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Abstract

Data represents an increasingly critical strategic asset for companies of all sectors
and sizes. Without a solid foundation of Analytics engineering, one risks having
poor quality data, manual and fragmented processes, unreliable analysis, and long
delivery times.

Fortunately, there are tools that help implement the best Analytics engineering
practices efficiently and at scale. One of these is dbt (data build tool), an open-
source platform that simplifies the transformation, documentation, and testing of
data models.

The main focus of the thesis is to implement a modern pipeline solution that
incorporates all best practice of analytics engineering. The inclusion of an analytics
engineer within a data team represents a new paradigm in data-driven organiza-
tions. The study aims to show the feasibility of such a solution and the potential
improvements of adopting such a solution in terms of increased efficiency, higher
quality data, and faster time to insights.

Moreover, this project has served as the starting point for a collaboration
with a company that has specific requirements in the area of data quality. The
collaboration has provided valuable insights into the practical implementation of
the pipeline solution and has helped tailor the approach to address the company’s
data quality needs.

The proposed solution will involve the use of cutting-edge tools and techniques
to transform, document, and test data models, such as dbt. The whole architecture
will be implemented serverless on a cloud computing system to provide the required
elasticity, scalability, and cost-effectiveness.

The improved reliability of data analysis, coupled with the faster time to insights,
will allow organizations to make data-driven decisions more quickly and confidently.
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Chapter 1

Introduction

1.1 Motivation

In today’s business landscape, Big Data refers to the vast amount of structured
and unstructured data that inundates organizations on a daily basis. The ability to
store, process, and analyze such data is crucial for extracting insights and making
informed decisions. Companies generate and collect large volumes of data from
various sources, including user interactions, enterprise resource planning systems,
and other software applications. The goal is to leverage this data to gain business
insights and derive value from it. However, without reliable and relevant datasets,
business intelligence insights may be incomplete, inaccurate, or biased, leading to
misguided strategic choices.

1.2 Problem

In the modern paradigm of data driven organizations, data engineers focus on
building and managing all the infrastructure of data pipelines, while data analysts
utilize advanced statistical and analytical techniques to derive insights from data.
However, There is a misalignment between the technical expertise of Data engineer
and the analytical skills of Data analyst may lead to difficulties in finding proper
coordination and collaboration.

To address this challenge, a new role is needed to bridge the gap. Analytics
engineers serve as a connection between technology and business, with the goal of
providing useful, clean, and accurate datasets for business needs.
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Introduction

1.3 Purpose and goal
dbt (Data Build Tool) is an open-source software developed by Fishtown Analytics,
specifically designed to equip analytics engineers with robust tools for dataset
creation and validation.

The purpose of this thesis is to design and implement an architecture that
embodies the new paradigm, wherein analytics engineers play a central role in the
transformation phase.

The goal of this thesis is to build a comprehensive dbt project from scratch,
starting with a database, in order to showcase the key characteristics that facilitate
the transition from the old paradigm to the new one. Moreover, a proof-of-concept
solution has been developed to seamlessly integrate the dbt project into a serverless
data pipeline hosted on AWS.

The deliverables include the thesis, the code and the documentation to explain
the code.

1.4 Methodology
The methodology of this project can be considered as system research on dbt and
AWS. The first step would be to figure out the components related to this project,
and the interactions between them. The next step is to build a concept about how
to realize the goals. The concept should be demonstrated whether it is feasible or
not. In this case, it is to generate a design about how to run a serverless DBT
project on AWS. Then, the design should be implemented to check its feasibility.
According to the situation, minor changes could be applied to adjust the design in
order to achieve a better result.

1.5 Outline
Chapter 2 introduces the necessary background for the project, including the
introduction of applied technologies. Chapter 3 and 4 explains the implementation
of the work. Chapter 5 contains a qualitative analysis to evalutate the effectiveness
of the new paradigma compared to the old one. Chapter 6 gives the conclusion of
the project.
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Chapter 2

State of the Art

2.1 Data pipeline
Data pipelines serve as the backbone of modern data-driven environments. In
this context processing, analysis, and decision-making is enabled by the efficient
and reliable flow of data from various sources to target systems. A data pipeline
encompasses a series of stages or steps that collectively handle the movement,
transformation, and storage of data.

There are two main paradigms for implementing data pipelines: Extract, Trans-
form, Load (ETL) and Extract, Load, Transform (ELT). [1]

2.1.1 Extract Transform and Load
The ETL paradigm is a traditional approach to data pipeline implementation. It
involves the following three stages:

In the "Extract" stage, data is extracted from various sources such as databases,
files, APIs, or streaming platforms. This is why this stage can be considered as the
collection of data from inputs.

Once the data is extracted, it undergoes a series of transformations. These
include validation, standardization, , data cleaning, and aggregation. The goal is to
grant that the data is in the desired format and structure for analysis and loading.

In the last stage, the transformed data is loaded into a target system, such as a
data warehouse, data mart, or a specific analytics platform. In the loading process
the transformed data is mapped to the target schema and inserted or updated.

The ETL paradigm is often used in scenarios where data integration, data
quality management, and complex transformations are necessary before loading
the data into the target system. It allows for data consolidation, harmonization,
and enrichment, enabling organizations to derive valuable insights from disparate
data sources. [2]
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Figure 2.1: Logic scheme of an etl data pipeline

2.1.2 Extract, Load and Transform
The ELT paradigm is an alternative approach to data pipeline implementation
that has gained popularity with the emergence of cloud-based data platforms and
powerful data processing technologies. It involves the following stages:

Figure 2.2: Logic scheme of an elt data pipeline

Concerning the ELT, the Extraction stage is identical to the ETL process.
Data is collected from different sources, but instead of immediately applying
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transformations, it is prepared for the loading phase.
The extracted data is directly loaded into a target data storage or data ware-

house. This means that the data arrives in the storage infrastructure without any
manipulation. This is commonly referred to as "raw data."

Once the data is loaded into the target system, transformations are performed
within the target environment. This approach takes advantage of the flexibility
and computational resources available in the Cloud system. During this stage,
we can begin by transforming the raw data, initially focusing on cleaning any
data imperfections, and then proceed to create models based on relevant data
aggregation.

The ELT paradigm offers the advantage of leveraging the full processing power of
the target system for data transformations. It enables organizations to handle large
volumes of data and perform complex analytical tasks directly within the target
environment, reducing the need for pre-processing and enabling faster insights.[3]

2.1.3 Comparison and Cloud computing scenario
The choice between ETL and ELT depends on several factors, including data
requirements, target system capabilities, performance considerations, and data
governance needs. Here are some points of comparison between the two paradigms:

Complexity of transformations: ETL is typically suited for scenarios that require
extensive data transformations before loading into the target system. ELT, on
the other hand, is advantageous when the target system has robust processing
capabilities and can handle complex transformations efficiently.

Scalability and performance: ELT leverages the scalability and performance
capabilities of cloud-based data platforms, allowing for high-volume data processing
and real-time analytics. ETL may require additional infrastructure and processing
resources to handle large-scale transformations.

Data governance and privacy: ETL provides more control over data governance
processes, as transformations can be performed before loading the data into the
target system. ELT, however, requires careful consideration of privacy and security

In conclusion ETL is the typical solution adopted for small relational database
which require complex transformation that have been predetermined as being
relevant to the analysis goal. This is why Data teams using this approach have to
know in advance how the data will be used before any analysis is even performed.
The problem is that they have poor visibility on transformations applied to data
and their life cycle since engineering teams typically own the Extraction and
Transformation steps. This makes it hard for them to understand exactly what the
data represents, often leading to incorrectly drawn conclusions.

Instead in ELT approach the amount of raw data stored into the warehouse
will increase and so the amount of storage needed. For the same reason the
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computational power needed to transform and model data will be bigger. Such
resources are very expensive and this has been a limiting factor for many years
until the arrival of Cloud computing.

Cloud computing reduces the costs of building and maintaining Data Center. It
allows to dynamically scale the amount of resources needed both for storage and
computation (more space when needed and less space when not to avoid waste of
resources and costs) and offers super computer to quickly transform great amount
of data. The major cons of ELT pipelines are now compensated by cloud computing
services leading them to become commonplace. [4]

In this ELT scenario the Transformation phase takes places as the last step of the
process so it’s unbound from the Extraction and the Load. Such an isolated process,
within the Datawarehouse environment, makes the operation executable with more
flexibility and frequency without loss of perfomances. These pave the way to a new
figure designated to accomplish these functions, the “Analytics engineer”.

2.2 Importance of Cloud Computing Services
Cloud computing services have emerged as a revolutionary paradigm in the field
of information technology. The rapid advancement of digital technologies and the
increasing demand for scalable, flexible, and cost-effective computing solutions
have led to the widespread adoption of Cloud computing services across various
industries and sectors. This section aims to provide an introduction to Cloud
computing services, their fundamental concepts, and their impact on the modern
technology landscape.[5]

2.2.1 Advantages and benefits offered by Cloud computing
services

What cloud computing systems offer is the possibility to access hardware resources
without physically owning them. In fact, this allows companies to avoid buying and
managing resources. There are several resources available for different purposes.
The main ones are computational units, storage systems, and networking capaci-
ties. Computational units are CPUs and GPUs used to execute various kinds of
operations, such as running a query. The storage system refers to all the available
space for data collection, and networking capacity refers to the ability to handle
a certain amount of traffic and requests on a resource. The main advantages of
cloud computing are the great flexibility that these systems offer. The amount of
resources can auto-scale according to business necessities, ensuring that: - The need
for resources can always be met. - Unused resources are instantly freed, avoiding
any waste or unnecessary expenses. [6]
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2.3 Technologies Exploited in Cloud Computing
Services

Cloud computing services rely on a variety of underlying technologies to deliver
their capabilities. These technologies work together to provide scalable, reliable,
and efficient computing solutions. Understanding these foundational technologies
is essential to comprehending the inner workings of Cloud computing services.

2.3.1 Virtualization and resource pooling
Two foundamental technologies employed by cloud computing system are Virtual-
ization and resource pooling. The first concern the possibility to abstract hardware,
operating systems, storage, and network resources into virtual istances. They
allow an efficient management of the physical resorces and ensure isolation and
flexibility. Resource poolng instead is the management mecganism to allocate hard-
ware resources.Resource pooling involves aggregating resources, such as processing
power, storage, and network bandwidth, into a shared infrastructure. This shared
infrastructure is dynamically assigned to users as needed. Resource management
technologies, including orchestration and auto-scaling systems, ensure optimal
resource utilization and efficient allocation based on demand.[7]

2.3.2 Distributed computing
Distributed computing is a core concept in Cloud computing services. It involves
the use of multiple interconnected computers or servers to work together as a unified
system. Distributed computing enables the processing of tasks across a network of
resources, enabling parallel processing, fault tolerance, and improved performance.
Distributed file systems, distributed databases, and distributed processing frame-
works, such as Apache Hadoop and Apache Spark, are key components of Cloud
computing services.[8]

2.3.3 Networking and connectivity
Robust and high-performance networks are essential for efficient communication
between different components of the cloud infrastructure. In order to adapt to
varying traffic volumes, a network must be capable of swiftly managing network
configurations. Ad-hoc technologies such as Software-Defined Networking (SDN)
and Network Function Virtualization (NFV) provide the agility and programma-
bility required to manage and configure network resources in cloud environments.
Connectivity options, including virtual private networks (VPNs), load balancers,
and content delivery networks (CDNs), ensure secure and efficient data transfer
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between cloud service providers and their clients. Moreover, technologies such
as encryption, authentication, and access control mechanisms are implemented
to safeguard data and ensure privacy. Secure communication protocols and se-
cure multi-tenancy models provide isolation between different clients utilizing the
cloud infrastructure. To mitigate potential security threats, several techniques
exist, including continuous monitoring, vulnerability assessments, and intrusion
detection.

2.4 Analytics engineering
This thesis delves into the topic of analytics engineering, a term coined by the
company ’Fishtown analytics’, whose toolkit, dbt, is revolutionizing the field of
data analytics. The immense power of this tool has propelled it to become a
leading technology, increasingly adopted by numerous companies to bolster their
data pipelines.

The dbt toolkit stands out due to its user-friendly nature, seamless integration
with various cloud system services, and the ability to adhere to diverse Data Quality
best practices. These qualities are highly sought after by data teams seeking to
optimize their processes.

As explored in this thesis, the evolving landscape of data teams has prompted a
restructuring of their responsibilities, with the transformation phase now falling
under the purview of the "Analytics engineer." This role takes charge of managing
and executing the various tasks involved in the data transformation process.

2.4.1 What is Analytics engineering
Analytics engineering is the term used to identify the discipline of data transfor-
mation. It includes all the practices, activities and tools that contribute to the
creation of clean datasets. Its aim is to model the content and structure of data in
order to empower end-users to answer their own questions and to better respond
to the needs of analysis.

2.4.2 The analytics engineer
Nowadays, with the massive use of Cloud data warehouses, a new role is needed
to connect data engineers and data analysts. Analytics engineers represent a
bridge between Technology and business - new data team members with the aim
of providing the most useful, clean, and accurate datasets for business.

The Data Engineer is no more in charge of Data transformation, his role is
to build and maintain the data pipeline. Data content is fully managed by the
Analytics Engineer that provides clean, transformed data ready for analysis. He
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applies software engineering best practices to analytics code (ex. version control,
testing, continuous integration) and maintains data documentation & definitions.
He also interacts with the Data Analyst to supply required models for deep insights
work, build critical dashboards and forecasting.[9]

Figure 2.3: Tasks assigned to each of the role within a data Team.

2.4.3 dbt : Data Build Tool
In order for the analytics engineer to accomplish his tasks a new tool has been
created : dbt (Data Build Tool). Dbt enables analytics engineers to transform data
in their warehouses by simply writing select statements. dbt handles turning these
select statements into tables and views.” Further, “dbt does the T in ELT (Extract,
Load, Transform) processes — it doesn’t extract or load data, but it’s extremely
good at transforming data that’s already loaded into your warehouse. -Dbt Labs

At the most basic level, dbt has two building blocks: a compiler and a runner.
Users choose whatever text editor to write dbt code and then invoke dbt from the
command line. dbt compiles all code into raw SQL and executes that code against
the configured data warehouse.[10]

2.4.4 dbt models
Data transformation is simplified by dbt models that allow to do all the work in
SQL select statement avoiding boilerplate DDL and DML code. Furthermore dbt
is a complete Jinja compiler and SQL is far more powerful when it’s paird with a
fully-featured templating language.

14
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Figure 2.4: The role of dbt inside a data pipeline

dbt promotes a modular and reusable approach to model creation. It allows
analysts and data engineers to define reusable SQL-based models, commonly
referred to as dbt models. These models encapsulate the logic required to transform
and shape data into meaningful analytical assets. By designing models as modular
units, dbt enables reusability across different analyses, reducing redundancy and
promoting consistency. This modular approach enhances collaboration, as models
can be shared and reused by team members, fostering a more efficient and scalable
modeling process.

dbt also supports incremental model building, which is a key feature for managing
and updating models as new data arrives. With dbt, users can define incremental
models that only process new or modified data, allowing for faster model refreshes
and reducing unnecessary processing of unchanged data. Incremental model building
in dbt is achieved through the use of timestamp-based or state-based mechanisms,
providing flexibility and efficiency in data processing.

dbt offers built-in features for data lineage and documentation, which are crucial
for understanding and maintaining models. Data lineage in dbt provides visibility
into the flow of data, tracking the dependencies between different models and their
sources. This enables users to trace the origin of data and understand how changes
in upstream data sources impact downstream models. Additionally, dbt facilitates
the generation of documentation, automatically creating documentation pages that
describe the purpose, structure, and dependencies of each model. This documenta-
tion feature promotes better understanding, collaboration, and maintainability of
models over time.[1]

In the above example we can see the model that shows, for each city, how many
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Figure 2.5: select statement example to create a new dbt model

tickets have been sold for each event’s category. We can observe how Jinja is
useful to write in a simpler way complex query by setting variables, using if else
statements or iterations.

Jinja also offers the possibility to create custom and reusable functions. Some
of those are available in packages that can be imported as project’s dependencies,
some can be written by the analytics engineer and some other are dbt built-in
functions. Two of those are the ‘source()’ and ‘ref()’ functions that allow to build
models upon others previously created.[11]
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Chapter 3

dbt Project

3.1 Introduction
The next chapter will describe the created dbt project and all its functionalities.

The chapter will be structure as follow :

1. Data source description.

2. dbt project set-up.

3. Model creation.

4. Testing and validating

5. Documentation

3.2 Data source
In order to provide a better understanding of further data transformations we will
first describe the data used for modelling.

The database used in the project consists of a collection of sales activity for the
fictional TICKIT web site, where users buy and sell tickets for sporting events,
shows, concerts, musicals, and opera . Analysts can use this information to provide
incentives to buyers and sellers who frequent the site, to attract new users, and to
drive advertising and promotions.

The database is open-source and provided by AWS. It has the following ER
schema

17



dbt Project

Figure 3.1: ER schema for the Tickit relational database

3.3 dbt project Set-up

The first think to do when starting a new dbt project is to create a Git-hub
repository and open it on a IDE. For this project VScode has been used.[12]

From now on it is possible to interact with the terminal offered by VSCode to
execute all the command provided by DBT CLI for project initialization. This is how
a newly initialized dbt project looks like after running the "dbt init" command[13]:
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Figure 3.2: newly created dbt project

The GitHub project’s packages.yml contains the packages that are the project’s
dependencies. They have been installed with the command "dbt deps".

In this case the following packages have been invluded:

1. package: dbt-labs/dbt-external-tables version: 0.8.2

2. package: dbt-labs/codegen version: 0.9.0

3. package: dbt-labs/dbt-utils version: 1.0.0

4. package: dbt-labs/redshift version: 0.8.0

After that the dbt project have been connected to an existing Datawarehouse
containing the raw data of the above mentioned Tickit database. This is why
has been created a Redshift datawarehouse instance. To connect dbt to Amazon
Redshift, it has been used the Glue adapter. The Glue adapter is a plugin for dbt
that allows you to interact with Redshift as a target database for running your
dbt models. The Glue adapter leverages AWS Glue DataBrew and AWS Glue
DataCatalog to provide seamless integration with Redshift. [14]
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The connection between a dbt-project and a datawarehouse is configured in the
profile.yml file :

Figure 3.3: profile.yml datasource configuration file

3.4 Model creation
Once the datasource has been configured the analytics engineer can start modelling
the rawdata. This project follows many of the best practices outlined in dbt Labs’
Best Practice Guide. All data models that are going to be created will be organized
into three different subdirectories, also known as layers : staging, intermediate, and
marts.

3.4.1 Staging layer
According to the principles outlined in the dbt best practice guide, the staging layer
can be viewed as the consolidation and refinement of raw material into individual
building blocks that will later be used to construct more sophisticated and valuable
structures.

20
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Figure 3.4: models folder structure in the dbt project

In this project, the staging data models play a fundamental role as foundational
tables and views, serving as the building blocks for more complex aggregations
and analytics queries in the Redshift environment. Specifically, within the mod-
els/staging/tickit/ subdirectory, the schema.yml file defines the creation of seven
late-binding views in Amazon Redshift. These views are meticulously modeled by
dbt, ensuring their accuracy and effectiveness.

Here, we provide an illustration of the stg-tickit–sales model (stg-tickit–sales.sql)
as an example. This model retrieves data from the external sale table in the
external-table schema, and subsequently performs column renaming and basic
calculations. [14]

Listing 3.1: stg-tickit–sales model (stg-tickit–sales.sql)
1 {{ config(materialized=’view’, bind=False) }}
2

3 with source as (
4

5 select ∗ from {{ source(’ tickit_external ’ , ’ sale ’ ) }}
6

7 ) ,
8

9 renamed as (
10

11 select
12 saleid as sale_id,
13 listid as list_id ,
14 sellerid as seller_id ,
15 buyerid as buyer_id,
16 eventid as event_id,
17 dateid as date_id,
18 qtysold as qty_sold,
19 round (pricepaid / qtysold, 2) as ticket_price ,
20 pricepaid as price_paid,
21 round((commission / pricepaid) ∗ 100, 2) as commission_prcnt,
22 commission,
23 (pricepaid − commission) as earnings,
24 saletime as sale_time
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25 from
26 source
27 where
28 sale_id IS NOT NULL
29 order by
30 sale_id
31

32 )
33

34 select ∗ from renamed

In order to construct subsequent models based on the staging layer, the execution
of the "dbt run" command is necessary. According to dbt Labs, this command
enables the execution of compiled SQL model files on the designated target database.
By connecting to the target database, dbt runs the relevant SQL queries required to
materialize all data models, employing the specified materialization strategies.[15]

3.4.2 Intermediatelayer
The intermediate layer, as explained in the dbt best practice guide, is characterized
as a collection of purpose-built transformation steps. It is recommended to consider
action-oriented verbs (such as pivoted, aggregated-to-user, joined, fanned-out-by-
quantity, funnel-created, etc.) when designing the intermediate layer, serving as a
guiding principle for its construction.

Within the intermediate layer of this project, there are two models that pertain
to users. In the sample TICKIT database, all users are combined into a single
table. However, for the purpose of analytics, marketing teams may be interested
in different user personas, such as buyers, sellers, sellers who also make purchases,
and non-buyers (users who have never bought tickets). The two models within the
intermediate layer are designed to filter and create separate views for buyers and
sellers, enabling distinct perspectives on user personas.

Listing 3.2: int-buyer-extracted-from-user model (int-buyer-extracted-from-
user.sql)
1 {{ config(materialized=’view’, bind=False) }}
2

3 with sales as (
4

5 select ∗ from {{ ref( ’stg_tickit__sales’) }}
6

7 ) ,
8

9 users as (
10

11 select ∗ from {{ ref( ’stg_tickit__users’) }}
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12

13 ) ,
14

15 first_purchase as (
16 select min(date(sale_time)) as first_purchase_date, buyer_id
17 from sales
18 group by buyer_id
19 ) ,
20

21 final as (
22

23 select distinct
24 u.user_id,
25 u.username,
26 cast((u.last_name||’, ’ || u.first_name) as varchar(100)) as full_name,
27 f .first_purchase_date,
28 u.city ,
29 u.state ,
30 u.email,
31 u.phone,
32 u.like_broadway,
33 u. like_classical ,
34 u.like_concerts ,
35 u.like_jazz ,
36 u.like_musicals,
37 u.like_opera,
38 u.like_rock,
39 u.like_sports ,
40 u.like_theatre,
41 u.like_vegas
42 from
43 sales as s
44 join users as u on u.user_id = s.buyer_id
45 join first_purchase as f on f .buyer_id = s.buyer_id
46 order by
47 user_id
48

49 )
50

51 select ∗ from final

3.4.3 Marts layer
The marts layer in this project aligns with the recommendations provided in the
dbt best practice guide. This layer serves as the culmination point where all the
staging models (atoms) and intermediate models (molecules) are organized into
fully developed entities with clear identities and purposes. It is sometimes referred
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to as the entity layer or concept layer, emphasizing the representation of specific
entities or concepts at their unique granularity.

Within the project’s marts layer, there are four data models focusing on mar-
keting and sales. These models manifest as two dimension tables and two fact
tables. Although traditionally these would be labeled as star schema dimension
(dim-) or fact (fct-) tables, it is important to note that the fact tables in this
project are actually wide, denormalized tables. Wide tables are known to enhance
analytics performance in modern data warehouses, as affirmed by Fivetran and
other industry sources.

Listing 3.3: fct-sales model (fct-sales.sql)
1 {{ config(materialized=’table’ , sort=’sale_id’, dist=’sale_id’) }}
2

3 with categories as (
4

5 select ∗ from {{ ref( ’stg_tickit__categories’) }}
6

7 ) ,
8

9 dates as (
10

11 select ∗ from {{ ref( ’stg_tickit__dates’) }}
12

13 ) ,
14

15 events as (
16

17 select ∗ from {{ ref( ’stg_tickit__events’) }}
18

19 ) ,
20

21 listings as (
22

23 select ∗ from {{ ref( ’ stg_tickit__listings ’ ) }}
24

25 ) ,
26

27 sales as (
28

29 select ∗ from {{ ref( ’stg_tickit__sales’) }}
30

31 ) ,
32

33 sellers as (
34

35 select ∗ from {{ ref( ’int_sellers_extracted_from_users’) }}
36
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37 ) ,
38

39 buyers as (
40

41 select ∗ from {{ ref( ’int_buyers_extracted_from_users’) }}
42

43 ) ,
44

45 event_categories as (
46

47 select
48 e.event_id,
49 e.event_name,
50 c.cat_group,
51 c.cat_name
52 from events as e
53 join categories as c on c.cat_id = e.cat_id
54

55 ) ,
56

57 final as (
58

59 select
60 s .sale_id,
61 s .sale_time,
62 d.qtr ,
63 ec.cat_group,
64 ec.cat_name,
65 ec.event_name,
66 b.username as buyer_username,
67 b.full_name as buyer_name,
68 b.state as buyer_state,
69 b.first_purchase_date as buyer_first_purchase_date,
70 se .username as seller_username,
71 se .full_name as seller_name,
72 se . state as seller_state ,
73 se .first_sale_date as seller_first_sale_date ,
74 s . ticket_price ,
75 s .qty_sold,
76 s .price_paid,
77 s .commission_prcnt,
78 s .commission,
79 s .earnings
80 from
81 sales as s
82 join listings as l on l . list_id = s. list_id
83 join buyers as b on b.user_id = s.buyer_id
84 join sellers as se on se.user_id = s.seller_id
85 join event_categories as ec on ec.event_id = s.event_id
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86 join dates as d on d.date_id = s.date_id
87 order by
88 sale_id
89 )
90

91 select ∗ from final
92

93 select ∗ from final

3.5 Testing and Validation

dbt makes data integrity and data quality pretty effortless. Test are written and
then assigned right next to the model we have just created in a configuration .yml
file. Each time we run a new model the command dbt test is executed and all tests
related to that model will be launched.

dbt incorporate a set of functionalities dedicated to desting in order to allow
users to define different kind of tests. The main goal is to validate the correctness
and integrity of models which must conform to expected behaviour and produce
accurate results. The testing framework includes data type validations, uniqueness
checks, referencial integrity tests, and custom SQL-based tests.[16]
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Figure 3.5: YAML file showing testing configurations

As shown in the figure above, we can have three different types of test: built-in,
single and generic tests. The built-in tests do not need to be written because they
have been already created and included in the dbt project. The single test must be
written like a SQL select statement, if the select statement returns any value the
test is not passed. This is the logic for testing in a dbt project.

Figure 3.6: Tasks assigned to each of the role within a data Team.

Finally there is the generic test. It is written like a Jinja function that takes as
input the name of the model and the column we want to test. This means that we
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can apply the same test more than once to whatever model saving a lot of time.

Figure 3.7: Tasks assigned to each of the role within a data Team.

3.6 Data Lineage and Documentation
dbt offers built-in features for data lineage and documentation, which are crucial
for understanding and maintaining models. Data lineage in dbt provides visibility
into the flow of data, tracking the dependencies between different models and their
sources. This enables users to trace the origin of data and understand how changes
in upstream data sources impact downstream models. Additionally, dbt facilitates
the generation of documentation, automatically creating documentation pages that
describe the purpose, structure, and dependencies of each model. This documenta-
tion feature promotes better understanding, collaboration, and maintainability of
models over time.

Figure 3.8: example of an Auto-generated data-lineage

dbt automates the generation of documentation around descriptions(.yml con-
figuration files), model dependencies (ref() functions), model SQL, sources, and
tests. The documentation displays existing models, relevant database objects, and
detailed information about each model.
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By default, dbt generates documentation in HTML format with the "dbt docs
generate" command. This docs can be visualized on the auto-generated link that is
inserted in the project folder after the above command has been run. The following
is a view of the website for our project documentation.[17]

Figure 3.9: dbt project documentation website
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Chapter 4

AWS data pipeline with dbt
serverless

The next chapter will describe the whole project developped during my internship in
Data Reply srl. The project concerns the implementation of an ELT data pipeline
leveraging AWS cloud computing services as a Lakehouse and dbt for the data
transformation phase.

4.1 Technologies

4.1.1 S3 - Simple Storage Service
Amazon Simple Storage Service (Amazon S3) is an object storage service offering
industry-leading scalability, data availability, security, and performance. Users of
all sizes and industries can store and protect any amount of data for virtually any
use case, such as data lakes, cloud-native applications, and mobile apps. With cost-
effective storage classes and easy-to-use management features, you can optimize
costs, organize data, and configure fine-tuned access controls to meet specific
business, organizational, and compliance requirements.

In this project has been used to store the original datasource of the Tickit
database. Once in a bucket we have a direct access to this sources to be manipulated
and loaded in the Data Warehouse.[18]

4.1.2 Redshift
Amazon Redshift is a fast, fully managed, petabyte-scale data warehouse service
that makes it simple and cost-effective to efficiently analyze all your data using
your existing business intelligence tools. Its optimization cover different usecases of
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datasets ranging from a few hundred gigabytes to a petabyte or more and costs
less than $1,000 per terabyte per year, a tenth the cost of most traditional data
warehousing solutions.

Redshift is provided by Amazon Web Services (AWS). Its design allow to handle
large-scale data analytics workloads and provides high-performance querying and
processing capabilities.

Key features and characteristics of Amazon Redshift include:

1. columnar storage: by utilizing columnar storage, data blocks in Amazon
Redshift are designed to store values of a single column for multiple rows.
When new records are introduced into the system, they are automatically
transformed into columnar storage for each corresponding column.
Columnar storage allows each data block to accommodate column field values
for up to three times the number of records compared to row-based storage.
Consequently, retrieving the same number of column field values for the same
number of records necessitates only one-third of the I/O operations compared
to row-wise storage. Notably, in real-world scenarios with tables featuring
numerous columns and a significant number of rows, the storage efficiency is
even more pronounced.
Another notable benefit is that since each block holds homogeneous data, it
becomes feasible to employ compression techniques tailored specifically to the
data type of the column, resulting in further reduction in disk space and I/O.
For additional details regarding compression encodings based on data types,
further references can be consulted.

2. Massive Parallel Processing (MPP): Redshift leverages a distributed and
parallel processing architecture. It automatically distributes data and query
execution across multiple nodes, allowing for high scalability and performance.

3. Query Optimization: Redshift includes an optimizer that analyzes queries
and generates efficient query plans. It can parallelize and distribute query
execution across multiple nodes to achieve optimal performance.

4. package: dbt-labs/redshift version: 0.8.0

[redshift]
In this thesis, it has been chosen as the Data Warehouse to which to connect

and configure dbt.

4.1.3 Glue Data Catalogue
AWS Glue Data Catalog is a metadata repository provided by Amazon Web Services
(AWS). It is a central catalog that stores and organizes metadata information about
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various data sources, such as databases, tables, and schemas, within an AWS
environment. As metadata repository AWS Glue Data Catalogue collects and store
informations such as table schemas, data types, partitions and statistics.

To rapidly collect this metadata automated crawling has been implemented.
This technique is based on the ability to analyze each sort of data source, such as
S3 buckets, Redshift, JDBC/ODBC databases, extracting and classifying metadata.
Automated Crawling: Glue Data Catalog can automatically discover and crawl
data sources to infer their schemas and extract metadata. It supports a wide range
of data sources, including Amazon S3, Amazon RDS, Amazon Redshift, and other
JDBC/ODBC compatible databases.

Moreover The Data Catalog supports schema evolution, allowing it to handle
changes in data structures over time. It can detect and manage updates to tables,
including new columns, deleted columns, and changed data types. It make easier
to discover and access data by providing a metadata-driven approach. It enables
users to search and query the catalog to find relevant datasets and their associated
metadata.[19]

In this project the service has been used to automatically detect, thanks to the
crawling mechanism, all existing attributes of the Source file to create and populate
external tables in the AWS Redshift Datawarhouse

4.1.4 Docker
Docker is an open-source framework based on containerization, whose main goal is
to simplify the building, deploying, and running of applications. Applications run
inside docker virtual environments. The word environment refers to the operative
system and software dependencies needed by the application to run. Runtime
environments are usually indipendent from the underlying hardware infrastracture
on which are host.

To run an application on a Docker environment, user must create an image
that is a static template of the application which should include its dependencies,
runtime libraries and configuration files. Images are created from Dockerfiles, which
are declarative configuration files specifying the steps to build an image. Images
allow high portability and fast deploying of applications.

A running istance of a Docker image within an environment is called Container.
Container are considered as single and isolated process inside the virtual system
even if they share the underlying kernel and resources with other containers[20]

4.1.5 AWS ECR
Amazon ECR is a container image registry service provided by AWS, offering a
secure, scalable, and dependable solution. It facilitates private repositories with
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resource-based permissions utilizing AWS IAM. This ensures that designated users
or Amazon EC2 instances can access your container repositories and images. You
have the flexibility to employ your preferred CLI for pushing, pulling, and managing
various types of images, including Docker images, Open Container Initiative (OCI)
images, and OCI compatible artifacts.

ECR serves as a private, highly available, and scalable registry for storing Docker
container images. It allows you to push, pull, and manage container images using
the Docker CLI or any other Docker-compatible tools.

In this architecture an ECR istance has been use to host the docker image fetched
to be run on a fargate virtual environment in order to execute dbt command on
the thesis’s dbt project. [21]

4.1.6 AWS Fargate

AWS Fargate is a serverless compute engine for containers provided by Amazon
Web Services (AWS). It allows you to run containers without managing the un-
derlying infrastructure. With Fargate, you can focus on designing and deploying
containerized applications without worrying about server provisioning, scaling, or
patching.[22]

This is why it was used to automatically configure an environment capable of
running our ECR container. In particular Fargate offer a way to communicate with
the container while an istance of the environment is running, they are called ECS
TAsK and are described in the next subsection

4.1.7 ECS

ECS stands for Elastic Container Service, and it is an AWS service that allows the
user to easily deploy their applications on a scalable and manageable underlying
infrastructure. In fact ECS provide a user interface to set-up all the requisites and
characteritics of the desired environment and a way to manage therir scaling and
scheduling.

In this project it has been used, for sake of simplicity, a more powerful ECS
service called Fargate. With Fargate, you can define your containerized applications,
specify their resource requirements, and let Fargate handle the scaling, scheduling,
and management of the underlying infrastructure. This makes it easier to deploy
and manage containers without the need for manual provisioning or configuration
of EC2 instances.[23]
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4.1.8 Lambda

Lambda, offered by Amazon Web Services (AWS), is a serverless computing service
that enables you to execute your code without the need to provision or manage
servers. It is specifically designed to execute functions, which are small units of
code, in response to various events or triggers. With Lambda, you can effortlessly
run your code while abstracting away the complexities of server management.[24]

In our system Lambda function has been used to respond to any eventual failure
in the system. So while running dbt model creation or dbt test we can monitor the
logs outputted by an ECS Task and react to it by launching a predefined AWS
Lambda function.

4.1.9 CloudWatch

CloudWatch is a service provided by Amazon Web Services (AWS) that helps
monitor and observe your data. It enables you to collect, store, and analyze logs,
metrics, and events from various AWS resources and applications.

In this project i exploited the Logs monitoring and alarm mechanism as explaind
in the previous subsection about Lambdas. Logs enables you to aggregate, store,
and analyze logs generated by your applications and AWS services. You can
centralize logs from different sources, search and filter log data, and set up alarms
and notifications based on log events.[25]
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4.2 Overall Architecture

Figure 4.1: Data pipeline diagram

The above architecture depicts a simple ELT pipeline in which raw data is loaded
directly from sources into an S3 bucket. These raw data are then used to populate
external tables in the Redshift data warehouse, which serve as the source tables for
the dbt project. All the transformation phases, including testing and documentation,
are managed by dbt. I have implemented a serverless version of dbt using a dbt
Docker image hosted in ECR. A cron schedule has been configured using the AWS
EventBridge service to run ECS tasks that execute any dbt CLI command. Logs
from ECS task execution are then monitored using Cloudwatch, and Lambda
functions can be used to respond to any potential failures.

Once the data has been transformed and cleaned, it is ready to be displayed
and analyzed in Quicksight
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4.3 Data Ingestion Phase
The sources have not been implemented, instead data have been manually loaded
in the s3 bucket as .txt files for semplicity. Thus Data Ingestion has been avoided
since it was not the main theme to be treated in this thesis. Nevertheless the
architecture allow different techniques of data ingestion and can manage whatever
kind of data both structure and unstructured.

4.4 Data Storage and Management
The Raw data is collected in the S3 instances. The main goal is to load all this raw
data into the Data Warehouse so that they are reachable and modified depending
on the analysis needs. The technique used leverages external tables. They are
a feature that allows you to query and join data stored in external data sources
directly from your Redshift cluster without having to load the data into the cluster’s
storage. Instead, the data remains in its original location, such as Amazon S3, and
Redshift treats it as an external table.

In Redshift text editor and query runner the following instruction has been
written and run:

Listing 4.1: fct-sales model (fct-sales.sql)
1 create external schema tickit_external
2 from data catalog
3 database ’tickit_dbt’
4 iam_role ’arn:aws:iam::<your_aws_acccount_id>:role/ClusterPermissionsRole’
5 create external database if not exists ;

What is done with this command is to create a new schema in the Glue Data
Catalog called "tickit-external". This schema will be the place where to store all
meta data of our external tables.

To build external tables, it is needed to operate on the dbt project. The tickit–
sources.yml file in the models/staging/tickit/external-tables/ model’s subdirectory
defines the schema and S3 location for each of the seven external TICKIT database
tables: category, date, event, listing, sale, user, and venue.

Listing 4.2: Category external table schema definition (Category external table
schema definition)
1 version : 2
2

3 sources:
4 name: tickit_external
5 description : Sales activity for the fictional TICKIT web site, where users buy and

sell tickets online for sporting events, shows, and concerts.
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6 database: demo
7 schema: tickit_external
8 loader: s3
9 tables :

10 name: category
11 description : dimension table TICKIT categories
12 external :
13 location : "s3://<your_s3_bucket_name>/raw_tickit_data/category/"
14 row_format: >
15 serde ’org.apache.hadoop.hive.serde2.OpenCSVSerde’
16 with serdeproperties (
17 ’separatorChar’=’|’
18 )
19 table_properties: " (’ skip.header. line .count’=’1’)"
20 columns:
21 name: catid
22 data_type: int
23 description : primary key
24 tests :
25 unique
26 not_null
27 name: catgroup
28 data_type: varchar(20)
29 name: catname
30 data_type: varchar(20)
31 name: catdesc
32 data_type: varchar(50)

To create the seven external tables in the AWS Glue Data Catalog it was
executed the command, dbt run-operation stage-external-sources. This command
is part of the dbt-external-tables package we installed earlier. It iterates through
all source nodes, creates the tables if missing, and refreshes metadata.

Focus must be paid to "schema" field which is the one previously created and
to the field "location". This package will look for the table name inside the AWS
Glue Data Catalogue schema and if not present it will generate all the metadata
defined in the tickit–sources.yml file.[14]

At this point the Datawarehouse is configured to access data source by means
of the external tables. So it is possible to create whatever models nedded for Data
analysis.

4.5 Data Transformation with dbt
As shown in Chapter 3 - Model creation, all the trasformation phase is handled
on the dbt project by an analytics engineer. It’s up to the data engineer now to
create a serverless environment on AWS that can host the dbt project.
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In the proposed solution the following steps has been executed :

1. Creation of a Docker image of the dbt project

2. Loading of the image in a ECR istance

3. Configuration of the environment on AWS Fargate

4. AWS ECS Task definition

5. Cron schedule on AWS Event Bridge

The docker image has been built from the following dockerfile :

1 FROM python:3.9
2

3 # Set the working directory inside the container
4 WORKDIR /app
5

6 # Copy the dbt project files to the container
7 COPY . /app
8

9 # Install dependencies
10 RUN pip install dbt
11

12 # Set the entrypoint command to run dbt with the profiles.yml file as a parameter
13 ENTRYPOINT ["dbt", "run", "−m", "/root/.dbt/profiles.yml"]

The docker image generated has been loaded onto an ECR instance.
Then the Fargate environment has been configured with the following steps :

1. Configure Task Definition: In the AWS Management Console,a new task
definition has been created in the ECS service. The task definition must be
set with the required CPU and memory resources.

2. Under "Container Definitions", is added a container that uses the ECR image
pushed in step 1.

3. Environment variables and volume mounts required by your dbt project has
been specified.

4. Fargate Service: After creating the task definition, an ECS Task has been
created to run the dbt project.

5. Fargate launch type definition. Configured the service with the desired number
of tasks and the cluster where to run them.
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6. Specify the task definition you created in step 2. Security Groups and VPC
Configured : Fargate tasks must have the necessary security group and VPC
configurations to access the required resources, such as the Data Warehouse.

An interesting solution has been adopted to make the execution of some dbt
commands iterated according to a cron schedule. It as been considered in our use
case that new raw data arrive from our sourceson a daily basis and our dbt models
must be re-run to keep the DataWarehouse updated. This functionalities has been
implemented exploting the AWS EventBridge services that allow to generate a
Cron schedule of ECS Tasks.

4.6 Data Processing and Analysis

The final models, the ones inside the "marts layer," have been used to generate
analysis about the sales of tickets on the fictional Tickit website. The BI services
adopted for this aim has been Quicksight.

In the first panel, various graphics have been generated to visualize the number
of tickets sold with respect to the category of the event and the period of the year.

An other graph instead shows the geographical distribution of sales in all the
American states.
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Figure 4.2: Quicksight statistics about the number of tickets sold

The second panel shows the statistics about the total revenues, net earnings,
and commissions.
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Figure 4.3: Quicksight statistics about Earnings

The last one instead is more oriented to analyzing the users of the website. Both
buyer and sellers can be gouped by their interests and level of activity on the site.
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Figure 4.4: Quicksight statistics about Users
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4.7 Security and Data Governance

Figure 4.5: AWS network and policies adopted the project

The above schema depicts the AWS VPC and all the internal subnets, security
groups, and ACLs involved in the pipeline, including all the roles assumed by each
service to operate within it.

The Virtual Private Cloud (VPC) encompasses all the resources in use. It is
termed "virtual" because there is no dedicated physical hardware solely operating
for us. The underlying hardware is shared among multiple users, but the VPC
ensures that the allocated resources remain private and accessible only with the
appropriate permissions.[26]

Various technologies are employed to ensure privacy and security within the
VPC. The diagram above illustrates two such technologies: ACL and Security
Group.

ACL (Access Control List) is commonly utilized in routers, switches, and firewalls
to regulate the flow of network traffic. It consists of a set of rules that determine
the allowance or denial of network packets within a group. Operating at both
the network layer (Layer 3) and transport layer (Layer 4) of the OSI model, ACL
controls inbound and outbound traffic. It is stateless, meaning it does not remember
the previous state of network connections.[27]

On the other hand, the Security Group functions as a virtual firewall for instances
(virtual machines) within the VPC. It establishes rules solely for inbound traffic,
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enabling instances to communicate exclusively with authorized senders. Unlike
ACL, the Security Group is stateful, meaning it remembers previously authorized
senders, allowing bidirectional communication while maintaining security.

By combining ACL and Security Group, the VPC achieves robust privacy and
security measures, ensuring controlled access and secure communication within the
virtual network environment.
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Chapter 5

Speculative Analysis :
comparison between
proposed and traditional
paradigm

As starting point of this chapter the main problem of the traditional paradigma
must be stressed : the chasm from business to IT.

In a previous era of data analysis, an individual had the opportunity to acquire
all the necessary expertise to become an expert in both the specific domain and the
relevant data technology. The size and diversity of data were limited, and people
typically developed the required data skills (such as Excel, basic SQL, SAS) as
they encountered problems. The datasets were small in scale and focused, allowing
this approach to work effectively. It was as simple as obtaining a CSV file and
diving into the analysis.

However, this approach became inadequate with the emergence of the modern
data stack. Presently, the potential for analysis has expanded exponentially, but so
have the range and depth of skills required. Consequently, a single domain expert
sitting down at a computer to explore data is no longer sufficient to obtain answers.
In the contemporary data ecosystem, answering questions necessitates collaborative
teamwork, a meticulously designed workflow, and purpose-built tools that facilitate
this collaboration.

In the next paragraph, the process of creating a new dataset for analysis purposes
has been deconstructed into individual activities for both the new and traditional
paradigms. Additionally, a design comparison has been conducted to emphasize
the significant differences and advantages of the proposed solution.
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5.1 Process Analysis: Model creation for busi-
ness insights

When there is a need for a new data model for analysis purposes, usually the
following steps must be executed:

1. Identify the analysis objective: Clearly define the purpose and goal of the data
model. Determine the specific insights or questions that need to be addressed.

2. Understand the data requirements: Collaborate with stakeholders, such as
business users or domain experts, to understand the data needed to achieve
the analysis objective. Determine the data sources and variables required for
the model.

3. Data collection and preprocessing: Acquire the necessary data from the iden-
tified sources. Clean and preprocess the data to ensure accuracy, consistency,
and completeness. Handle missing values, outliers, and perform data transfor-
mations as needed.

4. Dataset creation, validation and refinement: Evaluate the performance of
the dataset using appropriate metrics and validation techniques. Refine the
dataset as necessary to improve accuracy and reliability.

5. Data exploration and analysis: Conduct exploratory data analysis to gain
a deeper understanding of the data. Perform descriptive statistics, data
visualization, and identify patterns, trends, and correlations within the dataset.

6. Data representation and visualization

To conduct the process analysis two activity diagrams have been created. The
first diagram illustrates a scenario where the Data analyst independently executes
all the steps without involving the Technology teams.
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Figure 5.1: Activity diagram describing model creation with Data analyst

However, challenges arise in this scenario due to the Data analyst’s primarily
business-oriented skill set. The most critical step here is the Data collection and
preprocessing phase, which requires a deep understanding of the data infrastructure.
It involves selecting the appropriate Data sources, ensuring data quality, handling
data transformations, and addressing any inconsistencies. This can lead to potential
errors or limitations in the resulting data model, affecting the quality and reliability
of the insights derived from it.

Therefore, collaboration with Technology teams, such as Analytics engineers or
Data engineers, who possess the necessary technical expertise, can help mitigate
these challenges and enhance the effectiveness of the data model creation process.

In contrast, the second diagram represents a scenario where either a Data analyst
or a Data engineer is involved in performing these operations.
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Figure 5.2: Activity diagram describing model creation with Analytics engineer

Analytics engineer should not be replaced by a Data engineer. Data engineering
team in this case have few understanding of the business needs and all the data
collection process risk to be not accurate or not relevant. Data engineering teams
usually provide data models that highlight only KPIs but are not able to provide
real insight; furthermore, they are not experts in the discovery process of data
analysis. Their job is to build and maintain the Data pipeline and manage its
overall orchestration. This means that if a data analyst makes a request to data
engineers, it will be added to the list of scheduled tasks to be completed. The lack
of autonomy and the unpredictable waiting time significantly impair the efficiency
of the analysts’ work. Lloyd, an individual associated with Looker, refers to the
concept of "data breadlines" to illustrate a scenario where data consumers are
required to wait in line for assistance from the technology team before they can
carry out specific analyses. This waiting period significantly hampers the speed of
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analysis and diminishes the enthusiasm of data consumers.

5.2 Design comparison and final thoughts

For the sake of comparison both the pipelines has been For the purpose of com-
parison, both pipelines have been simplified, highlighting the main stages and
indicating the responsible parties for each stage.

Figure 5.3: Roles in traditional data pipelines

For the purpose of comparison, both pipelines have been simplified, highlighting
the main stages and indicating the responsible parties for each stage.

One significant observation is the overlapping of roles during the transformation
phase, indicating a lack of clear definition regarding the process of dataset creation,
which serves as the foundation for analytics..
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Figure 5.4: Roles in modern data pipelines

In the proposed paradigm, Analytics engineers are knowledge specialists: like
librarians, they curate an organization’s knowledge. They acquire, codify and
make sure that all the knowledge is reliable and current. They represent the
bridge between business and technology that fill this gap between existing roles
and competences. These are the individuals who have been absent from our data
projects, and this is the practice that we must refine if we are to address the
fundamental dysfunction of data. With a well-established analytics engineering
practice, knowledge is gradually accumulated by numerous individuals through
incremental contributions.[28]
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Chapter 6

Conclusion

The thesis project offers a practical use case where the new paradigm introduced by
Analytics Engineering has been adopted and experimented with. Data engineers
and data analysts can now focus on their primary tasks, relying on the expertise of
analytics engineers for the creation of data models.

The final solution is a cloud-based data pipeline implemented on AWS. The
data sources are stored as raw data in the Simple Storage Service (S3) and made
accessible through Redshift Data Warehouse as external tables. The entire data
transformation phase has been managed using dbt, which has been extensively
tested and proven to be a comprehensive toolkit for analytics engineering. Within
the dbt project, model creation, testing, validation, and documentation are fully
supported and partially automated to ensure accurate and reliable datasets.

The dbt project has been deployed as a Docker image on an ECR instance and
executed within a pre-configured virtual environment on AWS Fargate. To utilize
the dbt command-line interface (CLI) and execute any type of command within
the project, a cron schedule of ECS tasks has been established using EventBridge.
Furthermore, an automated system for failure detection has been implemented
through log monitoring with CloudWatch. Lambda functions have proven to be a
reliable service for executing functions that respond appropriately to these failures.

Moving forward, several potential improvements can be considered for future
enhancements. Firstly, exploring the integration of additional data sources could
broaden the scope and depth of insights derived from the pipeline. Secondly,
enhancing the error handling and recovery mechanisms within the system would
further improve the pipeline’s reliability. Additionally, implementing real-time or
near real-time data processing capabilities could enable more dynamic and timely
analytics. Lastly, integrating a comprehensive data governance framework and
security measures would ensure data privacy and compliance with regulations.

By addressing these future improvements and incorporating these elements, the
data pipeline with dbt can continue to evolve and provide even more valuable
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Conclusion

insights for data engineers, data analysts, and other stakeholders involved in the
analytics process.
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