
POLITECNICO DI TORINO

Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

Distributed Arrow-based Shuffle
Operation using Arrow Flight RPC

Supervisors

Prof. Paolo GARZA

Ing. Andrea FONTI

Candidate

Andrea FERRETTI

07 2023

Summary

The primary objective of this thesis work is to explore the potential of Arrow and
Arrow Flight RPC in order to assess the feasibility of distributing the shuffle step
in DataFusion. The thesis work begins with an overview of the shuffle operation
and its significance in distributed data processing frameworks, implementing a
prototype in Python that follows the behaviour of the MapReduce programming
model. The prototype demonstrates the basic mechanics of leveraging Arrow Flight
RPC to distribute the shuffle process, showcasing its potential for enhancing the
efficiency of data transformations in distributed environments.

Starting from a naive version of the prototype, it is enhanced and extended in
the following sections, where the design and implementation choices are outlined.
Furthermore, a comprehensive evaluation of the prototype is conducted, comparing
its performance against a non-distributed shuffle approach, measuring the execution
time. By taking into account different scenarios, the obtained results analyze the
strengths and limitations of the prototype implementation and offer insights into
the potential scalability and performance gains achievable with a fully distributed
shuffle step in DataFusion using Arrow Flight RPC.

ii

Acknowledgements

Before proceding with the treatment, I would like to dedicate some space to everyone
that helped me in this path towards personal and professional growth.

First of all, I want to thank my supervisors Garza and Fonti for their availability
and promptness for every need I had regarding this work. Thank you for following
me during these months.

Without the moral support of my girlfriend Giada and my parents, I probably
would have never gotten this far. A heartfelt hank you for always being there when
I needed it and for making possible an incredible experience in Denmark when I
have done the internship there.

I would also like to thanks the parents of Giada, that gave me a good support
in this hard journey. Thank you for being available and caring towards me.

Finally, I would like to thank my friends that helped reduce the stress in this
intense period, by being there when I needed to.

Thanks to all of you, it would have been a lot harder without you.

iii

Table of Contents

List of Tables vii

List of Figures viii

Glossary x

1 Introduction 1

2 Related Work 3
2.1 MapReduce . 3
2.2 Joins . 4

2.2.1 Hash join . 4
2.2.2 Sort-merge join . 4

2.3 Arrow . 5
2.4 Arrow Flight . 8

2.4.1 Downloading data . 8
2.4.2 Uploading data . 9
2.4.3 Exchanging data . 10

2.5 Datafusion . 11

3 Problem specification and system design 13
3.1 MapReduce implementation in Python 14
3.2 Arrow local . 18
3.3 Arrow distributed . 21

3.3.1 Driver-Shuffler communication with the servers 22
3.3.2 Driver-Reducer communication with the servers 25

4 Experimental evaluation 29
4.1 MapReduce implementation in Python 30
4.2 Arrow local . 33
4.3 Arrow distributed . 38

v

5 Conclusions 43

Bibliography 44

vi

List of Tables

4.1 MapReduce performance with 10 unique keys 31
4.2 MapReduce performance with 15 million unique keys 31
4.3 Performance with 10 unique keys using Arrow 33
4.4 Performance with 15 million unique keys using Arrow 34
4.5 Distributed performance with 10 unique keys using Arrow Flight RPC 39
4.6 Distributed performance with 15 million unique keys using Arrow

Flight RPC . 39
4.7 Performance comparison between the local and distributed versions

with 10 unique keys . 41
4.8 Performance comparison between the local and distributed versions

with 15 million unique keys . 41

vii

List of Figures

2.1 Row data format vs columnar data format, from [1] 5
2.2 Arrow array’s data structure, from [3] 7
2.3 Retrieving data via DoGet, from Arrow Flight documentation [6] . . 9
2.4 Uploading data via DoPut, from Arrow Flight documentation [6] . . 10
2.5 Exchanging data via DoExchange, from Arrow Flight documentation

[6] . 11

3.1 MapReduce example . 15
3.2 Partitioning keys using md5 . 16
3.3 Data formats between the different steps 18
3.4 Sequence diagram of the driver-shufflers communication with the

servers . 24
3.5 Sequence diagram of the driver-reducers communication with the

servers . 27

4.1 Time taken for each step in 100 iterations, with 20 partitions 35
4.2 Time taken for each step, per partition, in the two tests 36
4.3 Total time taken per partition in the two tests 37
4.4 Time taken for each step in the two distributed tests 40
4.5 Total time taken for each step in the two distributed tests 40
4.6 Time taken for each step varying the number of input files in the

distributed version . 42

viii

Glossary

hashing Hashing is the process of converting a given key into another value. A
hash function is used to generate the new value according to a mathematical
algorithm. The result of a hash function is known as a hash value or simply, a
hash.

x

Chapter 1

Introduction

In the era of big data, the ability to efficiently process and analyze massive datasets
is crucial for businesses and organizations across various domains. To meet the
demands of processing such voluminous data, distributed data processing frame-
works have emerged as powerful tools. These frameworks leverage the parallelism
of distributed computing clusters to execute complex computations in a scalable
and efficient manner. One key operation in these frameworks is the shuffle step,
which involves redistributing and grouping data across nodes to enable subsequent
data transformations and aggregations.

Apache Arrow, an open-source in-memory data format and associated libraries,
has gained significant attention in the data processing community due to its
columnar representation and efficient memory utilization. It provides a standardized
way to represent and manipulate data structures across different programming
languages. Leveraging the capabilities of Arrow, several data processing frameworks,
such as DataFusion, have been developed to harness the benefits of vectorized
processing and enhance query performance.

DataFusion, an open-source query engine built on Apache Arrow, has gained
significant attention in the field of distributed data processing due to its perfor-
mance optimizations and compatibility with the Arrow data format. By leveraging
the benefits of vectorized processing and memory-efficient data structures, DataFu-
sion offers substantial performance improvements over traditional query engines.
However, despite its remarkable capabilities, DataFusion still relies on a centralized
shuffle step, which can become a performance bottleneck in certain scenarios.

To address this limitation, this thesis work wants to explore the feasibility of
implementing a distributed shuffle step in DataFusion using Arrow Flight RPC,
thereby enabling enhanced scalability. Arrow Flight RPC, also based on Apache
Arrow, is a high-performance remote procedure call framework designed for efficient
data transfer between different processes and machines.

1

Introduction

The primary objective of this thesis work is to develop a prototype implementa-
tion that demonstrates the potential of utilizing Arrow Flight RPC for distributed
shuffling. Although achieving a fully distributed shuffle step in DataFusion within
the scope of this work may be ambitious, the prototype implementation will serve
as a foundation for evaluating the performance gains, limitations, and challenges
associated with the distributed shuffle approach using Arrow Flight RPC.

This thesis work begins by providing a comprehensive overview of the shuffle
operation and its significance in distributed data processing frameworks. The fun-
damental concepts and challenges of distributed shuffling are discussed, highlighting
the need for efficient and scalable solutions. The subsequent sections delve into the
capabilities and features of Arrow and Arrow Flight RPC.

Following that exploration, the thesis focuses on the design and implementation
of the prototype for the distributed shuffle step using Arrow Flight RPC in a
simplified program. To evaluate the effectiveness of the implemented prototype,
a comprehensive performance analysis is conducted and the results are compared
against a non-distributed shuffle approach.

2

Chapter 2

Related Work

2.1 MapReduce
MapReduce is a programming model and implementation for processing and
generating large data sets with a parallel, distributed algorithm on a cluster.
The important contributions of the MapReduce framework are the scalability
and fault-tolerance, leading to an advantage in performance when using multi-
processor hardware containing multi-threaded implementations. Using this model
is beneficial only when the distributed shuffle operation is optimized and are present
the tolerance features of the MapReduce framework. Therefore, an important part
is the optimization of the communication cost.

A MapReduce program is composed of a map procedure, which performs filtering
and sorting, and a reduce method, which performs a summary operation. The
major advantage of the MapReduce model is its scalability, as it enables easy
parallelization and distribution of large data sets across a cluster of computers
(nodes)

MapReduce is usually composed of three operations, which are controlled by a
master node:

1. Map: each worker node applies the map function to the local data, writing
the output to a temporary storage.

2. Shuffle: worker nodes redistribute data based on the output keys (produced
by the map function), such that all data belonging to one key is located on
the same worker node.

3. Reduce: worker nodes now process each group of output data, per key, in
parallel.

In this work, we implemented a simple version in Python to start with, so that
the single operations can be studied and visualized.

3

Related Work

2.2 Joins

A join is a fundamental operation in relational databases that allows to combine
data from multiple tables based on a related column between them. A join is
performed by matching each row from one table with matching rows from other
tables, creating a new result set that combines data from all the tables involved.

In this work, we will consider two types of join: hash join and sort-merge
join, which are involved in the shuffling operation that is performed in our work
(hash join) and in datafusion 2.5.

2.2.1 Hash join

A hash join is a popular technique used in database systems to efficiently join large
tables together based on a common attribute. In a hash join, the tables to be
joined are first partitioned into smaller subsets based on the values of the common
attribute. Each subset is then hashed using a hash function, and the resulting hash
table is stored in memory. The hash tables for each subset are then probed to find
matching records, and the matching records are combined to form the final result
set.

Hash joins are commonly used in data warehouses and other large-scale database
applications because they can be highly parallelized, allowing them to take advan-
tage of the processing power of modern multi-core processors. They are also highly
efficient, requiring only a single pass over each input table, and can handle tables
with millions or even billions of records.

2.2.2 Sort-merge join

A sort-merge join is another common technique used in database systems to
efficiently join large tables together based on a common attribute. In a sort-merge
join, both input tables are first sorted on the common attribute. The sorted
tables are then merged together using a two-pass algorithm that reads both tables
sequentially and merges matching records.

The first pass of the algorithm reads both tables and produces runs of matching
records that are written to temporary files on disk. The temporary files are then
merged together in the second pass to produce the final result set.

Sort-merge joins are also highly efficient and can handle large tables with millions
or even billions of records. However, they can be slower than hash joins because
they require sorting both input tables, which can be expensive for large datasets.

4

Related Work

2.3 Arrow
Apache Arrow, developed by the Apache Software Foundation, is an open-source
columnar in-memory data format that aims to provide a standardized and
efficient way to represent structured and semi-structured data for high performance
processing across different systems and programming languages. It removes the
serialization costs providing zero-copy streaming messaging, an Interprocess Comu-
nication (IPC) format and it guarantees a constant-time when randomly accessing
the data.

Traditional data formats (such as CSV or JSON) are row-based, storing data
row by row, which can be suboptimal for many analytical workloads, but efficient
for OLTP (online transactional processing). Row-stores are known to perform
well for a single transaction like inserting, updating, or deleting small amounts
of data, since in these cases it is better considering the record as a whole rather
than a subset of it. However, if only a field is required, all the record has to be
read, leading to a higher computational cost than what is required. A columnar
data format, instead, stores data in a contiguous column oriented way, which is
better for OLAP (online analytical processing). When it is required to aggregate
the data, considering only a subset of the values, it is more efficient to read only
the required columns rather than all the rows and then only using the columns of
interest. Therefore, for partial reads column-stores are preferred since a smaller
volume of data is loaded. In figure 2.1 is shown an example to better understand
the difference.

Figure 2.1: Row data format vs columnar data format, from [1]

The aim of Arrow is to reduce the overload when communicating with different
services, removing the need of serializing / de-serializing the data. The in-memory
data representation in Arrow is equal to the representation of the data when it is

5

Related Work

stored, which can then be used in any programming language without the need to
convert it in a suitable format, but can be just read as-is. Arrow is a memory-
mapped format, which means that the data can be used directly from the disk
without having to load all of it in memory. This is thanks to Arrow serialization
design, which provides a data header describing where the memory buffers for all
the columns in a table are located and their size. In [2] the performance of these
data formats for operations on a dataset is analyzed, and is useful to see how Arrow
with memory mapping performs far better than using the dataset stored in csv or
even Parquet, which is a columnar data format for storing data:

• when using Parquet, only the required columns can be read, which is faster
than having to read the entire dataset as in csv. Arrow is faster than Parquet
because it removes the need of decompressing the data, which is an important
part of Parquet that reduces the size of the dataset on the disk but requires
some time to be serialised / de-serialised.

• If the dataset does not contain null values, Arrow can use it directly from disk
with zero-copying, which obtains the best performance.

The key data structures of Arrow are table and record batch. A table is a list
of chunked arrays (vectors of values and their data type) with a schema, while a
record batch is a list of arrays (vector of values and its data type) with a schema.

In an array, data is stored in one or more buffers, where a buffer is a contiguous
block of memory with a given length. The array has also some metadata to retrieve
the length of the array and the number of null values. The number of buffers
associated with an array depends on the type of data being stored. For an integer
array there is a validity bitmap buffer and a data value buffer. In figure 2.2 is
shown how the array data structure would be in memory.

The validity bitmap buffer is binary-valued and must be large enough to have
at least 1 bit for each array slot. It has a 1 if the corresponding slot in the array is
a valid value, 0 otherwise. In this case, byte 0 would contain all 5 values, and the
other 63 bytes would be just composed by zeros.

The data value buffer has a similar logic: it is padded out to a length of 64
bytes and each slot in this case is composed by 4 bytes (since the values data type
is an integer of 32 bits). An important thing to mention about an Arrow array is
that it is an immutable object, which reduces the need to create copies. This is
a huge advantage for large datasets, but it comes with some limitations: when a
new batch of data arrives, the only solution would be to create a new array, which
would split the data in two.

Chunked arrays solve the problem that immutable arrays have: a chunked
array is a wrapper around a list of arrays, allowing to index their contents as if
they were a single array. Each array is one chunk which is stored in separate places
in memory, but with its abstraction they look like they are all one thing.

6

Related Work

Figure 2.2: Arrow array’s data structure, from [3]

A record batch is a data structure similar to a chunked array, since it is a
sequence of arrays, with the difference that the arrays can be of different types
but must all be the same length. Each array is referred to as one of the "fields"
or "columns" of the record batch. In memory, the record batch simply contains
pointers to the arrays and its own validity bitmap.

When we want to communicate with different services, normally the data would
be serialised so that it can be written to disk or a stream. This leads to more
efforts to store and read the data between different processes. To get around this,
the Interprocess Communication (IPC) serialisation format specified by Arrow
is designed to ensure that Arrow data objects can be transmitted (and saved)
efficiently, ensuring that the structure of the serialised record batch is essentially
identical to its physical layout in-memory. To store a record batch, the IPC format
collects the relevant metadata into a "data header", and then lays out the buffers
one after the other.

A table, instead of storing each column as an array, stores it as a chunked
array. For this reason, tables can be concatenated without creating a new one every
time there is new data. Since tables are much more flexible than record batches,
arrow functions tend to return tables. However, in this work we want to use record

7

Related Work

batches, since we are studying the behaviour of the basic data structure used for
communication.

2.4 Arrow Flight
Arrow Flight is a RPC (Remote procedure call) framework based on Arrow data
and built on top of gRPC [4] and the IPC format. In Flight, streams of Arrow
record batches are downloaded from or uploaded to another service, with a set of
metadata methods describing the streams. Methods and message wire formats
are defined by Protobuf [5], which helps with interoperability with clients that
may support gRPC and Arrow, but not Flight. However, Flight implementations
have optimized the usage of Protobuf by avoiding excessive memory copies and, in
general, overhead usage.

Flight define a set of RPC methods to operate on data streams that a client
can call, while a service implements some subset of these methods. Each Data
stream is identified by a descriptor, which is a path or a command. A Flight client
can connect to any service and perform basic operations, where a Flight service is
expected to support some common request patterns: downloading data, uploading
data, exchanging data.

2.4.1 Downloading data
In order to download the data from a Flight service (figure 2.3), a client would
need to:

1. Have a FlightDescriptor for the dataset to be downloaded.
This can be already known and therefore constructed by the client or unknown
and acquired by a method that gives information about the data stream.

2. Use the descriptor to call GetFlightInfo(FlightDescriptor) and obtain a
FlightInfo message.
Since in Flight data may be on different servers, the metadata server could
just return details on where the data is located. This is encoded as a series of
FlightEndpoint messages inside FlightInfo, where each endpoint represents
some location with a subset of the data. More in detail, an endpoint contains
a list of locations where the data can be retrieved from, and a Ticket, which
is an opaque binary token used by the server to identify the requested data.

3. Consume each endpoint returned by the server.
This is done by connecting to one of the locations in the endpoint, then call
DoGet(Ticket) with the ticket in the endpoint. This method will return the

8

Related Work

client a stream of Arrow record batches. The endpoints represent data that is
partitioned or otherwise distributed and, to retrieve the complete dataset, the
client must consume all endpoints, which can be done in parallel.

Figure 2.3: Retrieving data via DoGet, from Arrow Flight documentation [6]

2.4.2 Uploading data
To upload a data, in figure 2.4 is shown what a client needs to do:

1. Construct or acquire a FlightDescriptor, like before.

2. Upload a stream of Arrow record batches by calling DoPut(FlightData),
where FlightData contains the FlightDescriptor so that the server can
identify the dataset.

9

Related Work

Figure 2.4: Uploading data via DoPut, from Arrow Flight documentation [6]

2.4.3 Exchanging data
In some cases it might be required to upload and download data within a single
call (for example, the client may upload data and wants the server to respond with
a transformation of that data), instead of being stateful which could be difficult.
To exchange the data, a client would (figure 2.5):

1. Construct or acquire a FlightDescriptor.

2. Call DoExchange(FlightData), where the FlightDescriptor is included
with the first message. After that, both the client and the server can simulta-
neously stream data to the other side.

10

Related Work

Figure 2.5: Exchanging data via DoExchange, from Arrow Flight documentation
[6]

2.5 Datafusion

Arrow Datafusion is an open-source data processing framework that leverages
Apache Arrow’s in-memory columnar data format to accelerate data processing
across a wide range of data sources and processing engines. Arrow Datafusion
provides a unified interface for developers to build data processing pipelines that can
run on a variety of compute platforms, including local machines, clusters, and cloud
environments. It supports SQL and other high-level languages, and can be used
to build both batch and streaming data processing applications, quickly running
complex queries using a sophisticated query planner, a columnar, multi-threaded,
vectorized execution engine, and partitioned data sources. It is designed for easy
customization and is implemented in Rust, which is a fast and memory-efficient
programming language, with no runtime or garbage collector, that leverages on the

11

Related Work

concept of ownership to guarantee memory-safety and thread-safety.
Datafusion can run complex SQL and DataFrame queries using a query planner,

a columnar, multi-threaded, vectorized execution engine, and partitioned data
sources. It can be extended in many points with user-defined functions, custom
optimizer rules, personal schemas, table lists or datasources.

After collecting and filtering all the data, by executing a specific query logical and
execution plans are created. Both plans are also characterised by an optimization
process. The logical plan defines what data is needed and in what order, the
optimization process can speed up execution times significantly, with 14 built-in
optimization passes and the ability to add custom ones. The execution plan then
goes more into detail on how to execute the query and where the data is. Some
optimization rules may be projection and filter push down, which minimizes the
amount of data that needs to be read by reading only the desired columns from
the input files.

The optimization and execution plan, when executing a Rust query engine
using Datafusion, work by coalescing batches of data to make them big enough for
efficient processing and introducing extra parallelism with the repartition exec
function, that splits data into multiple partitions.

12

Chapter 3

Problem specification and
system design

The focus of our proposed work is to explore the feasibility of extending DataFusion
2.5 in a distributed way so that, when the data is partitioned, each partition can
be sent to a worker node which will perform the required operation, sending back
the result. In order to do so, the first step is to create a prototype in Python that
should represent the behaviour of the application in an easier way to visualize and
to study, which will be useful to implement a working distributed environment
while studying Arrow Flight 2.4 This will lead to the only requirement of converting
the interested parts to Rust with a solid foundation already implemented. The
prototype is a MapReduce 2.1 program, with the focus on the shuffle part.

The proposed work is divided in three phases, which constitute three versions of
the prototype, and help looking into different functionalities one at a time instead
of developing everything together at once:

1. First of all, we implement the MapReduce in Python, in order to have an in-
depth analysis over its functioning. This helps acquiring a solid understanding
of the MapReduce paradigm, its components and how they work together to
process large-scale data, ensuring that the program correctly performs data
processing and handles data serialization and deserialization.

2. After that it is important to adapt the program to use Arrow’s record batches as
the inter-process communication format, therefore extending our MapReduce
work using Python’s module for Arrow (pyarrow). This step is incorporating
Arrow’s in-memory format, which by utilizing Arrow’s data structures and
APIs it improves data processing efficiency, reduce memory usage and en-
hance overall performance, also taking advtange of its capabilities for efficient
serialization and deserialization of data.

13

Problem specification and system design

3. Finally, the program is extended to a distributed version using Arrow Flight
as the RPC framework for handling communications between different nodes
exchanging Arrow data, which implements exchange mechanisms to facilitate
efficient and scalable distributed shuffling.

The final result is a MapReduce program with the shuffle step distributed, so
that the data is stored in multiple data servers that are not on the same cluster as
the machine performing the steps, so that the reducer step can get the data from
those data servers. This is to show how Arrow and Arrow Flight works to enhance
the capabilities of a MapReduce application and to prove that the shuffle step in
DataFusion can be extended by adapting this work to collaborate with it.

3.1 MapReduce implementation in Python
Suppose we want to know how many clicks a website is having, giving each click a
value based on it being directly from a person (User, which is valued 2) or redirected
by another website (Robot, which is valued 1). In this scenario, each record of the
data would have the website’s URL and the associated value for each specific click.
In the MapReduce fashion, the keys would be each unique website’s URL and the
value would be the associated click value. In order to achieve our goal, we design a
MapReduce program in Python that has to:

1. Apply a mapping function to every input file that maps the input values to
be as requested, so that the total sum can be computed later.

2. Group the keys so that every value referred to the same URL, coming from
different files, has to be collocated in the same group.

3. Sum up all the values for each key, returning as result the total number of
clicks, with the right "weight", per URL.

Figure 3.1 shows an example of MapReduce program, where in each step the
desired output is indicated. In the example we consider a dataset that is split
among 3 nodes, having 2 lines per node (1 in the last). The data divided in 3
worker nodes can also be referred to as input partitions where ideally, for each
partition, there is one Mapper that performs the map operation. Then, we can
decide the number of output partitions, based on the characteristics of the worker
nodes that we have, since dividing the process in multiple nodes requires time
and memory to communicate between those nodes. This is limited by the size of
the dataset: for example, if the dataset is 1TB and the worker nodes have 16GB
of memory, it would be very slow for them to handle all the data, while having
64 nodes (1024GB / 16GB) may improve the time by making each one of them

14

Problem specification and system design

Figure 3.1: MapReduce example

go at full capacity. In this case there are 3 output partitions. The program uses
Python’s module joblib, which makes it possible to create a desired number of
python processes so that we can simulate the behaviour of separate worker nodes,
and is organized in different scripts. The main.py acts like the master node which
has the role of deciding the number of processes running for each of the 3 steps
and is the driver handling the calls of each step with the right input parameters
and at the right time. The steps are:

• Map: the mapper takes all of the input partitions and processes them,
replacing the values associated to each key with 1 if the value is "Robot", 2 if
"User". It then temporarily stores the new partitions.

• Shuffle: the shuffler is the most memory consuming step since for each input
partition, it stores the desired number of output partitions. In this case,
we have 3 input partitions and want 3 output partitions, so the shuffler is
creating 9 temporary files. The organization of the output partitions is the
most important part and the shuffler has the role of storing the same keys
in the same partitions. This is a crucial assumption that the reducer will
be doing and can be performed using a hashing function that can return
the same value given the same key. In this case, we are using md5 to get the
hashed value of a key, which is then divided by the total number of output
partitions. The row with that key is stored in the partition number equal to
the resulting remainder of the division (see Figure 3.2).

• Reduce: finally, the reducer has the job of reading all the temporary files
created by the shuffler for each partition and apply the desired computations

15

Problem specification and system design

on its rows, returning one file per partition. In this case, since we want to
know the total number of clicks, the reducer is summing up all the values per
key.

Figure 3.2: Partitioning keys using md5

It is important to notice that the behaviour of the hashing function on the data
distribution depends on the specific algorithm used for hashing and the distribution
of the data itself. In general, a good hashing function will evenly distribute the
data across the nodes in the system, so that each node has a roughly equal amount
of data to store. However, there are some factors that can affect the evenness of
the data distribution, such as the hashing function being not well-designed, or the
input data being not evenly distributed, which would result in some nodes having
a higher load than others.

Generally, when the input data size is increasing there is less probability that
the output partitions will be unbalanced, since with more keys, even if not evenly
distributed, the hashing function will tend to even the distribution in output.
Moreover, the mapper and shuffler use a number of parallel processes equal to
the number of input files, since they can process one file each, while the reducer
number of processes is equal to the desired number of output partitions.

An important part of the designing is deciding the number of partitions, which
determines the granularity at which the data is divided and processed in parallel.

16

Problem specification and system design

The number of partitions has an impact on many factors:

• Data distribution: If there are more partitions than the available reducers,
some reducers may end up with minimal or no data to process, which results
in utilizing less of the available resources. Oppositely, with fewer partitions
than reducers, some reducers may become bottlenecks since they would have
to handle large amounts of data.

• Task granularity: More partitions allows better load balancing and poten-
tially reduces the overall execution time. This is true but with a limit, since
having too many small partitions can introduce overhead when coordinating
the different processes.

• Shuffle overhead: By increasing the number of partitions, the amount of
data transferred during the shuffle phase would increase as well, impacting
network bandwidth and overall performance. This is because every shuffle is
performed on a single file, which results in a number of output temporary files
equal to the number of partitions. More partitions means more files, which
increase the overhead and the communication costs.

• Reducer efficiency: More partitions means less data to be handled by a
single reducer, which can improve the processing times for each one of them.
However, too many partitions would lead to each partition being too small,
having an overhead for setting up and managing each reducer impacting much
on the processing time.

Therefore, choosing the number of partitions in very important, and it will be
done by testing different cases in Section 4. Specifically, for this first version, the
results will be shown in 4.1, where the best number of partitions will be found.

17

Problem specification and system design

3.2 Arrow local
Now that the first version has been studied, we want to change it in order to have
Arrow as the data format for storing the temporary files in each step. The reason
for this choice is relative to the aim of extending the application to be distributed
using Arrow Flight, which handles Arrow data as the inter-process communication
format.

To do so, the first step is to change the application to make use of Arrow Record
Batches, storing all the temporary data in between in Arrow IPC format. Therefore,
the input partitions are in csv, but the output of the map and shuffle operations
are in Arrow IPC, while the final output of the reduce is again in csv (Figure 3.3).

Figure 3.3: Data formats between the different steps

Arrow has a python module called pyarrow which is imported to add its
functionalities. The objective here is to change the code which made use of Python’s
objects, into a program that could benefit from Arrow’s qualities, whenever possible,
maintaining a good execution time as before. The data will not be considered one
record at a time anymore, but one Record Batch at a time, where a Record Batch
is an Arrow data structure which contains arrays of equal-length but different data
types, which are specified in the schema of each batch.

The first version of the MapReduce using Arrow is as follows:

• Map: the mapper reads the csv file of the input partition and stores each row
in two separate Python arrays, one for the keys and one for the values. For the
values array, the value appended is 1 for "Robot" and 2 for "User". When the
number of rows read is equal to the desired batch size (which is specified in
the configuration file), a record batch is created containing both arrays, which
are the two columns, and written to the relative output file. The schema for
the record batch is specified in here and will be used the same in every step:
string for keys and int32 for values.

• Shuffle: the shuffler is now reading an Arrow IPC file composed by multiple
record batches of the same size (except the last one), which are read one by
one. Here, the memory consuming part is storing, for each output partition,
the records that will be used to populate the record batch when they are
enough. For this purpose, a Python list is used, in which every index of the

18

Problem specification and system design

list corresponds to the output partition number. Every element of this list is
a dictionary, where the key is the batch number that is being read and the
value is a list containing the indices where the records are, for the desired
output partition, inside that specific record batch. The list of partition indices
for each record batch is obtained by applying the hash function to each of
the keys inside of it and then taking the remainder of the division on the
number of output partitions. Therefore, for every record batch read, we iterate
through the list of partition indices and store inside the list, at the index
number relative to the partition number being considered at the iteration, the
dictionary relative to this record batch’s number containing the list of indices
where the records in this batch that should go in that partition are. Every
time one of the elements of the list reaches the desired batch size, a record
batch is created taking the records at the right index in each input record
batch, and it is then written in the output Arrow IPC file.

• Reduce: the reducer receives as input a series of Arrow IPC files that has
to reduce to one final csv file for its output partition. To do so, a Python
dictionary is again used, storing the click value for each key. Whenever a
value for the same key is found, it is summed with the current value in the
dictionary. This is done partially (for every record batch that is being read)
and then again after having stored all the data in memory, which is possible
because the sum is an associative function. The values to be stored must be
converted from Arrow to Python objects, since Arrow integer scalars (which
are the input data types for the clicker column) can’t be summed up.

An important thing that can immediately be noticed is the fact that Python’s
objects are still being used, which limits the potential of Arrow. This is related to
the immutability of Arrow objects, so that it is not possible to modify an array
or a dictionary once created. This version is tested and it shows a performance
similar to before in terms of execution time, which tends to increase more when
increasing the number of output partitions. In section 4.2 the program is tested
with different parameters and the results are studied.

What matters here is that the memory used by the program is less, since only
Python’s objects are being allocated in memory while Arrow makes use of its
memory mapping functionalities (section 2.3). Also, now that we’re considering
one record batch at a time, it can easily be extended to a distributed scenario,
where it will be easier to parallelize the execution by sending a batch every time it
is written, without having to wait that all the file has been read and processed.

After this first version, two modifications have been made to improve the
performances:

1. The reducer has not changed much from the previous Python only version,
hence some modifications could be tried. Instead of using a Python dictionary,

19

Problem specification and system design

it is possible to obtain a dictionary encoded array from the Arrow array
containing the keys (the first column of the record batch in input). By doing
so, the only Python object left is a list containing the click counter for each
key, reducing the memory consumed. Then, all the keys arrays (which are
the unique keys obtained from the dictionary encode) are concatenated into a
single one and the click counter is updated accordingly. This can be performed
partially without having to wait that every value has been read, since the sum
is an associative function and works even if the records are aggregated step
by step. Therefore, for every input batch a reduce is performed and then all
the partial results are joined together to do the final reduce, which will save
the results in a csv. This version did not have a considerable impact on the
reducer’s execution time, but improved the memory allocations performed, so
that now less memory is used to store the data processed.

2. Finally, a big improvement has been made inside the shuffler: instead of waiting
for a batch to be the specified size, it is written to the temporary output files
every time a input batch is read. Therefore, if the keys are uniformly spread,
the batches will have roughly the same size, which would be the mean of the
number of keys per batch over the total number of partitions. This improved
the execution time and the memory consumption, by not having to store all
the records inside Python objects before being able to write a batch of the
proper size.

20

Problem specification and system design

3.3 Arrow distributed
In order to extend the program to a distributed version, Arrow Flight RPC (2.4) is
used. Thanks to this framework, the current local version based on Arrow data
can easily be adapted to work in a distributed fashion, implementing the client /
service communication methods.

What we want to do is manage the most consuming part of the data (the
temporary files stored by the shuffle) in different remote machines, which would
decrease the impact on the local working machine. This may also be extended to a
complete distributed version where each step in the application is on a different
machine rather than on a different process on the same machine, but it is not
required unless the data is very large. However, once implemented the methods
specified by Arrow Flight, it will not be difficult to further extend it.

Therefore, this final version of the prototype will focus on communicating with a
server to store the data resulting from the shuffle operation in a distributed fashion,
and then gather that data when it is needed in the reduce operation so that it can
be processed without the need of storing it on the local machine. The only part
that has not been changed is the mapper, that is processing the data and storing it
locally like before.

Flight defines a set of rpc methods that has to be implemented by its services.
In this case, what is required to do by the program is: uploading/download-
ing data, retrieving information about the available data streams and perform
application-specific methods. The program behaviour can be divided in two parts:
the communication of the shuffler with the servers to send the data and the commu-
nication of the reducer with the servers to get the data. The driver is the handler
of the calls, the part of the program that gets the information from the server to
where the data should be sent or retrieved and how to do it, and then runs all the
MapReduce steps with those informations as well.

The service part of Arrow Flight is organized in a way that can better handle
the data, and it is composed by:

• Metadata Server: the metadata server is responsible for holding the in-
formation about the data servers, such as which datasets are stored in this
service and how they are partitioned among the data servers, but does not
have the data. It is the server communicating with the client that will redirect
it to the right data server for the desired operation. The only data that the
metadata server has is the metadata relative to the data servers under its
"domain". In this case, the metadata server is running all the data servers
once it is started, so that it knows for sure where the servers are, while in a
real life scenario the data servers could be running separately from it, and it
should just know where the servers are and how to communicate with them.

21

Problem specification and system design

• Data Server: there can be one or more data servers and they are responsible
for storing the data relative to one or more partitions of the dataset. A data
server is identified by the location where it is running (address and port)
and it is designed to handle data storage and retrieval operations and ensure
data integrity and availability. In the context of our application, the data
server is responsible for storing and serving the data resulting from the shuffle
operation.

The client side of the program is being handled by a driver, which is responsible
for communicating with the Arrow Flight service and run the mapper, shuffler and
reducer instances with the proper requirements. The mapper is the first step of
this program that runs, and it is working locally, ideally with one mapper process
per input file. Like before, it processes the input data and stores locally the results,
in Arrow IPC format.

Now we will focus on the shuffler and reducer parts, with attention on how the
communication with the servers is happening and what all the related parties are
doing to make this possible.

3.3.1 Driver-Shuffler communication with the servers
In Figure 3.4 is represented a sequence diagram for the communication of the driver
and the shufflers with the servers, where the data servers and shufflers are indicated
with 1 and N meaning that there could be one or more of each. The communication
starts with the driver connecting to the metadata server and calling the do_action
method with the put_shuffle as action, telling the metadata server to set up
the data servers to handle the data that will be sent, with the number of output
partitions as the body request (Listing 3.1 lines 1-2). Upon receiving this request,
the metadata server decides how to divide the partitions based on the data servers
it has linked (for example, if there are 5 data servers and the driver wants 10
output partitions the metadata server decides to make the data servers handle 2
partitions each). It then returns the list of endpoints where each endpoint, which
is relative to one partition, contains the location where the data server handling
that partition can be found, and the descriptor that will be used by the shuffler to
store the data (Listing 3.1 lines 4-16). The driver saves the list of endpoints which
will be used later.

The first step that is being performed is the map, which is done locally. The
driver instantiate the desired number of mapper processes and waits for them to
finish writing the mapped files. Like before, the mapper is mapping the record
values to be 1 if Robot or 2 if User and is storing the data in record batches of a
given size, deciding here the schema that will be used for all record batches.

After the map is done, the driver creates the shuffler instances with also the list
of endpoints received from the metadata server. Each shuffler now is acting as a

22

Problem specification and system design

client that wants to upload data in the right data server. First of all, the shuffler
opens a connection with every data server in the list of endpoints. Then, the shuffler
calls the do_put method for each connection, with the upload descriptor that is
basically the descriptor received from the metadata server, for that particular
endpoint, with appended the name of the file that the shuffler is processing. This
is a contract stipulated between the client and the server and is therefore known
by both of them, it is a design choice that does not impact on the behaviour of the
system. For each connection, the shuffler is receiving a writer that can be used to
stream data to the endpoint. The shuffler then iterates through every record batch
in the input mapped file, gets the list of partition indices for every record inside
the record batch by applying the hashing function and streams one record batch
per partition to the endpoint handling that partition. Every time a data server is
receiving a stream containing a record batch, it is immediately storing it, which
results in each data server having a number of files equal to the partitions that
they can handle multiplied by the number of input files.

23

Problem specification and system design

F
igure

3.4:
Sequence

diagram
ofthe

driver-shuffl
ers

com
m

unication
w

ith
the

servers

24

Problem specification and system design

Listing 3.1: View of the packets sent and received from the driver, shufflers and
servers

1 put−s h u f f l e −reque s t
2 { id : " dataset_n " , Reducers : n}
3

4 put−s h u f f l e −response
5 {
6 " p a r t i t i o n s " : [
7 {
8 " l o c a t i o n " : " grpc+tcp :// datase rve r1 : 5 6 7 8 " ,
9 " d e s c r i p t o r " : " dataset_n /1"

10 } ,
11 {
12 " l o c a t i o n " : " grpc+tcp :// dataserverN : 5 6 7 8 " ,
13 " d e s c r i p t o r " : " dataset_n /n"
14 }
15]
16 }

3.3.2 Driver-Reducer communication with the servers
When all of the shuffler instances finish their job, the driver asks the metadata
server for the information about the endpoints that are now containing the data
resulting from the shuffle operation, and how to retrieve that data. The metadata
server answers with the flight-info (Listing 3.2 lines 1-17) containing the list
of endpoints, where each endpoint is relative to a single partition and contains
the ticket that is required by the data server to identify the data relative to that
partition and a list of locations where the data can be found (since there could be
multiple data servers having the same data to avoid problems in case of one server
failing to answer). In this case there is only one location for each partition.

With the list of endpoints received from the metadata server, the driver can
now create the reducer instances, where each one is relative to a single partition to
be reduced and is therefore created with the information on the endpoint relative
to that partition.

Each reducer represents a client connecting to the endpoint’s location where
the data server containing the partition of interest can be found. Once connected
to the data server, the reducer calls the do_get method with the ticket relative
to that endpoint (Listing 3.2 lines 19-23), where the ticket is a value opaque to
the client but is understandable by the server that will receive it. The data server
gather all the files relative to the partition asked for and creates a stream of data
composed by the concatenation of those files, which is sent to the reducer. The
reducer is then reading one chunk at a time and is performing the same operations
like before, grouping the records by keys for each chunk, summing up the values

25

Problem specification and system design

relative to each key partially and then grouping all the records for the final sum.
Then, the reducer stores the result in a csv file, which will contain the records with
the key relative to that partition and the summed value of the clicks.

The sequence diagram of the communication between the driver, the reducers
and the service is in the following Figure 3.5.

26

Problem specification and system design

F
igure

3.5:
Sequence

diagram
ofthe

driver-reducers
com

m
unication

w
ith

the
servers

27

Problem specification and system design

Listing 3.2: View of the packets sent and received from the driver, reducers and
servers

1 f l i g h t −i n f o
2 {
3 " endpoints " : [
4 {
5 " t i c k e t " : " dataset_n /1" ,
6 " l o c a t i o n s " : [
7 " grpc+tcp :// datase rve r1 : 5678 "
8]
9 } ,

10 {
11 " t i c k e t " : " dataset_n /n " ,
12 " l o c a t i o n s " : [
13 " grpc+tcp :// dataserverN :5678 "
14]
15 }
16] }
17 }
18

19 t i c k e t 1
20 " dataset_n /1"
21

22 t i cketN
23 " dataset_n /n"

28

Chapter 4

Experimental evaluation

In this section, we aim to assess the effectiveness and performance of the proposed
methodology through a comprehensive analysis of two distinct tests conducted for
each version of the prototype. The two tests represents two opposites situations
that may happen, to have the most extensive comparison in the best and worst
scenario: having a very limited number of keys versus having one distinct key per
row, which means that there can be millions. Each tests is executed with a different
number of output partitions: 5, 10, 20, 40. By evaluating this, we can gain valuable
insights into the strengths and limitations of each version.

The machine used for those tests is composed by: CPU with 6 cores and 4.10
GHz base speed, 16 GB RAM at 2400 MHz. As a baseline for the executions, one
can check its running time on the first row of the first test and see how the time
changes on a different machine.

In the first case, the MapReduce program implemented in Python serves as the
baseline for comparison. The tests have been designed to evaluate its performance
under varying complexities. These tests will provide insights into the program’s
capacity on handling data and its performances.

Building upon the initial implementation, in the second version that extends
the program using the Arrow framework, the evaluation will focus on measuring
the impact of incorporating Arrow in terms of data processing speeds, reduced
memory usage and overall performance gains.

The third and final version that extends the program further by incorporating
Arrow Flight, analyzes its impact on the overall performance, by showing how the
time changes when distributing some steps.

By conducting thorough evaluations on each case, this research aims to provide
insights into the effectiveness of using Arrow and Arrow Flight to extend the
MapReduce program implemented in Python. The results obtained from these
evaluations will contribute to understanding the performance characteristics, scala-
bility, and efficiency of the proposed extensions, thereby aiding in the identification

29

Experimental evaluation

of potential areas for further optimization and improvement.

4.1 MapReduce implementation in Python
In this section, the performance of the very first version is analyzed, which consists
of looking into the speed of the application on the different scenarios and how the
data is distributed among the partitions. As mentioned in section 3.1, to simulate
the behaviour of a distributed application, in every step each instance is being run
on a different Python process. The number of processes is dependent on the step:
it is equal to the number of input files in the map and shuffle steps, while in the
reduce step it is equal to the number of output partitions. That is because, each
mapper and shuffler are working on a single file while the reducer is working on
each file relative to the partition it is interested in. In the following tests, since the
program is creating multiple processes, the CPU is working at 100%, which may
create some noise for the execution time. This is not relevant in this phase, but
will be considered in the next phases.

The first test is executed with 10 input files, 10 unique keys (one per file in this
case), 3 million rows per file, for a total of 30 million, and a number of partitions
starting from 5 and doubling until 40. The parameters are:

• number of input partitions;

• number of elements per output partition;

• execution time (mean and standard deviation);

• reducer time.

The execution time is already composed by the reducer time, but the latter is also
reported so that it is possible to see how the number of output partitions impacts
on the parallelization of the reducer. For each number of output partition (or each
case of the test), the program has been executed 5 times. The results are reported
in table 4.1 and prove how increasing the number of partitions can be beneficial but
can also increase the execution time (and memory consumption). First of all, with
a low number of partitions, the keys are not evenly distributed, while increasing it
they are, confirming the fact that more partitions tend to even the distributions
out. Second, here the best result is obtained with 10 output partitions. Therefore,
parallelizing more the execution is not optimal: this is due to the fact that having
a single CPU more processes running together mean less computational power
available. Moreover, all the processes have to be created and managed, requiring
time and memory consumption. In a distributed situation, more partitions could
behave better, but the problem of having to manage more nodes remains.

30

Experimental evaluation

N N elements Execution time Reducer
partitions per partition Mean (s) Std dev (s) time (s)

5 [3,1,2,2,2] 24.571 0.327 5.631
10 [1,0,0,0,2,2,1,2,2,0] 20.720 0.460 3.554
20 max 1 per partition 22.398 0.680 4.280
40 max 1 per partition 24.490 0.728 5.742

Table 4.1: MapReduce performance with 10 unique keys

The second test is executed with 5 input files containing 3 million rows, each
one with a different key, for a total of 15 million unique keys. This is to see that
by increasing the number of keys, the keys among the partitions will be evenly
distributed even with few partitions, which is why there is a different parameter
that just checks if the output partitions are uniformly distributed or not. The
results are in table 4.2

In this case, the lower amount of partitions appears to have the best execution
time, but the best reducer time is again obtained with 10 partitions. Increasing
after 10 partitions the time is worsening like before. The reason for the execution
time being better with 5 partitions can be related to the behaviour of the shuffler:
it uses the same number of processes (that is the number of input files) every time,
but the number of files that it has to process is increasing with the number of
output partitions. That is because, for each input file, the shuffler has to write n
partitions number of temporary files for the reducer. So, with 5 partitions the
shuffler writes 50 files, while with 10 it has to write 100 files, which slows down
the execution time. Moreover, the reducer time is much higher with respect to the
previous test, even if this test has half the rows. This is due to the fact that all the
keys are unique, which requires more computation time and memory occupation to
store all the values for each key, while before it was much faster to just increase
the counter for the same key.

N Is Execution time Reducer
partitions uniform Mean (s) Std dev (s) time (s)

5 y 20.481 0.500 6.373
10 y 20.838 0.281 6.073
20 y 22.323 0.240 6.606
40 y 25.608 1.109 8.455

Table 4.2: MapReduce performance with 15 million unique keys

The tests here are to give a general view of the performance of the program.

31

Experimental evaluation

In a real scenario, the steps may be running on different machines and the best
parameters may change, but the main idea remains the same: increasing the
number of partitions is improving the performances with some limitations and until
a certain point, therefore it is very important to look into the optimal number of
partitions for a MapReduce program.

32

Experimental evaluation

4.2 Arrow local
Since the program is simulating a distributed environment, multiple Python pro-
cesses are running simultaneously for every step in the MapReduce application.
This is limiting the performance evaluation because, having a single local machine
without much computing power, those processes are consuming all the CPU when
running, which leads to some noise when evaluating the execution times. In order
to have more accurate assessments, a single process will be used for every step and
the partial execution times will be saved. The program is now being run 100 times
and then the execution times are averaged, so that to obtain the execution time
of each step (and the total), the time taken by each step will be divided by the
number of processes that it should be divided into. Therefore, for example, if the
mapper would use a number of processes equal to the number of input partitions,
which are 10, the time taken by the mapper with a single process is divided by 10.

In all the following tables, the mapper time is reported even if it should not
change in the different cases, since it is relative to the input files only, parameter
that is not changing in the same test. This is for the sake of completeness and
clarity when showing also the total time, and also to verify that the assumption is
correct.

The first test is executed with 10 input files, with 10 total unique keys. The
number of total records is 15 million, with 1.5 million per file. The results are in
Table 4.3 and show how the best execution time is with 10 output partitions like
before, but this time it is very close to the time with 20 output partitions. This
is because with 10 partitions the shufflers have less files to create and write into,
but the reducer has more work to do having to process more data per partition,
while by increasing the number of partitions the shuffler requires more time to
create more partial files (since it creates n partitions files per input file), but the
reducer is significantly faster due to the fact that it has to process less data. Also,
in this case, having less keys than partitions, some instances of the reducers would
have no data to process.

N partitions Map time (s) Shuffle time (s) Reduce time (s) Total time (s)
5 1.133 3.026 2.444 6.604
10 1.162 3.329 1.249 5.741
20 1.171 3.962 0.652 5.785
40 1.153 4.962 0.324 6.438

Table 4.3: Performance with 10 unique keys using Arrow

In the second test, with the same number of records but one unique key per
record (which makes it 15 million unique keys in total), things change. The results
in Table 4.4 prove that the number of partitions in a scenario more plausible (with
lots of unique keys) is different that what was found before. In this case, the best

33

Experimental evaluation

result is the one with 20 output partitions, while 40 partitions is still doing better
than 10.

Here, every reducer instance is working at the same capacity since the keys are
many and the partitions end up being uniformly distributed, which means that
increasing the number of partitions leads to the reducers having to process less
data. This is optimal until a point where the time taken by the shuffle is increasing
more than how the time taken by the reducer is decreasing.

As expected, the reducer time is halving when the number of partitions is
doubling, which confirms the fact that the keys are uniformly spread meaning that
the number of records to be processed by the reducer is decreasing proportionally
to the increase in the number of partitions.

The shuffler time however is increasing much more, which could be related to
how the number of partitions impacts on its performance: 10 partitions means 10
files written per shuffler, 20 partitions means 20 files written and so on. Having
the same number of input files, the shuffler still has to process the same number of
records, but it has to create and write into more temporary files as output. For
what can be deduced by the results in Table 4.4, the shuffler time increases more
when more files have to be written, and at an higher rate of how the reducer time
decreases.

N partitions Map time (s) Shuffle time (s) Reduce time (s) Total time (s)
5 1.549 3.321 6.615 11.485
10 1.581 3.806 3.347 8.734
20 1.548 4.450 1.687 7.685
40 1.530 5.791 0.896 8.216

Table 4.4: Performance with 15 million unique keys using Arrow

In Figure 4.1 is shown all the times at the different steps, per iteration, before
being averaged (with 20 output partitions, that is the best case). This is to prove
that the time is approximately similar in all iterations with some small variance,
so that the considerations made before are valid.

When taking into accounts both tests and their performances, it can be seen in
Figure 4.2 how the best scenario is clearly performing better, since as said having
less keys means less effort mostly for the reducer but also for the shuffler and
mapper. In the figure, the times for each step are compared, at the variation of
the number of partitions. This comparison highlights the biggest difference in
time between the two tests, which lies in the reducer time, that is the one more
influenced by the number of output partitions and keys. The shuffler and mapper
times are very similar, since the number of input files and records is the same. The
shuffler takes more time when there are more unique keys since it has to process
more separate records and write them in different files.

34

Experimental evaluation

Figure 4.1: Time taken for each step in 100 iterations, with 20 partitions

The reducer time is incredibly slow with few output partitions when lots of
unique keys are present, while it starts off already fast with few keys. This is
relative to how the reducer needs to store all the key-value pairs and compute
the desired reduce function for each of them, which leads to poor performances
when having few reducers to compute huge amounts of data, doing even worse
when increasing the number of keys to process, since more distinct keys mean
more key-value pairs to store in memory and more computations to perform. Even
if in this version the reducer has improved the memory consumption by using
Arrow’s data structures, there still is a Python list summing up the values, which
is bigger with more unique keys, which also means that there are more separate
computations to be done thus increasing the time required.

The results in Figure 4.2 also shows how the reducer time is decreasing a lot
with the increase of the number of partitions, even faster in the case of 15 million
keys, which is coherent to the statement made before about the time halving when
doubling the number of partitions. Therefore, even with a huge amount of distinct
keys, by increasing the number of partitions, therefore increasing the number of

35

Experimental evaluation

reducers, the reducer reaches a performance very close to the best scenario.
The shuffler time however is increasing more in the worst scenario, which can

be due to the fact that more partitions gives more effort to the shuffler, having it
more files to write, and that effort is increasing even more if there are much more
keys to be written. Having more keys to be written would mean that, for every
record batch that is being read, the shuffler has to write in every output file, since
it is highly improbable that one partition is not being considered. However, with a
small number of distinct keys, when reading a record batch, it can happen that
the keys have to be written in just some partitions, which means that the shuffler
would have to write to a small number of output file at that iteration, making it
faster. For these reasons, it is very important to consider the trade-off between
these two performances in a real case.

Figure 4.2: Time taken for each step, per partition, in the two tests

36

Experimental evaluation

Finally, the total time taken for each partition in the two tests is shown in
Figure 4.3. Here the difference between those two scenarios is much more evident,
and it also shows how the number of partitions affects differently the performances
on a different number of unique keys.

Figure 4.3: Total time taken per partition in the two tests

37

Experimental evaluation

4.3 Arrow distributed
In this section we look at the results obtained by the final, and most important,
version of the prototype. Here the difference from the previous version is in the
distribution of the shuffle, so that the temporary files stored by the shuffle step
are now being stored in a cluster of data servers separate from the local machine,
where the reducer is reading from. However, in this tests the data servers are still
being created on the same machine, in order to showcase the behaviour of the
application and see how adding additional steps to communicate between different
services, simulating a client-server behaviour, impacts on the performances of the
application. For a complete testing it would be necessary to have access to a
different machine or a cloud, where the data servers could then be created so that
there is actual separation between the client and servers, which would probably
slow down the execution times by having to take into account the speed of the net
as well. Since it is not as important as showing the potentiality of this prototype,
it is not done.

The evaluation performed here is still done on two tests, each of them with 4
cases varying the number of partitions, and being executed 100 times per case. The
results are averaged on the number of processes that should be running in parallel
like before. The focus of this section will be more on how the speed of the shuffler
and the reducer changes when adding the additional steps to distribute the data in
between.

The record batch size is specified in the mapper to be 8196, which means that
each batch is composed by 8196 rows or records. The total size in bytes of each
record batch is composed by: 8196 * (size of int32) + 8196 * (size of string) + (size
of metadata). In the test with all distinct keys, it is 213096 bytes, which would
be different in the other case depending on the length of the keys. Since in the
shuffle phase the record batches sent out are not of the specified batch size, but are
smaller due to the shuffler not wanting to store all the data from different record
batches (it process one record batch at a time and writes it out in the temporary
files splitting the keys in the different partitions), their size would be the initial
size divided by the number of output partitions. That size is how much data is
being transferred between the shufflers and the data servers, and read from the
data servers to the reducers, at each time, because those instances are processing
one record batch at a time.

In Table 4.5 the performance for the test with 10 unique keys is showed, and
the results are not much worse than before. This can be related to the data servers
being on the same address as the clients, but it gives a good idea of how adding
a distributed step increases the performance times. Arrow Flight is doing an
excellent work in not worsening much the performance by adding little overhead
and complexity to implement a distributed step that is fundamental.

38

Experimental evaluation

The best number of partitions is 20, which is different from the local version in
this case, even if not by much. This proves one more time that 20 partitions is the
best number in this scenario.

N partitions Map time (s) Shuffle time (s) Reduce time (s) Total time (s)
5 1.185 3.141 2.827 7.154
10 1.158 3.326 1.494 5.979
20 1.192 3.929 0.692 5.814
40 1.175 4.964 0.340 6.480

Table 4.5: Distributed performance with 10 unique keys using Arrow Flight RPC

Table 4.6 shows the results for the test with 15 million unique keys using Arrow
Flight, and the results are promising like before. The best number of partitions
is still 20, with 40 being better than 10 in this case, since the reducers are doing
much less work compared to the shufflers.

N partitions Map time (s) Shuffle time (s) Reduce time (s) Total time (s)
5 1.513 3.371 6.931 11.816
10 1.536 3.686 3.540 8.762
20 1.519 4.418 1.786 7.723
40 1.534 6.002 0.954 8.490

Table 4.6: Distributed performance with 15 million unique keys using Arrow
Flight RPC

In order to better visualize the difference in the two tests, for each step, Figure
4.4 shows how the speed changes in each step of the two tests, when the number
of partitions is increasing. There is again a clear difference between the reduce
time in the two cases when the number of partitions is low, but that difference is
decreasing when using more output partitions. The mapper time is approximately
similar as expected, and the shuffler time is also similar, but is increasing more in
the test with 15 million unique keys when enlarging the number of partitions. This
is related to the number of keys, since with 10 keys, when using more partitions
than 10, some of the partitions will be empty and at most 10 partitions are being
used, therefore limiting the increase in time. With much more keys, however, when
increasing the number of partitions, all of the partitions are being used, therefore
proportionally augmenting the time required to perform the shuffle operation.

Since in reality we do not expect to have a small number of unique keys, the
expected behaviour of this application in a real scenario is more coherent with the
second test, where it is more important to consider the increase in the shuffle time.

Figure 4.5 shows the difference in the two tests for the total execution time, so
that it is easier to understand the performances. The second test is, as expected,

39

Experimental evaluation

Figure 4.4: Time taken for each step in the two distributed tests

slower than the first, which is related to the number of input keys, but there is a
bigger time decrease as the number of partitions increases, to a point where the
direction of the slope changes, indicating the best possible parameter.

Figure 4.5: Total time taken for each step in the two distributed tests

Finally, we can compare the results in the two tests for the different versions
using Arrow: the local and the distributed ones. Table 4.7 contains the total
execution times in the two versions when increasing the number of partitions, with
10 unique keys. Here it is possible to notice how the difference, when using the
optimal numbers, is not big, indicating how using Arrow Flight to distribute the
steps is not as impactful as one may think: the complexity added by this framework
is minimal.

Table 4.8 shows the difference in execution time for the two version, when testing
with 15 million unique keys. Here the difference is again very small, not like before
but again to a level that proves how Arrow Flight is an incredible framework. The
best result here is clearly obtained with 20 partitions in both versions, and the

40

Experimental evaluation

N partitions Local total time (s) Distributed total time (s)
5 6.604 7.154
10 5.741 5.979
20 5.785 5.814
40 6.438 6.480

Table 4.7: Performance comparison between the local and distributed versions
with 10 unique keys

difference is very small with 10 or 20 partitions.

N partitions Local total time (s) Distributed total time (s)
5 11.485 11.816
10 8.734 8.762
20 7.685 7.723
40 8.216 8.490

Table 4.8: Performance comparison between the local and distributed versions
with 15 million unique keys

Finally, a different parameter is tested: N_input_files, which is the number
of input files of the application, also known as number of input partitions that
the dataset has been split in. This parameter determines the performance of the
mapper and shuffler, since for those steps one instance is created per input file.
Therefore, having more input partitions would increase the number of mappers and
shufflers running, which may improve the overall speed of the program. However,
increasing the number of instances running also impacts on the memory and the
computing power being consumed at the same time, which is an important factor
to consider.

For this scenario, the same two different tests are being run (with 10 unique keys
or 15 million) and the input data size is the same as before (15 million records).
This means that if the data is partitioned in 5 partitions, there are 15.000.000 /
5 records per partition, so that by increasing the number of input partitions the
data per partition is less. The values being tested for this parameter are: 5, 10, 20.

Figure 4.6 shows the results for executing the two tests in this case. Here
it can be noticed how, by increasing the number of input partitions, the speed
improves incredibly. The reducer time is still the same (since it depends on the
number of output partitions), while the mapper and shuffler time are improving.
Unfortunately, this improvement comes with some costs: in order to increase the
parallelization of the program, the number of machines where the steps have to
run is increasing as well, that could each run one or more instances of the steps,

41

Experimental evaluation

depending on the size of the dataset. However, if the dataset is big, to parallelize
properly we would need many distributed machines, where each machine has a
considerable cost. Also, more instances mean more overhead and time to run
and coordinate them. Therefore, it is important to balance the costs and benefits
in this choice, finding the right amount of input partitions. Being the shuffler
the most time consuming operation, the figure shows that increasing the input
partitioning improves its time, but the improvement is fading the more partitioning
is done. In this case, 10 input partitions could be considered a good option, since
the improvement when using 20 is good but it would require 2 times more the
number of processes and therefore more costs.

Figure 4.6: Time taken for each step varying the number of input files in the
distributed version

42

Chapter 5

Conclusions

While the primary objective of achieving a fully distributed shuffle step in Data-
Fusion using Arrow Flight RPC was not accomplished within the scope of this
thesis work, the prototype implementation provides a solid foundation for further
exploration and development. The findings from this work contribute to the un-
derstanding of leveraging Arrow Flight RPC for distributed shuffle operations and
pave the way for future research and optimization in the field of distributed data
processing.

As for future work, there are several promising directions to pursue. One poten-
tial avenue is integrating the distributed shuffle step prototype within DataFusion
itself. By incorporating the prototype into the core functionality of DataFusion,
users can leverage the benefits of distributed shuffling seamlessly within their data
processing pipelines.

Moreover, conducting extensive scalability testing with larger datasets and
distributed clusters would provide a clearer understanding of the system’s behavior
under various workloads and deployment scenarios. Evaluating the prototype’s per-
formance on real-world use cases and benchmarking against other distributed data
processing frameworks can further validate its effectiveness and competitiveness.

In conclusion, this thesis work laid the groundwork for a distributed shuffle step
in DataFusion using Arrow Flight RPC. The prototype implementation showcased
the potential benefits of leveraging Arrow Flight RPC for distributed shuffling and
offered insights into its performance characteristics. By integrating the prototype
within DataFusion, as well as exploring advanced optimization techniques and con-
ducting scalability testing, future research can continue to enhance the capabilities
and performance of the distributed shuffle step, making significant contributions to
the field of distributed data processing.

43

Bibliography

[1] url: https://blog.devgenius.io/apache-arrow-2d72137d9e84 (cit. on
p. 5).

[2] Dejan Simic. «Apache Arrow: Read DataFrame with zero memory». In: ().
url: https://towardsdatascience.com/apache-arrow-read-dataframe-
with-zero-memory-69634092b1a (cit. on p. 6).

[3] url: https://blog.djnavarro.net/posts/2022- 05- 25_arrays- and-
tables-in-arrow/ (cit. on p. 7).

[4] url: https://grpc.io (cit. on p. 8).
[5] url: https://protobuf.dev (cit. on p. 8).
[6] url: https://arrow.apache.org/docs/format/Flight.html (cit. on pp. 9–

11).

44

https://blog.devgenius.io/apache-arrow-2d72137d9e84
https://towardsdatascience.com/apache-arrow-read-dataframe-with-zero-memory-69634092b1a
https://towardsdatascience.com/apache-arrow-read-dataframe-with-zero-memory-69634092b1a
https://blog.djnavarro.net/posts/2022-05-25_arrays-and-tables-in-arrow/
https://blog.djnavarro.net/posts/2022-05-25_arrays-and-tables-in-arrow/
https://grpc.io
https://protobuf.dev
https://arrow.apache.org/docs/format/Flight.html

	List of Tables
	List of Figures
	Glossary
	Introduction
	Related Work
	MapReduce
	Joins
	Hash join
	Sort-merge join

	Arrow
	Arrow Flight
	Downloading data
	Uploading data
	Exchanging data

	Datafusion

	Problem specification and system design
	MapReduce implementation in Python
	Arrow local
	Arrow distributed
	Driver-Shuffler communication with the servers
	Driver-Reducer communication with the servers

	Experimental evaluation
	MapReduce implementation in Python
	Arrow local
	Arrow distributed

	Conclusions
	Bibliography

