationary increments, the Generalized Hurst Expo-
nent method (GHE) considers the following function:

Ξ(τ, q) = E[|X(t + τ) − X(t)|q] ∼ Kqτ
qHq (3.47)

where q = {q1, ..., qmax} is the set of moments considered and τ = {τ1, ..., τmax} is
the set of time scales over which returns are computed. Kq is the q-moment for
τ = 1, and Hq is the so-called generalized Hurst exponent which depends on q
[18]. It is clear that the method assumes that the process under study satisfies
the multiscaling relation (3.39) and therefore it is expected that qHq is a concave
function due to Hölder’s inequality [22]. For a standard Brownian motion, which is
an uniscaling process, Hq = H = 0.5 regardless of q, while processes with H > 0.5
(H < 0.5) are said to be persistent (anti-persistent) [34, 18]. In order to define a
multiscaling proxy the non-linearity of the function qHq is studied as it is has been
shown that only uniscaling processes have a scaling exponents that is linear in q
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[22, 19]. This property can therefore be analyzed performing a linear regression of
Equation (3.47) in log-log scale:

ln(Ξ(τ, q)) = qHqln(τ) + ln(Kq) (3.48)

Certainly the linearity of the left hand side with respect to ln(τ) must be checked,
and if it holds the method computes different slopes of the straight lines at different
q [35]. The so-called multiscaling proxy can be devised by fitting the measured
scaling exponent with a second degree polynomial [18, 35]:

qHq = Aq + Bq2 (3.49)

It follows that if the empirical B̂ = 0 the process is uniscaling, while if B̂ /= 0 the
process is multiscaling [35, 19, 18].

Usually, when studying financial time series

|X(t + τ) − X(t)| = | ln P (t + τ) − ln P (t + τ)| = |rτ (t)|
is the log-return process and in this dissertation τ is always expressed in days

when not specified. It is obvious that the choice of τmin, τmax and qmin, qmax are
fundamental to obtain reliable results which give insights about the real scaling
behavior of the underlying process.

The choice of q

In order to choose the correct range of moments to perform the previously described
estimates, the prescriptions present in [18] can be followed. To have a robust measure
of multiscaling, it is necessary to have q < α where α is the tail exponent of the
return distribution, otherwise the behaviour found by not considering this fact is
severely biased [8, 11, 18]. Since it has been empirically shown that financial time
series have fat tails with tail exponents ranging from ∼ 1.5 to ∼ 4 [11, 8], in this
project a conservative approach by selecting 0 < q ≤ 1 is chosen.

The choice of τ

Regarding the time aggregation instead one can initially choose to employ a heuristic
approach selecting for daily data τ ∈ [1,19] days, which has been proved to be
good enough to highlight the multiscaling behaviour in financial time series [34].
Nevertheless, this range has exhibited some biases caused by autocorrelations and
power laws [35] and therefore in the next section a well founded way to extract
τmax will be shown.

3.5.2 Dynamical Weighted Generalized Hurst Exponent
Method

Starting from the scaling assumption in Equation (3.47) one can perform the same
regression in Equation (3.49) in rolling time windows of length ∆t in order to
measure how Hq evolves in time. In a few recent articles [17, 52], a modification of
this dynamical GHE method, the weighted GHE (wGHE), has been defined with
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the objective to give more importance to recent events in the computation of the
time average performed in Equation (3.47). In particular, when summing within a
time interval [t − ∆t, t] of length ∆t, each term of the time series is weighted in
such a way that more recent terms give higher contributions to the sum used to
compute the moments. The average present in Equation (3.47) is replaced by the
following expression:

E [f (rτ (t))]θ =
∆t−1Ø
s=0

ws (θ) f (rτ (t − s)) , (3.50)

where f is generic function of the returns rτ (t). The weighting factor ws can be
defined as an exponentially decaying function of time:

ws (θ) = wo (θ) e− s
θ

wo = wo (θ) = 1−e
− 1

θ

1−e
− ∆t

θ

and
∆t−1Ø
s=0

= ωs(θ) = 1 (3.51)

and θ is the characteristic time. It follows that Equation (3.47) becomes

Ξ(τ, q, θ) = E [|X(t + τ) − X(t)|q]θ ∼ Kqτ
qH

(θ)
q , (3.52)

where H(θ)
q is the wGHE with characteristic time θ. It has been shown that

∆t = θ is a reasonable choice as corresponds to a time window for which the last
day in the past is weighted by a factor 1/e less than the most recent day [17].
Regarding the time aggregation τ ∈ [1,19] days is the most common choice [17,
52] as it allows to observe the scaling behaviour without the need to employ time
windows of excessive length. Obviously considering the scaling (3.52) in a given
time window that ends in t one extracts H(θ)

q (t).

3.5.3 Relative Normalized and Standardized Generalized
Hurst Exponent Method

Recently a novel methodology, called Relative Normalized and Standardized Gener-
alized Hurst Exponent (RNSGHE), has been developed by Brandi and Di Matteo to
quantify and test the multiscaling properties of financial time series in a statistical
significant way [18]. It has already been shown that given a process {p(t)} with
stationary increments, the Generalized Hurst Exponent method considers a function
of the increments defined in this way [34]:

Ξ(τ, q) = E[|rτ (t)|q] ∼ Kqτ
qHq (3.53)

where q = {q1, ..., qmax} is the set of moments considered and τ = {τ1, ..., τmax}
is the set of time scales over which returns are computed. Kq is the q-moment
for τ = 1, and Hq is the so-called generalized Hurst exponent which depends on
q [18]. To detect multiscaling, it has been indicated that one needs to analyze
the non-linearity of the scaling function qHq present in equation (3.53). Rather
than estimating it in the regression, in [18] it has been proposed to compute the
value of Kq by evaluating Ξ(1, q), in order to reduce the presence of possible biases
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introduced in the estimation. It is therefore sufficient to normalize the function
Ξ(τ, q) as åΞ(τ, q) = Ξ(τ, q)

Kq

, (3.54)

to eliminate the possible bias introduced by the estimation of Kq with the regression.
If one then defines the q-order normalized moment as

...
Ξ (τ, q) = åΞ(τ, q)

1
q (3.55)

the scaling relation defined in Equation (3.53) becomes:
...
Ξ (τ, q) ∼ τHq . (3.56)

In this way, the multiscaling can be detected by fitting the measured scaling
exponent with a first degree polynomial:

Hq = A + Bq. (3.57)

where A is the linear scaling index an B is the multiscaling proxy (different from
zero for multiscaling processes) [18, 19].

To conclude the relative structure function between two consecutive moments,
namely qi and qj ( qj > qi), can be defined as follows

...
Ξ (τ, qi, qj) =

...
Ξ (τ, qj)...
Ξ (τ, qi)

∼ τHqj

τHqi
= τHqj −Hqi = τH(qi,qj), (3.58)

where H(qi, qj) = Hqj
− Hqi

. Equation (3.58) can also be rewritten in the
following way:

...
Ξ (τ,0, q1)...
Ξ (τ, q1, q2)

......
Ξ (τ, qM−1, qM)

 = τ

è
H(0,q1), H(q1,q2), · · · , H(qM−1,qM )

é
, (3.59)

where M is the maximum number of moments used. This structure is useful to
verify if a process is statistically multiscaling using a t-test on each estimated
H(qi, qj). Indeed, the fact that for uniscaling time series Hq = H implies that
the difference between different order moments is always 0, except for H(0, q1).
On the other hand, for multiscaling time series this quantity should be different
from 0 for all q. Using Equation (3.59) it is also possible to use an F-test to
test if all the coefficients except for the first one (H(0, q1)) are jointly equal to 0
against the alternative that some coefficients are different from 0. This is a weaker
multiscaling test compared to the multiple t-tests. The classification defined in
[18] is therefore the following: strongly multiscaling processes are those processes
which reject both the null hypothesis for all the t-tests and the null of the F-test;
weakly multiscaling processes are those processes for which the null hypothesis of all
the t-tests is rejected but not the null of the F-test. These definitions come from
the idea that if a process is multiscaling, all the H(qi, qj) are significantly different
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from 0. However, if the process reconstructed with a single exponent is statistically
equivalent to the one reconstructed with the full multiscaling spectrum, this means
that such multiscaling behavior is weak. Finally if the null hypothesis for one or
more t-tests is not rejected but the F-test rejects the null hypothesis, the process
is a non-stable multiscaling process [18]. In this work Equation (3.59) in log-log
scale will be used because it provides better results as already analyzed in [18].

The choice of q

As already explained for the GHE method the best conservative choice is to select
q ≤ 1. Usually the interval employed is q ∈ (0.02,1) in order to have a sufficiently
wide range of moment to test for the multiscaling property [19].

The choice of τmax

Other than q, selecting correctly the maximum aggregation time τN = τmax is
crucial to estimate correctly the multiscaling properties. In financial time series
in fact, there exists a cutoff over which the data are uncorrelated and in order to
estimate correctly the scaling exponents it is very important to avoid mixing up
the correlated state with the uncorrelated one [18]. The novel method employed to
extract τmax is called the Autocorrelation Segmented Regression (ACSR) described
in [18]. The idea of this approach is simple: first define the autocorrelation ρ of
the absolute (daily in this case) return series at lag ∆t as:

ρ(|r1(t + ∆t)|, |r1(t)|) = E[(|r1(t + ∆t)| − µ1)(|r1(t)| − µ1)]
σ2

1
(3.60)

where µ1 is the average value of the absolute returns time series and σ2
1 is its

variance. Then perform a segmented regression on Equation (3.60) and define
τmax = ∆t∗ as the break point between the correlated state and the random state
which minimizes the sum of squared residuals. The autocorrelation function of the
absolute returns is assumed to have the following form:

ρ(|r1(t + ∆t)|, |r1(t)|) = ρ(∆t) =
α + β(∆t), if ∆t < ∆t∗

α + β(∆t∗), if ∆t ≥ ∆t∗ (3.61)

where α is the intercept of the regression and that can be fixed to be equal to ρ(1),
β is a memory exponent for the autocorrelation function, ∆t is the lag at which
the autocorrelation is computed, and ã∆t

∗ is the estimated value of the sought
breakpoint. The maximum aggregation time is therefore ã∆t

∗ = τmax [18]. This
method has shown very good results to detect the L parameter of time series
simulated with the Bacry et al. MRW model [12, 18].

Step by step procedure

The described RNSGHE procedure, combined with the ACSR method, can therefore
be summarized in this way:
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1. Compute τmax with the Autocorrelation Segmented Regression method, com-
puting the autocorrelation function for time lags ∆t ≤ 1

5 of the length of the
returns time series in order not to bias the scaling estimation with too few
values [18, 19];

2. Fix the vector of q values to be used in the estimation;

3. Perform the linear regression in log-log scale of Equation (3.59) given the fact
that the linear fit has a smaller RMSE with respect to the non linear one
according to [18];

4. Compute the multiscaling curvature using Equation (3.57) and test for statis-
tical significance.

The test for statistical significance of the results requires the subsequent steps:

• Test if each scaling increment H(qi, qj) is statistically significant through a
t-test, if the null hypothesis is rejected for a coefficient it can be said that it
is robustly different from zero;

• Test if all scaling increments except H(0, q1) are jointly different from zero
through a F-test, if the null hypothesis is rejected H(0, q1) alone is not enough
to describe the scaling behaviour;

• Perform the full regression of Equation (3.57) and test for âA = 0.5 and âB = 01

using a t-test. If this test gives a conflicting result with respect to the other
two steps, a deeper analysis is required.

From this procedure it is obtained the previously described classification that can
be summarized in the following table:

t-tests F-test MS classification
pass pass strongly
pass fail weakly
fail pass non-stable
fail fail no multiscaling

Table 3.1: Statistical tests on the scaling exponents regressions.

With "pass" it is meant that the test has rejected the null hypothesis and thus
the p-value is under 0.05. This classification, as already mentioned, is however
subjected to the confirmatory test on the multiscaling proxy significance that is
the last step used to check if the obtained behaviour is truly multiscaling.

1These values correspond to the absence of multiscaling null hypothesis.
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3.6 Multiscaling properties of financial data
As already stated, financial data have been shown to be multiscaling regardless
of the markets and the periods analyzed [34, 19, 18, 35, 53, 49]. In this section
the evidence of these scaling properties are displayed and measured on the data
set analyzed in the previous chapter employing the Generalized Hurst Exponent
method, its dynamical version and the last presented RNSGHE technique, which is
the most advanced and the one recently used for research purposes [18, 19].

3.6.1 GHE Example on Data
It has been demonstrated that the Generalized Hurst Exponent [34, 35] is an
effective tool to point out the scaling properties (3.47) of financial time series as
well to measure it through the non-linear fit of the Hurst exponent (3.49). Usually
when performing this kind of analysis one first checks graphically for the validity of
the scaling assumption and then extracts in a statistical significant way the results
of the regressions.

In this project the method presented in (3.5.3) will be mainly employed due
to the recent evidence of its strength. However, in this subsection an example of
the simpler GHE exponent technique is showcased on a single time series, just to
emphasize that already with a more straightforward methodology it is possible to
evidence the multiscaling properties.

The daily closing price time series of Apple Inc stock from 02-Jan-1990 to
30-Nov-2022 is selected, and the scaling properties of the log-returns are analyzed.
As in [34], τ ∈ [1,19] days is chosen and 50 equally spaced values of q ∈ [0.05,1] are
picked.

Figure 3.1: Plot of the scaling relation (3.48) for the daily closing price time
series of Apple Inc stock from 02-Jan-1990 to 30-Nov-2022. Choosing τ ∈ [1,19]
days and q ∈ [0.05,1], the scaling is clearly observable.
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It is evident that the linear relation (3.48) in log-log scale is valid and therefore
one can exploit the quadratic assumption (3.49) for the Hurst exponent to extract
the multiscaling proxy.

Figure 3.2: Empirical non linear relation between qHq and q (τ ∈ [1,19] days
and q ∈ [0.05,1]) which highlights the multiscaling nature of the daily closing price
time series of Apple Inc stock from 02-Jan-1990 to 30-Nov-2022. The multiscaling
proxy B̂ is extracted assuming (3.49) and the error reported is the Standard Error
obtained from the non-linear least square technique.

From the plot it can be observed that the function qHq bends below the linear
trend and therefore the time series is said to be multiscaling. To quantify this
behavior the so-called multiscaling proxy B̂ (i.e. coefficient of the quadratic term)
can be extracted through the Levenberg–Marquardt algorithm used to solve non-
linear least squares problem [54]. The obtained result is significant at a 5% level
and therefore the behaviour is considered valid.

3.6.2 Dynamical weighted GHE Application on Data
The same methodology can be employed in rolling time windows in order to analyze
how the scaling properties of a given asset evolve in time. For instance, transitions
from uniscaling to multiscaling behavior occur before critical market events, such
as stock market bubbles and therefore these behaviours can be used as ’fingerprints’
of a turbulent market period as well as provide warning signals for an upcoming
stock market ’bubble’ [17, 52]. Usually one can exploit a change point detection
analysis [55] to devise the moments at which there are sudden changes in the Hurst
exponent patterns, and this information can then be exploited both to study the
changes in Hq for a given q and for the multiscaling properties of the time series.

In addition, knowing the periods in which the Hurst exponent Hq assumes
values significantly different from 0.5 gives important insights about the state of
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the market for that particular asset: as an example, when Ĥθ
1 (t) > 0.5 the market

is in a trend-state and one can for instance buy (sell) if the price is increasing
(decreasing), conversely when Ĥθ

1 (t) < 0.5 the market is in a mean-reverting state
and one can for instance buy (sell) if the price is decreasing (increasing) [18, 56].
Obviously different qs give information about the scaling at different time horizons,
as smaller q weight more smaller returns that often occur at shorter time scales. In
this section an application of the dynamical methodology is shown on the top 4
capitalized stocks of the data set: Apple Inc, Microsoft Corp, Alphabet Inc-Cl A,
Amazon.com Inc (Alphabet Inc-Cl A has been chosen in place of Alphabet Inc-Cl
C just because it has a longer time series).

Figure 3.3: Result of Ĥθ
q (t) on Apple Inc. stock daily closing price for ∆t =

θ = 250 days. The width of each line is equal to two standard errors of the
angular coefficient as determined by the least squares linear fit. τ ∈ [1,19] days,
q ∈ {0.1,0.5,1,1.5,2}.
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Figure 3.4: Result of Ĥθ
q (t) on Microsoft Corp. stock daily closing price for

∆t = θ = 250 days. The width of each line is equal to two standard errors of the
angular coefficient as determined by the least squares linear fit. τ ∈ [1,19] days,
q ∈ {0.1,0.5,1,1.5,2}.

Figure 3.5: Result of Ĥθ
q (t) on Alphabet Inc-Cl A stock daily closing price for

∆t = θ = 250 days. The width of each line is equal to two standard errors of the
angular coefficient as determined by the least squares linear fit. τ ∈ [1,19] days,
q ∈ {0.1,0.5,1,1.5,2}.
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Figure 3.6: Result of Ĥθ
q (t) on Amazon.com Inc stock daily closing price for

∆t = θ = 250 days. The width of each line is equal to two standard errors of the
angular coefficient as determined by the least squares linear fit. τ ∈ [1,19] days,
q ∈ {0.1,0.5,1,1.5,2}.

From these plots one can visualize the evolution of the scaling behaviour of
different assets. It is confirmed that, as already observed [17, 52], sudden changes
in the Generalized Hurst Exponent Ĥθ

q (t) behaviour such as increasing trends
from values below 0.5 to values above 0.5, occur in correspondence of periods of
higher volatility which usually correspond to financial crises or market crashes. For
instance, all 4 stocks show an initial decreasing trend between 2008 and 2009 for
the different values of q, but the specific scaling properties of the single asset are
very different. In particular, Apple Inc shows values higher than 0.5 before the
decrease while Microsoft Corp values way lower than 0.5.

In general this kind of analysis can be extended as needed by including the
dynamical study of the multiscaling proxy B̂ as in [17] or by exploiting these
measures as additional information for a trading strategy.

It must be underlined that in the previous plot it has been chosen to show the
scaling behaviour also for values of q ≥ 1 just to compare the different patterns. It is
indeed known that financial time series are characterized by fat tailed distributions
of the returns and therefore when q ≥ α (i.e. the tail exponent) the moments can
diverge causing biases in the estimates [18, 49].

Significance Test

To test the significance of the devised measures, Ĥθ
q (t) is estimated also over 500

simulations of random walks of size ∆t in each time window. In particular, following
the idea in [17], in each time window one simulates 500 surrogate time series of
length ∆t generating a random walk using as the initial value the price at the
beginning of the window, 0 as the average of the process and the variance of the
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series of the daily returns as the variance of the process: p(s + 1) = p(s) + N (0, σ2)
σ2 = V ar(p(s + 1) − p(s))

s ∈ [t, t + ∆t] (3.62)

In this way it can be tested if the values obtained on the real time series
fluctuate just due to the finite size of the samples or because the underlying process
is genuinely different from a purely random process [52]. For each time window
the percentiles {2.5,97.5} of the distributions of Ĥθ

q (t) can be computed and these
quantities correspond to the bounds of the dynamical 95% confidence interval
(CI

u/d
θ (t; q)). It is clear that no useful information is obtained when the measure

oscillates around the RW one (i.e. 0.5) but there are some clear trends which show
quantities that truly cross the random regime and have a probability higher than
the 95 % of not being originated from a simple random walk process [52].

Figure 3.7: Result of Ĥθ
1(t) on Apple Inc stock daily closing price for ∆t = 250

days. The width of each line is equal to two standard errors of the angular coefficient
as determined by the least squares linear fit. The black lines show the exponentially
weighted moving average (3.50, ∆t = θ = 250 days) of the bounds of the dynamical
95 % confidence interval (for q = 1) computed in the previously defined way.

In this example only the Hθ
1 (t) with its confidence interval is displayed to make

the representation more clear.
As expected the majority of the values fall within the confidence interval due to

the small size of the time windows. However, there are some clear trends in the
behaviour of Hθ

1(t) which are also characterized by values of the Hurst exponent
outside of the confidence interval. For instance the plot shows that between 2000
and 2001, and between 2008 and 2009, the Hurst exponent is significantly higher
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than 0.5 and therefore the market for this asset is in a trend-state that could be
exploited to predict the price movements.

3.6.3 RNSGHE: Significant Measure of Multiscaling Prop-
erties of Data

In this last part of the chapter the Relative Normalized and Standardized Gen-
eralized Hurst Exponent Method (3.5.3) is applied to the 187 stocks of the S&P
500 data set whose daily closing price is recorded from 02-Jan-1990. This choice
is made due to the fact that longer time series provide a scaling behaviour which
is closer to the "real" one characterizing the underlying process. As explained
before, q ∈ [0.02,1] is selected in a conservative way to avoid biases in the estimate.
Regarding τmax instead, the autocorrelation segmented regression (3.5.3) is applied
to extract the aggregation time scales over which the data are uncorrelated.

Having fixed the parameters and the methodology the following results are
obtained.

Figure 3.8: Results of the multiscaling proxy B extracted with the RNSGHE
method on 187 stocks of the S&P 500 data set whose daily closing price is recorded
from 02-Jan-1990 to 30-Nov-2022. τ ∈ [1, τmax] where τmax is computed with the
ACSR method on each stock, q ∈ [0.02,1]. The obtained values are all significant
at a 5% level.
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Figure 3.9: Results of H1 extracted from the RNSGHE procedure applied on
187 stocks of the S&P 500 data set whose daily closing price is recorded from
02-Jan-1990 to 30-Nov-2022. τ ∈ [1, τmax] where τmax is computed with the ACSR
method on each stock, q ∈ [0.02,1]. The obtained values are all significant at a 5%
level.

As expected all the values of B̂ are negative and the 86.1 % of the statistical
test resulted in strongly multiscaling processes, while the remaining 13.9 % resulted
in non-stable multiscaling processes. This outcome can be ascribed to the fact
that for some tiny values of q the quantity is very small H(qi, qj) and therefore, for
a few stocks, some of the t-tests cannot reject the null hypothesis. Despite this,
the multiscaling behaviour is still present, even if not in such a strong form, and
therefore the multiscaling property of financial assets, as well on this data set, is
confirmed.

Regarding the second plot, the generalized Hurst exponent for q = 1 is displayed.
It is interesting to point out that almost all the values reject the null hypothesis of the
Hurst exponent being 0.5 at a 1% level, except for the one which are characterized
by Ĥ1 ∈ (0.498,0.502). It is therefore evident that the scaling properties of these
financial time series, even when considering only a single moment q = 1, can be
different from the one of a simple Brownian motion, and taking into account this
aspect, and more in general the multiscaling nature of these data, is important to
correctly asses the risk for a given asset [18].

Considering also the median market capitalization of these assets, one can look
for a relation between these values and the multiscaling proxy as in [53].
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Figure 3.10: Relation between the multiscaling proxy B̂ and the log of the median
market capitalization of the 187 stocks of the S&P 500 data set whose daily closing
price is recorded from 02-Jan-1990 to 30-Nov-2022. The Pearson and Kendall
correlation measures between the two quantities are significant at a 1% level.

As already shown in the previously cited paper, there is a non trivial relation
between these two quantities which highlights an interesting property: higher
capitalized stocks tend to be less multiscaling. This dependence is quantified by
the Pearson and Kendall correlation coefficients which are reported on the plot.
This behaviour could be caused by the fact that "smaller" assets show an higher
volatility correlation which is reflected on the scaling spectrum [12].

To complete, a preview of the properties that will be analyzed in the next
chapter is shown. In particular considering again the 187 stocks of the S&P 500
data set whose daily closing price is recorded from 02-Jan-1990 to 30-Nov-2022,
the average Pearson correlation coefficient ρ̄ between them is computed over the
whole period and these values are represented against the multiscaling proxy of the
same time series.
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Figure 3.11: Relation between the multiscaling proxy B̂ and the average correla-
tion between each of the 187 stocks of the S&P 500 data set whose daily closing
price is recorded from 02-Jan-1990 to 30-Nov-2022 with the others. The Pearson
correlation measure between the two quantities is significant at a 5% level. The
Kendall correlation coefficient is not reported because is not significant.

It is interesting to observe that a non trivial relation between B̂ and ρ̄ arises
as already indicated in [53]. Compared to the previous results in literature, this
behaviour is weaker due to the fact that the subset of stocks selected are character-
ized by high correlation and high market capitalization as they are all comprised
in the S&P 500 index. This empirical evidence has been displayed [53] on various
markets and therefore can be acknowledged as an additional stylized fact.
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Chapter 4

Measures of Statistical
Relations

When studying the statistical properties of financial markets one can usually focus
on a single asset and devise independently how it behaves and what distinguishing
traits define it. For instance, in Chapter 2 and 3 great attention has been placed
on the features characterizing the asset returns time series, trying to highlight the
empirical properties of their distribution and with the aim to understand more
deeply the stochastic processes underlying the observed data.

While these analysis can give significant insights about the univariate properties
of financial time series, it is important to remember that financial markets are
complex systems made of interacting components and ignoring this structure of
statistical relations may result in a lack of comprehension from a purely scientific
point of view and from a risk management perspective [8, 9, 53].

In this chapter the efforts are directed towards the measure of the correlation
between the price time series of the different assets comprised in the considered
data set, with the objective to show how important multivariate properties can be
in the study of financial data and in complex systems in general [8]. The analysis
will be performed in two fashions:

• dynamically, to describe how the dependence between the various stocks
evolves in time;

• statically, to showcase the topology of the correlation structure between the
different assets.

4.1 Data Selection
As already presented in Chapter 2 the data set employed in this project includes
time series of different length but whose end date is 30-Nov-2022 for every stock.
Regarding the start date instead, there are assets whose price is reported from the
first date available in the data set (02-Jan-1990), while others that are recorded
from later dates. Furthermore, it is important to underline that for every asset the
prices are all recorded on the same dates at the same frequency and therefore no
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temporal shifting between the time series must be taken into account. A simple
plot to visualize the lengths of the time series employed in this project is displayed.

1 52 103 154 205 256 307 358 409 451 494
02-Jan-1990

26-Jan-1993

20-Feb-1996

16-Mar-1999

09-Apr-2002

03-May-2005

27-May-2008

21-Jun-2011

15-Jul-2014

08-Aug-2017

01-Sep-2020

30-Nov-2022

Figure 4.1: Every blue bar represents a stock and goes from the date on which
its first price is recorded to the last one. It is clear that there are some stocks for
which the first price comes later than the 02-Jan-1990, while all the time series end
on the 30-Nov-2022.

The idea of the following sections is to compute the synchronous dependence
between all the stocks whose price is recorded simultaneously, otherwise one cannot
quantify how an asset is influenced by the others at the same time. The main
issue is that, as already stated, not all the prices are recorded from the same date
and therefore a way to select the best subset of stocks which "co-exist" is needed
to perform effective analyses. Indeed, one would like to retain as many stocks as
possible but without losing too much information selecting a start date which is
too close to the end one.

In order to address this problem a simple method is proposed and then applied
on the data set.

4.1.1 Data Selection Method
The considered data set can be described as a matrix M composed of N columns
and T rows. Every column is a time series of a given stock in the set and thus each
entry:

Mij = price of stock j at time i (4.1)

with j ∈ [1, ..., N ], i ∈ [Date(1), ..., Date(t), ..., Date(T )], and Date the vector of
dates in which the prices of the stocks have been registered. For simplicity one can
also identify the time index i just with values from 1, ..., T and in the following,
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when not specified, this choice will be made. The single time series can therefore
be represented in this way:

M[:,j] = [pj(1), ..., pj(t), ..., pj(T )] (4.2)
It is clear that when a price for stock j is not recorded at time t, the corresponding
entry in the matrix M is reported as a missing value, represented as a numeric
data type NaN 1 (pj(t) = NaN). As already stated, the data set employed in
this work is characterized by time series which share the same end index T , while
are characterized by different start indices t0

i . The purpose of the data selection
mechanism is thereby to select an initial time index t ∈ [1, T ] such that a subset
of the columns and rows of M , characterized by an optimal trade off between the
number n(t) of co-existent time series and the temporal length T − t of the chosen
time window, is obtained.

To perform this task one can initially perform a for-loop to count how many
time series co-exist at each selected starting index t, and obtain a relationship
between n and t:

(n(1),1), ..., (n(k), t), ..., (N, tmax)
where tmax is the first time index from which all the N time series in the data set
co-exist. If the time series in the data set represent stocks, a set of weights wj with
j = 1, ..., N , can be built using the market capitalization of each stock:

wj =
mktcapjqN

k=1 mktcapk

NØ
j=1

wj = 1

In particular one can choose the average, the median or either the last available
capitalization of each stock in the set depending on the purpose of the analysis.

Consequently, one can define an information function I(t) such that it is pro-
portional to the product between the information value of time length T − t, the
number n(t) of time series co-existing in the subset and the total sum of the weights
associated to the time series, if these represent stocks. Obviously the three terms
in the product can be tuned as needed, putting an exponent higher than 1 on the
term one wants to favour. In this case it is chosen to give the same importance to
all terms setting all exponents to 1.

I(t) = (T −t)
(T −1) · (n(t)−1)

(N−1) · (qsubset(t) wi)
t ∈ [1, ..., T ]
n(t) ∈ [1, ..., N ]

(4.3)

and subset(t) indicates the group of time series which co-exist from t.
It can be clearly observed that I = 0 if one takes a 1 length time window and/or

just one time series. The information value is maximum if the time window and
the number of vectors are maximized. Moreover, the sum of the weights takes
into account that the information value is higher if higher capitalized stocks are
included in the selection. This last point is a choice made in order to retain in the
new set high capitalized stocks, which are more representative of the market and
are fundamental in the study of correlations.

1"Not a number" in computing.
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Practical Procedure To obtain the time t∗, at which the new subset must start,
a simple for-loop is performed on the data matrix saving at each t ∈ [1, T ] the
number n(t) of time series that co-exist (that have non-NaN values before or from t).
In particular, a couple (t, n) is stored in any iteration for which n is different from
the previous one, obtaining thus an empirical relation n(t). Furthermore, at each
step of the loop the sum of the weights of all the n(t) time series co-existing at that
time t is computed, obtaining another vector W (t). Having stored at each step this
quantities it is straightforward to compute I(t) = (T −t)

(T −1) · (n(t)−1)
(N−1) · W (t) during the

iterations and at the end of the for-cycle the wanted t∗ is just: t∗ = argmaxt[I(t)],
which always exists because the function lives in a finite space. A Matlab code is
shown in B.

Remark About Classes. If the data-set is divided into classes (i.e. sectors for
stocks), one can also apply the procedure on each subset of stocks belonging to the
same class, obtaining a different t∗ for each class. The greatest among these values
can then be chosen in order to be sure to approximately preserve the distribution
(fraction of total data) belonging to each class even in the reduced subset. However
this application of the previously described method often reduces consistently the
width of the time window causing a great loss of information. If, nevertheless,
the average length of time series is almost the same among the different classes,
even the single t∗ obtained from the whole data set preserves the division among
sub-groups.

4.1.2 Application on the Data Set
First of all the algorithmic procedure to extract t∗ is applied on the data set. It can
be observed that the function I(t) defined in Equation (4.3) grows as n(t) increases
until a point over which the role of the factor (T −t)

T −1 becomes dominant and the
information value starts to decrease.
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Figure 4.2: Result of the data selection procedure applied on the data set. While
n(t) obviously increases, I(t) shows an inversion of its trend when the loss of
information caused by the shortage of time points starts to become dominant. The
procedure is stopped once n(t∗ < T ) = N and this is the reason why the last
computed I(t) value is not equal to zero.

The results can be summarized in the following table:

t∗ 2734
Date(t∗) 23-Jun-2000

n(t∗) 332

Using these results, the new selected subset of the initial data comprises 332
stocks and goes from 23-Jun-2000 to 30-Nov-2022. To visualize this selection a plot
of the time series lengths is shown.
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Figure 4.3: Every blue bar represents the length of the removed stocks, while red
bars are the retained time series. The dashed black line shows the start date of the
new selected data set.

To complete, a pie chart of the new data set is displayed. The sectors fractions
are slightly modified with respect to the initial one but, for the purpose of the
next analysis, it is preferred to work with this selection rather than applying the
procedure described in "Remark about classes" (4.1.1). In fact, all the sectors are
still represented and none of them has been modified of more than the 4%.

Figure 4.4: Pie chart of the new data set selected after the procedure described
in this section. The number and the fraction of stocks belonging to each GICS
Sector are also reported.
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4.2 Dynamic Measure of Correlation
Since now, only the classical Pearson correlation coefficient has been presented as a
measure of dependence between different variables (Subsection 2.2.3). Nevertheless,
when one wants to study a system of dynamic dependency over a running time
window, it is important to be aware of the excessive sensitiveness to outliers of
standard measures, and it is needed to find solutions to overcome these issues.
According to F. Pozzi et al. [37], a possible option is to assign a structure of
weights to the observed events (daily returns in this work), and to choose a proper
time window size such that the measure preserves its robustness and its statistical
significance.

4.2.1 Weighted Pearson Correlation Coefficient
Even if already presented in Subsection 2.2.3, a more appropriate definition of the
Pearson correlation coefficient is necessary to introduce the subsequent analyses.
Given two vectors xi and xj of equal length L, the Pearson product-moment
correlation coefficient between them is [37]:

ρij = σij

σiσj

with

σij = 1
L

LØ
t=1

(xi
t − x̄i)(xj

t − x̄j) (4.4)

σi =

öõõô 1
L

LØ
t=1

(xi
t − x̄i)2 the same for j (4.5)

x̄i = 1
L

LØ
t=1

xi
t the same for j (4.6)

If one thinks of these vectors as the sections of two given asset return time series
ri(t) and rj(t) with t ∈ [t′ − ∆t + 1, t′] (i.e L = ∆t), it is easy to understand that
ρij = ρij(t′; ∆t) gives the linear correlation between the returns of the two assets in
the chosen time window [t′ − ∆t + 1, t′].

If therefore one considers a set of n stocks’ price time series, the correlation
matrix between their returns time series at aggregation time τ is defined by this
notation:

ρij(t; ∆t) s.t.
 i, j = 1, ..., n

t = ∆t, ..., T − τ
(4.7)

In this definition the correlation at time t is the value obtained having used all the
data points in the set [t − ∆t + 1, t] [28, 29, 37]. If one then averages over all the
elements in the data set:

ρ̄(t; ∆t) = 1
n(n − 1)

nØ
j=1

nØ
i /=j

ρij(t; ∆t) t = ∆t, ..., T − τ (4.8)
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the obtained values describe a single time series which gives an estimate of the
mean of the dynamic correlation between the returns of all the stocks.

The main issue with this simple measure of correlation is that it counts every
point in a time window in the same manner without giving more importance to the
events which are closer to the given t. Moreover, this quantity can get unreliable in
presence of fat-tailed distributions, it is not robust to outliers and the correlation
matrix is not even invertible when ∆t < n + 1 [37].

To try and overcome these issues the so-called weighted Pearson correlation
coefficient between two vectors xi and xj of equal length L, can be defined as:

σw
ij =

LØ
t=1

wt(xi
t − x̄w

i )(xj
t − x̄w

j ) (4.9)

σk =

öõõô LØ
t=1

wt(xk
t − x̄w

k )2 (4.10)

x̄w
k =

LØ
t=1

wtx
k
t (4.11)

(4.12)

where qL
t=1 wt = 1.

As before, if one thinks of these vectors as the sections of two given asset return
time series ri(t′) and rj(t′) with t′ ∈ [t − ∆t + 1, t] (i.e L = ∆t), the weighted
correlation between them can be written as:

ρw
ij(t; ∆t) =

σw
ij

σw
i σw

j

(4.13)

where for a set of n time series i, j = 1, ...n.
Averaging over all the elements in the data set one obtains:

ρ̄w(t; ∆t) = 1
n(n − 1)

nØ
j=1

nØ
i /=j

ρw
ij(t; ∆t) t = ∆t, ..., T − τ (4.14)

In order to give a meaning to this measure the weights must assume proper values
and since the main idea is to give more importance to the recent past the so-called
"exponential smoothing" is adopted [37]:

wt = w0 exp
A

t − ∆t

θ

B
(4.15)

w0(θ) = 1 − e−1/θ

1 − e−∆t/θ
(4.16)

(4.17)

θ is a characteristic time which can be tuned to change the properties of the
weighted averages: when θ → ∞ the weights are uniform, while when θ → 0
events in the past are less and less relevant and recent data points become the
most important. Finally, the definition of w0 comes from the constraint that the
weighted correlation matrix must have the same positive semi-definiteness as the
standard Pearson correlation matrix [37].
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4.2.2 Measure of Dynamic Correlation on Data
The aim is thus to apply the described procedure on the group of 332 stocks
extracted from the original data set and to compare the standard measure of
correlation with the weighted one. In order to improve the correlation matrix
numerical stability by avoiding the excessive distortions in the distribution of
coefficients, the collapse of eigenvalues, the decrease of the estimated rank or the
increase in the condition number of the largest full-rank sub-matrices, ∆t ∈ [50, 250]
and ∆t/3 are chosen [37].

The results for the averages presented in the Equations (4.8),(4.14) performed
over all the stocks in the available period are shown for different values of ∆t:

Figure 4.5: Average standard Pearson correlation coefficient vs its weighted version
between daily returns time series (95 % significance level). The time window used
is ∆t = 50 days and θ = 17 days. Using a small time window does not produce
results which are considerably different between the two measures. On the bottom
plot the daily returns averaged over all the stocks considered. Period of higher
volatility are characterized by higher correlation. Overall the correlation is positive
along the whole period.
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Figure 4.6: Average standard Pearson correlation coefficient vs its weighted version
between daily returns time series (95 % significance level). The time window used is
∆t = 250 days and θ = 83 days. ρ̄w(t; ∆t) shows sharper peaks when the volatility
is high, but the persistence is way shorter due to the weighting structure. On the
bottom plot the daily returns averaged over all the stocks are considered. Period
of higher volatility are characterized by higher correlation. Overall the correlation
is positive along the whole period.

First of all it is important to remark that the displayed measures are statistically
significant. In fact, for the standard Pearson correlation coefficient the p-value
is computed for each correlation coefficient ρij(t; ∆t) using a simple t-test. The
obtained results whose p-val > 0.05 are set to zero because the null hypothesis of
no correlation cannot be rejected and after this validation procedure the averages
are performed [28, 29, 53, 37].

Regarding the weighted measure instead, it is preferred to perform a bootstrap
resampling [9, 37]. For each time window the weighted correlation coefficients are
computed, then every time series within the same window is randomly shuffled
and the ρw

ij are computed again. This operation is performed 500 times for each
time window in order to obtain a distribution for each coefficient from which a
confidence interval can be extracted. Thereby, if for a single ρw

ij the value 0 is
included within the 2.5 and 97.5 percentiles of its distribution, the null hypothesis
cannot be rejected and the correlation coefficient is set to zero. In this way it is
ensured that all the computed quantities are significant at a 95 % level.

Having assessed the statistical significance of the employed measured, the
different behaviour of the two quantities can be observed. It is clear that the
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correlation rises during the period of financial crises (i.e. 2008, 2011, 2020) and of
market shocks. This behaviour is usually described with the term herd effect, and is
the tendency of investors to collectively overreact during financial crisis, when panic
spreads through the market [37, 57]. It is important to underline that when market
uncertainty increases, as in high volatility periods, risk managers must take into
account this strong interdependence between different assets in order, for instance,
to achieve an effective diversification when building investment portfolios [37]. The
weighted correlation however tends to decay much faster after these events, thanks
to the fact that the weighting structure reduces the persistence of shocks happened
in the past. In particular when the 2 correlation measures are strongly different
we can say that the market is in an extremely volatile period, in which spurious
correlations tend to make the difference between ρ̄t and ρ̄w

t very unstable [37].
Just to visually give some further information on the selected data set a plot of

the same dynamical weighted correlation but averaged over each sector is realized
to highlight if some sub group of stocks tend to be less influenced by the movements
of the other belonging to the same market.

Figure 4.7: Average weighted Pearson correlation coefficient between daily returns
time series (95 % significance level) of different sectors. The time window used is
∆t = 250 days and θ = 83 days. It is clearly observable that sectors show different
behaviours, particularly after market shocks.

It is clear that not all sectors show the same dynamic behavior and the differences
between them can be employed for practical purposes.

As an example, the Utilities sector showed a lower correlation with respect
to the other mainly in the period that went from Jan-2014 to May-2020. The
aforementioned period, as seen in figure 4.5,4.6, is basically characterized by
financial stability, which means that this sector is on average less correlated with
the other stocks when the market has an average low volatility. This property could
therefore come in useful for portfolio building in stable periods, while in presence
of market shocks the benefit would be strongly reduced.
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4.3 Static Analysis of the Correlation Structure
From the dynamical study of correlations one can observe how the interdependence
between different elements of a complex systems evolves. However, if the aim is to
analyze the static structure of dependence, computed selecting a sufficiently long
time period, another approach must be followed. It is in fact necessary to find a
proper way to visualize the many reciprocal measures one computes and, in most
cases, to single out the key information [58, 59, 36, 60, 9].

To show these ideas, the analysis begins with the computation of the Pearson
correlation coefficient matrix, computed by considering the time series of the daily
returns of all the 332 stock selected. It is chosen to employ all the period from
23-Jun-2000 to 30-Nov-2022 in order to exploit maximally the available data set,
and with the objective to encompass in the analysis periods of both high and low
volatility. In this way the herd effect can be mitigated and the measures obtained
are more meaningful.

In the following picture an heat map showing the values of the Pearson correlation
coefficients between all the couples of stocks in the data set is shown:
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Figure 4.8: Heat map showing the values of the Pearson correlation coefficients
computed using the daily returns time series of the 332 stocks in the data set from
23-Jun-2000 to 30-Nov-2022. The picture is obviously symmetric and the diagonal
is totally black because it has been removed. The values have a 95 % level of
statistical significance and are always non negative, showing an overall positive
correlation between the different assets price variations.

It is very interesting to observe that there are some stocks for which the
correlation with every other element in the set is very low. For instance, the
stock identified with the number 214 corresponds to Newmont Corporation which
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is a gold mining company. Indeed, when investors are worried about economic
instability, they often seek the store of value that gold offers. As a result, gold
prices can rise or remain stable even when other asset classes, such as stocks or
bonds, are experiencing significant declines [61] and this can be one of the reasons
why this stock showcases a very low set of correlation coefficients with the other
assets.

4.3.1 Minimum Spanning Tree
In general, in a complex system consisting of many interacting elements, one can
use appropriate tools to represent the intricate structure of relations between its
elements. One of the main ideas that has gained great success in the last twenty
years is the use of networks, mathematically defined with the term graph [62,
59, 36, 58]. One can associate a node with each element and an edge with each
interaction/relation. In the case of financial markets, each stock price is related to
the price of all other stocks, and in the present case the displayed correlation matrix
(figure 4.8) can be visualized in a different way employing a network structure.

The first straightforward idea is indeed to define directly a graph considering the
correlation matrix, from which the diagonal has been removed, as the adjacency
matrix of a weighted undirected graph [58]. In this way a complete graph with N
nodes (stocks) and N(N −1)/2 edges (correlations values) is obtained. The problem
is that most of the information contained in a correlation matrix is redundant [58]
and from a visualization point of view representing a network with N(N − 1)/2
edges is quite complicated and usually impractical for large N (i.e. N ≳ 102).
Moreover, a complete graph representation does not allow to identify the presence
of clusters within the correlation matrix, while their detection can be useful to
define an intrinsic taxonomy of the selected data set and to devise groups of highly
correlated nodes within the market.

To pursue this objective one first needs to define a proper metric that quantifies
the "distance" between two variables, daily returns time series in the present case,
based on their correlation. Indeed one can directly define a metric using as a
distance a function of the simple Pearson correlation coefficient [60, 58]:

d(i, j) =
ñ

2(1 − ρij) (4.18)

It is interesting to observe that this definition satisfies the three axioms of a metric
distance [60]:

1. d(i, j) = 0 if and only if i = j as ρi=j = 1;

2. d(i, j) = d(j, i) as the correlation coefficient is symmetric;

3. d(i, j) ≤ d(i, k) + d(k, j) as the defined distance is equivalent to the euclidean
distance between the two vectors on which ρij is computed.

It directly follows that from the Pearson correlation matrix one can define a distance
matrix Dij = d(i, j) that again can be seen as the adjacency matrix of a weighted
graph [60, 58, 36].
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What comes next is to find a connected graph whose topological structure
represents the correlation among the different elements but that is greatly reduced
in the number of edges with respect to the complete graph. The simplest solution
is the so-called spanning tree, a graph with no cycles that connects all the nodes.
It follows that the structure with these properties such that retains the maximum
possible number of correlations is the well-known Minimum Spanning Tree (MST),
which can be extracted from a complete graph by a simple algorithmic procedure
[9, 60, 58]. In this work the famous Kruskal’s algorithm [63] is employed, whose
procedure can be briefly summarized for the present study[58, 64]:

1. create a forest (set of disjoint trees) F , at the beginning each nodes is a tree
itself;

2. create an ordered list S of edges (i, j), ranking them by increasing d(i, j)
defined as in Equation (4.18);

3. Take the first element in the list and add the edge to the graph;

4. Take the next element and add the edge if the resulting graph is still a forest
or a tree;

5. Iterate point 4 until S is empty or F becomes the spanning tree of the complete
graph.

If the starting graph has N nodes, the resulting MST tree has N − 1 edges such
that the sum of their weights d(i, j) is minimized compatibly with the fact that
the obtained structure is a tree which includes all the initial N nodes. For a graph
with E edges and N nodes, Kruskal’s algorithm can be shown to run in O(E log E)
time, all with simple data structures

The results of this procedure can be shown on the correlation structure between
the 332 stocks selected from the SP&500 index. The correlation, has already stated,
is computed using the Pearson correlation coefficient between the daily log returns
time series of the selected stocks from 23-Jun-2000 to 30-Nov-2022 (4.8). From
these quantities, the distance matrix D is simply devised and the resulting MST is
obtained:
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Figure 4.9: MST built from the cross-correlation matrix of the daily returns of
332 stocks comprised in the S&P 500 index over the period from 23-Jun-2000 to
30-Nov-2022. The colors represent the different GICS classification of the various
stocks. It can be observed how naturally, using the algorithmic procedure, the
sector clusters are almost completely retrieved.

It is evident that the devised structure naturally shows clusters which are well
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compatible with the GICS sector classification. Moreover, edges between stocks
belonging to different sectors are also significant.

As an example, the subtree that has as a root the PPG node is analyzed.

Figure 4.10: PPG subtree of the MST built from the cross-correlation matrix of
the daily returns of 332 stocks comprised in the S&P 500 index over the period from
23-Jun-2000 to 30-Nov-2022. The colors represent the different GICS classification
of the various stocks. The PPG node is the root of the subtree and is connected to
many other subtrees due to its importance in the market.

Ppg Industries Inc. is an American company global supplier of paints, coatings,
optical products, specialty materials, chemicals, glass and fiber glass with a large
amount of activity in refinishing products [58]. It is indeed connected to 13 other
companies 11 of which belong to the same sector. The two exceptions are VFC
and WY nodes: the first corresponds to VF Corporation which controls JanSport,
Eastpak, Timberland, and The North Face brands, while the second indicates the
Weyerhaeuser Company which operates in three major business: timberlands, wood
products and real estate. The first edge between PPG and VFC can be naturally
understood because to produce complex refined products different chemicals and
specialty materials are needed. On the top of that, it is also natural that WY and
PPG are correlated as both are related to building materials for homes and other
structure. Moreover, if one looks at the nodes connected to the VFC one, both
the two companies Nike Inc (NKE) and Ralph Lauren Corp (RL) operate in the
Clothing business.

What makes this information filtering technique very powerful is that the MST
structure has been extracted solely from the cross-correlation matrix without any
other a priori information about the system, and the flexibility of the procedure
makes it very applicable also on data sets belonging to other fields of study [58, 59].
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4.3.2 Other Methods and Ideas
Even if very powerful, the Minimum Spanning Tree does not allow complex connec-
tions between group of stocks as triangular cycles (3-cliques). In order to retain the
filtering effectiveness of the MST, but also allowing the presence of more complex
structures which involve more links, other information filtering tool have been pro-
posed [59, 36, 58, 9]. For instance, one can build graphs embedded on surfaces with
a given genus g (number of holes in the surface) and, with a simple modification of
the previously described algorithm, a spanning graph with 3n − 6 + 6g edges can be
obtained [58]. When g = 0 the structure devised is a triangulation of a topological
sphere and is called Planar Maximally Filtered Graph (PMFG) [58, 9, 59]. It can
also be proven that the MST is always a subgraph of the PMFG, and the latter is
just an extension of the former with more links to enhance the complexity and the
thoroughness of the description [58].

To conclude, it is cited also the possibility to build a hierarchical tree from
the previously defined metric (Equation 4.18). One can indeed define from d(i, j)
the so-called subdominant ultrametric distance d<(i, j) as the maximum value
of any Euclidean distance d(k, l) detected by moving in single steps from i to
j through the shortest path connecting i and j in the MST. By exploiting the
detected subdominant ultrametric space it is possible to obtain a taxonomy of the
analyzed data set which naturally gives a kind of hierarchical organization that is
able to isolate economically meaningful groups of stocks [60].

In order to avoid making this chapter too long in terms of methodologies, it has
been chosen to provide results just for the dynamical correlations and for the MST.
Nevertheless, it is clear that extending the analysis with other tools, as the last
two mentioned, can be very useful to gain other insights about the interdependence
structure of the selected data set.
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Chapter 5

Physics Inspired Modeling
and the PUCK Model

In this chapter it is presented a relatively novel stochastic model for market price
called the PUCK model [65], which has been employed as a novel type of time
series data analysis tool, as well as to describe the behaviour of a particular type
of trader in an agent-based model of financial markets [66, 67].

The scaling behaviour of the price time series obtained with the PUCK model
is analyzed to understand if it is possible to obtain multiscaling properties just
by changing its parameters. Moreover, employing both the dynamical weighted
GHE and the RNSGHE methods described in chapter 3, a relation between these
parameters and the scaling exponents is retrieved.

To complete, the analysis of data is performed with both the PUCK model and
the dynamical weighted GHE method and the results are compared.

5.1 Physics Inspired Modeling
The stylized facts presented in chapter 2 have been used in the last 40 years as a
benchmark to test the validity of every novel financial model [8, 10, 48, 12, 13]. In
particular, the recent developments in the description of financial markets have
been characterized by the employment of the so-called agent-based models (ABM),
in which, the macroscopic dynamics, for instance of the price of an asset, is modeled
describing the microscopic behaviour of the single traders (agents) [10].

This framework naturally originates from statistical physics considerations as
the idea is to devise the macroscopic properties of a system from its microscopic
interactions. For instance, in [68] Bak et al. the order book is modeled as a physical
reaction diffusion process: two types of particles are inserted on each side of a pipe
and move randomly, every time two particles collide, they are annihilated and two
new particles are inserted. In this case particles are the orders (sell/buy, 2 types),
the finite pipe represents the order book and the collision is a transaction whose
price p(t) is recorded [68, 10].

Another peculiar example of an analogy between a model of a physical system
and a typical financial problem is presented in [69]. In this paper it is shown
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that the classical portfolio optimisation problem: "given a set of financial assets,
characterized by their average return and their risk, what is the optimal weight of
each asset, such that the overall portfolio provides the best return for a fixed level
of risk, or conversely, the smallest risk for a given overall return?" [69], leads to
equations which are analogous of those defining the locally stable configurations in
a spin-glass.

The model by Takayasu et al. [13] which will be presented later on in the chapter,
does not describe how some macroscopic properties arise from the interaction of
microscopic components of the system. It is rather a random walk model in which
the "walker" is subjected to a force described by a time-dependent potential function
whose center is given by a moving average of market price. This force directly
modifies the diffusion properties of the process and can also be related to the
strategy of the dealers in the market. In addition, the continuous limit of the model
gives as a result the Langevin equation with fluctuating viscosity and mass.

There are many other examples of models which could be cited that try to apply
a physical framework or approach to financial markets [10]. It is however preferred
to avoid presenting other instances in order to keep the focus on the aspects which
are needed to introduce the following sections.

5.1.1 Minimal Agent Based Model for Financial Markets
Lux-Marchesi Model

At the end of the Nineties Lux and Marchesi introduced an agent based model
to show that the empirical characteristics of financial prices can emerge from the
interactions of a large ensemble of market participants [70, 71]. In this model the
pool of traders is divided into two groups: "fundamentalists" who follow the efficient
market’s hypothesis and expect the price pt to follow a fundamental value pf , which
is the discounted sum of expected future earnings; and the "noisy traders" who
do not believe in an immediate tendency of the price to revert to its underlying
fundamental value and attempt to identify price trends and patterns [70] (these
are further divided into optimists who always buy and pessimists who always
sell). Moreover, the single agents can move from one class to the other and the
account of the behaviour of other traders as a source of information, which results
in a tendency towards herding behaviour, is also inserted in this framework. It
is important to underline that the novelty of this model has been to adopt a
mass-statistical formalization inspired by statistical physics: individuals react to
certain economic forces by modifying their behaviour with a certain (endogenous)
probability. Assuming a Gaussian external driving force which affects the market
through the operations of fundamentalist traders, the model has naturally led to
fat tailed distributions of the returns, absence of autocorrelations for the price
variations and strong persistence in the volatility. It follows that the scaling
properties, as they are absent in the external driving force, are generated by the
interaction of economic agents with heterogeneous beliefs and strategies in the
simulated market [70, 71].
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Alfi-Cristelli-Pietronero-Zaccaria Model

This model presented in [66, 67] is inspired by the Lux-Marchesi one but is much
simpler with respect both to the number of parameters and the rules for the
dynamics. The main elements are the following:

• "Fundamentalists": these agents have as reference a fundamental price pf

derived from standard economic analysis of the value of the stock. Their
strategy is to trade when the price departs from the reference value and bet
on the fact that the price will return to the reference value. These traders
are usually represented by institutions, their time scale is relatively long, and
they tend to stabilize the price around the reference value.

• "Chartists": these agents consider only the price time series and tend to
follow positive or negative trends. These traders have usually a time horizon
shorter than the fundamentalists and they are responsible for the large price
fluctuations which correspond to bubbles or crashes. Moreover, they induce a
destabilizing tendency in the market and in the Lux-Marchesi model they are
called "noisy traders".

• Herding effect: the tendency to follow the strategy of the other traders; it is
also complemented considering the possibility that traders can change their
strategy from fundamentalist to chartist and vice-versa depending on various
elements.

• Price behaviour: each agent looks at the price from her perspective and derives
a signal from its value which will be crucial in deciding her strategy.

In this model the concept of self-organization arises very naturally. A price which
is very stable demotivates agents to trade this stock and will naturally lead to a
decrease of the number of agents. On the other hand, a small number of agents
leads to large fluctuations in the price which presents opportunities of arbitrage
that will appeal more traders. It follows that the system will self-organizes around
the number of traders which corresponds to a situation of intermittency, leading to
a state which corresponds to the empirical stylized facts [66].

As in the Lux-Marchesi model the agents are divided into two classes, but in this
case there’s no need to divide chartists into two further subcategories (optimists
and pessimists). This last class is indeed described by a potential method [72,
65, 13] such that its agents try to follow the trend and bet that the price will
further move away from the actual price, in such a way that they create a local
bubble which destabilizes the market. The stochastic equation for the price which
describes this behaviour is nothing but the main equation of the PUCK model by
Takayasu et al [13], which is introduced in the next section.

5.2 PUCK model
In [13] it is proposed a model of a random walker in a randomly changing potential
function called the PUCK model (Potentials of Unbalanced Complex Kinetics
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model). In this model the center of the potential function moves with the moving
average of the random walker’s position, and the potential function is given by
a quadratic function with its curvature slowly changing around zero. It can be
written the following mathematical form:

x(t + 1) − x(t) = − d

dx
UM(x; t)|x=x(t)−xM (t) + f(t) (5.1)

UM(x; t) ≡ b(t)
M − 1

x2

2 (5.2)

xM(t) ≡ 1
M

M−1Ø
k=0

x(t − k) (5.3)

where f(t) is a random external noise (usually Gaussian with zero mean and unitary
variance), b(t) is the coefficient of the quadratic potential, M is the size of moving
average to define the center of potential function xM(t). The model has been
originally built to describe high frequency data in financial markets but in this
work it is applied for daily closing prices as the statistical procedures that will be
employed have been extensively tested on these kind on data [18, 17, 52].

The main idea is to measure the multiscaling properties of the model with
the aim to devise a relation between the generalized Hurst exponent Hq and the
coefficient b(t). In this manner it could be possible both to obtain an interpretation
of Hq in term of the coefficient of the quadratic potential of the model, and to
possibly exploit scaling exponents to extract b(t) from data.

5.2.1 Continuum Limit of the PUCK Model
It can be shown that the Langevin equation with fluctuating viscosity and mass is
derived as a continuous limit of the PUCK model [73]. First of all Equation (5.1)
can be rewritten in this form:

P (t + ∆t) − P (t) = − ∂

∂x
ΦM(x, t)

-----
x= P (t)−PM (t)

M−1

+ F (t) (5.4)

in which F (t) is and independent random noise, and the potential function ΦM (x, t)
can be expanded as:

ΦM(x, t) =
∞Ø

n=1
an(t; M)xn

n
(5.5)

In real data usually the observed potential functions are such that ⟨P (t + ∆t) −
P (t)⟩ ≃ 0 and therefore a1(t; M) ≃ 0. On the other hand, a2(t; M) is non negligible
and its dependence from M is very weak [73]. It follows that this expression is
nothing but the generalization of Equation (5.2) and thus a2(t; M) ∝ b(t).

Considering the limit for ∆t → 0 keeping τ = M∆t constant, Equation (5.4)
becomes:

d

dt
P (t) = −

∞Ø
n=1

an(t; τ)
C

P (t) − Pτ (t)
τ

Dn−1

+ G(t) (5.6)

where Pτ (t) ≡ 1
τ

s t
t−τ P (s)ds, an(t; τ) ≡ lim∆t→0 an(t; τ/(∆t))(∆t)n−2 and G(t) ≡

lim∆t→0 F (t)/∆t.
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For small positive τ , comparing the resulting equation with the standard
Langevin equation in 1 dimensional space of location r(t) one obtains:

m
d2

dt2 r(t) + µ
d

dt
r(t) = f(t) (5.7)

From this expression the market viscosity corresponds to µ = 1 + a2(t;τ)
2 and the

mass of the market price is given by m = −a2(t;τ)
6 τ . When −2 < a2(t; τ) < 0, that

corresponds to negative b(t), the motion of the market is described by an ordinary
Langevin equation with positive mass and positive viscosity. When a2(t; τ) > 0
the mass can be negative and for a2(t; τ) < −2 also the viscosity becomes negative.
It follows that a direct correspondence with a physical situation is possible only
when the market is in, as it will be defined in the next section, a "trend following"
state [73].

5.2.2 Constant b
The coefficient b(t) of the quadratic potential defines the behaviour of the walker
and the force to which it is subjected. In this section the relevant properties at
constant b are presented. Three main cases can be acknowledged:

• b = 0 corresponds to a simple random walk, no potential is present and
therefore no force is acting on the walker;

• for b > 0 the random walker is attracted to the moving average of its own
path, the diffusion becomes slower than the random case; this behaviour can
be called as "mean reverting";

• for b < 0 the random walker is pushed away from the moving average of its
traces and the walker diffuses faster than the random case; this behaviour can
be called as "trend follower".

There is a sharp transition in the diffusion properties of the model at b = −2: the
repulsive force from the center of the potential function is larger than the effect
of the random noise f(t) and x(t) follows an exponential growth which can be
interpreted as market crashes or bubbles [13]. For positive large b instead the
potential force is so strong that the motion becomes a diverging oscillation [13].
In particular the stochastic process defined by equation (5.1) can be proven to be
non-stationary for b ≤ −2. As an example the paths generated by the model at
constant b are shown.
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Figure 5.1: Path simulated with Equation (5.1) fixing M = 10 and b(t) = const =
b. The initial position is x(1) = 5000 and the path is T = 5000 steps long.

Figure 5.2: Path simulated with equation (5.1) fixing b(t) = −1.5 for every t and
varying M . The initial position is x(1) = 5000 and the path is T = 5000 steps long.

Already from the sample paths it is clear that varying the parameters of the model
the time series have very different properties: negative b produce smoother paths
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compared to positive b when M is fixed and not too large (fig. 5.1); when increasing
M at fixed b the produced paths seem to preserve their diffusion properties but
tend to lose their long-range dependence.

From the point of view of the statistical properties of the time series generated
Takayasu et al. showed that, when b(t) = const and the noise f(t) in Equation
(5.1) is a white Gaussian noise[13]:

• The cumulative distribution of price differences ∆x(τ ; t) = x(t + τ) − x(t)
is well approximated by a gaussian with variance depending on b and M ,
therefore no heavy tails are observable;

• The autocorrelation of v(t) = x(t) − x(t − 1) is always positive and decays
exponentially for any negative b-value, while for a positive b-value it is
characterized by an oscillatory behavior;

• The autocorrelation of the volatility, defined as v(t)2, always decays exponen-
tially and therefore no longer correlation and resulting volatility clustering
can be observed at constant b;

• Analyzing the behavior of σ2(t) = ⟨x(t) − x(0)⟩, the model shows slower
abnormal diffusion for b > 0 and faster abnormal diffusion for b < 0 regardless
of M (to be proved).

5.2.3 Random b(t)
In order to try to reproduce some of the empirical stylized facts which are well
known to characterize financial data [11, 8], Takayasu et al. considered the case that
the potential coefficient b(t) changes randomly with time. In particular, assuming
that b(t) follows a random walk in a fixed potential function, its process can be
described by this equation:

b(t + 1) = (1 − c0)b(t) + g(t) (5.8)

where c0 is a constant ∈ [0,1] and g(t) is a normal Gaussian noise with zero mean
and variance G [13].

The relevant case for this discussion is when c0 is not so small compared with G
(i.e. c0 = 0.0015 and G = 0.000784) and the probability of b(t) ≤ −2 is negligible
[13]. In fact, in this case some of the basic statistical properties of the model
become similar to that of real market price fluctuations[13, 11, 8]:

• The cumulative distribution of the price variation v(t) has heavy tails, well
approximated by power laws;

• The autocorrelation function for v(t) decays rapidly to zero;

• The autocorrelation function for the volatility v(t)2 slowly decays to zero and
therefore the volatility clustering can be observed;

• Abnormal diffusion can be found for small time scales, while for large time
scales the normal diffusion property is preserved.
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It must be highlighted that these properties emerge only if the simulations one
performs are long enough (i.e. T ∼ 106 time steps) and not for every simulation
conducted. This model is thus not ideal for daily data modeling. Moreover, when
c0 is relatively large compared with the G (i.e. c0 = 0.02 and G = 0.000784) the
statistical properties of prices are confirmed to be nearly equivalent to the case of
normal random walk. Finally, when c0 is very close to zero (i.e. c0 = 0.0001 and
G = 0.000784) b(t) strongly fluctuates, and there is a non negligible probability
that b(t) ≤ −2 making the process unstable and non-stationary [13].

As an example a path generated by the model when b(t) follows Equation (5.8)
in the only case of interest (c0 = 0.0015 and G = 0.000784) is shown:

Figure 5.3: Path simulated with Equation (5.1), M = 2 and b(t) following
Equation (5.8) with c0 = 0.0015 and G = 0.000784. The initial position is
x(1) = 5000 and the path is T = 106 steps long. The cumulative distribution
function for the price variation v(t) and the autocorrelation of the volatility v(t)2

are also shown.

From the plot it can be deducted that the random process for b(t) affects both
the diffusion properties, as already mentioned in [13], and the roughness of the
path.

5.3 Measuring Scaling Properties of Simulated
Time Series

5.3.1 Case of Constant b
At b(t) = b = const it is employed the RNSGHE method (3.5.3) to study the
scaling properties of the absolute value of the price variation |x(t + τ) − x(t)| of
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time series simulated using the PUCK model (5.1), choosing f(t) to be a gaussian
noise with µ = 0 and σ = 1. The following scaling relation is therefore assumed:

Ξ(τ, q) = E[|x(t + τ) − x(t)|q] ∼ Kqτ
qHq (5.9)

The model at constant b produces price variations which are normally distributed
[13] and therefore one could choose also q ≥ 1 without affecting the estimate [18].
For simplicity, and coherence with the subsequent analysis, 50 equally spaced
values of q ∈ [0.02,1] are chosen. Regarding τmax, for the estimates at constant b,
τmax = 200 has been chosen. For b ≥ 0 the volatility v(t)2 shows an oscillating
behaviour around zero [13] and therefore the choice of τmax should not bias the
computation of the multiscaling proxy B̂ [35]. On the other hand, when b < 0 the
volatility shows a positive autocorrelation that decays exponentially [13]. The main
issue is that the ACSR method (3.5.3) is designed for real financial time series
which show a power law like decay of the volatility autocorrelation [8, 18], and it is
therefore chosen to use τmax = 200 also for b ≥ 0. To finally confirm the observed
behaviours the estimates are realized also setting τmax = 19 [35, 34] which is a
value small enough to reduce the potential mixing of the high autocorrelation state
with the high noise state (see appendix B).

100 simulations of T = 5 · 104 time steps are performed using all the possible 36
combinations of the following set of parameters: b = [−1.9, −1.5, −1, −0.5,0,0.5,1,1.5,1.9];
M = [5,10,50,200].

Figure 5.4: Estimate of the multiscaling proxy (Equation 3.57) varying both b
and M . The RNSGHE method has been applied using τ ∈ [1,200], q ∈ [0.02,1].
For larger M both the average and the std of B̂ become larger due to the higher
persistence of the volatility autocorrelation. The single error bar represents the
standard deviation of the estimate over the set of 100 simulations performed for
each choice of the parameters.
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Even if, as it could be expected [35], increasing M and decreasing b the multi-
scaling proxy on average increases due to the enhanced persistence of the volatility
autocorrelation, all the obtained values are still not big enough to make the pro-
cess multiscaling. Moreover, the standard deviation of the distribution of the
estimates grows for the same reason, as the autocorrelation introduces a bias in the
multiscaling proxy estimate that can also result in slightly positive values of B̂ [35].

Regarding the multiscaling test, the 3579/3600 = 99.42% of the simulations
performed failed both the F-test and the t-tests (see table 3.1) while the remaining
21 rejected the null hypothesis only for the F-test. It can therefore be safely claimed
that at constant b the process is not multiscaling. It follows that one can quantify
the scaling properties of the process just from one exponent Hq and, given its
theoretical importance, it is chosen to show the plots for q = 1:

Figure 5.5: Generalized Hurst Exponent for q = 1 computed on simulated time
series varying both b and M . The scaling exponent has been extracted using
τ ∈ [1,200]. It is evident that smaller values of b imply larger values of Ĥ1. The
single error bar represents the standard deviation of the estimate over the set of
100 simulations performed for each choice of the parameters.

The results obtained show a clear relation between the parameter b and the
estimated Hurst exponent Ĥ1: when b ≤ 0 the time series is persistent, while b ≥ 0
the time series is anti-persistent.

It is also interesting to observe that when M is increased up to value of order
104 time steps, the Hurst exponent tends to 0.5 regardless of the initial b value.
As an example the case for b = −1.9, which is the one with the most persistence
autocorrelation of the volatility, is shown.
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Figure 5.6: Generalized Hurst Exponent for q = 1 computed on simulated time
series fixing b = −1.9 and increasing M . The scaling exponent has been extracted
using τ ∈ [1,200]. Increasing the value of M , the time series’ scaling exponent
tends to the one of a simple Brownian motion. The single error bar represents the
standard deviation of the estimate over the set of 100 simulations performed for
each choice of the parameters.

The behavior can be ascribed to the fact that increasing M the time series
become equally smooth, regardless of b, while the diffusion properties are still
determined by coefficient of the potential. As an example three simulation with
M = 2000 and b ∈ [−1.9,0,2] are displayed on the same plot:

Figure 5.7: PUCK model time series simulation for b ∈ [−1.9,0,2] and M = 2000.
The value of M affects the properties of the long-term memory and therefore the
"roughness" of the time series, while b still determines the diffusion behaviour.
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5.3.2 Case of Random b(t)
In the case of b(t) following Equation (5.8), it is employed again the RNSGHE
method (3.5.3) to study the scaling properties of the absolute value of the price
variation |x(t + τ) − x(t)| of the time series simulated. f(t) is chosen again to
be a gaussian noise with µ = 0, σ = 1 and M is set equal to 2 just to make the
observations comparable with the one of the Takayasu et al. paper [13]. The
parameters of the model for b(t) are chosen to be c0 = 0.0015 and G = 0.000784
in order to let the model reproduce, at least for long simulations, some of the
properties of real financial time series (5.2.3).

Again the scaling relation in Equation (5.9) is assumed, and for the estimate of
Hq and B the following moments q and aggregation times τ are chosen:

• q ∈ [0.02,1] to have a robust measure of multiscaling when having fat tails in
the distribution of price variations;

• τ ∈ [1,200], [1,19] time steps, as the autocorrelation of the volatility v(t)2 again
does not follow the power law decay observable in real time series and indeed
the ACSR method gives results with a great variance between similar time
series.

100 simulations of length T = 106 are performed and for each of them is verified
that the properties shown in Figure (5.3) are confirmed. The 95% confidence
interval bounds of the distribution of the estimates of the multiscaling proxy B̂ are
therefore reported:

τ [1,19] [1,200]
B̂ (-0.1043,-0.0022) · 10−11 (-0.2476, -0.2221) · 10−13

It is clear, and confirmed by the multiscaling test, that the time series do not
show multiscaling properties and thus the Hurst exponent for q = 1 is enough to
describe the scaling of the model also in this random b(t) case. The 95% confidence
interval bounds of the distribution of the estimates of H1 are reported:

τ [1,19] [1,200]
Ĥ1 (0.5036, 0.5207) (0.5034, 0.5145)

The values obtained show that when b(t) randomly fluctuates between −2 and
2 the Hurst exponent is just slightly above 0.5, which means that the scaling
properties of the time series are practically equivalent to the one of a simple
Brownian motion. In a sense one could approximately relate the Hurst exponent
computed over the whole time series with an average of b(t) over time, as long as
M is not too big.

In fact, if one modifies the parameters of the model of b(t) (c0 and the average
of the noise) in order to obtain a clear transition in the behaviour of this coefficient,
the measure of the Hurst exponent changes accordingly:
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Figure 5.8: Path simulated with M = 5 and b(t) following Equation (5.8) with
c0 = 0.008 and G = 0.000784. The initial position is x(1) = 5000 and the path is
T = 106 steps long. From t = 5 · 105 the average of the noise of the process followed
by b(t) has been artificially moved from 0 to 0.01.

For the depicted time series in fact one obtains (q ∈ [0.02,1], τ ∈ [1,200]):

Ĥ1 = 0.4514 ± 0.0005

which is significantly lower than 0.5 as the time series of b(t), from T = 5 · 105,
oscillates around a value greater than zero. The results are in agreement with the
previous analysis realized at constant b (Fig. 5.5). In particular the time series,
simulated setting M = 5, shows an average ⟨b(t)⟩t = 0.6250, and if one compares
this result with the top-left plot in Figure 5.5, the value of Ĥ1 obtained is perfectly
consistent.

It is therefore clear that the Hurst exponent computed over the whole time
series can be directly related to b(t) or to be more precise, to its time average.

5.3.3 Comparison between b(t) and the Dynamical Hurst
Exponent

First of all, the wGHE method is applied to compute the scaling of the price
variation |x(t + τ) − x(t)|, with q ∈ [0.02,1], τmin = 1, τmax = 19 as in [34, 17, 52],
to a simulated time series of length T = 105 with known random b(t) following
Equation (5.8) and M = 2. The idea is to compare the real b(t) with the dynamical
Hurst exponent Hθ

q (t) computed using a rolling time window of ∆t = 103 time
steps and setting ∆t = θ as in [17].
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Figure 5.9: Result of Ĥθ
1 (t) on a time series simulated using the PUCK model with

the random b(t) (c0 = 0.0015 and G = 0.000784) depicted and M = 2. The wGHE
method is performed with q ∈ [0.02,1], τmin = 1, τmax = 19 and ∆t = θ = 1000.

The results seem to have a close profile, but in order to quantify their similarity
the Spearman and the Kendall correlation coefficient between the two time series
are computed.

∆t 1000
ρs -0.5575
ρk -0.3915

Table 5.1: Spearman and Kendall correlation coefficients between the time series
of Ĥθ

1 (t) and the real b(t) used in the simulation of the time series. All the values
are statistically significant at 1 % level.

The correlation between the Hurst exponent measure and the real b(t) time
series are negative as expected. What is very interesting is that the correlation
is quite strong, and therefore it is clear that one could use the Generalized Hurst
exponent dynamically to extract from the time series an information equivalent to
b(t).

5.4 Comparison between b(t) and the Hurst Ex-
ponent on Data

To devise the value of b(t) from data, it is needed to assume that this quantity
remains constant within a certain time window. Indeed from equations (5.1) a
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simple linear model for b(t) can be defined:

x(t + 1) − x(t) = − b(t)
M − 1(x(t) − xM(t)) + f(t) (5.10)

Therefore, in a selected time window of width ∆t, from the angular coefficient of
this linear regression the value of b(t) can be extracted [13]. Obviously, assuming
that for real data this coefficient remains constant over ∆t is a simplification that
leads to a value of b(t) certainly subjected to an error. Ideally one would like to
compute it from a smaller time window, in order to get a quantity closer to the
real value, even if having less points to perform the regression causes inevitably an
higher standard error on the angular coefficient.

5.4.1 An Idea to Estimate M
To compute b(t) the value of M is also needed and one can try to extract it from
the data or fixing it as in [13, 74]. If one defines: v(t) ≡ x(t) − x(t − 1); when b is
constant the model can be viewed as an auto-regressive process [13]:

v(t + 1) = − b

2

M−1Ø
k=1

ωkv(t − k + 1) + f(t) (5.11)

where the weight function ωk is given by:

ωk = 2(M − k)
M(M − 1) ,

M−1Ø
k=1

ωk = 1 (5.12)

Assuming b(t) = const in a given time window ∆t, one can simply exploit the fact
that the return time series is described by equations (5.11) and (5.12) to devise
the coefficients of the AR model.

In order to estimate the parameters αk of an AR(n) model (5.11) of order n (in
our case n = M − 1) the so called Yule-Walker equations [75] can be employed: γm = qn

k=1 αkγm−k + σ2δm,0 m = 0, ..., n

γm = E[v(t)v(t − m)]
(5.13)



γ1
γ2
γ3
...

γn

 =



γ0 γ−1 γ−2 · · ·
γ1 γ0 γ−1 · · ·
γ2 γ1 γ0 · · ·
... ... ... . . .

γn−1 γn−2 γn−3 · · ·





α1
α2
α3
...

αn

 (5.14)

γ0 =
nØ

k=1
αkγ−k + σ2,

from which the {αk} and the variance of the noise can be extracted after having
estimated empirically the autocovariance of the process. From a computational
point of view the Levinson-Durbin recursion on the biased estimate of the sample
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autocorrelation sequence [76] is usually applied to solve these equations and therefore
to finally compute the parameters. Knowing from equation (5.12) the theoretical
expression of the coefficients of the model, the idea would be to use this information
to devise M from the data. Indeed, for k ≥ M all the αk become equal to zero and
this behaviour should be observable directly from the Yule-Walker estimate of the
coefficients.

The idea one could apply is exactly the same but on a small time windows of ∆t
time steps with the objective to find a similar behaviour even if the portion of the
time series analyzed is very short. The advantage indeed would be that one could
estimate M without knowing b, just by computing the breakpoint from which the
coefficients of the model become zero.

Unfortunately, the procedure described showed promising results only for simu-
lated time series with small values of M and b = const far from zero. Real data are
indeed characterized by b(t) oscillating around zero [72, 65, 13, 74] and therefore
M becomes very difficult to be extracted.

For the subsequent analysis it is therefore preferred to fix M artificially and to
consequently extract b(t). Indeed, if one extracts b(t) using Equation (5.10):

b(t) = −(x(t + 1) − x(t))
(x(t) − xM(t)) · (M − 1) (5.15)

different M values just cause a rescaling of the results.

5.4.2 Hurst Exponent vs Time Average of b(t)
Having observed in Figure (5.8) that it’s reasonable to think about the existence of
a relation between the time average of ⟨b(t)⟩t = 1

T

qT
t=1 b(t) and Ĥ1, these quantities

are measured on some real financial data.
From the set of stocks comprised in the S&P 500 index, as of 30 Nov 2022, 187

stocks whose daily closing prices is recorded from 02-Jan-1990 to 30-Nov-2022 are
selected. Daily prices are chosen as the methods to devise the scaling exponents
are tested and built for this kind of data [18, 19]. The coefficient b(t) is extracted
using Equation (5.15) employing a rolling time window of ∆t = 1000 days and
fixing M = 2. As an example the time series for b(t) computed on Apple Inc stock
is shown:
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Figure 5.10: Result of the regression procedure on Apple Inc stock daily closing
price for ∆t = 1000 days and M = 2. The width of each line is equal to two
standard errors of the angular coefficient as determined by the least squares linear
fit.

It is clear that the measure of b(t), even using large time windows, gives large
standard errors which make this estimate unpractical on real data. Moreover, the
value of M has been chosen a priori without knowing the actual one which describes
data.

The Hurst exponent H1 is instead measured on the absolute log-returns time
series with the methodology described in section 3.5.3, setting q ∈ [0.02,1], τ ∈
[1, τmax] and computing τmax with the so called ACSR method.

Just to make a comparison between the two measures a scatter plot over all the
data set is realized and the Spearman’s correlation coefficient between the two is
computed.
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Figure 5.11: Scatter plot of the Hurst exponent for q = 1 computed over the
whole log-returns time series of 187 stocks against the time average of b(t) computed
for each stock. The correlation value is statistical significant at 1 %.

The obtained value shows, as expected, a negative correlation that is also
confirmed by the Kendall’s correlation coefficient which is slightly lower (ρk =
−0.15). One must however underline that b(t) is subjected to large errors that
are also amplified computing a time average, despite this a non trivial negative
correlation exists between the two measures.

What should come clear is that the estimate of the coefficient of the potential
of the PUCK model is not practical and brings with it many issues related both
to the regression technique and to the estimate of M . Nevertheless, having found
an approximate interpretation of the parameter b(t) in terms of Hq it is therefore
preferred to use this well established measure to determine if a particular time
series is in a mean reverting state or in a trend follower state. One in fact can
apply the Generalized Hurst exponent method in two different fashions: using the
whole time series and therefore determining the scaling properties over the entire
analyzed period; working in rolling time windows to analyze the evolution of the
scaling properties.

The first approach is the one employed to extract the values shown in figure
5.11. The application of the second approach will instead be shown in the next
section.

5.4.3 Comparison between b(t) and the Dynamical Hurst
Exponent

To complete the investigation, the idea is thus to apply the previously described
technique to extract from a real time series a dynamical information that, as showed
previously, can somehow replace the unpractical b(t).
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The wGHE method is performed with q ∈ [0.02,1], τmin = 1, τmax = 19 as in [34,
17, 52] on the time series of the Apple Inc stock daily closing price from 02-Jan-1990
to 30-Nov-2022. It is chosen to work on daily prices as the employed methodologies
to study the scaling exponents are well-established on daily data [19, 17].

The main focus is placed on Hθ
q (t) with q = 1 because it is directly comparable

with b(t). Following the prescriptions in [17] ∆t = θ is chosen and ∆t = 500,1000
days are selected for the length of the rolling time windows.

Figure 5.12: Result of Ĥθ
1 (t) on Apple Inc stock daily closing price (from 02-Jan-

1990 to 30-Nov-2022) for ∆t = 500, 1000 days. On the third plot the daily log
returns time series is displayed.
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Figure 5.13: Result of b̂(t) on Apple Inc stock daily closing price (from 02-Jan-
1990 to 30-Nov-2022) for ∆t = 500, 1000 days and M = 2. On the third plot the
daily log returns time series is displayed.

∆t 500 d 1000 d
ρs -0.1527 -0.1974
ρk -0.1052 -0.1227

Table 5.2: Spearman and Kendall correlation coefficients between the time series
of Ĥθ

1 (t) and b̂(t) obtained for Apple Inc stock daily closing price (from 02-Jan-1990
to 30-Nov-2022) for various time windows sizes. All the values are statistically
significant at 1 % level.

The obtained results show again a negative correlation between the two measures
also when the Hurst exponent is computed dynamically. The correlation is not
very high due to the fact that in real data the two measures oscillate respectively
around 0 and 0.5, and the real behaviour around these values is often hidden by the
errors on the estimates caused by the reduced time window employed. Moreover,
b(t) is subjected to large errors even when using time window of ∆t = 1000 days
and indeed when comparing just the Hurst exponent with the real time series of
b(t) the correlation is stronger.

In fact, the estimate of Ĥθ
1 (t) does not carry the ambiguity of the choice of M

and the great error caused by the regression for b(t). Moreover, the generalized
Hurst exponent extracts the full scaling spectrum of Hq and, given the multiscaling
nature of financial data [34, 18], this set of information can provide more insights
about the analyzed time series [17, 52].
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The message that is intended to be sent is therefore that, even if the PUCK
model is very intuitive and opens the possibility to describe particular states of
the market, which can be directly interpreted through the behavior of the traders,
when employing it as a time series analysis tool its strength weakens, as extracting
its parameters from data can be challenging and often unpractical. It is therefore
proposed to replace this procedure with the well established Generalized Hurst
Exponent analysis (both over rolling time windows or over the whole time series),
which gives statistically significant results that can be also related to the coefficient
of the potential function present in the PUCK model.
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Chapter 6

Conclusion

The aim of this project has been to revise some important results retrieved by
studying financial markets with tools coming from physics and complexity science
in general: scaling analysis, measures of correlations, physics inspired modeling.
All the topics have been presented theoretically and most of the empirical results
described have been confirmed on a real data set of all the stocks comprised in the
S&P 500 index. An application of some of the scaling analysis methodologies has
then been originally employed to study particular properties of a novel random
walk model of market price by Takayasu et al. [65].

In the first chapter the main empirical stylized facts of financial time series have
been presented: heavy tails, aggregational Gaussianity, absence of autocorrela-
tions and volatility clustering. Together these features define the main properties
shared by financial data (particularly time series), which are fundamental both
to understand the validity of theoretical models and to describe some features of
the analyzed assets. In the present case, the tail exponents for the distribution of
the daily returns and the exponents for the decay of the volatility autocorrelation
have been further examined, showing their values over different sectors and their
practical meaning which could lead to useful applications in the context of risk
management.

In the second chapter the concept of "Scaling properties" has been presented and it
has been illustrated how it naturally arises within the context of self-similarity, scale
invariance and fractals. This framework has been expanded to stochastic processes
which display statistical properties of self-similarity and the Hurst exponent as
a measure related to these behaviours has been presented. The discussion has
therefore been enlarged to explain theoretically the concept of multifractality from
which a general scaling rule has been introduced. This scaling law is the hallmark
of multifractality and the starting point for every empirical data analysis in which
one wants to measure multiscaling properties. Two famous stochastic models for
returns which include multifractality have then been presented and the chapter has
been completed with the description of various important techniques employed to
measure the multiscaling properties of financial time series: the generalized Hurst
exponent method, its dynamical and weighted version and its refinement which is
more reliable and effective from a statistical point of view. The application of these
methods has been thus shown on the analyzed data set and it has been confirmed
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that financial time series exhibit multiscaling properties. Moreover, through the
wide literature review different practical applications of these devised measures
have also been presented. It is important to underline the fact that the described
framework can be naturally extended to many other complex system, indeed the
methodologies are quite general and are able to extract the statistical properties of
the underlying processes directly from the data.

In the third chapter the usefulness of the study of the correlations between
financial assets has been demonstrated. By studying the dynamical evolution of
the weighted Pearson correlation coefficient it has been highlighted how various
moments of the markets can affect the interdependence structure of the stocks,
while employing the network science approach it has been evidenced the natural
clustering structure that arises simply from the topology of the correlation graph.
It is important to point out that these techniques, particularly the information
filtering tool employed (i.e. Minimum Spanning Tree), are very useful to study
any complex system as it is often strongly necessary to reduce the huge amount of
noisy information available in order to extract some interesting insights about the
framework under study.

The last chapter has been devoted to a brief presentation of physics inspired
models in the context of finance, with the aim to show another interesting approach
that employs ideas from the physical field to study financial systems. The ideas
behind two interesting agent based models have been presented, with the aim to
show a concrete application of this interdisciplinary approach to finance as well to
introduce an important framework in which the PUCK model has been employed.
The remaining part of the chapter has been indeed dedicated to the presentation
of the PUCK model, a stochastic model for market price by Takayasu et al. [13],
that has been employed both to describe "chartists" agents in the Alfi-Cristelli-
Pietronero-Zaccaria agent based model and as a time series analysis tool. The
second application is the one on which the main focus has been placed in the chapter.
After having described the model, the scaling properties of time series simulated
with its equations have been studied and a non trivial novel relation between the
Hurst exponent and the parameter b(t) of the model has been devised. Moreover,
the model has been found to produce uniscaling time series and a non negligible
negative correlation has been retrieved both between the temporal average of b(t)
and the Hurst exponent computed over the whole time series, and between the
time series for b(t) and the time series for the weighted generalized Hurst exponent
Hθ

q (t). This last dependence has been retrieved both on time series with known
artificial b(t) and on real time series. The conclusion is that the study of the scaling
properties of time series through the generalized Hurst exponent technique is more
reliable, as it is defined by statistically well founded methods not present for b(t),
and the results obtained can also be interpreted in terms of the correlation with
the parameter b(t).

In this work only a small part of the techniques, tools and models, coming from
physics and complexity science and employed to study financial markets, have been
presented and many more chapters would have been necessary to cover the majority
of them. It has been instead preferred to focus mainly on the presented topics as
they can be very useful both to researchers and practitioners. Furthermore, the
unveiled framework encloses various techniques which are helpful in many different
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fields and understanding the theoretical intuitions behind them and how to apply
these ideas can provide important instruments to analyze complex systems from
different and novel perspectives.
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Appendix A

Codes

A.1 Data cleaning code

1 f unc t i on [ i n d i c e s ]= data_cleaning ( Pr ices , dt )
2

3 c l u s t e r s = ze ro s ( s i z e ( Pr ices , 1 ) −1, s i z e ( Pr ices , 2 ) ) ;
4

5 f o r i =1: s i z e ( Pr ices , 2 )
6 p r i c e = Pr i c e s (~ i snan ( Pr i c e s ( : , i ) ) , i ) ;
7 d = ( d i f f ( p r i c e ) == 0) ;
8 c l u s t e r _ s i z e = 1 ;
9 f o r j =1: l ength (d)−1

10 i f d ( j ) == 1 && d( j +1) == 1
11 c l u s t e r _ s i z e = c l u s t e r _ s i z e + 1 ;
12 c l u s t e r s ( j , i ) = c l u s t e r _ s i z e ;
13 e l s e
14 c l u s t e r _ s i z e = 0 ;
15 end
16 end
17 end
18

19 i n d i c e s = f i n d (max( c l u s t e r s ) >= dt ) ; %i n d i c e s o f prob lemat ic s t o ck s
with constant c l u s t e r s l onge r than dt

20 end

The shown code takes in input the matrix Prices whose columns are time series
of different length, and an integer dt. If the time series analyzed includes at least
a cluster of constant adjacent values of length greater or equal than dt, the time
series is considered to be problematic.
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A.2 Data selection code

1 f unc t i on [ t_star ] = se l e c t i on_t ime ( Pr ices , mktcap )
2

3 T = s i z e ( Pr ices , 1 ) ;
4 N = s i z e ( Pr ices , 2 ) ;
5 W = zero s (T, 1 ) ;
6 pts = ze ro s (T, 2 ) ;
7 n0 = 0 ;
8

9 w = mktcap/sum( mktcap ) ;
10

11 j =1;
12 f o r i =1:T
13 stock_idx = f i n d (~ i snan ( Pr i c e s ( i , : ) ) ) ;
14 n = length ( stock_idx ) ; %number o f s t o ck s that co−e x i s t
15 t=i ; %s t a r t i n g time o f the subset
16 i f n ~= n0
17 pts ( j , 1 ) = t ;
18 pts ( j , 2 ) = n ;
19 W( j ) = sum(w( stock_idx ) ) ;
20 n0 =n ;
21 j = j +1;
22 end
23 i f n == N
24 break
25 end
26 end
27

28 pts ( j : end , : ) = [ ] ;
29 W( j : end ) = [ ] ;
30

31 I = ( (T−pts ( : , 1 ) ) /(T−1) ) . ∗ ( ( pts ( : , 2 ) −1)/(N−1) ) . ∗W;
32 [ I_max , k ] = max( I ) ;
33 t_star = pts (k , 1 ) ;
34 n_star = pts (k , 2 ) ;
35 end

The shown code takes in input the matrix Prices whose columns are time series
of different length, and a vector mktcap of the market capitalization of each stock.
It performs a for loop to compute iteratively the information function defined in
Equation (4.3). The loop stops when the number of selected columns of the Prices
matrix is equal to N. The procedure returns the t index for which I(t) is maximum.
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Scaling PUCK model

B.1 Scaling at constant b with τmax = 19
The previously obtained results (see subsection 5.3.1) are confirmed using a different
aggregation time interval: τ ∈ [1,19] is chosen to check if the previous results where
an artifact of the selected time scales [35, 34]. As before 100 simulations of T = 5·104

time steps are performed using all the possible 36 combinations of the following set
of parameters: b = [−1.9, −1.5, −1, −0.5,0,0.5,1,1.5,1.9]; M = [5,10,50,200].

Figure B.1: Estimate of the multiscaling proxy (Equation 3.57) varying both
b and M . The RNSGHE method has been applied using τ ∈ [1,19], q ∈ [0.02,1].
For larger M both the average and the std of B̂ become larger due to the higher
persistence of the volatility autocorrelation. The single error bar represents the
standard deviation of the estimate over the set 100 simulation performed for each
choice of the parameters.

The multiscaling proxy properties are practically the same as the one displayed
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in figure 5.4, and no major differences can be observed. It is confirmed the role
of the autocorrelation which reduces the average B̂ and increases the standard
deviation of the results.

Regarding the multiscaling test, the 3597/3600 = 99.92% of the simulations
performed failed both the F-test and the t-tests (see table 3.1) while the remaining
21 rejected the null hypothesis only for the F-test. It is therefore confirmed that at
constant b the process is not multiscaling. The scaling properties of the process for
q = 1 are shown:

Figure B.2: Generalized Hurst Exponent for q = 1 computed on simulated time
series varying both b and M . The scaling exponent has been extracted using
τ ∈ [1,19]. It is evident that smaller values of b imply larger values of Ĥ1. The
single error bar represents the standard deviation of the estimate over the set 100
simulation performed for each choice of the parameters.

The relation between Ĥ1 and b is qualitatively the same as the one depicted in
figure 5.5. For larger values of M , the behaviour is less evident when b is larger.
This is of course caused by the choice of τmax = 19, that for values of M ≳ 50
becomes too small to detect the long-term memory of the time series at larger time
scales.
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