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Abstract

Regarded as the seed of any form of life, the cell is a complex and stunning system
capable of performing a great variety of tasks. In order to properly complete its
functionalities, precise mechanisms of control are necessary during the cell life (i.e.
the cell cycle). Among them, great importance is given to the ones related to size
homeostasis; indeed, experimental evidence has shown that size is cell type specific
and is important in monitoring cell function.
The actual state of knowledge in the field has identified three main ’checkpoints’
for this regulation: the reduction or starting point, at the G1/S transition, which
defines the border between growth and DNA replication; a checkpoint at the G2/M
transition, which is related to the division between the pre-mitotic phase and the
mitotic one; and the spindle checkpoint that ensures the correct progress of the
mitotic phase.
The former has attracted great interest already in the past since the length of the
G1 phase seems to be the most variable during the cell cycle.
Experimental observations have demonstrated that the compression of the nucleus
is fundamental to undergo the G1/S transition and that this flattening is strictly
connected to a delicate balance of fluxes of metabolites inward and outward of the
nucleoplasm.
This work will present the theoretical grounds of the hypothesis suggested by
the team of Matthieu Piel at the Institute Curie (Paris): the nuclear tension is
proposed as a key parameter that couples cell size homeostasis and cell cycle length
regulation. The analyses of this tension and how it affects the nuclear shape, the
hypothesis of a critical value for the tension that triggers the G1/S transition and
its connection with the variability of duration of the G1 phase are the main subjects
of this study which allow to go deeper into the understanding of the cell cycle and
of the diseases related to its misfunction.
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Chapter 1

Introduction

1.1 Cells growth and cell size regulation
In recent years great interest has been directed towards the application of physical
tools to the study of cell growth, division and proliferation. A well-established
mechanism to control cell growth is related to cell size regulation, whose importance
goes beyond cell proliferation, being present also in non-proliferating cells (e.g.
neurons)[1]. Indeed, despite the great variety of size across cell types, with volumes
ranging over 14 orders of magnitude (from 0.1 femtoliter ultramicro bacteria to 10
milliliter amoebae cells) [2] [3], cells of the same type usually exhibit uniformity of
size [4] [5] [6] with populations of cells regularly exhibiting 10% variance in size at
division [2].

However, the study of cell size regulation is a great challenge. The specific size
of a cell is the result of a variety of complex and coupled processes: cell volume
variations during growth and motility [7]; cell mass density homeostasis, which is
related to a cell’s metabolic and anabolic activity [8]; protein turnover and the
scaling between proteins and small osmolytes, mainly amino-acids and ions [9] [10];
balance between growth and division [11].
As a consequence, there is still lack of a clear and complete understanding of the
mechanisms that control cell size and their relation with the cell cycle progression.

In mammalian cells, size regulation has been proven to play a key role in cell
cycle regulation by triggering the G1/S transition, a stage at the boundary between
the phase in which the cell grows and the one devoted to DNA replication (see
figure 1.1 and Appendix D for more details).
Inside the eukaryotic kingdom, studies on yeast have shown the existence of cell-
autonomous size control mechanisms.
The first evidence of cell size checkpoints in the cell cycle of both budding yeast and
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fission yeast was observed in 1977 [12] [13]. Experiments on both species proved
that the length of the cell cycle is influenced by cell size: it is extended in small
cells, giving them more time to grow before their next division, while larger cells
grow less to prevent themselves from becoming excessively large [5].

Figure 1.1: The cell cycle and its phases. Adapted from iBiology[14].

Similar evidence in mammalian cells [4] have led to the development of different
models to explain the coupling between cell cycle and cell size; three main coarse-
grained models, which analyze the cell volume at various stages of the cell cycle
considering the cell as a whole, have been proposed [15] [4] (see figure 1.2):

1. sizer ( first proposed in the 1970s [12] in fission yeast and budding yeast
daughter cells, recently proposed also for cell differentiation in plants [16]),
where cells divide after reaching a certain target size whose value is fixed and
is equal for all the cells independently from their birth size.
Typical of this model is the negative correlation between size at birth and
added size during growth but the absence of correlation between initial and
final volume;

2. adder(e.g. in bacteria, cyanobacteria and in budding yeast [17]), in which cells
divide after a specific amount of cell size (either cell volume or cell surface
area) is added, independently of their birth size. The result in this case is
the absence of a correlation between size at birth and added volume but a
positive correlation between initial and final volume;
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3. timer(e.g. in Caulobacter crescentus [18]), whose transition criterion is the
time spent in the different cell cycle phases. The correlation between size at
birth and size added during growth is positive for cells growing exponentially
as well as the correlation between the initial and the final volume.

Figure 1.2: Models for size regulation. (A), (B), (C) and (D) adapted from
Rhind[2]. (E) adapted from Heldt[19].

((a)) Correlation between size at birth and growth in the subsequent cell cycle.

((b)) Kinetics of return to size homeostasis. Adders return to their target size more slowly
than sizer, which usually requires just one generation to come back to their target size
since cells only double their volume before division; timer do not enforce size homeostasis,
cells divide at the same size their parents divided.

((c)) Half-life of division-proteins in the case of sizer and adder. The half-life of a
protein represents the time it takes to reach a steady state thanks to the balance between
synthesis and degradation. This picture shows the different way in which a protein
reaches its steady state with either a sizer mechanism or an adder one: in the first case,
a protein has a shorter half-life and quickly reaches the steady state with no dependence
on the amount of growth; in the latter, instead, a longer half-live implies proportion with
the amount of growth and not to the size.

((d)) Kinetics of size-protein : inhibitor-dilution and activator accumulation. Here the
first model is depicted for the G1/S transition, as proposed for budding yeast, while
the second one is for the G2/M transition, as proposed for fission yeast. Even if shown
in the same graph, these two mechanisms usually do not happen in the same cell and
simultaneously.

((e)) Theoretical predictions of final volume (Vf ) over the initial volume (Vi) for an ideal
sizer, timer and adder in arbitrary units of volume (AV).

Nowadays the model that seems more realistic tries to reconcile sizer concepts
at the single cell level with an adder-like behaviour at a population level [20].
A timer mechanism that assumes exponential growth seems theoretically incompat-
ible with the experimental observation of a small variance in cell size distributions
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because it would lead instead to the divergence of this variance [21].

Considerable questions complicate this problem. The first issue comes from the
definition of the concept of size itself; indeed, cell size is determined by different
parameters( e.g. volume, length, surface area, protein content, mass, density and
growth rate) whose correlation is relevant but complicated. Secondly, it is important
to distinguish between how cells determine their target size and how they maintain
homeostasis at that target size.

In this work, the idea that volume is the key phenomenological variable con-
trolling cell size [22] will be explored and the focus will be on the mechanism that
allows cells to maintain their homeostasis.

Several hypotheses have been suggested to explain the size regulation mechanism:
on the one side, a great variety of biochemical pathways have been proven to be key
determinants of cell size (e.g.cyclins and cyclin-dependent kinases (CDKs) [23] and
IGF/PI3K/AKT/mTORC1 pathway [15] [24] [25]); another type of biochemical
origin is the presence of sizer proteins whose variations in concentration, either
a decrease (inhibitor-dilution model, e.g.Rb e Wh5) or an increase (activator
accumulation), may trigger the transition between different steps of the cell cycle
[26] [27] [2]; on the other hand, the well-established importance of mechanical
stress in cell homeostasis [28] seems to suggest a possible mechanism of cell cycle
regulation (and specifically G1 length regulation) related to mechanical forces (see
figure 1.3).

Figure 1.3: Phases of the cell cycle. The connection between mechanical stress
and G1/S transition checkpoint is highlighted. Adapted from Perez[28].
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1.2 Aim of the thesis
The goal of this work is to explore a new hypothesis to explain cell size homeostasis
and cell cycle duration, with particular attention to the role played by the cell
nucleus. The nucleus, the largest organelle in the cell, represents a good mediator for
the transmission and modulation of mechano-sensitive processes; indeed, nucleus
deformation has been shown to have influence on a great variety of processes:
nuclear transport [29], cell differentiation, chromatin organization [30], migration
and pathfinding in constrained environments [31] [32].

Following the idea of a relation between cell cycle regulation and nucleus
deformation, Chapter 2 is divided into two different sections devoted to the
explanation of experimental and theoretical evidence that supports the idea of a
relation between mechanical perturbations and cell cycle regulation.
On the theoretical side, the starting point is a model presented in Rollin[10] to
derive the physical basis of cell size regulation. Two subsections describe the
theoretical grounds of this model:

• the Pump-Leak model, which succeeds in defining the scaling laws for the
volume of the cell in relation to the scaling between proteins and small
osmolytes, mainly amino-acids and ions;

• a model of stochastic gene expression and translation, whose aim is to couple
mRNA and protein production rate to cell growth and homeostasis.

As a consequence of this model, particular attention is given to the nuclear-
to-cytoplasmic ratio (NC), also known as karyoplasmatic ratio. The fact that it
remains almost constant during growth [33] [34] may be a hint of a role played by
the nucleus in maintaining cell homeostasis.

The second part of this work is therefore focused on the analysis of the behaviour
of the cell nucleus under the effects of different mechanical stresses, emulating
what happens during the G1/S transition. The attention is directed towards the
understanding of how the nucleus deformations could be the key factors to trigger
cell division and regulate the time spent in the G1 phase. More in details, in
Chapter 3 we derive an analytic formula for the metabolites inside the nucleus
in several regimes and for the hydrostatic pressure at the NE related to them in
order to couple it to the nuclear tension. Chapter 4 introduces a non-linear elastic
model of the nuclear envelope (NE) in order to theoretically understand the origin
of the tension which experimentally seems to strongly affect the cell cycle and its
length regulation. Chapter 5 of this thesis follows this hypothesis by proving
the dependence of the time spent in the G1 phase on the nucleus size and, as a
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consequence, on the tension at its membrane. Space for a final discussion of the
results is left in the Conclusion.
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Chapter 2

Experimental and
theoretical basis

2.1 Experimental evidence
The hypothesis suggested in this work is based on the idea that the G1 length,
therefore the cell size homeostasis, has a connection with mechanical perturbations
and this mechanical stress is sensed by the cell via the nucleus.

In the last years, several experiments have demonstrated the key role played by
the nucleus in the response to spatial confinement.
In particular, this work is motivated by the following results:

• Lomakin et al.[31] have proven the ability of a single cell to sense confinement
through its nucleus and respond by activating several biochemical pathways;

• Aureille et al.[35] have shown the G1/S transition to be triggered by the
flattening of the nucleus;

• Skotheim et al. [26] have demonstrated that the cell cycle progression is strictly
related to changes in the concentration of proteins inside the cytoplasm.

More in details, Lomakin et al.[31] have studied a human cell line, HeLa cell,
under the effect of controlled confinement thanks to the use of an ion beam-
sculpted flat silicon microcantilever mounted on an atomic force microscopy (AFM).
These measurements suggest that cells are able to detect their height and trigger
contractile response below a threshold value of this height. The key element that
makes the single cell capable of proprioception seems to be the nucleus. Indeed,
enucleated cells (produced by centrifugation) showed defective contractile response
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to spatial confinement.
Two different regimes of response can be identified (see figure 2.1):

1. above the threshold height, a "safe" regime, where the nucleus maintains a
constant volume. The confinement in this case has the effect of unfolding the
NE and increasing the surface area.

2. below the threshold height, identified for this cell line at a value of 5µm, during
which nuclear folds are completely stretched, the nuclear envelope (NE) starts
to be tensed and compression results in nuclear volume loss.

Overall, this study highlights the critical role of the NE in responding to mechanical
signalling. Indeed, in the safe regime, i.e. h = 20µm, the force applied on the
nucleus results as a constant ∼ 20nN ; whereas, after confinement at the critical
value of h = 5µm, the force increased up to ∼ 80nN , with a variation ∆F ∼ 50nN
on average.

Figure 2.1: Effect of confinement on the nucleus. The pictures show the unfolding
of the NE at different height (20µm, 10µm and 5µm, from left to right). Adapted
from Lomakin[31].

Following the results from Aureille et al. [35], Matthieu Piel’s team at the
Institute Curie (Paris) has started to focus on the effect of confinement during
cell growth. This thesis is aimed to theoretically analyze the unpublished results
obtained in this study.

The most relevant outcome for this work stands in the discovery of a relation
between cell size at birth and the duration of the G1 phase: cells born bigger spend
less time in the growing phase G1, while smaller cells need more time to grow and
to reach the threshold parameters that trigger the G1/S transition (see figure 2.2).
Motivated by the aforementioned cell size sensing mechanism, the focus of this

8
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thesis is oriented towards the role of the nuclear tension to explain this variance
in the G1 duration. In particular, the presence of folds at the NE is identified
as determinant to explain the response of the nucleus to mechanical stress and
confinement. The idea proposed by Piel’s team is that these folds act as a surface
"reservoir" for the nucleus; as a consequence, in bigger cells, where the folds are
already stretched, a shorter period of time is needed to enter the S phase, whereas
in smaller cells, where the NE presents more folds, a longer G1 is necessary to
reach the threshold value of the nuclear tension to trigger the G1/S transition.

((a)) Cell growth during the G1 phase with and without confinement. Without confine-
ment cells show a difference in the G1 length depending on their size at birth. Below a
threshold confinement, this difference disappears and the minimum time in G1 is of
∼ 6 hours independent from the volume at birth.

((b)) The effect of different confinement on the G1 length. A critical value of the height
of confinement can be identified at around 8µm below which the G1 phase does not
change its length.

Figure 2.2: Results from the experiment run at Matthieu Piel’s lab in Paris
(Institute Curie).

An additional question is then related to the origin of this nuclear tension and to
the presence of a minimal time in G1 which does not depend on the cell volume and
on the height of confinement if below a certain threshold. The answer suggested by

9
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Piel’s team follows the results presented by Skotheim et al. [26].

Skotheim et al.[26] have identified the presence of a specific protein in mammalian
cell, Rb, which is not synthesized during cell growth. The fact that this protein
does not scale with cell size implies it is diluted by cell growth. Therefore, Skotheim
et al. suggested that Rb in mammalian cells can play the role of cell cycle inhibitor
and trigger the G1/S transition when it reaches a specific concentration.

Therefore, the suggestion of Piel’s team is that the presence of a minimal time
spent in the G1 phase is due to the existence of an inhibitor protein that requires
a minimal period of time to reach the amount of concentration that allows the cell
to progress in its cycle. Whether this protein is Rb or a different one, it is still an
open question. Ginzberg et al. [36] suggested Rb to be determinant in specifying
the target cell size, but not in the coordination of growth rate with cell cycle length
to reach cell size homeostasis.

Based on these observations, the next chapter will start by presenting the
theoretical physical basis of cell size scaling during growth and its connection to
protein production, which will be the first step towards the understanding of nuclear
scaling and its relation with nuclear tension as the G1 length control parameter.

10
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2.2 Physical basis of cell growth and homeostasis
The volume is an important parameter both for the physics and for the physiology
of the cell. Its scaling during cell growth is strictly related to a cell type specific
constant density as the result of the coordination of RNA and protein synthesis
with cell volume increase.
Indeed, being negatively charged, RNA and proteins affect osmolarity indirectly
and control water influx and cell volume increase through a mechano-osmotic
process. This evidence can be explained through the so-called Pump-Leak model
thanks to three main physical properties: electroneutrality, the balance of water
chemical potential, and the balance of ionic fluxes.
The combination of this model with a model of stochastic gene expression is suited
to describe the specific growth of cell volume during the cell cycle and the scaling
of proteins and mRNAs (messenger RNA).
This section is devoted to the description of these models and their results.

2.2.1 Pump-Leak model
First proposed in 1960 [37], the Pump-Leak mechanism(PLM) is a mathematical
model which describes how cells actively maintain an osmotic equilibrium with their
environment. After water, Na+, K+, Cl− are the most abundant ions in the extra
and intracellular liquids [38] [39](see table 2.1) and the primary contributors to extra
and intracellular tonicity; as a consequence, the regulation of their concentrations
is a key factor for several cell activities (e.g. cell signalling [40] and cell volume
stabilization [41]).

Ion concentration(mM) E.coli S.cerevisiae mammalian cell(heart or RBC)
Na+ 10 30 10
Cl− 10-200 5-100 100
K+ 30-300 300 100

Table 2.1: Ionic concentrations in a bacterial, yeast and inside a mammalian cell.
RBC stands for red blood cells. Taken from Milo [38].

The presence of an imbalance in the concentration of sodium and potassium
ions inside and outside the cell has been discovered by Carl Schmidt (1850) [42],
but it was only in 1957 that Skou1 introduced the idea of the Na+ pump (Na+/K+

ATPase [NKA]) and of a relation between ion content and volume regulation in
the cell [43].

1Nobel Prize in Chemistry in 1997 because of his discovery of the NKA.
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Leaving aside the interesting history behind this discovery, the role of these ions
can be understood by studying a simplified system: a spherical cell (e.g., a mitotic
cell or a cell in suspension) with inside Na+, K+, Cl−, water and impermeant
macromolecules, X, such as proteins and metabolites, with an average charge
valence z. In the text, capital letters (e.g. X) stand for the number of metabolites
while the corresponding lowercase letters represent concentrations (e.g. x = X

V
).

Following this description, it is possible to identify the components of the PLM
(see figure 2.3(a)):

• a semipermeable and flexible membrane that can be crossed by Na+, K+, and
Cl−;

• impermeant molecules with negative net charge trapped inside the membrane;

• an energy consuming pump which drives Na+ out of the membrane against
the ionic gradient.

((a)) Main components of the Pump-Leak
model. Na+, K+, and Cl− are asymmet-
rically distributed in the outer and inner
space of the cell. A semi-permeable mem-
brane allows the flow of these ions while
trapping inside in the cytoplasm imperme-
ant molecules X with average charged z.
Adapted from Kay [39].

((b)) Composition of free metabolites in
an E.coli cell growing on glucose. Adapted
from Bennett [44].

Figure 2.3: PLM mechanism and the composition of amino-acids inside the cell

Mathematically, in the frame of a quasi-static theory (by assuming that the
water flux balances instantaneously, which is valid on the timescale of minutes), the
PLM can be expressed as a set of three coupled differential equations (see appendix
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B for more details about the derivation) :

n+ − n− − z · x = 0 (2.1)

∆P = ∆π = kT · (n+ + n− − 2n0 + x) (2.2)

n+ · n− = α0 · n2
0 with α0 = e

− pkT

g+ (2.3)

where n+, n− and 2n0 are the concentrations of cations and anions inside and
outside the cell and ∆P and ∆π represent the hydrostatic and the osmotic pressure
difference respectively (i.e. ∆P = Pin − Pout). α0 is called pumping efficiency; this
value is dimensionless, usually in a range between 0 (no pumping) and 1 (perfect
pumping) and it is related to the pumping flux of cations p and their conductivity
g+. The typical values of these parameters are listed in table 2.2.
A table with the symbols used in this work can be found in Appendix A.
In the rest of the report, the composition of the solution in the extracellular space is
considered fixed, which is reasonable since the the volume of the extracellular space
is far larger than that of a single cell. Moreover, spatial effects will be neglected
and it will be assumed that the cell can be considered a single isopotential sphere
(i.e. all points within the cell are at the same potential) and the voltage in the
extracellular space is null.

Parameter Value
n0 Concentration of metabolites outside of the cell [38] 150 mMol
n+ Cations concentration[38] 160mMol
n− Anions concentration[38] 20 mMol
x Metabolites concentration 120 mMol
z Metabolites average charge -1.2

∆P Difference in hydrostatic pressure 10-100 Pa
π Osmotic pressure inside the cell 7.5x105 Pa
π0 Osmotic pressure outside the cell 7.5x105 Pa
kT Thermal energy at T=300K 4.1 pN.nm
K Stretching modulus of the lamina 25 mN/m
α0 Pumping efficiency 0.14

Table 2.2: Values of the coarse-grained parameters in the classical Pump-Leak
model and in the nested Pump-Leak model.

These equations come from the following physico-chemical constraints on cells:

• Electroneutrality: equation 2.1 imposes electroneutrality inside the cell, i.e. a
neutral mean charge; it is justified by the presence of a Debye length (used
in plasmas and electrolytes to state the length scale at which the effect of
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a charge persists) of the order of nanometers [45], much smaller than the
micrometer scale of the cell volume.

• Osmotic balance: from van ’t Hoff formula2, equation 2.2 stands for the
osmotic balance, i.e. the balance of water chemical potential between two
sides of a semipermeable membrane. Despite the importance of water flux,
there is still lack of clear understanding of the molecular basis of osmosis [39].

• Balance of ionic fluxes: the third equation 2.3 is related to the balance of ionic
fluxes and comes as a result of the mass-action law (see appendix A1 for more
details).

Therefore, the role of NA/K pump and of the membrane voltage in maintaining
cell volume homeostasis can be understood as the consequence of two forces:
concentration and electrical gradient.
Impermeant molecules X create an imbalance of charge known as Donnan effect[46].
From equation 2.1 we can see that these molecules attract counterions to preserve
electroneutrality, i.e. they attracts cations inside the cell. As a consequence of
this flux, the right term in equation 2.2 increases and a change in the left term
is necessary to reach osmotic balance. Thus, if unregulated, this effect will lead
to cell volume increase due to the osmotic flux of water inside the cell and its
consequential lysis.
Indead, the pressures created by the osmolarity differences between inside and out
can easily reach an atmosphere or more.
Plants and bacteria cells avoid this effect of the osmotic influx of water by building
cellulose walls that can sustain high values of pressure [47]. Animals, instead,
whose plasma membrane is only about as strong as a soap bubble [41], exploit an
NKA which stabilizes cell volume against osmotic forces that drive water in by
actively pumping Na+ out and K+ in. This mechanism indirectly establishes a
negative membrane potential that moves Cl− out of the cell making space for the
impermeant molecules.
In synthesis, the NKA has the role of “nulling out” the effect of the impermeant
molecules X, which have a net negative charge (z is in the range −2 to −0.7 [39]).

Therefore, both hydrostatic and osmotic pressures are involved in the control of
fluid flow across the membrane. Since water is essentially incompressible, this flow
directly affects cell volume change. This phenomenon is typically evident when
cells are subjected to large osmotic shocks.
The assumption of a quasi-static theory is justified by the presence of a timescale

2Jacobus Van’t Hoff was awarded of the first Nobel Prize in chemistry (1901) in recognition of
his work on osmosis.
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to reach the equilibrium of water of the order of tens to hundreds of milliseconds
after a perturbation [48], while the typical timescales of ion relaxation after an
osmotic shock is of the order of a few minutes [48][49].

Essentially, the system described by the PLM behaves like a chemical equilibrium,
governed by the law of mass-action that moves to minimize its energy and find
equilibrium after perturbation. The comparison with a globally asymptotically
stable point in a nonlinear dynamical system [50] is straightforward; here, the PLM
can be seen as a dynamic steady state.

By looking at the typical values for the PLM parameters in mammalian cells
(table 2.2), some approximations can be made:

• the pumping efficiency α0∼ 0.14 allows to assume the limiting case of "infinite
pumping" (α0∼ 0) where all the anions are pumped outside and the only ions
inside the cell are the counterions of impermeant molecules.

• The osmotic pressure is balanced at the plasma membrane due to the difference
of at least three orders of magnitude between hydrostatic and osmotic pressure;
thus, the pressure difference (∆P ) affects cell shape but is not relevant in
determining its volume.

• the density on ions outside the cell, n0, and the one of impermeant molecules,
x, are comparable (∼ 120 mMol).

Combining these observations with equation 2.1, 2.2 and 2.3 it is possible to
derive an expression for the volume as a function of molecules and ions number
(see Appendix B for the complete derivation):

V = R + (z + 1) · X

2n0
(2.4)

where R stands for the dry volume.
Therefore, there is a linear relation between volume and the impermeant

molecules. What is left undefined is the specification of the contribution of different
molecules (proteins, amino-acids and other metabolites) both to the volume and
to the dry mass. Proteins represent 40-50% of the cell dry mass [38] [10] while
metabolites and their counterions constitute most of the wet volume of the cell (
78% of the total wet volume [38] [10]). It is worth noticing that the most abundant
amino-acid, glutamate [38](see figure 2.3(b)), play a negligible role in building up
proteins, suggesting the existence of amino-acids that can serve as regulators for
other mechanisms, such as size homeostasis.
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Overall, equation 2.4 suggests that the linear scaling between volume and
proteins, already well established [51], is an indirect consequence of the linear scaling
between proteins and metabolites (mainly amino-acids). This same behaviour is
expected for nuclear concentration based on the observation of a fixed NC ratio [5].
In our study, these scaling of the nuclear volume with the metabolites content will
be fundamental to analyze the dependence of the nuclear tension on the difference
in the hydrostatic pressure at the NE.

However, a complete description of the scaling of the volume requires the
understanding of the variations in the concentration of molecules (proteins, ions,
amino-acids) present inside the cell. This is the aim of the next section.

2.2.2 Stochastic growth model
In this section a stochastic model for gene expression inspired by Lin[21] is used
to prove the linear scaling relation between proteins and small osmolytes number
which comes from the exponential growth regime of the cell as a consequence of
the enzymatic control of amino-acid production.

This model couples cell volume growth and gene transcription and translation
to describe how the synthesis of proteins and the presence of free amino-acids is
fundamental to regulate cell volume growth; in particular, following this model
it is possible to identify a transition from exponential growth to linear growth of
protein number and cell volume.
The most innovative aspect of this work stands in the analysis of protein and mRNA
exponential growth as a dynamical process, with transcription and translation rates
proportional to the cell volume, rather than a deterministic process, with constant
rates proportional to the genome copy number(constant rate model)(see figure 2.4).

The starting phenomenon is what is known as the central dogma of molecular
biology: the genetic content present in the DNA is translated into proteins thanks
to the mediation of the RNA. Because mRNA levels determine the rate of protein
synthesis, the number of proteins per cell depends on the number of mRNAs,
which in turn may depend on the number of active genes. In principle, a realistic
stochastic model should include any process that indirectly affects the rates of
gene expression and potentially randomizes protein concentrations. However, most
models implicitly include all other processes in effective rate constants [52].

The model follows the basic idea of TASEP equations (totally asymmetric simple
exclusion process) to describe how RNA polymerases (RNAPs) attach to genes
in the transcription phase and result in mRNAs molecules and how ribosomes
use this mRNA to obtain proteins. DNA and mRNA represent the substrates for
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Figure 2.4: Schematic representation of a constant rate model (a) and a dynamical
model with transcription and translation rates proportional to the cell volume (b).
Adapted from Lin[21].

ribosomes and RNAPs. Assuming the number of ribosomes as the limiting factor
in translation and the number of RNAPs as the limiting factor in transcription,
different regimes for mRNA and protein synthesis can be identified based on the
level of saturation respectively of DNA by RNAPs and mRNAs by ribosomes.

This process can be summarised in the following equations:

Ṁi =
k0 · ϕi · pr − Mi

τm
, if pr ≤ p∗

r

k0 · gi · pmax
r − Mi

τm
, if pr ≥ p∗

r

(2.5)

Ṗi =
kt · Miq

i
Mi

· r − Pi

τp
, if r ≤ r∗

kt · mi · rmax − Pi

τp
, if r ≥ r∗

(2.6)

where M, P, r, pr represents the numbers of mRNAs, proteins, ribosomes and
RNA polymerases; the pedex i stands for the gene i; k0 and kt characterize the
transcription/translation rate of a single RNAP/ribosome and are constants; τm

and τp represent the degradation rate of mRNAs and proteins; ϕi = giq
i

gi
and

Miq
i

Mi
are the fraction of substrates (DNA and mRNA) coding for product of type

i, which can be seen as probabilities of attachment.

Here pmax
r e rmax are the maximum number of RNAPs that a single gene can

hold and the maximum number of ribosomes above which mRNA starts to be
saturated. They can be computed by imposing continuity of the production rate:

ϕi · pmax
r = gi · p∗

r → p∗
r =

Ø
i

Pi · pmax
r (2.7)
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Miq
i Mi

· rmax = Mi · r∗ → r∗ =
Ø

i

Mi · rmax (2.8)

Three regimes can be identified:

• Neither DNA nor mRNA is saturated

• Only DNA is saturated; the saturation of DNA precedes that of mRNAs,
which number initially increases with the number of RNAPs while the number
of genes remains constant.

• Both DNA and mRNA are saturated

An important approximation can be made on the mRNA: since τm has been
found to be at least one order of magnitude smaller than τp in yeast, bacteria and
mammalian cells [38], a quasi-static approximation, where Ṁi ∼ 0 during growth
can be assumed (i.e. the number of mRNAs of type i adjusts instantaneously to
the number of RNAPs). In the non saturated regime this leads to the following
expression :

Mi = k0 · τm · ϕi · pr (2.9)
Coming to the amino-acids production, their production rate can be related

to the number of enzymes catalyzing their biosynthesis, using a linear process by
assuming that the nutrients necessary for the synthesis are in excess:

Ȧ = kcat · e − lp · Ptot (2.10)

where kcat is the rate of catalysis and e is the number of enzymes. The second
term represents the consumption of amino-acids to form proteins, with Ptot = q

i Pi.
The transport of amino-acid through the plasma membrane is neglected.

2.2.3 Volume Scaling
Combining the Pump-Leak model, the growth model and the amino-acid biosyn-
thesis model the following results can be understood:

• as long as mRNAs are not saturated (i.e., r < r∗) all the protein numbers
scale with the number of ribosomes;

• the autocatalytic nature of ribosomes makes their number grows exponentially,
i.e r = r0 · ekr·t, with kr the effective rate of ribosome formation;

• ribosomes exponential growth coupled to equation 2.10 results in the scaling
of amino-acids and total protein content with the number of ribosomes with
an initial exponential growth followed by saturation in the regime where both
DNA and mRNA are saturated.
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An important result of this model is that volume will first grow exponentially
(i.e. regime where DNA is either saturated or not but mRNA is not saturated)
and then it will show a linear increase with time (i.e. both DNA and mRNA have
reached saturation).

For what concern our work, the exponential growth of the proteins inside the
cell and its nucleus, which is the physiological one, will be important when it comes
to study the evolution in time of the cell size and the duration of the G1 phase
(see Chapter 5).
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Chapter 3

Nucleus deformations and
nuclear tension

The volume increase during the cell cycle is accompanied by organelles growth in
response to the greater need for their functions. Among organelles, the nucleus
holds a relevant role because of its primary function as a DNA container as well
as due to its relatively simple geometry, which has made it the best candidate
organelle for scaling studies [53].
Already suggested in 1921 by Champy and Carleton [54], the correlation between
the shape of several types of animal cells and the shape of their nuclei has driven
attention to the relation between cell size and nucleus size. However, despite
advances in microscopy and other imaging techniques, the mechanism that allows
the nucleus to maintain a specific scaling with cell size is still unclear.

The classical idea is based on considering the DNA content as a direct ruler for
the volume of the nucleus (nucleoskeletal theory) and, as a consequence, for the
cell volume [55] [56]. Nonetheless, this theory presents some flaws; for instance, it
fails in explaining the presence of the same amount of DNA in different tissues in a
given organism but with a variation in the nuclear size.

On the contrary, several studies have pointed out the need for a fixed NC ratio
(i.e. even if the volume of the cell keeps growing, the nuclear to cellular volume
ratio remains constant) to preserve the correct function of the cell [55]; indeed,
anomalies of this ratio have been noticed in certain types of cancers [57], in certain
protein mutations [58] [59] and its control has been suggested as a parameter to
trigger cell cycle progression [60] [61].

A mathematical model (the "nested" Pump-Leak model) that treats the cell and
the nucleus as two nested osmometers will be presented in the first section of this
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chapter as a possible way to shed light on this debate following the same principles
of the Pump-Leak model described in Chapter 2.

The mechanisms that determine the shape of the nucleus are an interesting
subject to study. Different cells show a wide variety of nuclear shapes and sizes
associated with different cell states, functions as well as pathological conditions,
like genetic disorders, ageing, muscular dystrophy, dilated cardiomyopathy, and
cancer progression [62] [40].
Two main hypotheses have been suggested to explain the origins of changes in
nuclear shape: the alteration of the rigidity of the nucleus, i.e. change in the
tension at the NE [63]; chromatin reorganization and consequent effect on gene
expression [53].

Interestingly, an important change in the shape of the nucleus has been proven
to be fundamental for the G1 to S transition. The flattening of the nucleus at this
specific phase of the cell cycle is a consequence of the tension at the NE and may
trigger transcriptional effects that promote cell cycle progression [35]. The origin
of this tension is still unclear; what has been observed is that in normal cells the
perinuclear actin cap filaments activate the response of myosin II and trigger the
flattening of the nucleus. However, cells treated with an inhibitor of myosin II
(blebbistatin) still present the correct G1/S transition if mechanically constrained
[35].

In analogy with what has been observed in the case of cell migration [31], a key
role is played by nuclear folds. Indeed, confinement of cells beyond a threshold
height (defined by the size of the cell nucleus) causes an increase in the nuclear
membrane tension and its unfolding, thus altering both volume and surface of the
nucleus: the volume undergoes an abrupt decrease, while the surface augments [54].
Being the content of the nucleoplasm incompressible, this volume decrease is due
to a water flux outward of the nucleus.
Interestingly, these wrinkles easily reform when the confinement is released (see
figure 3.1(c)).
The stretch of nuclear folds triggers the release of calcium (Ca2+) and cytosolic
phospholipase A2 (cPLA2) with the inner nuclear membrane (INM), which may be
a crucial factor to understand the mechanosensing properties of the nucleus [64]
[35] (see figure 3.2 and 3.1(a)).

Based on these hypotheses, this section of the report is devoted to the derivation
of the analytical expression for the tension at the NE. The result is obtained by
combining the aforementioned nested Pump-Leak model with Laplace’s law [66] to
impose the balance of the osmotic and hydrostatic pressure at NE. A key factor is
the assumption of a non-linear elastic model to describe the NE whose non-linearity
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((a)) Force balance diagram for the NE.
The inner and the outer membrane (the
black concentric circle) intercalated by the
nuclear pores, encapsulate the chromatin
(light purple curve). The red and blue ar-
rows stand respectively for the inward and
outward components of the pressure exer-
cised on the NE. The green arrows repre-
sent the response of the nuclear tension, the
additional inward force to maintain the bal-
ance of mechanical forces. Adapted from
Safran[63].

((b)) Structure of the nucleus. The nuclear
envelope (NE) is composed of two mem-
branes, the inner nuclear membrane(INM)
and the outer nuclear membrane(ONM).
The latter is connected to the endoplas-
matic reticulum (ER), a characteristic
which may play a crucial role in the pro-
cess of nuclear growth and division. Below
the INM there is a layer of lamina. The
nucleoplasm can exchange material with
the cytoplasm thanks to the existence of
nuclear pores complex (NPC) on the NE.
Adapted from Huber[65].

((c)) Effect of confinement on nuclear folds
in Hela cell. Adapted from Lomakin[31].

Figure 3.1: Structure of the nucleus and its folds.

is justified by the presence of the nuclear folds. The tension γ is analyzed as a
function of the control parameter h, the height of the confinement, and compared
with numerical results presented in Rollin [10].
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Figure 3.2: The nucleus acts as a mechano-sensor of confinement. Confinement
under a critical threshold leads to increase nuclear tension and NE unfolding. In the
unconfined state (1) the nuclear membrane is relaxed and under low tension; under
strong confinement (2), the nucleus is deformed, the nuclear membrane is unfolded
and the release on ions Ca2+ is activated with consequent cPLA2 production. STIM
and ORAI proteins are molecules that allow the nuclear membrane to sense the
level of Ca2+ and adapt to it the function of nuclear pores. Adapted from Long[64].

3.1 Nested Pump-Leak model
Motivated by the peculiar behaviour of the nucleus under compression and its
relation with the G1/S transition, the simple Pump-Leak model presented in the
previous chapter can be integrated by adding a new set of non-linear coupled
equations related to the nucleus to predict how nuclear osmolytes and the tension
at the NE evolves at different confinement heights. The result is the following
system of equations which defines the nested Pump-Leak model:

n+
c − n−

c − za · ac − zp · pc = 0
n+

c + n−
c + pc + ac − 2n0 = ∆πc

kT
= ∆Pc

kT
∼ 0

n+
c · n−

c = α0n
2
0

n+
n − n−

n − za · an − zp · pn = 0
n+

n + n−
n + pn + an − q − 2n0 − ∆Pn

kT
= 0

n+
n · n−

n = α0n
2
0

(3.1)

where the index c and n refer respectively to the cytoplasm and to the nucleus.
The symbols used have the same meaning as in section 1 with the additional term
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q which represents the chromatin density inside the nucleus (see Appendix A).

To simplify the calculation some approximations can be made:

• the cytoplasm and the nucleoplasm can be considered ideal solutions; indeed,
even if the cytoplasm and the nucleoplasm are crowded [67] [68], the presence
of small osmolytes as the majority of free osmolytes allows to neglect steric
and short range attractive interactions. Moreover, the electrostatic effect,
which affects the spatial organization of charged molecules by attracting ions
with opposite signs close to each other, is not significant as well; this choice
can be justified by the general absence inside cells of phase transitions, which
would be the signature of the impact of this polarization if it were relevant.

• The dry volume R, which plays the role of an excluded volume, is neglected.
This assumption is aimed to simplify the calculations and does not affect the
general result since R can be easily added afterwards.

• The formulas are derived in the particular case of zp=za=1, justified by the
estimation of Rollin [10].

• Only monovalent ions are considered; this approximation can be justified by
the presence of multivalent ions, such as calcium and magnesium, only in the
micromolar concentration range.

Following the same reasoning presented previously, an equation both for the cell
volume, Vc, and for the nuclear volume, Vn, can be derived. However, an important
difference must be taken into account: in the case of Vc the hydrostatic pressure
∆P does not play a central role in defining the volume since it is three orders of
magnitude smaller than the osmotic pressure outside the plasma membrane π0; on
the contrary, ∆P is crucial when it comes to the nuclear volume if the nucleus is
under strong nuclear envelope stretched.
In the following, the confinement height h will be the control parameter to identify
the magnitude of the tension γ exerted at the NE.
As a consequence, it is possible to identify a unique equation for Vc (from equation
2.4) and two different equations for Vn depending on the strength of the nuclear
tension γ :

Vc = 2Pc + 2Ac

2n0
(3.2)

Vn =


2P n+2An+Q

2n0+ ∆P
kT

if the nucleus is under strong confinement

2P n+2An+Q
2n0

if the nucleus is free from any confinement
(3.3)
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In addition to equations 3.1 and equations 3.2, 3.3, the condition on the potential
at the nuclear/plasma membrane, which must equate the entropy contribution in
the chemical potential, leads to the equality:

an · (n+
n )za = ac · (n+

c )za (3.4)

which under the previous assumption of za=1 reduces to:

an · n+
n = ac · n+

c (3.5)

The effect of a tension γ that acts on the nucleus can be understood in terms of
fluxes of metabolites between the nucleus and the cytoplasm aimed to balance ∆P
with ∆π. Indeed, by looking at the equation for Vn 3.3, it is evident that there
are three main classes of molecules which control the pressure balance: chromatin,
proteins and metabolites.
Chromatin only plays an indirect role in nuclear volume through its counterions,
since its translational entropy is vanishing, and introduces an asymmetry in the
equations due to the formation of a potential at the NE related to the unbalanced
ions. Moreover, its contribution to the osmotic pressure is typically one order
of magnitude smaller than the one of proteins and other metabolites, making it
negligible [63].
Proteins are considered as trapped in the nucleus; however, the ratio of the protein
trapped on the total amount of cellular protein is about 0.5 (i.e. ϕ = Pn

Pc+Pn
∼ 0.5)

since stuck inside the nucleus there are only the proteins with a mass above the
critical value of 30-60 kDa, the maximum which allows to cross nuclear pores [38].
Metabolites, instead, are permeable to the NE but not to the plasma membrane.
As a consequence, most of the volume of the nucleus depends on the presence
of a large pool of metabolites which, differently from the number of chromatin
counterions, grows with cell size and leads to the dilution of these counterions.

Taking into account this information, the study of the tension requires the
understanding of the variation of the number of metabolites inside the nucleus and,
as a consequence, of the nuclear volume.

Here we will derive the analytical expression for the number of metabolites An

in the nucleus in three different regimes:

1. ∆P=0, no hydrostatic pressure, meaning that the nucleus is not under com-
pression and the equation for An comes from the simple balance of the NC
ratio.

2. ∆P
2n0kT

→ 0, condition with biological consistency where the hydrostatic pressure
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at the NE is small but it is still relevant thanks to the role of the lamina1 in
the nuclear membrane, absent in the plasma membrane (see figure 3.1(b) for
a description of the structure of the nucleus). Indeed, the elastic properties of
the lamina lower by two orders of magnitude with respect to the cytoplasm
the typical hydrostatic pressure difference relevant for mechanical effects;
moreover, lamina can preserve stress for a long time, contrary to cortical actin,
because of its low turnover rate [69] [70].

3. ∆P → ∞, a regime that is not possible to observe in nature since it would
lead to a drastic decrease in the cellular volume. In fact, since ∆P must
balance ∆π and ∆π = Nn

Vn
− 2n0, with Nn the total number of molecules inside

the nucleus, higher ∆P implies Vn → 0. Apart from its unlikelihood, this
regime is an interesting way to check that the behaviour expected from this
study is the correct one.

From the system of equations 3.1 it is possible to obtain the following expressions
for the ionic concentrations:

n−
c = 0

n+
c = pc + ac

n0 = pc + ac

n−
n = 0

n+
n = pn + an + q

n0 = pn + an + q
2 + ∆P

2kT

(3.6)

An expression for n+
c and n+

n in terms of n0 can be easily deduced:n+
c = n0

n+
n = n0 + q

2 + ∆P
2kT

(3.7)

Substituting expression 3.7 into equation 2.10 and writing in terms of numbers
of molecules instead of concentrations, a general equation as starting point for the

1The nuclear lamina is a complex of intermediate filaments and membrane-associated proteins.
It can be classified into three main types, A,B and C, depending on their DNA sequence and
their biochemical activity. The inner nuclear membrane is mainly composed by lamin A and B
[62] which has been observed to be the main element of response to mechanical stress.
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three regimes listed above is directly obtained :
An

Vn

(1 + Q

2n0Vn

+ ∆P

2n0kT
) = (A0 − An)

Vc

(3.8)

where the numbers of metabolites in the cytoplasm Ac have been obtained by
subtracting the numbers of metabolites in the nucleus from the total amount of
metabolites A0 which is fixed.

3.1.1 ∆P = 0
In this simple regime, the nuclear volume has the form

Vn = 2Pn + 2An + Q

2n0
(3.9)

Inserting 3.9 into 3.8 and solving a second order equation in An, the result is

An =
4Pn(A0 − Pc) − 4QPc − (2Pn + Q)2 +

ð
[4Pn(A0 − Pc) − 4QPc − (2Pn + Q)2]2 − 16(Pc + Pn)A0(2Pn + Q)2

8(Pn + Pc) (3.10)

The solution with the plus sign has been chosen in order to have a value for
An > 0 which is the only realistic one.

3.1.2 ∆P
2n0kT → 0

Proceeding as in the case ∆P = 0, this time the equation to solve for An is a
third-order equation:

− 8( ∆P

2n0kT
)A3

n + [4(Pn + Pc) + 8( ∆P

2n0kT
)(A0 + Pc − Pn − Q)]A2

n−

−{4[PnA0−Pc(Pn+Q)]−(2Pn+Q)2−8( ∆P

2n0kT
)(Pc+A0)(Q+Pn)}An−(2Pn+Q)2A0 = 0

(3.11)

The perturbation method is suitable to solve this equation (see Appendix C for
the detailed calculation) since ∆P

2n0kT
appears as a perfect candidate to be used as a

small parameter; indeed, by looking at the typical value found in a cell (see table
2.2), 2n0kT is of order MPa while, with a physiological K of 25mN/m and length
of micrometers, the hydrostatic pressure is of the order ∆P = 103 Pa.

In this case An has the form:

An = A0
n + ( ∆P

2n0kT
)A1

n (3.12)
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where A0
n assumes the same form found in the case ∆P = 0 (equation 3.10),

while the first order term in ∆P
2n0kT

is

A1
n = 8[A0

n
3 − (A0 + Pc − Pn − Q)A0

n
2 + (Pc + A0)(Pn + Q)A0

n]
8(Pn + Pc)A0

n + (2Pn + Q)2 − 4[PnA0 − Pc(Pn + Q)]

(3.13)

This complex formula can be simplified by exploiting a physiological argument:
when the hydrostatic pressure is low, the metabolites tend to remain in the nucleus
so their number will be much larger than the number of nuclear proteins and
chromatin molecules. Moreover, the number of cytoplasmatic proteins is negligible
with respect to An since, as stated above, it’s almost equivalent to the value of Pn.
From this consideration, equation 3.12 becomes

An = A0ϕ
î

1 + ∆P

2n0kT

è2A0ϕ

Pn

1
ϕ − 1

2éï
(3.14)

In this formula ϕ = Pn

Pn+Pc
is the percentage of nuclear protein with respect to the

total amount of protein inside the cell. This result is in good agreement with the
first order term in ∆P

2n0kT
obtained solving directly the third order equation 3.11 in

the limit A0 >> Pn, Pc, Q (the detailed calculation is given in Appendix C).

Another interesting limit to check this result is the one in which Q = 0, i.e. no
chromatin counterions inside the nucleus. In this case equation 3.11 is reduced of
one order and can be easily solved. The result gives

An = A0
Pn

Pn + Pc

è
1 + ∆P

2n0kT

1 2A0Pn

(Pn + Pc)2 − 2A0 + Pc

Pn + Pc

2é
(3.15)

which is consistent with the result in 3.14 if also Pc is negligible with respect to
A0. It is interesting to notice that the meaning of the limit Q = 0 is evident if
one looks at the second-order equation for An in the case ∆P = 0. Under these
conditions, the result coincides with the zero-order term in ∆P

2n0kT
, i.e. An = A0ϕ,

which in turn comes from the balance imposed by equation 3.5 in the absence of
counterions, i.e. An

Vn
= Ac

Vc
.

3.1.3 ∆P → ∞
This last regime can be analyzed in an equivalent way to the case ∆P

2n0kT
→ 0

yet considering 2n0kT
∆P

→ 0. The equation for An is once again of third order;
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nonetheless, the zero and first-order terms in 2n0kT
∆P

are vanishing and An ∼ ( 1
∆P

)2.
The coefficient for (2n0kT

∆P
)2 coincides with equation 3.10, so that

An = (2n0kT

∆P
)2 4Pn(A0 − Pc) − 4QPc − (2Pn + Q)2 +

ð
[4Pn(A0 − Pc) − 4QPc − (2Pn + Q)2]2 − 16(Pc + Pn)A0(2Pn + Q)2

8(Pn + Pc) (3.16)

The fact that the first non vanishing term is represented by the second order
correction perfectly matches the expected behaviour for the flux of metabolites
which, under strong pressure, tends to be directed outside of the nucleus.

The hydrostatic pressure is plotted as a function of h in figure 3.3 in the different
regimes studied.
The biological meaningful case, i.e. ∆P

2n0kT
→ 0 in figure 4.2(a), shows value of ∆P

2n0kT

in the order 10−3 as expected from the typical values listed in table 2.2.

((a)) The hydrostatic pressure in the limit
∆P

2n0kT → 0.
((b)) The hydrostatic pressure in the limit
∆P → ∞.

Figure 3.3: The hydrostatic pressure in different regimes as a function of the
height of confinement. The values used for the different parameters can be found
in table 3.1.
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Parameter Value
n0 150 mMol
kT 4.1 pN.nm
K 1 mN/m
A0 1.3 ∗ 1011 Mol ∗ m3

Pc 109 Mol ∗ m3

Pn 109 Mol ∗ m3

Q 2 ∗ 109 Mol ∗ m3

S∗ 3.3 ∗ 10−10m2

Table 3.1: Values used for the plot of the analytical results.
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Chapter 4

Nuclear tension

As mentioned previously, the cell cycle progression, in particular the G1/S transition,
is characterized by an alteration of the nucleus which changes from an almost
spherical into a flattened shape (see figure 4.1). The derivation of an analytical
formula for the tension γ in the nucleus can help in finding the conditions that
regulate this transition; in particular, it allows to study how γ behaves as a function
of the control parameter h, the height of the confinement, therefore to identify a
critical value of h starting from which γ has a non-null value.
The focus here will be on nuclei under uniaxial confinement, meaning that there is
rotational invariance of the nucleus along one axis, and on the timescale of minutes,
the timescale necessary to obtain a balance of the chemical potential of water at
the nuclear envelope.
Two limiting regimes are interesting to study depending on the level of confinements:

1. spherical shape, i.e. h ≃ R0 (radius of the nucleus in absence of compression),
the nucleus is under weak confinement. The tension is buffered by the folds and
the volume remains constant. In the ideal case of isotropic, three-dimensional
growth of a spherical cell (in reality the shape of the nucleus is not perfectly
spherical), since the sphere is the geometrical shape that minimizes the surface
of any 3D objects, when h is decreased at constant volume then the surface
must increase.

2. pancake shape, i.e. h small with respect to R0, strong confinement. In this
regime, the surface keeps increasing but the volume starts to decrease and it is
no longer constant. The hypothesis to explain this volume loss is the existence
of a "surface reservoir" represented by nuclear folds that stretch when h, and
so γ, reaches a specific value, when the surface S reaches a critical value S∗.
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Nuclear tension

Figure 4.1: Evolution of the nucleus under confinement from a spherical to a
pancake shape. Adapted from Rollin [10].

Making use of the equations obtained for the metabolites as a function of the
hydrostatic pressure, here we will derive an analytical formula for the nuclear
tension as a function of h in both regimes to check if and under which conditions
the analytical results are in agreement with the numerical solution.
The computation is based on Laplace’s law [66], which relates the pressure difference
at the NE (∆P ) with the nuclear tension (γ) and the shape of the surface, i.e. its
curvature. In its most general form:

∆P = 2γ( 1
R1

+ 1
R2

) (4.1)

where R1 and R2 stand for the principal radii of curvature. Under the assumption
of elastic behaviour for the NE, the tension γ is well described by the following
function:

γ =
K( S

S∗ − 1) if S > S∗

0 if S < S∗ (4.2)

with a stretching modulus K and a critical surface area S∗ above which NE folds
are stretched. Beginning from this equation and substituting the right expression
for S in terms of the volume Vn, an equation for ∆P , and therefore for γ, is derived.
Nevertheless, the result is expected to be different in the two different regimes since
in the case of a sphere S ∼ V

2
3 with a sub-linear scaling, while in the pancake case,

the scaling is linear, V ∼ S · h.
Hence, for the same increment of volume, the tension will increase more in the
latter case.
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4.1 Spherical shape
Being the most common shape for nuclei [71], the spherical geometry represents a
good starting point for our analysis. In this regime, we choose as radii of curvature
simply the initial radius before compression, R0. With this choice, Laplace’s law
becomes:

∆P = 2γ

R0
(4.3)

where R0 is related to the volume by Vn = 4πR3
0

3 . Using the general formula to
compute the surface of a sphere, S = 4πR2

0, the constitutive equation for γ assumes
the form:

γ = K(
4π(3Vn

4π
) 2

3

S∗ − 1) (4.4)

Putting together these two equations, we have an expression for the hydrostatic
pressure as a function of the volume:

∆P = 2K
54π

S∗ ( 3
4π

Vn) 1
3 − ( 3

4π
Vn)− 1

3

6
(4.5)

As expected, the relationship is non-linear.

To proceed with the calculation, we take the limit in which ∆P
2n0kT

→ 0 since it
is the most relevant one. In this regime it is possible to substitute the volume in
equation 4.5 with:

Vn = 2An + 2Pn + Q

2n0
(1 − ∆P

2n0kT
) (4.6)

where the factor (1 − ∆P
2n0kT

) comes from a Taylor expansion at the first order of
the denominator in equation 3.3 for Vn.
An has the expression found in the previous section (see equation 3.12).
Combining these results and again applying a Taylor expansion for the power of
(1 − ∆P

2n0kT
) keeping only terms of order one, a general expression for ∆P can be

obtained:

∆P =
2K

5
(4π

S∗ )( 3
4π

2Pn+2A0
n+Q

2n0
)2

3 − 1
6

( 3
4π

2Pn+2A0
n+Q

2n0 )1
3

5
1 − 2K

3n0kT ( 3
4π

2Pn+2A0
n+Q

2n0 )1
3 4π

S∗ ( 2A1
n

2Pn+2A0
n+Q − 1)

6 (4.7)

This formula can be simplified in the regime A0 >> Pn, Pc, Q, which is the case
in the approximation used above of small ∆P

2n0kT
. Therefore, we have:

∆P =
2K

è
(4π

S∗ )( 3
4π

A0ϕ
n0

)2
3 − 1

é
( 3

4π
A0ϕ
n0 )1

3
î

1 − 2K
3n0kT (4π

S∗ )( 3
4π

A0ϕ
n0 )1

3

5
(2A0ϕ

Pn
)(ϕ − 1) − 1

6ï (4.8)
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The equation for ∆P assumes a general form that can be deduced from the
following calculation.
From Laplace’s law we know the relation between the hydrostatic pressure and the
radius of the nucleus R:

∆P = 2K
1 R

R∗ − 1
R

2
(4.9)

where R∗ is the radius related to the critical surface S∗.
The value of R can be deduced from the volume:

Vn =



1
2Pn+2A0

n+Q
2n0

2è
1 + ∆P

2n0kT
( A1

n

2Pn+2A0
n+Q

− 1)
é

general case

A0ϕ
n0

è
1 + ∆P

2n0kT

1
2A0ϕ

Pn
(ϕ − 1) − 1

2é
if A0 >> Pn, Pc, Q

(4.10)

that can be expressed in the form:
Vn = V 0

n (1 + ϵc) (4.11)
where ϵ = ∆P

2n0kT
and:

c =



A1
n

2Pn+2A0
n+Q

− 1 general case

2A0ϕ
Pn

(ϕ − 1) − 1 if A0 >> Pn, Pc, Q

(4.12)

From this expression for the volume we can deduce a general form for the radius:

R = R0(1 + 1
3ϵc) (4.13)

Using this expression for R in Laplace law and keeping only first order terms in
ϵ, we obtain:

∆P = ∆P 0

1 − 2KR0c
R∗23n0kT

(4.14)

Here ∆P 0 represents the hydrostatic pressure in the absence of confinement. Its
value can be deduced from the previous equation:

∆P 0 =



2K
5
( 4π

S∗ )( 3
4π

2Pn+2A0
n+Q

2n0
)

2
3 −1

6
( 3

4π
2Pn+2A0

n+Q
2n0 )

1
3

general case

2K

5
( 4π

S∗ )( 3
4π

A0ϕ
n0

)
2
3 −1

6
( 3

4π
A0ϕ
n0 )

1
3

if A0 >> Pn, Pc, Q

(4.15)
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Once we have an equation for the hydrostatic pressure, the analytic form of γ is
straightforward from Laplace’s law:

γ = ∆P

2 R0 (4.16)

which in the general case becomes

γ = 1
2( 3

4π
) 1

3 (2A0
n + 2Pn + Q

2n0
) 1

3 ∆P (4.17)

and in the limit A0 >> Pn, Pc, Q

γ = 1
2( 3

4π
) 1

3 (A0ϕ

n0
) 1

3 ∆P (4.18)

where in both formulas ∆P has the form calculated before.

From formula 4.18 we can see that γ increases with the nuclear volume, which
can be verified with a simple reasoning: the elastic equation relates the tension
and the radius of the nucleus R, γ ∼ ( R

R∗2 − 1
R

); the radius of the nucleus increases
as the volume becomes bigger, making the first term going → ∞ while the second
term goes → 0. Therefore, this result matches our prediction: a cell born bigger
will have a higher nuclear tension than a cell with a smaller volume at birth and
this will affect the length of the G1 phase (as we will see in the next chapter).

4.2 Pancake-like shape
The regime in which the tension affects the behaviour of the nucleus during growth
is the one in which the nucleus tends to have a flat shape that we will call pancake
shape. In this condition, we can use the following equation for the volume

Vn = h

2Sn (4.19)

where Sn represents the contact surface of the squeezed nucleus1. The parameter h
represents also the main radius of curvature so that Laplace’s law takes the form

∆P = 2γ

h
(4.20)

1In reality the nucleus is not in direct contact with the surface of confinement but it senses it
through specific protein complexes that link both surfaces, such as the LINC complex; however,
in our simple analysis we will neglect the mechanism that allows the nucleus to be in contact
with the external surface.
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Combining both formulas with the elastic equation for the tension, it is possible
to derive an expression for Vn linear in ∆P

Vn = h

2S∗( h

2K
∆P + 1) (4.21)

In order to find the expression for ∆P , and, as a consequence, for γ, we work
once again in the regime of small ∆P . By equating this formula for the volume
with the same one exploited in the spherical case 4.6, the equation for ∆P becomes

∆P = 2Pn + 2A0
n + Q − α

αh
2K − 1

n0kT A1
n + Pn

n0kT + A0
n

n0kT + Q
2n0kT

(4.22)

with α = n0hS∗. In the limit A0 >> Pn, Pc, Q, then this formula is simplified in

∆P =
1 − α

2A0ϕ

1
2nokT − A0ϕ2

n0kTPn
+ A0ϕ

n0kTPn
+ αh

4A0ϕK

(4.23)

The tension can be obtained from Laplace’s law, i.e. multiplying ∆P by h
2 :

γ =



h
2

2Pn+2A0
n+Q−α

αh
2K − 1

n0kT A1
n+ Pn

n0kT + A0
n

n0kT + Q
2n0kT

general case

h
2

1− α
2A0ϕ

1
2nokT − A0ϕ2

n0kT Pn
+ A0ϕ

n0kT Pn
+ αh

4A0ϕK

if A0 > Pn, Pc, Q

(4.24)

The analytical result compared to the numerical one is plotted in figure 4.2.
As expected, the analytical formula obtained in the regime ∆P

2n0kT
→ 0 is in good

agreement with the numerical solution for a small value of γ. The plot in figure
4.2(a) and 4.2(c) displays a worse match between the analytical and the numerical
result than the plot in figure 4.2(b) and 4.2(d); indeed, the first plots represent
the simplified solution, the one in which the number of proteins (Pn and Pc) and
the number of chromatin counterions (Q) is negligible with respect to A0, while
the second plots show the solution in the general case. The main difference in
the two results resides in the critical value of h at which the tension starts to be
positive and, once again, underlines the link between the fluxes of metabolites
inward/outward of the nucleus and its response to mechanical stress. Indeed, a
bigger number of metabolites inside the nucleus has the effect of increasing the
critical value of h, which means, the tension is felt by the nucleus earlier since more
molecules have to leave the nucleus to reestablish the balance between osmotic and
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hydrostatic pressure.

This critical value of h is related to S∗ as equations 4.22 and 4.23 show, where
the parameter S∗ appears in α, since the h critical is defined by the value of
the height obtained from imposing that the numerator in equations 4.22 or 4.23
vanishes. The effect of an increase in S∗ is a decrease in the value of h from which
the tension starts to be positive due to the fact that S∗ bigger implies that the NE
can sustain a stronger confinement before being stretched and feeling the tension γ.

It is worth mentioning that the result gets better as the parameter K is decreased
(figure 4.2(a) and 4.2(b) with K=1 mN/m show a better agreement with the
numerical result than figure 4.2(c) and 4.2(d) where K=3 mN/m) since a smaller
stretching modulus improves the approximation of a pancake shape (used to
compute the volume as Vn = h

2 Sn). Indeed, the smaller the stretching modules, the
weaker the nuclear tension γ; since the spherical shape is the one that maximizes
the surface tension, i.e. the tension at the NE, a small value of γ implies the
presence of a shape far from the spherical one and close to a flat one.

Further checking of these formulas can be done taking the opposite limit for
∆P , i.e. ∆P → ∞. In this regime, the calculation follows the same steps seen up
to now with the only difference that the small parameter in which the expansion
can be made is 2n0kT

∆P
.

Since, as computed in the previous section, the number of metabolites is negligible
in this limit, the volume assumes the form

Vn = 2Pn + Q

2n0

32n0kT

∆P

43
1 − 2nokT

∆P

4
(4.25)

The expression for the hydrostatic pressure is now

∆P = 2n0kTK

αh

3
− α

2n0kT
+

ó
( α

2n0kT
)2 + ( α

2n0kT
)(2Pn + Q)

4
(4.26)

which diverges as h decreases.
While the tension, which has a further factor h in the numerator, goes to a constant.
This result can be understood since, as said before, the volume scales as 1

∆P
, so

when ∆P → ∞ it is expected to vanish. If we consider the surface as a constant,
Vn ∼ hS implies that h → 0 and γ = constant.
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((a)) The tension in the limit ∆P
2n0kT → 0 with A0 >

Pn, Pc, Q.
((b)) The tension in the limit ∆P

2n0kT → 0 in the general
case.

((c)) The tension in the limit ∆P
2n0kT → 0 with A0 >

Pn, Pc, Q.
((d)) The tension in the limit ∆P

2n0kT → 0 in the general
case.

Figure 4.2: Comparison between the numerical and the analytical result for the
tension as a function of h. The parameter K is fixed at a value of 1 mN/m in figure
4.2(a) and 4.2(b) and at the value of 3 mN/m in figure 4.2(c) and 4.2(d). The
values used for the computation are listed in table 3.1.

The tension in the different regimes studied is plotted as a function of h in figure
4.3.
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It should be pointed out that figure 4.3(a) shows the whole plot of the tension, in
contrast with the result in figure 4.2. In the latter γ is plotted only in the range of
values of h where the approximation ∆P

2n0kT
<< 1 is valid and the tension follows

the expected behaviour, i.e. γ increases as h becomes smaller.

((a)) The tension in the limit ∆P
2n0kT → 0

with A0 > Pn, Pc, Q.
((b)) The tension in the limit
∆P → ∞ in the general case.

Figure 4.3: The tension in different regimes as a function of the height of
confinement. The values used refers to table 3.1.

An interesting parameter that helps in understanding the mechanical response
of the nucleus is the osmotic compressibility β 2.
The usual definition of compressibility in thermodynamics and fluid mechanics
identifies β as the relative volume change to a variation in pressure; mathematically,
it has the following expression:

β = − 1
Vn

δVn

δπn

(4.27)

where the minus sign ensures a negative correlation between volume and pressure.
For simplicity we have computed the inverse of the compressibility, the bulk modulus
κ = −Vn

δπn

δVn
.

Indeed, knowing that πn = (2An+2Pn+Q)kT
Vn

and Vn has the form seen in equation

2Taking into account the condition of constant temperature assumed in this work, here we
deal with isothermal compressibility.
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4.6, with a fixed number of protein and chromatin counterions, the variation of the
osmotic pressure with respect to the volume becomes:

δπn

δVn

= −(2An + 2Pn + Q)kT

V 2
n

+ 2
Vn

kT
δAn

δVn

(4.28)

In the regime where A0 >> Pn, Pc, Q, the second factor in the above equation can
be computed from the formula 3.14 by exploiting the chain rule:

δAn

δVn

= δAn

δ ∆P
2n0kT

δ ∆P
2n0kT

δVn

(4.29)

The final result gives the following formula for κ:

κ = 2A0ϕ

Vn

C
1 + ∆P

2n0kT

2A0ϕ

Pn

(ϕ − 1)
D

kT − 2n0kT =

= πn0

C
1 + 2A0ϕ

Pn

(ϕ − 1) ∆P

2n0kT

D
− π0 (4.30)

where πn0 = 2A0ϕ
Vn

kT is the nuclear osmotic pressure in absence of hydrostatic
pressure and π0 = 2n0kT is the cytoplasmic osmotic pressure (assuming osmotic
equilibrium between the cytoplasm and the external environment, i.e. πc = π0).
An interesting information that can be derived from this calculation is the depen-
dence of the compressibility on the content of the nucleoplasm, in agreement with
the suggestions of previous works [72] [73].
Indeed, an increase in the nuclear metabolites, i.e. an increase in the hydrostatic
pressure, is related to a higher value of κ, which means that in bigger cells the
nuclear volume tends to be less sensitive to the change in osmotic pressure.
The order of magnitude reached by this parameter with the typical values found in
a cell (see table 3.1) is of 102 m2

N
.
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Chapter 5

Model of growth and G1
length

The results obtained so far are useful tools to analyze more in details how the
mechanism that regulates the checkpoint between the G1 and the S phase of the
cell cycle is related to the length of the G1 phase itself.

Long time ago, it was common to talk about ‘Points of no return’ rather than
’checkpoints’. Though, the word ’checkpoints’ invokes both the idea of an event
that cannot happen before the one in which you are presently engaged is complete
and the fact that, once you have proceeded you cannot go back.
Between the different control points, the one that determines the G1/S transition
seems to play a peculiar role; already in the ’70 of the last century the G1 phase
was known to be different with respect to the other two phases that precede mitosis,
S and G2, since its duration is not a constant among different species but it’s
extremely variable [74]. This special characteristic of the G1 phase has led to a
reconsideration of the definition of the cell cycle itself: the term ’cycle’ reflects a
regularly recurring process, which is suitable in the case of the S-G2-M progression,
while it is not suitable for the G1 phase which appears as a randomly occurring
event with a certain probability.

Recent theories suggest that at least two requirements are needed for the G1
exit: a size threshold and a minimal extension in G1. A transition point exists when
one of the two types of cell size homeostasis mechanisms is limiting [75]. Therefore,
the key parameters that can be observed to affect the cell size homeostasis are
both growth rate and time [76]. Interestingly, recent experiments have shown that
there is a relation between the decision to start the division and leave the G1 phase
and the size of the nucleus of the cell in proliferating tissues: when the nucleus is
compressed and reaches a minimal size, division can no longer occur since it would
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imply damage of the DNA [6].

Supported by this observation, our study can be concluded with the calculation
of the time spent in the G1 phase and an analysis of its dependence on the height
of confinement h and the critical value of the tension γc to activate the G1/S
transition.

The computation proceeds as follows:

• we start with the equation obtained in the previous section for the hydrostatic
pressure;

• we substitute constant values for An, Pn, Pc with parameters that increase
exponentially (choice motivated by the results for the scaling of the metabolites
and the proteins with the cell volume obtained from the stochastic model for
gene expression), i.e. Pn = Pn0e

krt, Pc = Pc0e
krt and An = An0e

krt with kr

the growth rate (assumed equal for all the molecules for the sake of simplicity,
kr = 10−1 hours);

• once we have an expression for ∆P , the tension is found by multiplying it
with h

2 (see figure 5.1);

• by imposing that at a specific critical value γc the G1 phase is arrested, the
inverse of the formula for the critical tension gives the value of the duration
of the G1 phase, t1.

((a)) The hydrostatic pressure in the limit
∆P

2n0kT → 0. ((b)) The nuclear tension in the limit ∆P
2n0kT → 0.

Figure 5.1: The hydrostatic pressure and the tension in different regimes as a
function of time.

It is interesting to notice that both the hydrostatic pressure and the nuclear
tension grow faster in the case A0 >> Pn, Pc, Q; indeed, in this limit, the dominant
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contribution comes from the exponential increase in the number of metabolites,
whereas in the general case the nucleoplasm has also constant chromatin counterions
Q which do not increase over time.

The complexity of the expression makes it hard to compute an analytical equation
for t1. However, if we limit the calculation to the case A0 >> Pn, Pc, Q, then t1
has a close analytical form of the type

t1 = 1
kr

C
log

1 α

2A0ϕ

2
+ log

î
1 + γc

hn0kT

C
1 + 1

K
+ 2A0ϕ

Pn

(1 − ϕ)
Dï D

(5.1)

which has been obtained considering that in the biological relevant case γc → 0.
The results are shown in figure 5.1 and 5.2 where t1 is plotted with respect to the
value of h and of γc.

5.1 Comparison with the experiments
As expected from the experimental results, the duration of the G1 phase is extended
in the case of low confinement, i.e. h large, since in this case the value of the
tension is lower at the beginning of the G1 phase and it requires more time to
reach the critical value γc for the transition.

The inverse is also true, which means a bigger value of γc at fixed h requires
longer t1.

Overall, despite the simplifications assumed, the general behaviour of t1 is in
good agreement with the one expected.

Indeed, figure 5.2(b) shows the evolution of the time in G1 if we fix γc = 0.5µN/m.
This choice of the critical tension comes from the analysis of the plot in figure
5.2(a) where it is evident that, at fixed h = 20µm, γc in the range between 0 and
0.6µN/m is associated to a t1 between 6 and 11 hours, which is the typical duration
of the G1 phase observed in experiments.

A remarkable result is shown in figure 5.3 where the time in G1 is plotted as
a function of the total volume of the cell (Vn + Vc) at birth with a confinement
of h=20µm. This plot can be compared to the experimental result obtained by
Piel’s team (see figure 2.2); indeed, in both figures it is evident that the time in
the G1 phase decreases as the initial volume of the cell gets bigger. The plot is
shown in a specific range for the initial volume (between 1000µm and 2700 µm)
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((a)) Time in G1 as function of γc. A bigger value of the critical tension
requires more time for the cell to grow and reach the restriction point.

((b)) Time in G1 as a function of the height of confinement. Stronger confinement implies
a shorter G1 phase. It is worth noticing that there is a critical value of h (h ∼ 3µm
with our choice of parameters) below which the time becomes negative. This unrealistic
result suggests that the confinement cannot go beyond a certain height because it would
dramatically lead to a null volume of the nucleus.

Figure 5.2: Time spent in G1 as function of the parameters h and γc. The values
used are listed in table 3.1.

since experimentally it has been observed that, when a threshold value for the
confinement is reached, the time spent in the G1 phase no longer depends on the
volume at birth but has a constant value ∼ 6 hours (thin grey horizontal line in
the plot).
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Figure 5.3: Time in G1 as a function of the total initial volume (Vn + Vc). At a
confinement of h=20 µm the computation is done assuming a spherical shape.

It is worth mentioning that the theoretical model described in this work justifies
the assumption of a sizer behaviour during cell growth.
This result can be deduced by looking at the plots in figure 5.4 and 5.5.
Figure 5.4 shows the final total volume (Vc + Vn) as a function of the volume at
birth; as required for a sizer behaviour, the final volume does not depend on the
volume at birth but is set at a specific value, in our case Vf ∼ 1200µm.
Figure 5.5 instead shows the amount of volume added during the G1 phase for
different values of the initial volume. There is clearly a negative correlation as
predicted in figure 1.2(e). The slope of the curve is ∼ −1, as expected from a sizer
model.
The values used for the initial volume in these plots are in the range 1000−2200µm.
In both cases the final volume has been obtained using formula 3.3 where all the
parameters that depend on time are evaluated at the t1 corresponding to a specific
value of Vi.
Also the value of γc changes with the initial volume and can be obtained by solving
equation 5.1 in γc keeping all the other terms fixed; indeed, since the critical tension
γc represents the value of nuclear tension necessary to trigger the G1/S transition,
when the condition γ = γc is satisfied the cell can directly enter the S phase and
t1 = 0.
In our model this sizer behaviour comes from the prediction of a compensation
mechanism that decreases the time in G1 as the volume at birth is larger, as seen
in figure 5.3.
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Figure 5.4: Final volume as a function of the initial volume.The plot on the right
shows the values normalized by Vi.

Figure 5.5: Added volume in the G1 phase with respect to the initial volume. In
the plot on the right the volumes are normalized with respect to Vi.

Some interesting prediction that comes from our study and that can be verified
experimentally can be identified.

For instance, in figure 5.2(b) we have pointed out the dependence of t1 on the
height of confinement h. This dependence can be combined with the one on the
volume at birth as illustrated in figure 5.6.
What is observed is a shift of the curve that represents the dependence of t1 on
Vi as h is decreased. Intuitively this behaviour perfectly matches our prediction:
stronger confinement, i.e. small h, implies a shape for the cell closer to a pancake
than to a sphere with a consequent increasing surface; therefore, the critical value
S∗ related to the presence of a non-vanishing nuclear tension is reached before and
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the G1/S transition is realized faster.

Figure 5.6: Time in G1 as the function of the initial volume Vi at different
confinements h. The plot has a cut at a value t1 = 6 hours since experimentally
this is the minimum time that the cell has to spend in the G1 phase independently
from its size and its confinement.

An interesting prediction is also the effect of a hyperosmotic/hyposmotic shock
on t1.
As described in the section dedicated to the Pump-Leak model, the osmotic pressure
plays a crucial role in maintaining cell size homeostasis. As a consequence, a change
in the concentration of the environment outside of the cell (i.e. a change in the
parameter n0) that affects the osmotic pressure will be relevant for the regulation
of the cell cycle too.
In particular, two situations can be identified related to the variation of the osmotic
pressure:

• hyperosmotic shock, when the external concentration n0 increases and lead
the cell to shrink;

• hyposmotic shock, when the concentration outside of the cell decreases with
the effect of increasing the volume of the cell.

The results of these conditions on the length of the G1 phase are shown in figure
5.7.
As in the case of variable h analyzed previously, here again the curve that represents
the time in G1 is shifted depending on the choice of the parameter n0: larger n0
(hyperosmotic shock) implies a decrease in the amount of time spent in the G1
phase at fixed initial volume since the outward osmotic pressure increases with a
consequent increase in the nuclear tension; on the contrary, a smaller value of n0
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(hyposmotic shock) is related to an extension of the G1 phase due to an increase in
the inward osmotic pressure and so a decrease in the nuclear tension.

Figure 5.7: Effect of an osmotic shock on the time spent in the G1 phase.
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Chapter 6

Conclusion

This report presents a first approach to the study of the relation between the
scaling laws that govern cellular growth, the mechanisms that regulate them and
their effect on the duration of the cell cycle.

Regarded as the main unit that constitutes life, the cell is a perfect example
of how nature is capable of carrying out complex and delicate functions that to
us, humans, seem hard to understand. Following the idea of starting from simple
cases to get in the end an idea of a more complicated problem, the analysis of the
regulation of the cell cycle represents the first step to understand how the growth
of tissues and organisms in general is regulated and what triggers their dysfunction
in the presence of anomalies and diseases.

Inspired by the evidence that the transition between different stages of the cell
cycle is triggered by checkpoints, our study is focused on the first of this control
mechanism, the one that separates the G1 from the S stage, that determines
whether a cell is engaged into the cell cycle or it is stuck in a condition of quiescent.
The key parameter that enables the cell to have a mechanism for proprioception
and to respond to external forces appears to be the nucleus; known as the storage
for the genetic material, the nucleus scales during growth coherently with the
volume of the cell by keeping a specific NC ratio, which underlines its primary
role in the transition between the stage of growth and the one of division. This
transition seems to be related to the deformation of the nucleus, as in the case of
cell migration, and it is strongly related to the balance of osmotic and hydrostatic
pressure at the NE.
Indeed, the flattening of the nucleus beyond a critical value of the height of
confinement determines an increase in the surface and a dramatic volume loss due
to the presence of folds on the NE that act as a surface reservoir.
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Conclusion

In this study, the attention is toward the tension that determines the starting
of the S phase and seems to be the parameter that regulates the duration of cell
growth. Based on this hypothesis, an analytical expression for the tension at the
NE as a function of the height of the confinement has been derived both in the real
case of small hydrostatic pressure and in the non-natural case of infinite hydrostatic
pressure. The aim is to check the theoretical hypothesis of the relation between
these two variables in defining the time spent in the G1 phase.
Once the tension has its analytical expression, the duration of G1 is derived by
considering an exponential growth for the metabolites and the protein in the cell
and in the nucleus, which is mathematically demonstrated by a stochastic model of
gene expression coupled to a model for the maintenance of an osmotic equilibrium
(PLM).
The result gives a value which is in agreement with experimental observations of
a reduction of the cell cycle length in accordance with the volume of the cell at
birth: bigger cells need less time to grow before dividing than smaller cells in the
case of no confinement, while when flattening they all start division after the same
amount of time spent in the G1 phase.

Even if successful as a first approximation, this study presents several limits:
it considers only monovalent ions inside the cell and perfect pumping efficiency,
i.e. all the anions are pumped outside of the cell; it does not take into account the
middle stages in between the geometrical transition between a spherical shape of
the nucleus before confinement and a pancake shape; it ignores the effect of the
dry volume, a kind of excluded volume for the growth of the molecules in the cell
and in the nucleus.

For example, if a larger pumping efficiency is considered (i.e. α0 /= 0), a bigger
amount of anions will be present inside the cell. As a consequence, the cell tends
to swell and its volume increases.
A bigger volume may affect the critical value for the surface, S∗, at which the
nuclear tension starts to be relevant by decreasing it with consequent shorter G1
phase.
This prediction of a logarithmic behaviour of the G1 length as a function of the
critical surface could be an interesting result to compare with further experiments.
It could provide more insights related to the behaviour of the NE and its folds.

An interesting question to answer would be to analyze how the results change
when the dry volume, R, is added. Indeed, in this case even in the regime ∆P → ∞,
when all the metabolites tend to leave the nucleus, there would still be this excluded
volume that prevents the nuclear volume from vanishing. This difference would
inevitably affect the tension that may not have a constant value.
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Conclusion

Several improvements to this work may be considered.
As an example, the addition of noise could make the results more realistic; however
it is not a simple task deciding which kind of noise, either multiplicative or additive,
and to which parameter, either volume or number of protein etc.

Further improvements could bring attention to the understanding of the im-
portance of the variety of nuclear shape and its fluctuations (the nucleus with no
confinement presents a spherical shape only on average); to the study of the factors
that determine the specific shape of the nucleus; to the nature of the NE itself and
to the element of this membrane that responds to the tension during growth; to
the link between the behaviour of the NE and its connection to the state of the
chromatin inside the nucleus.
Answering these questions is a challenging problem and an opportunity to further
proceed into the understanding of several diseases related to anomalies in cell
growth.
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Appendix A

Symbols

Parameter Value
n0 Concentration of metabolites outside of the cell (external osmolarity)
n+ Cations concentration
n− Anions concentration
x Metabolites concentration
z Metabolites average charge
za Amino-acids average charge
zp Proteins average charge

∆P Difference in hydrostatic pressure
π Osmotic pressure inside the cell
π0 Osmotic pressure outside the cell
∆π Difference in osmotic pressure
kT Thermal energy at T=300K. k stands for the Boltzmann constant k = 1,380649 ∗ 10−23J/K−1

K Stretching modulus of the lamina
Vn Volume of the nucleus
Vc Volume of the cell
R Dry volume
S Surface of the nucleus
S∗ Critical surface of the nucleus. Starting from this value the nuclear tension is non vanishing.

An/an Number/concentration of amino-acids inside the nucleus
A0 Total number of amino-acids inside the cell

Ac/ac Number/concentration of amino-acids in the cytoplasm
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Symbols

Parameter Value
Pn/pn Number/concentration of protein inside the nucleus
Pc/pc Number/concentration of protein in the cytoplasm
Ptot Total number of proteins
ϕ Ratio of nuclear protein with respect to 0otal amount of protein inside the cell, i.e. Pn

Pn+Pc

Q/q Number/concentration of chromatin counterions inside the nucleus
α0 Pumping efficiency
α Product n0 ∗ S ∗ h
g+ Conductivity of cations
p Pumping of positive ions
X Number of impermeant molecules inside the cell
M Number of mRNA molecules
P Number of proteins
r Number of ribosomes
pr Number of RNAP molecules
τp Degradation rate of proteins
τm Degradation rate of mRNAs
ϕi Ratio between gene i and the total amount of gene, i.e. giq

gi

k0 Rate of translation
kt Rate of transcription

kcat Rate of catalysis
e Number of enzymes
lp Average protein length
kr Rate of growth for ribosomes, nuclear proteins and amino-acids in the exponential grow
γ Nuclear tension
h Height of confinement

R0 Radius of the nucleus before confinement
β Osmotic compressibility of the nucleus
κ Bulk modulus of the nucleus

Table A.1: A table that summarizes all the symbols used in this thesis along with
their meaning.
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Appendix B

The Pump-Leak model

This section is aimed to give information about the background of the equations
presented in the main text under the name of Pump-Leak model. Furthermore, the
detailed solution to obtained equation 2.4 is discussed. A complete mathematical
description of the problem can be found in [77] and [47].

B.1 Derivation and solution
While the origin of equation 2.1 and 2.2 is more clear from their meaning, the third
equation 2.3 requires a small insight. Its root resides in the balance of the density
of ionic current j+/j− : j+ = −Λ+∇µ+ + p

j− = −Λ−∇µ−
(B.1)

Here we assume that only cations have an active contribution p. In these equations,
known as the law of diffusion, Λ+/− are the conductances of cations and anions
respectively while µ stands for the chemical potential. From thermodynamic
considerations, the chemical potential can be seen as a sum of an entropic and a
potential contribution, leading toj+ = −Λ+(kT log n+

n0
+ eΨ) + p

j− = −Λ−(kT log n−
n0

− eΨ)
(B.2)

with n+, n−, n0 are ionic concentrations as seen in the main text and Ψ is the
membrane potential. Because of the balance of ionic fluxes (i.e. j++j−=0), if
these two equations are divided by Λ+ and Λ− respectively and then summed up
together, the result is

kT log n+n−

n0
+ p

Λ+
= 0 → n+n−

n0
= exp − p

kTΛ+
→ n+n− = α0n

2
0 (B.3)
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The Pump-Leak model

which is equivalent to equation 2.3.

From this equation and from equation 2.1 it is possible to obtain two different
expressions for n−: 

n− = n+ − z · x

n− = α0
n2

0
n+

(B.4)

By equating them, a quadratic equation for n+ is derived

n2
+ − z · xn+ − α0n

2
0 = 0 (B.5)

The solution is straightforward and allows to find an expression for the ionic
concentration inside the cell as a function of the external ionic concentration and
the concentration of impermeant molecules:

n+ = z·x+
√

(z·x)2+4α0n2
0

2

n+ = −z·x+
√

(z·x)2+4α0n2
0

2

(B.6)

Once we have derived these expressions, we can simply substitute them in the
equation for the balance of pressure 2.2 and we get the formula for the volume 2.4
in the case ∆P ∼ 0.
If instead the hydrostatic pressure is not negligible, as when it comes to the more
interesting analyses of the nuclear volume, the formula takes the form:

V = kTNtot(∆P )
(π0+∆P )

Ntot(∆P ) = X z2−1

1+
ó

1+(z2−1)
1

1− α0
(1+ ∆P

kT 2n0
)2

2
(B.7)
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Appendix C

Perturbation theory

In the main text, several results have been obtained thanks to the use of the
perturbation theory. Here we give a general description of this method in order to
make the procedure followed more clear. A complete description can be found in
[78].

The main idea behind perturbation methods is to solve any problem by starting
with its simplest version, which has a relatively simple solution, and adding to it a
"perturbative part". The general solution x is usually given in terms of powers of a
small parameter, ϵ, and it appears in the form:

x = x0 + ϵx1 + ϵ2x2 + ... (C.1)

Since ϵ → 0, it is common costume to keep only the first order terms and to
neglect the higher order terms, whose effect on the exact initial solution is gradually
decreasing.

Following this convention, in the main text we have kept only the first order
term in the equation for the amino-acids in the limit ϵ = ∆P

2n0kT
→ 0 (see 3.12).

Indeed, in these calculations the equation to solve to obtain an expression for the
amino-acids as a function of the hydrostatic pressure is of the third order (see 3.11)
so it is not directly solvable in an easy way. The solution can be computed instead
by applying the perturbation method and it results in a zero-order term, which
is the solution in the case ∆P = 0, and higher order terms that depend on ∆P ,
which play the role of "corrections". In particular, since we decided to stop our
calculation at the first order approximation, we have kept only power terms in

∆P
2n0kT

and we have neglected terms in ∆P
2n0kT

2
, ∆P

2n0kT

3
, ....

In other words:

A3
n → (A0

n)3 + 3(An0)2A1
n

∆P

2n0kT
+ 3A0

n(A1
n)2

1 ∆P

2n0kT

22
+ (A1

n)3
1 ∆P

2n0kT

23
(C.2)
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becomes just

(A0
n)3 + 3(A0

n)2A1
n

∆P

2n0kT
(C.3)

and
A2

n → (A0
n)2 + 2A0

nA1
n

∆P

2n0kT
+ (A1

n)2
1 ∆P

2n0kT

22
(C.4)

becomes
(A0

n)2 + 2A0
nA1

n

∆P

2n0kT
(C.5)

If we insert this new expression into equation 3.11 we get an equation where
only the already known solution A0

n appears at the third order, while the unknown
A1

n stops at the first order. The solution is obtained by solving first the zero-order
term in ϵ, which gives equation 3.10, and then the first-order term, whose equation
is in the form

−8(A0
n)3+8(Pc+Pn)A0

nA1
n+8(A0+Pc−Pn−Q)(A0

n)2−[4PnA0 − 4Pc(Pn + Q)] +
(2Pn + Q)2A1

n − 8(Pc + A0)(Pn + Q)A0
n = 0 (C.6)

The solution is given in the main text (see equation 3.1.2).

C.1 Check of the results
As seen in the main text, the limit Q = 0, i.e. no chromatin counterions, is
interesting to check the validity of the solution for An obtained through the
perturbation method. If we follow the procedure described in the paragraph
dedicated to the calculation of An, we have a volume

Vn = 2An + 2Pn

2n0(1 + ∆P
2n0kT

)
(C.7)

With this formula for Vn the equation for An is of second order:

4 ∆P

2n0kT
A2

n −
C
2(Pn + Pc) + 4 ∆P

2n0kT
(A0 + Pc)

D
An + 2A0Pn = 0

(C.8)
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with solution

An =
2(Pn + Pc) + 4( ∆P

2n0kT
)(A0 + Pc) −

òè
2(Pn + Pc) + 4( ∆P

2n0kT
)(A0 + Pc)

é2
− 32 ∆P

2n0kT
A0Pn

8 ∆P
2n0kT

(C.9)
which in the limit ∆P

2n0kT
→ 0 can be expanded in Taylor series and gives

An = A0Pn

(Pn + Pc) + 2 ∆P
2n0kT

è
(A0 + Pc) − A0

Pn

Pn+Pc

é
→ A0

Pn

Pn + Pc

î
1 +

1 ∆P

2n0kT

2 52A0

Pn

1 Pn

Pn + Pc

22
− 2A0

Pn

Pn

Pn + Pc

6ï
(C.10)

This result coincides with the one given by the perturbative approach (see
equation 3.15).
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Appendix D

Cell cycle

In physiology, the set of processes that leads one cell to become two is known as
the cell cycle, following the principle ’Omnis cellula e cellula’ ("all cells (come)
from cells")[79] formulated in 1858 by Rudolf Virchow, the father of the modern
cellular pathology.

It was Murdoch Mitchison [1922–2011] who rewoke interest in the cell cycle with
his book in 1971 "The Biology of the Cell Cycle" [80]. Nowadays, it is possible to
identify two main levels of cell growth during the cell cycle:

1. the chromosome cycle during which DNA replicates and its content is separated
into the two complete genomes of daughter nuclei;

2. the growth cycle which serves for the replication of all other components of a
cell (e.g.proteins, membranes, organelles, etc.).

However, both stages share the need for an accurate mechanism of control.
The chromosome cycle requires the genome to be carefully partitioned to daughter
nuclei so that each new cell contains all the information necessary to keep the cell
alive; a good regulation of the growth cycle is essential not to have cells progressively
larger or smaller each generation with fatal consequences.

The eukaryotic cell cycle is divided into four main phases : the synthesis phase
(S) (DNA replication and separation into two ‘sister chromatids’), the mitosis phase
(M) (prophase, metaphase, anaphase, telophase all participating in the effective cell
division) and two growth phases (called “gap”) in between (G1 and G2). Overall
they constitute the generic cell cycle: G1–S–G2–M.

The alternation of the S and M phases is of fundamental importance. If a cell
divide without finishing the phase of growth and DNA replication it will inherit
incomplete genomes and either die or develop pathological behaviours [6].
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Cell cycle

A proper progression of the cell cycle is ensured by the existence of ’checkpoints’,
surveillance systems which prevent unwanted perturbations, such as DNA damage,
nucleotide depletion or other defects. Of particular interest is the G1/S checkpoint
(start or restriction point) since it is the point at which the cell ’decides’ if to enter
the cell cycle or not.
A newborn cell resides either in a quiescent state (G0), during which it does not
divide, or in G1 until physiological parameters allow it to enter the S phase and
start the replication of its genetic material. Loss of control over this regulatory
system may result in several diseases (e.g. cancer [81], stroke [82]).

The importance of the G1 phase is underlined by its length; indeed, G1 is the
stage with the most variable duration.
It has been found that for the characteristic cell cycle time of 20 hours in a HeLa
cell, almost half is devoted to G1 and close to another half is S phase whereas G2
and M are much faster, at about 2-3 hours and 1 hour respectively [83].

The reason behind this variety of the G1 length has been identified in its relation
to cell size regulation mechanisms [3] [84].
What remains to be investigated is the key factor that allows cells to couple their
size homeostasis with the progression into the cell cycle, which is the main topic of
this thesis.
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