
POLITECNICO DI TORINO

Master degree course in Computer Engineering

Master Degree Thesis

Building a Decetralized Architecture Merging
Kubernetes and Blockchain Technology

Supervisor
prof. Danilo Bazzanella

Candidate
Tamietti Lorenzo

matricola: 290181

ACADEMIC YEAR 2022-2023

Summary

In today’s ever-evolving digital landscape, the rise of decentralized architec-
tures has revolutionized the way we interact with and perceive technology.
Traditional centralized systems have faced inherent limitations in terms of
trust, transparency, and resilience, prompting the exploration of alternative
approaches that can address these challenges. This thesis embarks on an ex-
ploration of the fusion of two cutting-edge technologies: blockchain and Ku-
bernetes, with the aim of creating a decentralized infrastructure that caters
to the demands of Web3 applications.

The journey begins with an in-depth examination of blockchain technol-
ogy, starting from its inception with the pioneering cryptocurrency, Bitcoin.
Bitcoin introduced the concept of a decentralized ledger, providing a secure
and transparent platform for peer-to-peer transactions without the need for
intermediaries. Building upon the foundations laid by Bitcoin, the focus
then shifts to the evolution of blockchain technology towards the emergence
of Ethereum, often referred to as Blockchain 2.0. Ethereum introduced the
concept of smart contracts, enabling the development of decentralized appli-
cations (dApps) that go beyond simple transactions, opening up new possibil-
ities for decentralized systems in various industries. The exploration of Web3,
the decentralized web, uncovers the transformative potential of blockchain
technology, showcasing its ability to reshape our digital interactions and re-
define trust and ownership in the online world.

While public blockchains have garnered significant attention, the thesis
also delves into the realm of private blockchains and Distributed Ledger
Technology (DLT). Private blockchains offer the advantages of blockchain
technology within closed networks, catering to specific enterprise needs for
data privacy and control. Open Ethereum is explored as a case study, provid-
ing insights into the development and functionalities of a public blockchain
platform that is open to anyone to participate in.

Parallel to the investigation of blockchain, this thesis shines a spotlight
on Kubernetes, a leading container orchestration framework widely adopted

I

for managing complex applications and microservices architectures. Kuber-
netes simplifies the deployment, scaling, and management of containerized
applications, offering enhanced efficiency, scalability, and fault tolerance. By
examining the components and inner workings of Kubernetes, a solid foun-
dation is laid for understanding its role in managing distributed systems.

A key aspect of this thesis is contrasting the management of Kubernetes
clusters with the orchestration of blockchain nodes. While Kubernetes excels
in managing scalable and flexible containerized applications, the decentral-
ized and consensus-driven nature of blockchain networks introduces unique
challenges. By critically analyzing the differences and similarities between
the management of these two technologies, insights are gained into the re-
quirements and considerations necessary for merging them successfully.

The main objective of this thesis is to showcase how the fusion of blockchain
and Kubernetes can lead to the creation of a decentralized infrastructure. By
leveraging the benefits of both technologies, we aim to establish a dynamic
network of nodes governed by blockchain consensus mechanisms, thereby
eliminating central points of failure and enabling increased transparency and
resilience. The culmination of this exploration will focus on illustrating how
a distributed cloud environment can be realized, where node management
is facilitated through blockchain governance. This groundbreaking approach
has the potential to reshape traditional cloud infrastructures and pave the
way for a new paradigm of decentralized computing.

Through this thesis, we strive to contribute to the understanding and ad-
vancement of decentralized architectures, uncovering their potential impact
on the future of digital systems. By exploring the evolution of blockchain
technology, the capabilities of Kubernetes, and their convergence, we aim to
provide valuable insights and practical guidelines for architects and develop-
ers seeking to embrace the decentralized future of Web3 applications.

II

Acknowledgements

First of all, I would like to thank the Accenture blockchain team with whom
I had the opportunity to do the internship which allowed me to broaden my
knowledge of blockchain technologies and put into practice what I had pre-
viously seen as theoretical notions. Thanks to this experience I was able to
acquire the knowledge and foundations on which the work of this thesis is
based.In particular I would like to thank Francesco, who has been a guide for
me during my internship and inspires me every day, passing on his passion
and his interest in technology

Next, i would like to thank my supervisor Danilo Bazzanella, teacher of
the blockchain course, who stimulated me to want to undertake this type of
path and who provided me with the knowledge through which I was able to
have a very detailed overview of blockchain technologies.

Finally, I would like to offer a special thanks to the people who have been
close to me over the years. To my mother, Marina, who has always believed
in my potential, even in the most difficult moments of my life. To my dad,
Marcello who is a point of reference for me that I aspire to become, and who
has helped me a lot in my studies. To my grandmother, Gabriella who has
always shown her interest in me, always supporting me, and all the rest of
my family. Finally I would like to thank my closest friends, in particular
Roberto and Edoardo with whom I have shared my entire university career,
between difficulties and successes, always supporting each other

III

Contents

List of Tables VI

List of Figures VII

1 Introduction to Blockchain 1
1.1 Bitcoin overeview . 1
1.2 timestamping . 2
1.3 Consensus protocols . 3
1.4 Proof of work . 3
1.5 building the chain . 4

2 Addressing Scalability and privacy in public Blockchains 5
2.1 Web3 introduction . 5
2.2 Limits of Bitcoin . 7
2.3 Ethereum over Bitcoin . 7
2.4 EVM and smart contract . 8
2.5 Problems of public blockchain in enterprise use cases 9
2.6 Permissioned blockchain and DLT overview 10
2.7 blockchain trilemma and layer2 12
2.8 Polygon and zkEVM . 13
2.9 ZK rollups . 13
2.10 Zero knowledge proof(ZKP) 14
2.11 ZKP and blockchain . 15

3 Building blockchain architecture with kubernetes 17
3.1 introduction . 17
3.2 Kubernetes (K8s) and blockchain: Convergences in a decen-

tralized context . 18
3.3 Orchestrating Blockchain Nodes with Kubernetes 19

IV

3.4 Creation of genesis block of PoA blockchain 20
3.5 creation of a node configuration 21
3.6 Building the k8s infrastructure 22
3.7 Advantages of this architecture 23
3.8 Creation of dynamic cluster with blockchain 24
3.9 Conclusions . 27

Bibliography 29

V

List of Tables

VI

List of Figures

3.1 Genesis file configuration . 21
3.2 parity node configuration . 22
3.3 beginning phase . 26
3.4 intermidiete phase . 26
3.5 final phase . 27

VII

VIII

Chapter 1

Introduction to
Blockchain

1.1 Bitcoin overeview
In 2008 Satoshi Nakamoto published the white paper: "Bitcoin: A peer-
to-peer electronic cash system" [1], where he introduced for the first time
a distributed technology that allows users to make payments without hav-
ing to go through a central institution. He therefore gave a first definition
of blockchain that is a distribuited ledger or database where all transaction
are written based on cryptographic proof instead of trust. A transaction
represents the movement of a certain amount of money from one user to an-
other and must be signed by owner private key. To achive security over each
transaction we have to define three important cryptographic mechanisms:

• hash function: hash function is used to calculate digest, that is calculated
over the content of transaction

• asymmetric cryptography: each account to be able to transfer money
must have a key pair: a public key, used to another peer to send us
money, and a private key, that is useful for authentication as a proof
that we are the owners of money that we want to transfer

• digital signature: digest calculated with a secure hash function is en-
crypted with the sender of money’s private key.

With those mechanism we obtain some important security goals that a
payment system must have. First of all we obtain the non-repudiation prop-
erty, since if a transaction is signed with our private key it means that there

1

Introduction to Blockchain

is proof that we have authorized it. Secondly, is impossible for a malicious
user to steal our private key starting from the public key,this is true until we
use a strong asymetric cripthography alghoritm to generate the pair.

Once we have achived this security properties, we need a way to check if
a certain amount of money can be spent by a peer, so if he effectively has
enough money. The solution is that each owner transfers the coin to the
next by digitally signing a hash of the previous transaction and the public
key of the next owner and adding these to the end of the coin. A node can
verify the signatures to verify the chain of ownership. At the end we need to
protect system in the case of double spent: the simple solution is take the
first arrived transaction.

At this point, transaction will be boradcasted to all nodes and they could
be collected inside a basic block, ready to be validated and inserted inside
the ledger, but we have still resolve the problem of: how can decide the time
validity of a block and how can we agree about which set of transactions has
arrived before?.

1.2 timestamping
At this point the system need a way to give a time attribute to a certain
transaction or a certain block, to protect system in case of double spending
money and to give a proof that data written inside the ledger was written in
a certain time.

In cybesecruity we define secure timestamp, that is the process of creat-
ing a tamper-evident record of the time at which a particular event or data
was created, modified, or accessed. It is used to prove the existence and in-
tegrity of data at a specific point in time. In secure timestamping, a trusted
third party (TTP) generates a unique cryptographic hash of the data being
timestamped and appends a digital signature to the hash. This creates a
tamper-evident record, as any modification of the original data will result in
a different hash value and invalidate the digital signature.

So, in this system we can give proof that at the time of each transac-
tion, the majority of nodes agreed it was the first received using timestamp

2

1.3 – Consensus protocols

mechanism in this way. A timestamp server calculates the hash of the entire
block proposed and he puts over this data the timestamp information. Each
timestamp includes the previous timestamp in its hash, forming a chain, with
each additional timestamp reinforcing the ones before it.

1.3 Consensus protocols
Once defined how a decentralized payment system based on cryptographic
proof of validity and timestamp can ideally be built, the final question opened
that must be solved is: how can trust be created by the users who choose to
be part of this system? What we need is a consensus protocol.

A consensus protocol is a set of rules and procedures that enable a dis-
tributed system to reach agreement on a single data value or a set of values
across multiple nodes or participants in the network. It is a fundamental
building block for distributed systems such as blockchains, where multiple
nodes need to agree on the state of the system. The protocol ensures that all
nodes agree on the order and validity of these entries or transactions, even
in the presence of faulty or malicious nodes.

1.4 Proof of work
Proof of Work (PoW) is a consensus algorithm used in blockchain networks
to validate transactions and create new blocks. It is a computationally in-
tensive process that requires a significant amount of computing power to be
expended to solve a complex mathematical problem, in order to prove that
a certain amount of work has been done.

In PoW, a cryptographic hash function is used to generate a block header.
This block header includes the hash of the previous block, a timestamp, and
a nonce. A node must modify the nonce value in the block header until they
find a hash that meets a specific difficulty requirement, which is determined
by the network. This difficulty requirement is usually expressed as a certain
number of leading zeros in the hash.

To find a valid hash, nodes use their computational power to perform
numerous hash calculations until they find a hash that meets the required

3

Introduction to Blockchain

difficulty. Once a miner finds a valid hash, they broadcast it to the net-
work, along with the block header and the transactions included in the block.
Other nodes in the network can verify the hash by re-performing the same
hash function on the block header and checking that it meets the difficulty
requirement.

1.5 building the chain
Node that wins challenge of proof of work is now able to insert the new
block inside the distributed ledger. Therefore, the blockchain is a distributed
database, formed by a chain of basic blocks, where each block is mathemat-
ically linked to the previous block. In this way we have added a further
proof of integrity on the network, as it is not possible to modify the past
state of the blockchain, as everything that is entered subsequently would be
invalidated

4

Chapter 2

Addressing Scalability and
privacy in public
Blockchains

2.1 Web3 introduction

The internet has evolved over the years [2], and its different stages have
brought about unique characteristics that have shaped the way we use the
internet today. The first stage,Web 1.0: Read Only (1990-2004), began in
the early 1990s and was characterized by static and basic websites that were
mostly text-based. Initially, the Internet was thought of as a simple means
of communication between users in different locations. In fact, the first gen-
eration web represented so-called "showcase" websites where static content
was displayed without possible interaction with the end user. Web 1.0 was
a one-way communication, where webmasters created and updated website
content, and users were passive consumers who only read and viewed the
content.

The second stage, Web 2.0: reading and writing (2004-present), began in
the early 2000s and is considered the era of interactive and dynamic web-
sites. Web 2.0 allowed users to interact, collaborate and share user-generated
content through social media platforms and blogs, leading to increased com-
munication, and a shift towards a more user-centered culture. The Web 2.0
paradigm was basically the client-server paradigm, where the client interacts

5

Addressing Scalability and privacy in public Blockchains

with an always-on machine that provides the service. The key to the client-
server paradigm is the centralization of resources, this is because different
peers who want to read content on the web establish a connection with the
machine that holds the resources. The problem with this pattern is of course
the fact that assets, such as data that are shared with by users, or any other
digital assets are managed and processed by a central entity.

With Bitcoin and the emergence of the blockchain, there then arises the
need to want to create an ecosystem that utlizes resources that are in the
hands of everyone, where then any web content or digital assets are managed
by the individuals who populate the web, and no longer by central entities.
In general, the concept of decentralization posits the goal of transforming the
ownership of resources into the hands of the users who populate the system.
Web3[?] refers to the next generation of the internet or the "decentralized
web." Unlike the current centralized internet, where information is controlled
and stored on servers owned by companies, Web3 relies on blockchain tech-
nology to provide a decentralized platform that is more transparent, secure,
and democratic. It aims to give back control of data and identity to users,
allowing them to have ownership and control over their data.

These are the key concepts under Web3:

• blockchain technology at the core

• digital assets:by digital asset we mean any resource registered in the
blockchain, in which there is no ambiguity about possession and origin,
like token, or NFT

• smart contract, code that acts as a bridge for users’ input, creation and
management of resources, on the blockchain

• Decentralized applications (dApps): are software applications that are
built on top of blockchain technology and use smart contract at the core
of programming logic

• decentralized identity management:every user can log in inside applica-
tion using his wallet, instead of using a centralized sign-on method wich
implies that the application maneges credentials of users.

6

2.2 – Limits of Bitcoin

2.2 Limits of Bitcoin
Bitcoin was build with the main purpose of create a distibuted system for
payments and for this reason is limited. For its nature was not create with
purpose of build decentralized applications over this architecture, however,
is possible to write a code over this, but Bitcoin’s scripting language is also
limited, which means that it cannot support complex code becouse is not
Turing-complete programming language. While Bitcoin’s scripting language
is limited, it still enables basic programs, such as multisignature transactions,
which can be used for more complex use cases.

One of the other significant limits is its proof-of-work consensus mech-
anism. PoW requires miners to solve a complex mathematical problem to
validate transactions and add them to the blockchain. As more miners join
the network, the computational power required to solve these problems in-
creases, leading to a corresponding increase in energy consumption. This en-
ergy consumption has raised concerns about Bitcoin’s environmental impact
and long-term sustainability. Additionally, proof-of-work limits the number
of transactions that can be processed in a given amount of time, leading
to a scaling problem. This scaling issue has led to the development of al-
ternative consensus mechanisms that we’re going to explore in next chapters.

Another limit of Bitcoin is its high transaction fees. The high fees make
it less attractive for small transactions. Bitcoin’s transaction fees are driven
by market demand and supply, and they can fluctuate wildly depending on
the network’s congestion level.

2.3 Ethereum over Bitcoin
Ethereum [3] was created with the premise of overcoming the limitations of
bitcoin in terms of developing so-called inteligent programs. The goal of this
chain is basically to be used to develop decentralized applications, dApps,
providing developers with a complete programming language with which they
can implement any logic.

Why is bitcoin not turing complete? In bitcoin we have a UTXO model,
where each amount of money is locked by a locking SCRIPT. This script is

7

Addressing Scalability and privacy in public Blockchains

essentially a chain of operations that if executed correctly allow the money
to be unlocked and allowed to be spent by a user. It is a procedural lan-
guage, which does not allow loops, this is because an infinite loop would risk
compromising the operation of the network. Ethereum, to solve this prob-
lem creates the concept of GAS: any transaction to be executed requires the
payment of a certain amount of gas by the peer asking to execute it. Then
the user indicates how much gas at most he intends to pay for the execution
of a transaction or portion of code, and if the gas runs out, the code is no
longer executed.

2.4 EVM and smart contract
In Ethereum, smart contracts are programmable agreements that enforce
predefined rules and conditions, eliminating the need for intermediaries and
enhancing trust and transparency in digital interactions.

At the heart of Ethereum’s smart contract functionality lies the Ethereum
Virtual Machine (EVM), a Turing-complete virtual machine that executes
the bytecode of smart contracts. The EVM serves as the runtime environ-
ment for executing smart contracts on every participating node within the
Ethereum network. It ensures consistency in contract execution across the
decentralized network by enforcing consensus on contract outcomes.

The EVM operates through a stack-based architecture, where each opera-
tion involves manipulating items on a stack. These items can be data values,
memory pointers, or program counters. The EVM bytecode consists of a se-
ries of instructions that perform operations such as arithmetic calculations,
logical operations, and data storage.

When a transaction is sent to the Ethereum network to execute a smart
contract, the EVM interprets the bytecode and executes the instructions step-
by-step. The EVM maintains a deterministic execution model, meaning that
given the same input and state, the contract execution will produce the same
output. This determinism ensures that contract execution is predictable and
replicable across all participating nodes in the network.

The EVM also provides a secure environment for executing smart contracts
by enforcing several built-in constraints. Gas, a unit of computational effort,
is used as a measure of resource consumption. Each operation in the bytecode
consumes a certain amount of gas, and users must provide sufficient gas to
cover the computational costs of contract execution. Gas incentivizes efficient

8

2.5 – Problems of public blockchain in enterprise use cases

and optimized contract code, as excessive resource consumption can result
in transactions being reverted due to insufficient gas.

Once a smart contract is written and compiled, after being deployed, the
code will be publicly visible through a public address. This introduces a very
important factor, transparency. A decentralized application that relies on
smart contracts as a rationale provides trust and transparena, since each user
can verify the code that operations do, eliminating any possible ambiguity.
This is not possible in proprietary sofwtare, where we see a product whose
code remains obscure as well as data manipulation.

2.5 Problems of public blockchain in enter-
prise use cases

Although ethereum succeeds in overcoming many of bitcoin’s shortcomings,
providing the ability to develop decentralized applications via smart con-
tracts, and currently uses a proof-of-stake consensus protocol, increasing scal-
ability and reducing the computational waste of block insertion, it continues
to have some problems that make it difficult to develop large-scale applica-
tions, and be chosen. those problems are in common to all public blockchain
and we need to consider them before we choose the more convenient archi-
tecture.

• Scalability: Public blockchains like Ethereum face significant challenges
in terms of scalability. As every node must validate and record every
transaction, the overall network throughput is limited. This can result
in longer transaction confirmation times and higher transaction costs
when the network is congested.

• Costs: Using public blockchains like Ethereum can entail significant
costs. Transactions on the blockchain require the payment of fees in
cryptocurrency, known as "gas," which can increase significantly during
network congestion. Additionally, registering data on a public blockchain
may require higher computational and storage resources compared to
other centralized solutions.

• Data Privacy and Security: Public blockchains are inherently transpar-
ent, allowing all participants to view the complete transaction history
and data stored on the blockchain. This can raise concerns regarding

9

Addressing Scalability and privacy in public Blockchains

the privacy and security of sensitive or corporate data, especially in en-
terprise contexts where information confidentiality is crucial.

• Governance and Flexibility: Decisions regarding rules and changes to
public blockchains are made through a consensus process among partic-
ipants, which can be complex and time-consuming. This decentralized
governance can limit the flexibility of public blockchains to quickly adapt
to the needs of an organization or a specific application.

Today, however, we have many alternatives to etherum such as blockchain
to develop applications that rest on a more scalable and less expensive in-
frastructure. First and foremost are layer 2 solutions, such as Polygon, which
allow transactions to be executed on a secondary blockchain to ument effi-
ciency, allowing roll-back of data to layer 1 ethereum. Or algorand, a layer1
blockchain like ethereum that makes scalability its strength. The problems
mentioned before, however, remain and are inherently related in public ar-
chitectures . There are two ways to solve these problems.

The simpler one is to move toward private blockchains, so you can give
the company an administrable product, on which you can manage security
and visibility over the data, implementing your own access policies. Obvi-
ously, private blockchains have no scalability problems since the consensus
protocols are either dummy or much less onerous. Second, with a private
blockchain we do not have the problem of having to pay for transactions
since the validator nodes are administered by the company and therefore
there is no need to remunerate them for the validation work. In the next
chapters we will introduce private blokchains as a first solution to solve the
problems mentioned above, then we will look at some innovative solutions
for public blockchains

2.6 Permissioned blockchain and DLT overview
Although the term "blockchain" is often associated with cryptocurrencies
like Bitcoin and Ethereum, it encompasses a wider range of applications
and use cases. most businesses don’t care too much about cryptocurrencies,
what’s far more significant for enterprises is the technology behind them.
Blockchains can be categorized into two main types: permissionless (public)
and permissioned (private) blockchains. This introduction aims to provide a

10

2.6 – Permissioned blockchain and DLT overview

comprehensive introduction to permissioned, private blockchains, highlight-
ing their key differences from permissionless blockchains and the purposes
they serve in various industries.

What are Permissioned, Private Blockchains? Permissioned, private blockchains
are a type of distributed ledger technology (DLT) that restricts access and
participation in the network to only authorized users. These blockchains
are typically operated by a single organization or a consortium of organi-
zations that have the authority to grant and revoke access to the network.
Unlike public blockchains, where anyone can join and participate without
restrictions, private blockchains require an invitation and validation by the
network administrators. These are the Key Differences from Permissionless
Blockchains

• Access Control: The most notable difference between permissioned and
permissionless blockchains is access control. In permissioned blockchains,
only authorized participants can read, write, and validate transactions.
In contrast, permissionless blockchains allow any user to join the net-
work and participate in the consensus process, without the need for prior
authorization.

• Consensus Mechanism: Permissioned blockchains often use different con-
sensus mechanisms than their permissionless counterparts. While per-
missionless blockchains rely on resource-intensive mechanisms like Proof
of Work (PoW) or Proof of Stake (PoS), permissioned blockchains may
use more efficient and scalable mechanisms such as Practical Byzantine
Fault Tolerance (PBFT), Raft, or Tendermint.

• Security and Privacy: Permissioned blockchains provide enhanced secu-
rity and privacy due to the restricted access and controlled environment.
Transactions and data stored in a private blockchain are only visible to
authorized participants, ensuring confidentiality and protection against
unauthorized access.

• Scalability and Performance: Permissioned blockchains can handle a
higher transaction throughput and offer faster confirmation times com-
pared to permissionless blockchains. This is mainly because of the con-
trolled environment, reduced number of nodes, and the use of more
efficient consensus mechanisms.

11

Addressing Scalability and privacy in public Blockchains

• Governance: In a permissioned blockchain, the network’s governance is
usually centralized to a certain extent, with network administrators or
a consortium of organizations having control over decision-making, rule
enforcement, and protocol updates. On the other hand, permissionless
blockchains have a decentralized governance structure, with decisions
typically reached through community consensus.

• DLT : decentralized ledger technology

In the context of enterprise and public blockchains, rather than talking
about blockchain, it is more appropriate to talk about DLT.

A DLT (decentralized ledger technology) is the decentralized architecture
that relies on a common database, precisely a ledger that is at a higher level
and is not supervised and accessed by a single entity.

In a DLT, the ledger is made accessible only to those who have the per-
missions to do so.

A Decentralized database is so the hearth of this architecture. A blockchain
ledger is often described as decentralized because it is replicated across many
network participants, each of whom collaborate in its maintenance.

2.7 blockchain trilemma and layer2
The Blockchain Trilemma, also known as the DLT (Distributed Ledger Tech-
nology) Trilemma, is a term coined by Ethereum co-founder Vitalik Bu-
terin. It describes the challenge of achieving all three primary attributes of a
blockchain - scalability, security, and decentralization - simultaneously. The
Trilemma suggests that at most, only two of these characteristics can be fully
achieved at any one time.

this problem indicates that it is not possible, for example, to have high
scalability and security without losing decentralization. For example, the
small size of the blocks is designed this way so that validation does not
remain in the hands of only those with so much computing power, risking
centralization of control of data input. Increasing the size of the blocks by
inserting more transactions allows yes to gain in scalability but losing in
decentralization

A Layer 2 blockchain solution, such as Polygon, is designed to address
two of the biggest challenges faced by Layer 1 blockchains like Ethereum -
scalability and high transaction costs.

12

2.8 – Polygon and zkEVM

The main principle behind Layer 2 solutions is to take most of the work-
load off the main chain (Layer 1) by handling transactions and smart con-
tracts off-chain, and then batch these results into a single transaction that is
recorded on the main chain. This method significantly increases transaction
throughput and speed, while also reducing associated costs.

Polygon (formerly known as Matic Network) is a well-known Layer 2 scal-
ing solution for Ethereum. It stands out from other Layer 2 solutions by
providing a framework for building and connecting Ethereum-compatible
blockchain networks. This "internet of blockchains" is able to communicate
with one another due to their shared Ethereum compatibility.

2.8 Polygon and zkEVM
Polygon zkEVM [4], henceforth zkEVM, is a virtual machine designed and
developed to emulate the Ethereum Virtual Machine (EVM) by recreating
all existing EVM opcodes for transparent deployment of existing Ethereum
smart contracts. Zero-knowledge Rollups (ZK-Rollups)run on top of the
Ethereum Mainnet and exponentially improve the scalability and transac-
tions per second (TPS) of Ethereum. In order to prove that the off-chain
computations are correct, Polygon zkEVM employs verifiable zero-knowledge
proofs as validity proofs. Although the Layer 2 zero-knowledge proofs are
based on complex polynomial computations to provide validation and finality
to off-chain transactions, the validity proofs are quick and easy to verify. We
will discuss ZKP in more detail later, for the time being it is basic for us to
know that it is a cryptography-based technology that allows us to provide
proofs of correctness. As a state machine, zkEVM carries out state changes,
which come from executions of Ethereum’s Layer 2 transactions that users
send to the network, and subsequently produces validity proofs attesting to
the correctness of the state change computations carried out off-chain.

2.9 ZK rollups
zkRollups are a Layer 2 scaling solution for blockchains like Ethereum, aimed
at increasing transaction speed and reducing costs. The "zk" in zkRollups
stands for "zero-knowledge," which is a type of proof used in cryptography.

Here’s a simplified explanation of how they work:

• Batching Transactions: zkRollups bundle or "roll up" many transactions

13

Addressing Scalability and privacy in public Blockchains

into a single one. It’s like taking many individual letters (transactions)
and putting them in a large envelope (the rollup) to be sent all at once.
This batch is then committed to the main blockchain.

• Data Availability and Computation Off-chain: In zkRollups, all trans-
action data is stored on-chain, but the computation and state transition
happen off-chain. This means the details of the transactions and their
state transitions (e.g., account balance changes) are processed outside
of the main Ethereum network, greatly reducing the computational load
on the main chain.

• Zero-Knowledge Proofs: For each batch of transactions, a zero-knowledge
proof, also known as a zk-SNARK ("Zero-Knowledge Succinct Non-
Interactive Argument of Knowledge"), is generated and verified on-chain.
This proof attests to the validity of all transactions in the batch without
revealing their details, hence the term "zero knowledge". Essentially, it
proves that no rules of the network were violated, such as creating extra
tokens out of thin air or spending coins you don’t own.

• Security: zkRollups inherit the security of the underlying Layer 1 blockchain
(like Ethereum). Even if the zkRollup operator goes offline or behaves
maliciously, the funds are safe as all the data necessary to resume op-
erations is available on-chain, and anyone can reconstruct the state and
continue processing transactions.

2.10 Zero knowledge proof(ZKP)
In the previous section, we presented a scalability solution that would allow
one to move beyond the performance and cost constraints that may limit a
company in its choice of obtare to build a decentralized application. Through
layer 2 mechanisms we then have the ability to have security and decentraliza-
tion, but still have high performance and low cost. The fundamental problem
remains inherent in a public blockchain architecture, namely privacy and ac-
cess mechanisms. The data written on the blockchain are public and visible
to all, so this is a major limitation in case we want to create a mechanisim
of access control to resources, thus writing decentralized and public logics
without, however, making the secrets and identities of the users enabled to a
given ecosystem disnibile to all. Zero knowledge proof mechanisms represent
a breakthrough in this regard, allowing one to write knowledge proof logics

14

2.11 – ZKP and blockchain

sneza having to write them publicly.

Zero-Knowledge Proofs (ZKPs) are a revolutionary concept in cryptog-
raphy that allows one entity (the prover) to prove to another entity (the
verifier) that a certain statement is true, without revealing any additional
information beyond the fact that the statement is actually true.

At a very high level, ZKPs are based on advanced mathematical and logical
principles. The fundamental idea is to create a "proof" that can be verified,
without it revealing any details about the knowledge or data that were used to
construct the proof. This is done through complex algebraic manipulations
that create a series of equations and inequalities, whose solutions can be
verified without knowing the original values used to create the equations.

2.11 ZKP and blockchain
The application of Zero-Knowledge Proofs (ZKP) to the blockchain has the
potential to resolve a fundamental dilemma in its design: the tension be-
tween transparency and privacy. A public blockchain, by definition, main-
tains a transparent and immutable record of all transactions, accessible to
all participants in the network. This makes transactions easily auditable
and verifiable; however, it can compromise user privacy and the sensitive
information contained in transactions.

ZKPs can be integrated into the blockchain to ensure that transactions are
valid without revealing specific details about the transactions. For example,
a smart contract on the blockchain could use ZKPs to verify that a user has
enough tokens to make a transaction, without revealing the exact balance in
their account. This allows the network to verify and record the transaction,
while preserving the user’s privacy.

The real potential of ZKPs in blockchain emerges in the context of de-
centralized applications that require a certain level of privacy. For example,
an access rights management system could be built where users can prove
their right to access a particular file or data, without revealing their identity
or access details. This type of system, previously only possible on private
blockchains, could now be built on public blockchains, offering the security
guarantees and censorship resistance of public blockchains, without compro-
mising user privacy.

In summary, the integration of ZKP into blockchain enables the creation of
secure and private decentralized systems, overcoming the inherent limitations

15

Addressing Scalability and privacy in public Blockchains

of public blockchains and paving the way for a wide range of new applications.

16

Chapter 3

Building blockchain
architecture with
kubernetes

3.1 introduction

In this chapter we will see how to create an EVM- compatible blockchain,
using Open ethereum. The blockchain will have a PoA(proof-of-authority)
configuration, meaning we will have that validation will take place by select-
ing one of the validator nodes included in the configuration list. We will then
see the creation of the network specification, and then go on to pull up the
nodes. The goal is to pull up a network, entirely through kubernetes, thus
being able to scale directly on the creation of the nodes and write configura-
tions that will be placed within the nodes as default volumes. To do this we
will use Open ethereum, which is open source software, directly download-
able from docker Hub. Once we have downloaded the base image, we can
create containers inside of which we will place the standard node configura-
tions, that is, the accounts, the genesis file, and the parity.toml in which we
place the various node specifications. For example, K8s allows us to write
the configurations and pull up n nodes within which we directly insert the
same genesis file and configurations in a simplified and automated manner.

17

Building blockchain architecture with kubernetes

3.2 Kubernetes (K8s) and blockchain: Con-
vergences in a decentralized context

Kubernetes (K8s) and blockchain networks, while intended for different uses,
share many key structural characteristics. Both are composed of a collection
of machines, or nodes, that work together to create a distributed environ-
ment. In this chapter, we will explore how these two technologies complement
and complement each other.

A Kubernetes cluster is a set of nodes that work together to provide
a flexible and scalable environment for running containerized applications.
This decentralized architecture model closely resembles the structure of a
blockchain network, where each node participates in the overall functionality
of the network by contributing its own copy of the distributed ledger.

In the context of Kubernetes, each node runs a portion of the application,
and the cluster as a whole ensures that the application is always available and
responsive, despite individual node failures. This resilience is also reflected
in blockchain networks, where the loss of a single node does not compromise
the overall functionality of the network.

Importantly, though, while blockchain networks focus on decentralized
data storage and consensus mechanisms, Kubernetes provides an infrastruc-
ture for managing, deploying, and scaling containerized applications. This
brings significant advantages, such as high availability, fault tolerance and
scalability, characteristics also highly appreciated in blockchain networks.

In the context of a Kubernetes cluster, each node can have a different
role. For example, master nodes are responsible for maintaining the desired
state of the cluster, while worker nodes run applications. This parallels the
differentiation of nodes in blockchain networks, with full nodes retaining the
entire history of the blockchain and lightweight nodes or "SPVs" retaining
only the necessary parts.

Finally, the synergy between Kubernetes and blockchain can be lever-
aged to create more secure and decentralized infrastructures. A Kubernetes
cluster can manage and orchestrate a network of blockchain nodes, while a
blockchain network could be used within a Kubernetes cluster for distributed
configuration and service discovery. By integrating these two technologies,
it is possible to combine the advantages of both, creating highly resilient,
decentralized and distributed systems.

18

3.3 – Orchestrating Blockchain Nodes with Kubernetes

3.3 Orchestrating Blockchain Nodes with Ku-
bernetes

Kubernetes (K8s), thanks to its flexibility and scalability, can represent the
ideal environment to host and manage a blockchain network. In this chapter,
we will dive into how this can happen and the potential benefits.

Blockchain nodes, similar to other applications, can be containerized and
managed within a Kubernetes cluster. In this scenario, each container would
represent a blockchain node and include the necessary blockchain software
and dependencies. Blockchain distributed ledger data can be held in persis-
tent volumes provided by Kubernetes, ensuring that data is not lost when
containers are moved or replaced.

Kubernetes takes care of managing the blockchain nodes. Thanks to its
declarative configuration, it is possible to specify the desired state of the
blockchain network, for example the number of nodes, and Kubernetes takes
care of maintaining this state. In the event that a node fails, Kubernetes
can automatically replace it with a new one, ensuring high availability and
minimizing downtime.

Another significant benefit is scalability. As the needs of the blockchain
network grow, Kubernetes can automatically scale the number of blockchain
nodes as needed. This allows the network to efficiently handle variable work-
loads, ensuring optimal use of resources.

Networking within Kubernetes can be configured to support peer-to-peer
communication, which is central to a blockchain network. The service dis-
covery capabilities of Kubernetes enable each node to find and communicate
with its peers.

Additionally, Kubernetes namespaces can be used to isolate different blockchain
networks if needed. This allows you to run several separate blockchain net-
works on the same Kubernetes cluster, each with its own dedicated resources
and isolated from the others.

As far as security is concerned, Kubernetes offers several features that can
be used to secure the blockchain network. These include secret management
for storing sensitive data such as cryptographic keys, role-based access control
(RBAC) to control access to Kubernetes resources, and network policies to
control access across the network and between blockchain nodes.

19

Building blockchain architecture with kubernetes

3.4 Creation of genesis block of PoA blockchain

A genesis file is a critical configuration file for starting a blockchain. It
contains the initial parameters that define the rules, consensus parameters
and starting accounts for the blockchain. The genesis file is used to create
the first block, known as the "genesis block," which establishes the initial
state of the chain.

The genesis file is used to:

• Define configuration parameters: Specify the key parameters of the
blockchain, such as the consensus algorithm, block size, gas limit and
other specific parameters.

• Configure initial accounts: Defines accounts with their initial balances
for the genesis block. These accounts can represent validators, partici-
pants or specific services on the blockchain.

• Establish consensus rules: Specifies the consensus rules and algorithms
that determine how blocks are created and validated on the blockchain.

• Initialize blockchain state: Provides an initial state for the blockchain,
including account balances, default functions and other specific details.

In our case we are going to configure a chain that uses proof-of-authority
consensus protocol, which is a mechanism that sees a list of accounts as
predefined validators. The list of validators is included directly in the genesis
file in which we enter the specification.

20

3.5 – creation of a node configuration

Figure 3.1. Genesis file configuration

3.5 creation of a node configuration

Once the genesis json is created, we are ready to write the generic node
configuration. We assume that we have created via the open ethereum api
three basic accounts, which we will use as validators for proof of authority.
So the goal is to pull up three nodes, one per validator, where each node will
have transaction signer address equal to the validator account we created
earlier.

Within this configuration file we notice a few important things. First, we
indicate in the chain variable where the path within the container is where
we will find the genesis block specifications. In the network part we find some
configurations, such as the port that the node will expose to be accessible
by other nodes(json RPC port). We then find the specification of the chain
ID that must be common to all nodes. Finally we find some specifications
such as the engine signer, which would be the account associated with our
validator.

21

Building blockchain architecture with kubernetes

Figure 3.2. parity node configuration

3.6 Building the k8s infrastructure
Once we have seen how to create the genesis file and the node confuration file,
we can write three different node configuration files for the three validators
and pull up the nodes. We create the following k8s components:

• Config Maps:The config map is a basic component of k8s in which we
can write static data that can be imported within a container, in this
case our nodes. So we write 1 config map with the validator accounts
and the genesis. json inside. Next 3 configMaps, one per node in which
we will have written the node specifications seen earlier as parity.toml

• Deployments: We will have a deployment in which we define the con-
tainer we are going to create. The base image will be that of Open
ethereum downloaded from Docker Hub, and as volumes we will insert
the data present in the config Map, i.e. genesis file and the specific
parity.toml for each node.

• Services:We’re going to create a service that maps external requests to
our nodes, then we’ll map the requests to the JSON rpc ports of our
validator nodes created with the deployments

• Persistent volume claims: We declare volumes for our nodes, i.e. for the
persistence part, indicating a storage space in which we will insert the
configuration data

22

3.7 – Advantages of this architecture

Once all the listed components have been created we are ready to apply
our configuration and create our private infrastructure within the k8s cluster.

3.7 Advantages of this architecture
In this chapter we have therefore created a decentralized architecture with
the blockchain at the base. The architecture we created solves many of
the problems mentioned in the previous chapter, including scalability and
privacy. This architecture would allow a company that adopts it to have
control over data access methodologies, being able to choose which type of
policies it wants to apply. The solution, although it is a blockchain solution
that can be considered private, but it can be said that it is a hybrid, as
it allows some people to manage the governance and operation, but opens
up the possibility of making access to nodes even from external users. This
solution could be a fair compromise of the reasons why companies are hesitant
about the idea of wanting to build their business on a public blockchain,
without however having to build a totally private architecture that would
take some time to find. Once we have this type of architecture in hand, it
can be used to create any web application 3, leaving the company with the
ability to manage access to resources as it sees fit. The advantages are many:

• Control and Privacy: A semi-private blockchain allows you to maintain
control over who can participate in the network and what transactions
they can view. This is especially useful for organizations that want to
benefit from the decentralization and security of the blockchain, but also
need privacy and control over their data.

• Speed and Efficiency: Unlike public blockchains like Ethereum, which
must process all transactions publicly and openly, a semi-private blockchain
can be much more efficient. Because you have control over who can par-
ticipate in the network, transactions can be processed faster and with
fewer resources.

• Customization: With Open Ethereum, you have the freedom to cus-
tomize your blockchain rules to fit your specific needs. For example, you
could implement a specific access policy, custom rules for transactions,
or even create your own token.

23

Building blockchain architecture with kubernetes

• Restricted Access: While a public blockchain allows anyone to partici-
pate, a semi-private one can restrict access to only authorized partici-
pants. This can be useful for preventing malicious attacks, limiting the
ability to manipulate the ledger, or keeping the network more stable.

• Selective Transparency: While the semi-private blockchain can provide
privacy and security, it can also provide selective transparency. For
example, you may decide to make certain information available to the
public or to specific users, while retaining control over who can transact
or access more sensitive data.

• Interoperability: The semi-private blockchain can interact with other
blockchain networks, public or private, thus enabling a wide range of
applications and collaborations between different blockchain ecosystems

3.8 Creation of dynamic cluster with blockchain
We have previously seen how to create a semi-private blockchain, and manage
its operation through k8s. Now let’s put ourselves under another perspective:
what if instead we used the blockchain to control the access of new partici-
pants to a cluster of k8s nodes in a decentralized and distributed way? The
idea is to create a cluster of nodes, which provide their computational power
and are part of this set capable of generating a certain computational power,
on which computational capabilities can be distributed based on availabil-
ity and needs. Now let’s see the pessages that can be done to implement
this thing. First, k8s provides an object called kubeadm, which represents
an access token generated by the cluster of nodes. When a certain node
wants to join, it presents this access token to the cluster which accepts its
participation. We would like to try to automate this through the benefits
of the blockchain, thus making this centralized architecture more distributed
by implementing smart contract access control.

phase1: setup cluster and blockchain
Phase one can be said to be what we obtained in the previous step, i.e. an

architecture with a blockchain, but with single administration, i.e. only one
executive node belongs to the cluster we have created, we therefore want to
study how we can add nodes dynamically without being in a centralized and
single-control mechanism such as the kubeadm, let’s try to automate it with
the newly created blokchain

24

3.8 – Creation of dynamic cluster with blockchain

phase 2:The new user who wants to join the cluster first generates a valid
account, i.e. a private/public key pair with which he can authenticate and
sign transactions. Let’s suppose that to do this the cluster publicly exposes
a small single sign on service, to which the user can access and register, pro-
viding his public account.

phase 3:In the cluster, access and sending of access tokens is managed by
a smart contract, which keeps track of the various public addresses of users,
saving for each user the access token encrypted with his private key.

phase 4: Once the access request is received, the cluster then sends the
kubeadm access token encrypted with the user key to the smart contract.
Using his public key, the user can then access one of the blockchain nodes
exposed by the cluster and request his encrypted kubeadmin.

phase 5:The user generates the cluster access request by presenting the
newly obtained token and becomes part of the cluster

In this context we hypothesized to start with the experiment with two
PCs, one personal on which to create the initial architecture and one on
which to experiment with the entrance, the corporate one. We have foreseen
in the architecture the possibility of having distributed storage, since the
blockchain due to its properties is better than managing only the access and
writing policies of the data but without saving them.

25

Building blockchain architecture with kubernetes

Figure 3.3. beginning phase

Figure 3.4. intermidiete phase

26

3.9 – Conclusions

Figure 3.5. final phase

3.9 Conclusions
The technologies distributed on the internet are of different types and solve
different problems. k8s manages distributed workload efficiently, blockchain
guarantees security, interoperability, immutability. The union of their strengths
makes it possible to build a higher-level distributed system in which the se-
curity part (k8s control plane) is managed via blockchain while the compu-
tationally intensive workload part is distributed via k8s. The unification of
technologies makes it possible to create an open source aws like cloud sys-
tem, fully distributed and mediated by a blockchain. If we think that a k8s
cluster is made up of several nodes that offer a certain computational power,
we could think of creating a sort of decentralized administration cloud, where
each node supplies computational power and uses that of the cluster accord-
ing to its need. In addition to the combination of computational power, this
type of architecture presents an entry point for building any web application,
web3 compliant, in which we would ideally have the management between
Kubernetes of the various microservices that compose it and of the blockchain
whose role is to apply access policies to assets and data by managing access
from different realities. Finally, the solution we have presented represents
a hybrid between public and private blockchains, allowing you to have the
strengths of a public blockchain and a private blockchain

27

28

Bibliography

[1] Nakamoto, Satoshi. "Bitcoin whitepaper." URL: https://bitcoin.
org/bitcoin. pdf-(: 17.07. 2019) (2008).

[2] "Introduzione a Web3" URL: https://ethereum.org/it/web3/
[3] "Ethereum whitepaper"" URL: https://ethereum.org/it/whitepaper/
[4] Polygon documentation "https://wiki.polygon.technology/docs/home/polygon-

basics"

29

	List of Tables
	List of Figures
	Introduction to Blockchain
	Bitcoin overeview
	timestamping
	Consensus protocols
	Proof of work
	building the chain

	Addressing Scalability and privacy in public Blockchains
	Web3 introduction
	Limits of Bitcoin
	Ethereum over Bitcoin
	EVM and smart contract
	Problems of public blockchain in enterprise use cases
	Permissioned blockchain and DLT overview
	blockchain trilemma and layer2
	Polygon and zkEVM
	ZK rollups
	Zero knowledge proof(ZKP)
	ZKP and blockchain

	Building blockchain architecture with kubernetes
	introduction
	Kubernetes (K8s) and blockchain: Convergences in a decentralized context
	Orchestrating Blockchain Nodes with Kubernetes
	Creation of genesis block of PoA blockchain
	creation of a node configuration
	Building the k8s infrastructure
	Advantages of this architecture
	Creation of dynamic cluster with blockchain
	Conclusions

	Bibliography

