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Abstract

Molecular sorting is a fundamental ordering process taking place in
eukaryotic cells, whereby proteins and other biomolecules are sorted and
distilled into lipid vesicles. This process aims at countering the homoge-
nizing effect of diffusion. Molecules attach to lipid membranes and later-
ally diffuse, then due to a variety of direct and indirect interactions, these
molecules tend to aggregate in domains characterized by specific chemical
compositions. In their turn, such may promote membrane bending and
fission, and are ultimately packed into lipid vesicles, which are then de-
livered to appropriate intracellular destinations with the aid of molecular
motors. This vesicle distillation phenomenon can be investigated from
a physics perspective. The process of molecules attaching and sorting
on the membrane and then being extracted as aggregates can be seen as
a system driven out of its thermodynamic equilibrium which eventually
reaches a stationary state. In previous studies, this phenomenon was in-
vestigated without accounting for the effect of membrane fluctuations and
molecules coupling to the membrane. However the presence of biomolec-
ular inclusions on the membrane perturbs locally some of its properties
(e.g. bending rigidity or local spontaneous curvature) and gives rise to
membrane-mediated interactions between inclusions. This kind of inter-
actions has been widely studied since the 90s. Seems thus reasonable to
ask what is the role of these fluctuation-induced interactions in the pro-
cess of distillation taking place on lipid membranes. These long-range
membrane-mediated interactions are not pairwise additive, thus their ef-
fect on the process of molecular sorting, where the membrane is rich of
inclusions, is non-trivial. In this work this phenomenon is investigated
numerically, with particular interest in the efficiency of the sorting pro-
cess. We concluded that the role of fluctuation-induced forces is divided
into two regimes: one in which they enhance the sorting process and one
in which they impair it.
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1 Sorting process

Inside cells each function is performed by specific proteins and other chemical
factors, these undergo constant homogenization due to diffusion. To maintain
their correct functioning eukaryotic cells developed a variety of self-organized
compartmentalization processes, most of which are active and energy-consuming
[38]. These phenomena are particularly charming from a physics perspective,
indeed mixing and demixing transitions have been thoroughly studied in physics.

In this thesis the focus is in particular on the vesicle distillation process,
a molecular sorting process that aims at producing lipid vesicles containing
specialized chemical factors ready to be delivered to appropriate subcellular
regions. This kind of process takes place on lipid membranes, in particular
on plasma membrane, on inner membrane bodies (like endosomes) and in the
Golgi membrane network. Here chemical factors attach to the lipid bilayer
and laterally diffuse on it, then due to a variety of interactions they phase
separate into specialized domains. These domains with the help of biomolecules
promoting membrane bending and fission are then packed into lipid vesicles
ready to be delivered to appropriate regions.

From a physics perspective it is fascinating to understand molecular sorting
as a systemic process, beyond molecular detail. Here we describe a recently
proposed phenomenological theory for this distillation process. Later in the
thesis this model will be enriched taking into account the role of membrane
fluctuations.

1.1 Phenomenological theory

Has recently been proposed that the self-organized distillation process emerges
from two main ingredients: a) the tendency of biomolecules to phase-separate in
localized submicrometric domains, and b) domain-induced vesicle nucleation [39].
A phenomenological theory based on this general physical picture was explored
both theoretically and by means of numerical simulations [39, 41, 44]. The model
described a situation where molecules arrive on a membrane region with a flux
ϕ, diffuse and aggregate into localized enriched domains, and these domains are
removed from the membrane, after reaching a characteristic size RE . In this
context the system is constantly forced out of its thermodynamic equilibrium
however eventually reaches a stationary state.

In regimes of strong direct interactions, as predicted by diffusion-limited ag-
gregation (DLA) theory fractal clusters may appear. It’s important to notice
that the existence of a threshold size for domains above which they’re extracted
ensures their shape remains approximately round. During the sorting process,
once domains reach a critical size Rc they grow irreversibly absorbing free parti-
cles diffusing towards them, this picture is similar to that described by Lifshitz-
Slezov (LS) theory [26]. In a situation where the average molecule density is n̄
and for domains larger than Rc the density of molecules on the domain bound-
ary n0 is independent of its size. If inter-domain distance L is much larger than
RE (that is maximum domain size) the density difference ∆n between regions
far from domains and on their boundaries is approximately given by n̄−n0 > 0.
In the statistically stationary state of the sorting process the ∆n is kept finite
by a constant flux of particles, differently from LS theory.
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Quasi-static profile The quasi-static profile of freely diffusing molecules in
the vicinity of a domain of size R can be evaluated. The quasi-static condition
allows us to reduce the diffusion equation to a Laplace equation.

∂n

∂t
= D∇2n −→ ∇2n = 0 (1)

We solve it by imposing Dirichlet boundary conditions, setting n(R) = n0 and
n(L) = n̄. The result is

n(r) = n0 +
ln(r/R)

ln(L/R)
∆n (2)

Domain growth We can use this result to evaluate the flux of particles ΦR

coming towards a domain. This is done integrating the flux density −D∇n over
a circle of radius r ≫ R:

ΦR = 2πRD∂rn(r)|r=R =
2πD∆n

ln(L/R)
(3)

From this can easily be derived the dynamics equation for domain growth:

Ṙ =
A0D∆n

R ln(L/R)
(4)

where A0 is the area occupied by a molecule in the domain, assumed to be
A0 ≪ RE .

Domain size distribution If we call N(t, R) the number of domains of size
between R and R+ dR, this quantity satisfies the Smoluchowski equation:

∂N

∂t
+

∂

∂R
(ṘN) = −γ(R)N (5)

where γ(R) is the rate by which domains of size R are removed from the system.
This rate is a parameter encoding mesoscopic effects of vesicle extraction, thus
abstracting from complicated molecular details. A stationary solution to Eq.5
is:

Nst(R) =
JR ln(L/R)

D∆n
exp

[
−
∫ R

0

dr
r ln(L/r)γ(r)

A0D∆n

]
(6)

Now we assume that γ(R) is negligible for R < RE and strongly suppresses
Nst(R) for R > RE . The factor J in Eq.6 can be evaluated by noticing that at
stationary state the average flux

∫
ΦRNst(R)dR must equal the incoming flux

of molecules per unit area ϕ, thus giving J ∼ ϕ/R2
E . Being γ(R) negligible for

R < RE then Eq.6 is linear in that region (with logarithmic corrections).

Existence of an optimal sorting regime Now we can show that exists
an optimal sorting regime in terms of sorting rate, given by the inverse of the
average residence time T̄ . The latter can be divided into two parts T̄ = T̄f + T̄d,
respectively the average time spent by a freely diffusing molecule to reach a
domain and the average time spent inside the domain before extraction. For
evenly distributed domains the first contribution is inversely proportional to the
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average number of domains Nd per unit area, namely T̄f ∼ (1/DNd). Being
Nd =

∫
Nst(R)dR ∼ ϕ/(D∆n) we get T̄f ∼ ∆n/ϕ. For the second contribution

instead, using Eq.3 we get T̄d ∼ R2
E/(A0ΦR) ∼ R2

E/(DA0∆n).

The rate of formation of new domains can be estimated as

dNd/dt = CDn̄2 (7)

where C is a dimensionless quantity characterizing the efficiency of absorption
of single molecules by the germ of a domain. At stationary state this rate Eq.7
is equal to Nd/T̄d. Thus we get

n̄ ∼
(

ϕA0

CDR2
E

)−1/2

(8)

If we assume n0 ≲ ∆n we have ∆n ∼ n̄ and therefore

T̄f ∼ C−1/2 A
1/2
0

(Dϕ)1/2RE

T̄d ∼ C1/2 R3
E

(Dϕ)1/2A
3/2
0

(9)

The average residence time T̄ = T̄f + T̄d has a minimum w.r.t. C in C ∼
A2

0/R
4
E ≪ 1. Around this value the process is optimal, meaning that is more

efficient in terms of time needed to sort molecules. It’s possible to retrieve two
scaling relations for this regime

T̄f ∼ T̄d ∼ RE

(DA0ϕ)1/2

n̄ ∼ ∆n ∼ ϕ1/2RE

(DA
1/2
0 )

(10)

Density as a proxy for the sorting rate At stationarity it was proven that
the average molecule density ρ̄ on the membrane is proportional to the mean
residence time T̄ of molecules, and thus can be used to evaluate indirectly the
sorting rate T̄−1. To prove this we let the residence time of a molecule on the
membrane be a stochastic variable described by probability density p(t). More-
over being ϕ the flux of incoming molecules, then on average each infinitesimal
time interval dt a quantity ϕdt of molecules enters the system. Adding the
condition that the residence time of such molecules has not elapsed yet we get:

ρ̄ =

∫ ∞

0

Prob(T > t)ϕdt = ϕ

∫ ∞

0

(∫ ∞

t

p(τ)dτ

)
dt

= ϕ

∫ ∞

0

τp(τ)dτ = ϕT̄

(11)

Here we used the fact that the integral of tail distribution is equal to the ex-
pectation value. This means that the efficiency of the sorting process can be
evaluated by measuring ρ̄.
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1.2 Numerical results

To further explore the behaviour of such a process for a wide range of param-
eters, numerical results were obtained with a minimal single occupancy lattice
gas model [39]. The lattice represents the lipid membrane on which the distilla-
tion takes place, the system evolves according to the following three elementary
mechanisms:

1. Insertion: molecules are inserted in empty sites at a rate kI , leading to
a flux ϕ = kI(1− ρ) of molecules coming on average towards each lattice
site.

2. Diffusion: molecules diffuse on the lattice at a rate kD/gnocc , where nocc

is the number of occupied nearest neighbours and g > 1 plays the role of
direct nearest neighbour interaction.

3. Extraction: once clusters of molecules of linear size l ∼ RE/A
1/2
0 are

formed, they’re removed at a rate kE , which we will assume to be infinite.

This simple lattice gas model mimics the distillation process and gives insights
into the behaviour of the system depending on parameters. In Fig.1 is repre-
sented this process schematically.

kI

kD/g
#occ

kI

kE

RE

Figure 1: Schematic representation of the sorting process. The system is con-
stantly force out of its thermodynamic equilibrium. Particles attach on the
membrane at a rate kI and they laterally diffuse on it at a rate kD/gnocc. Pa-
rameter g controls nearest-neighbour interactions with nocc being the number
of occupied sites near the particle. Domains form and grow up to an extraction
threshold RE . Once they reach the extraction size they’re removed form the
system.

In particular it was found that the distillation process finds a minimum w.r.t.
to parameter g, controlling direct interaction. This minimum becomes more and
more appreciable as the ratio of kI/kD decreases. These results are summarized
in Fig 2. Intuitively kI/kD represents the average time a molecule has to explore
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the lattice (and possibly join an aggregate) before another molecule is inserted.
As described above the average molecule density ρ̄ can be used as an indirect
measure of the mean residence time. This minimum corresponds thus to the
same found before through the phenomenological approach. Indeed the dimen-
sionless parameter C represents the efficiency of adsorption of single molecules
which increases monotonically with g.

Figure 2: Image is from [39]. This plot shows that exists an optimal g value at
which average density and thus the mean residence time of molecules is mini-
mum. This minimum becomes more and more appreciable as kI/kD decreases.

These results were also compared with experimental data regarding low-
density lipoproteins (LDL) and their receptors (LDLR) on the plasma membrane
that laterally diffuse, aggregate and are internalized into endocytic vesicles. The
comparison showed that this sorting process takes place in the vicinity of the
previously described optimal regime; this may be related to evolutionary con-
straints that tuned the involved proteins to get the maximal sorting efficiency.

In Fig.3 a phase diagram of the process is shown. The optimal sorting regime
is highlighted by the dashed line and the area where experimental data lie is
the shaded one.
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Figure 3: Image from [39]. This phase diagram depicts nondimensional sorting
rate (kDT̄ )−1 as a function of aggregation coefficient g and nondimensional flux
ϕ/kD. Phase areas A and C are high-density phases characterized respectively
by molecule crowding and domain crowding. B is a low-density phase, divided
into regions of less (B1) and more (B2) dilute gas. The shaded area pointed by
the arrow is the area where experimental data lie.
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2 Field-theoretic description of lipid bilayers

Since the goal of this thesis is to account for the effect of membrane fluctuation
in the sorting process described above, in this section is reported a description
of how in physics lipid membranes are usually studied. Particular attention
will be given to the field-theoretic description since it enables us to evaluate
fluctuation-induced forces through perturbative analysis.

2.1 Canham-Helfrich Hamiltonian

The simplest component of a biomembrane is the lipid bilayer which has a
thickness that is much smaller than the membrane length scale. Therefore
mathematically it is usually described as a two-dimensional surface.

The elastic energy usually associated with this surface is described by the
following Hamiltonian (usually named Canham-Helfrich Hamiltonian after the
physicists who first proposed it in the early 70s [1, 2]1)

Hel =

∫
dS
[κ
2
(2M − C0)

2 + κ̄K + σ
]

(12)

Where κ and κ̄ are bending rigidities, M = (c1 + c2)/2 is the mean curvature,
C0 is the spontaneous curvature, K is the Gaussian curvature and σ is the
surface tension. The squared term somehow measures the local deviation from
the spontaneous curvature C0 = 2

R0
. The Gaussian curvature is defined as the

product of the two principal curvatures K = c1c2. At scales below lσ =
√
κ/σ

the membrane tension has a weak influence on the membrane behaviour [43].
Moreover, often the term regarding Gaussian curvature is discarded when

considering closed surfaces of fixed topology, since leads to a constant term.
Indeed the Gauss-Bonnet theorem implies:∫

KdS = 2πχE (13)

where χE is Euler characteristic, a topological invariant. For polyhedra, it is
given by χE = Nv − Ne + Nf , where Nv is the number of vertices Ne is the
number of edges and Nf is the number of faces.

2.2 Quasi-flat approximation: Monge gauge

Consider the following form of the Canham-Helfrich Hamiltonian, where spon-
taneous curvature is assumed to be zero:

H0 =

∫
dS
{κ
2
(2M)2 + κ̄K +

σ

2

}
(14)

A surface is a d−1 dimensional object embedded in a d dimensional space. Points
of the surface are thus addressed by a d dimensional vector r⃗(u⃗), a function of
the d− 1 coordinates. Any set of d− 1 independent coordinates can be used to
parametrize the surface. If we consider the context of a quasi-flat surface, where
the amplitude of membrane fluctuations is much smaller than its longitudinal

1Actually they proposed slightly different formulations of the free energy but they’ve been
proven to be equivalent through the Gauss-Bonnet theorem.
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size, it’s convenient to reparametrize the surface in the so-called Monge gauge.
In this gauge each surface point r⃗ is described as its height w.r.t. a reference
plane, i.e. r⃗(x⃗⊥) = (x⃗⊥, h(x⃗⊥)). The new coordinate x⃗⊥ represent the position
on the reference plane.

Surface element Our surface can be parametrized with two variables u1 and
u2, and an infinitesimal displacement along the curve can be written as

dr⃗ =
∂r⃗

∂u1
du1 +

∂r⃗

∂u2
du2 = t⃗1du1 + t⃗2du2 (15)

where we called t⃗1 and t⃗2 the vectors tangent to the surface at position (u1, u2).
It’s important to notice that while u1 and u2 are orthogonal coordinates, the
same is not true for t⃗1 and t⃗2. The infinitesimal surface element dS is then given
by

dS =
∣∣⃗t1 × t⃗2

∣∣ du1du2 (16)

In Monge gauge, where r⃗ = (x, y, h(x, y))T this reads

dS =
∣∣(1, 0, ∂xh)T × (0, 1, ∂yh)

T
∣∣ dxdy =

√
1 + (∇⊥h)2dxdy (17)

where ∇⊥ is the gradient operator in the coordinates of the reference plane.

Curvatures For each point of the surface curvature can be defined, in this
paragraph we derive the expression for mean and Gaussian curvature in this
gauge. We recall that mean and Gaussian curvatures are defined as

H :=
c1 + c2

2
K := c1c2

(18)

where c1 and c2 are the principal curvatures. Exist different ways to derive these,
here we’ll use the shape operator S. This operator has the principal curvatures
as eigenvalues and thus the following relations can be used to determine mean
and Gaussian curvature:

H =
1

2
Tr(S)

K = det(S)
(19)

Shape operator can be computed as:

S = bg−1 (20)

where g is themetric or first fundamental form, while b is the second fundamental
form. These are tensors defined as [18]:

gij = t⃗i · t⃗j
bij = t⃗i,j · n⃗

(21)

Here t⃗i are the vectors tangent to the surface defined above, t⃗i,j = ∂i∂j r⃗ and n⃗
is the unit vector normal to the surface, defined by

n⃗ =
t⃗1 × t⃗2

|⃗t1 × t⃗2|
=

1√
1 + ∂xh2 + ∂yh2

−∂xh
−∂yh
1

 (22)

8



In our chosen parametrization, using ha as a short-hand for ∂h/∂a we get:

S =
1

(1 + h2
x + h2

y)
3/2

(
hxx(1 + h2

y)− hxyhxhy hxy(1 + h2
x)− hxxhxhy

hxy(1 + h2
y)− hyyhxhy hyy(1 + h2

x)− hxyhxhy

)
(23)

The expression we get for mean and Gaussian curvature is then:

H =
hxx(1 + h2

y) + hyy(1 + h2
x)− 2hxyhxhy

2(1 + h2
x + h2

y)
3/2

K =
hxxhyy − (hxy)

2

(1 + h2
x + h2

y)
2

(24)

We now have all the expressions needed to rewrite Eq.14 in Monge gauge.
Usually this is done in a quasi-flat approximation i.e. supposing the gradient of
h to be small. Keeping terms up to second order in gradient, the Hamiltonian
reads:

H0 =

∫
dxdy

{κ
2
[∇2h]2 + κ̄(∂2

xxh∂
2
yyh− (∂2

xyh)
2) +

σ

2
(∇h)2 +O((∇h)2)

}
(25)

2.3 Overview of membrane-mediated interactions

Shortly after the introduction of models to study the dynamics and equilibrium
of biological membranes, many studies have addressed several ways in which
membrane properties may be influenced by its fluidity and elasticity. Depending
on the model chosen and on the particular regime of the system many different
membrane-mediated interactions may arise [34]. In this work, we’re going to in-
vestigate the role of these interactions in the aggregation of membrane proteins.
Here we summarize the main 4 mechanisms behind these forces:

1. Capillary forces: the free energy caused by a strong variation in composi-
tion across the interface is what generates the line tension on interfacial
boundaries. The interfacial tension tends to reduce the domain perimeter
length and can thus generate a force (Figure 4, panel B).

2. Lipid depletion forces: Lipid molecules close to the ‘hard’ interface of
integral membrane proteins are conformationally restricted. When these
lipids are mobile relative to the proteins, they may diffuse away so as
to increase their entropy. The effective expulsion of lipids from between
nearby proteins leads to an effective short-range attraction between the
proteins (Figure 4, panel C).

3. Curvature-induced forces: membrane proteins can locally deform the mem-
brane through different mechanisms. In response, the membrane changes
the distribution of these proteins to minimize its overall elastic energy.
This mechanism drives the proteins to associate or dissociate, depending
on the lateral protein shape and the magnitude of the induced curvature
(Figure 4, panel D).

4. Thermal Casimir-like forces: membranes undergo ceaseless thermal fluc-
tuations. The presence of proteins that modify these fluctuations may
generate forces that may drive them to cluster in order to maximize the
entropy of the membrane’s fluctuations. The mechanism behind these
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Figure 4: Figure from [34]: (A) molecules aggregate if the net change in free
energy is favourable. (B) Capillary forces drive proteins to clusters in order to
minimize free energy associated with lipid shells. (C) Lipid depletion interac-
tions. (D) Curvature-induced forces. (E) Thermal Casimir-like forces.

forces is similar to the one proposed by Casimir in Quantum Field Theory
to describe forces arising from the alteration of the vacuum expectation
value of the energy due to the presence of interface materials. Recalling
now that fluid membranes are elastic and free to fluctuate we can expect
that in a similar way rigid membrane inclusions alter fluctuations and in
response membrane rearranges them in order to minimize overall free en-
ergy (Figure 4, panel E). An explicit calculation of how rigid inclusions
suppress some of the membrane fluctuation modes is carried out in [14].
This reduction of fluctuation modes result in an entropic force that acts
on inclusions at equilibrium. This elegant calculation shows how these
forces arise from purely entropic arguments.

However, this classification is mostly formal since depending on the model used
to describe the membrane and inclusions more than one of these forces may arise
and it’s difficult to genuinely decouple the different interaction mechanisms. In
general we’ll observe a mixture of them.
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2.4 Phenomenological theory for fluctuation-induced forces

The interactions between membrane inclusions imposing local perturbations on
the membrane have been studied since the 90s [7, 8, 12, 11, 35, 43]. Here we
report a phenomenological approach to this kind of interaction. Suppose to have
a quasi-flat membrane described by the usual Canham-Helfrich Hamiltonian in
Monge Gauge:

H0 =

∫
dx⃗⊥

{κ
2
[∇2

⊥h]
2 +

σ

2
(∇h)2

}
(26)

where the field h(x⃗) has Gaussian statistics and the Gaussian curvature term is
discarded since we’re focusing on surfaces of fixed topology.

2.4.1 Perturbative expansion

Suppose now the energy of the membrane with proteins on it can be described
by

H = H0 +Hint (27)

whereHint is the coupling energy of the molecules with the membrane. Recalling
now the definition for the partition function:

Z = e−βF =

∫
Dh(e−βH0−βHint) (28)

Multiplying both sides by exp(βF0) ( where F0 is the free energy associated to
H0 only) we get

e−β(F−F0) =

∫
Dh(e−βH0−βHint)∫

Dh(e−βH0)
=
〈
e−βHint

〉
0

(29)

Using now the cumulant expansion (justified for small Hint)

〈
eV
〉
0
=

〈
1 + V +

1

2
V 2 + ...

〉
0

= exp[< V >0 +
1

2
(< V 2 >0 − < V >2

0)+O(V 3)]

(30)
we retrieve

∆F = F − F0 =< Hint >0 −1

2
β(< H2

int >0 − < Hint >
2
0) + ... (31)

Assuming now that the energy Hint is given by the sum of the contribution of
the different inclusions at different positions r⃗j :

Hint =
∑
j

Hj
int(r⃗j) (32)

Now terms in Eq.31 of the kind < Hint >0 won’t give rise to a free energy
dependence on both the molecules’ positions (which is what we’re interested in
to compute interactions) [11].
Thus we can evaluate the interaction between inclusions as

U = − 1

2kBT

〈
H2

int

〉
0

(33)
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2.4.2 Linear curvature coupling

The first case we’ll focus on is the one of linear coupling with curvature, which
represents the case of inclusions that impose locally a spontaneous curvature to
the membrane. Indeed, the energy per area contribution for a membrane patch
covered by an inclusion imposing a local spontaneous curvature c0 will be

Einclusion

Ainclusion
=

κ

2
(2M − c0)

2 =
κ

2
(2M)2 − κ(2M)c0 +

κ

2
c20 (34)

So the energy differs from the unperturbed case H0 for a term linear in the
mean curvature (2M) and a term renormalizing surface tension (we will ignore
this contribution here). This means that phenomenologically we’re interested
in

Hint =
∑
j

Aj∇2h(r⃗j) (35)

Where the sum is over the inclusions and Aj is a phenomenological constant;
from the above Eq.34 we can suppose this constant be proportional to the in-
clusion area, bending rigidity and the imposed spontaneous curvature, this is
in agreement with non-phenomenological results [8]. For two identical inclu-
sions, i.e. A1 = A2 = A, located at r⃗1 and r⃗2, the interaction energy will be
(discarding again terms not depending on the distance of proteins):

U = − A2

kBT

〈
∇2h(r⃗1)∇2h(r⃗2)

〉
0

(36)

We can now evaluate the correlation between curvature (∇2h) at different po-
sitions, switching to Fourier space:

〈
∇2h(r⃗1)∇2h(r⃗2)

〉
0
=

〈
∇2

(∫
dk⃗

(2π)2
ĥ(k⃗)eik⃗·r⃗1

)
∇2

(∫
dq⃗

(2π)2
ĥ(q⃗)eiq⃗·r⃗2

)〉
0

=

∫
dk⃗dq⃗

(2π)4
k2q2

〈
ĥ(k⃗)ĥ(q⃗)

〉
0
ei(k⃗·r⃗1+q⃗·r⃗2)

=

∫
dq⃗

(2π)2
q4Ĝ0(q⃗)e

iq⃗·(r⃗1−r⃗2)

(37)

In the last line we used
〈
ĥ(k⃗)ĥ(k⃗′)

〉
0
= (2π)2δ(k⃗+ k⃗′)Ĝ0(k⃗) where Ĝ0(k⃗) is the

Gaussian propagator in Fourier space.
Explicitly writing the latter and defining r⃗ = r⃗1 − r⃗2 we get

〈
∇2h(r⃗1)∇2h(r⃗2)

〉
0
=

∫
dq⃗

(2π)2
q4kBT

κq4 + σq2
eiq⃗·r⃗

=
kBT

κ

∫
dq⃗

(2π)2
q2

q2 + σ/κ
eiq⃗·r⃗

=
kBT

κ
δ(r⃗)− σkBT

κ2

∫
dq⃗

(2π)2
1

q2 + σ/κ
eiq⃗·r⃗

(38)
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Switching now to polar coordinates and assuming (without loss of generality)
that x axis lies along r⃗ direction:

〈
∇2h(r⃗1)∇2h(r⃗2)

〉
0
=

kBT

κ
δ(r⃗)− σkBT

κ2

∫
dqdθ

(2π)2
q

q2 + σ/κ
eiqrcosθ

=
kBT

κ
δ(r⃗)− σkBT

κ2

∫
dq

2π

q

q2 + σ/κ

∫
dθ

2π
eiqrcosθ

=
kBT

κ
δ(r⃗)− σkBT

2πκ2

∫
dq

q

q2 + σ/κ
J0(qr)

=
kBT

κ
δ(r⃗)− σkBT

2πκ2
K0

(√
σ

κ
r

)
(39)

For the last two equalities were used:
∫ 2π

0
dθ
2π e

ipcosθ = J0(p), the integral defi-

nition of the Bessel function of the first kind and
∫∞
0

dk k
k2+m2J0(kr) = K0(mr),

a known integral giving rise to modified Bessel function of the second kind
K0(x). Thus eventually the expression of the interaction energy between the
two proteins, at a finite distance r, is

U =
A2σ

2πκ2
K0

(√
σ

κ
r

)
(40)

The interaction for two identical inclusions is thus repulsive, linear in the tension
and for r <

√
κ
σ we find

U ∼ A2σ

2πκ2
ln

(
2
√

κ/σ

r

)
.

2.4.3 Quadratic curvature coupling: interaction arise without sur-
face tension

We are now interested in another kind of interaction which arises even in absence
of surface tension. Thus from now on we’ll consider σ = 0. Suppose now
that molecules interact with the membrane through a quadratic coupling in
curvature. This can happen both through mean curvature:

HB,int =
∑
j

Bj [∇2h(r⃗j)]
2 (41)

and Gaussian curvature:

HD,int =
∑
j

Dj [∂
2
xh(r⃗j)∂

2
yh(r⃗j)− (∂x∂yh(r⃗j))

2] (42)

This kind of coupling corresponds to inclusions locally altering bending rigidities
of the membrane. If only one of the above coupling is present the resulting
interaction is zero. We verify this in the following calculation (supposing again
to have identical inclusions):
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〈
H2

B,int

〉
= B2

〈
[∇2h(r⃗1)]

2[∇2h(r⃗2)]
2
〉
0

= B2

∫
dk⃗dq⃗dk⃗1dq⃗1

(2π)8
k2q2k21q

2
1

〈
ĥ(k⃗)ĥ(q⃗)ĥ(k⃗1)ĥ(q⃗1)

〉
0
ei(k⃗+k⃗1)·r⃗1+i(q⃗+q⃗1)·r⃗2

= B2

∫
dk⃗dq⃗dk⃗1dq⃗1

(2π)8
k2q2k21q

2
1

[〈
ĥ(k⃗)ĥ(q⃗)

〉
0

〈
ĥ(k⃗1)ĥ(q⃗1)

〉
0
+
〈
ĥ(k⃗)ĥ(k⃗1)

〉
0〈

ĥ(q⃗)ĥ(q⃗1)
〉
0
+
〈
ĥ(k⃗)ĥ(q⃗1)

〉
0

〈
ĥ(q⃗)ĥ(k⃗1)

〉
0

]
ei(k⃗+k⃗1)·r⃗1+i(q⃗+q⃗1)·r⃗2

(43)

Where for the last equality Wick’s theorem for a Gaussian field has been ex-
ploited to resolve the four point correlation function. Inserting, as we did for
the previous case, the expression for the Gaussian propagator (remember that
in absence of surface tension Ĝ0(q⃗) = kBT/(κq

4)).

〈
H2

B,int

〉
0
= B2

∫
dk⃗dq⃗

(2π)4
k4q4Ĝ0(k⃗)Ĝ0(q⃗)+

+B2

∫
dk⃗dk⃗1
(2π)4

k4k41Ĝ0(k⃗)Ĝ0(k⃗1)e
ik⃗·(r⃗1−r⃗2)+ik⃗1(r⃗1−r⃗2)+

+B2

∫
dk⃗dq⃗

(2π)4
k4q4Ĝ0(k⃗)Ĝ0(q⃗)e

ik⃗·(r⃗1−r⃗2)+iq⃗(r⃗1−r⃗2)

= const.+
2B2kBT

κ2

∫
dk⃗dq⃗

(2π)4
eik⃗·(r⃗1−r⃗2)+iq⃗(r⃗1−r⃗2)

= const.+
2B2kBT

κ2
δ(r⃗1 − r⃗2)

2

(44)

This clearly leads to no interaction energy, since it’s just a constant term and a
delta function (which is zero since inclusions aren’t at the same position).
We verify the same for coupling with Gaussian curvature. In this case (and also
the next one) it’s useful to proceed in a different way: using Wick’s theorem we
will reduce the original expression to a combination of various terms like.

Sab,cd(r⃗1 − r⃗2) = ⟨∂a∂bh(r⃗1)∂c∂dh(r⃗2)⟩ (45)

To evaluate this we follow Park-Lubensky recipe [11]. First we evaluate the
height correlation function in real space:

Ghh(x⃗− y⃗) = ⟨h(x⃗)h(y⃗)⟩0

=

∫
dp⃗dq⃗

(2π)4
⟨h(p⃗)h(q⃗)⟩0 e

i(p⃗·x⃗+q⃗·y⃗)

=

∫
dp⃗

(2π)2
kBTe

ip⃗·(x⃗−y⃗)

κp4
=

kBT

16πκ
r2lnr2

(46)

Where in the last line we defined r⃗ = x⃗− y⃗. Now we use this result to evaluate
Sab,cd(r⃗) (here we do not report the straightforward but still tedious evaluation
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of derivatives) :

⟨∂a∂bh(r⃗1)∂c∂dh(r⃗2)⟩ = ∂a∂b∂c∂dGhh(r⃗1 − r⃗2)

=
kBT

4πκr2

{
δabδcd + δacδbd + δbcδad −

2

r2

[
rarbδcd + rarcδbd

+ rardδbc + rdrcδab + rbrdδac + rbrcδad

]
+

8rarbrcrd
r4

}
(47)

Where again we defined r⃗ = r⃗1− r⃗2 and ri is the component of this vector along
axis i. The terms we’ll be interested in are:〈

∂2
xh(r⃗1)∂

2
xh(r⃗2)

〉
0
=

kBT

4πκr6
{
−r4x − 6r2xr

2
y + 3r4y

}
〈
∂2
yh(r⃗1)∂

2
yh(r⃗2)

〉
0
=

kBT

4πκr6
{
3r4x − 6r2xr

2
y − r4y

}
⟨∂x∂yh(r⃗1)∂x∂yh(r⃗2)⟩0 =

kBT

4πκr6
{
−r4x + 6r2xr

2
y − r4y

}
〈
∂2
xh(r⃗1)∂

2
yh(r⃗2)

〉
0
=

kBT

4πκr6
{
−r4x + 6r2xr

2
y − r4y

}
〈
∂2
xh(r⃗1)∂x∂yh(r⃗2)

〉
0
=

kBT

4πκr6
{
2r3xry − 6rxr

3
y

}
〈
∂2
yh(r⃗1)∂x∂yh(r⃗2)

〉
0
=

kBT

4πκr6
{
−6r3xry + 2rxr

3
y

}

(48)

We can now use the retrieved expressions to evaluate the interaction in case
of coupling with Gaussian curvature. We’ll make use of Wick theorem to ex-
pand high-order correlations, as always discarding terms not involving distance
between molecules.〈

H2
D,int

〉
0
= D2

〈
[∂2

xh(r⃗1)∂
2
yh(r⃗1)− (∂x∂yh(r⃗1))

2]×

[∂2
xh(r⃗2)∂

2
yh(r⃗2)− (∂x∂yh(r⃗2))

2]
〉
0

= D2
{〈

∂2
xh(r⃗1)∂

2
xh(r⃗2)

〉
0

〈
∂2
yh(r⃗1)∂

2
yh(r⃗2)

〉
0

+
〈
∂2
xh(r⃗1)∂

2
yh(r⃗2)

〉
0

〈
∂2
yh(r⃗1)∂

2
xh(r⃗2)

〉
0

− 4
〈
∂2
xh(r⃗1)∂x∂yh(r⃗2)

〉
0

〈
∂2
yh(r⃗1)∂x∂yh(r⃗2)

〉
0

+ 2
(
⟨∂x∂yh(r⃗1)∂x∂yh(r⃗2)⟩0

)2}
(49)

If now we insert expressions 48 we get (again we do not report all calculations):〈
H2

D,int

〉
0
= 0 (50)

However if molecules are coupled quadratically with mean and Gaussian curva-
ture, i.e.

HBD,int =
∑
j

Bj [∇2h(r⃗j)]
2 +Dj [∂

2
xh(r⃗j)∂

2
yh(r⃗j)− (∂x∂yh(r⃗j))

2] (51)
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then an interaction arises. Consider the case of identical inclusions (i.e. Bj = B
and Dj = D ∀j), the interaction energy reads:

U = − 1

2kBT

〈
H2

BD,int

〉
0

= − BD

kBT

〈
[∇2h(r⃗1)]

2[∂2
xh(r⃗2)∂

2
yh(r⃗2)− (∂x∂yh(r⃗2))

2]
〉
0

= −2BD

kBT

〈
∇2h(r⃗1)∂

2
xh(r⃗2)

〉
0

〈
∇2h(r⃗1)∂

2
yh(r⃗2)

〉
0
+

2BD

kBT

〈
∇2h(r⃗1)∂x∂yh(r⃗2)

〉2
0

= −2BD

kBT

(〈
∂2
xh(r⃗1)∂

2
xh(r⃗2)

〉
0
+
〈
∂2
yh(r⃗1)∂

2
xh(r⃗2)

〉
0

)
×(〈

∂2
xh(r⃗1)∂

2
yh(r⃗2)

〉
0
+
〈
∂2
yh(r⃗1)∂

2
yh(r⃗2)

〉
0

)
+

2BD

kBT

(〈
∂2
xh(r⃗1)∂x∂yh(r⃗2)

〉
0
+
〈
∂2
yh(r⃗1)∂x∂yh(r⃗2)

〉
0

)2
(52)

Inserting again expressions 48 we eventually get:

U =
BDkBT

π2κ2r4
(53)

This means that if BD < 0, i.e. have an opposite sign, the inclusions attract
each other.
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3 Simulations setup

Now that has been described the sorting process under investigation and how
a fluctuating membrane can mediate interactions between molecules attaching
on it, we describe the discrete model used to derive numerical results. This
model describes a discretized fluctuating membrane on which molecules attach,
laterally diffuse and phase separate into domains. Once these domains are large
enough are removed from the membrane. This scheme aims at simulating the
same process described in 1.1 with the extra ingredient of membrane fluctuations
and molecules locally perturbing its properties. In Fig.5 is shown a schematic
representation of the process. We chose to perform simulations through a Monte
Carlo scheme.

kI

kI

Figure 5: Schematic representation of the discrete model. Membrane is de-
scribed as a fluctuating discretized surface on which particles attach at a rate
kI within empty sites. Then they laterally diffuse on it and aggregate into clus-
ters that are extracted once big enough.

3.1 Discrete Hamiltonian

To make simulations of the above-described process the surface has to be dis-
cretized. Here we follow Weikl’s recipe for surface discretization [15, 17].
The surface is described as in the Monge gauge as its height over a reference
plane; the latter is discretized into a square lattice with constant a of L×L sites
(we will adopt periodic boundary conditions). In the following, we will refer to
the height of the surface w.r.t. the reference plane at lattice site i as hi = hxi,yi

(here with xi and yi we refer to the position of the ith site on the lattice). It
is important to recall that in order to describe consistently membrane fluctu-
ations the lattice spacing must be comparable with the smallest deformations
wavelength. For lipid bilayers of a thickness of about 4nm this means a ≈ 6nm
[13, 17]. In this framework Canham–Helfrich energy of the whole unperturbed
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surface can be written as:

Hel =
∑
i

κ0

2
a2(ci,x + ci,y)

2 (54)

where κ0 is the unperturbed membrane stiffness, while ci,x a ci,y are the two
curvatures along x and y axis at site i. These can be evaluated as:

ci,x =
(hxi+a,yi + hxi−a,yi − 2hxi,yi)

a2
(55)

ci,y =
(hxi,yi+a + hxi,yi−a − 2hxi,yi)

a2
(56)

Now we perturb the membrane with molecules: we associate to each site an
occupation number ni which can be either 1 (a molecule is present) or 0 (no
molecule). When a molecule is present on site i, the elastic energy associated
to the site becomes:

K

2
a2(c2i,x + c2i,y) (57)

We will consider K > κ0, this means that the presence of a molecule perturbs
locally the membrane making it stiffer. Notice that in this case minimizing the
energy suppresses also saddle-like configurations (ci,x = −ci,y). Accounting for
the presence of molecules the energy of the whole surface becomes:

Hel =
∑
i

[
(1− ni)

κ0

2
a2(ci,x + ci,y)

2 + ni
K

2
a2(c2i,x + c2i,y)

]
(58)

The last ingredient that we add in this discrete model is a direct interaction be-
tween molecules, controlled by a parameter W . The resulting complete Hamil-
tonian for membrane+molecules system is:

H =
∑
i

(1− ni)
κ0

2
a2(ci,x + ci,y)

2 + ni
K

2
a2(c2i,x + c2i,y)−

W

2

∑
j∈Ni

ninj


(59)

Here Ni is the set of nearest neighbours of site i in the lattice.
In our simulations we set a = 1 and β = (kBT )

−1 = 1, thus setting 6nm as
our unit length and kBT as our energy unit. Moreover, we assume in all simu-
lations that κ0 = 10kBT which is biologically realistic and ensures the system
to be in a regime of small fluctuation, i.e. quasi-flat membrane configurations.
This choice justifies the second-order approximation in the Monge gauge of the
Helfrich Hamiltonian and the evaluation of derivatives through finite differences.

Link with phenomenological theory. We can try to transpose to the previ-
ous phenomenological description this perturbation, evaluatingHint correspond-
ing to our discrete model. To this purpose, we evaluate the energy difference
for a lattice site i between the case of presence and absence of a molecule:

Hint = Hni=1
el,i −Hni=0

el,i =
K

2
a2(c2i,x + c2i,y)−

κ0

2
a2(ci,x + ci,y)

2

=
a2(K − κ0)

2︸ ︷︷ ︸
B

(ci,x + ci,y)
2 −a2K︸ ︷︷ ︸

D

ci,xci,y
(60)

18



From the above re-expression, we see that we are considering the last case
described in the theoretical description: quadratic coupling in the curvature,
both through mean and Gaussian curvature.
Thus the pair-wise interaction that will arise between two inclusions will be:

U ∝ BD

κ2
0

∝ −(K − κ0)K

κ2
0

= −K2

κ2
0

+
K

κ0
(61)

From this we deduce that a parameter controlling this fluctuation-induced in-
teraction is K/κ0, which in fact is the one appearing in Weikl’s phase diagram
[15, 17].

3.2 Coupling membrane and molecules dynamics

In the previous studies of the sorting process membrane fluctuations weren’t
taken into account, now we wish to add this ingredient. Depending on the
timescales involved, one can imagine two different regimes: one in which molecules
are slow and the membrane has the time to relax to configurations influenced
by the molecule disposition on the membrane itself, and an opposite regime of
fast molecules. The characteristic time for lateral diffusion is

τdiff =
λ2

D

where λ is the size of the system.

The characteristic relaxation time for membrane dynamics, supposing that
the viscosity of the cytosol is the main dissipation source, is [16, 40, 3]

τrel ∼
ηλ3

κ

where η is the viscosity of the cytosol, ∼ 5 · 10−3 Pa·s [3]. The typical bending
rigidity κ for example for red blood cells spans 5− 25 kBT [27, 42]. Endosome
diameters are of the order of λ = 100− 500nm [32], while the lateral diffusivity
D of proteins is in the range 1− 10 µm2/s [25, 31], therefore:

τdiff
τrel

∼ κ

Dηλ

which spans 1−102, thus suggesting that the dynamics of membrane fluctuations
is faster than lateral molecule diffusion. This result on characteristic timescales
is in agreement with previous works[22, 24].

The performed simulations use a Monte Carlo scheme to relax the system
towards its equilibrium, in this kind of simulations a comparison with realistic
timescales is not feasible. Nevertheless, in the choice of the MC kinetics we
have some degree of control on the speed at which membrane and molecules
configurations relax towards equilibrium. The next section describes details of
this kinetics and how we managed to control, at least qualitatively, the involved
timescales.
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3.3 Monte Carlo procedure

Given an initial configuration for both the membrane {h0
i }L

2

i=1 and molecules

{n0
i }L

2

i=1 we let the system evolve toward equilibrium through Monte Carlo sam-
pling. Our procedure for a Monte Carlo Sweep (MCS) is made up of four parts,
described in the following.

1. Membrane relaxation Going through each lattice site i in random or-
der, the corresponding height of the surface hi over the reference plane is
displaced in a new position chosen uniformly in an interval of measure 2l0
around its previous position:

h
(t+1)
i ∼ U(h(t)

i − l0, h
(t)
i + l0)

The energy difference between the two configurations ∆H = H(t+1)−H(t)

is evaluated locally and used to accept or reject the new configurations
through the usual Metropolis criterion:

pacc = min[1, exp(−β∆H)]

We choose l0 in order to have ∼ 50% acceptance of moves. This procedure
is repeated N0 times.

2. Diffusion Going through each lattice site i in random order if a molecule
is present at that site, i.e. ni = 1, one of its unoccupied neighbours, if
any, is randomly chosen and the molecule is displaced at that site. Again
the energy difference between the two configurations is used to evaluate
acceptation probability through the Metropolis criterion.
This kind of dynamics is called Kawasaki dynamics (from the first physi-
cist who proposed it to study spin systems at fixed magnetization). The
possibility for molecules to jump to nearest neighbours sites simulates their
diffusion.

3. Insertion: choose in random order each site and if its free try to insert a
molecule with probability kI .

4. Extraction: if exists a connected component of occupied sites of size
≥ Ne, then the molecules in the cluster are removed.

The last two kinds of moves drive the system out of its thermodynamic equi-
librium, in order to mimic the distillation process. While performing a single
sweep over the whole lattice for the diffusion moves, the N0 repeated sweeps
for membrane moves ensure to set the system in the above-described timescales
regime. In particular we chose N0 = 10, which seems to ensure membrane relax-
ation between two consecutive diffusion moves and is computationally feasible.
The Fig.6 shows that for the values of K considered in this work setting N0 = 10
should ensure membrane relaxation between consecutive diffusion moves. This
procedure was implemented in Julia 1.8.3 using library JLD for file I/O.
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Figure 6: Relaxation time for membrane configuration between two consecutive
diffusion moves. The unit for τrel is a complete sweep along all lattice sites
while K is measured in kBT units.
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4 Numerical results

4.1 Entropy-driven phase separation

In this section are reported some preliminary results describing the phase sep-
aration of particles due to only entropy-driven interactions. We fix an initial
concentration of molecules ρ = 0.3 and let the system relax towards equilibrium,
in absence of direct interactions and without forcing molecules in or out of the
system. This means we set kI = 0, Ne > ρL2 and W = 0, in order to set our
simulations in a context similar to that investigated by Weikl [17]. To tell the
onset of phase separation we measure the observable

fnn =

∑
⟨ij⟩ ninj∑

⟨ij⟩
(62)

where the summation runs over nearest neighbour pairs. This quantity is the
fraction of edges connecting occupied sites. The higher is the value of fnn, the
more molecules are aggregating into domains. Running these simulations for
various K/κ0 values we get that above a threshold value of molecules rigidity,
these phase separate even in absence of direct interaction (see Fig.7). This is in
agreement with Weikl’s results.

Figure 7: fnn as a function of time (in MCS unit) for various values of molecules
rigidity K/κ0. Snapshots are taken after 104 MCS.
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4.2 Reduced diffusivity

Another relevant effect of molecules rigidity is to reduce their lateral diffusivity.
This effect has been described in previous analytical and numerical works [29,
24].

To check for the presence of this effect in our model we measured the ratio
of acceptance of diffusion moves. If we consider as time unit an MCS this ratio
corresponds to the microscopic diffusion rate kD. In particular, we measured
this ratio for molecules lacking occupied neighbours in order to consider only
”free” molecules.

Measuring this quantity for different values of rigidityK imposed by molecules
we get the results in Fig.8 Increasing the value of K, decreases the probability

Figure 8: Microscopic diffusion rate kD for free molecules, as a function of K.
In these simulations W = 0, molecule density is fixed, ρ = 0.1.

to accept molecule jumps. We didn’t see any particular dependence on W and
kI .
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4.3 Out of equilibrium stationary state

Now we wish to evaluate the effect of the fluctuation-induced interactions on the
distillation process taking place on the lattice, to do this we need to drive the
system out of the equilibrium and then evaluate a stationary state. Thus now we
consider finite kI and W values and Ne = 100. We run simulations starting from
initially flat and empty membrane configuration, i.e. setting hi = 0 and ni = 0
∀i. As simulations go on they reach a stationary state, where molecules density
fluctuates around a mean value. Discarding initial measures, since they’re not
relevant for the stationary state, and block averaging with consistent block sizes
(see App.A for details) we get independent measures of density from which we
can compute the average value at stationary state ρ̄. Using this procedure for
simulations where kI = 10−6, for various values of W and K/κ0 we get results
in Fig.9.

Figure 9: Average density of molecules at stationary state ρ̄ as a function of
W for various values of K/κ0. For all points relative error is below 5% thus
errorbars are not shown.

From these plots, we can notice that at small W values the rigidity imposed
by molecules lowers the density at the stationary state, i.e. makes the process
more efficient. Then this behaviour becomes the opposite (approximately for
W ≥ 2) and the process becomes more efficient with small K values. Moreover,
the minimum of ρ̄, corresponding to the optimum in the distillation gets shifted
towards smaller values of W with increasing K.

However, if our aim is telling the effect of molecules rigidity on the efficiency
of the distillation process we need to recall the effect described in 4.2. Since the
different curves of Fig.9 correspond to different K values of molecules rigidity,
then also their microscopic diffusivity rates kD are different. This diffusivity
rate along with the flux ϕ of incoming molecules plays an important role in this
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process, as investigated theoretically and numerically in [39, 41] and reported in
Fig.2. In the following we describe a procedure we adopted to produce curves
where the ratio ϕ/kD is fixed.

4.4 Estmating ρ̄ for a given ϕ/kD ratio

In order to compare consistently ρ̄ −W curves for different K values we need
them to be produced at the same ϕ/kD ratio. Unfortunately, this isn’t something
we can control consistently in simulations. Here we propose a possible solution to
the problem. For each value of the parameters W and K we perform simulations
at different kI insertion rate values. In these simulations, along with molecule
density, we measure both the effective flux of molecules towards the membrane
ϕ = kI(1− ρ) and the effective molecule diffusion rate kD. This way, for given
values of W and K we can plot measured values of ρ as a function of ϕ/kD. In
Fig.10 is reported a scatter plot of this kind. Each color of the various cloud of
points represents data obtained from a simulation with different kI .

Figure 10: Various values of ρ, obtained at different ϕ/kD values. Each colored
cloud corresponds to data obtained for a different kI insertion rate. The fitted
quadratic curve, with error ribbon, is plotted too.

We fit these values with a quadratic curve and use it to get the estimated mean
response at the desired ϕ/kD value. To estimate an error on this mean response
we use procedure described in App.B.

Using this procedure for each W and K value we’re interested in we’re able
to estimate ρ̄−W curves for different K values that are consistently comparable
since they are obtained for the same value of ϕ/kD. The result of this operation
is shown in Fig.11. From the plot the effect of fluctuation-induced forces seems
to be divided into two regimes. For W < W ∗ ≈ 3, a low affinity region the
effect of these entropic interactions is to make the sorting more efficient. For
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W > W ∗ the effect is the opposite, with the rigidity of molecules impairing the
sorting process.

Figure 11: Estimated average density of molecules at stationary state ρ̄ as a
function of W for various values of K. These values are obtained for ϕ/kD =
10−5. For all points relative error is below 5% thus errorbars are not shown.

4.5 Mapping with a biological problem

The result above suggests that these membrane-mediated forces play indeed a
role in the sorting process, however, the range of parameters explored is not
necessarily realistic. It is possible to map a biological problem on the model
making some considerations. The value of membrane stiffness considered κ0 =
10kBT is biologically realistic (see Sec.3.2). If we consider the case of Clathrin-
coated vesicles (CCVs) the bending rigidity of the lipid membrane covered by

a clathrin molecule is Kphysio
cla ∼ 300kBT [21]. At first sight, one may think

that the ratio Kphysio
cla /κ0 ∼ 30 isn’t large enough to produce a relevant effect.

However, we’re not taking into account the area occupied by clathrin on the
membrane: in our model molecules occupy a single lattice site of area a2 ∼
36nm2, but clathrin covers a much larger area of the membrane. Previous
analytical [7, 8, 11] and numerical [17] studies have shown that the fluctuation-
induced forces we’re investigating have a dependence on the area of inclusions.
Intuitively this dependence comes from the fact that a large inclusion with
its stiffness suppresses more fluctuation modes for the membrane leading to
stronger entropy-driven interactions. In particular, Weikl in his work [17] found
that the critical bending stiffness K∗ at which phase separation occurs due
to only fluctuation-induced forces scales with the area occupied by inclusions
Q (in lattice sites unit) as K∗ ∼ Q−0.7. This means that if we have phase
separation at a given K∗

1 value for inclusions occupying a single lattice site,
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we would have phase separation anyway with K∗
Q < K∗

1 for larger inclusions
of size Q. Thus we have that the value of the bending rigidity of clathrin we
should consider when mapping it to our simulations is Ksim

cla ∼ Kphysio
cla Q0.7.

Each clathrin molecule covers an area of approximately (20nm)2, hence for this
case Q ≈ 10. The obtained ratio Ksim

cla /κ0 ∼ 150 is large enough to produce
appreciable effects due to the membrane-mediated interactions, especially in the
weak direct interactions region.
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5 Quasi-spherical vesicles and dynamically tri-
angulated Monte Carlo

In order to describe more realistic membranes another discrete model was im-
plemented. It is based on previous works on equilibrium simulations for quasi-
spherical vesicles [6, 28], where a closed surface is represented as a polyhedron
made up of triangles (generally in computer graphics an object of this kind is
named mesh). An important feature of these simulations is that in order to
ensure a correct relaxation of the vesicle shape the triangulation is dynamical,
i.e. changes during simulations. This effect aims also at mimicking the lateral
diffusivity of the lipids of which membrane is made up. That’s why previous
works of this kind often refer to fluid membranes.

During thesis just Monte Carlo method for membrane relaxation was im-
plemented, nevertheless as a future work would be reasonable to check for the
presence of these entropic forces on this quasi-spherical membrane and investi-
gate their role on the sorting process.

5.1 Discrete Hamiltonian

On a discrete surface there many ways to define mean curvature depending on
the surface regularization. For a triangulated quasi-spherical surface usually
Helfrich Hamiltonian takes the form [4, 6]

H = λ
∑

<αβ>

[1− nα · nβ ] (63)

where λ is a parameter playing the role of the bending rigidity and the sum-
mation is over all edges. The unit vectors nα and nβ are normal respectively
to the triangles α and β sharing the edge < αβ >. However it has been shown
that the relation between λ and κ depends on the shape of the surface [10].
Moreover since the goal of this thesis is to study effects of local perturbation of
paramaeters (bending rigidity, gaussian bending rigidity, spontaneous curvature
ecc..) originated by molecules attaching to the surface, a clear local definition
of curvatures is needed.

In this work will be used a different discretization, first proposed in 2010 by
Ramakrishnan et al. [28], based on a previous work by Taubin [9]. The idea is
to define shape operator along edges of the mesh and then project the properly
to the vertices they connect to build up a vertex shape operator.

Some basic definitions A given configuration of the membrane is described
by the tuple

η = ({X⃗}, {T }) = ({x⃗i}Nv
i=1, {fi}

Nf

i=1)

made up of vertex positions and face triplets (i.e. triplet of indices of vertices
constituting each face, ordered in counter-clockwise order). Given this we can
define the set of faces and edges neighboring a vertex v: respectively {f}v and
{e}v.
To each face f we associate an area Af and a normal N̂f . While to each edge
we associate:
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1. A vector: along an edge e connecting vertex v to its neighbour i, r⃗e =
x⃗i − x⃗v. The unit vector along its direction will be denoted as r̂e =

r⃗e
|r⃗e|

2. A normal:

N̂e =
N̂e,1 + N̂e,2

|N̂e,1 + N̂e,2|

Where N̂e,1 and N̂e,2 are the normals to faces adjacent to edge e.

3. A binormal: b̂e = r̂e × N̂e

Also each vertex v is associated with a normal N̂v, but defining it is ambiguous.
In a continuous picture, the normal to a vertex is defined as:

Nv =

∫
C
NS(C)dC (64)

where NS(C) is the normal to the surface S containing the vertex, evaluated
along a closed contour C that encloses the vertex. If the surface is discretized
into triangles, the normal to the surface changes only on the interface between
faces, so we have to introduce proper weighting to account for this [33].
In the triangulated surface normal to vertex v reads:

N̂v =

∑
{f}v

N̂fAf

|
∑

{f}v
N̂fAf |

(65)

The schematic representation in Fig.12 may be useful for a better understanding.

Figure 12: Figure from [30], shows some of the quantities defined above.
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Edge shape operator The idea is to first evaluate edge shape operators Se

and then project them onto vertices with proper weighting. The edge shape
operator is constructed as

Se = h(e)[be ⊗ be] (66)

Here ⊗ denotes the tensor product between two vectors, while h(e) represents a
curvature, defined as the gradient of the area vector of the two triangles sharing
e (evaluated at any point p along the edge).

h(e) = ∇p(area) ≈ 2|r⃗e|cos
(
ϕ(e)

2

)
(67)

Here ϕ(e) is the (signed) dihedral angle between the faces sharing e (see figure
13).

ϕ(e) = sgn[(N̂e,1 × N̂e,2) · r⃗e]arccos(N̂e,1 · N̂e,2) + π (68)

Actually h(e) has the dimension of length but should be divided by an area to
be a curvature, this operation is done afterwards.

Figure 13: Figure from [30], shows the geometrical meaning of the dihedral
angle ϕ(e)

Vertex shape operator and Hamiltonian The shape operator at vertex v
is defined as the superposition of all edge shape operators Se around it:

Sv =
1

Av

∑
{e}v

W (e, v)P †
vSePv (69)

Here Av = 1
3

∑
{f}v

Af can be seen as the average area around vertex v.

W (e, v) = N̂v · N̂e is a factor that weights the various contribution coming
by various edge shape operators Se. This way we’ve introduced a local defini-
tion for the shape operator on vertices and for the infinitesimal area element,
with a much clearer interpretation than Eq.63. The former has as eigenvalues
the principal curvatures c1(v) and c2(v) at vertex v; the third eigenvalue is zero
since it’s referred to the direction normal to the vertex N̂v. Using Sv we can
evaluate both mean and Gaussian curvatures, respectively as the trace and the
determinant of this matrix. It’s important to remember that these two quan-
tities are independent on the chosen basis. For this surface discretization [28,
30], the energy reads:

H =
κ

2

∫
(2M)2dS −→ H =

κ

2

Nv∑
v

[
c1(v) + c2(v)

2

]2
Av (70)
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5.2 Sphere generation

Triangulated sphere generation starts from an icosahedron with Nv = 12 ver-
tices, Nf = 20 faces and Ne = 30 edges. The icosahedron is chosen since its
topology is spherical (i.e. χE = Nv − Ne + Nf = 2). In order to increase the
number of faces composing the mesh loop subdivision algorithm is used. In
practice each triangular face is divided into four triangles adding a vertex at
the midpoint of each edge, Fig.14 may be useful for understanding. The newly
created vertices are then projected onto the unit sphere. All the vertices’ posi-
tions are then normalized in order to have edges of the desired length. These
last steps actually change the length of newly created edges so the new faces
are no more equilateral triangles, however even after reiterating the procedure
many times the introduced discrepancy in edge length is compatible with the
constraint on edges to have a self-avoiding membrane (see next subsection for
details).

Figure 14: Loop subdivision algorithm: on the left a face before subdivision, on
the right the same face after an iteration

Using this subdivision leads to N ′
v = Nv +Ne, N

′
e = 2Ne + 3Nf and N ′

f =
4Nf . Now since χ′

E = N ′
v −N ′

e +N ′
f = 2 we can say that this transformation

doesn’t change the topology of the mesh (it’s still spherical). Performing n
iterations of this algorithm result in

Nv = 10(4n) + 2

Ne = 30(4n)

Nf = 20(4n)

(71)

In the performed simulations we usually repeated this subdivision algorithm for
n = 3 iterations, resulting in a quasi-spherical mesh composed of Nv = 642
vertices. This value is chosen as a balance to make simulations computationally
feasible and to avoid finite-size effects.

5.3 Hard spheres potential and self-avoiding membrane

In order to simulate a realistic membrane we ant our surface to be self-avoiding,
i.e. we want to ensure that vertices do not intersect faces. In these simulations
this is usually done through two simple constraints [6]:

1. Hard-sphere potential: this consists in a potential that avoids inter-
section of spheres centered on vertices. Mathematically this is defined
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as ∑
i,j

VHS(|ri − rj|)

where VHS(d) = 0 if d > 2r and VHS(d) = +∞ if d ≤ 2r, summation is
over vertices of the surface and ri denotes the position of vertex i. In our
simulations we chose r = 1/2, this fixes as our unit length the diameter of
spheres centered in vertices.

2. Maximum tether length: to avoid also that these spheres intersect tri-
angular faces a maximum edge length lmax is constrained. Mathematically
this is defined as ∑

<i,j>

VTL(|ri − rj|)

where VTL(d) = 0 if d < lmax and VTL(d) = +∞ if d ≥ lmax. In this case,
the sum is over < i, j > neighbour vertices.

Depending on the value of lmax we can have ”weak” or ”strong” self-
avoidance [5], in this work we adopted lmax =

√
3, a condition that

avoids the possibility for the center of an incident sphere to cross the
triangular face. The limit case for this condition is shown in Fig.15; the
face is an equilateral triangle, with incident vertex P equidistant from
face vertices A,B,C, lying on the face itself and incident sphere tangent
to the others. In this case, evaluating the side of the triangle we get

l = 2CH = 2cos(30)PC = 2 ·
√
3
2 · 2r.

Figure 15: Limit case of an incident sphere lying on the surface of the triangle
and tangent to spheres on the vertices

Note that these newly introduced potentials aren’t actually taken into account
during the evaluation of energy. Starting from a configuration in which the
two conditions are satisfied it’s simply checked at each MC step that the new
membrane configuration doesn’t violate these constraints. It is worth noticing
that these next-to-nearest neighbour excluded volume effects induce a positive
bending rigidity on the membrane [19].
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5.4 Membrane evolution: vertices and links

In order to relax membrane configuration towards its thermodynamic equilib-
rium we perform simulations using a Monte Carlo scheme. We consider two
main membrane evolution mechanisms: vertices displacements and link flips.

5.4.1 Vertex move

At each sweep, a predefined number of vertices is randomly chosen and an
MC move is attempted on them through the Metropolis scheme. The vertex is
moved in space within a cubic box around its original position of size l0. Then
the energy change ∆H of the membrane is evaluated and used to compute the
probability of accepting the move:

pacc = min[1, exp(−β∆H)]

In our simulations, without loss of generality, we set β = 1
kbT

= 1. The value of

l0 can be tuned in order to get ∼ 50% accepted moves.

5.4.2 Link-flips

This second kind of membrane evolution mechanism aims at changing the sur-
face triangulation, that’s why this class of Monte Carlo algorithm is called dy-
namically triangulated. At each sweep, a predefined number of edges is ran-
domly chosen, this edge is common to two triangular faces f1 and f2. The idea
is to try to flip the common edge and use it to connect previously unconnected
edges, evaluate the energy difference between the two configurations and use
it to accept or reject move through Metropolis criterion. Using a more formal
description we redefine faces as:

f1 = {i, j, k} f2 = {j, i, l} −→ f ′
1 = {k, l, j} f ′

2 = {l, k, i} (72)

The scheme in Fig.16 may be helpful to understand this procedure.

i

j

k l

i

j

k lf1
f1f2
f2

Figure 16: Schematic representation of the link-flip move.

The number of link-flips attempted at each Monte Carlo sweep can be related
to the membrane viscosity, i.e. to the lateral diffusivity of lipids composing the
membrane [20, 23, 37]. We decided to define a Monte Carlo Sweep (MCS) as:

1. Nv attempts to move a randomly chosen vertex.

2. Ne attempts to flip a randomly chosen edge.
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5.5 Computational efficiency

The model was implemented by scratch in Julia 1.8.3 using libraries:

1. JLD: for file I/O

2. Meshes, MeshViz and GLMakie/CairoMakie backend: for mesh visualiza-
tion

3. StaticArrays: to define statically sized arrays

This simulation procedure is much more computationally expensive than the
one described in Sec.3. Indeed the hard-spheres constraints, the dynamical
triangulation (and all related aspects like keeping the counter-clockwise order
of vertices in a face) and the algebraic computations needed to evaluate prin-
cipal curvatures at vertices are algorithmically expensive. In this section are
briefly described some technical details about implementation that were needed
to achieve computationally feasible simulations.

Hard-sphere potential Whenever is proposed a new membrane configura-
tion, it must be checked that it satisfies the hard-sphere potential. If during
a MCS a number O(Nv) of vertices are displaced, then if we have to evaluate
for each of them the distance with all other vertices the algorithm would be
O(N2

v ). However, for the majority of vertices, the hard-sphere potential will be
satisfied since are far from the displaced one and won’t overlap. To fasten this
procedure the simulation space, assumed to be cubic, is divided into L×L×L
equally sized cells. By choosing the appropriate size for cells and keeping track
with a list of the vertices lying in each cell it’s possible to reduce the com-
putation of inter-vertices distances to the cell containing the displaced vertex
and the neighbouring ones. This way we retrieve a O(Nv) complexity for this
procedure.

Local energy evaluation Whenever a new configuration is proposed, to ac-
cept or reject it through Metropolis criterion the energy difference has to be
evaluated. Is clear that evaluation of energy on the whole surface is useless: for
most vertices the energy contribution will be the same, since changes in con-
figurations are local. Thus after a vertex displacement or a link-flip energy is
evaluated locally, only on vertices involved by the change in configuration.

Profiling and Julia performance enhancements In order to address com-
putationally expensive operations profiling procedure was adopted, using the li-
brary ProfileView. Another useful tool was Julia’s built-in macro@code warntype,
which highlights type instabilities. Indeed a huge difference in Julia is made by
defining type clear and type stable variables. This means respectively to use
concrete types and making sure the type of a variable doesn’t change during
runtime. Moreover since in Julia by default arrays and vectors are defined dy-
namically the library StaticArrays was used to implement static arrays. These
are mutable arrays but of a predefined length, thus the time needed to make
operations on them is smaller.

Using the above-described performance improvements the implemented code
is proven to be O(Nv) as can be seen in Fig.17
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Figure 17: Average time performance for an MCS (Nv vertex steps, 3Nv edge
flips) for various values of Nv. ∆t is expressed in seconds.

5.6 Numerical results

In order to check for the correct implementation of this simulation procedure it
is reasonable to reproduce the crossover between branched polymer configura-
tions and quasi-spherical ones. This crossover is a known behaviour for closed
vesicles and [19] and was also found numerically by Gompper and Kroll in their
work [6] using energy discretization like Eq.63. We found this crossover as
can be seen from the equilibrium configurations in Fig.18 with crossover point
around κ∗ ≈ 1. At sufficiently low κ values the entropy term dominates the free
energy and thus the vesicle rearranges itself with the only constraints given by
self-avoidance. At large κ values instead the elastic energy term is dominant
suppressing large fluctuations and resulting in quasi-spherical configurations.
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Figure 18: Crossover between branched polymer configurations and quasi-
spherical ones. The shown configurations are equilibrium ones, obtained for
the various κ values on the axis; the energy unit is again kBT .
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6 Conclusions

In this thesis, I investigated the role of fluctuation-induced interactions in the
process of molecular sorting taking place on lipid membranes. In the first chap-
ter, I introduced the sorting process and the phenomenological theory recently
proposed to understand this phenomenon. In the second chapter, I introduced
the analytical framework in which lipid membranes are usually studied. Further-
more I reproduced systematically the results from the literature for evaluating
fluctuation-induced forces with a perturbative field-theoretic approach. Then
after introducing the discrete model and the simulation procedure, I discussed
the numerical results. The results show that these fluctuation-induced inter-
actions can lead to entropy-driven phase separation. Moreover, in the context
of the sorting process, the interplay between these membrane-mediated inter-
actions and direct interactions is divided into two regimes. In the weak direct
interactions regime these Casimir-like forces enhance the sorting process making
it more efficient, while in the strong direct interactions regime these forces im-
pair the sorting, decreasing its efficiency. A mapping with biologically realistic
parameters has been estimated, suggesting that these forces may be biologically
relevant, especially for the sorting of molecules with low affinity.

In the last part of the thesis I introduced another surface discretization
technique and the Monte Carlo procedure used to evolve its shape towards
equilibrium. In this case, the surface is closed, quasi-spherical and dynamically
triangulated so may be a more realistic choice for simulating the equilibrium
configurations of lipid bilayers.

This work highlights many fascinating aspects of the sorting process that can
still be investigated, in particular the ones related to the variety of phenomena
mediated by lipid membranes.
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A Integrated autocorrelation time

To make reliable measures of observables it’s important to know what the auto-
correlation time is. The idea is that each MC sweep just makes small changes in
the configuration of the membrane, thus to be sure to sample effectively uncorre-
lated measures is important to wait a certain amount of sweeps (i.e. ∆t ∼ τint)
between two consecutive measures to ensure that the values are uncorrelated.
It’s important to remember that the value of τint depends on the observable
measured, on the system size and other parameters. However the procedure for
its evaluation is always the same, here we report the same formulation as in
[36].
Supposing to have already discarded the first part of the time serie (for thermal-
ization/reaching of stationary state) and that our system is in a stationary state
(thus statistically invariant under time shifts), the autocorrelation function of
an observable O is:

ρOO(t) =
⟨Ot0Ot0+t⟩ − ⟨O⟩2

⟨O2⟩ − ⟨O⟩2
(73)

The variance on individual measurements is

σ2
Oi

=
〈
O2

i

〉
− ⟨Oi⟩2 (74)

If individual measurements were independent then the variance of the average

value Ō would be
σ2
Oi

n , where n is the number of individual measurements. In
general we have:

σ2
Ō =

〈
Ō2
〉
−
〈
Ō
〉2

=
1

n2

n∑
i,j=1

⟨OiOj⟩
1

n2

n∑
i,j=1

⟨Oi⟩ ⟨Oj⟩

=
1

n2

n∑
i=1

(
〈
O2

i

〉
− ⟨Oi⟩2) + 2

n∑
i=1

n∑
j=i+1

(⟨OiOj⟩ − ⟨Oi⟩ ⟨Oj⟩)

=
1

n

[
σ2
Oi

+ 2

n∑
t=1

(⟨O1O1+t⟩ − ⟨O1⟩ ⟨O1+t⟩)
(
1− t

n

)]

=
σ2
Oi

n

[
1 + 2

n∑
t=1

ρOO(t)

(
1− t

n

)]

=
σ2
Oi

n
2τint(O)

(75)

Thus the number of effectively independent measurements is neff = n/(2τint).
To be sure to sample independent measures, we will block average our time serie
in blocks of size >> τint
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B Estimated mean response error

To estimate ρ̄ for a given ϕ/kD ratio, we use a least square method to fit data
with a quadratic model through Least Square Regression, i.e. we find

θ∗ = argmin
θ

{∑
i

[m(xi; θ)− yi]
2

}
. (76)

Here xi represent log10(ϕi/kDi) and yi = ρi, while m(x, θ) = θ1 + θ2x + θ3x
2

is the quadratic model we’re trying to fit. We call residuals the quantities
ri = m(xi; θ∗)− yi. Once the above minimization has been done we’re left with
the model which best describes our data, and we can use it to estimate new
mean response ˆynew = m(xnew, θ

∗) at xnew. But how can we estimate the error
on this prediction?

First of all is important to understand what error we’re interested in calcu-
lating: confidence interval on a new prediction (also called prediction interval)
or confidence interval on the estimated mean response (also called simply con-
fidence interval). Basically we can make an analogy between these two and
respectively variance of an observable and variance of the mean of an observ-
able. Prediction interval indeed is the interval in which, assuming our data is
well approximated by m(x, θ∗) a new observation will fall with a certain sig-
nificance level. To evaluate this information about the distribution of residuals
must be retrieved, since residuals give a good estimate of data variance, as-
suming the fitted model is correct. Usually this is done through a bootstrap
procedure that can be improved through various techniques like leave-one-out
and .632+ rule that aim at reducing overfitting.

However what we’re really interested in is the confidence interval of the es-
timated mean response. This interval is smaller than prediction interval and
represents the interval in which the mean of a serie of predicted new responses
will fall with a certain significance level. In our case it can be evaluated ex-
panding the error we get on fitted parameters θ. The variance of a mean new
response is given by:

V ar(ŷp) = V ar(m(xp, θ
∗)) = V ar(θ∗1 + θ∗2xp + θ∗3x

2
p)

= x⃗(xp)
TCov(θ∗)x⃗(xp)

(77)

Where x⃗(xp) = (1, xp, x
2
p)

T and Cov(θ∗) is the covariance matrix for model
parameters, easily obtained with any Least Square Regression tool. This way
we can propagate the error on the estimate of parameters and get the variance
of the mean response. Once we have variance on the mean response if we’re
interested in a particular confidence interval we can easily evaluate it through
t-distribution.
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