
POLITECNICO DI TORINO
SPRINT REPLY S.R.L.

Master’s Degree in DATA SCIENCE AND
ENGINEERING

Master’s Degree Thesis

Analysis of semi-structured data based on
Named Entity Recognition and Computer

Vision techniques

Supervisors

Prof. Luca CAGLIERO

Dott. Matteo SARTORI

Candidate

Federico Lorenzo PES

July 2023

Summary

Extracting data from invoices is crucial for many reasons. First of all, accurate
financial records provide information about expenses, vendor payments, and
the overall financial health of the organization. Furthermore, verifying invoice
details such as the vendor name, invoice number, and payment amounts
ensures timely and accurate payments, avoiding late fees. Moreover, invoice
data extraction plays a vital role in ensuring compliance with financial
regulations and internal auditing requirements. These were only three of the
reasons why it is important to extract data from invoices in an efficient and
accurate way.

The task of extracting information from invoices is highly recurrent, for
this reason, it is optimal to be automated. The main challenge with this
task is the fact that for each issuer the text layout of the invoice may vary.
We refer to this type of data as semi-structured, which does not follow a
tabular schema but does exhibit a certain level of organization. Hence, while
rule-based techniques may provide excellent results for a certain layout, due
to the variability of the layouts, they need to be manually adapted to a
specific case.

Recently Graph Neural Networks, thanks to their flexibility, have been
applied to different fields of research including NLP. The base idea of this type
of Neural Network is to build a graph from the dataset, defining nodes and
edges. GNNs can exploit many different types of features to create a graph.
For example, nodes can represent words, sentences or whole documents.
While edges can be represented by any type of relationship, for example
dependency trees, references or to encode proximity.

Furthermore, different tasks can be applied to these networks like node
classification, edge prediction or graph classification. Subsequently to the
creation of the dataset, these models rely on a pipeline that can be divided
into message passing, aggregation and update. For which each node can
share information with the linked nodes. This information passing is used to

ii

update the embedding for each node exploiting the messages from all the
neighbours. Each layer of the model represents a message passing level, if we
have only a layer for the model, each node will be updated with information
obtained only from the direct neighbours, while more layers can help to
capture details from further nodes.

This concept allows us to think at each document as a graph, where every
word represents a node, and the edges can be formed with the closest nodes
in the document.

The focus of this project is to develop a pipeline to extract entities from
semi-structured data. The solution involves both Computer Vision and NLP
which are linked by Graph Neural Networks.

The dataset is composed of 1400 invoice images, from the public dataset
rvl_cdip from the HuggingFace library. Subsequently, these documents
were labelled manually using LabelImg, a tool for image labelling for object
detection tasks, and DocTR, a tool for optical character recognition.

The labels taken into account for the analysis are:

• Company_name: a string that can be extracted from the logo or full
corporate name.

• Company_address: a string containing the full address of the company
releasing the invoice.

• Invoice_date: a string containing the date on which the invoice was
released. The format of the date can change.

• Invoice_number: an alphanumerical string that identifies the invoice for
the company.

• total_due: a string containing the total that needs to pay, it could also
include the currency used.

The pipeline can be divided into the following steps:

Text and bounding boxes extraction with the OCR. Each document
is passed through the DocTR library to extract the text along with the
coordinates that refer to the bounding box for each word. Each document
was previously labelled using LabelImg, a graphical image annotation tool.
Subsequently, the labels and the bounding boxes are aligned to create the
basis for our dataset.

iii

Graph creation exploiting the bounding boxes. The next step is to
model each document as a graph. The bounding boxes provide information
about the position of each word in the document. Hence, it is to create a
graph with “proximity” as the main criterion to choose the edges for each
node. In the base implementation, each node is linked to the five closest
words.

Extract for each token the embedding from the full text. Since
each node in a graph needs a representation, word embeddings are exploited
as a basis to create this node representation. Using pretrained BERT as a
basis we reconstruct the “full text” to extract the token embedding. Also,
some words may be represented by more than one token, so they aggregated
in order to have only a single representation for a node

Solve Node Classification task by exploiting GNNs. Lastly, we train
a GNN architecture to solve a Node Classification task. The base architecture
will be a Graph Convolutional network composed of 2 layers of convolution
stacked on top of each other.

There are many aspects to consider while working on this task. For this
reason, on top of this pipeline, I propose different experiments and ablation
studies, that can be divided into 3 sections.

Graph creation. Firstly, we must consider how to create the graph, the
main idea is to link a node only to the nearest node in each direction (if any)
with unweighted edges. It is interesting to consider different solutions. We
will consider changing the number of edges for each node, considering the
K nearest neighbours for each node. Furthermore, providing weights to the
edges based on distance or similarity between words could prove meaningful
to improve the performance of the task.

Embedding creation. Regarding the embedding creation, the proposal
is to exploit BERT main encoder to provide the embeddings for each node.
It could also be interesting to see how enriching this representation with
other types of embeddings/ features impacts the performance of the model.
For example, it is possible to add morphological embedding (CharBERT)
Furthermore, encode the coordinates of the bounding box or those of the
centre of a word, with respect to the page.

iv

Choice of the Graph Neural network. Lastly, about the choice of the
graph neural network, the experiments can be about different types of main
architecture and the number of layers, and training. There are different types
of GNNs, like Graph Convolutional Networks or Graph Attention Networks.
The number of layers modifies how the final representation of a node is
impacted by the other nodes in the graph. There are also self-supervised
tasks for GNNs that we could study to see how they impact the performance
of the whole task.

The final results are obtained by exploiting BERT to obtain the word-level
embeddings, concatenated to spatial features regarding the position in the
image. Subsequently, the graph is created by linking each node to the closest
five neighbours. Furthermore, the distance is used to obtain a weighting
score for the edges. Finally, the node classification task is performed by a
Graph Neural Network is composed of two layers of GATv2Conv stacked on
top of each other.

This pipeline obtained an average f1-score equal to 0.81. This score is
calculated by applying the mean over the f1-scores obtained for the key
elements.

v

Table of Contents

List of Tables ix

List of Figures xi

1 Introduction 1
1.1 Problem Statement . 1
1.2 Solution . 3
1.3 Applications . 4
1.4 Contributions . 5

2 Related Works 7
2.1 Rule-based . 8
2.2 Token Classification . 8
2.3 Grid Based . 9
2.4 Graph Based . 9
2.5 Baseline . 11

3 Theory fundamentals 12
3.1 Optical character recognition 12

3.1.1 docTR . 13
3.2 Word-level Embeddings . 14

3.2.1 Fast Text . 15
3.2.2 Contextual embeddings 16
3.2.3 Attention mechanism 17
3.2.4 Transformers . 17
3.2.5 BERT . 19
3.2.6 CharBert . 21

3.3 Graphs . 24

vii

3.4 Graph Neural Networks . 26
3.4.1 Graph Convolutional Networks 27
3.4.2 Graph Attention Networks 28
3.4.3 GraphSAGE . 30

4 Pipeline 32
4.1 General Pipeline . 32
4.2 Dataset . 33

4.2.1 DocTR . 36
4.3 Node embedding . 38

4.3.1 Spatial features . 39
4.3.2 Word Embeddings 39

4.4 Graph Creation . 41
4.4.1 Data object . 42

4.5 Model . 43
4.5.1 Architectures . 43
4.5.2 Training Settings . 45
4.5.3 Metrics . 46

5 Results 48
5.1 Analysis of the results . 48

5.1.1 Expectations . 48
5.1.2 Results . 49

5.2 Ablation study . 51
5.2.1 Embedding model . 51
5.2.2 Edge weigths . 53
5.2.3 Number of Message Passing Layer 54
5.2.4 Number of edges . 55

6 Conclusions 57
6.1 Conclusion . 57
6.2 Future Works . 58

Bibliography 59

viii

List of Tables

3.1 Summary of the parameters for models BERT Base and BERT
Large. 19

4.1 Statistic on how the dataset is split following a 80-10-10 split 38
4.2 Number of lines, words and how they are divided into each

class. This statistic is presented for train, test and validation
splits . 38

4.3 Summary of the parameters of the models. 44
4.4 Summary of the parameters used for the training step. . . . 45
4.5 Summary of the weights used to calculate the Cross-Entropy

Loss. 46

5.1 Results obtained with the GCNConv-based architecture. . . 49
5.2 Results obtained with the GATv2Conv-based architecture. . 50
5.3 Results obtained with the SAGEConv-based architecture and

mean_pooling aggregation method. 50
5.4 Results obtained with the SAGEConv-based architecture and

max_pooling aggregation method. 51
5.5 Results obtained with the GATv2Conv-based architecture and

BERT to provide the textual embeddings. 52
5.6 Results obtained with the GATv2Conv-based architecture and

FastText to provide the textual embeddings. 52
5.7 Results obtained with the GATv2Conv-based architecture and

CharBERT to provide the textual embeddings. 53
5.8 Results obtained with the GATv2Conv-based architecture and

using edge weights. 54
5.9 Results obtained with the GATv2Conv-based architecture and

not using edge weights. 54
5.10 Results obtained with the 3-layer GATv2Conv architecture. . 55

ix

5.11 Results obtained with the GATv2Conv-based architecture and
creating the graph with 5 neighbours for each node. 56

x

List of Figures

1.1 Example of invoice taken from the RVL-CDIP dataset. . . . 6

2.1 Image from [8] by Lohani et al.. 10

3.1 Example of distributional hypothesis. 14
3.2 How CBOW and Skip-gram architecture work. 15
3.3 Example of the breakdown of the word "Invoice" into a bag of

n-grams. 16
3.4 Example of homonyms. 17
3.5 Architecture of the Transformer model [12]. 18
3.6 Example of Masked Language Model MLM. 21
3.7 Example of Next Sentence Prediction. 21
3.8 Architecture of the CharBert model [13]. 22
3.9 Graphical representation of the pre-training task Noisy Lan-

guage Modeling [13]. 24
3.10 Example of the protein interaction network. 25
3.11 Examples of sampling and aggregation step from “Inductive

Representation Learning on Large Graphs” [20]. 30

4.1 Graphical representation of the pipeline divided into steps. . 32
4.2 Example of Object Annotations for an item labelled as total_due 36
4.3 The general schema of the Message Passing Layer. 44
4.4 How the output of the GATv2Conv Layer is handled. 45

xi

Chapter 1

Introduction

1.1 Problem Statement
Daily, we encounter semi-structured documents. Semi-structured data is
a type of data that does not follow the traditional schema of relational
databases, and even though they do not adhere strictly to a predefined
structure, they are provided with headers or metadata to provide a certain
level of structure. The most common are invoices.

These documents are related to the financial aspect of our life and need
particular attention. Extracting data from invoices is crucial for many
reasons. First of all, accurate financial records provide information about
expenses, vendor payments, and the overall financial health of the organiza-
tion. Furthermore, verifying invoice details such as the vendor name, invoice
number, and payment amounts ensures timely and accurate payments, avoid-
ing late fees. Moreover, invoice data extraction plays a vital role in ensuring
compliance with financial regulations and internal auditing requirements.

These were only three of the reasons why it is important to extract data
from invoices. Many companies solved this task manually, but nowadays
this process of elaborating on them is being automated more and more. The
main reasons why automating this task is important are:

• Time and cost savings: by reducing manual effort, which is time-
consuming and prone to errors, companies can save significant time
and associated labour costs.

• Scalability: as businesses grow, the volume of invoices they handle
increases. Scalability enables businesses to handle larger volumes of

1

Introduction

invoices without the need to hire additional resources.

• Data insights and decision making: automated systems can aggregate
and analyze this data, enabling businesses to make informed decisions,
identify cost-saving opportunities, and optimize their financial strategies.

The main task to solve is Information Extraction (IE). The high quantity
of information is encoded in different ways and structured with different lay-
outs depending on the company that produces the invoice. This information
can be located through context and position on the page.
The IE step for this purpose is defined as a Named Entity Task (NER).
In Natural Language Processing (NLP) the latter is defined as the task of
locating and classifying the tokens that represent a Named Entity in the
text.

When working with a dataset of invoices with a homogeneous structure,
the task is usually solved by applying rule-based techniques built ad hoc for
a specific layout. They usually rely on regular expression or approximate
string research. Nonetheless, they have negative aspects:

• Lack of flexibility: rule-based techniques exploit a precise structure to
extract data. This makes them less robust in handling diverse invoice
structures and invoices which present noise.

• Difficulty in handling unstructured data: rule-based techniques are
efficient when facing structured data, with a key-value structure. Invoices
are usually semi-structured data and do not always provide this type of
structure.

• Maintenance and scalability: the lack of flexibility also reflects on this
aspect. Invoice layouts evolve and change over time. For this reason,
companies need to face the cost of maintaining these rules to adapt
them to new layouts.

• Lack of adaptability to new data sources: when working with invoices
from new vendors or industries, these techniques may need customization
because they are difficult to re-adapt.

In case of high heterogeneity between a collection of documents, it is
possible to face all these problems. Hence, not only robust and flexible
techniques are needed, but also a way to model this type of document. For

2

Introduction

this purpose, the pipeline proposed will exploit deep learning solutions such
as word embeddings and transformer-based models, which are known to be
more flexible, and may provide more accurate results.

The semi-structured nature of the invoices may be a problem for these
types of models, since the context may not be enough to extract information
reliably, but also the relative position of the word on a page may be important.
In order to handle non-sequential data, it can be modelled as a graph. A
graph is a structure that is composed of a set of vertices (also known as
nodes) connected by edges.

This type of data can be elaborated by Graph Neural Networks.
Thanks to their flexibility, and the ability to capture relationships, dependen-
cies and patterns in the graph, these models are recognized as state-of-the-art
for Information Extraction over semi-structured data.

Graph Neural Networks enable solving a series of tasks, the main ones
are:

• Graph Classification;

• Link Prediction;

• Node Classification.

In this context, where a node represents a textbox, the node classification
task can be thought of as a token classification task. For this reason, the
NLP pipeline will be composed of two main steps:

• Text encoding: exploiting Word Embeddings.

• Node classification: which will be solved by Graph Neural Networks.

Moreover, there is the possibility that not all the documents taken into
account are natively digital. A large quantity of data is scanned, which can
bring problems due to corruption or the quality of the image. To tackle this
problem, the first step is to extract the text from these images in a reliable
way. The pipeline proposed will exploit Optical Character Recognition (OCR)
to convert scanned documents into machine-readable text.

1.2 Solution
As anticipated, the solution for this problem is an end-to-end pipeline for
Information Extraction from scanned invoices. First of all, the document is

3

Introduction

scanned through an OCR tool, the one selected for this pipeline is DocTr
which is a system that utilizes advanced machine learning techniques, in-
cluding deep neural networks, to accurately recognize and extract text from
various types of documents.

Afterwards, each text box goes through an embedding step, according to
the type of embedding model a pre-processing step is deployed.

Subsequently, the document is modelled as a graph where each box of
text represents a node. The criterion selected to create edges is proximity.
In fact, each node forms an edge with the closest ones, also self-loops are
included.

Lastly, the whole document is a data entry that is passed to a Graph
Neural Network, which is trained to solve the token classification class over
an invoice.

1.3 Applications
The result of this study is an end-to-end pipeline for Information Extraction
over scanned invoices. As previously mentioned, this solution finds use in
various applications:

• Streamlined Invoice Processing: the pipeline makes it possible to extract
invoice data quickly and automatically, which eliminates the need for
human data entry and shortens the processing time for invoices. This
simplification facilitates quicker invoice approval and payment procedures
while increasing productivity and reducing errors.

• Financial Management and Reporting: data from extracted invoices
can be utilized for tracking expenses, examining spending trends, and
producing financial reports as part of financial management. The pipeline
makes it easier to collect accurate and timely data, improving financial
visibility and decision-making.

• Compliance and Auditing: the process helps to ensure compliance with
regulatory standards and streamlines auditing procedures by automat-
ically collecting data from invoices. Extracted data can be used for
internal or external audits, account reconciliation, and accuracy checks.

• Data Consolidation and Insights: by integrating the retrieved invoice
data with other business systems and databases, it is possible to enable

4

Introduction

data consolidation and produce insightful data.

• Fraud Detection and Risk Management: by collecting invoice data for
anomaly detection, spotting odd trends, or reporting suspect transac-
tions, the pipeline can help with fraud detection efforts. This improves
risk management and protects from fraud.

• Workflow Automation and Efficiency: the automated extraction tech-
nique used by the pipeline minimizes human labour requirements, enables
more efficient processes, and boosts overall operational effectiveness. It
gets rid of tedious duties and frees up resources for more worthwhile
endeavours.

1.4 Contributions
The main contributions brought by this work are:

• The development of a pipeline to extract entities from heterogeneous
semi-structured data is the main goal of this research. The method
uses Graph Neural Networks to connect Computer Vision with Natural
Language Processing. First, DocTR receives the scanned papers to
extract the words and bounding boxes. Subsequently, the document
is modelled as a graph using the bounding boxes and relative distance
among tokens. Then, word-level embeddings are utilized to get each
word’s representation. The Graph Neural Network is then given the
node embeddings and the graph structure to categorize each token.

• A well-rounded analysis of the different methods for the three main
steps: word-level embedding, graph creation and node classification.

• A public dataset [1] composed of 1400 labelled invoices with both text
and computer vision features. The dataset provides for each document
the following entities: Company Name, Company Address, Invoice Date,
Invoice Number and Total Due as shown in Figure 1.1.

5

Introduction

Figure 1.1: Example of invoice taken from the RVL-CDIP dataset. The
invoice also presents the labeling for the classes company_name, com-
pany_address, invoice_number, invoice_address, and total_due.

6

Chapter 2

Related Works

The extraction of structured information from unstructured or semi-structured
data sources is a crucial problem in natural language processing and data
analysis. Throughout the years, several ideas and methodologies have been
offered to address this difficulty.

The goal of this chapter is to provide a thorough exploration of each topic,
highlighting central ideas, approaches, and achievements in the subject. By
examining these works, the objective is to obtain a better understanding of
the strengths, limits, and application of each strategy in multiple contexts
and domains.

This type of analysis will take into account the following technologies:

• Rule-based: the main advantages are interpretability, simplicity, and
effectiveness. These models thrive with pre-defined and homogeneous
layouts. The disadvantages are related to their limits of generalization
on unknown patterns, requiring constant maintenance.

• Token classification techniques: these models are able to correctly extract
the dependencies of the words by exploiting their context. On the other
hand, these models are not able to elaborate multi-dimensional data,
requiring them to be sequential.

• Grid-based: these models are capable to elaborate 2-dimensional doc-
uments and perform best with structured or grid-like documents. On
the contrary, they are not able to generalise well documents with an
unstructured layout.

• Graph-based: the main advantages are that they are able to handle

7

Related Works

graph-structured data, and they can incorporate both local and global
information making them able to solve various tasks (e.g. node classifi-
cation and graph classification). On the other hand, they are dependent
on the graph structure.

2.1 Rule-based
Rule-based and label-based methods, which rely on predefined rules and
layouts [2] to extract information, were among the first techniques for Infor-
mation Extraction. These approaches often leverage handcrafted rules or
regular expressions to identify and capture specific data elements.

The main advantages of rule-based methods include their interpretability,
simplicity, and effectiveness in scenarios with well-defined extraction patterns.

However, the challenges of maintaining and updating rules as the data
and extraction requirements are one of the main concerns of this technique.
Furthermore, these solutions are not capable of generalizing on unknown
layouts or patterns, requiring human intervention.

Machine learning and deep learning techniques try to solve these limita-
tions.

2.2 Token Classification
For Token Classification tasks, sequence models have been widely applied in
many domains. Models like Bi-LSTM CRF [3] and Trasnformer-based models
[4] have been largely recognized with one-dimensional data as state-of-the-art
for NER tasks.

The capacity of the BiLSTM-CRF architecture to capture both local and
global contextual information is what makes it so significant. While the
CRF component models global dependencies by considering label transitions,
the BiLSTM component models local context by considering nearby tokens.
Combining these factors enables the model to take into account a wider
context and produce predictions that are more accurate and consistent.
The Transformer-based models utilize self-attention mechanisms to capture
contextual information from both preceding and subsequent tokens, enabling
effective token-level predictions.

But, when working with semi-structured data and invoices in particular,
reducing the data to only one dimension without considering the layout of

8

Related Works

the document could be a limitation to the solution.
For this reason, many solutions try to solve this problem by taking into

account the structure of the document, pointing toward a two-dimensional
analysis of the data.

2.3 Grid Based
Grid-based solutions are frequently employed for information extraction from
semi-structured data, especially when dealing with texts or data sources
having tabular or grid-like architecture. These strategies seek to extract
structured information by utilizing the grid format’s layout and structuring
of data. These techniques apply a grid over the document, diving it into
regions. Subsequently, these regions are used to embed the spatial features
that would be used along with the features extracted from the text.

CharGrid [5] and BERTGrid [6] are approaches that rely on this concept.
They both text and spatial features to apply NLP downstream tasks over
semi-structured documents. The textual features can be more character-
oriented [5] or exploring contextual embeddings [6] by transforming the
regions into a 1-dimensional representation to obtain BERT embeddings.
These features along with the spatial features extracted from the regions,
are used to solve downstream tasks. The Information Extraction can be
modelled as semantic segmentation or bounding box regression.

The result obtained by [6] over the token classification task is a mean
accuracy, over six different classes, of 65.48%.

2.4 Graph Based
Graph-based solutions thrive when dealing with data that does not adhere to
a traditional grid layout, such as unstructured text or related entities. Graphs
are more adaptable in depicting complicated interactions and dependencies
among data elements, allowing for more precise and thorough analysis.

These techniques also exploit a three-step stage approach. The first step
is to extract textual features to create a node embedding. Secondly, the
graph creation step is applied, which usually exploits spatial features to
create edges between nodes. Finally, an architecture is structured to solve
Information Extraction over the semi-structured data.

9

Related Works

Graph-based techniques generally follow this schema and focus on cus-
tomizing the single steps.

Each node could be represented by text segments [7] encoded by sequential
models like a Bi-LSTM module, or they can be represented by single words
[8] which embeddings are provided by BPEmb [9], which is a collection of
pre-trained BPE [10] arrays. The node embedding could be represented only
using textual features [7] or concatenated to spatial features [8] or other
attributes that could help describe the node, for example, boolean features.

The graph could represent edges using a set of features [7] (relative
distances, ratios of the sizes of the bounding boxes) or the graph could
be unweighted [8]. The edges could be selected by simply exploiting the
Euclidean distance [7] or with a specific algorithm [8]. For example, for
each node calculates the relative distances on the horizontal and vertical
plane. Subsequently, the nodes with the lowest relative distance are chosen
to form an edge. In this way, each node has a maximum of 4 edges, each one
representing one of the four main directions as shown in Figure 2.1.

Finally, the architecture could be composed of Graph Convolutional layers
stacked on top of each other [8] or could include a more structured architecture
by involving other components [7]. Liu et al. in provide an architecture that
comprises graph convolutions to extract node embeddings, which are passed
to the architecture’s final module, the Bi-LSTM CRF model.

Figure 2.1: Image from [8] by Lohani et al., which represents the formation
of edges for the Wordsource with four nearest neighbours in the main directions

10

Related Works

2.5 Baseline
The graph-based solutions, thanks to their flexibility and general ability to
model variable structures, present promising results on Information Extrac-
tion over semi-structured data.

But, even if the aforementioned works try to tackle a similar task to the
one presented in this thesis, it is not possible to provide a clear comparison.
In fact, the data used for this case were private [8] or provided a small number
of layouts, having homogeneous datasets [7]. The purpose of this research is
to analyze the performances of an end-to-end pipeline over a heterogeneous
dataset.

The study of this thesis is made over a dataset handcrafted for this task.
The main reason for this choice is the unavailability of public datasets that not
only provide the text extracted by an invoice but also provide the bounding
box of each textbox and also the corresponding label. Hence, it would not
be possible to apply a clear baseline for this work.

11

Chapter 3

Theory fundamentals

The purpose of this chapter is to provide the reader with the theory to
understand each element of the pipeline and the choice made for each step.

The chapter will go through these three main topics:

• Optical Character Recognition;

• Word Level Embeddings;

• Graph Neural Networks.

3.1 Optical character recognition
Optical character recognition is known as OCR. This technology makes it
possible to transform printed or scanned text into machine-readable text.
OCR is a technology that enables computers to read text from documents,
photographs, and other sources that contain text and recognize it.

When it comes to digitizing and extracting data from physical documents,
such as scanned paper records, invoices, receipts, or even handwritten text,
OCR technology is essential. OCR makes it possible to automate data
processing, text analysis, and information retrieval by identifying and con-
verting the text in these documents into a digital format. Nowadays the
most performing OCR solutions are based on machine learning techniques.

Machine Learning-based OCR: to learn the patterns and properties of
characters and text, these systems make use of algorithms and models that
have been trained on enormous datasets. In this method, a model is trained
using a labelled dataset of images and the associated ground truth text.

12

Theory fundamentals

Based on the visual patterns it detects during training, the model gains the
ability to identify and categorize characters. OCR which is based on machine
learning has the potential to be more adaptable and versatile to various
fonts, languages, and document layouts. Modern machine learning-based
OCR systems frequently employ deep learning techniques like convolutional
neural networks (CNNs) and recurrent neural networks (RNNs).

As previously mentioned, there are usually two main steps that OCR
solutions follow to solve their task:

• Text Detection: OCR software recognizes and pinpoints text-containing
regions in images. To isolate the text for recognition, it divides the
material into discrete character or word sections.

• Text Recognition: it is a procedure where the machine analyzes the text
sections that have been divided up into an image to locate and recognize
the individual characters inside those regions.

3.1.1 docTR
The OCR selected for this pipeline is docTR. It is an open-source OCR
by Mindee. It provides state-of-the-art performance on public document
datasets. Like most of the OCR tools, it provides a 2-stage classification.
Furthermore, it provides a set of pre-trained models for both text detection
and text recognition steps. In this work, the chosen models are:

• db_resnet50: it involves a DBNet as described in “Real-time Scene
Text Detection with Differentiable Binarization”, using a ResNet-50
backbone. It works by integrating Fully connected Convolutional Net-
works, in this case, ResNet-50, local feature extraction, and differentiable
binarization.

• crnn_vgg16_bn: CRNN with a VGG-16 backbone as described in
“An End-to-End Trainable Neural Network for Image-based Sequence
Recognition and Its Application to Scene Text Recognition”.

The OCR predictor extracts text for each page. Furthermore, it is able
to hierarchically dive the page into blocks, lines, and single words. This
type of configuration allows customization during the word embedding step,
especially for the contextual embedding models. Moreover, the output
provides many details for each word, like the bounding box and the confidence

13

Theory fundamentals

of classification. The bounding box follows the same format for PASCAL
VOC, so the coordinates as x_min, x_max, y_min, and y_max.

3.2 Word-level Embeddings
The development made in the field of NLP relies on the evolution of the
tools to represent the text as vectors. Dense vectors are acknowledged as
the main fashion to represent text. The reason for their popularity is the
ability to encode both semantic and syntactic similarity between words, by
mapping the words into a latent space.

The key idea behind these embedding models is the Distributional Hy-
pothesis, which fundamentally states that words that occur in the same
contexts tend to have similar meanings. An example can be found in Figure
3.1.

Figure 3.1: Example of distributional hypothesis.

These dense vectors are usually high-dimensional vector, in which a single
dimension does not provide a specific concept or do not correspond to a
specific textual unit. This makes these vectors less interpretable but at the
same time, the features are generated automatically.

The most common way to train these models is firstly to collect a rich
collection of documents in order to create a vocabulary to provide an encoding
for each word. Then, a sliding window is exploited to build training examples.
The sliding window passes along a large collection of documents to find which
word composes the context for each word.

Subsequently, the models are trained to solve tasks to learn context, the
main frameworks are:

14

Theory fundamentals

• Skip-gram: predicts the surrounding words given the target word.

• Continuous bag of words: predicts the target word given the surrounding
words.

Both architectures are shown in Figure 3.2.

Figure 3.2: The image shows how the CBOW and Skip-gram architecture
work.

3.2.1 Fast Text
One problem with the base approach for word embeddings is the possibility
of encountering out-of-vocabulary words, which is likely to happen with
morphologically rich languages. Furthermore, the morphology of a word
can help to provide more meaningful representations. Hence, the Fast Text
Bojanowski et al. [11] model introduces a new approach that represents each
word as a bag of character n-grams.

This solution is based on the skip-gram model, in which each word corre-
sponds to a bag of character n-gram as shown in Figure 3.3. Furthermore,
special symbols < and > are added to distinguish between prefixes and
suffixes. Also, the word itself is included in its set of n-grams.

Given a dictionary of n-grams of size G, The scoring function for the

15

Theory fundamentals

Figure 3.3: Example of the breakdown of the word "Invoice" into a bag of
n-grams.

skip-gram model is modified as:

s(w, c) =
Ø

g∈Gw

zT
g vc (3.1)

where s is the scoring function, zg is the vector representation for the n-gram
g and vc is the vector representation for the context word c.

In the end, each word passed to the model is encoded into a 300-dimensional
continuous feature vector.

3.2.2 Contextual embeddings
A limitation of word embeddings is that they are not able to exploit the
context in which the word is used. In fact, the same word in different contexts
can have different meanings, as shown in Figure 3.4. To overcome this limit,
contextual embeddings are introduced in the landscape of NLP. Contextual
embeddings can be obtained from a deep learning model, which is trained
on a large text corpus, usually as a bidirectional language model. The word
vectors are represented by the hidden state of such model. By doing so we
are able to extract the representation for a word in the context in which is
used.

These models are usually structured as an encoder-decoder mechanism:

16

Theory fundamentals

Figure 3.4: Example of homonyms. Here the meaning of the word mouse
depends on its context.

• Encoder: reads a variable-length sequence and maps it into a fixed-size
vector.

• Decoder: takes the fixed-size vector and generates a variable-length
sequence.

3.2.3 Attention mechanism
This mechanism is the fundamental step for transformer-based models. The
attention function receives the vectors query Q, key K, and value V to
provide an output. The output is a weighted sum of the values, where the
weight is a function of the query and the key. This function can be thought
of as a similarity function. The application taken into account in the paper
[12] uses a Scaled Dot-Product.

Attention(Q, K, V) = Softmax(QKT

√
dk

)V (3.2)

where the normalization factordk is the dimension of the vector K.
In the paper [12] the application also involves multiple attention functions
by mapping the vectors Q, K, and V into n = number of heads times, with
learned linear projections. The resulting outputs are then concatenated and
projected again into the final values.

3.2.4 Transformers
The base model that benefits from this structure and overcomes the limit of
sequential computation, is the Transformer by Vaswani et al. [12]. In fact,

17

Theory fundamentals

this model does not exploit recurrence to analyze sequences but it is based
on the Attention mechanism, which allows more parallelization.

Figure 3.5: Architecture of the Transformer model [12], composed of their
characteristic Encoder and Decoder modules, which both implement Multi-
Head Attention.

It is an auto-regressive model which at each step takes its output and
adds it to the previously generated tokens. The architecture, which is shown
in Figure 3.5 is composed of:

• Encoder: it is composed of N=6 identical layers, each one divided into a
Multi-head attention Layer and a feed-forward Neural Network. Residual
connections are employed in both the sub-layer of attention.

• Decoder: it is composed of N=6 identical layers, each one divided into a
first Multi-head attention Layer, a second Multi-head attention layer
that elaborates on the output of the encoder stack, and a feed-forward
Neural Network. Residual connections are employed in both the sub-
layer of attention. A mask mechanism is exploited to not take into

18

Theory fundamentals

account the tokens that have not been yet generated from the model.

In order to inject information about the position of each token, a positional
encoding has been introduced. This encoding is a finite representation of
the location of a unit in the sequence. These representations have the same
dimensions d of the input embedding, in order to be added. This is done by
means of sine and cosine functions:

PE(pos,2i) = sin(pos/100002i/dmodel) (3.3)

PE(pos,2i+i) = cos(pos/100002i/dmodel) (3.4)

where pos is the position of the unit in the sequence, and i is the index in
the array.

The advantage of using these functions is that it should be easier for the
model to learn the relative position. In fact, PEpos+1 can be thought as a
linear transformation of PEpos.

3.2.5 BERT
BERT, which stands for "Bidirectional Encoder Representations from Trans-
formers", is a transformer-based language model introduced by Devlin et
al. in [4]. The base architecture of this model is composed of 12 layers of
transformers stacked on top of each other, with a hidden dimension of 768
each, and with a number of self-attention heads each equal to 12, for a total
of 100 million parameters, as shown in Table 3.1.

BERT Base BERT Large
Layers 12 24

Hidden dimension 768 1024
Attention heads 12 16

Number of parameters 110M 340M

Table 3.1: Summary of the parameters for models BERT Base and BERT
Large.

This model’s purpose is mainly to provide deep bidirectional representation
conditioned by the both right and left context at all layers. This is done

19

Theory fundamentals

by pre-training the model on a large unlabeled text corpus to solve self-
supervised tasks.

The model has high flexibility, in fact by finetuning the model it is possible
to reach high performances on various tasks. This is due to its capability of
creating representations that embed highly semantic features.

To handle the huge corpus this model employs the encoding technique
known as Byte-Pair Encoding (BPE) by R. Sennrich et al. [10] or one
of its variants. BPE is a data compression technique used for sub-word
tokenization. It is frequently used in natural language processing activities
like language modelling and machine translation. In accordance with the
statistical characteristics of the input text, BPE divides words into sub-word
units.

The model accepts a sequence of tokens as input, this sequence can be com-
posed of one or two sentences. Each unit in the sequences is transformed using
a 30000 tokens vocabulary. BERT is also able to handle out-of-vocabulary
tokens by using sub-tokens. The first token in the sequence is always the
special token [CLS] which in the end would provide a representation for
the whole sequence, it is mainly used for classification tasks on the whole
sentence.

If the sequence is composed of two different sentences, a special token [SEP]
is used to separate the two sentences. Furthermore, a segment embedding is
added to the input embedding to differentiate even more the two sentences.

As previously seen in the transformers model, also BERT exploits the
same Positional Encoding which is added to the input embedding.

The pre-training of BERT is done simultaneously on two tasks:

• Masked Language Model MLM: during the training, 15% of the tokens
are chosen, then 80% of the chosen tokens are replaced with the [MASK]
token, 10% of the chosen tokens are replaced with a random token, and
the remaining 10% are left without changes. In the end, the model will
predict the masked tokens. Example in Figure 3.6.

• Next Sentence Prediction NSP: the purpose of this task is to train the
model to understand the relationship among sentences. In order to do
so, when building the training set 50% of the pair of sentences are chosen
to be consecutive, while the other 50% is chosen randomly. Example in
Figure 3.7.

20

Theory fundamentals

Figure 3.6: Example of Masked Language Model MLM.

Figure 3.7: Example of Next Sentence Prediction.

3.2.6 CharBert
When data taken into account for the analysis are also numbers like prices
or dates, the morphological structure of each word can be beneficial for
the purpose. For this reason, the usage of character embedding along with
contextual embeddings could enrich word representations.

CharBert by Wentao Ma et al. in [13] is a character-aware version of
BERT. To improve word representations and the model’s performance on
tasks involving uncommon words, spelling variations, and morphologically
complex languages, it integrates character-level information. A scheme of
the architecture is presented in Figure 3.8.

In fact, while most pre-trained language models exploit PBE [10], it still
presents two main problems:

21

Theory fundamentals

Figure 3.8: Architecture of the CharBert model [13], with focus on the
Character Encoder and Heterogeneous Interaction modules.

• incomplete modelling: it is possible that the subword representations
do not include both the representation of the complete word and the
fine-grained character information;

• fragile representation: minor errors can significantly alter the BPE
tokens, producing incomplete or erroneous representations.

These two problems may cause a lack of robustness. The main idea
to solve this problem is to join the original pre-trained models’ character
representations and the subwords information together.

Model Architecture

Even if the main architecture is composed of transformers layers following
the structure of Pre-trained Language Models like BERT, the innovation
brought by this model is made by two other modules:

Character Encoder With the input sentences represented as character
sequences, we must create token-level embeddings. In order to do so, the

22

Theory fundamentals

token sequences are turned into characters and then incorporated into fixed-
size vectors. Each character is embedded thanks to a character embedding
matrix Wc:

ei
j = ci

j ∗ Wc (3.5)

where ci
j is the character j of the token i and ei

j is its respective embedding
input vector, to extract the embedding.

Then, the sequence is passed into a bidirectional GRU model (Cho et al.
[14]):

hi
j(x) = BiGRU(ei

j) (3.6)

While the whole sequence is passed, the purpose of this model is to extract
token-level embeddings. This is obtained by concatenating the hidden layers
representing the first and the last character of the token:

hi(x) = [hi
1(x); hi

ni
(x)] (3.7)

Here, ni represents the number of characters composing the token i.
In the end, the character contextual embeddings are passed to the Trans-

former layer along with the BERT embeddings.

Heterogeneous Interaction After the BERT embedding and the Char
Encoder embedding go through each transformer layer, they are fused and
separated by the heterogeneous interaction module. Here, the procedure can
be divided into two steps:

• Fusion step: the two embeddings ti(x) and hi(x) for the ith token
are passed to two different fully-connected layers. Then the two rep-
resentations are concatenated wi(x) = [ti(x); hi(x)] and passed to a
Convolutional Neural Network.

mj,t = tahn(Wj ∗ wt:t+sj−1 + bj) (3.8)

Where W and b are a weight matrix and bias, sj is the window size of
the j filter, wt:t+sj−1 represents the concatenation of the embeddings w
in the window size sj and m is the fusion and output of this step.

• Division step: this step exploits residual connections to retain both ti(x)
and hi(x). In fact, after passing m through to different GELU layers,

23

Theory fundamentals

the resulting mt
i(x) and ht

i(x) are summed with their respective residual
connections:

Ti(x) = ti(x) + mt
i(x); Hi(x) = hi(x) + mh

i (x) (3.9)

In the end, Ti(x) and Hi(x) go through a Layer Normalization step and
are passed as input to the next Transformer layer.

Pre-training task

Figure 3.9: Graphical representation of the pre-training task Noisy Lan-
guage Modeling [13].

This two-channel architecture enables the possibility of two different
pre-training tasks. While the Token Channel solves the MLM task, the
Character channel solves a new pre-training task called Noisy Language
Modeling (NLM). This task was made ad hoc for this architecture.

In the beginning, the task modifies the word’s original character order
by deleting, adding, and switching internal characters. The objective is to
reconstruct the whole word.

3.3 Graphs
The study of graphs, which are mathematical structures used to express rela-
tionships between objects, is a topic covered in the discipline of mathematics
known as graph theory. A graph is made up of vertices, usually referred to
as nodes, and edges, which connect pairs of vertices.

24

Theory fundamentals

Figure 3.10: Example of the protein interaction network, in particular, it
is a network view of the schizophrenia interactome shown as a graph.

Vertices represent units or entities, while edges depict the links or rela-
tionships between these items. A broad variety of scenarios from everyday
life can be modelled using graphs, including social networks, transportation
networks, computer networks, biological networks, and more.

In graph theory, the basic elements are the following:

• Vertices: these are the distinct components or entities that make up
a graph. Vertices can stand in for individuals, communities, websites,
proteins, etc.

• Edges: these are the links or interconnections that exist between vertices
in pairs. Edges come in two different kinds: directed (have a specified
direction) and undirected (have no direction at all).

• Degree: a vertex’s degree is determined by how many edges are connected
to it. The degree in an undirected graph represents how many neighbours
a vertex has. In a directed graph, there is a distinction between in-going
edges and out-going edges. From these two notions derive the concepts
of in-degree and out-degree.

• Vertex sequences joined by edges are referred to as paths. In a graph,
connectivity refers to the ability to connect any two vertex points through
a network of edges.

25

Theory fundamentals

These are only a few of the concepts that come from graph theory, this
provides only an overview of the capabilities of graph theory.

As a matter of fact, everything that can be described as a set of items
and connections can be structured as a graph (as shown in Figure 3.10). For
this reason, there has been a need for Neural Networks capable of handling
this type of data, like Graph Neural Networks.

3.4 Graph Neural Networks
Graph Neural Networks (GNN) were indirectly first introduced by Gori et
al. [15]. In this research, a methodology for using neural networks to process
structured data represented as graphs was provided, and the groundwork for
GNNs was laid.

Later on, the GNNs were explicitly introduced by Scarselli et al. [16]. In
this paper, are presented: the main architecture, the fundamental step, and
the learning process behind these Neural Networks stressing how they are
able to manage graphs with a range of sizes and structures.

In fact, they learn to encode the graph structure and node features to
predict various tasks such as:

• Graph Classification: it refers to the process of giving a whole graph
a label or category. The objective of this assignment is to classify or
categorize each graph in the input collection of graphs based on its
structural characteristics, qualities, or relationships. For instance, the
assignment could entail categorizing each graph into a separate chemical
class given a set of molecular graphs that represent chemical compounds.

• Link Prediction: its goal is to foretell missing or upcoming links between
nodes in a graph. Examining the current graph structure and estimating
the probability of a connection or link between two nodes that are not
currently connected are required for the task. When only a partial graph
is given and it is necessary to infer or fill in the missing connections, link
prediction is very pertinent. It has uses in knowledge graph completion,
recommender systems, social network analysis, and other areas.

• Node Classification: it is also known as node labelling or vertex classi-
fication, and it entails predicting the labels or categories of individual
nodes in a network. Each node is labelled depending on its properties,

26

Theory fundamentals

neighbourhood information, or other graph-related features. Node cate-
gorization is useful in a variety of applications, including recommendation
systems, social network analysis, and fraud detection.

In order to solve these tasks, these models try to learn representations
of nodes and edges in a graph that capture their structural and semantic
properties. They operate in an iterative fashion, with a message-passing
scheme. In fact, at each step nodes share information with their neighbors
and update their representation accordingly.

For this reason, the main elements of the GNNs can be divided into:

• Node embedding function: this function maps each node in the graph
to a high-dimensional vector. It depends on the domain of the analysis.

• Message-passing function: the purpose of this function is to aggregate
the representation of the neighbours for a certain node and use them to
update its representation, this is done for every node in the graph. This
function is usually associated with a Graph Convolutional Operation.
The function can be a neural network layer and depends on the chosen
architecture. If the graph has edge features, they are usually involved
as a weight to update the node embeddings in this step.

Depending on the objective of the task, there might be a readout function
aggregates the node embeddings to produce a representation of the entire
graph. This might be a simple aggregation function or the result of an
encoder architecture for example.

3.4.1 Graph Convolutional Networks
Graph Convolutional Networks (GCNs) are a category of GNNs introduced
by Thomas N. Kipf et al. [17].

The basic units for this network are the Graph Convolutional Layers. They
are a generalization of the common convolutional layers usually exploited
in the image analysis domain. They are designed to operate on the graph
structure. With respect to past implementations, this model has a single
weight matrix for each layer, and the adjacency matrix is properly normalized
to allow for a range of node degrees.

For this reason, they take as input the graph, which is represented as
a matrix X, where each row corresponds to a node in the graph and the
columns are the dimension of the representation h, and the list of edges or

27

Theory fundamentals

an adjacency matrix A, that is needed for the message-passing step. This
step and the graph convolutional layer mathematically are defined as:

h
(l+1)
i = σ(

Ø
j∈N (i)

1
cij

W (l)h
(l)
j) (3.10)

where h
(l)
i denotes the hidden representation of node i in the l-th layer,

W (l) is the trainable weight matrix for layer l, it is important to specify
that this weight matrix is shared among all the nodes in the graph.σ is the
activation function, N (i) represents the neighbours nodes for node i, and cij

is a normalization constant defined as:

cij =
ñ

didj (3.11)

where di and dj are the degrees of nodes i and j, respectively.
These architectures which efficiently reuse their local filters with learnable

parameters, perform better with data where the underlying representation
of the data is grid-like. When the kind of data does not respect this feature,
there is a need for more complex architectures.

3.4.2 Graph Attention Networks
Graph Attention Networks (GAT), which were introduced by Veličković et al.
[18], try to overcome this problem by introducing the concept of self-attention
to graphs.

This type of GNN is based on the idea of assigning attention weights to
the neighbouring nodes in the graph. In fact, they have a behavior similar
to GCNs, as they take the same type of input, and produce similar output.
The main change is in the aggregation function used in the message-passing
step.

While, GCNs, fail to give distinct nodes in the same neighbourhood varying
degrees of importance, GATs use a self-attention mechanism that allows each
node to attend to its neighbours and selectively weigh the importance of
each neighbour’s features.

This is done by computing a weighted sum of neighbouring node features
using attention coefficients α, which are learned for each node, neighbouring
node pair i, j and layer l.

hl+1
i = σ

 Ø
j∈N i

αijlW lhj

 (3.12)

28

Theory fundamentals

The attention coefficients e are computed by first concatenating the feature
vectors of the node and its neighbours and passing them through a feed-
forward neural network that outputs a scalar value.

el
ij = LeakyReLU

1
a⃗T [W lhi||W lhj]

2
(3.13)

These scalar values are then passed through a softmax function to obtain
the final attention coefficients, which sum to one across all neighbours.

αl
ij = softmaxj(eijl) =

exp(el
ij)q

k∈N i exp(eikl)
(3.14)

where Ni is the set of neighbours of node i.
The advantage of GATs is the ability to attend to only the most relevant

neighbours for each node. They have proven to be an effective and efficient
approach for learning node embeddings on graph data, and have achieved
state-of-the-art performance on several node classification benchmarks.

Furthermore, the usage of attention weights also provides benefits in terms
of the interpretability of the model.

Static Attention Problem Studies over GATs Brody et al.[19] revealed
an underlying problem with this architecture, that is the Static Attention
Problem.

In fact, based on their initial characteristics, the nearby nodes are given
fixed attention weights via the attention mechanism. This indicates that
the attention weights do not adjust or alter as a result of learning. As a
result, nodes with comparable starting attributes get the same attention,
which makes it difficult to distinguish between and pay attention to nodes
depending on their dynamic relationships within the graph.

The research suggests a Dynamic Graph Attention (DGA) extension to
GATs to alleviate the static attention issue. To help GATs capture more com-
plex and adaptive attention patterns, DGA adds a second learnable attention
weight matrix that enables attention weights to be adjusted dynamically
during training.

This results in the introduction of a novel neural network architecture
whose basic element is the GATv2 Layer. This is obtained by applying a
after the non-linearity activation:

el
ij = aT LeakyReLU

1
[W lhi||W lhj]

2
(3.15)

Though the change is simple, it is effective in providing an improvement in
performance and robustness to noise.

29

Theory fundamentals

3.4.3 GraphSAGE
Hamilton et al. presented GraphSAGE [20] (Graph Sample and Aggregated),
a graph-based learning system that uses the concepts of sampling and
aggregation to learn node representations in large-scale networks. An example
is provided in Figure 3.11.

Firstly a sampling step is applied, which given a graph, samples a fixed
number of nodes from each node’s local neighbourhood. With respect to the
previous approaches, there is a difference that not all the nodes belonging to
the neighbourhood of a node i are used to calculate the embedding of that
node.

Figure 3.11: Examples of sampling and aggregation step from “Inductive
Representation Learning on Large Graphs” [20]. Here k represents the number
of layers of the model, which is linked to the depth of the neighbourhood,
for example, k = 1 means that only direct neighbours are considered

After sampling the nearby nodes, GraphSAGE combines their attributes
to provide a summary representation. This stage of aggregation tries to
gather the neighbourhood’s joint information. Mean pooling and maximum
pooling are two examples of aggregate functions.

Mean pooling:

h(l+1)
v = σ

1
W(l) · CONCAT

1
h(l)

v , MEAN
1
{h(l)

u : u ∈ N (v) ∪ {v}}
222
(3.16)

Max pooling:

h(l+1)
v = σ

1
W(l) · CONCAT

1
h(l)

v , MAX
1
{h(l)

u : u ∈ N (v) ∪ {v}}
222

(3.17)

30

Theory fundamentals

where, h(l)
v is the representation at hidden layer l of node v , W(l) is a the

learned weight matrix of layer l and u is a node that belongs to N (v) which
is the neighbourhood of v.

On each layer, the information is gained from the representations of the
direct neighbours. Also, in this case, changing the number of layers can help
to provide information levels from different depths.

Though the application of GraphSAGE takes into account the sampling
step, in this work the implementation of the SAGEConv layer from pytorch
geometric will be applied. This architecture does not imply a sampling step
but provides the aggregation function discussed previously.

31

Chapter 4

Pipeline

4.1 General Pipeline

Figure 4.1: Graphical representation of the pipeline divided into steps.
Step 1: The OCR tool docTR extracts text along with bounding boxes. Step
2: The text, along with the spatial features are used to create the node
embeddings. Step 3: The graph is created using the Euclidean distance
among nodes to select the edges. Step 4: Finally the graph is passed as a
data point to the Graph Neural Network to extract the entities.

The end-to-end pipeline, shown in Figure 4.1, developed in this work
is able to extract pieces of information from scanned invoices. The whole

32

Pipeline

pipeline can be divided into the following steps:

• Optical Character Recognition: the document is scanned using an
OCR tool; the one chosen for this workflow is docTR, a system that
accurately recognizes and extracts text along with the bounding boxes
for each textbox.

• Node Embedding: each text box undergoes an extraction step to
obtain spatial features and word-level embeddings to represent the node.
In order to extract the latter, this work will exploit FastText, BERT
and CharBERT.

• Graph Creation: each text box in the document is a node in a graph
that reflects the document as a whole. The parameter chosen to define
edges is the Euclidean distance. In actuality, each node forms an edge
with the neighbours it is closest to.

• Information Extraction: the entire document is entered as data and
sent to the selected Grap Neural Network model, which has been trained
to classify tokens in an invoice. The models taken into account for
the analysis will include the following convolutional layers: GCNConv,
GATv2Conv and SAGEConv.

However, a dataset labelling step is executed before creating the whole
pipeline. In this step 1400 invoices are selected and subsequently labelled
by using LabelImg. For each document, 5 entities have been selected and
labelled by drawing the corresponding bounding boxes.

In this chapter, the implementation of each step of this pipeline will be
analyzed in deep, presenting also the different possibilities for each part.

4.2 Dataset
The dataset obtained for the purpose of the analysis is a part of the RVL-
CDIP Dataset, created by Adam W. Harley et al. [21]. RVL-CDIP is a subset
of IIT-CDIP, which came from the Legacy Tobacco Document Library.

This dataset is composed of 400,000 grayscale images. The images are
scaled so that the dimension does not exceed 1000 pixels. The original
purpose of the dataset was to be used for Image Classification tasks. The
dataset is divided into 16 classes, having 25,000 samples for each class. That
labels are:

33

Pipeline

• 0: Letter

• 1: Form

• 2: Email

• 3: Handwritten

• 4: Advertisement

• 5: Scientific Report

• 6: Scientific Publication

• 7: Specification

• 8: File Folder

• 9: News Article

• 10: Budget

• 11: Invoice

• 12: Presentation

• 13: Questionnaire

• 14: Resume

• 15: Memo

The dataset is also divided into train, test and validation having respec-
tively 320,000, 40,000 and 40,000 samples for each split.

The goal of our task is to extract key information from the text in the
images and in particular from the invoices. For this reason, the dataset
needed some manual processing to be exploited.

Firstly, through a Python script, the class Invoice has been filtered in
order to avoid considering the other classes in the analysis.

Subsequently, 1200 images have been selected. the reason why it was
needed to select filter images is that many of them presented too much noise.
In order to proceed successfully with the task, the OCR tool should be able
to extract text from the image. For this reason, the quality should be enough
to proceed with the task. The OCR tool chosen for this project is DocTR.

34

Pipeline

LabelImg is a graphical image annotation tool. This tool is written in
Python and uses Qt for its graphical interface. LabelImg has been widely
used to label datasets for object detection, image segmentation, and object
recognition tasks. For this reason, it presents a large list of default classes,
but it also allows customization.

Hence each image is passed to LabelImg and we define the following labels
for the correct item in the document:

• Company_name: it is the name of the company releasing the invoice. It
is a string that can be extracted from the logo or full corporate name.

• Company_address: a string containing the full address of the company
releasing the invoice. In some invoices, there are more addresses relative
to the same company. These are usually, the address where to send the
payment and the legal address of the company.

• Invoice_date: a string containing the date on which the invoice was
released. The format of the date can change.

• Invoice_number: an alphanumerical string that identifies the invoice for
the company.

• Total_due: a string containing the total that needs to pay, it could also
include the currency used.

The Company_name and Company_address of the company receiving the
invoices are not labelled, as only a few companies of this type are present in
the dataset. This could also result in a bias towards them.

LabelImg supports different formats: YOLO, CreateML, and the PASCAL
VOC format which was the one chosen for the analysis. Each image in the
collection has structured annotations provided by the format, which comprises
XML files. This file is called the Annotation file and it contains data for only
one image. The following are the main components of the PASCAL VOC
labelling format present in the Annotation file:

• Image Information: the image’s filename, width, height, and depth (the
number of colour channels) are all included in the information at the
beginning of the annotation file.

• Object Annotations: the annotation file contains a single XML element
for each annotated object in the image. The object element includes
details about the item. Figure 4.2 proposes an example.

35

Pipeline

• Class Label: the category or kind of the object is represented by the
class label. It is usually displayed as a text string.

• Bounding Box: it indicates the object’s spatial range in the image. The
x and y coordinates of the top-left corner and the x and y coordinates
of the bottom-right corner make up its four defined coordinates. These
coordinates identify the tightly contained rectangular area around the
object. Also, the coordinates are defined over the size of the image and
will need scaling.

Figure 4.2: Example of Object Annotations for an item labelled as to-
tal_due.

4.2.1 DocTR
In order the work on the dataset, the first step is to extract the text from
images. To do so an OCR is exploited which is DocTR. As previously
mentioned, it is a Python library that allows exploiting pre-trained models for
End-to-End OCR. This task is solved in two steps: text detection (localizing
words), then text recognition (identifying all characters in the word). The
pre-trained model chosen was the default models provided by DocTr which
are the ’db_resnet50’, for the text detection task and the ’crnn_vgg16_bn’
text and character recognition.

Pre-processing Each image is passed through the OCR to extract the
text and its respective bounding box.

36

Pipeline

One preprocessing step before aligning the text with the labels is to
eliminate noise from the dataset. As the images in the dataset are scanned,
DocTR could have trouble distinguishing noise from the real text. Hence,
the models provide a confidence level for each text box extracted. In order
to, remove noise and also keep as much text as possible, a threshold level of
60% has been chosen as a filter. Furthermore, text boxes containing only
special characters are removed, as most of them were the result of image
noise.

Label Alignment As previously mentioned, DocTR hierarchically decom-
poses the image into pages, blocks, lines and words. Each word has its own
text-box and, for this reason, the text box of the label could contain different
words. In order to provide a label for the text boxes, the centre of each
bounding box is calculated. Subsequently, the coordinates of the centre are
passed to a step, that checks if the values are inside the bounding box of an
object of the image in analysis. If the text box does not belong to any object
of the document, it is labelled as O as Outside the Entity.

Output structuring The hierarchical structure provided by DocTR into
blocks and lines may be useful for the construction of contextual embeddings,
for this reason, each page is composed of a list of blocks, where each block is
a list of dictionaries.

A single dictionary serves to contain the information for the text box, and
it will have the following keys:

• bounding_box: the coordinates of the text-box as s x_min, x_max,
y_min, and y_max.

• value: the string of text representing the word.

• label: the string that shows if the text corresponds to an object.

The images are then collected into a list and formatted into a JSON file.
Before this whole pipeline, the whole dataset is split into train, test and
validation, as presented in Table 4.1.

The split follows an 80-10-10 percentage, in order to maximize the number
of samples in the training set, having a limited number of images to train
the model.

37

Pipeline

Train Test Validation
#Images 1120 140 140

Table 4.1: Statistic on how the dataset is split following a 80-10-10 split

Train Test Validation
Words 95905 12185 12188
Lines 37828 4864 4711

Company_name 4661 593 619
Company_address 8103 1072 1042

Invoice_date 2249 266 279
Invoice_number 948 125 116

total_due 1164 143 148
Outside the entity 78780 9986 9984

Table 4.2: Number of lines, words and how they are divided into each
class. This statistic is presented for train, test and validation splits

Table 4.2 presents the number of text boxes, lines, and class distribution
over the invoices.

Some considerations need to be made about the dataset. First of all, lines
can be composed of many words but also one word can be considered as a
line if it is clearly separated from other blocks of text.

Secondly, as previously mentioned more than one word can correspond
to a label, but also, some objects may repeat in the invoice. For example,
Company_name or Company_address are the most common to show this
behaviour.

Lastly, the fact that the dataset is unbalanced is the most evident element
on the table. As expected, most of the text present in the invoices is not
an entity. It is important to note that the single items and their respective
values are not considered entities in this work.

4.3 Node embedding
Node Embedding is one of the most important steps in the pipeline. The
idea is to collect both information from the pure text and also from images
to create node embeddings. Hence, not only semantic or syntactic features

38

Pipeline

but also spatial attributes.

4.3.1 Spatial features
The extraction of spatial features can be easily linked to the features of the
bounding box. In fact, each piece of text comes with its coordinates in the
image. These coordinates not only provide the location of the text box in
the image but they also can be used to calculate the area that the text box
occupies in space.

All of these additional features can be obtained through linear transforma-
tions of the bounding box coordinates. For this reason, the starting spatial
features will be:

• x_min

• x_max

• y_min

• y_max

They are all floating point numbers, which are concatenated into a 4-
dimensional vector.

4.3.2 Word Embeddings
While spatial features could help the model to understand relationships in
the image, the most important information comes from the text. In order to
use text as an input feature, it has to be transformed into a fixed-size vector.
As aforementioned, Word Embeddings are a popular solution to this task
The advantage brought by them is the ability to encode both syntactic and
semantic features of the text by mapping it into a latent space. In the end,
the text is represented as a continuous dense vector.

FastText FastText is a largely known library for word representation.
Not only it encodes semantic properties of text, but also morphological
information by working with subwords. On top of that, it is also able to
handle out-of-vocabulary words or rare words.

Moreover, is a highly efficient and scalable solution. Using methods like
hierarchical softmax and negative sampling, it can handle big text datasets

39

Pipeline

and train embeddings quickly. This qualifies it for use in contexts with
limited resources and industrial-scale applications.

Furthermore, it also provides pre-trained word embedding for different
languages. For this reason, in this work, the pre-trained model cc.en.300
from the FastText library will be chosen to create the embeddings. It is a
pre-trained model for the English language. It is trained on the Common
Crawl dataset.

This dataset comprises online pages from many sources that span a wide
range of subjects and areas. It comprises textual material, HTML coding,
visual elements, and more website resources. The often updated dataset
enables academics, developers, and data scientists to examine and gather
important insights from the web.

The cc.en.300 produces a single continuous dense vector made of 300
features for each word. This makes it easy to obtain a single representation
of a word to use as Node embedding.

BERT and CharBERT BERT-based models work in a different way.
The first unit of these architectures is the Tokenizer. In order to handle out-
of-vocabulary words, this module functions at the sub-word level by dividing
words into smaller units called tokens or sub-words. This division is made
upon a predefined vocabulary, mapping each token to an ID. The symbol
"##" serves to recognize that the token is part of a word. Furthermore,
special tokens are used to perform different tasks. The [CLS] task serves for
classification tasks over a whole sentence instead of the single tokens. While
the [SEP] tokens serve for defining the end of a sentence and the start of
another (if it is present).

BERT models exploit these tokens along with positional embeddings and
provide fixes sized vector representation of 768 dimensions for each token.

In order to provide a Node embedding for this work there are different
options:

• Token as Node: each token can be considered as a node itself. This
comes with some concept issues. Two tokens coming from the same word
will have the same spatial features, it is not efficient to separate the
boxes according to sub-words. Furthermore, while generating the graph
the majority of the nodes will have as adjacent nodes mostly tokens
coming from the same word.

• Aggregation functions: the node embeddings represent complete words.

40

Pipeline

In order to do so, there is the need to apply aggregation functions over
the different token vectors. Different examples of these functions are:
mean, sum, and max pooling.

• CLS token as Node embedding: this special token is used for sentence
classification tasks and, for this reason, serves as sentence embedding.
The idea would be to pass a single word to the BERT-based model and
exploit the CLS token’s final representation as token embedding. By
doing this, even if the word is divided into different tokens, it will be
treated as a sentence and it would be embedded into the CLS token. The
main problem with this solution is the inability to extract information
from the context provided by different words.

The main choice for this research will be using Aggregation Functions, on
top of token embedding vectors. This type of solution, even if simple, it is
the one with fewer cons. In fact, applying aggregation functions like mean
on top of Word Embeddings has been one of the most used techniques to
obtain Sentence Embeddings, for example considering Sent2Vec.

4.4 Graph Creation
The last step of Data preparation before obtaining the input for the Graph
Neural Network is the creation of the Adjacency Matrix, which is fundamental
for the Message Passing and Node update steps.

Adjacency Matrix The rows and columns of the adjacency matrix are
equivalent to the graph’s vertices. Each element in the matrix represents the
presence or absence of an edge between the two nodes. If the edges are not
weighted, usually if there is a connection between the two nodes, the value
of the entry would be usually 1 and 0 otherwise. For weighted graphs, the
values for the entries will be the weights assigned to each edge.

Furthermore, if the graph is undirected, the adjacency matrix will be
symmetric. This means that by taking two nodes i and j if the value of the
entry in the position (i, j) will be equal to the one in (j, i).

The most evident relationship that can be exploited to create edges is
proximity. The whole document is represented by the words and their

41

Pipeline

position (bounding box), it is natural to exploit the spatial position that can
be extracted in an unsupervised fashion as the foundation for the graph.

The idea is to calculate the center of whole the bounding boxes. Then
the Euclidean distance among the centre coordinates is calculated for all the
nodes in the invoice. Subsequently, the distances between one node and all
the others are stored in a vector. These vectors are then sorted in crescent
order. Afterwards, for each node, the k closest nodes are chosen to form an
edge, and since this is an undirected graph also the symmetric edge is added
to the matrix. In the end, also the values of the distances are stored.

Both k and also the values of the distance will be used in the experiments
section. The degree of each node influences the way it is updated by each
layer of Graph Convolution. In a similar way, the values of the distances
used as edge weight can be used to influence the "influence" that adjacent
nodes to a certain node have on the update of the latter.

The base setup for our analysis includes a k = 10 and the edge weight ob-
tained with the inverse of the distance and then normalized to be included in
the range [0,1]. It is important to note that not all Graph Convolutional Lay-
ers are able to elaborate edge weight or edge attributes (if multi-dimensional).

In the end, each document is represented by an instance of the Data class
from Pytorch Geometric. The latter is a PyTorch-based toolkit that makes it
simple to create and train GNNs for a variety of applications using structured
data.

4.4.1 Data object
A data item that describes a homogeneous graph, which is a type of graph
where all nodes and edges belong to the same domain and are of the same
type. The data object can store properties at the node, link, and graph
levels. Data generally attempts to behave like a typical Python dictionary.
It allows for storing different parameters:

• x: a matrix storing the features for all nodes in the graphs.

• y: it can store both graph-level and node-level labels.

• edge_index: it represents the adjacency matrix, but uses COO format.
The latter is used usually for sparse matrices, the format transforms the
adjacency matrix into columns and rows arrays.

42

Pipeline

• edge_attr: it can store eventual features for each edge. The features
can be torch Tensors.

4.5 Model

4.5.1 Architectures
The architecture will exploit both textual and spatial embeddings to create
node embeddings, which will be passed to a Graph Neural Network to solve
the Node Classification Task.

The spatial embeddings will be passed to a Linear layer that will upscale
the 4-dimensional vector to a 256 features array. This array is concatenated
to the 768-dimensional word-level embedding provided by BERT. For a total
input_size of 1024.

The last step is building the Graph Neural Network architecture. For
this purpose, the main units composing this architecture will be Graph
Convolutional Operators. Even if Pytorch Geometric provides also standard
models, in this work the models will be built from the Convolutional Blocks.

Pytorch Geometric provides a series of customizable Convolutional Layers
from many research papers, all the layers can be taken from torch_geometric
library:

• GCNConv: it is the Graph Convolutional layer from [17].

• GATv2Conv: it is the implementation of the attentive convolutional
layer from [19].

• SAGEConv: it is the GraphSAGE operator from [20]. Both mean
pooling and max pooling will be explored.

The main structure of the model will be equal for all the models which
will be divided into Message Passing Layer as shown in Figure 4.3.

This layer will be composed of the chosen Graph Convolutional Layer, the
ReLU activation function, and a Dropout layer providing a regularization
function to limit overfitting.

In the model which exploits GATv2Conv, the Message Passing Layer has
the addiction of Linear layers after each Dropout layer as it is represented in
Figure 4.4. This system is needed because the attentive layers are provided
with attention heads, and each one of them provides its output. The layer

43

Pipeline

Figure 4.3: The general schema of the Message Passing Layer with Graph
Convolutional Layer, ReLU activation Layer, and Dropout.

can average the output or concatenate it to obtain a single representation.
The second solution, combined with linear layers, allows the model to learn
how to aggregate the output of the heads.

All the models will have as a base model two Message Passing Layers
stacked on top of each other and a final Linear layer that will bring the
output size to the actual tagset size. The values for all the layers are shown
in Table 4.3.

GCNConv GATv2Conv SAGEConv
Linear layer out_channel 256 256 256
Layer 1 input_channel input_size input_size input_size
Layer 1 out_channel 1024 512 1024
Layer 2 out_channel 512 256 512

Layer 1 heads - 12 -
Layer 2 heads - 7 -

Table 4.3: Summary of the parameters of the models.

44

Pipeline

Figure 4.4: How the output of the GATv2Conv Layer is handled. If the layer
has N attention heads, their output is concatenated into N∗output_channels
array. This vector is passed to a Linear Layer which has an output size equal
to output_channels dimension.

4.5.2 Training Settings
The whole training process for this work is done on Google Colab with an
NVIDIA T4 GPU. The model is trained for 300 epochs with a batch size
of 32.The optimizer chosen is Adam, implemented by the pytorch library,
with the following parameters: learning rate lr = 10−3 , ϵ = 10−8 and
weight_decay = 0.01. The parameters are summarized in Table 4.4.

Epochs 300
Batch size 32

Adam Learning rate 10−8

Adam epsilon 10−3

Adam weight decay 10−3

Table 4.4: Summary of the parameters used for the training step.

To calculate the loss during the whole training process, Cross Entropy has

45

Pipeline

been selected. It is a popular loss function in machine learning, particularly
for classification problems. It quantifies the discrepancy between the actual
distribution of class labels and the projected probability distribution.

L = −
Ø

i

yi log(pi) (4.1)

Where L is the loss, yi is the true label for class i, and pi is the probability
of the prediction for class i.

Furthermore, the pytorch implementation for this loss is able to ignore
certain classes during the calculations. For this reason, the PAD label used to
pad the number of nodes and features in the graph will be ignored. Moreover,
there is the possibility of handling an unbalanced dataset by giving a weight
to each class. The equation for weighted Cross Entropy Loss is:

L = −
Ø

i

wi · yi log(pi) (4.2)

Where wi is the weight for class i. These weights are passed as a 1-
dimensional tensor used as a parameter. The chosen weights are listed in
the Table 4.5.

Non_Entity 0.05
Company_name 1

Company_address 1
Invoice_date 1

Invoice_number 1
total_due 1

Table 4.5: Summary of the weights used to calculate the Cross-Entropy
Loss.

4.5.3 Metrics
The metrics used in this work are calculated by exploiting the sklearn.metrics.
The following three metrics are calculated: Precision (P) Table 4.3, Recall
(R) Table 4.4 and F1 score (F1) Table 4.5. Furthermore, the F1 score is the
criterion to choose which model to save during training. All the metrics and
their components are explained below in detail. Given a class i belong to a

46

Pipeline

set of classes C, and a class j such that jϵC : {j /= i}, we can calculate the
following metrics for i :

• True Positive(TP): the number of entities i that are correctly classified
as i.

• False Positive(FP): the number of j classified as i.

• True Negative(TN): the number of j non entities classified as j.

• False Negative(FN): the number of entities i that are classified as j.

Then, to evaluate the model, the following three metrics are calculated:
Precision (P) in Eq. 4.3, Recall (R) in Eq. 4.4, and F1 score (F1) in Eq. 4.5.

P = TP

TP + FP
(4.3)

R = TP

TP + FN
(4.4)

F1 = 2 × Precision × Recall

Precision + Recall
(4.5)

The reason why F1 is used as the criterion to save the best model during
training, with respect to other metrics, is because this dataset and in general
this type of data are unbalanced. There is a high presence of non-entity
nodes.

In these situations, accuracy alone can be deceiving since a model that
consistently predicts the majority class would have high accuracy but may
struggle with the minority class. The F1 score offers a balanced evaluation
measure that takes into account the performance of both classes, providing
a better assessment of the model’s overall performance.

The F1 score finds a compromise between accuracy and recall, merging
both measures into one number that represents the model’s capacity to
simultaneously detect pertinent occurrences (recall) and reduce false positives
(precision).

47

Chapter 5

Results

5.1 Analysis of the results
This section is dedicated to the discussion of the results obtained with the
aforementioned pipeline.

The experiments were all done over Google Colap exploiting an NVIDIA
T4 GPU. This GPU is equipped with 16 GB of high-speed GDDR6 memory
and 2,560 CUDA cores. For every test, Precision, Recall and F1-score are
calculated and the latter is used as the criterion to save the best model.

These experiments along with the Ablation Study, want to analyze the
performances of the difference architecture on Information Extraction over
this type of heterogeneous semi-structured data. Furthermore, these works
want to uncover which components and configurations can really generalize
this type of data.

For this reason, the results will be provided for the chosen Graph Neural
Networks:

• GCNConv;

• GATv2Conv;

• SAGEConv, testing both mean_pooling and max_pooling.

5.1.1 Expectations
Due to the heterogeneous nature of the data, which changes and does not
provide a grid-like structure, the expectations are that the GCNConv-based

48

Results

architecture will perform poorly with respect to the others. This is because
GCNConv works on the assumption that neighbouring nodes in the graph
have equivalent relevance and can give relevant information. Instead, the
mean pooling aggregation in SAGEConv and the attention mechanism in
GATv2Conv allow them to consider a wider variety of neighbourhood infor-
mation, leading to more expressive representations. Furthermore, SAGEConv
and GATv2Conv are better suited for graphs with changing neighbourhood
sizes or node degrees.

Comparing SAGEConv and GATv2Conv, it is important to mention that
the latter is able to process edge features, that can be used along with the
attention mechanism to handle graphs with varying neighbourhood sizes and
heterogeneous node degrees. Thanks to this flexibility, the GATv2Conv-based
architecture is expected to provide more accurate results.

5.1.2 Results

GCNConv Precision Recall F1-Score
Non-Entity 0.99 0.89 0.94

Company_name 0.74 0.85 0.79
Company_address 0.64 0.96 0.77
Invoice_number 0.59 0.75 0.66

Invoice_date 0.78 0.87 0.82
total_due 0.36 0.93 0.52

macro_average 0.68 0.88 0.75

Table 5.1: Results obtained with the GCNConv-based architecture.

As expected the GCNConv-based model is outperformed by the others,
as shown in Table 5.1. This is probably to the lack of flexibility with respect
to the other architectures.

The results show that the GATv2Conv-based model is able to predict in
a more precise way the entities in the invoice, obtaining a macro average
F1-score of 0.86, as shown in Table 5.2. This is probably thanks to its
ability to provide attention weights to each adjacent node and elaborate edge
weights.

Nonetheless, looking at Table 5.4, similar results are obtained from the
SAGEConv-based model with mean-pooling aggregation, which obtained 0.85

49

Results

GATv2Conv Precision Recall F1-Score
Non-Entity 0.98 0.96 0.97

Company_name 0.90 0.87 0.88
Company_address 0.83 0.95 0.89
Invoice_number 0.85 0.75 0.80

Invoice_date 0.87 0.89 0.88
total_due 0.62 0.84 0.72

macro_average 0.84 0.88 0.86

Table 5.2: Results obtained with the GATv2Conv-based architecture.

SAGEConv Precision Recall F1-Score
Non-Entity 0.98 0.95 0.97

Company_name 0.84 0.91 0.87
Company_address 0.85 0.92 0.88
Invoice_number 0.81 0.79 0.80

Invoice_date 0.83 0.93 0.88
total_due 0.54 0.92 0.68

macro_average 0.81 0.90 0.85

Table 5.3: Results obtained with the SAGEConv-based architecture and
mean_pooling aggregation method.

macro-average F1-score, as visible from Table 5.3. The fact that this model
does not leverage edge weights, raises the question about how important it
is to employ this feature for the prediction.

Furthermore, from the tables, it is observable a difficulty of the models to
classify accurately the Invoice_number and the total_due classes.

First of all, these are the two least represented classes in the dataset. This
probably causes the models to be biased towards the others.

Moreover, the invoices in the dataset are all from 20th century. Hence,
they tend to be a little outdated and less structured than nowadays invoices,
not always providing key-value pairs.

Additionally, there were cases where the invoice presented only one item
and the total_due was not presented in a different voice. Consequently, the
model could wrongly classify some item prices as total_due classes. This

50

Results

SAGEConv Precision Recall F1-Score
Non-Entity 0.98 0.95 0.97

Company_name 0.77 0.90 0.83
Company_address 0.86 0.93 0.89
Invoice_number 0.86 0.79 0.82

Invoice_date 0.83 0.94 0.88
total_due 0.52 0.93 0.66

macro_average 0.80 0.91 0.84

Table 5.4: Results obtained with the SAGEConv-based architecture and
max_pooling aggregation method.

can be seen from the Precision score which is significantly lower than the
Recall. The disparity between the two scores highlights the presence of a
high number of False Positives for the class total_due.

5.2 Ablation study
This section is dedicated to the ablation study on the whole solution. Hence,
it will be analysed how the performances change by modifying elements not
only in the architecture of the Graph Neural Network but also by working
on how the nodes embedding and the graph itself are created.

The following experiments will be performed:

• Changing embedding model from BERT to CharBERT and FastText.

• Not applying edge weight over the graph and the GATv2Conv-based
model.

• Analysing the performance with a 1-layer GNN and a 3-layer GNN.

• Lowering the number of edges for each node.

5.2.1 Embedding model
The two models chosen for this analysis are CharBERT and FastText. Char-
BERT follows an implementation for the input system similar to BERT.

51

Results

For this reason, the input will follow the same steps. Firstly rearrange the
textbox into a line then, tokenize the different words and pass them to
CharBERT. Subsequently, the output embeddings are groped by word and
aggregated into only a vector for each word with mean pooling.

Instead, FastText can elaborate out-of-vocabulary words without providing
an embedding for each subword. Hence, each word from a textbox is passed
to the model to obtain its representation.

BERT Precision Recall F1-Score
Non-Entity 0.98 0.96 0.97

Company_name 0.90 0.87 0.88
Company_address 0.83 0.95 0.89
Invoice_number 0.85 0.75 0.80

Invoice_date 0.87 0.89 0.88
total_due 0.62 0.84 0.72

macro_average 0.84 0.88 0.86

Table 5.5: Results obtained with the GATv2Conv-based architecture and
BERT to provide the textual embeddings.

FastText Precision Recall F1-Score
NE 0.99 0.89 0.94

Company_name 0.71 0.88 0.79
Company_address 0.72 0.94 0.81
Invoice_number 0.44 0.85 0.58

Invoice_date 0.73 0.95 0.83
total_due 0.31 0.94 0.46

macro_average 0.65 0.91 0.73

Table 5.6: Results obtained with the GATv2Conv-based architecture and
FastText to provide the textual embeddings.

By comparing the different results in Tables 5.5 and 5.6, it is possible
to affirm that the model exploiting contextual embeddings obtained better
results for all the classes.

The contextual embeddings in general provide better semantic representa-
tions and also these representations are dynamic. Based on the particular

52

Results

CharBERT Precision Recall F1-Score
NE 0.98 0.96 0.97

Company_name 0.84 0.86 0.85
Company_address 0.87 0.91 0.89
Invoice_number 0.79 0.85 0.82

Invoice_date 0.84 0.86 0.85
total_due 0.44 0.75 0.55

macro_average 0.79 0.87 0.82

Table 5.7: Results obtained with the GATv2Conv-based architecture and
CharBERT to provide the textual embeddings.

context of the sentence or text being examined, embeddings are formed
dynamically.

From the results, it is evident that this feature is also relevant in the
invoice domain, where the lines composing the document are not mostly
sentences or descriptions, but key-value pairs.

Analysing the results in table 5.7, it appears that, in this case, CharBERT
not only does not provide an improvement concerning BERT but it also un-
derperforms. The answer to this behaviour could be found in the Robustness
Analysis provided by Ma et al. in [13] shows that CharBERT has a higher
Sensitivity than BERT model.

The dataset is composed of scanned invoices which may present noise
because they also present handwritten notes or the quality is poor.

5.2.2 Edge weigths

Analyzing the results provided by the GATv2Conv-based architecture and
the ones provided by the SAGEConv-based ones. A question about the
importance of edge weights has been raised.

The edge weights are used by the GATv2Conv layer as a score different
from the attention mechanism. As a matter of fact, from table 5.9 it is
possible to see a decrease in performance in all the classes, with respect to
results shown in Table 5.8. This provides clear evidence of the importance
of edge weights in this task.

53

Results

edge weights Precision Recall F1-Score
Non-Entity 0.98 0.96 0.97

Company_name 0.90 0.87 0.88
Company_address 0.83 0.95 0.89
Invoice_number 0.85 0.75 0.80

Invoice_date 0.87 0.89 0.88
total_due 0.62 0.84 0.72

macro_average 0.84 0.88 0.86

Table 5.8: Results obtained with the GATv2Conv-based architecture and
using edge weights.

No edge_weight Precision Recall F1-Score
NE 0.98 0.93 0.95

Company_name 0.72 0.89 0.79
Company_address 0.77 0.92 0.84
Invoice_number 0.69 0.66 0.68

Invoice_date 0.72 0.85 0.78
total_due 0.53 0.83 0.65

macro_average 0.74 0.85 0.78

Table 5.9: Results obtained with the GATv2Conv-based architecture and
not using edge weights.

5.2.3 Number of Message Passing Layer
The number of layers in the architecture represents also the length of the
path of message passing. For example, if there is only one layer, the node
embedding will be influenced only by direct neighbours, while an increasing
number of layers enables the influence of further neighbours.

This possibility can be beneficial in terms of the context provided to
each node, allowing the model to capture more complex and high-level
relationships in the graph.

However, it also increases the complexity in terms of memory and compu-
tations. Furthermore, especially when the training data is scarce or noisy,
the model becomes more prone to overfitting. Moreover, additional layers
might not significantly increase performance and might even make the learnt
representations more noisy or unstable.

54

Results

As it is visible from the results in Table 5.10 the increase in layers, in
this case, does not provide an improvement. Probably, due to the aspects
aforementioned.

3-layer Precision Recall F1-Score
NE 0.98 0.95 0.96

Company_name 0.79 0.89 0.84
Company_address 0.87 0.91 0.89
Invoice_number 0.76 0.74 0.75

Invoice_date 0.85 0.82 0.84
total_due 0.41 0.83 0.55

macro_average 0.78 0.86 0.80

Table 5.10: Results obtained with the 3-layer GATv2Conv architecture.

5.2.4 Number of edges
Changing the number of nodes selected to form an edge is another way to
impact the way the node embedding is conditioned by its neighbourhood.
As a matter of fact, the challenges are similar to changing the number of
layers in the architecture.

A node can collect data from a greater number of nearby nodes by adding
additional edges to it. A richer and more complete representation of the
local graph structure is made possible by the enhanced connectedness, which
may be able to capture more complex dependencies and relationships. Still,
with many connections, the node may become overly dependent on some
surrounding nodes, which would result in poor generalization of unknown
data. Additionally, the neighbourhood data of the node may become more
noisy and redundant with more edges.

Also, reducing the number of edges makes a node’s local neighbourhood
information easier to understand. By doing so, the node can concentrate on
its most useful neighbours and reduce noise and unimportant connections.
However, the model’s capacity to generalize may be limited if the fewer edges
do not accurately describe the graph’s underlying structure. Furthermore, a
node can only access a certain level of local connectivity when the number
of edges is reduced. Important relationships and dependencies that were
present in the graph may be lost as a result of this. The model’s capacity to

55

Results

identify fine-grained patterns and complex interactions may be constrained
by the limited local information. In the end, for this type of task lowering
the number of edges provides worse results, as shown in Table 5.11.

5-node neighbourhood Precision Recall F1-Score
NE 0.98 0.96 0.97

Company_name 0.82 0.86 0.84
Company_address 0.86 0.92 0.89
Invoice_number 0.84 0.82 0.83

Invoice_date 0.88 0.85 0.87
total_due 0.44 0.85 0.58

macro_average 0.80 0.88 0.83

Table 5.11: Results obtained with the GATv2Conv-based architecture and
creating the graph with 5 neighbours for each node.

56

Chapter 6

Conclusions

6.1 Conclusion

In the end, this works provides an end-to-end tool for Information Extraction
over scanned invoices.

This is done by a multi-step pipeline that extracts text and positional
features from the scanned invoices. Secondly, text features are embedded
into continuous vectors by BERT, and along with the spatial features are
used to generate the node embedding. Subsequently, the graph is generated,
by selecting using the Euclidean distance as a criterion for the creation of a
node’s neighbourhood. Finally, the document is passed into a Graph Neural
Network to extract the entities in analysis.

This work examines the results of this task, analyzing a dataset of invoices
with a variety of compositions, while also giving a general review of the various
methods for the three key processes of graph formation, token embedding,
and node classification.

While the performances of this solution are not sufficient to completely de-
ploy the pipeline for a full-automated tool, this works provides a well-rounded
research and a good starting point for the performances of Information Ex-
traction over a dataset of heterogeneous invoices.

Furthermore, this thesis also provides a handcrafted public dataset [1]
composed of 1400 invoices, with 5 entities labelled. The hope is that this
could represent the start of more development in this field of research.

57

Conclusions

6.2 Future Works
Due to limitations, caused by the need for the creation of a dataset, some
solutions have been left unexplored.

One possibility is to provide BERT with an ulterior step of pre-training
by exploiting the invoices. This solution creates a BERT model specialized
over a certain domain. As it has been already proved by Syed et al. in [22],
the technique of adapting BERT to a certain domain can bring improvement
to the task by creating richer and more contextualized embeddings.

Alternatively, self-supervised techniques have been frequently applied to
Graph Neural Networks. Two examples of these techniques are:

• Graph Reconstruction: in this assignment, a GNN is trained to decipher
partial or corrupted graph versions and recreate the original graph
structure. Throughout the reconstruction process, the model gains
knowledge of the underlying connection patterns and dependencies in
the graph.

• Graph Context Prediction: the GNN gains the ability to predict a
node’s surroundings or context. The model is conditioned to distinguish
between the real neighbourhood and randomly generated or manufac-
tured neighbourhoods. As a result, the GNN is motivated to identify
important local patterns and dependencies.

These solutions can be applied to the architectures already presented in
this analysis. It could be interesting to see if applying a pre-training step
to the architecture could help them to perform better or even decrease the
number of invoices needed to train the model.

Additionally, any expansions brought to the dataset could be useful.
Probably one of the most important improvements could be the addition of
more entities, for example regarding the price of each item or their description.
This could limit both the presence of False Positive for the class total_due
and also would help to balance the dataset.

58

Bibliography

[1] Invoice Dataset. url: https://github.com/FedericoPes/Informat
ionExtraction-over-Invoices (cit. on pp. 5, 57).

[2] Daniel Esser, Daniel Schuster, Klemens Muthmann, Michael Berger, and
Alexander Schill. «Automatic indexing of scanned documents: a layout-
based approach». In: Document Recognition and Retrieval XIX. Ed. by
Christian Viard-Gaudin and Richard Zanibbi. Vol. 8297. International
Society for Optics and Photonics. SPIE, 2012, 82970H. doi: 10.1117/
12.908542. url: https://doi.org/10.1117/12.908542 (cit. on
p. 8).

[3] Zhiheng Huang, Wei Xu, and Kai Yu. «End-to-end Sequence Labeling
via Bi-directional LSTM-CNNs-CRF». In: Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers). Association for Computational Linguistics.
2015, pp. 647–657 (cit. on p. 8).

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
«BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding». In: CoRR abs/1810.04805 (2018). arXiv: 1810.04805.
url: http://arxiv.org/abs/1810.04805 (cit. on pp. 8, 19).

[5] Anoop R. Katti, Christian Reisswig, Cordula Guder, Sebastian Brarda,
Steffen Bickel, Johannes Höhne, and Jean Baptiste Faddoul. «Chargrid:
Towards Understanding 2D Documents». In: CoRR abs/1809.08799
(2018). arXiv: 1809.08799. url: http://arxiv.org/abs/1809.08799
(cit. on p. 9).

[6] Timo I. Denk and Christian Reisswig. «BERTgrid: Contextualized
Embedding for 2D Document Representation and Understanding».

59

https://github.com/FedericoPes/InformationExtraction-over-Invoices
https://github.com/FedericoPes/InformationExtraction-over-Invoices
https://doi.org/10.1117/12.908542
https://doi.org/10.1117/12.908542
https://doi.org/10.1117/12.908542
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1809.08799
http://arxiv.org/abs/1809.08799

BIBLIOGRAPHY

In: CoRR abs/1909.04948 (2019). arXiv: 1909 . 04948. url: http :
//arxiv.org/abs/1909.04948 (cit. on p. 9).

[7] Xiaojing Liu, Feiyu Gao, Qiong Zhang, and Huasha Zhao. «Graph
Convolution for Multimodal Information Extraction from Visually Rich
Documents». In: CoRR abs/1903.11279 (2019). arXiv: 1903.11279.
url: http://arxiv.org/abs/1903.11279 (cit. on pp. 10, 11).

[8] Devashish Lohani, Abdel Belaïd, and Yolande Belaïd. «An Invoice
Reading System Using a Graph Convolutional Network». In: ACCV
Workshops. 2018 (cit. on pp. 10, 11).

[9] Benjamin Heinzerling and Michael Strube. «BPEmb: tokenization-free
pre-trained subword embeddings in 275 languages». In: Proceedings of
the 57th Annual Meeting of the Association for Computational Linguis-
tics: System Demonstrations. Association for Computational Linguistics.
2019, pp. 328–334 (cit. on p. 10).

[10] Rico Sennrich, Barry Haddow, and Alexandra Birch. «Neural Ma-
chine Translation of Rare Words with Subword Units». In: CoRR
abs/1508.07909 (2015). arXiv: 1508.07909. url: http://arxiv.org/
abs/1508.07909 (cit. on pp. 10, 20, 21).

[11] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomás Mikolov.
«Enriching Word Vectors with Subword Information». In: CoRR abs/1607.04606
(2016). arXiv: 1607.04606. url: http://arxiv.org/abs/1607.04606
(cit. on p. 15).

[12] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. «Attention
Is All You Need». In: CoRR abs/1706.03762 (2017). arXiv: 1706.03762.
url: http://arxiv.org/abs/1706.03762 (cit. on pp. 17, 18).

[13] Wentao Ma, Yiming Cui, Chenglei Si, Ting Liu, Shijin Wang, and Guop-
ing Hu. «CharBERT: Character-aware Pre-trained Language Model».
In: CoRR abs/2011.01513 (2020). arXiv: 2011.01513. url: https:
//arxiv.org/abs/2011.01513 (cit. on pp. 21, 22, 24, 53).

[14] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. «Learning Phrase Representa-
tions using RNN Encoder-Decoder for Statistical Machine Transla-
tion». In: CoRR abs/1406.1078 (2014). arXiv: 1406.1078. url: http:
//arxiv.org/abs/1406.1078 (cit. on p. 23).

60

https://arxiv.org/abs/1909.04948
http://arxiv.org/abs/1909.04948
http://arxiv.org/abs/1909.04948
https://arxiv.org/abs/1903.11279
http://arxiv.org/abs/1903.11279
https://arxiv.org/abs/1508.07909
http://arxiv.org/abs/1508.07909
http://arxiv.org/abs/1508.07909
https://arxiv.org/abs/1607.04606
http://arxiv.org/abs/1607.04606
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2011.01513
https://arxiv.org/abs/2011.01513
https://arxiv.org/abs/2011.01513
https://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078

BIBLIOGRAPHY

[15] Marco Gori, Gabriele Monfardini, and Franco Scarselli. «Neural network
for graphs: A contextual hierarchical approach». In: IEEE Transactions
on Neural Networks 16.6 (2005), pp. 1452–1465 (cit. on p. 26).

[16] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuch-
ner, and Gabriele Monfardini. «Graph neural networks». In: IEEE
Transactions on Neural Networks 20.1 (2009), pp. 61–80 (cit. on p. 26).

[17] Thomas N. Kipf and Max Welling. «Semi-Supervised Classification
with Graph Convolutional Networks». In: CoRR abs/1609.02907 (2016).
arXiv: 1609.02907. url: http://arxiv.org/abs/1609.02907 (cit. on
pp. 27, 43).

[18] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. Graph Attention Networks. 2018. arXiv:
1710.10903 [stat.ML] (cit. on p. 28).

[19] Shaked Brody, Uri Alon, and Eran Yahav. How Attentive are Graph
Attention Networks? 2022. arXiv: 2105.14491 [cs.LG] (cit. on pp. 29,
43).

[20] William L. Hamilton, Rex Ying, and Jure Leskovec. «Inductive Rep-
resentation Learning on Large Graphs». In: CoRR abs/1706.02216
(2017). arXiv: 1706.02216. url: http://arxiv.org/abs/1706.02216
(cit. on pp. 30, 43).

[21] Adam W Harley, Alex Ufkes, and Konstantinos G Derpanis. «Evaluation
of Deep Convolutional Nets for Document Image Classification and
Retrieval». In: International Conference on Document Analysis and
Recognition (ICDAR). 2015 (cit. on p. 33).

[22] Muzamil Hussain Syed and Sun-Tae Chung. «MenuNER: Domain-
Adapted BERT Based NER Approach for a Domain with Limited
Dataset and Its Application to Food Menu Domain». In: Applied Sci-
ences (2021) (cit. on p. 58).

61

https://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/2105.14491
https://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1706.02216

	List of Tables
	List of Figures
	Introduction
	Problem Statement
	Solution
	Applications
	Contributions

	Related Works
	Rule-based
	Token Classification
	Grid Based
	Graph Based
	Baseline

	Theory fundamentals
	Optical character recognition
	docTR

	Word-level Embeddings
	Fast Text
	Contextual embeddings
	Attention mechanism
	Transformers
	BERT
	CharBert

	Graphs
	Graph Neural Networks
	Graph Convolutional Networks
	Graph Attention Networks
	GraphSAGE

	Pipeline
	General Pipeline
	Dataset
	DocTR

	Node embedding
	Spatial features
	Word Embeddings

	Graph Creation
	Data object

	Model
	Architectures
	Training Settings
	Metrics

	Results
	Analysis of the results
	Expectations
	Results

	Ablation study
	Embedding model
	Edge weigths
	Number of Message Passing Layer
	Number of edges

	Conclusions
	Conclusion
	Future Works

	Bibliography

