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Summary

In a world in which the amount of computation required is growing fast, and
where one of the most computation-hungry task is the execution of Machine Learn-
ing (ML) algorithms, especially Neural Networks (NN) computation, the research
started focusing on accelerating and optimizing for these tasks [1].

Among different possible approaches, leading to several trade-offs, varying from
specialized ASIC accelerators to framework-level optimization, this thesis focuses on
implementing a Precision Scalable (PS) multiplier to be placed inside the pipeline
of the Ibex low-power RISC-V processing core [25]. PS multipliers are a research
topic since some time now [15, 16, 17]; these are multipliers capable of executing
more than one multiplication in parallel in the case these operations are executed
at a lower precision than the maximum one the multiplier can support. Target for
the PS multiplier architecture developed in this thesis is the acceleration of Quan-
tized Neural Networks (QNN) computation. QNNs are an optimization of standard
NNs to ease the deployment specifically, but not only, on low-power performance-
constrained devices, which represent the typical application target of the Ibex core.
QNNs make use only of integer operations with a variable precision selected on a
case-by-case basis after a proper analysis that aims to strike the right balance in
the trade-off between NN accuracy and performance [5, 6].

First, starting from the standard Baugh-Wooley (BW) multiplier architecture,
in this thesis I derived a novel PS multiplier capable of changing the precision from
4 to 16 bit. Parallel execution at reduced precision involves two types of operations:
Sum-Separate (SS), which consists in multiplying and returning the results of each
multiplication independently, and Sum-Together (ST), where the multiplication re-
sults are also added before returning [18]. Moreover, I added the support for the
Multiply and Accumulate (MAC) class of instructions to the Ibex core for all mul-
tiplication instructions, thus including SS and ST operations previously mentioned.
All these instructions are suitable in different contexts inside the QNN accelera-
tion domain, considering optimal execution differences in the most common ML
algorithms for the edge scenario, which is the subject of the subsequent benchmark
analysis.
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On the basis of the two standard multiplier units originally present in the Ibex
core, I defined two conceptually similar structures including in the design two gate-
level multipliers based on the novel PS BW structure previously mentioned, which
has been adapted to this context. For comparison, I also developed two purely
behavioral descriptions, in System Verilog, for which synthesis tools are able to de-
rive the most appropriate multiplier structure capable of dealing with the PS and
parallel execution requirements. In total, configurations of all multiplier structures
that I designed include the possibility of executing a single 32 bit multiplication,
two 16 bit multiplications, four 8 bit multiplications, and eight 4 bit multiplications
in parallel, all of these supporting both the SS and the ST modes, and also MAC
operations.

These previously mentioned configurations define a set of 31 new custom instruc-
tions to be added to the RISC-V ISA. To support new instructions I also extended
the decode unit of the Ibex core. Added instructions are thus in the category of
MUL and MAC classes in the range from 32 bit (equal to the original design of the
Ibex multiplier unit) involving one single operation, down to 4 bit for which, po-
tentially, eight operations are replaced with a single one executing them in parallel.

In order to compile high level C/C++ code, support for these instructions must
be added in a compiler. In this case, I modified the well-known GCC compiler to
accept the assembly format of those instructions, allowing to include, and easily
compile, inline custom assembly instructions inside C/C++ source code.

To evaluate the performance of the modified processor with respect to the origi-
nal design, I developed a set of three benchmarks for the three most common QNN
algorithms in the edge scenario. Each benchmark targets a single ML algorithm,
namely, Fully Connected layer, Convolutional layer, and Depth-Wise Convolutional
layer. For each of these, I made clear the performance advantages coming from the
usage of reduced precision instructions exploiting, as a metric, the execution time,
through a precise analysis of each modified Ibex core version running on an FPGA
board.

Finally, I compared all previously mentioned Ibex core variations, targeting syn-
thesis on silicon on a 28 nm production process, and analyzing power, performance,
and area metrics to derive more comprehensive conclusions.
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Chapter 1

Introduction

1.1 The importance of Machine Learning
From the time ML became a hot topic, widely diffused in several different fields, one
thesis out of two includes a long in-depth introduction analysis, making ML algo-
rithms and NN structures a well known argument over past years. Given that, I do
not see the point of repeating it, thus I have chosen not to dedicate an independent
chapter to an in-depth ML algorithm listing and description. I place instead here
some references to books or scientific surveys where all concept description is well
done. As for two books covering almost every aspect of theoretical ML algorithms
refer to [2] and [3], for a quick survey see [4], for instead a focus on quantization
techniques and relative issues [5, 6]. Of course, single ML algorithms and NN struc-
tures are tackled down individually when needed along chapters in this document.
As an introduction, I want instead to focus on the importance of ML in today’s
world, with an emphasis on the importance of accelerating ML algorithms.
A way of seeing ML algorithms is the one of seeing them as a class of well-optimized
algorithms able to approximate underlying functions in our world. Starting from
a set of relevant data, a ML algorithm is able to detect, while approximating, re-
lationships between data (if they exist). So, the final objective is to develop the
mathematical definition of a function approximator, including computation done
over the data, internal tunable parameters to approximate functions, and a learning
procedure, usually referred as training phase, to update those internal parameters
to fit that wanted function.

From this description we can derive 3 distinct processes:

• Data collection

• Algorithm structure definition

• Computation
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Introduction

These interact together within the definition procedure, but, once defined, they
could be treated as conceptually separated.

Data collection is the process of crating collections of data in the most infor-
mative and suitable manner, also data format must be compliant with the algorithm
and systems that carries out the computation. For example, considering humans,
we acquire data from our own "sensors" (i.e. eyes, ears, nose, etc.) and we develop
our own functions (at least the practical ones) starting from these data. But in a
computer-centric world, it becomes evident this process is related to other types of
sensors, and this influence not only data format but also data acquisition systems,
that obviously relapse in the electronic and computer engineering fields.

Algorithm structure definition is the process of creating a mathematical
definition of computation to be subsequently done over desired, relevant data. For
this definition, two strategies have been derived over the years, a formal mathe-
matical description able to consider theoretical aspect of function approximation
(still it is possible to see, in a way, polynomial regression as a ML algorithm), or
let the human intuition join mathematical aspects and do the job. Especially this
last strategy have been, during last years, able to provide us most of the fancy ar-
chitectures nowadays are considered the state-of-the-art for specific task accuracy,
conceiving things from the residual connections in deep CNN structures [7] to that
architectural monster that is the Transformer block [8] used for sequential data
analysis.

Computation is intended as systems able to compute, possibly efficiently, that
mathematical description with the input data collected, and allow all the above to
exist in the real world. These systems are definitely the limit to the applicability
of such algorithms. There are several reasons:

• Technological: we still rely on transistors for computation, and this will be
also true for a long time in the future, thus the computation limit increases
at the same time the transistor description and fabrication processes become
more efficient (i.e. the integration density increases, single transistors require
less power, parasitic effects are minimized, etc.).

• Architectural: from the most low-level machine description and organization
(i.e. from classical von Neumann architectures, to memory-centric architec-
tures [23]), to the most high-level system-design (i.e. exploit existing paral-
lelism in algorithms to split and parallelize the computation, the local memory
sizing procedures, etc.).

• Algorithmic: from the code organization and memory hierarchy management
strategies (e.g. changing code structure to fit memory hierarchy of target de-
vices) passing through optimization of code for specific machine architectures
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1.2 – Neural Networks at the Edge: Optimization and Compromises

(e.g. development platform as Nvidia CUDA [33], Intel OpenVino framework
[34] or AMD ROCm [35]) coming to ML algorithm description and computa-
tion frameworks like TensorFlow [36] or Pytotch [37].

So, about the importance of ML in today’s world, we can see every practical
interaction between us and our world can be treated as a function. We know, from
some decades now, we can not limit computation of such interactions to human
entity, that is limited, even if very efficient. Nowadays, we discovered we can not
limit also the development of these interactions to human entity. This is when ML
techniques became essential, as it became essential the automatic treatment (i.e.
learning) of information present in the data itself.

Indeed, the explosion of ML algorithms in different fields like the healthcare
(specifically in biologic research), the industry (to optimally organize facilities), the
automotive (leading to autonomous driving systems), and many more, all of which
with outstanding results, is the confirmation that human-made algorithms are not
a first choice for some specific tasks, or at least, have a clear slower development
with respect to the ML approach.

The importance of machine learning now becomes clear in the development of
our society, and, given the limit of that development, and deployment, is the com-
putation capability, it becomes clear the importance of the machine learning accel-
eration.

Starting from the next section and for all the other chapters of this document,
the focus is only on NNs and its derivations.

1.2 Neural Networks at the Edge: Optimization
and Compromises

Continuing the discussion on giving some hints about the importance of ML algo-
rithm acceleration, if we consider one hot topic in these days, one also well known
to the average man, that is, ChatGPT, everyone can clearly see the possibilities
offered by these systems. ChatGPT is a chat mechanism based on a Large Lan-
guage Model (LLM) developed by OpenAI [38], when it has been launched it was
based on the GPT-3 LLM, developed by the same group. By looking at a GPT-3
paper details [13], we can easily discover that these impressive results are reached
with models that could need an amount of parameters in the order of hundreds of
billions of parameters, so, considering 32 bit per parameter, a memory quantity in
the order of hundreds of GB of RAM [13], even in the order of TB at most, and few
systems in the world can manage these requirements. Now, the deployment and
optimization concerns become clear. Of course ML applications could be every-
where, and not all NNs requires that amount of parameters, especially considering
optimization for mobile devices. We can think dozens of application for which data
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are generated at the edge, and could easily being processed in the same position
without having necessity to send them to some server in the world able to deal with
billions of parameters and even more floating point operations. Some examples are:

• Human activity recognition and tracking

• Anomaly detection for critical safety systems

• Predictive maintenance or quality control for industry

• Facial recognition in airports

• Traffic prediction in cities

But in order to spread more sophisticated NNs along class of devices accessible to
everyone, especially those devices everyone is using even if they don’t know they
are, optimization techniques of NNs must be considered.

When talking about this approach we talk about "ML at the edge", where the
edge could be imagined as the near jump between the computing system and the
real world we also can interact with. These devices are usually low power, with little
computation capabilities, little memory, and most important they must be cheap
as they need to be widely diffused. The following are some of the most common
ML optimizations techniques for this class of devices:

• Reducing model parameters
This can be achieved by using fewer parameters in the model definition or
by pruning [11], that is the operation of removing both some less meaningful
input connections or entire neurons if that output result is not used. Both of
these strategies could lead to a reduction in the NN accuracy, usually since
pruning removes parameters after the training step done on a larger model,
the reduction in the accuracy is lower than the same structure with fewer
parameters at the beginning of the training.

Figure 1.1: Network structure before and after pruning process [11].
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• Parameters quantization
NNs are one of the most over-parametrized application, the functional space
of these systems is huge, but it is required to find a good parameter-set to
approximate the underlying function of the desired application in a relatively
small amount of time compared to the whole space exploration. Still this
space is so large that, even if each parameter is quantized, it is likely it would
approximate the underlying function in an acceptable way. Some techniques
have been developed along the years to adjust parameters over a trained NN,
or to train a NN considering at the same time the final quantization required.
For the first we talk about Post Training Quantization, while for the latter
we refer to as Quantization Aware Training. Amid quantization techniques,
two more common techniques are affine quantization and scale quantization
[5, 6]. Scale quantization, as the name says, scales floating point parameters
equally distributing them to the range that could be represented by the selected
integer precision. Accuracy of the integer quantization depends not only on
integer precision, but also on how wide is the range of such parameters, and
how near these are centered to the zero position. Affine quantization still
performs the same scaling procedure as scale quantization, but also it makes
the quantization affine to the center position where parameters are distributed
subtracting the mean of these points before quantizing.

• Winograd transformation
The Winograd transformation is a well known technique coming from signal
processing domain. The same transformation is also used, and suitable, con-
sidering operations involved in convolutional layers typically present in NN
(CNN), where a small size filter (smaller with respect to the input dimension)
is convoluted along the input producing at each step a single output of the
output matrix. Winograd transformation says, to be practical, that consider-
ing small size filters with an overlap at each stage, it exists a larger filter that,
if applied in the same positions, in conjunction with a preprocessed version
of the input, would produce the same output in less computation. This tech-
nique adds a trade-off, it allows reducing computation if we accept to pay the
price of a higher number of parameters of the new bigger filter, instead of the
smaller original one. Moreover, for small quantization bit-width it could be
less beneficial if not considering paying also the price of increase the quantiza-
tion bit-width for some layers. An analysis on pro-cons considering application
of Winograd transformation on CNN can be found in the following paper [12].

• HW support for reduced precision operation
Quantizing without having HW support to compute reduced precision opera-
tions is half an advantage, since, even if memory footprint is reduced, perfor-
mance (translating in inference latency) and power consumption (translating in
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target applications) remain the same. An analysis of computational require-
ments for the three most common layers, specifically considering low-power
applications, follows:

– Convolutional Neural Networks (CNN) layers perform multiplications
and accumulations of each input-parameter couple, for each output posi-
tion, which determines also the filter position in the input feature map
along the convolution process. For this layer the main, if not the only
strictly, operation required is the MAC operation.

– Depth-Wise Convolutional Neural Networks (DW-CNN) are a vari-
ation of classical convolutional networks, which have been introduced in
MobileNets [9] within the Separable DW-CNN, it aims in reducing model
parameters and computational requirements, while trying preserving orig-
inal expressiveness of convolutional layers. Still, being a convolutional-
based layer, the main operation required is the MAC operation.

– Fully Connected (FC) layers (also known as Dense, or Single Layer
Perceptron) were the basis of neural inspired networks at the down of the
artificial intelligence research. In a fully connected layer all inputs are
multiplied with corresponding parameters. The parameter vector has the
same dimension of the input one. This means every output value depends
on every input value, thus the number of operations is even higher. It
is easy to make this layer over-parametrized in most applications, thus,
most of the time, its main use is as the very last layer of NNs. Also in
this case, the main operation is a MAC operation.

Given that the main operation is the MAC operation for almost every com-
putational layer, and that other layers, either do not require any parameter,
or can be folded inside the previous computational layers, as per the case of
Batch Normalization layers [10], the focus of HW-acceleration is in optimizing
the MAC operation.
Efficient HW support for reduced precision operations is an open challenge.
An approach could be modifying multiplier structures that are prone to be
parallelized, examples are [18] [21], but there are cases in which the amount
of added logic is not negligible anymore, making a multiplier structure suit-
able for very limited applications. Another way is using several simpler and
smaller low-precision multipliers to achieve the same computational capabil-
ities in accelerators [22] or in dedicated units [19], but in this case the limit
is at the interconnection and algorithm mapping level. The same approach
could be used in FPGA, which started increasing the amount of internal DSP
that exploit FPGA reconfigurable interconnections [24].
Technology leaders implement these solutions inside commercial product for
different target markets. For example Google TPU [39] is an HW specifically
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1.3 – Introduction to thesis work

designed for ML acceleration, the main target is the cloud execution domain.
The same TPU concept have been shrunk to target the edge devices, pro-
ducing the edge-TPU [40], an architecture targeting the low-power domain.
Nvidia developed the Tensor Core integrated in many solutions from datacen-
ter GPU like A100 [32], to consumer level GPU like the RTX 3xxx family,
down to the embedded market with the Jetson Orin [41]. Nvidia developed
also the NVDLA open-source accelerator [42]. AMD Xilinx is proposing an
easier approach to accelerate NNs exploiting FPGA reconfigure capabilities
with the FINN toolchain [43]. In the same direction also the open-source
HSL4ML allow targeting FPGA to accelerate NNs [44].

The last optimization strategy, specifically the design of precision scalable HW
for the edge scenario, is the focus of this thesis work.

1.3 Introduction to thesis work
As could be previously foreseen, in the research, there are several possible ap-
proaches to accelerate ML algorithms, given several optimization levels and perfor-
mance target:

• ASIC is the most efficient solution since it targets just a restricted class of
algorithms, but at the same time the flexibility is minimum as it is not able to
carry out standard computation workload like the execution of general purpose
programs. This is usually a good approach for statically designed accelerators.

• FPGA is another solution, in this case less efficient but more flexible, algo-
rithms can be mapped through FPGA LUT while exploiting programmable
interconnections to implement necessary binary functions. Nowadays, many
FPGA designs dedicate a significant amount of area to implement more gen-
eral DSP blocks able to compute operations that most of the time are useful
also for ML algorithms, in this case the FPGA configurable structure is mostly
dedicated to the programmable interconnections between those DPS blocks.
A good example of tailoring an FPGA configuration to class of NNs or even
specific NN structures is presented in [28].

• GPGPU is widely used to compute ML algorithms given the capability to
perform easily parallel tasks coming from a structure of an order of some thou-
sands of little specialized blocks organized in an hierarchical way, on which,
e.g., computation involving a set of data in local SRAM can be easily mapped
to the one required by ML algorithms, especially CNN computation.

• CPU is conceived primarily to perform sequential workloads and to guaran-
tee the possibility to execute code compliant with a given ISA, usually these
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architectures are necessary in almost every modern system to compute the con-
trol part of a given algorithm, for which the computation can be performed
by dedicated accelerators like, for example, the ones previously listed. Often
these machines could be as small as possible, an example can be seen in the
M-series of ARM processors [46] used in small microcontrollers in which the
area devoted to the computation must be extremely smaller to keep the cost
as low as possible. However, most of the time this type of CPUs are the only
computation capable devices present in a system, and if unit cost is one of the
key element in the design, in order to accelerate other tasks, it is necessary
to modify or integrate the minimum amount of computational capability, thus
the minimum amount of silicon, to meet the requirements. Not only small
devices includes CPU strategies to increase parallel computation capabilities,
also server-class CPU started including set of instructions devoted to vector
operations, e.g. AVX extensions proposed by Intel.

This last consideration leads to another way to accelerate ML computation, that
is modifying the processor structure, adding new instructions (also, depending on
the target application, removing unused instructions) and HW logic capable of
computing those instructions. The result of this strategy is referred as Applica-
tion Specific Instruction-set Processors (ASIP). This thesis work focus on
the applicability of a novel multiplier architecture in the context of modifications
on a microprocessor core conceived for low-power scenarios. The microprocessor
chosen is the fully available and open source [48] 32 bit RISC-V Ibex core, de-
veloped jointly by ETH Zurich and University of Bologna [49] in which 31 new
instructions are added. These instructions are aimed in adding support to per-
form, in parallel, more than one multiplication (MUL operation) if these are at
a reduced precision with respect to standard register bit-width of the processor,
such as: two operations if operands and result are at 16 bit precision, four opera-
tions for the 8 bit case, and eight operations for the 4 bit case. Parallel execution
involves two types of operations, Sum-Separate (SS), which returns independent re-
sults, and Sum-Together (ST), which sum the results before returning. Moreover,
another group of instructions adds support for MAC operations for all previously
mentioned multiplications. MAC operations accumulate the result of these parallel
execution over time exploiting an internal register. In all cases, including standard
MUL operations present in the unmodified RISC-V ISA, computation is carried
out by a single in-pipeline multiplier unit compliant with the Ibex architecture for
which several trade-offs are considered among possible implementations as treated
in next chapters. An assembly support for all these instructions is then added to
the GCC compiler with the objective to allow compilation of assembly instructions
present in C/C++ code. Developed benchmarks, to retrieve performance improve-
ments, make use of this modified GCC compiler targeting three, among the most
common, layers in the QNN edge domain, that are, Fully Connected (FC) layer,
Convolutional NN (CNN) layer, and Depth-Wise CNN (DW-CNN) layer.

8
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1.4 Related work
As already mentioned, the research started focusing on the acceleration of NNs,
specifically QNNs, from some time now. Related to the QNN acceleration domain,
several PS multipliers have been recently proposed [17]. In [21] a radix-4 Booth
ST multiplier have been realized to accelerate ML tasks. In [19] is proposed an ap-
proach based on several smaller architectures as divide-and-conquer strategy. Also,
on the ST operations side, in [22] an accelerator for 2D-CNNs is proposed. Specifi-
cally on the Baugh-Wooley PS structures, [18] proposed an analysis on the usage of
the Baugh-Wooley to target PS execution for SS or ST operations, realizing then
two separated FC accelerators.

On the side of integrating dedicated HW units to accelerate specific tasks at
microprocessor level, in [26] a Single-Instruction Multiple-Data (SIMD) dot-product
unit have been developed, then integrated inside a RISC-V processor, targeting the
execution of NNs on IoT-class SoCs. Moreover, the RISC-V ISA is extended to
support these new instructions. Finally, they tested the resulting processor in an
SoC containing a cluster of eight modified Parallel Ultra-Low-Power (PULP) cores.

1.5 Thesis outline
This thesis work focuses on modifications to the Baugh-Wooley multiplier architec-
ture to define a gate-level precision scalable variant able to compute both SS and
ST operations in the same structure.

Subsequently, this multiplier structure is adapted to implement two gate-level
multiplier units integrating them in the pipeline of the RISC-V Ibex processor with
the objective to carry out computation typically required by QNNs. Moreover,
a behavioral description of these precision scalable multipliers is also defined, for
comparison.

A class of 31 new instructions is defined and added to the RISC-V ISA. In order
to compile code routines based on these instructions, the GCC compiler is extended.

Finally, to test performance execution, three different benchmarks based on the
most common QNN layer algorithms in the edge computing domain have been de-
veloped.

Chapter organization is as follows:

Chapter 2 introduces the Baugh-Wooley structure and the two main techniques
to implement parallelism for lower bit-width operations than the maximum one the
multiplier structure can support, that are, Sum-Separate and Sum-Together, dis-
cussing also additions to support MAC operations. Lastly, all modifications to
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the standard Baugh-Wooley architecture to implement each of the previously men-
tioned operations are step-by-step detailed.

Chapter 3 starts with a preamble about RISC-V ISA motivations, and describe
the standard ISA. Then the Ibex processor core is introduced with an emphasis on
the structure subject to the target modifications. Then the structure of both the
behavioral and the gate-level PS multipliers is exposed. For the gate-level, the
starting point is the set of architectural rules derived in Chapter 2. Finally, these
structures, with both the two already present in the Ibex flow, have been synthe-
sized on silicon, and a section is dedicated to expose PPA results.

Chapter 4 explains very briefly the GCC compiler and modifications done to
add assembly level instructions to make them available during C/C++ compilation
procedure. Moreover, a section is dedicated to an introduction to all instructions
added to the RISC-V ISA, with regard to the Ibex core modifications previously
proposed, concludes the chapter.

Chapter 5 presents the developed benchmarks to demonstrate performance
gains over the baseline Ibex processors, and it presents the testing platform and
methodology followed. The chapter concludes showing results of execution of these
benchmarks deriving conclusions about performance improvements.

Finally, Chapter 6 summarizes all the thesis work, exposing known issues,
recalling results, and proposing some possible future work.
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Chapter 2

Precision-scalable
Baugh-Wooley multiplier

The first section of this chapter recalls the standard Baugh-Wooley multiplier struc-
ture deriving it from the classical multiplication operation.

The second section derives two class of operations for sub-word parallel mul-
tipliers starting from two possible usage of the Baugh-Wooley structure. These
operations compute more than one multiplication in parallel, given that they are
executed at a lower precision than the maximum one the multiplier can support.

Starting from these two class of operations, the last section presents a theoretical
overview considering modifications needed to deal with all multiplications from
32 bit to 4 bit for both signed/unsigned cases, and considering the accumulation
support as required by MAC operations.

2.1 Baugh-Wooley multiplier background
The Baugh-Wooley [14] is an HW structure conceived to perform multiplications
between two numbers. The derivation of this kind of structure could be easily done
starting from the step-by-step multiplication done by hand as follows.
For the case of two unsigned numbers, represented as:

A =
n−1Ø
i=0

ai · 2i (2.1)

B =
n−1Ø
j=0

bj · 2j (2.2)

11



Precision-scalable Baugh-Wooley multiplier

We can derive the multiplication of this two numbers as:

So = A · B =
n−1Ø
i=0

n−1Ø
j=0

ai · bj · 2i+j (2.3)

This structure can be seen as an array of progressively shifted summations of
the input A multiplied, in each row, by a single bit of the input B, as presented in
Figure 2.1a. Every block present in the structure requires an AND gate to compute
the Partial Product (PP) of that Ai · Bi multiplication, and a Full Adder (FA) to
add together the three bits coming in the block. An internal view of a single block
is shown in Figure 2.1b. To perform just the multiplication operation all Si and Ci

bit present in the diagram 2.1a have to be set to 0.
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(a) 4 bit Baugh-Wooley structure for the
unsigned case.
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AiBiCi
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Si Ai Bi

(b) Single block.

Figure 2.1
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2.1 – Baugh-Wooley multiplier background

For the case of two signed numbers, represented as:

A = −an−1 · 2n−1 +
n−2Ø
i=0

ai · 2i (2.4)

B = −bn−1 · 2n−1 +
n−2Ø
j=0

bj · 2j (2.5)

The multiplication could be expanded as:

So = A · B = an−1 · bn−1 · 22n−2 +
n−2Ø
i=0

n−2Ø
j=0

ai · bj · 2i+j

− 2n−1 ·
n−2Ø
i=0

bn−1 · ai · 2i − 2n−1 ·
n−2Ø
j=0

an−1 · bj · 2j

(2.6)

In this case, we can see we need a sightly different structure. First, we need
to correct all negative terms that cannot be directly summed along the array. To
do this operation we can sum instead the two’s complement (2C) of these negative
terms. With the following names:

−x = −2n−1 ·
n−2Ø
i=0

bn−1 · ai · 2i (2.7)

x = 2C(x) = x + 1 (2.8)

−y = −2n−1 ·
n−2Ø
j=0

an−1 · bj · 2j (2.9)

y = 2C(y) = y + 1 (2.10)

We can represent the sum of the two negative terms as in the following:

index: 2n-1 2n-2 2n-3 ... n n-1 n-2 ... 1 0
−x: 0 0 xn−2 ... x1 x0 0 ... 0 0

2C(x): 1 1 xn−2 ... x1 x0 1 ... 1 1 +1
x: 1 1 xn−2 ... x1 x0 + 1 0 ... 0 0

−y: 0 0 yn−2 ... y1 y0 0 ... 0 0
2C(y): 1 1 yn−2 ... y1 y0 1 ... 1 1 +1

y: 1 1 yn−2 ... y1 y0 + 1 0 ... 0 0
x + y: 1 0 xn−2 + yn−2 ... x1 + y1 + 1 x0 + y0 0 ... 0 0

Starting from the previous result, we can easily see the addition of the two
negative terms is equal to the addition of the two terms each with every bit com-
plemented, and with a +1 in position n and in position 2n − 1.
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Precision-scalable Baugh-Wooley multiplier

The structure to have this result is the one shown in Figure 2.2a. We can ap-
preciate the structure is almost the same as the one for the previous case, the only
change resides in blocks in positions where is necessary to perform the complement
of bits of the two negative terms. These blocks are marked in red, an internal
view of the block is shown in Figure 2.2b where we can appreciate the inversion
is performed through a NAND gate producing the PP Ai · Bi. Moreover, here the
addition of the two required +1 could be done exploiting all Si and Ci unused in-
puts as shown. This structure solves every combination between positive/negative
numbers multiplication since, if we consider an−1 = 0 then we have y = 0, once
inverted and a +1 is added, still y = 0. One last consideration, related to this sum
step, is about the surely generated carry in position 2n, in the case of a multipli-
cation between two positive or two negative signed numbers. This is due to the
inversion process. Usually, this is not a problem, but it becomes important in the
following paragraphs analyzing MAC support for precision scalable multiplications.
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(a) 4 bit Baugh-Wooley structure for the signed
case.
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(b) Inverting block.

Figure 2.2
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2.1 – Baugh-Wooley multiplier background

The following case is valid for a multiplication between a signed and an unsigned
number, represented as:

A = −an−1 · 2n−1 +
n−2Ø
i=0

ai · 2i (2.11)

B = bn−1 · 2n−1 +
n−2Ø
j=0

bj · 2j (2.12)

The multiplication could be expanded as:

So = A · B = −an−1 · bn−1 · 22n−2 +
n−2Ø
i=0

n−2Ø
j=0

ai · bj · 2i+j

+ 2n−1 ·
n−2Ø
i=0

bn−1 · ai · 2i − 2n−1 ·
n−2Ø
j=0

an−1 · bj · 2j

(2.13)

As previously done, we correct the negative terms. Then we proceed to the
summation.

−y = −2n−1 ·
n−2Ø
j=0

an−1 · bj · 2j (2.14)

y = 2C(y) = y + 1 (2.15)

−z = −an−1 · bn−1 · 22n−2 (2.16)

z = 2C(z) = z + 1 (2.17)

index: 2n-1 2n-2 2n-3 ... n n-1 n-2 ... 1 0
−y: 0 0 yn−2 ... y1 y0 0 ... 0 0

2C(y): 1 1 yn−2 ... y1 y0 1 ... 1 1 +1
y: 1 1 yn−2 ... y1 y0 + 1 0 ... 0 0

−z: 0 zn−1 0 ... 0 0 0 ... 0 0
2C(z): 1 zn−1 1 ... 1 1 1 ... 1 1 +1

z: 1 zn−1 + 1 0 ... 0 0 0 ... 0 0
y + z: 1 zn−1 + 1 yn−2 ... y1 y0 + 1 0 ... 0 0

Here, few considerations are needed:

If we have one signed negative number, and one unsigned number having the
MSB equal to 0, we can see the term z is equal to 0. So there is no point in
performing inversion, since, even if the result is correct in all cases, in the next
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passage we would end up producing a carry due to the summation of all +1 in
position 2n − 1 and 2n − 2. Still the summation of a +1 must be performed in
position 2n − 2 to accomplish the inversion of the term y, for the sake of using less
external +1 as possible the best strategy could be inverting only the bit zn−1, that
is equal to zero anyway, without performing the full 2C operation. Thus, the final
result is:

index: 2n-1 2n-2 2n-3 ... n n-1 n-2 ... 1 0
y + z: 1 zn−1 yn−2 ... y1 y0 + 1 0 ... 0 0

Leading to the correct result of:

index: 2n-1 2n-2 2n-3 ... n n-1 n-2 ... 1 0
y + z: 1 1 yn−2 ... y1 y0 + 1 0 ... 0 0

When considering a multiplication between a signed negative, and an unsigned
number having 1 as MSB, we can not rely anymore on the previous assumption
saying the value of zn−1 is equal to 0. Contrary, in this case the value of zn−1 is
equal to 1. Following the previous approach inverting both y and z:

index: 2n-1 2n-2 2n-3 ... n n-1 n-2 ... 1 0
−y: 0 0 yn−2 ... y1 y0 0 ... 0 0

2C(y): 1 1 yn−2 ... y1 y0 1 ... 1 1 +1
y: 1 1 yn−2 ... y1 y0 + 1 0 ... 0 0

−z: 0 zn−1 0 ... y1 y0 0 ... 0 0
2C(z): 1 zn−1 1 ... 1 1 1 ... 1 1 +1

z: 1 zn−1 + 1 0 ... 0 0 0 ... 0 0
y + z: 1 zn−1 + 1 yn−2 ... y1 y0 + 1 0 ... 0 0

We can see there would be a sum of two +1 in position 2n − 2, leading to a final
0 in that position and a carry to position 2n − 1. In position 2n − 1 there would be
a summation of three 1 values, producing again a 1 as a result in position 2n − 1
and a carry to position 2n. We can notice the result would have been the same
if we had just the inversion of the value zn−1, saving computing the 2C operation
on the whole z. Fortunately, this condition is the same as the one used for the
previous cases of mixed signed-unsigned multiplications.

The structure shown in Figure 2.3a is derived from definitions given in Equation
2.13, along with previously done considerations on where to place the +1 additions,
and where to use inverting blocks (the ones in red). Structure of inverting blocks is
the same as before. Figure 2.3b follows the same reasoning considering the opposite
case, that is, the one of unsigned number multiplied by a signed number.
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2.2 – Sub-word parallel usage of the Baugh-Wooley architecture
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(a) 4 bit Baugh-Wooley structure for the
signed · unsigned case.
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Figure 2.3

2.2 Sub-word parallel usage of the Baugh-Wooley
architecture

Starting from the Baugh-Wooley structure as shown in Section 2.1, it is easy to
think the structure is internally progressively performing multiplications and ac-
cumulations from given bits with increasing weights along the chain. Considering
different input configurations we can derive the following:

Given a Baugh-Wooley structure capable of performing multiplications on 8 bit
inputs, if we consider having inputs on 4 bit, the structure behaves as in Figure
2.4a. Shifting one of the two inputs by 4 position to the left, thus multiplying by
16, leads to the same result shifted by the same amount, and the structure behaves
like in Figure 2.4b. There would be the very same result if we invert the shifted
operands, thus falling in the condition of Figure 2.4c. Performing a 4 position left
shift on both operands leads us to the same result shifted left by 8 positions, and
the structure assumes the configuration presented in Figure 2.4d.
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ADDER

(a) 8 bit Baugh-Wooley used with 4
bit inputs.

ADDER

(b) 8 bit Baugh-Wooley used with one
4 bit input shifted by 4 position left.

ADDER

(c) 8 bit Baugh-Wooley used with one
4 bit input shifted by 4 position left.

ADDER

(d) 8 bit Baugh-Wooley used with
both 4 bit inputs shifted by 4 position

left.
Figure 2.4

2.2.1 SS operations
Considering the case of Figure 2.4a and the one of Figure 2.4d, these two can exist
together independently forming a configuration like the one in Figure 2.5. Here
each one returns the corresponding result if we pay attention to disable all other
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2.2 – Sub-word parallel usage of the Baugh-Wooley architecture

blocks than the one marked in red. Disabling a block means its internal PP Ai · Bi

must be gated to 0. In this way we can perform two independent multiplications in
parallel having operands on 4 bit precision, using a structure conceived to perform 8
bit multiplications. This way of computing independent multiplications in parallel
is called Sum Separate (SS). As previously mentioned, there are cases in which
a multiplication between two signed numbers leads to a carry in the final result,
and considering the case of Figure 2.4a this carry could end up being summed to
the other multiplication performed in parallel, to counteract this phenomenon a
masking procedure must be considered. In Figure 2.5 these positions are marked
with an X inside blocks, meaning that the carry propagation have to be selectively
masked and not propagated to the subsequent blocks. Given input format on 8 bit
final results reflect the following relation:

Res[7 : 0] = A[3 : 0] × B[3 : 0] (2.18)
Res[15 : 8] = A[7 : 4] × B[7 : 4] (2.19)

ADDER

Figure 2.5: 8 bit Baugh-Wooley in SS configuration with 4 bit inputs.

2.2.2 ST operations
Considering the case in Figure 2.4b and the case in Figure 2.4c also these two
can exist together forming the configuration present in Figure 2.6, but in this case
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given the Baugh-Wooley structure, results of the two independent multiplications
are sum together like it happens in a MAC operation. The operation performed
is similar to what required by a dot-product. Like in the previous case, all blocks
not marked in red have to be disabled. This final result must then be shifted back
by 4 position right to counteract the shifting effect resulting from this usage of the
Baugh-Wooley architecture. The maximum amount of bits of the final result is
9 bit, given a sum of two independent multiplications with 4 bit operands. This
way of computing two multiplications in parallel, adding the results, is called Sum
Together (ST). The relation between input format and output result follows:

Res[12 : 4] = A[3 : 0] × B[7 : 4] + A[7 : 4] × B[3 : 0] (2.20)

Moreover, from the previous relation we see partial products refers to different
input portions. The first comes from the multiplication of the least significant part
of input operand A with the most significant part of input operand B, while for
the second it happens the opposite. In following sections of this document, this
phenomenon is referred as cross-product.

ADDER

Figure 2.6: 8 bit Baugh-Wooley in ST configuration with 4 bit inputs.
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2.3 – Theoretical per-operation analysis

2.3 Theoretical per-operation analysis
In this part some multiplier structures are defined with the objective to satisfy the
computation required by different sets of operations. All structures are based on
the 16 bit Baugh-Wooley multiplier scheme.

Operations considered are the following:

• One 16 bit operation involving two signed numbers, two unsigned numbers or
a mixed combination of signed-unsigned numbers.

• Two 8 bit operations in SS configuration involving two signed numbers or two
unsigned numbers.

• Two 8 bit operations in ST configuration involving two signed numbers or two
unsigned numbers.

• Four 4 bit operations in SS configuration involving two signed numbers or two
unsigned numbers.

• Four 4 bit operations in ST configuration involving two signed numbers or two
unsigned numbers.

• Support for MAC operations, involving an external register, for all combina-
tions above.

Structures presented to accomplish subsets of operations in the previous list are
the basis for the definition of the final multiplier units presented in Chapter 3.

The following subsections derive structures in an incremental way, meaning that,
for each subsection, at beginning a baseline structure to deal with a selected group
of instruction is derived, but in the end of each subsection is also presented a struc-
ture that includes operations of all previous subsections. This way of deriving the
structure has the advantage to arrive in the last subsection, coming from a step-by-
step derivation, and having the final version including all instructions above at once.

2.3.1 16 bit operations structure
To have a 16 bit structure capable of handling multiplications amid all signed-
unsigned operand combinations, it must satisfy all conditions presented in the first
paragraph of this chapter.
Specifically, by looking to Figures 2.1, 2.2 and 2.3a we can easily derive the structure
represented in Figure 2.8. To summarize, the structure considers the following cases:
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• In the case of two unsigned numbers it ends up in a similar condition as the
one in Figure 2.1. External signals are all set to logical 0 value.

• In the case of two signed numbers it ends up in the condition of Figure 2.2.
External signals assume the following configuration: S0 = 0, S1 = 1 and
N = 1. Moreover, the output carry of the final adder assumes the logical 1
value both in cases of multiplications between two positive or two negative
numbers.

• In the case of one signed number and one unsigned number it relapses in the
condition of Figure 2.3a. External signals assume the following configuration:
S0 = 1, S1 = 0 and N = 1.

Fist of all, inverting blocks must have the possibility to select if inverting the
internal partial product Ai ·Bi or not. To perform this, the inverting block structure
presented in Figure 2.2b, and recalled in Figure 2.7a, is changed adding a XOR gate
acting as controllable inverter through the signal I, standing for "Invert". Final
block structure is visible in Figure 2.7b.

FULL ADDER

Ci

Co So

AiBiCi

SoCo

Si Ai Bi

NAND

(a) Original block with
inversion.

FULL ADDER

Ci

Co So

AiBiCi

SoCo

Si Ai Bi

AND

I

XOR

(b) Block with controlled
inversion.

Figure 2.7
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ADDER S1

N

S0

Figure 2.8: Baugh-Wooley structure to accomplish operations on 16 bit inputs.

2.3.2 SS operations structure
To accomplish two 8 bit operations in SS configuration, considering Figure 2.5,
it is clear, all unused blocks must be in a condition in which the partial product
term Ai · Bi does not contribute to the overall result. To accomplish this state,
each multiplicative block must be modified adding a masking interface between
the AND gate, performing the internal multiplication, and the corresponding full
adder input. By recalling the block in Figure 2.1b, the same visible in Figure 2.9a,
we can appreciate this modification is obtained using a second AND gate, which
input here called P , standing for "Propagate", is visible in Figure 2.9b. In this case
propagation and internal sum of signals Si and Ci keeps being computed even if
the masking signal is asserted.
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(a) Original multiplicative
block.
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(b) Block with masking.

Figure 2.9

At this point, by looking at Figure 2.5, we can notice also propagation of carries
between independent computations have to be blocked in order to have the two
operations fully independent (i.e. where an X is placed inside a block). To accom-
plish this, the propagation of signals Ci is subject to another gating procedure as
shown in Figure 2.10b. Again, in this condition an AND gate is exploited to mask
the propagation.
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(a) Propagation of Ci signal
between blocks.
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(b) Masking of Ci signals
between blocks.

Figure 2.10
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The overall structure is presented in Figure 2.11a. Where an X is placed at
the bottom of a block, it refers to the technique in Figure 2.10b. Moreover, for
signed operations also the addition of +1 terms is needed, this is represented in the
same figure by signals S and N , which are both at logical value 1 only for signed
operations. Where not an S nor an N is placed, it means a logic 0 is placed.

ADDER

N S

S

N

(a) Baugh-Wooley structure capable of
computing two 8 bit operations in SS mode.

S

SNSN

N

S

N

8 bit ADDER8 bit ADDER

(b) Baugh-Wooley configuration capable of
computing four 4 bit operations in SS mode.

Figure 2.11

The case of four 4 bit operations in SS configuration follows the very same con-
siderations as this previous one. The final structure is the one in Figure 2.11b.
Again, where an X is placed inside a block it means the subsequent connection for
Ci signal is as the one presented in Figure 2.10b. As before, the addition of +1
terms is performed through S and N signals in the figure. These are present for
each scaled Baugh-Wooley which computes an independent operation. Finally, in
this context, carry propagation must be blocked also inside the adder unit. To do
this, the 16 bit adder unit is split into 8 bit adders, and the carry from one adder
to the following is masked with the same strategy as in Figure 2.10b.

Now, we can consider the case of a structure able to compute the subset of
operations including 16 bit multiplication, two 8 bit operations in SS mode, and
four 4 bit operations in SS mode. To accomplish all operations in this subset we
need a union of all previous structures all in one. The first thing to note is there are
blocks performing the inversion operation, recalled in Figure 2.12a, which in the
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SS multiplication cases must be capable of being switched off. The modification
exploited is the same as for the previous case, thus adding an AND gate in between
the AND performing the multiplication and the XOR to selectively perform the
inversion, leading to the block depicted in Figure 2.12b. One characteristic of this
block is also the possibility of generating a +1 itself, only in the case the internal
multiplication is gated, in fact if external signal condition is P = 0 and I = 1 then
the input to the full adder is at logical value 1.
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(a) Block with controlled
inversion.
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(b) Block with controlled
inversion and masking.

Figure 2.12

The final structure of this multiplier is presented in Figure 2.13. External input
signals marked with names SS4, SS8 and M16, are considered to be at logical
value 1 only when computing the corresponding operation in signed mode. Single
blocks control signals, P and I, are set accordingly to all previous cases.

2.3.3 ST operations structure
Moving to the ST operation group, here it starts with the case of two 8 bit opera-
tions in ST configuration. For this operation a structure similar to the one present
in Figure 2.6 is required. Also in this case unused blocks have to be switched off
using the modification presented in Figure 2.9b. Final structure can be seen in Fig-
ure 2.14a. To accomplish the +1 addition in specific position as requested by the
Baugh-Wooley algorithm, we can pre-compute the result to be summed and sum
it only once. In this view, summations of +1 terms should be done in positions
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SS4SS4SS4 SS4

SS4

SS4

SS4

SS4

SS8
SS8
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SS8
M16

M168 bit ADDER 8 bit ADDER

Figure 2.13: Reconfigurable Baugh-Wooley structure for 16 bit standard
multiplication, 8 bit and 4 bit operations in SS configuration.

16 and 23 (counting indexes of Si signal) for both the 2 internal multiplications.
The pre-computing phase is essentially considering that two summations of +1
in position 16 could be expressed as a single summation in position 17. In the
same way, two summations in position 23 would end up as a single summation in
position 24. In Figure 2.14a, the two signals S and N already takes this strategy
into account.
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(a) Baugh-Wooley configuration capable of
computing two 8 bit operations in ST mode.
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(b) Baugh-Wooley configuration capable of
computing four 4 bit operations in ST mode.

Figure 2.14

A similar structure could be derived to compute four 4 bit operations in ST con-
figuration and is presented in Figure 2.14b. Here, four multiplications are carried
out in parallel, meaning that the pre-computing phase moves positions where to
add the +1 terms incrementing them by 2. Also in this case, positions of signals S
and N take already into account the pre-computing phase.

As previously done we can consider the case of computing the subset of opera-
tions that is a 16 bit multiplication, two 8 bit multiplications in ST mode, and four
4 bit multiplications in ST mode. Also in this case we need the block modification
presented in Figure 2.12b to be able to switch off blocks performing the inversion
of the internal multiplication. Final structure is presented in Figure 2.15. External
signals with names ST4, ST8 and M16 are considered to be at logical value 1 only
when computing the corresponding operation in signed mode.
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ADDER M16

ST8

ST8

ST4

ST4

M16

Figure 2.15: Reconfigurable Baugh-Wooley structure for 16 bit standard
multiplication, 8 bit and 4 bit operations in ST configuration.

For the sake of developing requirements for subsets of operations, we can now
consider a structure able to deal with all subsets of operations presented so far, that
is, one 16 bit multiplication, two 8 bit operations both for SS and ST configurations,
and four 4 bit operations both for the SS and ST modes. In this case, the structure
is a combination of ones presented in Figure 2.13 and Figure 2.15, all blocks have
to be able of switching off leading to the structure visible in Figure 2.16. It still
holds the same convention for external per-operation inputs and for control bit of
single blocks (i.e. SS4 SS8 ST4 ST8 M16).

29



Precision-scalable Baugh-Wooley multiplier

SS4SS4SS4 SS4 SS8
SS8

SS4

SS4

SS4

SS4

SS8
M16

M16

ST8

ST4

ST4

SS8
ST8

8 bit ADDER 8 bit ADDER

Figure 2.16: Reconfigurable Baugh-Wooley structure for 16 bit standard
multiplication, 8 bit and 4 bit operations in both SS and ST configuration.

2.3.4 MAC operations structure
Now we can consider adding the possibility of computing MAC operations, thus
accumulating the result over time. To satisfy this requirement, a clever move could
be exploiting inputs Si present along the top side and left side of the standard
Baugh-Wooley structure as marked in Figure 2.1a. When considering using the Si

inputs, it means these can not be used to add the +1 in specific positions as done
before. When deriving the block in Figure 2.12b, that is, the block having both
masking and controllable inversion, we saw this block is able to generate a +1 if it
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is inactive (i.e. P = 0 and I = 1); moreover inputs marked as Ci are still available.
Exploiting this property makes the already derived structure almost ready-to-use.
Still, some considerations are needed. For the case of a single 16 bit multiplication,
the only addition required is an extra block containing the logic of a half adder
placed in the left-down corner. Motivations reside in the fact this case can be seen
as a sum of two 32 bit values, one produced by the multiplier, while the second
provided through Si inputs. All SS operations are ready-to-use to accumulate the
result, moreover there is no risk of a carry propagation in the area involved in
computing another multiplication considering countermeasures already present in
blocks having an X in Figure 2.16, that are, the ones visible in Figure 2.10b. For
unsigned ST case, no addition is required; for the signed ST case, unfortunately,
external +1 required by the algorithm are in a position in which no blocks capable of
generating a +1 are present, this means one of blocks in that diagonal, indifferently,
have to be changed accordingly. In Figure 2.9b, recalled here in Figure 2.17a, there
is the standard multiplicative block with the masking AND gate, the minimum
logic to make it able to produce a +1 starting from an external signal, is to add an
OR gate whose output is at logic 1 whenever the input I is asserted. Changing a
green block to a blue block gives at least a valid position in the diagonal to generate
the +1 required.

FULL ADDER

Ci

Co So

AiBiCi

SoCo

Si Ai Bi

AND

P

AND

(a) Multiplicative block
with masking.

FULL ADDER

Ci

Co So

AiBiCi

SoCo

Si

AND

Ai Bi P I

OR

AND

(b) Block with masking able
to generate a logic 1.

Figure 2.17

This is not the only modification required by ST operations. The output of an
operation at a reduced precision in ST mode is, as already analyzed in Paragraph
2.2, is shifted left by an amount of bits equals to bit-width of the multiplier for
standard operations minus the bit-width of the reduced operation. Thus, in this
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case, considering a 16 bit multiplier the shift amount for an 8 bit operation in ST
mode is equal to 16 − 8 = 8 bit, while for a 4 bit operation is 16 − 4 = 12 bit. This
also means the maximum precision is reduced with respect to the precision of the
overall structure, and limited to 32−8 = 24 bit for the 8 bit case, and 32−12 = 20
bit for the 4 bit case.

Intuitively, each multiplication for which the result is negative does not guarantee
a sign extension of the result, and this fact limits the precision of the two 8 bit
operations in ST configuration to 17 bit, while for four 4 bit operations in ST
configuration the precision is limited to 10 bit.
The reason of this phenomenon follows.

Analyzing the result of each combination for the case of four 4 bit operations
in ST configuration, given the order of internal operations does not matter, we can
reduce the number of combination to the following five conditions:

1. positive + positive + positive + positive.

2. positive + positive + positive + negative.

3. positive + positive + negative + negative.

4. positive + negative + negative + negative.

5. negative + negative + negative + negative.

In condition 1, we have each partial result having a carry bit set in position n,
where n is the number of bit of the result, that is, 8 bit for a 4 bit multiplication.
The sum of those carries would be a carry in position 10, so outside the 10 bit in
which the result is guaranteed to be correct.

position: 10 9 8 7 6 5 4 3 2 1 0
x: 0 0 1 x7 x6 x5 x4 x3 x2 x1 x0
y: 0 0 1 y7 y6 y5 y4 y3 y2 y1 y0
z: 0 0 1 z7 z6 z5 z4 z3 z2 z1 z0
k: 0 0 1 k7 k6 k5 k4 k3 k2 k1 k0

R = x + y + z + k: 1 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0

We can see we just have to correct the last carry in position 10. This can be done
summing a −1 term in that position, thus in two’s complement notation, adding a
series of 1s of the required precision, in this case, at most 20 − 10 = 10 bit, to fully
achieve the maximum precision of 20 bit given by this configuration.

In condition 2, we have one negative result out of four, in this case we should
have an extension of this result through positions 8 and 9, but exploiting the carry
of each positive operations the extension is given for free, leading to:
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position: 10 9 8 7 6 5 4 3 2 1 0
x: 0 0 1 x7 x6 x5 x4 x3 x2 x1 x0
y: 0 0 1 y7 y6 y5 y4 y3 y2 y1 y0
z: 0 0 1 z7 z6 z5 z4 z3 z2 z1 z0
k: 0 0 0 k7 k6 k5 k4 k3 k2 k1 k0
x: 0 0 0 x7 x6 x5 x4 x3 x2 x1 x0
y: 0 0 0 y7 y6 y5 y4 y3 y2 y1 y0
z: 0 0 0 z7 z6 z5 z4 z3 z2 z1 z0
k: 0 1 1 k7 k6 k5 k4 k3 k2 k1 k0

R = x + y + z + k: 0 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0

Still the extension of the sign from position 10 is required, that is, adding a
series of 1 as previously done.

The same stands for conditions 3 and 4 with two/three negative and two/one
positive results to sum. Here also the sign extension is the same, thus, adding a
series of 1s from position 10 to 19.

For condition 4, there are four negative results to sum, but four negative results
would have meant an addition of +1 in positions leading to the same result on 10
bit as if these are not present, as shown in the following:

position: 10 9 8 7 6 5 4 3 2 1 0
x: 0 0 0 x7 x6 x5 x4 x3 x2 x1 x0
y: 0 0 0 y7 y6 y5 y4 y3 y2 y1 y0
z: 0 0 0 z7 z6 z5 z4 z3 z2 z1 z0
k: 0 0 0 k7 k6 k5 k4 k3 k2 k1 k0
x: 0 1 1 x7 x6 x5 x4 x3 x2 x1 x0
y: 0 1 1 y7 y6 y5 y4 y3 y2 y1 y0
z: 0 1 1 z7 z6 z5 z4 z3 z2 z1 z0
k: 0 1 1 k7 k6 k5 k4 k3 k2 k1 k0

R = x + y + z + k: 0 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0

So, we can just extend the result, as previously done, from position 10 to position
19.

For the case of two 8 bit operations in ST mode the same assumptions hold. In
this case we have just two intermediate values to sum, and the extension is from
position 17 to 23.

In all previous cases the sign extension could be done exploiting the capability
of the last row of blocks to generate a series of +1 with the proper control signal
combination. Moreover, positions in the Baugh-Wooley structure are shifted of the
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same amount the result is shifted, thus it is from position 23 + 8 = 31 to posi-
tion 17 + 8 = 25 for the 8 bit case, and from position 19 + 12 = 31 to position
10 + 12 = 22 for the 4 bit case.

Final structure is shown in Figure 2.18. Every block that need to generate
a +1 is marked inserting internally the corresponding operation name with the
same meaning as previous cases, whenever that operation is performed in signed
mode those blocks generates a +1. Control signals of each block, P and I, are set
according to all previous cases of SS/ST operations.
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Figure 2.18: Reconfigurable Baugh-Wooley structure for 16 bit multiplication, 8 bit
and 4 bit operations in both SS and ST configuration, and MAC support.
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Chapter 3

Ibex core modifications and
synthesis results

This chapter starts with the description of the Ibex core architecture, including a
preamble concerning RISC-V ISA [51] motivations, concluding the first paragraph
analyzing in a more detailed way the two optional behavioral multiplier units,
named Fast and SingleCycle respectively, already included in the Ibex flow.

The second part details variations to describe, in a behaviorally equivalent way,
both the Fast and the SingleCycle structures such that these are able to accom-
plish all required set of operations (see Paragraph 1.3). Then, starting from con-
siderations done in Paragraph 2.3, another section details the two final gate-level
structures, again targeting both the Fast and the SingleCycle variants.

The chapter concludes with the last section devoted to the synthesis reports of
these four derived Ibex core structures, analyzing power, performance and area of
each one compared to the corresponding two baseline versions originally present in
the Ibex core.

3.1 Ibex core introduction
The Ibex core processor, developed initially under the name zero-riscy [25], is part
of the PULP platform [52], which stands for "Parallel Ultra Low Power". The objec-
tive of the PULP platform is to demonstrate good performance through paralleliza-
tion of small processors, organized in clusters, and conceived for near/sub-threshold
conditions. Contribution to the Ibex core is actually done by lowRISC [47], who
maintain actively the development.
The Ibex core is compliant with the open-source RISC-V ISA. RISC-V is, as the
name says, the fifth definition of a "Reduced Instruction Set Computer" ISA, pro-
posed and maintained by the University of California, Berkeley. Reasons behind
the definition of a new RISC ISA is mainly to cleverly define a good starting point
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each one can agree with, to simplify development of processors without having to
provide a software stack, and to guarantee compatibility to existent software stacks
that only a standardized basis could guarantee; and in the opposite view, to sim-
plify the development of a software stack on a reference of low-level instructions,
that guarantees the existence and feasibility of the HW counterpart. All of this
is provided in a royalty-free condition. This is not only about producing reference
cores to be licensed to partner to simplify dedicated SoC development, but it is
about giving everyone the possibility to start its own processor core development
without worrying of something that is not electronic related.

The RISC-V ISA [54] 1 is organized as a base set of a given instruction length,
and several extensions compatible with each specific base set.

There are six different base sets:

• RV32I: this is the base set for a 32 bit processor, including only simple opera-
tions, such as jump/branch management, addition, interrupt callback, load/s-
tore, shift, logical, memory ordering (FENCE). Not focusing on the instruction
format which can be retrieved from the reference [54], we note the number of
register for this base set is fixed to 31 general purpose registers of length equal
to 32 bit, with 1 register hardwired to logical value 0.

• RV64I: the 64 bit base set redefine the meaning of instructions present in
the RV32I. The reason is every instruction by default operates on the length
of registers, that, in this case, is extended to 64 bit. Still, new instructions
are added to keep having the 32 bit variant of each operation, e.g., ADDW
is performing a 32 bit addition extending then the result to 64 bit. All these
instructions are named in the format ∗W .

• RV128I: this base set is still in definition, but the derivation is similar to the
RV64I one. All instructions now operate on an increased bit-width of 128 bit
while some new instructions are added to keep guaranteeing the existence of
operations on 64 bit and 32 bit.

• RV32E: this base set comes as a specific variation for embedded systems. In
the embedded world optimization is relevant. For these reason, in this base
set the number of registers is reduced from the standard 31 registers to 15
register, plus 1 register hardwired to value 0, gaining, as stated [54], 25% less
area coming from the register file halving in most of the synthesis scenarios.

• RV64E: also the 64 bit embedded variance has a number of register in the
register file that is halved.

1Version used in this chapter is the 2023-04-27, more recent version should be compliant.
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• RVWMOI: adds support for multithreading memory coherence other than
FENCE instructions.

There are also many extensions to a base set, some of them not ratified yet.
Here it follows the description only of extensions supported by the Ibex core.

• M-extension: this extension adds instructions related to multiplication and
division operations. The total number of instructions depends on the base set
considered, in the case of RV32I 8 instructions in total are added, while for
the RV64I case it increases to 13 instructions to guarantee compatibility for
the 32 bit operations. Multiplication related instructions are:

– MUL returns the lower-part of the result of a 32 bit multiplication be-
tween values in two registers (R-type).

– MULH returns the upper-part in the case of two signed values.
– MULHU returns the upper-part in the case of two unsigned values.
– MULHSU returns the upper-part in case the first value is signed while

the second is unsigned.

Division related instructions are:

– DIV returns the result of a division between values in two registers con-
sidering them as signed.

– DIVU returns the result of a division between values in two registers
considering them as unsigned.

– REM returns the remainder of a division operation considering signed
values.

– REMU returns the remainder of a division operation considering un-
signed values.

• C-extension: in some applications, specifically embedded systems related
ones, the code size is still important, so, there may be scenarios in which a
lower code size is preferable than reducing the final core area occupation. For
this reason the C-extension adds support for compressed instructions on 16
bit. Instructions offered in compressed mode are a limited number, and are
the most commonly used ones present in any base set, thus, this extension
could be added not only to the RV32I and RV32E but also to RV64I, to
RV64E and even to RV128I. Compressed instructions have some limitations
in expressiveness, but they can replace typically 50%-60% of instructions in a
given program [54]. Still architectures supporting those instructions have to
include special HW for the decoding phase meaning, as previously mentioned,
the reduction in code size come at the cost of a higher area. To have a view
of the instruction format see [54].
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• B-extension, stands for "Bit manipulation extension" and it’s aimed in pro-
viding support for all operations involving bit-level manipulation, that are, bit
insertion, masking, bit test, rotation, funnel shift, bit permutation and others.
In the official reference [54] there is no draft of these instructions yet. Informa-
tion about proposed work so far could be retrieved from [55] where the version
v.1.0.0 of this extension is made available.

The description of the Ibex core that follows is a high-level view of the architec-
ture. The only in-depth analysis is done for the multiplier units and what is related
to that. To have an in-depth analysis for all other parts of the architecture see the
Ibex official reference [49].

The Ibex structure is synthesized starting from some design parameters to better
fit the final application it should be compliant with. Ibex comes in four different
versions, all of them describe an in-order single-issue processor compliant with the
RV32I RISC-V base set. For the micro and the small versions, core structure is
organized as a two-stage pipeline. The first stage just includes the fetch operation
from memory, while the second stage includes all other operations involving also
the writeback phase, and data reading/writing from/to memory phase. For the
maxperf , and the maxperf-pmp-bmfull versions the core structure changes to
a three-stage pipeline moving the writeback phase to the third stage. Other main
difference between Ibex versions is the different support of the RISC-V ISA exten-
sions. The micro variant supports the RV32E base set, and the C-extension. The
small variant, like maxperf variant, support the RV32I with M-extension and C-
extension, while the maxperf-pmp-bmfull supports also the B-extension, specifically
the version v.1.0.0 previously mentioned. Other differences are the small version
has not a dedicated branch target ALU, and has a small multiplier unit, that is,
the Fast version, while the maxperf and the maxperf-pmp-bmfull includes both a
dedicated branch target ALU and a larger and faster multiplier unit, that is, the
SingleCycle version. Both these two versions of multipliers are described in the
following subsections.

This previous description is a preamble to the internal Ibex parameters activating
and deactivating single features. Even if the Ibex core comes with those four
versions, others may be conceived mixing, carefully, single internal parameters. For
this thesis, the considered structure is more similar to the small version of the Ibex,
where it makes use of a multiplier unit, not supporting the RISC-V B-extension
and having a two-stage pipeline. The only modification is in the RV 32M internal
Ibex parameter, which can be set to three values: Slow, this is not instantiating
a real multiplier, the multiplication procedure uses the main ALU adder, looping
until the result is fully computed. This computation takes up to 32 clock cycles
for a single multiplication, but of course it is better than nothing. Then we have
the Fast and the SingleCycle. When considering selecting the Fast multiplier unit,

38



3.1 – Ibex core introduction

we have exactly the small version of the Ibex processor. When instead considering
selecting the SingleCycle multiplier unit, we are creating a version that is faster
in performing multiplications but occupies more area. These two multiplier units
are the basis for subsequent analysis of PPA metrics considering the four designed
multiplier structures substituting them.

A[15:0] x B[15:0]

A[15:0] x B[31:16]

A[31:16] x B[15:0]

OUT = RES[31:0]

Cycle 1

Cycle 2

Cycle 3

(a) MUL instruction internal cycles.

A[15:0] x B[15:0]

A[15:0] x B[31:16]

A[31:16] x B[15:0]

A[31:16] x B[31:16]

OUT = RES[63:32]

Cycle 1

Cycle 2

Cycle 3

Cycle 4

SIGN
EXTENSION

SIGN
EXTENSION

(b) MULH, MULHU and MULHSU instructions
internal cycles.

Figure 3.1: Fast multiplier, 32 bit MUL operations splitting procedure.

3.1.1 The 32 bit Fast multiplier
The Ibex Fast version of the multiplier includes a single 17 bit, behaviorally de-
scribed, multiplier. This multiplier is used for all multiplication related instructions
present in the RISC-V RV32I M-extension. Along with the multiplier, also an adder
is described taking as input the value from multiplier output, and, optionally, the
value from the ALU unit output register which is used to keep partial results of
the actual operation being computed. In this way, the same register used to keep
the result in other ALU operations, is exploited here to accumulate the result over
time. With this structure single 32 bit operations can be split into smaller 16 bit
operations and can be computed in more than one clock cycle. For this reason,
the result of a MUL instruction, the one returning the lower 32 bits of the 64
bit result of a 32 bit multiplication, is computed in three clock cycles; while for
MULH, MULHU and MULHSU instructions, the ones returning the upper 32 bits
of the 64 bit result, are computed in four clock cycles. Cycles performed by the
multiplier are visually represented in Figure 3.1. In Figure 3.1b the sign-extension
part is made necessary only for signed operations. A structure of this multiplier is
depicted in Figure 3.2 where the flow starting from input signals A and B going to
the output OUT is made clear. At each step the right input, already sign extended
or zero extended, is selected by the control signals of the multiplexers providing
this selection to the MUL unit. MUL unit result is then connected to the 33 bit
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Figure 3.2: High-level circuit diagram of the Fast Ibex multiplier.

ADD unit which accumulate it exploiting the ALU register storing partial result
of the previous operation. This process is repeated until the actual computation is
completed according to steps in Figure 3.1a and Figure 3.1b. Selection of the value
to be stored in the ALU register, and the value to be provided to the adder, is done
exploiting two multiplexers driven by a minimal combinational logic depending on
the actual stage and the type of operation performed. Reasons behind the choice
of a single multiplier structure on 17 bits, instead of a more common one on 16
bit, come simply from the fact an unsigned operand on 16 bit can be treated as a
signed operand on 17 bit. This allows having a simpler multiplier for all operation
cases, that are, signed×signed, unsigned×unsigned and signed×unsigned, which
are all treated as signed×signed, extending the sign such that the extension of an
unsigned number is done adding a 0 as MSB value.
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3.1.2 The 32 bit SingleCycle multiplier
A similar approach has been followed to describe the SingleCycle version. Internally
it includes three 17 bit multipliers (for the same reason previously exposed), which
compute the three partial products necessary in order to complete in a single cycle
the MUL operation, as shown in Figure 3.3a. For MULH, MULHU and MULHSU
instructions, as visible in Figure 3.3b, two clock cycles are needed to get the final
result. The second change is in the adder structure, that is now requested to add
three terms instead of two. Previously done description is still valid, indeed, the
accumulation mechanism to split computation in different cycles exploiting the
ALU register is the same, but this time there are fewer multiple connections to be
taken into account due to the lower number of cycles performed.

A[15:0] x B[15:0]

A[15:0] x B[31:16]

A[31:16] x B[15:0]

OUT = RES[31:0]

Cycle 1

(a) MUL instruction internal cycles.
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Cycle 1

Cycle 2

SIGN
EXTENSION

SIGN
EXTENSION

(b) MULH, MULHU and MULHSU instructions
internal cycles.

Figure 3.3: SingleCycle multiplier, 32 bit MUL operations splitting procedure.

Moreover, this architecture, in common with the Fast variation, is not designed
to keep partial result of the actually computed MUL instruction and check if first
cycles can be omitted in the case the near following instruction is MULH, MULHU
or MULSHU operating on the same set of registers, as suggested in the RISC-V
documentation [54]. For this reason the sequence to compute both the lower part
and the upper part of a multiplication takes 1 + 2 = 3 clock cycles. In the Fast
version this is even more evident since the number of clock cycles become 3 + 4 = 7
clock cycles instead of just 4. Even if this possibility could be an advantage in
some algorithm, in defining the following multiplier variations this phenomenon is
not counteracted, first to not add extra logic with respect to the strictly necessary
modifications, secondly because in the QNN domain very rarely all 64 bit result of
a 32 bit multiplication is needed.
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Figure 3.4: High-level circuit diagram of the SingleCycle Ibex multiplier.

3.2 Target modifications
First possible way to define a HW support for SS and ST operations is to define
a behavioral description following the same approach used in the definition of two
multiplier units originally present in the Ibex core, which have been presented in
the previous paragraph. Here, in the first two subsections, both the Fast and
the SingleCycle behavioral multiplier variants, adapted to parallel execution, are
described. Last two subsections present the gate-level description, of both Fast and
SingleCycle multiplier architectures, using the PS Baugh-Wooley structure derived
in Section 2.3. All multiplier versions should agree on input format to be able to
freely change the multiplier type without making changes to assembly-level RISC-V
instructions, nor to software routines, both introduced in next chapters. Following
the already known behavior of a Baugh-Wooley multiplier concerning input/output
relation in SS and ST modes we can fix the input format to be the same also for the
two behaviorally described counterparts and just mimic the gate-level description.
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In this view, we know from Section 2.2 that the Baugh-Wooley results depend on
the plain product of inputs for SS operations and on the cross-product of inputs for
ST operations. For a reason explained only in Section 3.2.4, also the SS operation is
implemented in a way similar to a cross-product. As a clarifying example, relations
between result and operands for the case of an 8 bit instructions in both SS and
ST follows:

• For the case of an SS operation on 8 bit operands:

Res[15 : 0] = A[7 : 0] × B[23 : 16],
Res[31 : 16] = A[15 : 8] × B[31 : 24],
Res[47 : 32] = A[23 : 16] × B[7 : 0],
Res[63 : 48] = A[31 : 24] × B[15 : 8]

(3.1)

• For the case of an ST operation on 8 bit operands:

Res[42 : 24] = A[7 : 0] × B[31 : 24] + A[15 : 8] × B[23 : 16]
+ A[23 : 16] × B[15 : 8] + A[31 : 24] × B[7 : 0]

(3.2)

Moreover, an internal 64 bit register is added to keep time-by-time results of
MAC operations. As discussed in the introductory part, MAC operations are such
that the internal register value can be set by a specific RISC-V assembly instruction,
and it accumulates over time until manually set again. Stored value is dependent on
the type and precision of instruction that is looping on, thus there is no guarantee
in the behavior of instruction mixing, nor with non-compliant initial set values.
A single 64 bit register can keep results up to the following precision for each
operation:

• Standard 32 bit operations: up to 64 bit.

• SS 16 bit operations: up to 32 bit per parallel result. Each value is maintained
and added to the same position at each iteration cycle.

• SS 8 bit operations: up to 16 bit per parallel result. Each value is maintained
and added to the same position at each iteration cycle.

• SS 4 bit operations: up to 8 bit per parallel result. Each value is maintained
and added to the same position at each iteration cycle.

• ST 16 bit operations: up to 32 bit.

• ST 8 bit operations: up to 24 bit.

• ST 4 bit operations: up to 20 bit.
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For all ST operations, we need to make sure the result is shifted by the right
amount of bits before returning. Shift amount for the Fast version is equal to 8 bit
for an 8 bit ST operation, and 12 bit for a 4 bit ST operation, no shift is necessary
for 16 bit ST operations, while for the SingleCycle version it is equal to 16 bit for
a 16 bit ST operation, 24 bit for an 8 bit ST operation, and 28 bit for a 4 bit ST
operation. Result is shifted back only when exposed in output, internally the MAC
register store non-shifted results to ease subsequent computation.
In all structures, the assembly operation to set internally a value in the MAC
register is resolved in a single clock cycle since signal path have just to pass in a
single multiplexer.

3.2.1 Precision scalable Fast behavioral multiplier
Modifications to the original Fast structure involves the definition of an additional
Verilog always comb block managing the multiplication behavioral operator ∗ in a
bit-oriented selection done with a unique case switch over the control signal. This
control signal also selects the right output/operands relation depending on the in-
structions in execution (i.e. the one decoded in the same clock cycle). This kind of
approach is presented in Listing 3.1, the 4-bit case have been omitted, given that
it follows the same definition process of the 8-bit case, thus the extension is trivial.

By looking at Figure 3.6, to have minimal variations with respect to the non-PS
version in Figure 3.2, the behaviorally described MUL structure is changed in a be-
haviorally described MAC structure. For the same reason, bit-width of this MAC
structure is kept on 17 bit exploiting, as before, the extension of all unsigned num-
bers to signed numbers on 17 bit by appending a 0 as MSB. This approach has not
been adopted in the reduced precision scenario due to the simple fact, for parallel
execution involving the least precision supported operation, equal to 8 operation
on 4 bit precision, it would end adding a total of 8 bit along all sub-multipliers
(one for every operation) instead of just one bit for a single 16 bit multiplier, thus,
adding too much complexity in the final structure. For this reason, in all SS and
ST operations a distinction is also made between signed and unsigned numbers,
casting properly the result, and allowing the synthesis tool to select the best mul-
tiplier structure to deal with this requirement in the internal CFG.

As previously mentioned this structure make use, conceptually of a single mul-
tiplier, meaning that, standard 32 bit multiplications, including MAC instructions,
are computed in three clock cycles for the least 32 bit significant part, and in four
clock cycles for the most 32 bit significant part respectively; while all SS/ST in-
structions, including the ones with MAC capabilities, are computed in two clock
cycles. The MAC support is visible in the left feedback-branch in the architec-
ture of Figure 3.6, where the internal MAC register, MAC REG, is visible. The
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Listing 3.1: System Verilog behavioral description of the Fast multiplier.
always_comb begin

// Default operation - MUL
mult_res = $signed ( mult_acc ) + ( $signed ( mult_op_a ) * $signed ( mult_op_b ));
mult_res_uns = $unsigned ( mult_res );

unique case ( operator_ext_i )

MD_OP_MUL16SS : begin // 16- bit SS mode
if ( signed_mode_i [0]) begin

mult_res_uns [31:0] = $signed ( mult_acc [31:0])
+ ( $signed ( mult_op_a [15:0]) * $signed ( mult_op_b [15:0]));

end else begin
mult_res_uns [31:0] = $unsigned ( mult_acc [31:0])

+ ( $unsigned ( mult_op_a [15:0]) * $unsigned ( mult_op_b [15:0]));
end

end

MD_OP_MUL8SS : begin // 8-bit SS mode
if ( signed_mode_i [0]) begin

mult_res_uns [15:0] = $signed ( mult_acc [15:0])
+ ( $signed ( mult_op_a [7:0]) * $signed ( mult_op_b [7:0]));

mult_res_uns [31:16] = $signed ( mult_acc [31:16])
+ ( $signed ( mult_op_a [15:8]) * $signed ( mult_op_b [15:8]));

end else begin
mult_res_uns [15:0] = $unsigned ( mult_acc [15:0])

+ ( $unsigned ( mult_op_a [7:0]) * $unsigned ( mult_op_b [7:0]));
mult_res_uns [31:16] = $unsigned ( mult_acc [31:16])

+ ( $unsigned ( mult_op_a [15:8]) * $unsigned ( mult_op_b [15:8]));
end

end

MD_OP_MUL4SS : begin // 4-bit SS mode
if ( signed_mode_i [0]) begin

...
end else begin

...
end

end

MD_OP_MUL16ST : begin // 16- bit ST mode
if ( signed_mode_i [0]) begin

mult_res_uns [31:0] = $signed ( mult_acc [31:0])
+ ( $signed ( mult_op_a [15:0]) * $signed ( mult_op_b [15:0]));

end else begin
mult_res_uns [31:0] = $unsigned ( mult_acc [31:0])

+ ( $unsigned ( mult_op_a [15:0]) * $unsigned ( mult_op_b [15:0]));
end

end

MD_OP_MUL8ST : begin // 8-bit ST mode
if ( signed_mode_i [0]) begin

mult_res_uns [23:0] = $signed ( mult_acc [23:0])
+ (( $signed ( mult_op_a [7:0]) * $signed ( mult_op_b [15:8]))
+ ( $signed ( mult_op_a [15:8]) * $signed ( mult_op_b [7:0])));

mult_res_uns [31:24] = {8{ mult_res_uns [23]}};
end else begin

mult_res_uns [23:0] = $unsigned ( mult_acc [23:0])
+ (( $unsigned ( mult_op_a [7:0]) * $unsigned ( mult_op_b [15:8]))
+ ( $unsigned ( mult_op_a [15:8]) * $unsigned ( mult_op_b [7:0])));

mult_res_uns [31:24] = 8’b0;
end

end

MD_OP_MUL4ST : begin // 4-bit ST mode
if ( signed_mode_i [0]) begin

...
end else begin

...
end

end

default : ;
endcase

end
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Figure 3.5: Fast multiplier, 32 bit MAC operations splitting procedure.

first input of the MAC register is the actually computed value presented in out-
put, passing along a conceptual unit called Shift and Mask that simply shifts the
result placing it in the correct position of the 64 bit MAC register, depending on
the actual stage, masking it with the value present in the MAC register itself for
sub-words that must be kept frozen. This structure is behaviorally described in
Verilog, trivially, as some signal assignments as follows:

• Cycle 1:
MAC_REGIN [15 : 0] = ADDOUT [15 : 0],

MAC_REGIN [63 : 16] = MAC_REGOUT [63 : 16]
(3.3)

• Cycle 2:
MAC_REGIN [63 : 0] = MAC_REGOUT [63 : 0] (3.4)

• Cycle 3:
MAC_REGIN [15 : 0] = MAC_REGOUT [15 : 0],

MAC_REGIN [31 : 16] = ADDOUT [15 : 0],
MAC_REGIN [63 : 32] = MAC_REGOUT [63 : 32]

(3.5)

• Cycle 4:
MAC_REGIN [31 : 0] = MAC_REGOUT [31 : 0],

MAC_REGIN [63 : 32] = ADDOUT [31 : 0]
(3.6)

Where MAC_REGIN is the input of the MAC register, MAC_REGOUT is the
output of the MAC register, while ADDOUT is the current output exposed by the
internal adder. The other input signals to the MAC register is the input operand
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concatenation, i.e. the OP Concat unit in the figure, used by the MACSET as-
sembly instruction to set the initial MAC register value. The last input of the
MAC register is directly the current output exposed by that register, this is done
to preserve the internal value in the case of other instructions, rather than MAC in-
structions, being executed in a computational loop, allowing a little more flexibility
in the code routines definition.

Finally, the selection of the input to the MAC unit is done with the same strategy
of the minimum logic inferred in the synthesis tool which here I represent as a
combinational logic block controlled by some control signals.
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Figure 3.6: High-level circuit diagram of the behavioral PS Fast multiplier unit.
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3.2.2 Precision scalable SingleCycle behavioral multiplier
As per the SingleCycle variant, this follows the same changes implemented for the
Fast one. The Verilog definitions are presented in Listing 3.2, in this case I decided
to omit also the 16 bit ST case, because it is equal to the 16 bit SS case, while as
for the 4 bit SS/ST cases these can be trivially extended by the reader from the 8
bit ones. The only relevant difference in this structure is in the usage of two MAC
units and a MUL unit, instead of a single MAC unit, allowing completing
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A[15:0] x B[31:16]

A[31:16] x B[15:0]

OUT = RES[31:0]

Cycle 1
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(a) MUL instruction internal cycles.
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SIGN
EXTENSION

MAC[31:0]MAC[47:32]MAC[63:48]

(b) MULH, MULHU and MULHSU instructions
internal cycles.

Figure 3.7: SingleCycle multiplier, 32 bit MAC operations splitting procedure.

all instructions in one clock cycle except the ones having to return the upper 32 bit
of a MUL/MAC 32 bit operation, which are computed in two clock cycles. Since,
to complete all SS/ST instructions in a single clock cycle, just two multipliers are
strictly required, the usage of the two multipliers is done trying minimizing the
signal re-assignment to keep the number of multiplexers as low as possible. Given
that, the left-branch, regarding the MAC accumulation procedure over time, is split
in two paths going respectively in MAC_1 and MAC_2, where the feedback to sum
the value in the ALU output register is instead placed in the MUL_3 branch. The
OP Concat block is the same as for the Fast variation, while the Shift and Mask
now deals with a reduced number of stages and assign the signal as follows:

• Cycle 1:
MAC_REGIN [15 : 0] = MAC1_OUT [15 : 0],

MAC_REGIN [31 : 16] = ADDOUT [15 : 0],
MAC_REGIN [63 : 32] = MAC_REGOUT [63 : 32]

(3.7)

• Cycle 2:
MAC_REGIN [32 : 0] = MAC_REGOUT [32 : 0],

MAC_REGIN [63 : 32] = ADDOUT [31 : 0]
(3.8)
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The final structure is shown in Figure 3.8.

[33:0]

A[15:0] A[31:16] B[15:0] B[31:16]

'0' '1' '0' '1'

MAC_1
(17 bit)

MAC_2
(17 bit)

MUL_3
(17 bit)

ADD
(34 bit)

'0' '1' '0' '1'

"00...00"

ALU
REG
34 bit

[33:16]

[33:0]

[33:0]

[33:0]

ZERO
EXT

SIGN
EXT

ZERO
EXT

SIGN
EXT

STAGESTAGE

SIGN

[17:0][17:0][17:0][17:0]

SIGN

A[15:0] B[31:16]

ZERO
EXT

SIGN
EXT SIGN

[17:0][17:0]

B[15:0] A[31:16]

ZERO
EXT

SIGN
EXT SIGN

[17:0][17:0]

SIGN
EXT

SIGN

[33:0]

STAGE STAGE

[33:0] [33:0]

[31:0]

OP
CONCAT

B[31:0]

A[31:0]

SHIFT
&

MASK

STAGE

MAC
REG
64 bit

[63:0]

MAC_CTRL(0)
MAC_CTRL(1) '00''1x' '01'

"00...00""00...00"

[31:0]

[63:48]

[47:32]

[33:0][33:0]

OUT[15:0]
(if STAGE = 0)

OUT[31:0]
(if STAGE = 1)

OUT[31:16]
(if STAGE = 0)

[33:0]

[63:32]

MAC_CTRL(0)

COMB
LOGIC

STAGE
CONFIG

[33:16] SIGN
EXT

SIGN

[33:16]
'0'

STAGE

'1'

Figure 3.8: High-level circuit diagram of the behavioral PS SingleCycle multiplier unit.
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Listing 3.2: System Verilog behavioral description of the SingleCycle multiplier.
always_comb begin

// Default operation - MUL
mult1_res = $signed ( mult1_acc ) + ( $signed ( mult1_op_a ) * $signed ( mult1_op_b ));
mult1_res_uns = $unsigned ( mult1_res );
mult2_res = $signed ( mult2_acc ) + ( $signed ( mult2_op_a ) * $signed ( mult2_op_b ));
mult2_res_uns = $unsigned ( mult2_res );
mult3_res = $signed ( mult3_op_a ) * $signed ( mult3_op_b );
mult3_res_uns = $unsigned ( mult3_res );

unique case ( operator_ext_i )

MD_OP_MUL16SS : begin // 16- bit SS mode
if ( signed_mode_i [0]) begin

mult1_res_uns [31:0] = $signed ( int_accum [31:0]) +
( $signed ( mult1_op_a [15:0]) * $signed ( mult1_op_b [15:0]));

mult2_res_uns [31:0] = $signed ( int_accum [63:32]) +
( $signed ( mult2_op_a [15:0]) * $signed ( mult2_op_b [15:0]));

end else begin
mult1_res_uns [31:0] = $unsigned ( int_accum [31:0]) +

( $unsigned ( mult1_op_a [15:0]) * $unsigned ( mult1_op_b [15:0]));
mult2_res_uns [31:0] = $unsigned ( int_accum [63:32]) +

( $unsigned ( mult2_op_a [15:0]) * $unsigned ( mult2_op_b [15:0]));
end

end

MD_OP_MUL8SS : begin // 8-bit SS mode
if ( signed_mode_i [0]) begin

mult1_res_uns [15:0] = $signed ( int_accum [15:0]) +
( $signed ( mult1_op_a [7:0]) * $signed ( mult1_op_b [7:0]));

mult1_res_uns [31:16] = $signed ( int_accum [31:16]) +
( $signed ( mult1_op_a [15:8]) * $signed ( mult1_op_b [15:8]));

mult2_res_uns [15:0] = $signed ( int_accum [47:32]) +
( $signed ( mult2_op_a [7:0]) * $signed ( mult2_op_b [7:0]));

mult2_res_uns [31:16] = $signed ( int_accum [63:48])+
( $signed ( mult2_op_a [15:8]) * $signed ( mult2_op_b [15:8]));

end else begin
mult1_res_uns [15:0] = $unsigned ( int_accum [15:0]) +

( $unsigned ( mult1_op_a [7:0]) * $unsigned ( mult1_op_b [7:0]));
mult1_res_uns [31:16] = $unsigned ( int_accum [31:16]) +

( $unsigned ( mult1_op_a [15:8]) * $unsigned ( mult1_op_b [15:8]));
mult2_res_uns [15:0] = $unsigned ( int_accum [47:32]) +

( $unsigned ( mult2_op_a [7:0]) * $unsigned ( mult2_op_b [7:0]));
mult2_res_uns [31:16] = $unsigned ( int_accum [63:48]) +

( $unsigned ( mult2_op_a [15:8]) * $unsigned ( mult2_op_b [15:8]));
end

end

MD_OP_MUL4SS : begin // 4-bit SS mode
...

end

MD_OP_MUL16ST : begin // 16- bit ST mode
...

end

MD_OP_MUL8ST : begin // 8-bit ST mode
if ( signed_mode_i [0]) begin

mult1_res_uns [23:0] = $signed ( int_accum [23:0]) +
(( $signed ( mult1_op_a [7:0]) * $signed ( mult1_op_b [15:8])) +

( $signed ( mult1_op_a [15:8]) * $signed ( mult1_op_b [7:0])));
mult2_res_uns [23:0] = ( $signed ( mult2_op_a [7:0]) * $signed ( mult2_op_b [15:8])) +

( $signed ( mult2_op_a [15:8]) * $signed ( mult2_op_b [7:0]));
end else begin

mult1_res_uns [23:0] = $unsigned ( int_accum [23:0]) +
(( $unsigned ( mult1_op_a [7:0]) * $unsigned ( mult1_op_b [15:8])) +

( $unsigned ( mult1_op_a [15:8]) * $unsigned ( mult1_op_b [7:0])));
mult2_res_uns [23:0] = ( $unsigned ( mult2_op_a [7:0]) * $unsigned ( mult2_op_b [15:8])) +

( $unsigned ( mult2_op_a [15:8]) * $unsigned ( mult2_op_b [7:0]));
end

end

MD_OP_MUL4ST : begin // 4-bit ST mode
...

end

default : ;
endcase

end
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Figure 3.9: High-level circuit diagram of the gate-level PS Fast multiplier unit.

3.2.3 Precision scalable Fast gate-level multiplier
Gate-level Baugh-Wooley structure, used inside the gate-level version of the Fast
Ibex multiplier unit, is similar to the final one derived in Section 2.3 and visible in
Figure 2.18. Unfortunately, this structure is not ready to be used to compute 32
bit operations. When considering the computing paradigm adopted by the original
Fast Ibex multiplier, sightly modified to include also the signal coming from the in-
ternal MAC register, reported in Figure 3.5, the sign extension green part depends
on results produced in Cycle 2 and Cycle 3. For this reason sign-extensions must
be sum all together in Cycle 4, meaning we need to pre-compute it along cycles.
Moreover, the structure of Figure 2.18 does not have any other input available on
the left side where the sign-extension of previous layers should take place.

This last consideration leads to the first modification of the structure, that is, to
add a computational column formed of plain FAs to then perform the sign-extension
addition in parallel to the computation of Cycle 4 ; blocks added to accomplish this
modification are the ones in orange visible in Figure 3.10. Each of these blocks can
have as input a direct control signal making them able to sum a series of 1s along
the column. These blocks are also used in Cycle 2 to add the 33rd bit coming from
operation performed in Cycle 1. Not only, from Figure 3.5b, in Cycle 3, the sum-
mation of the MAC input with the result of Cycle 1 and Cycle 2, needs a bit-width
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of 34 bit in order not to have an overflow in the result. Due to this, some FAs and
an HA have to be added to extend the result up to the 33rd bit. These are the
ones marked in red, in the bottom-left corner of Figure 3.10.

Now, the derived structure can be used to compute all set of operations needed.
A high level view of the architecture is presented in Figure 3.9 where signal connec-
tions can be easily retrieved. This structure is similar to the behavioral one, both
have the same left-branch to save the MAC result over time. Some differences are
in the value saved in the ALU register, in which an embedded sign-extension and
shift is not needed anymore since it is operated by the orange FA-column.
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Figure 3.10: Structure of the gate-level Baugh-Wooley PS variant included in the Fast
multiplier unit.
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Moreover, another difference is the value provided to the BW structure to accumu-
late the result, where, considering the overlapping part between the ALU register,
still used to save temporary values between steps, and considering the MAC reg-
ister content, as already stated, we can exploit the orange FA-column at Cycle 2,
making possible, at the same time, to perform the required summation with a single
common signal also in the case of MAC operations.

To manage this, a unit called Mask and Merge is placed in the design. As other
cases this unit is just a wrapper of some signal assignments done in the Verilog
description.

• For 32-bit operations returning the 32 LSBs of the result:

– Cycle 1:
OUT [31 : 0] = MAC_REGOUT [31 : 0],

OUT [33 : 32] = 0
(3.9)

– Cycle 2:
OUT [15 : 0] = ALU_REGOUT [31 : 16] (3.10)

– Cycle 3:
OUT [15 : 0] = ALU_REGOUT [31 : 16] (3.11)

• For 32-bit operations returning the 32 MSBs of the result:

– Cycle 1:
OUT [31 : 0] = MAC_REGOUT [31 : 0],

OUT [33 : 32] = 0
(3.12)

– Cycle 2:
OUT [15 : 0] = ALU_REGOUT [31 : 16],

OUT [31 : 16] = MAC_REGOUT [47 : 32],
OUT [33 : 32] = 0

(3.13)

– Cycle 3:
OUT [33 : 0] = ALU_REGOUT [33 : 0] (3.14)

– Cycle 4:
OUT [15 : 0] = ALU_REGOUT [31 : 16],

OUT [31 : 16] = MAC_REGOUT [63 : 48]
(3.15)

From this description, to obtain the relation of the case where the operation to
be performed is not a MAC operation, it is possible to just change equations, where
a value coming from the MAC register is assigned to OUT, with an assignment to
the logic value 0. Also, values which are not assigned are considered don’t care
conditions in the design, meaning that, new signal assignments with respect to
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default ones are not performed in order to save logic. The precise selection of
signals is made through some minimal combinational logic, considering the current
cycle and the operation type, which controls multiplexers. All other blocks and
connections, with respect to the behavioral version, remain the same.

SS / ST
(ST mode)
AH x BL

SS
AL x BL

ST
AL x BH

(a) 32 bit
multiplication case,

first stage.

SS
AH x BH

(b) 32 bit
multiplication case,

second stage.

SS / ST
(SS mode)
AH x BL

SS
AL x BH

(c) Sub-word
multiplication in SS

mode.

SS / ST
(ST mode)
AH x BL

ST
AL x BH

(d) Sub-word
multiplication in ST

mode.

Figure 3.11: Schematic representation of signals flow in the SingleCycle architecture.

3.2.4 Precision scalable SingleCycle gate-level multiplier
In order to increase the number of multipliers while keeping the same Baugh-Wooley
structure, having as a target to compute all operations in a single cycle except the
ones requiring the most significant 32 bits of the 64 bit result, which are computed
in two cycles, the structure have to change as follows. First, the structure makes
use of three 16 bit multipliers. Moreover, recalling Paragraph 2.2, we saw that, as
a rule, to perform 16 bit SS/ST operations, given a 32 bit Baugh-Wooley multiplier
just two 16 bit multipliers are needed. Since in total, in a 32 bit Baugh-Wooley
structure, we have four 16 bit sub-multipliers, to reduce the number to three, it
means one of these have to perform both SS and ST operations taking the place
of another, leading to the final three multipliers structure. The proposed solution
is to connect one 16 bit sub-multiplier of the ones present in the structure to
perform both SS and ST operations; we already derived this structure as the last
one of in Paragraph 2.3, that is, the one of Figure 2.18. Other two structures need
to perform only the SS or only the ST operations, also these variations have been
derived in Paragraph 2.3 and can be seen in Figure 2.13 and Figure 2.15 respectively.
Moreover, these must be fully deactivated in the case they are not contributing to a
specific computation, thus final structure includes only green blocks (Figure 2.9b),
purple blocks (Figure 2.12b), and blue blocks (Figure 2.17b).
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Figure 3.12: High-level circuit diagram of the gate-level PS
SingleCycle multiplier unit.

The final scheme of this multiplier structure is visible in Figure 3.11 which also
clarifies the signal connections between the three multiplier structures. In detail,
for 32 bit operations the structure assumes the state depicted in Figure 3.11a and in
Figure 3.11b, for the first and second cycle respectively, as illustrated in Figure 3.7b.
During the first cycle all blocks have a green background, so they are all active;
during the second cycle only the one in the top-right corner is active, with other
blocks having a red background, meaning they do not contribute to computation.
In Figure 3.11d the structure assumes a state compatible with the ST operations,
while in Figure 3.11c it is made clear the alternative direct connection of the block
in the top-left corner to the block in the bottom-right corner to work in parallel to
compute SS operations. The top-left block has its own adder used to compute the
sum bit to be added to the bottom-right block in ST configuration, the same adder
is used to compute the result for SS operations having as carry-in signal the carry-
out of the adder in the bottom-right corner. This usage maximizes the HW sharing
among different configurations. Moreover, since to have this double behavior and
double connection, the SS/ST structure have a higher complexity and
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need multiplexers to route correctly the signals, input of this block is kept constant
to AH × BL, instead the SS block have signal reassignment to AL × BH. This is
the reason to have input/output relation involving a partial cross-product also in
SS operations as previously anticipated.

The final gate-level structure is visible in Figure 3.13. Red HA/FA blocks in
bottom position perform conceptually the same operations as the red ones in Figure
3.10: they allow computing partial results on 34 bit given computation requirements
in Figure 3.7b. As per the sign-extension, this is computed in the very same way as
the one adopted for the gate-level Fast case, only difference is the extra FA column
is not necessary since in Cycle 2 there is a whole 16 bit BW block deactivated,
meaning that those blocks can generate the sign-extension if there is at least a blue
block or a purple block along each diagonal (where the contribution to the output is
the same). For diagonals in which this condition is not verified, a blue block has to
take the place of a green block, in an arbitrary position. Also, from Figure 3.13 we
can appreciate multiple positions in connecting the various 16 bit sub-multipliers
is managed through the usage of multiplexers.

In Figure 3.12 the overall structure is visible. With respect to the Fast diagram
in Figure 3.9, the only change is in signal parallelism and in the fewer cycles the
multiplier is requested to perform. For this reason the Mask and Merge block
changes its function accordingly, as follows:

• For 32-bit operations returning the 32 LSBs of the result:

– Cycle 1:
OUT [31 : 0] = MAC_REGOUT [31 : 0] (3.16)

• For 32-bit operations returning the 32 MSBs of the result:

– Cycle 1:
OUT [47 : 0] = MAC_REGOUT [47 : 0] (3.17)

– Cycle 2:
OUT [15 : 0] = ALU_REGOUT [31 : 16],

OUT [31 : 16] = MAC_REGOUT [63 : 48]
(3.18)

Also in this case to have the relation for non-MAC operations is possible to
replace assignment to MAC register values with logical 0 values.
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Figure 3.13: Structure of the gate-level Baugh-Wooley PS variant included in the Fast
multiplier unit.

3.3 Synthesis results
Now that all multiplier units are derived, files containing behavioral and gate-level
descriptions are included in the Ibex core adding some parameters to select the
right multiplier structure from a top-level file, that is the starting point for the
synthesis procedure.

Synthesis is carried out by Synopsys Design Compiler synthesis tool, targeting
a 28 nm Fully-Depleted Silicon-On-Insulator (FDSOI) technology node at 0.9 V.
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Synthesis results are reported in Figures 3.14 and 3.15 for Fast multipliers, and
in Figure 3.16 and 3.17 for SingleCycle multipliers. Here each point is the result
obtained defining a discrete target frequency for the design in a linear range of 10
steps between 100 MHz and 1 GHz. Lines present in the graphs are only to ease
the reading process and have no physical meaning.

In Figure 3.14 we can see the area resulting from the synthesis process of the
Ibex core, configured with the three version of the Fast multiplier unit. From the
graph, the original Fast multiplier is the one having the smallest area occupation.
This is an expected result, since this multiplier version have no support for the
SS/ST nor MAC instructions. Between the two modified multipliers, the gate-level
requires less area than the behavioral one, especially in low-frequencies. For fre-
quencies where the gate level is synthesized without any negative slack, the area is
always less than the behavioral version. This is true in the range from 100 MHz
to 800 MHz. After this value of frequency, even defining a higher target frequency
constraint for the synthesis tool, this is not able to correctly met that frequency
thus the Ibex is stuck around 800 MHz. Given structure-independent properties in
the behavioral description, for high frequencies the synthesis tool is able to select a
proper multiplier structure to satisfy the design frequency constraint. This pattern
for the gate-level is expected since, given its structure, the Baugh-Wooley is usually
employed in low-frequency applications.
Moving now to the power consumption, in Figure 3.15, comparison between mul-
tiplier solutions shows the consumption is almost the same for low-frequencies,
around 100-300 MHz. From 300 MHz, the curves start diverging. We have a lower
power consumption for the gate-level with respect to the behavioral, until 700 MHz,
since, after this frequency, the design of the gate level is not increasing in area, for
this reason the consumption remains the same, and it overlaps the behavioral case.
The behavioral description instead keeps growing trying to satisfy the target fre-
quency constraint.

As per the SingleCycle multiplier versions, the area results of the synthesis pro-
cess of the three Ibex cores, each one including one different multipliers, are shown
in Figure 3.16. As before, the original SingleCycle multiplier is the one requiring
less area. Near after this, for low frequencies, the gate-level is the better one, and
this is true until 400 MHz. At 500 MHz the area of the gate-level version surpasses
the behavioral version. Moreover, from this frequency, the synthesis tool is not
able to met the target frequency for the gate-level multiplier, thus the design area
remains almost the same. For the same reason as before, the behavioral version can
keep increasing in area given that it tries to satisfy the design frequency constraint;
this happens up to 900 MHz.
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Figure 3.14: Area occupation synthesis results of the three Ibex cores Fast.

Figure 3.15: Power consumption synthesis results of the three Ibex cores Fast.

The power consumption reflects the area phenomena. At 100 MHz the consump-
tion between versions is almost the same, but here the curves diverges faster than
before. The gate-level variation consumes less power until 400 MHz are reached; at
500 MHz it consumes more than the behavioral version and, after that frequency it
can not compete anymore. The behavioral one, instead, keeps increasing in power
consumption up to 900 MHz. Also in this case these results are expected, the gate-
level stop frequency is even lower than the Fast version due to the longer critical
path present in this bigger Baugh-Wooley architecture.

59



Ibex core modifications and synthesis results

Figure 3.16: Area occupation synthesis results of the three Ibex cores SingleCycle.

Figure 3.17: Power consumption synthesis results of the three Ibex cores SingleCycle.

Overall, as expected, versions including the SS/ST, and MAC operations sup-
port, show an increase in both area and power consumption. For low frequen-
cies the gate-level versions performs better, given the typical application for the
Baugh-Wooley multiplier is the low-frequency scenario. For higher frequencies the
behavioral description approach gives a structure that is less optimized, but that
can target a wider range of frequencies compared to the gate-level description.
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Chapter 4

RISC-V ISA extension and
GCC modifications

First paragraph of this chapter recalls the GNU GCC, while the second paragraph
presents modifications done to GCC to make it able to recognize and compile
assembly custom instructions.

The last section is devoted as a reference of all custom assembly instructions
added to the RISC-V ISA, for which the multiplier units developed in previous
chapters can optimize the execution.

4.1 GCC background
The GNU Compiler Collection (GCC) [50] is one of the most famous compiler for
C/C++ language. Released in the late 80s it became the standard for C compilation
on UNIX systems. It supports several HW architectures making use of its flexibility
to embrace also recent and novel ISA, like RISC-V, building specialized compiler
targeting all variations coming from ISA extensions or custom instructions, like the
one required in this thesis work.
As a lightweight explanation, GCC is organized in a backend and a frontend.

The frontend is used to interface from a given language to a language-independent
structure called "abstract syntax tree" that could be seen as a CFG-like represen-
tation of elementary instructions.

The backend, starting from that language-independent abstract syntax tree,
deals with the selected HW architecture producing the final machine code to run.

The objective of this chapter is to add low-level assembly instructions derived
from the desired ISA extension, thus operating on the assembler part of the backend
to make it able to recognize and translate those instructions. With these modifi-
cations, GCC is not able to inference custom instructions starting directly from
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the provided C-code, but it recognizes only assembly instructions. For this reason
who writes the code has to place directly those assembly instructions, i.e. writing
assembly routines, to make use of the ISA extension.
This approach is still a good choice considering the final objective is to test modifi-
cations done at microprocessor architectural level. Expansion supporting also more
abstract C-like descriptions are left as a possible future work.

4.2 Adding custom instructions to GCC
The modification to allow recognizing new assembly instructions in GCC is done
operating on just two files.

Given the GCC RISC-V toolchain source code (fully available under the GNU
GPL license) [53], in the directory tree organization, the first file to modify is lo-
cated at riscv-gnu-toolchain/binutils/include/opcode/riscv-opc.h
This is a header file containing definitions of all opcodes present in the RISC-V
ISA. Specifically, each instruction is defined as follows. There are two definitions,
one called MASK and one called MATCH. The MASK definition is used to zero
all bits related to variable parts of that instruction, like source and destination
registers. The MATCH is instead the definition of the fixed pattern, it can also be
seen as the encoding an instruction would have once placed in logical AND with the
corresponding MASK. These are used internally by GCC to generate the proper
machine-dependent code.

The first step is to define those masks. As an example, taking the instruction
MUL8ST, in the file riscv-opc.h the following definitions have to be added:
#define MATCH_MUL8ST 0xd0001033, as the MATCH value.
#define MATCH_MUL8ST 0xfe00707f, as the MASK value.
Two things to note, the MATCH value follows each instruction definition (that
is presented in the next paragraph), instead, the MASK value is the same for all
instructions since all added instruction are of R-type.

Pairing process between the instruction final name and the instruction encoding
is done with the following C-macro:
DECLARE_INSN(name, MATCH, MASK)
That in the case of the MUL8ST instruction become:
DECLARE_INSN(mul8st, MATCH_MUL8ST, MASK_MUL8ST)
With mul8st being the custom assembly instruction added.
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The second file to modify is located at riscv-gnu-toolchain/binutils/
opcodes/riscv-opc.c.
This file contains the encoding information of given instructions, organized as a C-
struct, named riscv_opcode containing: the name of the instruction, the length, the
instruction class, both the MATCH and MACK definitions previously mentioned,
and some other information, among which, if the instruction could cause hazard
events to ease the instruction scheduling. Instruction encodings are organized in a
vector of riscv_opcode struct objects, one for each instruction.

To add a custom instruction we need to add the definition of a struct object for
that specific instruction. For example, taking the MUL8ST custom instruction, the
struct definition is as follows:
{"mul8st", 0, INSN_CLASS_M, "d,s,t", MATCH_MUL8ST, MASK_MUL8ST,
match_opcode, 0 }
Specifically it declares a struct having as parameters the name being mul8st, the
instruction class, a RISC-V M-extension instruction in this case, a string indicating
it is an R-type having a destination register (d), and two source registers (s and t),
the MATCH and MASK definitions as before, match_opcode that is a function used
to match that instruction, and a value 0 indicating no hazard could be generated
by this instruction, as expected.

At this point, the process is to carefully write down each instruction, present in
the target ISA extension, in those files with the presented criteria, and to start the
GCC compilation process.

As per the GCC compilation process, a script is provided ready-to-use on the
same Git repository [53]. Just setting some parameters, it allows compiling the
toolchain through makefiles, and easily test the final executable.

Parameters that are essential to be indicated to the GCC compiling script are,
the architecture the processor is compliant with, that is, the march parameter,
and the application binary interface to be used inside compiled procedures, called
mabi parameter. As per the Ibex architecture, parameters to indicate are:
march=rv32imc, and mabi=32ilp, the first indicates the RISC-V base set and the
extensions supported by the Ibex core, while the second indicates the bit-width of
the architecture in terms of i (integer), l (long), and p (pointer), all of them on 32
bit registers.

4.3 Reference of the RISC-V ISA extension
In this section the derivation process for new RISC-V compliant instructions is
presented. The standard RISC-V M-extension [54] includes only register-to-register
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(R-type) instructions, meaning all information about operands must be loaded in
registers before that instruction execution. Instruction format for R-type RISC-V
instructions is the following:

31 25 24 20 19 15 14 12 11 7 6 0
funct[9:3] rs2 rs1 funct[2:0] rd opcode

The encoding of the four multiplication related instruction in the RISC-V M-
extension is as follows:

MUL funct[9:3] rs2 rs1 funct[2:0] rd opcode
0000001b - - 000b - 0110011b

MULH funct[9:3] rs2 rs1 funct[2:0] rd opcode
0000001b - - 001b - 0110011b

MULHSU funct[9:3] rs2 rs1 funct[2:0] rd opcode
0000001b - - 010b - 0110011b

MULHU funct[9:3] rs2 rs1 funct[2:0] rd opcode
0000001b - - 011b - 0110011b

First problem is to find a set of "missing-codes" to be used as encoding for new
instructions to be added. Here I chose not to deal with all possible instruction
overlappings in the overall RISC-V ISA, but only to consider instructions that the
Ibex processor is supporting, thus limited to the ones actually present in its decode
unit. Given this assumption, there is no-guarantee the proposed encoding of these
instructions is not overlapping with other instructions in other parts of the RISC-V
ISA, nor in future ratified ISA extensions.

In order to keep compatibility with instructions in the RISC-V M-extension, and
to reduce modifications to the Ibex decode unit, the Opcode that identify actual
supported multiplication instructions is left unchanged. The Function-code instead
is changed, among supported configurations, to identify uniquely these new instruc-
tions.

Modifications to the decode unit are just some extra signal assignment for control
signals used by the multiplier units.
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4.3.1 SS MUL instructions group

MUL16SS funct[9:3] rs2 rs1 funct[2:0] rd opcode
1001000b - - 000b - 0110011b

It computes two separate signed multiplications given that input registers contain
the value of two input pairs on 16 bit each. For each operation it returns the lower
16 bit part of the result, in sequence, according to the following relation:

ROUT [15 : 0] = RIN1[15 : 0] × RIN2[31 : 16],
ROUT [31 : 16] = RIN1[31 : 16] × RIN2[15 : 0]

(4.1)

MUL16SSH funct[9:3] rs2 rs1 funct[2:0] rd opcode
1001000b - - 100b - 0110011b

It computes two separate signed multiplications given that input registers con-
tain the value of two input pairs on 16 bit each. For each operation it returns the
upper 16 bit part of the result, the relation is the same as the one in Equation 4.1.

MUL16SSHU funct[9:3] rs2 rs1 funct[2:0] rd opcode
1000000b - - 100b - 0110011b

It computes two separate unsigned multiplications given that input registers
contain the value of two input pairs on 16 bit each. For each operation it returns
the upper 16 bit part of the result, the relation is the same as the one in Equation
4.1.

MUL8SS funct[9:3] rs2 rs1 funct[2:0] rd opcode
1001000b - - 001b - 0110011b

It computes four separate signed multiplications given that input registers con-
tain the value of four input pairs on 8 bit each. For each operation it returns the
lower 8 bit part of the result, in sequence, according to the following relation:

ROUT [7 : 0] = RIN1[7 : 0] × RIN2[23 : 16],
ROUT [15 : 8] = RIN1[15 : 8] × RIN2[31 : 24],

ROUT [23 : 16] = RIN1[23 : 16] × RIN2[7 : 0],
ROUT [31 : 24] = RIN1[31 : 24] × RIN2[15 : 8]

(4.2)
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MUL8SSH funct[9:3] rs2 rs1 funct[2:0] rd opcode
1001000b - - 101b - 0110011b

It computes four separate signed multiplications given that input registers con-
tain the value of four input pairs on 8 bit each. For each operation it returns the
upper 8 bit part of the result, the relation is the same as the one in Equation 4.2.

MUL8SSHU funct[9:3] rs2 rs1 funct[2:0] rd opcode
1000000b - - 101b - 0110011b

It computes four separate unsigned multiplications given that input registers
contain the value of four input pairs on 8 bit each. For each operation it returns
the upper 8 bit part of the result, the relation is the same as the one in Equation
4.2.

MUL4SS funct[9:3] rs2 rs1 funct[2:0] rd opcode
1001000b - - 010b - 0110011b

It computes eight separate signed multiplications given that input registers con-
tain the value of eight input pairs on 4 bit each. For each operation it returns the
lower 4 bit part of the result, in sequence, according to the following relation:

ROUT [3 : 0] = RIN1[3 : 0] × RIN2[19 : 16],
ROUT [7 : 4] = RIN1[7 : 4] × RIN2[23 : 30],

ROUT [11 : 8] = RIN1[11 : 8] × RIN2[27 : 24],
ROUT [15 : 12] = RIN1[15 : 12] × RIN2[31 : 28],
ROUT [19 : 16] = RIN1[19 : 16] × RIN2[3 : 0],
ROUT [23 : 20] = RIN1[23 : 20] × RIN2[7 : 4],
ROUT [27 : 24] = RIN1[27 : 24] × RIN2[11 : 8],
ROUT [31 : 28] = RIN1[31 : 28] × RIN2[15 : 12]

(4.3)
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MUL4SSH funct[9:3] rs2 rs1 funct[2:0] rd opcode
1001000b - - 110b - 0110011b

It computes eight separate signed multiplications given that input registers con-
tain the value of eight input pairs on 4 bit each. For each operation it returns the
upper 4 bit part of the result, the relation is the same as the one in Equation 4.3.

MUL4SSHU funct[9:3] rs2 rs1 funct[2:0] rd opcode
1000000b - - 110b - 0110011b

It computes eight separate unsigned multiplications given that input registers
contain the value of eight input pairs on 4 bit each. For each operation it returns
the upper 4 bit part of the result, the relation is the same as the one in Equation 4.3.

4.3.2 ST MUL instructions group

MUL16ST funct[9:3] rs2 rs1 funct[2:0] rd opcode
1101000b - - 000b - 0110011b

It computes two separate signed multiplications given that input registers contain
the value of two input pairs on 16 bit each. Each single result is then summed
before returning the computed value. The input/output relation follows:

ROUT [31 : 0] = RIN1[15 : 0] × RIN2[31 : 16] + RIN1[31 : 16] × RIN2[15 : 0] (4.4)

MUL16STU funct[9:3] rs2 rs1 funct[2:0] rd opcode
1100000b - - 000b - 0110011b

It computes two separate unsigned multiplications given that input registers con-
tain the value of two input pairs on 16 bit each. Each single result is then summed
before returning the computed value. The input/output relation is the same as the
one in Equation 4.4.

MUL8ST funct[9:3] rs2 rs1 funct[2:0] rd opcode
1101000b - - 001b - 0110011b
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It computes four separate signed multiplications given that input registers con-
tain the value of four input pairs on 8 bit each. Each single result is then summed
before returning the computed value. The input/output relation follows:

ROUT [23 : 0] = RIN1[7 : 0] × RIN2[31 : 24] + RIN1[15 : 8] × RIN2[23 : 16]
+ RIN1[23 : 16] × RIN2[15 : 8] + RIN1[31 : 24] × RIN2[7 : 0]

(4.5)

MUL8STU funct[9:3] rs2 rs1 funct[2:0] rd opcode
1100000b - - 001b - 0110011b

It computes four separate unsigned multiplications given that input registers
contain the value of four input pairs on 8 bit each. Each single result is then
summed before returning the computed value. The input/output relation is the
same as the one in Equation 4.5.

MUL4ST funct[9:3] rs2 rs1 funct[2:0] rd opcode
1101000b - - 010b - 0110011b

It computes eight separate signed multiplications given that input registers con-
tain the value of eight input pairs on 4 bit each. Each single result is then summed
before returning the computed value. The input/output relation follows:

ROUT [19 : 0] = RIN1[3 : 0] × RIN2[31 : 28] + RIN1[7 : 4] × RIN2[27 : 24]
+ RIN1[11 : 8] × RIN2[23 : 20] + RIN1[15 : 12] × RIN2[19 : 16]
+ RIN1[19 : 16] × RIN2[15 : 12] + RIN1[23 : 20] × RIN2[11 : 8]
+ RIN1[27 : 24] × RIN2[7 : 4] + RIN1[31 : 28] × RIN2[3 : 0]

(4.6)

MUL4STU funct[9:3] rs2 rs1 funct[2:0] rd opcode
1100000b - - 010b - 0110011b

It computes eight separate unsigned multiplications given that input registers
contain the value of eight input pairs on 4 bit each. Each single result is then
summed before returning the computed value. The input/output relation is the
same as the one in Equation 4.6.
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4.3.3 MAC instructions group
For consistency on results, it is advised to first clear the ACC register value, then
start computing and accumulating results, paying always attention to use the same
instruction along all computation procedure; if not, results could not be consistent,
since results of different instructions are blindly summed together.

MAC funct[9:3] rs2 rs1 funct[2:0] rd opcode
0111000b - - 000b - 0110011b

It computes the MAC operation between two signed operands on 32 bit. Inter-
nally it accumulates results over time, then it returns the lower 32 bit part of the
result, according to the following relation:

ROUT [31 : 0] = RIN1[31 : 0] × RIN2[31 : 0] + ACC[64 : 0] (4.7)

MACH funct[9:3] rs2 rs1 funct[2:0] rd opcode
0111000b - - 001b - 0110011b

It computes the MAC operation between two signed operands on 32 bit. Inter-
nally it accumulates results over time, then it returns the upper 32 bit part of the
result, the relation is the same as the one in Equation 4.7

MACHSU funct[9:3] rs2 rs1 funct[2:0] rd opcode
0111000b - - 010b - 0110011b

It computes the MAC operation between a signed and an unsigned operand on
32 bit. Internally it accumulates results over time, then it returns the upper 32 bit
part of the result, the relation is the same as the one in Equation 4.7

MACHU funct[9:3] rs2 rs1 funct[2:0] rd opcode
0111000b - - 0110b - 0110011b

It computes the MAC operation between two unsigned operands on 32 bit. In-
ternally it accumulates results over time, then it returns the upper 32 bit part of
the result, the relation is the same as the one in Equation 4.7
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4.3.4 SS MAC instructions group
For consistency on results, it is advised to first clear the ACC register value, then
start computing and accumulating results, paying always attention to use the same
instruction along all computation procedure; if not, results could not be consistent,
since results of different instructions are blindly summed together.

MAC16SS funct[9:3] rs2 rs1 funct[2:0] rd opcode
1011000b - - 000b - 0110011b

It computes two separate signed multiplications given that input registers con-
tain the value of two input pairs on 16 bit each. Internally it accumulates each
result over time, then it returns the lower 16 bit part of the result, in sequence,
according to the following relation:

ROUT [15 : 0] = RIN1[15 : 0] × RIN2[31 : 16] + ACC[31 : 0],
ROUT [31 : 16] = RIN1[31 : 16] × RIN2[15 : 0] + ACC[63 : 32]

(4.8)

MAC16SSH funct[9:3] rs2 rs1 funct[2:0] rd opcode
1011000b - - 100b - 0110011b

It computes two separate signed multiplications given that input registers con-
tain the value of two input pairs on 16 bit each. Internally it accumulates each
result over time, then it returns the upper 16 bit part of the result, the relation is
the same as the one in Equation 4.8.

MAC16SSHU funct[9:3] rs2 rs1 funct[2:0] rd opcode
1010000b - - 100b - 0110011b

It computes two separate unsigned multiplications given that input registers
contain the value of two input pairs on 16 bit each. Internally it accumulates each
result over time, then it returns the upper 16 bit part of the result, the relation is
the same as the one in Equation 4.8.

MAC8SS funct[9:3] rs2 rs1 funct[2:0] rd opcode
1011000b - - 001b - 0110011b

It computes four separate signed multiplications given that input registers con-
tain the value of four input pairs on 8 bit each. Internally it accumulates each result
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over time, then it returns the lower 8 bit part of the result, in sequence, according
to the following relation:

ROUT [7 : 0] = RIN1[7 : 0] × RIN2[23 : 16] + ACC[15 : 0],
ROUT [15 : 8] = RIN1[15 : 8] × RIN2[31 : 24] + ACC[31 : 16],

ROUT [23 : 16] = RIN1[23 : 16] × RIN2[7 : 0] + ACC[47 : 32],
ROUT [31 : 24] = RIN1[31 : 24] × RIN2[15 : 8] + ACC[63 : 48]

(4.9)

MAC8SSH funct[9:3] rs2 rs1 funct[2:0] rd opcode
1011000b - - 101b - 0110011b

It computes four separate signed multiplications given that input registers con-
tain the value of four input pairs on 8 bit each. Internally it accumulates each
result over time, then it returns the upper 8 bit part of the result, the relation is
the same as the one in Equation 4.9.

MAC8SSHU funct[9:3] rs2 rs1 funct[2:0] rd opcode
1010000b - - 101b - 0110011b

It computes four separate unsigned multiplications given that input registers
contain the value of four input pairs on 8 bit each. Internally it accumulates each
result over time, then it returns the upper 8 bit part of the result, the relation is
the same as the one in Equation 4.9.

MAC4SS funct[9:3] rs2 rs1 funct[2:0] rd opcode
1011000b - - 010b - 0110011b

It computes eight separate signed multiplications given that input registers con-
tain the value of eight input pairs on 4 bit each. Internally it accumulates each
result over time, then it returns the lower 4 bit part of the result, in sequence,
according to the following relation:
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ROUT [3 : 0] = RIN1[3 : 0] × RIN2[19 : 16] + ACC[7 : 0],
ROUT [7 : 4] = RIN1[7 : 4] × RIN2[23 : 20] + ACC[15 : 8],

ROUT [11 : 8] = RIN1[11 : 8] × RIN2[27 : 24] + ACC[23 : 16],
ROUT [15 : 12] = RIN1[15 : 12] × RIN2[31 : 28] + ACC[31 : 24],
ROUT [19 : 16] = RIN1[19 : 16] × RIN2[3 : 0] + ACC[39 : 32],
ROUT [23 : 20] = RIN1[23 : 20] × RIN2[7 : 4] + ACC[47 : 40],
ROUT [27 : 24] = RIN1[27 : 24] × RIN2[11 : 8] + ACC[55 : 48],
ROUT [31 : 28] = RIN1[31 : 28] × RIN2[15 : 12] + ACC[63 : 56]

(4.10)

MAC4SSH
funct[9:3] rs2 rs1 funct[2:0] rd opcode
1011000b - - 110b - 0110011b

It computes eight separate signed multiplications given that input registers con-
tain the value of eight input pairs on 4 bit each. Internally it accumulates each
result over time, then it returns the upper 4 bit part of the result, the relation is
the same as the one in Equation 4.10.

MAC4SSHU funct[9:3] rs2 rs1 funct[2:0] rd opcode
1010000b - - 110b - 0110011b

It computes eight separate unsigned multiplications given that input registers
contain the value of eight input pairs on 4 bit each. Internally it accumulates each
result over time, then it returns the upper 4 bit part of the result, the relation is
the same as the one in Equation 4.10.

4.3.5 ST MAC instructions group
For consistency on results, it is advised to first clear the ACC register value, then
start computing and accumulating results, paying always attention to use the same
instruction along all computation procedure; if not, results could not be consistent,
since results of different instructions are blindly summed together.

MAC16ST
funct[9:3] rs2 rs1 funct[2:0] rd opcode
1111000b - - 000b - 0110011b

It computes two separate signed multiplications given that input registers con-
tain the value of two input pairs on 16 bit each. Each single result is then summed,
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along with the internal accumulation register value, before returning the final result.
The input/output relation follows:

ROUT [31 : 0] = RIN1[15 : 0] × RIN2[31 : 16]
+ RIN1[31 : 16] × RIN2[15 : 0] + ACC[47 : 16]

(4.11)

MAC16STU funct[9:3] rs2 rs1 funct[2:0] rd opcode
1110000b - - 000b - 0110011b

It computes two separate unsigned multiplications given that input registers
contain the value of two input pairs on 16 bit each. Each single result is then
summed, along with the internal accumulation register value, before returning the
final result. The input/output relation is the same as the one in Equation 4.11.

MAC8ST
funct[9:3] rs2 rs1 funct[2:0] rd opcode
1111000b - - 001b - 0110011b

It computes four separate signed multiplications given that input registers con-
tain the value of four input pairs on 8 bit each. Each single result is then summed,
along with the internal accumulation register value, before returning the final result.
The input/output relation follows:

ROUT [23 : 0] = RIN1[7 : 0] × RIN2[31 : 24] + RIN1[15 : 8] × RIN2[23 : 16]
+ RIN1[23 : 16] × RIN2[15 : 8] + RIN1[31 : 24] × RIN2[7 : 0]
+ ACC[47 : 24]

(4.12)

MAC8STU
funct[9:3] rs2 rs1 funct[2:0] rd opcode
1110000b - - 001b - 0110011b

It computes four separate unsigned multiplications given that input registers
contain the value of four input pairs on 8 bit each. Each single result is then
summed, along with the internal accumulation register value, before returning the
final result. The input/output relation is the same as the one in Equation 4.12.
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MAC4ST funct[9:3] rs2 rs1 funct[2:0] rd opcode
1111000b - - 010b - 0110011b

It computes eight separate signed multiplications given that input registers con-
tain the value of eight input pairs on 4 bit each. Each single result is then summed,
along with the internal accumulation register value, before returning the final result.
The input/output relation follows:

ROUT [19 : 0] = RIN1[3 : 0] × RIN2[31 : 28] + RIN1[7 : 4] × RIN2[27 : 24]
+ RIN1[11 : 8] × RIN2[23 : 20] + RIN1[15 : 12] × RIN2[19 : 16]
+ RIN1[19 : 16] × RIN2[15 : 12] + RIN1[23 : 20] × RIN2[11 : 8]
+ RIN1[27 : 24] × RIN2[7 : 4] + RIN1[31 : 28] × RIN2[3 : 0]
+ ACC[47 : 28]

(4.13)

MAC4STU funct[9:3] rs2 rs1 funct[2:0] rd opcode
1110000b - - 010b - 0110011b

It computes eight separate unsigned multiplications given that input registers
contain the value of eight input pairs on 4 bit each. Each single result is then
summed, along with the internal accumulation register value, before returning the
final result. The input/output relation is the same as the one in Equation 4.13.

4.3.6 MAC special instructions

MACSET funct[9:3] rs2 rs1 funct[2:0] rd opcode
1111000b - - 111b - 0110011b

This is a special instruction to set an arbitrary value in the internal accumulation
register used by MAC instructions. The MAC register is on 64 bit, its value is set
from a binary concatenation on the two input registers content each on 32 bit:

MAC[63 : 0] = RIN2[31 : 0] & RIN1[31 : 0] (4.14)
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Chapter 5

QNN benchmarks and
execution time results

This chapter exposes benchmarks developed to verify final SoC performance of
structures derived in Chapter 3, with respect to the two baseline Ibex structures,
and presents the performance results. First section introduces the three ML bench-
marks defined, one for each of the three most common QNN layers in the edge
domain. Second section exposes the test methodology to execute these benchmarks
on the Ibex core. Execution involves the usage of an FPGA board programmed
with the ESP [56] toolchain allowing integrating, verifying and executing software
routines on supported cores. In the last section an analysis of results make evi-
dent advantages of the sub-word parallel approach when dealing with the QNNs
execution, and provides some metrics to quantify these improvements.

5.1 Target QNN algorithm description
Each of the following subsections targets a single QNN algorithm. All of them are
subsequently run on the Ibex core to evaluate performance improvements of custom
multipliers with respect to the baseline. In the first subsection, regarding the FC
layer, five different algorithms are exposed, two of them include only instructions
present in the original Ibex core (mainly 32 bit MUL and ADD), other two make
use of the 32 bit MAC operations to isolate the contribution of MAC operations
with respect to the precision-scalable approach, while the last algorithm is the most
optimized one in executing an FC layer, making use of only precision-scalable ST
custom instructions. As per the other subsections, targeting CNN and DW-CNN
layers, I decided to focus only on the advantages coming from the usage of precision-
scalable operations, with the only baseline considered being the versions using the
32 bit MAC operations.
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Listing 5.1: FC algorithm using MUL and ADD instructions.
for (int out_pos = 0; out_pos < output_lenght ; ++ out_pos ) {

// reset accumulation variable
int32_t acc = 0;

for (int in_pos = 0; in_pos < input_lenght ; ++ in_pos ) {
// load the input value
int input_idx = in_pos ;
int8_t input_val = input_data [ input_idx ];
// load the filter value
int filter_idx = out_pos * input_lenght + in_pos ;
int8_t filter_val = filter_data [ filter_idx ];

int32_t mul_res ;
// multiply the input and filter values
asm volatile ("mul %0, %1, %2\n":"=r"( mul_res ):"r"( input_val ),"r"( filter_val ):);
// accumulate in the accumulation variable
asm volatile ("add %0, %1, %2\n":"=r"(acc ):"r"(acc),"r"( mul_res ):);

}

// store the result
int output_idx = out_x_pos ;
output_data [ output_idx ] = acc;

}

Listing 5.2: FC algorithm using MAC instructions.
for (int out_pos = 0; out_pos < output_lenght ; ++ out_pos ) {

int acc;

// reset the internal accumulation register
asm volatile (" macset x0 , x0 , x0");

for (int in_pos = 0; in_pos < input_lenght ; ++ in_pos ) {
// load the input value
int input_idx = in_pos ;
int8_t input_val = input_data [ input_idx ];
// load the filter value
int filter_idx = out_pos * input_lenght + in_pos ;
int8_t filter_val = filter_data [ filter_idx ];

// perform the MAC operation saving result on the accumulation variable
asm volatile ("mac %0, %1, %2\n":"=r"(acc ):"r"( input_val ),"r"( filter_val ):);

}

// store the result
int output_idx = out_x_pos ;
output_data [ output_idx ] = acc;

}

5.1.1 Fully-connected layer benchmark
Fully-connected layer, also called dense layer, feedforward NN, or, in honor of its
origin, single-layer Perceptron, is one of the oldest algorithms in the ML domain.
Conceived in the 40s, this approach was not initially considered having good per-
formance in classification tasks. In subsequent years, the idea of building NNs
staking layers one after the other, what is called a multi-layer Perceptron, revealed
its real potential. This NN layer has a given number of inputs and a given number
of outputs. From the name fully-connected, it follows each input has a connection
with each output, each connection corresponds to a parameter that, once multiplied
with the corresponding input value, it is accumulated contributing to the result of
that specific output. This leads to a highly parametrized structure. Indeed, since
this layer has a higher number of parameters, it also has higher computational and
memory requirements than other approaches like the convolutional one.
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Listing 5.3: FC algorithm using MUL and ADD instructions with packed memory
access.
for (int out_pos = 0; out_pos < output_lenght ; ++ out_pos ){

// reset accumulation variable
int32_t acc = 0;

for (int in_pos = 0; in_pos < input_lenght /4; ++ in_pos ) {
// load the input packet
int input_idx = in_pos ;
int32_t input_val = input_data [ input_idx ];
// load the filter packet
int filter_idx = out_pos *( input_lenght /4) + in_pos ;
int32_t filter_val = filter_data [ filter_idx ];

int32_t mul_res ;

// shift and mask
int32_t in_val_1 = ( int16_t )( input_val & 0 x000000FF );
int32_t fil_val_1 = ( int16_t )( filter_val & 0 x000000FF );
asm volatile ("mul %0, %1, %2\n":"=r"( mul_res ):"r"( in_val_1 ),"r"( fil_val_1 ):);
asm volatile ("add %0, %1, %2\n":"=r"(acc ):"r"(acc),"r"( mul_res ):);

int32_t in_val_2 = ( int16_t )(( input_val >> 8) & 0 x000000FF );
int32_t fil_val_2 = ( int16_t )(( filter_val >> 8) & 0 x000000FF );
asm volatile ("mul %0, %1, %2\n":"=r"( mul_res ):"r"( in_val_2 ),"r"( fil_val_2 ):);
asm volatile ("add %0, %1, %2\n":"=r"(acc ):"r"(acc),"r"( mul_res ):);

int32_t in_val_3 = ( int16_t )(( input_val >> 16) & 0 x000000FF );
int32_t fil_val_3 = ( int16_t )(( filter_val >> 16) & 0 x000000FF );
asm volatile ("mul %0, %1, %2\n":"=r"( mul_res ):"r"( in_val_3 ),"r"( fil_val_3 ):);
asm volatile ("add %0, %1, %2\n":"=r"(acc ):"r"(acc),"r"( mul_res ):);

int32_t in_val_4 = ( int16_t )(( input_val >> 24) & 0 x000000FF );
int32_t fil_val_4 = ( int16_t )(( filter_val >> 24) & 0 x000000FF );
asm volatile ("mul %0, %1, %2\n":"=r"( mul_res ):"r"( in_val_4 ),"r"( fil_val_4 ):);
asm volatile ("add %0, %1, %2\n":"=r"(acc ):"r"(acc),"r"( mul_res ):);

}

// store the result
int output_idx = out_pos ;
output_data [ output_idx ] = acc;

}

The algorithm of a fully-connected layer computes a number of MAC operations
for each output equal to the number of inputs, where every input is multiplied with
a dedicated parameter. A C-like pseudo-code of this algorithm for the 8 bit case is
presented in Listing 5.1 and Listing 5.2. From these pieces of code, we can see the
number of MAC operations (either implemented by the concatenation of a MUL
and an ADD instructions, or carried out by a single MAC instruction) is equal
Isize ·Osize, where Isize is the number of inputs while Osize is the number of outputs.
The number of parameters follows the relation given by the same formula. All of
this means every improvement in the MAC execution flow leads to improvements
on execution time, thus directly on NN inference latency.

The standard algorithms in Listing 5.1 and 5.2, perform a memory access each
time a MAC operation need to be done. Since optimized instructions deal directly
with the parameter packed in groups equal to the word length of the Ibex core, the
influence of performing fewer load operations from memory, and making fewer loop
cycles could lead to performance improvements not directly related to the multiplier
unit. For this reason variations of these standard algorithms have been developed.
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Listing 5.4: FC algorithm using MAC instructions with packed memory access.
for (int out_pos = 0; out_pos < output_lenght ; ++ out_pos ){

int32_t acc;

// reset the internal accumulation register
asm volatile (" macset x0 , x0 , x0");

for (int in_pos = 0; in_pos < input_lenght /4; ++ in_pos ) {
// load the input packet
int input_idx = in_pos ;
int32_t input_val = input_data [ input_idx ];
// load the filter packet
int filter_idx = out_pos *( input_lenght /4) + in_pos ;
int32_t filter_val = filter_data [ filter_idx ];

// shift and mask
int32_t in_val_1 = ( int16_t )( input_val & 0 x000000FF );
int32_t fil_val_1 = ( int16_t )( filter_val & 0 x000000FF );
asm volatile ("mac %0, %1, %2\n":"=r"(acc ):"r"( in_val_1 ),"r"( fil_val_1 ):);

int32_t in_val_2 = ( int16_t )(( input_val >> 8) & 0 x000000FF );
int32_t fil_val_2 = ( int16_t )(( filter_val >> 8) & 0 x000000FF );
asm volatile ("mac %0, %1, %2\n":"=r"(acc ):"r"( in_val_2 ),"r"( fil_val_2 ):);

int32_t in_val_3 = ( int16_t )(( input_val >> 16) & 0 x000000FF );
int32_t fil_val_3 = ( int16_t )(( filter_val >> 16) & 0 x000000FF );
asm volatile ("mac %0, %1, %2\n":"=r"(acc ):"r"( in_val_3 ),"r"( fil_val_3 ):);

int32_t in_val_4 = ( int16_t )(( input_val >> 24) & 0 x000000FF );
int32_t fil_val_4 = ( int16_t )(( filter_val >> 24) & 0 x000000FF );
asm volatile ("mac %0, %1, %2\n":"=r"(acc ):"r"( in_val_4 ),"r"( fil_val_4 ):);

}

// store the result
int output_idx = out_pos ;
output_data [ output_idx ] = acc;

}

Listing 5.5: FC algorithm using custom MACST instructions.
for (int out_pos = 0; out_pos < output_lenght ; ++ out_pos ) {

int acc;

// reset the internal accumulation register
asm volatile (" macset x0 , x0 , x0");

for (int in_pos = 0; in_pos < input_lenght /4; ++ in_pos ) {
// load the input packet
const int input_idx = in_pos ;
const int32_t input_val = input_data [ input_idx ];
// load the filter packet
const int filter_idx = out_pos *( input_lenght /4) + in_pos ;
const int32_t filter_val = filter_data [ filter_idx ];

// perform the MAC operation of the four inputs in parallel
asm volatile (" mac8st %0, %1, %2\n":"=r"(acc ):"r"( input_val ),"r"( filter_val ):);

}

// store the result
const int output_idx = out_pos ;
output_data [ output_idx ] = acc;

}

They access a packet of data, and then with some shift and mask operations, that
are likely to cost less than a memory access or loop cycling, it restores the original
data content. However, in order not to add an if-check condition at each operation
interrupting the computational flow to check if all data in a packet are valid or
not, once a packet is loaded all possible operations are executed in every case. The
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algorithm definition for the 8 bit case is presented in Listing 5.3, using MUL and
ADD operations, and in Listing 5.4, for the one using MAC operations. Proposed
versions are unrolled and, of course, they have the side effect of requiring a higher
code size.

The third variant is the one making use of the sub-word parallel MAC instruc-
tions, thus operating less machine cycles to compute the result. This variant is
visible in Listing 5.5.

Fully connected layers are usually placed as the very last layers of a network,
thus the input and output range is limited. For this reason the considered range
for testing include a number of inputs from 128 to 256, and output number limited
to 8, 16 and 32, even if, it is clear, the theoretical execution time increases linearly
with the number of outputs.

5.1.2 Convolutional layer benchmark
CNN layers [27] are of different types depending on input and filter dimensionality.
Hereinafter I refer to the 2-Dimensional variant.
Convolutional layer are inspired both from the biological visual cortex, but also on
typical convolution of filters used in DSP applications for image processing. Usu-
ally, the 2D convolution layer takes a 3-Dimensional filter and convolves it over a
3D input along the first two dimensions, which are called height and width. This
filter has usually the same length for the third dimension, called depth or more
often channels. For each output position, all overlapping values between the input
and the filter are multiplied and accumulated before moving to the next filter po-
sition. Once the filter have assumed all positions, the accumulated value is written
to output. Filter values are the parameter of the NN layer, different filters produce
different outputs, which are stacked along the third-dimension forming the channels
of the output, the output then becomes the input of the following layer and so on.
Figure 5.1 represents visually the convolution process.

Given a fixed number of inputs, since the filter dimension is smaller than the
input dimension, this NN layer have a reduced number of parameters, thus lower
memory requirements compared to the fully connected one. Moreover, for the same
reason, given also a fixed number of outputs, this NN layer have reduced compu-
tational requirements. The memory requirement is limited by the filter dimension,
while the computational one is limited also by the output dimension. Output di-
mension is determined by some parameters like the filter dimension, the stride of
the convolution process, the presence of a padding in the input, a dilation factor
for the filter and others. Since these considerations are out of the scope of the
benchmark developed, I decided to cut this explanation.
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Figure 5.1: The convolution process: each of the 128 filters convolves the input
producing one of the 128 output channels.

Listing 5.6: CNN algorithm using MAC instructions.
for (int out_y_pos = 0; out_y_pos < output_height ; ++ out_y_pos ) {

for (int out_x_pos = 0; out_x_pos < output_width ; ++ out_x_pos ) {
for (int out_ch_pos = 0; out_ch_pos < output_depth ; ++ out_ch_pos ) {

int32_t acc;

// reset the internal accumulation register
asm volatile (" macset x0 , x0 , x0");

for (int fil_y_pos = 0; fil_y_pos < filter_height ; ++ fil_y_pos ) {
int in_y_pos = out_y_pos + fil_y_pos ;

for (int fil_x_pos = 0; fil_x_pos < filter_width ; ++ fil_x_pos ) {
int in_x_pos = out_x_pos + fil_x_pos ;

for (int fil_ch_pos = 0; fil_ch_pos < input_depth ; ++ fil_ch_pos ) {
// load the input value
int input_idx = in_y_pos *( input_depth * input_width )

+ in_x_pos *( input_depth ) + fil_ch_pos ;
int8_t input_val = input_data [ input_idx ];
// load the filter value
int filter_idx = out_ch_pos *( input_depth * filter_width * filter_height )

+ fil_y_pos *( input_depth * filter_width )
+ fil_x_pos *( input_depth ) + fil_ch_pos ;

int8_t filter_val = filter_data [ filter_idx ];

// perform the MAC operation saving result on the accumulation variable
asm volatile ("mac %0, %1, %2\n":"=r"(acc ):"r"( input_val ),"r"( filter_val ):);
}

}
}

// store the result
int output_idx = out_y_pos *( output_depth * output_width )

+ out_x_pos *( output_depth ) + out_ch_pos ;
output_data [ output_idx ] = acc;

}
}

}

From the previous description, the algorithm used for this CNN benchmark, for
the 8 bit quantization case, is the one in Listing 5.6, which, as anticipated, directly
uses only 32 bit MAC instructions.

Given the implementation in Listing 5.6, we can derive the number of param-
eter is equal to Fsize · Nout_ch, where Fsize is the filter size while Nout_ch is the
number of output channel. The total number of MAC operations instead is equal
to Fsize ·Osize, again Fsize is the filter size, while Osize is the total number of outputs.
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Listing 5.7: CNN algorithm using MAC instructions with packed memory access.
for (int out_y_pos = 0; out_y_pos < output_height ; ++ out_y_pos ) {

for (int out_x_pos = 0; out_x_pos < output_width ; ++ out_x_pos ) {
for (int out_ch_pos = 0; out_ch_pos < output_depth ; ++ out_ch_pos ) {

int32_t acc;

// reset the internal accumulation register
asm volatile (" macset x0 , x0 , x0");

for (int fil_y_pos = 0; fil_y_pos < filter_height ; ++ fil_y_pos ) {
int in_y_pos = out_y_pos + fil_y_pos ;

for (int fil_x_pos = 0; fil_x_pos < filter_width ; ++ fil_x_pos ) {
int in_x_pos = out_x_pos + fil_x_pos ;

for (int fil_ch_pos = 0; fil_ch_pos < input_depth /4; ++ fil_ch_pos ) {
// load the input packet
int input_idx = in_y_pos *(( input_depth /4)* input_width )

+ in_x_pos *(( input_depth /4)) + fil_ch_pos ;
int32_t input_val = input_data [ input_idx ];
// load the filter packet
int filter_idx = out_ch_pos *(( input_depth /4)* filter_width * filter_height )

+ fil_y_pos *(( input_depth /4)* filter_width )
+ fil_x_pos *(( input_depth /4)) + fil_ch_pos ;

int32_t filter_val = filter_data [ filter_idx ];

// shift and mask
int32_t in_val_1 = ( int8_t )( input_val & 0 x000000FF );
int32_t fil_val_1 = ( int8_t )( filter_val & 0 x000000FF );
asm volatile ("mac %0, %1, %2\n":"=r"(acc ):"r"( in_val_1 ),"r"( fil_val_1 ):);

int32_t in_val_2 = ( int8_t )(( input_val >> 8) & 0 x000000FF );
int32_t fil_val_2 = ( int8_t )(( filter_val >> 8) & 0 x000000FF );
asm volatile ("mac %0, %1, %2\n":"=r"(acc ):"r"( in_val_2 ),"r"( fil_val_2 ):);

int32_t in_val_3 = ( int8_t )(( input_val >> 16) & 0 x000000FF );
int32_t fil_val_3 = ( int8_t )(( filter_val >> 16) & 0 x000000FF );
asm volatile ("mac %0, %1, %2\n":"=r"(acc ):"r"( in_val_3 ),"r"( fil_val_3 ):);

int32_t in_val_4 = ( int8_t )(( input_val >> 24) & 0 x000000FF );
int32_t fil_val_4 = ( int8_t )(( filter_val >> 24) & 0 x000000FF );
asm volatile ("mac %0, %1, %2\n":"=r"(acc ):"r"( in_val_4 ),"r"( fil_val_4 ):);

}
}

}

// store the result
int output_idx = out_y_pos *( output_depth * output_width )

+ out_x_pos *( output_depth ) + out_ch_pos ;
output_data [ output_idx ] = acc;

}
}

}

As previously done, a variation to see if the number of memory accesses makes
the difference is also considered in Listing 5.7.

The last version, the one in Listing 5.8, exploits the parallelization capabilities
offered by custom reduced-precision instructions, specifically MAC8ST for the 8 bit
benchmark.

To conclude, given the wide range of use cases for the CNN layer, in order not to
have long execution time testing all possible configurations, I decided to define two
major use case and set the layer hyperparameters accordingly. A CNN layer, either
it happens to be used in the first layers of a NN, meaning both input (thus also
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Listing 5.8: CNN algorithm using custom MACST instructions.
for (int out_y_pos = 0; out_y_pos < output_height ; ++ out_y_pos ) {

for (int out_x_pos = 0; out_x_pos < output_width ; ++ out_x_pos ) {
for (int out_ch_pos = 0; out_ch_pos < output_depth ; ++ out_ch_pos ) {

int acc;

// reset the internal accumulation register
asm volatile (" macset x0 , x0 , x0");

for (int fil_y_pos = 0; fil_y_pos < filter_height ; ++ fil_y_pos ) {
int in_y_pos = out_y_pos + fil_y_pos ;

for (int fil_x_pos = 0; fil_x_pos < filter_width ; ++ fil_x_pos ) {
int in_x_pos = out_x_pos + fil_x_pos ;

for (int fil_ch_pos = 0; fil_ch_pos < input_depth /4; ++ fil_ch_pos ) {
// load the input packet
int input_idx = in_y_pos *(( input_depth /4)* input_width )

+ in_x_pos *(( input_depth /4)) + fil_ch_pos ;
int32_t input_val = input_data [ input_idx ];
// load the filter packet
int filter_idx = out_ch_pos *(( input_depth /4)* filter_width * filter_height )

+ fil_y_pos *(( input_depth /4)* filter_width )
+ fil_x_pos *(( input_depth /4)) + fil_ch_pos ;

int32_t filter_val = filter_data [ filter_idx ];

// perform the MAC operation of the four inputs in parallel
asm volatile (" mac8st %0, %1, %2\n":"=r"(acc ):"r"( input_val ), "r"( filter_val ):);

}
}

}

// store the result
int output_idx = out_y_pos *( output_depth * output_width )

+ out_x_pos *( output_depth ) + out_ch_pos ;
output_data [ output_idx ] = acc;

}
}

}

filters) and output have a higher height and width, paired with a reduced number
of channels, and the filter 2D-window could be bigger; or it is used as an almost
final layer of the NN having smaller input and output height and width, but a
higher number of channels, and the filter dimension could be smaller. In the first
case, considering edge applications, input height and width could be from 16x16 1

to even 512x512 (depending on the application, here I stop to 16x16) and a number
of channels varying from 1 to at most 16; the filter size is usually of 3x3, or more
rarely of 5x5. In the second case the considered input shape is in a range from 4x4
to 8x8, with a number of channels from 32 to 128, and a filter shape that is usually
3x3, but not rarely, 1x1 in the so called 313 CNN layer 2 or as a second step of the
separable convolutional NN, which is called point-wise convolution.

1Hereinafter the notation used is of the form heightXwidht, meaning that the notation 3x3
refers to an input having height = 3 and width = 3.

2This configuration is organized as a convolutional layer with 3x3 filters, followed by a convo-
lutional layer with 1x1 filters, and again followed by another convolutional layer with 3x3 filters.
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To summarize, the range considered, for these two test scenarios, is the following:

• First layer case:

– Input shape = {16}.
– Input channels = [1, 16].
– Filter shape = {3, 5}.

• Last layer case:

– Input shape = {4, 8}.
– Input channels = [32, 128].
– Filter shape = {1, 3}.

5.1.3 Depth-wise convolutional layer benchmark
Depth-wise convolution has been first introduced in the definition of MobileNets [9].
The objective in mind was to optimize both computation and memory requirements
of CNN deployed on edge devices, that are often mobile devices. CNN computation
and memory requirements directly depends on the filter size. The filter size could
be reduced up to a 1x1 filter, but in this case each output would be dependent
only on channels of the corresponding input. This way of using 1x1 filters is also
called point-wise convolution. A way to counteract this phenomenon is to add a
step before the point-wise convolution treating each input channel independently
with a dedicated 3x3, or rarely 5x5, filter having one single channel. Each input
channel convoluted with its filter produces an output channel, meaning that, the
number of output channels is the same as the number of inputs. This approach
of convolution is called depth-wise convolution. In Figure 5.2 the overall process is
represented.

Figure 5.2: The depth-wise convolution process: each filter channel independently
convolves with the corresponding input channel producing an output channel.
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Listing 5.9: Depth-wise CNN standard algorithm.
for (int out_y_pos = 0; out_y_pos < output_height ; ++ out_y_pos ) {

for (int out_x_pos = 0; out_x_pos < output_width ; ++ out_x_pos ) {
for (int out_ch_pos = 0; out_ch_pos < input_depth ; ++ out_ch_pos ) {

int32_t acc;

// reset the internal accumulation register
asm volatile (" macset x0 , x0 , x0");

for (int fil_y_pos = 0; fil_y_pos < filter_height ; ++ fil_y_pos ) {
int in_y_pos = out_y_pos + fil_y_pos ;

for (int fil_x_pos = 0; fil_x_pos < filter_width ; ++ fil_x_pos ) {
int in_x_pos = out_x_pos + fil_x_pos ;

// load the input value
int input_idx = out_ch_pos *( input_depth * input_width )

+ in_y_pos *( input_width ) + in_x_pos + i;
int8_t input_val = input_data [ input_idx ];
// load the filter value
int filter_idx = out_ch_pos *( input_depth * filter_width )

+ fil_y_pos *( filter_width ) + fil_x_pos + i;
int8_t filter_val = filter_data [ filter_idx ];

// perform the MAC operation saving result on the accumulation variable
asm volatile ("mac %0, %1, %2\n":"=r"(acc ):"r"( input_val ),"r"( filter_val ):);

}
}

// store the results
int output_idx = out_y_pos *( input_depth * output_width )

+ out_x_pos *( input_depth ) + out_ch_pos * n_data_in_a_pack ;
output_data [ output_idx ] = acc;

}
}

}

Connecting a depth-wise convolutional NN layer, and a point-wise convolutional
NN layer, forms the so called separable depth-wise convolution, that is, the main
layer in MobileNets [9].
As in a normal convolution, also in this case the output is influenced by many fac-
tors like stride, padding, dilation, etc., but these have not been considered in the
development process of the overall benchmark, and are linear in the computational
requirements in almost every case.

Memory access management in this layer is a little more complicated. As also
analyzed in [20], given that each input channel is independently contributing to
distinct output channels, where each one has its own filter, and given the filter
dimension being limited in size, usually 3x3 filters are used, with a total number of
parameters equal to 9, thus leading to just 9 operations for each input-filter couple;
for these reasons it is difficult to parallelize operations exploiting the ST approach.
A way to limit this problem could be to multiply and accumulate separated filter
computations in parallel, meaning that the parallelism does not occur at filter
level, but rather it occurs at channel level, where more than one independent filter
computation could be carried out at the same time.
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Listing 5.10: Depth-wise CNN algorithm with packed memory access.
for (int out_y_pos = 0; out_y_pos < output_height ; ++ out_y_pos ) {

for (int out_x_pos = 0; out_x_pos < output_width ; ++ out_x_pos ) {
for (int out_ch_pos = 0; out_ch_pos < input_depth /4; ++ out_ch_pos ) {

int32_t acc_1 , acc_2 , acc_3 , acc_4 ;

// reset the internal accumulation register
asm volatile (" macset x0 , x0 , x0");

for (int fil_y_pos = 0; fil_y_pos < filter_height ; ++ fil_y_pos ) {
int in_y_pos = out_y_pos + fil_y_pos ;

for (int fil_x_pos = 0; fil_x_pos < filter_width ; ++ fil_x_pos ) {
int in_x_pos = out_x_pos + fil_x_pos ;

// load the input packet
int input_idx = out_ch_pos *(( input_depth /4)* input_width )

+ in_y_pos *( input_width ) + in_x_pos ;
int32_t input_val = input_data [ input_idx ];
// load the filter packet
int filter_idx = out_ch_pos *(( input_depth /4)* input_width )

+ fil_y_pos *( input_width ) + fil_x_pos ;
int32_t filter_val = filter_data [ filter_idx ];

// shift and mask
int32_t in_val_1 = ( int8_t )( input_val & 0 x000000FF );
int32_t fil_val_1 = ( int8_t )( filter_val & 0 x000000FF );
asm volatile ("mac %0, %1, %2\n":"=r"( acc_1 ):"r"( in_val_1 ),"r"( fil_val_1 ):);

int32_t in_val_2 = ( int8_t )(( input_val >> 8) & 0 x000000FF );
int32_t fil_val_2 = ( int8_t )(( filter_val >> 8) & 0 x000000FF );
asm volatile ("mac %0, %1, %2\n":"=r"( acc_2 ):"r"( in_val_2 ),"r"( fil_val_2 ):);

int32_t in_val_3 = ( int8_t )(( input_val >> 16) & 0 x000000FF );
int32_t fil_val_3 = ( int8_t )(( filter_val >> 16) & 0 x000000FF );
asm volatile ("mac %0, %1, %2\n":"=r"( acc_3 ):"r"( in_val_3 ),"r"( fil_val_3 ):);

int32_t in_val_4 = ( int8_t )(( input_val >> 24) & 0 x000000FF );
int32_t fil_val_4 = ( int8_t )(( filter_val >> 24) & 0 x000000FF );
asm volatile ("mac %0, %1, %2\n":"=r"( acc_4 ):"r"( in_val_4 ),"r"( fil_val_4 ):);

}
}
// store the results
int output_idx_1 = out_y_pos *( input_depth * output_width )

+ out_x_pos *( input_depth ) + out_ch_pos * n_data_in_a_pack ;
output_data [ output_idx_1 ] = acc_1 ;
int output_idx_2 = out_y_pos *( input_depth * output_width )

+ out_x_pos *( input_depth ) + out_ch_pos * n_data_in_a_pack + 1;
output_data [ output_idx_2 ] = acc_2 ;
int output_idx_3 = out_y_pos *( input_depth * output_width )

+ out_x_pos *( input_depth ) + out_ch_pos * n_data_in_a_pack + 2;
output_data [ output_idx_3 ] = acc_3 ;
int output_idx_4 = out_y_pos *( input_depth * output_width )

+ out_x_pos *( input_depth ) + out_ch_pos * n_data_in_a_pack + 3;
output_data [ output_idx_4 ] = acc_4 ;

}
}

}

Of course, this means, in compiled code, we have to keep more than one partial
result on which the accumulation take place in time, if the data organization have
to be fixed as for all algorithms in this benchmark. An optimized architecture,
having SS instructions support, like the one developed for this thesis, could exploit
these instructions to accumulate separated values while multiplying them.

Given last considerations, the standard algorithm for the depth-wise convolution
employed is the one in Listing 5.9, also in this case I consider only the one using
32 bit MAC instructions directly.
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Listing 5.11: Depth-wise CNN algorithm using custom MACSS instructions.
for (int out_y_pos = 0; out_y_pos < output_height ; ++ out_y_pos ) {

for (int out_x_pos = 0; out_x_pos < output_width ; ++ out_x_pos ) {
for (int out_ch_pos = 0; out_ch_pos < input_depth /4; ++ out_ch_pos ) {

int32_t acc_L , acc_H ;

// reset the internal accumulation register
asm volatile (" macset x0 , x0 , x0");

for (int fil_y_pos = 0; fil_y_pos < filter_height ; ++ fil_y_pos ) {
int in_y_pos = out_y_pos + fil_y_pos ;

for (int fil_x_pos = 0; fil_x_pos < filter_width ; ++ fil_x_pos ) {
int in_x_pos = out_x_pos + fil_x_pos ;

// load the input packet
int input_idx = out_ch_pos *(( input_depth /4)* input_width )

+ in_y_pos *( input_width ) + in_x_pos ;
int32_t input_val = input_data [ input_idx ];
// load the filter packet
int filter_idx = out_ch_pos *(( input_depth /4)* input_width )

+ fil_y_pos *( input_width ) + fil_x_pos ;
int32_t filter_val = filter_data [ filter_idx ];

// perform the MAC operation - get the most - significant part of results
asm volatile (" mac8ssh %0, %1, %2\n":"=r"( acc_H ):"r"( input_val ), "r"( filter_val ):);

}
}

// performa a fake MAC operation - get the least - significant part of results
asm volatile (" mac8ss %0, x0 , x0\n":"=r"( acc_L ):);

// store the results - with shift and mask overhead to restore results
int output_idx_1 = out_y_pos *( input_depth * output_width )

+ out_x_pos *( input_depth ) + out_ch_pos * n_data_in_a_pack ;
output_data [ output_idx_1 ] = ( int16_t ) (( acc_H << 8) & 0 x0000FF00 )

| ( acc_L & 0 x000000FF );
int output_idx_2 = out_y_pos *( input_depth * output_width )

+ out_x_pos *( input_depth ) + out_ch_pos * n_data_in_a_pack + 1;
output_data [ output_idx_2 ] = ( int16_t ) ( acc_H & 0 x0000FF00 )

| (( acc_L >> 8) & 0 x000000FF );
int output_idx_3 = out_y_pos *( input_depth * output_width )

+ out_x_pos *( input_depth ) + out_ch_pos * n_data_in_a_pack + 2;
output_data [ output_idx_3 ] = ( int16_t ) (( acc_H >> 8) & 0 x0000FF00 )

| (( acc_L >> 16) & 0 x000000FF );
int output_idx_4 = out_y_pos *( input_depth * output_width )

+ out_x_pos *( input_depth ) + out_ch_pos * n_data_in_a_pack + 3;
output_data [ output_idx_4 ] = ( int16_t ) (( acc_H >> 16) & 0 x0000FF00 )

| (( acc_L >> 24) & 0 x000000FF );
}

}
}

Analyzing this code, the number of parameter is equal to Fsize · Nin_ch, where
Fsize is the size of the 2-dimensional filter, and Nin_ch is the input number of chan-
nels. The number of operations is equal to Fsize · Osize, where Fsize is again the
filter size, while Osize is the output size.

A version loading an entire data packet, having thus the same memory accesses
then the version using custom MACSS instructions is presented in Listing 5.10.

In Listing 5.11 there is the last version, the one making use of the custom MACSS
instructions.

In the version using custom instructions we can notice, given the structure of
data packet returned by the MACxxSS instructions, still it is necessary to perform
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masking and shifting before writing a result, meaning that some advantages of us-
ing a single instruction to parallelize the execution is lost.

Given the constraint output channels must be equal to input channels, this varies
from 16 to 64 channels; The considered input shape is also small, and it is 16x16 or
8x8, this choice is to speed up computation time, but also because computational
time is increasing linearly between different algorithm parameters.

5.2 Test platform and methodology
The test platform, on which benchmarks are executed, makes use of the Embedded
Scalable Platform (ESP) [29] [56]. ESP is a platform developed by the System-
Level Design Group at Columbia University. It allows to easily integrate different
Intellectual Properties (IP), amid CPU and accelerators, with the objective to make
the development of SoC straightforward. ESP have been conceived for heteroge-
neous architectures, thus, where computing units of different type interact together
to carry out computation for a target task. In this view, the ESP organization
makes use of Tiles. A tile is a computing unit connected to a Network-on-Chip
(Noc) used to exchange information between the main processor and different ac-
celerators, or between different accelerators itself, which are then able to read/write
shared memory positions (properly synchronized). Also, the memory management
unit is interfaced as a tile in the SoC. Among examples making use of the ESP as a
development basis, some are [30] [31]. Specifically, the processor tile is configurable
with different RISC-V processors, among which also the Ibex core is included. After
the configuration phase the ESP platform provides scripts to simulate, with cycle
accurate precision, the overall SoC using HDL simulators, like Mentor Questa Sim,
or to target FPGA-synthesis through Xilinx Vivado. This makes ESP suitable to
test in a fast way the previously presented Ibex modifications, to both validate
functionality and performance.

Since the objective of this thesis is restricted to the processor core development,
I decided to skip the description and usage of ESP targeting the accelerator inte-
gration. As an informative compendium, ESP can be used to design accelerators at
RTL [57], or exploiting HLS with many HLS tools, as for example [58], integrating
third-party IP [59], or even using accelerators automatically designed for a given
NN [60] where the design steps include the usage of the HLS4ML compiler [44].

To test each modified version of the Ibex core, it is sufficient to follow the setup
documentation [61] and the one related on how to configure ESP to integrate a
single-core in the final SoC [62].

The ESP configuration is done as follows. We need first to move into the FPGA
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directory esp_root/socs/<fpga_name>/, then issue the make esp-xconfig com-
mand. Now a page with the tile organization of the SoC is shown, in this view there
are four tiles by default (more can be added). Here we need to set a tile for exter-
nal memory management, a tile for the I/O interface and a tile for the CPU. This
configuration is already the default one. As per the CPU, using the parameters in
the corresponding section, there is the possibility to select the Ibex core, which is
instantiated starting from files in position esp_root/rtl/cores/ibex/. Finally,
carefully unselect the cache being included in the SoC design, since, to evaluate
performance increments coming only from architectural benefits we need to ensure
deterministic behavior.

Once the SoC is set, to start a simulation, we need to issue the make qsim com-
mand, which sets and opens Questa Sim HDL simulator. From Questa Sim it is pos-
sible to analyze the cycle level accurate behavior of the Ibex core executing a specific
routine. By default, this is located at esp_root/socs/<fpga_name>/systest.c,
it is a simple C program that is compiled before setting Questa Sim. To compile it
with a compiler including custom instruction in assembly format, we need to change
the global variable pointing to the RISC-V GCC compiler, and make it pointing to
our modified GCC including modifications presented in Chapter 4. The compila-
tion process of the file systest.c can be started also by typing make soft.

The used FPGA for testing and performance analysis purpose is the Xilinx Vir-
tex proFPGA XC7V2000T [45]. In order to compile the bitstream, starting from
the FPGA directory, that in this case is esp_root/socs/profpga-xc7v2000t/, we
can issue the command make vivado-syn. Once the Xilinx Vivado synthesis has
completed, with the command make fpga-program the bitstream can be loaded
into the FPGA. Then, typing make fpga-run, the same file systest.c is compiled
with our custom compiler, and it is then executed by the core running on the FPGA.
ESP provides already in the compilation flow the SW interface to make classical
printf() printing on the serial monitor, which can be captured by a program like
minicom.

For the sake of simplicity, I built a single parametric file, replacing the content
of systest.c, that once compiled calls a specific class of benchmarks and reports
on the output console the execution time in terms of machine cycles.

To measure performance in executing the computational loops of the three
benchmarks previously presented, an internal counter can be used. In the RISC-V
documentation the Control and Status register file organization is presented, amid
these registers, one called mcycle fulfill the machine cycle counter functionality. It
is located at address 0xB00. The same counter is present in the Ibex documentation,
thus it is available to be used. This register can both be red and written, and the
counting process is controlled by an enable-bit, active-low, in the mcountinhibit
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register at address 0x320. Unfortunately, due to an incompatibility between the
GCC version compiled and the Ibex core, the assembler cannot associate correctly
the name to the corresponding register, for this reason the following parts make
use of the register address directly instead.

Listing 5.12: Routine to read the mcycle register.
static inline uint32_t mcycle_read ()
{

uint32_t counter ;

// mcycle address is 0xb00
asm volatile ("csrr t0 , 0xb00\n");
asm volatile ("mv %0, t0\n":"=r"( counter ):);

return counter ;
}

Listing 5.13: Routine to reset the mcycle register.
static inline void mcycle_reset ()
{

// mcycle address is 0xb00
asm volatile ("csrw 0xb00 , x0\n");

return ;
}

Listing 5.14: Routine to disable the mcycle counter.
static inline void mcycle_disable ()
{

// mcountinhibit is at address 0x320
asm volatile ("csrr t0 , 0x320\n");
// the bit to set is the LSB
asm volatile ("ori t0 , t0 , 0x01\n");
// write back the register content
asm volatile ("csrw 0x320 , t0\n");

return ;
}

Listing 5.15: Routine to enable the mcycle counter.
static inline void mcycle_enable ()
{

// mcountinhibit is at address 0x320
asm volatile ("csrr t0 , 0x320\n");
// the bit to reset is the LSB
asm volatile ("andi t0 , t0 , 0 xfffffffe \n");
// write back the register content
asm volatile ("csrw 0x320 , t0\n");

return ;
}
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Due to length of overall execution of these benchmarks, in order not to deal
with overflow phenomena, the mcycle counter is always reset before usage. C-like
routines used to manage the machine cycle register are presented in Listing 5.12 to
read the mcycle register, in Listing 5.13 to reset the mcycle register, in Listing 5.14
to disable the counting process, and in Listing 5.15 to enable the counting process.

5.3 Analysis of results
Moving to the benchmark execution results, these are presented with the following
criteria. For each subsection one single benchmark of the three in Section 5.1
is considered. In the first subsection, the first comparison targets performance
improvements of MAC instructions with respect to instructions supported by the
original Ibex core (32 bit MUL and ADD), while the second comparison selects as a
baseline the execution time of algorithms using 32 bit MAC instructions, comparing
them with the custom MAC SS/ST instructions. For the other two subsections,
instead, the baseline becomes only the algorithm using MAC instructions. All
comparisons are made with the execution time of algorithms exposed in Section
5.1, and between multiplier units having comparable performance, specifically, the
Fast and the SingleCycle versions are compared independently.

5.3.1 Fully-connected layer benchmark results
Figure 5.3 includes the execution time results coming from the execution of FC
layer algorithms on the Ibex core using standard RISC-V M-extension instructions,
MAC custom instructions, and sub-word parallel MAC instructions which support
comes from the gate-level precision-scalable multiplier unit. On the vertical axis
we have the execution time, while on the horizontal axis we have the number of
inputs. The number of outputs is kept fixed in each graph, and is equal to 8 for
Figures 5.3a-b-c, while is equal to 32 for Figures 5.3d-e-f. As can be seen, execution
time proportionally increases as the number of output is increased, for this reason
graphs with the output number equal to 16 have not been included.

In Figure 5.3a and Figure 5.3d, reporting execution time for the 16 bit quan-
tization case, we can consider the baseline being the MUL_ADD blue line, thus
appreciating the performance increment coming both from the usage of MAC in-
structions with the MAC green line, and from the memory access performed in
packets, with the MUL_ADD (Packed) orange line. The red line, MAC (Packed),
refers instead to a union of these two strategies by using both a packed memory
access strategy and MAC operations. Considering now the MAC-related algorithm
(orange and red lines) as a baseline, we can derive the increment of using the cus-
tom MAC ST instructions. The purple line, being the MACST algorithm, have an
average decrement of execution time of 1.91× with respect to MAC version (green
line), and of 1.66× with respect to the MAC with memory accessed in packets (red
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line). The theoretical increment at 16 bit coming from ST operations is equal to
2, but, having each instruction an execution ratio of 3/2 between the MAC and
the MAC ST instruction, leads to a theoretical improvement equal to 2 · (3/2) = 3.
Clearly, in the execution of the algorithms, there are not only MAC related in-
structions, but some complexity comes also from load, shift and mask operations,
from the increment operation of the loop variable, and from the loop exit condition
check, all of which are instructions that, of course, have not been accelerated, and
that contribute in lowering the relative performance increment. From the graph,
we can also see the increment in execution time between different output neurons
numbers is linear.

Moving to Figure 5.3b, which present results for the 8 bit quantization case, we
see now, loading memory in packets gives a higher improvement than the one given
by MAC instructions, even considering the overhead to unpack the loaded words.

Figure 5.3

(a) FC layer execution time, Fast,
16 bit quantization, 8 outputs.

(b) FC layer execution time, Fast,
8 bit quantization, 8 outputs.

(c) FC layer execution time, Fast,
4 bit quantization, 8 outputs.

(d) FC layer execution time, Fast,
16 bit quantization, 32 outputs.
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(e) FC layer execution time, Fast,
8 bit quantization, 32 outputs.

(f) FC layer execution time, Fast,
4 bit quantization, 32 outputs.

Theoretical improvement for this case derives from the execution of four operations
in parallel, plus the addition 3/2 execution rate, leading to a result of 4 · (1/2) = 6.
Considering as a baseline the red line of the MAC (Packed) algorithm, by using
custom MAC ST instructions we achieve an improvement of 3.6× without packet
loads (green line), and 2.68× with packet loads (red line). Moreover, here it is
easier than the previous case to see the different behavior in accessing the memory
by 8 bit each, with respect to accessing the memory in packets, specifically, we
see we have an increment in the execution time only when the input size became
a multiple of the number of operands contained in a packet. For example, in the
MACST algorithm, varying the number of layers from 129 to 132 leads to the same
execution time, while for 133 up to 136 it requires one more cycle. This is the
reason of some lines being similar to a step-function.

Figure 5.4

(a) FC layer execution time, SingleCycle,
16 bit quantization, 8 outputs.

(b) FC layer execution time, SingleCycle,
8 bit quantization, 8 outputs.
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(c) FC layer execution time, SingleCycle,
4 bit quantization, 8 outputs.

(d) FC layer execution time, SingleCycle,
16 bit quantization, 32 outputs.

(e) FC layer execution time, SingleCycle,
8 bit quantization, 32 outputs.

(f) FC layer execution time, SingleCycle,
4 bit quantization, 32 outputs.

Finally, by looking at image 5.3c, the theoretical improvement is 8 · (3/2) = 12,
but, as expected, the final improvement for this layer is lower, with the MACST
line (in purple), performing 7.14× better than the MAC line (in green) and 4.58×
better than the MAC (Packed) line (in red). Moreover, here, given the minimum
memory access being 8 bit, also the MUL_ADD and the MAC variations access a
single 8 bit packet unpacking it then, thus a little "step-function" behavior is visible.
Figures 5.3e and 5.3f behaves the same as the ones with 8 output neurons.

Moving to the execution of FC layer algorithms on the SingleCycle multipliers,
we obtain similar graphs. In Figure 5.4, proportionally the same considerations
could be done. Specifically, by looking at Figure 5.4a (16 bit case), performance
improvement is 1.65× in average with respect to the red line. The same happens
also in Figure 5.4b (8 bit case) where it shows a 2.66× improvement, while for 5.4c
(4 bit case) the improvement is 4.58 ×, all of them with respect to the red line.
Moreover, the SingleCycle multiplier executes ST operations in one clock cycles,
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the same as a 32 bit operation, so there is no-more the 1.5 ratio between execution
of these two types of instructions.

5.3.2 Convolutional layer benchmark results
In this subsection results coming from the execution of the CNN layer algorithms
is exposed. Only three algorithms are considered, the MAC algorithm making use
of MAC operations, the same version with memory accessed in packets, and finally
the version optimized to use custom precision-scalable ST instructions.

In Figure 5.5 we have results of the three algorithms running on the Fast multi-
plier. Specifically, in Figure 5.5a, that is the 16 bit quantization case, with an input
feature map of 4x4 and a filter of 3x3, we can see the MACST algorithm having
a 1.37× increment in performance, this is less than the FC case, but having the
convolutional layer algorithm a higher number of nested loops, the non-accelerated
overhead is less negligible than before.

Figure 5.5

(a) CNN layer execution time, Fast,
quant = 16 bit, in = 4x4, fil = 3x3.

(b) CNN layer execution time, Fast,
quant = 8 bit, in = 4x4, fil = 3x3.

(c) CNN layer execution time, Fast,
quant = 4 bit, in = 4x4, fil = 3x3.

(d) CNN layer execution time, Fast,
quant = 16 bit, in = 8x8, fil = 3x3.

94



5.3 – Analysis of results

(e) CNN layer execution time, Fast,
quant = 8 bit, in = 8x8, fil = 3x3.

(f) CNN layer execution time, Fast,
quant = 4 bit, in = 8x8, fil = 3x3.

Figure 5.6

(a) CNN layer execution time, Fast,
quant = 16 bit, in = 8x8, fil = 1x1.

(b) CNN layer execution time, Fast,
quant = 8 bit, in = 8x8, fil = 1x1.

(c) CNN layer execution time, Fast,
quant = 4 bit, in = 8x8, fil = 1x1.

95



QNN benchmarks and execution time results

A very similar ratio of 1.38× is present in Figure 5.5d, which changes the input
feature to 8x8, meaning that, for bigger inputs, the overhead is almost constant
in changing the loop cycle number. In Figure 5.5b, analyzing the case of 8 bit
quantization, we have an improvement of 1.88×, while for 5.5c the ratio grows up
to 2.98× (the minimum is 2.57×). From these two cases we can see the improvement
is less sharp than the FC layer one, in more aggressive quantization cases. Finally,
as already discussed, increasing the input shape leads to proportionally similar
performance, and this is the case of Figures 5.5e and 5.5f.

Another tested configuration of hyperparameters of the CNN layer, sets the filter
shape to 1x1. In this case, results are visible in Figure 5.6. In detail Figure 5.6a,
for the 16 bit quantization, shows a performance increment of 1.38×, the same as
the 3x3 case. Figures 5.6b and 5.6c, for the 8 bit and 4 bit quantization cases,
shows a performance increment up to 1.96× and 3.01×, sightly better than before.

Figure 5.7

(a) CNN layer execution time, SingleCycle,
quant = 16 bit, in = 8x8, fil = 3x3.

(b) CNN layer execution time, SingleCycle,
quant = 8 bit, in = 8x8, fil = 3x3.

(c) CNN layer execution time, SingleCycle,
quant = 4 bit, in = 8x8, fil = 3x3.

(d) CNN layer execution time, SingleCycle,
quant = 16 bit, in = 8x8, fil = 1x1.
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(e) CNN layer execution time, SingleCycle,
quant = 8 bit, in = 8x8, fil = 1x1.

(f) CNN layer execution time, SingleCycle,
quant = 4 bit, in = 8x8, fil = 1x1.

Moving now to the execution on the SingleCycle multiplier unit, only results
having an input shape of 8x8 are reported in Figure 5.7. The 16 bit quantization
strategy shows an improvement of 1.36× considering both Figure 5.7a for the 3x3
filter case and Figure 5.7d for the 1x1 filter case. As per the 8 bit quantization,
Figures 5.7b and 5.7e, the ratio is a 1.93× performance improvement. Last, in
Figure 5.7c and Figure 5.7f, representing the 4 bit case, we have a performance
increment of 2.98×.

Previous results are related to the case of a CNN layer being used as a layer in
middle/end part of a network. Now I present an analysis of what happens if the
number of channels is reduced. The following results consider a number of channels

Figure 5.8

(a) CNN layer execution time, Fast,
quant = 16 bit, in = 16x16, fil = 3x3.

(b) CNN layer execution time, Fast,
quant = 8 bit, in = 16x16, fil = 3x3.
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(c) CNN layer execution time, Fast,
quant = 4 bit, in = 16x16, fil = 3x3.

(d) CNN layer execution time, Fast,
quant = 16 bit, in = 16x16, fil = 5x5.

(e) CNN layer execution time, Fast,
quant = 8 bit, in = 16x16, fil = 5x5.

(f) CNN layer execution time, Fast,
quant = 4 bit, in = 16x16, fil = 5x5.

from 1 to 16, although having an input feature map relatively small and limited to
16x16. This comes from the fact a 32x32 input shape leads already to an overflow
of the internal counter when reading the lower 32 bit as done in previous cases; the
upper 32 bit of the mcycle counter can be retrieved as well, but changing the test
methodology for conditions in which we already saw, in many cases, the execution
time increment grows proportionally it is not worth.

Having considered this, Figure 5.8 shows results of the execution on the Fast
multiplier unit. In particular, from Figure 5.8a, we can see the case of few channels
give a reduced performance increment, which is even 1× with a single channel,
compared with algorithms not using parallel execution at all. Indeed, for a single
channel there is no-parallelism possible along the channel dimension. Moreover, the
loop overhead is almost null, since having a single channel means the number of
loop cycles is equal to 1 as well. Increasing the channel number to 2 we can already
appreciate an increment for the MAC algorithm having to perform two times the
number of cycles as before; by the time channels increases up to 16 we can appreciate
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an increment in the order of 1.36×. Also in Figure 5.8b, for the 8 bit quantization,
we have a similar behavior, here the increment is more evident due to the fact
parallelization takes 4 operations at most. Moreover, from this figure we can see the
increment is at maximum if the network structure definition, mainly the number of
channels, follows the HW computation capabilities. I want to add also, the unrolling
amount for Packed algorithms have been fixed to the same number of operations
performed in parallel, but this have been done by hand, it is unlikely it would be
done by a compiler without giving it additional constraints. Another interesting
case is the 4 bit quantization in Figure 5.8c, where the standard MAC algorithm
without packet loads (blue line), in the single channel case, performs even better
than the optimized MACST algorithm using custom instructions. Fortunately,
these extreme cases are very rare and, as already stated, they are present only in
the very first layer of a given NN.

Figure 5.9

(a) CNN layer execution time, SingleCycle,
quant = 16 bit, in = 16x16, fil = 5x5.

(b) CNN layer execution time, SingleCycle,
quant = 8 bit, in = 16x16, fil = 5x5.

(c) CNN layer execution time, SingleCycle,
quant = 4 bit, in = 16x16, fil = 5x5.
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Finally, execution time with a 5x5 filter shape (Figures 5.8d, 5.8e, and 5.8f)
shows perfectly comparable performance with respect to the 3x3 case.

Moving then to execution results on the SingleCycle multiplier, we have exactly
the same behavior as with the Fast variant. In Figure 5.9 are reported the execution
time results for the three quantization cases only with a 5x5 filter shape.

5.3.3 Depth-wise convolutional layer benchmark results
This subsection analyzes the execution time results of the DW-CNN layer. In Figure
5.10 graphs of the execution on the Fast multiplier unit are exposed. Figures 5.10a
and 5.10d, having an input feature map of 8x8 and 16x16 respectively, include
the execution time for the 16 bit quantization case, and both have a performance
increment of 1.28× in average.

Figure 5.10

(a) DW-CNN layer execution time, Fast,
quant = 16 bit, in = 8x8, fil = 3x3.

(b) DW-CNN layer execution time, Fast,
quant = 8 bit, in = 8x8, fil = 3x3.

(c) DW-CNN layer execution time, Fast,
quant = 4 bit, in = 8x8, fil = 3x3.

(d) DW-CNN layer execution time, Fast,
quant = 16 bit, in = 16x16, fil = 3x3.
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(e) DW-CNN layer execution time, Fast,
quant = 8 bit, in = 16x16, fil = 3x3.

(f) DW-CNN layer execution time, Fast,
quant = 4 bit, in = 16x16, fil = 3x3.

Figures 5.10b and 5.10e show instead results for the 8 bit quantization, also
here increment is almost the same between these two runs, and it is in average
1.64×. Moving to Figures 5.10c and 5.10f, showing results of the 4 bit case, the
performance increment is sharper, and is in average 2.28×.

As anticipated in Section 5.1.3 performance increment for this kind of layer
is expected to be smaller, both due to keeping separated results of each kernel
execution, but mainly due to the additional logic required using SS instructions in
a way that tries to mimic the expected behavior for a hypothetical SIMD RISC-V
compliant instruction, not considering instead requirements proper of this algorithm
structure. This problem and possible countermeasures are left as a future work.

Figure 5.11

(a) DW-CNN layer execution time,
SingleCycle, quant = 16 bit,

in = 8x8, fil = 3x3.

(b) DW-CNN layer execution time,
SingleCycle, quant = 8 bit,

in = 8x8, fil = 3x3.
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(c) DW-CNN layer execution time,
SingleCycle, quant = 4 bit,

in = 8x8, fil = 3x3.

(d) DW-CNN layer execution time,
SingleCycle, quant = 16 bit,

in = 16x16, fil = 3x3.

(e) DW-CNN layer execution time,
SingleCycle, quant = 8 bit,

in = 16x16, fil = 3x3.

(f) DW-CNN layer execution time,
SingleCycle, quant = 4 bit,

in = 16x16, fil = 3x3.

Finally, in Figure 5.11 the same graphs for the SingleCycle are reported. For each
of the quantization and each of the input shape in analysis results are comparable
with the previous case.
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Chapter 6

Conclusions and future work

The first paragraph of this chapter illustrates some known-issues present in the ac-
tual design, evaluating meaning of these issues with respect of results obtained. The
second paragraph is devoted to an overview and a conclusive analysis of this thesis
work. The last section, concluding the thesis document, presents some possible
interesting future work.

6.1 Known issues
The correctness analysis performed on the behavioral multiplier units using the
HDL simulator Mentor Questa Sim gave a positive result. This is a cycle-accurate
simulation of the entire SoC generated by ESP, including the modified Ibex core.
Moving then to the same correctness analysis done on the AMD Xilinx Virtex
proFPGA XC7V2000T, it showed non-correct values for some specific operations.
Reasons behind this issue could be a different interpretation of the architecture
description done by the HDL simulator Questa Sim, and by the Vivado synthesis
tool, maybe on some interpretation boundaries left in the System Verilog language
definition. This kind of problem have not shown in the two gate-level versions,
which are cycle-accurate correct in both the FPGA and in the HDL simulation.

This is the main reason why, in Paragraph 5.3, the execution time of bench-
marks running on behavioral multiplier units have not been presented. Even if
the result was not correct, the execution time of the three benchmarks have been
taken anyway. Results show an execution time that, in every case, overlaps with
the one of the gate-level variant. In this view, the overall timing results can be
considered coherent also in this situation, due to the fact that, even if results of
the multiplication is wrong, the number of cycles to compute them on the FPGA
is correct; thus even having a correct final result, the benchmark execution would
very likely require the same amount of machine cycles.
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Of course, this problem could also lightly affect synthesis results of the behav-
ioral multiplier descriptions presented in Section 3.3, but, given the correctness
being verified by the HDL cycle-accurate simulation, at least the actual trends and
considerations done in that section could be considered valid.

6.2 Overall result analysis and considerations
In this thesis I developed a novel precision-scalable 16 bit multiplier based on the
Baugh-Wooley structure, capable of accomplish computation required by Sum-
Separate and Sum-Together operations from 16 bit down to 4 bit. SS and ST
instructions are two different approaches to sub-word computation, and parallel
execution of instructions using a single HW structure. Additions to the original
Baugh-Wooley architecture have been step-by-step derived, to support both signed
and unsigned operations, the previously mentioned precision-scalable instructions,
and also MAC support for all multiplication instructions.

This structure has been then integrated in the low-power RISC-V Ibex core, re-
placing the two originally present multiplier units, with two gate-level units based
on this precision-scalable design. I also developed two behaviorally described equiv-
alent multiplier units for comparison. All the six multipliers, the two baseline, and
the four modified, have been verified with an HDL simulator, and on FPGA (al-
though with some non-consistent result for the behavioral ones). Moreover, these
six versions have been synthesized targeting a 28 nm FDSOI technology node at 0.9
V, obtaining a metric on the cost, in terms of Power-Performance-Area trade-offs,
at which the parallel execution comes. To summarize increments in the area for the
gate-level Fast Ibex multiplier with respect to the original Fast version is around
10% from 100 MHz to 400 MHz, 13% between 500 MHz and 600 MHz and 20% at
700 MHz; the power consumption is between 5% and 6%, for frequencies up to 700
MHz. As per the gate-level SingleCycle the area increment is 15% from 100 MHz
to 300 MHz compared to the original SingleCycle design, while it increases rapidly
to 30% at 400 MHz and to 57% at 500 MHz, after which, for higher frequencies,
the synthesis tool can not infer a compliant structure; as per the power consump-
tion increment, it is around 5% up to 300 MHz, increasing to 8% and 12% for 400
MHz and 500 MHz respectively. The behavioral versions require both more area
and power, specifically, the Fast one occupies between 30% and 40% more area
than the original Fast design, power consumption is between 8% and 11%, while
the SingleCycle version requires instead between 50% and 60% more area than the
baseline SingleCycle one, and consumes between 11% and 17% more power along
the frequency range considered.

The integration process in the Ibex core includes defining custom RISC-V in-
structions. These instructions have been added as an extension of the RISC-V
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ISA, meaning that they have both been added in the Ibex core, modifying its de-
code unit, and in a compiler, modifying the GCC compiler for an assembly-level
support of custom instructions. Moreover, both Ibex and GCC have to agree on
the instruction format, which also have not to overlap with any other instruction
already present in the supported RISC-V ISA parts (in this work, only instructions
already supported by the Ibex core have been considered for possible overlappings).

To evaluate performance of each precision-scalable multiplier unit, three bench-
marks have been developed, each one defining computational routines of the three
most common NN layers for the edge domain, namely, Fully Connected layer, Con-
volutional layer, and Depth-Wise Convolutional layer. Execution time of these
benchmarks have been taken, and results put in evidence advantages coming from
the usage of custom instructions supported by precision-scalable descriptions. To
isolate the precision-scalable contribution in performance increments with respect
to the MAC operation addition, the main baseline for tests becomes routines mak-
ing use of only custom 32 bit MAC operations. Results of execution shows an
improvement for the FC layer up to 7.14× over an algorithm making use of the
32-bit MAC instructions, and 4.58× considering the same algorithm having op-
timizations such as memory accessed in word-length packets, and loop unrolling
to mimic parallelism. The CNN layer computation shows instead a performance
increment up to 5.80× with respect to the 32 bit MAC-based algorithm, while an
increment up to 2.98× if compared with the unrolled version. Finally, for the DW-
CNN layer an improvement up to 4.38× with respect to the MAC algorithm, and
2.28× considering the unrolled version of the same algorithm.

6.3 Future work
The first future work is to fix the issue present in the first paragraph of this chapter.

From the analysis of the synthesis reports, especially considering the area pa-
rameter, in both gate-level descriptions the synthesis tool does not manage to keep
optimizing over a certain frequency that is below the target range considered from
100 MHz to 1000 MHz. A correction to this problem is reducing the critical path
of the architecture. A good contribution to the critical path in Baugh-Wooley
architectures comes from the final adder description. A countermeasure could be
defining a behavioral adder as the final adder summing Si and Ci signals in the
last layer. A behavioral description could be optimized for a high-frequency sce-
nario, by selecting an adder structure, from a library, that performs better than
the ripple-carry adder, among which, parallel-prefix adders or others.
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Following this solution, the second one is defining a gate-level parallel-prefix
adder which precisely satisfies the separable requirement, both increasing perfor-
mances and optimizing the area in the high-frequency domain with respect to be-
haviorally described solutions.

Talking about high frequency scenarios, there are different multiplier structures
which could be also adapted to the precision-scalable approach. One example have
been done in [21], in which ST operations support is added.

Amid RISC-V proposed extensions, the P-extension [63] targets 16 bit and 8 bit
SIMD instructions, and have not been ratified yet. First, this work can be made
compliant with instructions so far defined in the P-extension. Moreover, a proposal
to expand this extension to the 4 bit SIMD instructions could be done, indicating
trends in the QNN computation domain, which could requires this kind of instruc-
tions as a standard in near future.

Finally, a remarkable work could be using the proposed multiplier inside QNN
dedicated ASIC accelerators, which have not to deal with strictly instruction for-
mats of a standard microprocessor. Moreover, this kind of accelerators could target
different QNN layer optimization strategies all in ones (exploiting both SS and ST
operations), being more energy efficient, but paying the price of loosing some flex-
ibility coming from the removal of general purpose computational parts.
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