
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Test automation in video game
development: Literature review and

Sound testing implementation

Supervisors:

Prof. Riccardo Coppola

Prof. Francesco Strada

Candidate:

Mattia Riola

Academic Year 2022/2023
Torino

Abstract

The video game industry has been rapidly growing in both financial value and
scale. The variety of video game genres, the prevalence of unconventional coding
practices, constant alterations in game design, and the unpredictable behaviour of
most games contribute to the complexity and lack of standardization in testing,
often resulting in its underestimation.

This situation has motivated researchers to develop new techniques and tools that
assist in various stages of the tougher phases of the game development lifecycle.

The presented thesis is structured in two different parts.

In the first part, a simplified version of the multi-vocal literature review is performed
to find a helpful taxonomy to classify the testing levels, tools, goals and metrics used
and developed in the literature. 765 papers were found from different repositories
using specific search strings, after the first filtering phase, the remaining 118
papers were analysed defining 4 testing levels, 24 testing goals, 43 metrics and 129
tools/approaches. This review shows a lack of user experience testing especially in
audio testing. In fact, there is only one free and open-source tool that aims to test
the audio in a game directly. In the second part of this thesis, sound testing has
been integrated with one of the most promising testing frameworks found thanks
to the literature review. Sound testing is used to check the presence in specific
time windows of 6 different sound assets in 3 different levels of LabRecruits played
by iv4xr’s agents checking their presence and the timing in which they are played.

ii

Acknowledgement

I would like to extend my sincerest gratitude to the following important figures to
whom I owe my deepest gratitude:

First and foremost, to my girlfriend, Chiara, whose constant love, support, patience,
and understanding not only made this journey possible, but added immeasurable
value to my experience. Your unwavering presence in this endeavor has meant more
to me than words can adequately express.

To my family, who believed in my academic ambitions and supported my decision
to study in a different city at the prestigious Polytechnic of Turin.

To my in-law’s family, who instantly welcomed me as one of their own, I extend
my heartfelt thanks.

To Marco and Gabriele, my teammates and friends, the pleasure of working with
you on this journey far exceeded the challenges posed by the rigorous coursework.
Our shared passion for this field turned our work into an exciting adventure.

To Alessio, Daniele, Paolo and Mattia, academic colleagues and friends, your
insights and inspirations have been invaluable.

To my work for providing an environment that allowed me to implement the
theoretical knowledge acquired during my academic courses. Your contribution to
my professional growth has been significant.

Finally, a special mention goes out to my delightful pets: Burzi, Biscuit, Bruschetta,
Red, Bugi and Biba. Your companionship brought joy and laughter into my everyday
life, lightening even the most difficult moments.

Thank you all, from the bottom of my heart. You have made this journey an
unforgettable chapter of my life.

iii

Table of Contents

List of Tables viii

List of Figures ix

Acronyms xii

1 Summary 1

1.1 Multi-Vocal Literature review . 1

1.2 Sound testing . 2

2 Introduction 5

2.1 Importance of tests in video games 5

2.1.1 Game design growth . 5

2.1.2 Importance of testing . 5

2.1.3 Literature gap . 6

3 Background 7

3.1 Software testing . 7

3.1.1 Manual testing . 8

v

3.1.2 Automated testing . 8

3.1.3 Automated vs Manual testing 9

3.2 Video game testing . 9

3.2.1 Sound testing . 9

3.2.2 iv4XR . 11

4 Literature review 12

4.1 Multivocal Systematic Literature Review 12

4.2 Secondary studies . 13

4.3 Planning phase . 13

4.4 Conducting . 15

4.4.1 Research questions . 15

4.4.2 Acquiring data . 16

4.4.3 Acquisition of search results 18

4.4.4 Inclusion criteria . 19

4.4.5 Quality assurance . 19

4.4.6 Snowballing . 19

4.5 Results . 20

4.5.1 RQ1.1 - Testing Levels . 20

4.5.2 RQ1.2 - Testing goals . 22

4.5.3 RQ1.3 - Metrics . 38

4.5.4 RQ2.1 - Tools and approaches 49

4.5.5 RQ2.2 - Bugs Discovered . 60

vi

4.6 Considerations . 66

5 Sound testing 76

5.1 River Game and iv4XR . 76

5.2 Implementation . 77

5.2.1 Sound recognizer system . 77

5.2.2 Integration with iv4xr . 81

6 Future work 85

6.1 Literature review enhancements . 85

6.2 Advancements in Audio Testing . 85

6.2.1 Expanding Case Studies . 85

6.2.2 Improvements in sound recognition 86

6.2.3 Integration of Speech-to-Text testing 86

vii

List of Tables

4.1 Secondary studies . 14

4.2 Research table (*this constrain was applied due to effort boundaries) 18

4.3 Testing levels found in the literature 22

4.4 Testing Goals found in the literature Part 1 37

4.5 Testing Goals found in the literature Part 2 38

4.6 List of filtered testing tools/approaches Part 1 61

4.7 List of filtered testing tools/approaches Part 2 62

viii

List of Figures

1.1 LabRecruit screenshot . 3

1.2 ROC curve varying the configurations of the sound recognition system 4

4.1 Process of the literature review . 15

4.2 Number of paper released over the years 20

4.3 Testing level taxonomy . 23

4.4 Number of articles published that cover that specific testing level . 24

4.5 Number of paper over the year that covers that specific testing level 24

4.6 Testing goals taxonomy Part 1 . 36

4.15 Number of tools that discover that specific bug 66

4.7 Testing goals taxonomy Part 2 . 68

4.8 Number of papers with the specific testing Goal 69

4.9 Testing goals over the years . 70

4.10 Metrics popularity, in this graph there is shown how much a metric
has been used . 71

4.11 Popularity of type of metrics . 72

4.12 Metrics taxonomy part 1 . 73

ix

4.13 Metrics taxonomy part 2 . 74

4.14 Metrics taxonomy part 3 . 75

5.1 Class Diagram of audio analyser . 78

5.2 ROC curve without noises . 82

5.3 ROC curve with background music 83

5.4 Test execution sequence diagram 84

x

Acronyms

AI
Artificial Intelligence

AIG
Automated test Input Generation

BDD
Behaviour-Driven Development

BDI
Belief-Desire-Intent

BT
Behaviour Tree

DFT
Discrete Fourier Transform

DSL
Domain Specific Language

EC
Exclusion Criteria

FFT
Fast Fourirer Transform

FPR
False Positive Rate

xii

GUI
Graphical User Interface

GL
Grey Literature

HUD
Heads-Up Display

IC
Inclusion criteria

LCS
Longest Common Substring

MLR
Multivocal Systematic Literature Review

QA
Quality Assurance

RandR
Record and Replay

ROC
receiver operating characteristic

SLR
Systematic Literature Review

SUT
System Under Test

TDD
Test Driver Development

TPR
True Positive Rate

xiii

UX
User experience

VR
Virtual Reality

WL
White Literature

xiv

Chapter 1

Summary

This thesis is based on two primary objectives: advancing the understanding of
game testing automation through a comprehensive literature review and a practical
contribution to address identified gaps in the field. The findings of the literature
review directed the focus towards a neglected area of game testing: audio testing.
The second objective was to put the basis to fill the discovered gap in audio testing
adding sound testing in one of the most promising testing frameworks.

1.1 Multi-Vocal Literature review

To understand the state of the art of the complex automated video game testing
field, a multi-vocal literature review was conducted. This review classified levels,
tools, goals, and metrics pertinent to game testing automation, thereby establishing
a common taxonomy. 765 academic papers were identified from various repositories
using specific search strings. Following an initial filtering phase, 118 papers were
scrutinized, resulting in the definition of four testing levels, 24 testing goals, 43
metrics, and 129 tools or approaches.

The review conducted revealed several pertinent trends in game testing automation.
Firstly, there has been a noticeable increase in the number of papers addressing
game test automation, underlining the growing interest and importance in this
field. Notably, a majority of these studies focus on system-level testing, indicating
a preference towards a more comprehensive, system-wide testing approach in the
gaming industry.

1

Summary

Additionally, the review showed that the most common testing goal in the literature
is functionality testing, followed by regression testing and balanced testing. This
suggests a strong emphasis on ensuring that games function as intended, are free
from regressive bugs, and provide a well-balanced experience for players.

In terms of metrics used, the majority are oriented towards testing quality or game
correctness. This trend is in line with the gaming industry’s primary focus on
delivering high-quality and correct gaming experiences.

Regarding testing tools, out of 129 identified, only 50 were found to be free and
specific to video games. These tools primarily address logical bugs, UI bugs,
stuck bugs, and graphical bugs. Although these tools cover a range of bug types,
the review exposed a significant deficit in the area of audio testing, laying the
groundwork for the second part of the thesis, which sought to address this gap.

1.2 Sound testing

Noticing this gap in audio testing served as a catalyst for the second part of
the thesis, which involved integrating a sound recognition system into iv4xr, a
promising game-testing framework. Six different sound assets across three different
levels of a game called LabRecruits 1.1 were selected for the sound testing process.
As iv4xr agents played these levels, the system monitored the presence and timing
of the expected sound assets.

The sound recognition system that was introduced employed spectrogram analysis
of the audio signals, enabling it to check the presence and absence of specific sounds
within given time windows of the recorded gameplay. This enhancement was not
initially part of the iv4xr framework but was introduced to broaden its testing
capabilities. The new system was then utilized to verify if specific game events
triggered their associated sounds, contributing to a more comprehensive testing
scenario.

For the implementation, the sound recognition system needed to surmount initial
challenges such as audio compatibility, for which a common audio format, the
Waveform Audio File Format (WAV), was chosen. Additionally, an online converter
was utilized to transform all sound assets in the game to ensure compatibility using,
not only the same file extension but also the same sample rate and sample size.

2

Summary

Implementation

A Python script was developed to record and analyze the audio stream from the
game while it was running. The recorded gameplay was then analyzed to match
the occurrence of observed events with the presence of the corresponding sounds.

Different configurations of the sound recognition system were tested to optimize
true positive and false positive ratios. This was conducted by plotting a receiver
operating characteristic (ROC) curve for each specific configuration 1.2, adjusting
parameters such as the ’fuz factor’, chunk size and match threshold, and ultimately
identifying the most effective configurations.

Despite the system’s effective recognition capabilities, some challenges remain, such
as the presence of background music or sounds, and the possible impact of sound
effects applied based on the situation in the game. These aspects form part of the
future avenues of exploration to improve the comprehensiveness and accuracy of
audio testing in game testing automation.

Figure 1.1: LabRecruit screenshot

3

Summary

Figure 1.2: ROC curve varying the configurations of the sound recognition system

4

Chapter 2

Introduction

2.1 Importance of tests in video games

2.1.1 Game design growth

With the maturation of the video game industry, a substantial and discerning
audience has emerged, expecting high-quality and immersive user experiences from
their games. As per a report by gamesindustry.biz [1], the combined revenue
generated from games across various platforms such as PCs, consoles, mobile
devices, and the web stood at an astounding 134.9 billion dollars in 2018. Given
the magnitude of the industry, the emphasis on quality assurance and verification
procedures within game development has become essential [2].

2.1.2 Importance of testing

In the gaming sector, the first impression is a key factor for the success of a title;
thus, only games of superior quality can anticipate success. Realising a highly
anticipated video game in a "buggy state" can result in a loss in money, reputation
and goodwill of the development company involved [3].

This is one of the most important reasons that show how software testing and
error identification are paramount. The act of testing software involves assessing

5

Introduction

and confirming that software products align with specified requirements and de-
sign, guaranteeing that the software functions as intended. Given the escalating
requirements for more advanced software solutions, testing has become not only
indispensable but also increasingly complex [2]

Also Taxonomies, along with the application of universal metrics and standards,
play a fundamental role in organizing, consolidating, and structuring knowledge.
The primary purpose of a taxonomy is to foster a uniform perspective on the
interpretation and application of the existing knowledge in a specific field. As
a result, taxonomies are invaluable not only in research but also significantly
contribute to industrial practices and educational endeavours [4].

2.1.3 Literature gap

Existing literature reviews provide a solid foundation for understanding the current
state of game testing. In the first section of this thesis, an extensive and updated
literature review is conducted, which also incorporates sources from the grey
literature. This review aims to identify definitions and trends in this crucial field.

The literature review conducted highlighted gaps in the current methods and
tools available for detecting audio-related bugs in video games. Therefore, in
the second part of the thesis, a sound recognizer that analyzes the spectrogram
and checks for the presence of a sound in a specific time window has been imple-
mented. Finally, this sound recognizer has been integrated with a promising testing
framework found in the literature called iv4xr [5].

6

Chapter 3

Background

In this section, a description of software testing and video game testing is provided
to contextualize the works in this thesis. Next, an overview of RiverGame [6],
which is the only available free testing tool capable of finding in-game audio bugs
found in the review, is provided.

3.1 Software testing

The software industry is growing as well as the game industry and the importance of
software testing is more pronounced in every kind of software application. Testing
is an integral part of the quality verification process for a System Under Test
(SUT), the cost to guarantee a certain level of quality amounts to more than 50%
of the total software development cost and it is often undervalued [7]. The main
aim of the tests is to check if the SUT works as expected; if the SUT contains
errors that make it deviates from the intended specifications, the tests have to
give information about the bugs involved with the feature tested. The number
of testing levels is a topic of debate, with some sources citing three levels [7] and
others citing four [8]. These levels encompass Unit Testing (testing the smallest
parts of the system), Integration Testing (focused on the complex integration of
classes or procedures), System Testing (focused on the main or most risky flows
of the application), and, according to some sources, Acceptance Testing (used by
clients to evaluate the final product). Tests can be conducted by the development
team, who has access to the SUT (white-box testing), or by an external party
focusing on the SUT’s functionalities (black-box testing). Black-box testing relies

7

Background

solely on the SUT specification to generate and verify test cases, not the internal
structure of the SUT.

3.1.1 Manual testing

Manual testing is a fundamental step in the software testing process, it requires
an examination of test cases executed manually by real people. In this process,
testers evaluate the software from the viewpoint of the end-user, cross-checking
that it behaves according to the specifics set out in the requirements document.
This fundamental testing method is particularly effective at detecting both overt
and covert defects within the software. Any deviation from the expected output,
when compared to the output produced by the software, is classified as a defect.
These identified issues are then rectified by developers, and the amended software is
sent back to the tester for ongoing validation. Even with the advent of automated
testing, manual testing is an essential step that should be performed on all newly
created software. Though this method may require considerable time and effort,
it represents an investment to ensure the delivered software is devoid of bugs.
Expertise in manual testing techniques is a must for this process, while familiarity
with automated testing tools is not a prerequisite [8].

3.1.2 Automated testing

Automated testing is a multidimensional discipline that incorporates a variety of
methodologies to effectively evaluate software behaviour and performance. Its
application is not limited to the execution of pre-written scripts but explores a
multitude of approaches, each aiming at different aspects of software testing. Core
components include automation APIs and frameworks that serve as interfaces for
obtaining GUI-related information and simulating user interactions. Record and
Replay (R&R) techniques simplify the process of creating test scripts by recording
and replaying user actions, which is beneficial for scenarios demanding precise
event timing. Automated Test Input Generation (AIG) techniques are designed to
automate the complex and time-consuming task of input generation with specific
goals like achieving high code coverage or uncovering maximum bugs. Bug and error
reporting/monitoring tools provide real-time insights into software performance
and user interactions, aiding in crash diagnostics and problem reproduction. Device
Streaming Tools facilitate the testing process by allowing developers to mirror
or access devices remotely. As an evolving field, automated testing continues to
adapt to new challenges presented by ongoing technological advancements and the

8

Background

complexities of software development [9].

3.1.3 Automated vs Manual testing

So, comparing manual testing with automated testing, automation is much faster,
is resilient to errors due to repetitive tasks executed by humans, is easier to build,
is easier to organize and can give precise metrics about software coverage and
performance statistics. These advantages suggest a high return on investment in
test automation; however, automated testing cannot provide user-friendliness. [8].

3.2 Video game testing

According to the academic literature, the main issues in video game testing are:

• Coupling: Merging of game mechanics and user interface (UI) code;

• Scope: Games are extensive, making comprehensive coverage challenging;

• Randomness: Identical inputs may yield different outputs;

• Changes: Core game design is continuously evolving;

• Cost: The expense of an engineer surpasses that of a game tester;

• Time: Developers are primarily focused on generating content to meet dead-
lines;

• Fun-factor: How can fun be evaluated automatically?

For this reason, in the field of video games, manual testing prevails over automatic
testing. Despite this, as demonstrated in the first part of this thesis, researchers
are striving to facilitate these challenging testing activities by developing new tools
and frameworks for the gaming industry [3].

3.2.1 Sound testing

In the literature review, only three papers analyse the audio to check if the game
is working:

9

Background

• Eric Nelson [10] proposes a novel testing methodology that leverages the recent
surge in the popularity of live streaming. By utilizing a "think-aloud" testing
approach during a live stream, the researcher posits that game developers
can gain invaluable insights into player behaviours, contextual issues, and the
overall quality of the game design. This method not only uncovers problems
that are typically identified in traditional user testing scenarios but also reveals
contextual behaviours that could otherwise go unnoticed in a lab setting.
However, this approach primarily focuses on the level of acceptance testing
and does not directly test the game using specific test cases. Furthermore, it
doesn’t provide the opportunity for regression testing, which is fundamental
for maintaining the game’s stability in its development and maintenance.

• Sogeti [11] proposes an approach that uses AI to scrutinize the game’s audio
assets. This is generally achieved by looking for similarities between a bench-
mark sound and the one observed during testing, rather than focusing on their
differences. The model accounts for variations in time and amplitude, and
calculates the cross-correlation between the two signals, while one remains
fixed and the other is examined for overlap. The only problem is that Sogeti
does not provide free open software.

• RiverGame [12] is a testing tool, compatible with multiple game engines, that
provides sound, animation, performance and visual testing using behaviour-
driven development (BDD) methodology for test specifications. Regarding
sound recognition, it can identify if a specific sound played was played in
the last N frames and if the sound feedback is correct. To do so, it uses two
different methodologies to check the sounds in the game:

– Speech-to-text

∗ It uses Facebook’s wav2vec [13] model which utilizes a Deep Learning
and Transformers method to convert voice to text. Then, it com-
pares the string obtained with the string expected using a similarity
algorithm that considers the longest common substring (LCS).

– Spectrogram comparison

∗ It is used to check background music and sound effects. It uses Librosa
library [14] to read sound data and convert it from the time domain to
the frequency domain using the Fast Fourier Transform (FFT). The
default sampling rate of the recorded audio is 44.1 kHz and each bin
used to build the spectrogram is 1Hz large. The two spectrograms are
then printed and their difference is analysed. However, the instance
when the audio is reproduced must be specified in the test.

10

Background

(further information about other testing features provided by RiverGame can be
found in the results of the literature review)

3.2.2 iv4XR

The iv4XR framework is an innovative game-testing platform designed to automate
tests in modern, dynamic gaming environments. iv4XR, leveraging the Belief-
Desire-Intent (BDI) concept, employs specialized agents to execute complex testing
tasks, offering an unprecedented level of testing fluency. Its flexible and extensible
architecture enhances its testing capabilities by facilitating the easy integration
of additional tools. As a testament to its potential, the framework has been
successfully employed in a demo application, LabRecruits, to execute a variety of
test cases.

(further information about iv4xr can be found in the results of the literature review)

11

Chapter 4

Literature review

The objectives of this study are:

• Identification of the different testing methods and goals in video games in
order to establish a common (hierarchical) taxonomy

• Collection of a set of video game testing tools and frameworks for each testing
method

• Understand the limitations of the existing automated testing tool

The need for these goals comes from the high complexity of testing video games.
As highlighted in preceding chapters, the intricate nature of video games is shaped
by elements like unpredictability, continual design changes, and more. This makes
the task of testing a game more extensive than with standard software, due to a
much larger field input space for test practices. Therefore, literature reviews are
highly beneficial for keeping developers updated on the state of the art and for
spotting new challenges for researchers in the specific field.

4.1 Multivocal Systematic Literature Review

A simplified version of Multivocal Systematic Literature Review (MLR) [15] applied
to the field of test automation in the video-game industry will be defined, conducted
and documented. A MLR differs from a Systematic Literature Review (SLR) [16]

12

Literature review

in that it includes the Grey Literature (GL) in addition to the White Literature
[17]. Grey Literature is defined as what is produced on all levels of government,
academics, business and industry in print and electronic formats, but which is
not controlled by commercial publishers, i.e., where publishing is not the primary
activity of the producing body [18]. Adams et al. classify Grey Literature into
three categories: 1st tier (or high credibility), which includes books, magazines,
government reports, and white papers; 2nd tier (or moderate credibility), including
annual reports, news articles, presentations, videos, question and answers websites;
3rd tier (or low credibility), including blogs, evidence from e-mails, posts on social
networks [19]. The MLR methodology for SE has been provided only recently
by Garousi et al. [15]. The authors base their guidelines on well-established
methodological guidelines to conduct traditional SLR while stressing the benefits
provided by having an overview of both the state of practice and academic state
of the art. The combination of the two points of view, in fact, permits to analyse
of emerging trends coming from dual perspectives, therefore reducing the risks of
neglecting aspects of the topic. The choice of the MLR, compared to the SLR,
is also given by the fact that the tools used by game developers are spread more
easily from the GL like websites and blogs dedicated to game development. This
way the trends of game testing can be more accurate and not only restricted to
the academic field, using only white literature the results may have a bias since
game testing (especially the game exploration using agents) is often used to test
the performances of machine learning (ML) related algorithms.

4.2 Secondary studies

There are four works available in the literature discussing test automation in the
gaming industry. Before proceeding with the literature review, secondary studies
have been analysed and summarized. The report of these secondary studies can be
found in 4.1.

4.3 Planning phase

Before starting the literature review a planning phase was conducted. In this phase,
the most appropriate methodology has been chosen and structured taking into
account other secondary studies and the objectives of the review. The mentioned
secondary studies offer a preliminary glimpse of taxonomy in video game testing
using WL and surveys, it can be enhanced and broadened to incorporate additional

13

Literature review

Ref. Year Title Research
method

Description

[2] 2020 Video Game Automated
Testing Approaches: An
Assessment Framework

SLR An attribute-based framework is presented
to classify and compare different testing tech-
niques and provide such aid to the game devel-
opers It analyses the benefits and limitations,
the goals, the targeted game, the general ap-
plicability and the availability of the proposed
approaches

[7] 2022 Towards Automated Video
Game Testing: Still a Long
Way to Go

LR and Sur-
vey

This study highlights the gap between the
solutions for automated video game testing
and the game developers’ needs in practice.
The problem with the solutions proposed in
the literature the focus seems to be related
to the performance of machine learning (ML)
models instead of testing the game. In fact,
in the survey, developers are sceptical about
using automated agents to test their games.

[3] 2021 A Survey of Video Game
Testing

Survey This survey has found that Game developers
rely mainly upon manual play-testing. The
lack of test automation can be the next step
in improving the quality of games while main-
taining costs. However, the current game-
testing techniques can not be applied to every
type of game.

[20] 2019 Analysis of artificial intelli-
gence applications for au-
tomated testing of video
games

First, it is discussed the randomness in video
games in relation to software testing. Then
the paper provides an overview of existing
automated video game testing approaches. It
can be used as the first step in the research of
automated procedurally generated game-level
testing using AI.

[21] 2022 A Survey of the Software
Test Methods and Identifi-
cation of Critical Success
Factors for Automation

The study examines various projects to dis-
cern and pinpoint the crucial elements that
affect the testing effectiveness of a selection
of projects. The objective is to identify el-
ements that influence test efficiency and as-
certain the right cases for automation. The
research seeks to investigate the potential re-
lationships among contributing factors and,
ultimately, delve into the efficiency of test
automation.

Table 4.1: Secondary studies

significant elements of in-game testing, such as metrics used and testing goal
definitions. Plus, the trends of the testing tools and testing goals can be useful
to have an overall understanding of the situation considering both WL and GL to
include both academic literature and what is used by game developers.

14

Literature review

4.4 Conducting

Figure 4.1: Process of the literature review

The following section presents the methodology implemented during the Conducting
phase and its subsidiary stages. These encompass the identification of literature
sources, creation of search strings, development of the paper selection strategy, and
establishment of the data extraction protocol. A summarization of this procedure
is depicted in the diagram shown in 4.1.

4.4.1 Research questions

To facilitate the creation of a taxonomy of codes to meet the research objective,
a set of research questions was defined to guide the study. The answers to these
questions aim to give inputs to the formulation of the taxonomy. As a secondary
objective, the study aims to explore the present offer, both academic and industrial,
of testing tools for video games

• RQ1: Testing methods and metrics

– RQ1.1: What are the testing levels addressed in the video game industry?

15

Literature review

– RQ1.2: What is the goal of the tests?
– RQ1.3: Which metrics are defined and used for automated video game

tests?

• RQ2: Tools, software and approaches

– RQ2.1: Which are the available testing tools and approaches for video
games?

– RQ2.2: Which type of bug is covered by the testing tools/approaches?

RQ1 is intended to classify different types of tests available in the gaming
industry. While RQ2 aims to identify the tools that can be improved or extended
during the second part of the thesis.

4.4.2 Acquiring data

To enable the the study’s reproducibility, I limited the search results from 2012 to
the end of 2022. In order to acquire all the articles in the repositories analyzed,
I used [22], [23] and a Python script written for this activity that can be found
here: [24]. To organize and facilitate the analysis, the data acquired has been saved
in Zotero [25] and Notion [26]; Zotero is a tool often used for paper analysis and
citation while Notion allows the creation of databases with relationships that have
been used for tool and metric trends evaluation.

Repository selection

The repository selected mainly for white lists are:

• Scopus

• IEEE Xplore

• ACM Digital Library

• Science Direct

• Springer Link

• Google Scholar

16

Literature review

For the GL only 2 website / search engine has been used:

• Google search

• Game developer

Search string

Once the repository is selected, searching strings are created to find the most
pertinent results. Several search strings have been used due to different limitations
in the advanced search in the repositories.

• String1:

1 allintitle : (game OR games OR gaming) (test OR tests OR
testing) (automation OR automated OR automatic)

2

• String2:

1 (test OR testing OR tests)
2

• String3:

1 (((" Document Title ":" game *" OR " Document Title ":" gaming ")
AND (" Document Title ": "test *"))((" Document Title ":" game *"

OR " Document Title ":" gaming ") AND (" Document Title ": "test
*") AND (" Document Title ":" automat *" OR " Abstract ":" automat
*" OR " Document Title ":" tool *" OR " Abstract ":" tool *")))

2

• String4:

17

Literature review

1 everywhere : (game* AND test* AND automat *)
2 intitle : test*
3

• String5:

1 [[Abstract : game *] OR [Abstract : gaming]] AND [Abstract :
test *] AND [Abstract : automat *] AND [E- Publication Date:
(01/01/2012 TO 12/31/2022)]

2

Repository Search String constraints results
Google Scholar String 1 - 62

Scopus String 1 - 34
IEEE Xplore String 3 - 47

ACM Digital Library String 5 - 162
Science direct String 5 - 86

Springer link String 4

computer science
general
article
English

24

Game developer String 2
Programming

Design
Art

252

Google Search String 1 first 10 pages* 99

Table 4.2: Research table
(*this constrain was applied due to effort boundaries)

4.4.3 Acquisition of search results

The full research pool extracted contains 766 articles, after the removal of duplicates,
only 684 articles remain. These 684 articles have to be analysed and filtered
according to the following inclusion and exclusion criteria described in the next
section.

Note: The research in Springer link was downloaded in two different batches:

18

Literature review

one between 2012 - 2020 and the other between 2020 - 2022, due to the limit of the
CSV download set at 1000 entries

4.4.4 Inclusion criteria

To ensure gathering only the sources relevant to our research goals, I defined the
following inclusion Criteria (IC) and exclusion criteria (EC):

• IC1: The source is directly related to the topic of automated game testing

• IC2: The source is written in a language that is directly comprehensible by
the author: English or Italian

• IC3: Source has been published from 2012 to the end of 2022

• IC4: The source is an item of white literature with the full text available for
download and is published in a peer-reviewed journal or conference proceedings;
or, the source is an item of 1st or 2nd tier Grey Literature

Exclusion Criteria are not listed since they are essentially the opposite of the
Inclusion Criteria.

After applying these criteria, the pool of articles is narrowed down to 113 (57
White Literature and 56 Grey Literature).

4.4.5 Quality assurance

In order to evaluate the quality of the sources, only a distinction between white
and grey literature has been performed.

4.4.6 Snowballing

Snowballing was not applied since the resulting articles are enough for this analysis.

19

Literature review

4.5 Results

As depicted in Fig. 4.2 there has been a substantial surge of interest in the field of
game testing in recent years.

Figure 4.2: Number of paper released over the years

4.5.1 RQ1.1 - Testing Levels

Over the years, as shown in Fig 4.4 and Fig 4.5, there has been an observable
increase in the number of articles addressing an extensive range of testing levels.
Notably, advancements in machine learning, image recognition, and agent-based
testing methods have allowed System level testing and acceptance testing to come
to the fore. The flexibility offered by the lasts satisfies the vast diversity seen in the
types and requirements of video games, thereby providing nearly comprehensive
coverage.

The table 4.3 contains the papers in which the testing level is covered.

Fig 4.3 shows the resulting taxonomy of Testing levels found in the literature.

Despite the differences in the challenges addressed by general software testing
and game testing, both domains share the main testing level classification:

20

Literature review

Unit testing

Unit testing is a software testing method by which individual units of source
code are tested without other external dependencies. It is considered the smallest
testing part that can be tested [3] [7] [27] [28] [29]. [30] includes component testing
described in [31] as a subgenre of Unit tests since is a special case of it. In the
case of Component testing the component (or unit) can have dependencies with
other components, which are mocked to isolate the test to that single component
under test. Component testing is also called Actor testing [3]. Code units are
examined independently in this process. Connections to other code modules are
imitated through the utilization of dependency injection and mocking. Constructing
unit tests can be costly, though the expense diminishes with improved tools and
accumulated experience. For your most challenging and intricate code, the code
that demands absolute reliability, unit testing is deemed highly beneficial [30].

Integration testing

Integration testing is the phase in software testing in which individual software
modules are combined and tested as a group [27] [30]. Modules can be code related,
leaving the possibility to mock some part of the code to test different combinations
of integrations [31] [7], or interaction between assets and game objects [32]. To do
so the test can load only portions of the game and check small interactions, this is
also called “Map testing” [3]. Designing for disability is very interesting to us at
the moment. This is where you design parts of your system (think components or
microservices) to eventually be thrown out. The whole system, the integration of
the parts, is designed in such a way that the parts can be thrown out and replaced
with little impact or damage to the system as a whole. The system continues to
function and over time we replace entire sections of it [30].

System testing

System testing is testing for the main (or risky) flow of the application [7]. It is
performed to check the overall behaviour of the system and interaction between
the components which are combined as a system [27]. In [31] this testing level is
described as the test that is usually performed by removing input layer triggering
functions directly on the system. Anyways it can be considered as a subgenre of
System testing since the overall System is tested but a single layer/component. In
[30] system testing is called smoke testing or full build testing. A decent logging

21

Literature review

and metrics output is suggested to improve system testing efficiency [30].

Acceptance Testing

Acceptance testing is a quality assurance (QA) process that determines to what
degree an application meets end users’ approval. It is used by clients to assess the
final product by playing the game in different stages of the development [7] [33].
Depending on the stage, acceptance testing can be defined as Beta or Alpha testing
in which unfinished versions of the game are played and evaluated. Beta testing
can be open or closed depending on the people that can access and play the game.

Testing levels is covered in Total paper

Unit testing [29],[34],[28],[35],[36],[37],[38],[39],
[40] 9

System testing

[41],[42],[43],[11],[44],[45],[46],[47],
[48],[49],[50],[51],[52],[53],[54],[55],
[27],[56],[57],[58],[59],[60],[61],[62],
[35],[63],[36],[64],[37],[65],[66],[67],
[68],[69],[70],[71],[72],[73],[74],[75],
[76],[77],[78],[79],[80],[81],[82],[83],
[84],[85],[86],[87],[88],[89],[90],[91],
[92],[93],[39],[12],[94],[95],[96],[33],

[40],[32],[97],[98],[99],[100],[101],[102],
[103],[104],[105]

75

Acceptance Testing
[106],[107],[45],[52],[55],[108],[37],[65],
[75],[109],[82],[91],[92],[110],[93],[96],

[101],[10],[104],[111]
20

Integration testing

[41],[43],[49],[50],[52],[53],[112],[56],
[28],[59],[35],[113],[36],[37],[73],[114],
[38],[81],[84],[87],[88],[93],[39],[40],

[32],[98],[99],[103]

28

Table 4.3: Testing levels found in the literature

4.5.2 RQ1.2 - Testing goals

Extracting a testing goal taxonomy was challenging due to the discrepancies and
overlaps in the definitions found during the review. The most common testing

22

Literature review

Figure 4.3: Testing level taxonomy

goal is functionality testing since it is the most generic definition and it is the
first thing that developers try to test because it is easy and because of common
coding practices such as test-driven development (TDD). It is followed by regression
and balance testing due to their importance in the development process. Having
a balanced game is one of the key success factors for game development while
regression testing is useful for the maintenance of a game. Even though User
Experience (UX) testing is crucial, its complexity in automation has not gained
substantial popularity in the literature. In fact, the limited number of articles

23

Literature review

Figure 4.4: Number of articles published that cover that specific testing level

Figure 4.5: Number of paper over the year that covers that specific testing level

24

Literature review

addressing this topic employ innovative and revolutionary approaches for the sector
that are not yet being used by development companies. Security, Recovery, and
tree testing were not covered at all by the literature since these types of testing
are often performed manually while, in the filtered literature, only automated
techniques were considered.

The following are the testing goals extracted from the literature:

Functionality testing

A detailed definition can be found in other papers like in [2], [115], [116] and [117]:
the goal of functional testing is to ensure that the game is behaving as expected. To
do so, games could be checked by verifying their functionalities, software code, the
control flow of events, or the flow of data [2]. In [118], [119], [116], [120], [121], [122],
[123], [115] [124], [125] the definition of Functionality testing in videogames is very
generic. According to that, functionality tests look for general problems within the
game itself or its user interface, such as stability issues, game mechanic issues, and
game asset integrity. The definition became problematic, including stability issues
and asset integrity, since it overlapped with other testing goals like visual testing,
performance testing, and soak testing. In [126] functional testing is only related
to the back-end component where the back-end component is defined as code,
libraries and scripts in a videogame. The same criteria were applied to [124] which
includes the application’s performance during instant restart, switch-off and crash
situations. Physical correctness described by [2] as the state of physical properties
in the game world such as collisions, frictions, gravity, etc; is also considered a
specific type of functionality testing because physics in the game can be strongly
bounded to its functionalities, especially in the 3D games that have physics engines.
In [125], tests on natural phenomena (like waves, wind, clouds), bullet movement
etc are considered 3D testing. According to that definition, 3D testing also includes
realistic animations, the performance of 3D objects and other parts of the game
that make it realistic and, in this case, there was the same problem of overlapping
definitions mentioned before. However, these physics phenomena can also be present
in 2D games but, since the mentioned mechanics can be implemented in both 2D
and 3D games, there is no need to distinguish between 3D to 2D environments, so
the name "3D / 2D testing" is more appropriate. [75], [117] and [127] also consider
tests on the menu and UI-related functions, in this case, UI testing can be included
in functionality testing only if the features are tested and not the usability nor
asset integrity. [115] considers functionality testing the tests on installation, social
network options, payment gateways, active functionalities when the application is
in minimized mode and many more.

25

Literature review

Regression testing

Regression test is defined by [80] as follows: " Given a game M(S, A,r,Y) and its
updated version M’(S’, A’,r’,Y’), regression testing aims to generate test cases that
capture the differences between the two versions as much as possible such that the
regression bugs are more likely to be detected. Intuitively, regression testing aims
at maximizing the exploration of the differential behaviours of two versions of the
game ".

Regression testing aims to find bugs related to changes/modifications being made
over due course of time. This type of testing confirms attributes like permanence,
uniformity, usability and functionality of the software [27].

This is also performed once a bug is found and the programmers have fixed The
aim is to check whether the bug is still there and whether the fix caused something
else to break [118] [119] [116] [120] [122] [128] [126] [115] [124] [90]. With this
game testing technique, a developer could re-run the previously conducted tests
and compare the current vs. old results to see if there are any errors [122] [115].
In [117], regression testing aims to run the test cases on older devices, browsers
and OS versions. The given definition is similar to the one that other articles give
for compatibility testing. It seems that in [117] there is some confusion and some
definitions are mixed, for this reason, the definition given by [117] is discarded. In
[41], there are mentioned some typical problems related to design changes that
cause regression bugs. These design changes are categorized in:

• Location change

– entity location changes carried out by developers due to level design
changes.

• Layout changes

– change in the shape of the game world such as adding new obstacles

• Logic changes

– changes related to the game’s logic for example the behaviours of certain
interactable objects such as the connection between certain buttons on
certain doors.

According to [41], the main problem of regression testing video games was the
overall effort and cost related to a minor change in the game design. When a

26

Literature review

regression test fails, this does not imply that a bug is introduced and the test has
to be modified according to the new design. Consequently, this escalates the time,
effort, and financial resources required for the regression testing process, making it
a significant challenge for video game developers.

Balance testing

This testing objective focuses on verifying the fairness of the game and the balance
of the game’s parameters [2] also in terms of level difficulty [129]. This type of
testing is something unique to games and cannot be used in general software [129].
Balance testing can be done well only with a vast knowledge of game design and
how the target audience responds to different difficulty levels. For this reason, this
type of test is tough and the use of AI techniques to emulate different playstyles
seems to be the answer to this problem [43].

[121] affirms that the balancing of a game can be defined as the operability of
software (according to ISO 25010 [130] definition). In [94] gameplay testing is
explained using examples. It can be considered as balance testing even if some
specific examples can also fit other testing goals. I.e. checking if spawning conditions
are matched is strongly related to functionality testing since it could be related
to logic errors in the code. Another example classified as gameplay testing is the
presence of visual bugs when a player enters inside a car after pressing a certain
mapped button, this could be categorized as visual testing. However, these types
of bugs alter the balance of the game.

Flow testing

In [32] flow testing is meant to encapsulate the game’s responses, as perceived
by the users, into a visual representation. The model, which consists of flow,
events, actions, states, primitives, and terminator elements, visually conveys the
testing process by illustrating and traversing the potential pathways. Game design
correctness, Progression and learnability [2] can be considered as a subgenre of
flow testing. Game design correctness is described as the testing goal meant to
test various aspects that affect the user experience. However, the example given by
Albaghajati et al. related to incorrectly placed game objects and the bugs related
to that kind of situation are closer to the functional testing goal. World holes, stuck
spots, violation of game rules etc. can sometimes relate to specific functionalities
of the game; however, there are situations in which the progression of the game
may be broken by these kinds of bugs. So this testing goal is between Flow testing

27

Literature review

and Functional testing. Progression and learnability are defined as the testing goal
that aims to verify that the player is going to be able to learn the game, learn the
game, progress through levels, and complete the game. In [97] game flow testing
is described as the testing approach in which the progression of the game is not
guaranteed.

Multiplayer testing

This testing objective aims at multiplayer games and testing the networking stability
and capacity [2]. It is also called multi-user testing, it also tests all the features of
the game related to multiplayer mode; in fact, this type of test is one of the most
challenging type and time-consuming types of testing [75]. Some authors in this
survey report [3] claim that multiplayer testing requires many players simultaneously
in the game world, with computer-controlled opponents and different game servers
but, as it can see in [104], this isn’t required. It is possible to use agents and bots
to test the overall multiplayer system. However understanding multiplayer game
design, and how to test efficiently as a team is required knowledge for this type of
testing [129].

The tests should also ensure that all connectivity methods (modem, LAN,
internet) are working [118] [119]

(UX) Usability testing

Usability testing is not the same as fun-factor testing [3]. It tests the experience
given to gamers in terms of usability and playability. This is one of the main
aspects of mobile game mobile apps that are tested by executing various user-
centred operation scenarios in diverse environmental contexts [131]. The operability
of software is a category used to define software quality that encompasses both
the aspects of UX: usability and fun factor. In the case of usability testing some
factors can be included, i.e. the learnability of the game mechanics, if the user can
easily start playing, and the realism of the game (in terms of physics and graphics)
can be included in usability testing [121]. In [129] realism testing is defined as a
type of testing on its own since, in some cases like in simulators, is one of the most
important aspects to test.

In this case, user interaction, game responsiveness and background events such
as interruptions and battery consumption are checked [117] [75].

28

Literature review

Usability and user experience involve any aspect of a video game with which
players interact, like menus, audio, artwork, underlying game mechanics, etc [7]. In
[129] audio testing is defined as a separate type of testing because of its complexity
and unicity. In fact, in games, there is the unique use of sound that, not only
should the audio play without stuttering or missing elements, it should also add to
the gameplay. This requires extensive audio skills and a specific understanding of
game audio.

The purpose of usability testing is to reveal areas of the game in which the
player experience does not match the design intent [102].

In the context of virtual reality (VR) games, user experience (UX) is commonly
assessed through subjective and objective methods. Subjective methods offer a
convenient way to rate usability, comfort, satisfaction, and other relevant aspects
[48].

(UX) Fun factor testing

This testing goal is on the emotional level of the player, it aims to test the fun factor
in terms of engagement, stress excitement etc. According to ISO25010 definition,
[130], It can be related to software operability. The fun factor of a game is strongly
related to the attractiveness, the learning curve of game mechanics etc [121]. Fan
factor testing is something unique to games and cannot be used in general software
[129]. This type of test is one of the hardest to automate and this is one of the main
reasons that slows the automation of the test process in the game industry. [3]. Fun
factor testing is also called “playtesting” in [102], they also say that this kind of
test is focused on players’ opinions to illuminate areas of the game in which player
experience does not map onto design intent. In [118] Player experience modelling
can relate to fun factor testing since it refers to attempts to mathematically model
player experience and predict a player’s preference for liking or not a game.

Mobile game testing

This testing goal includes every test goal already explained but concerning the
popular mobile game platform such as Android and iOS [119].

29

Literature review

Performance testing

Tests the stability of the game in terms of performance using performance metrics
such as FPS, RAM, GPU and CPU usage, average load time, battery usage [2]
[75] [117] [128] [127] [33] [35]. These metrics are also used in ISO 25010 [130] to
define the performance quality of software [121]. In [116] response time across
different network types, in client and server transactions and other network-related
parameters are also included in the definition. However, such parameters should
be included in multiplayer testing and not in performance testing according to
other definitions. Afterall some [116] and [117] define some interesting performance
metrics like jittery connections, packet loss, data fragmentation, network coverage
and peak load performance; these metrics can be used to evaluate the performance
of a game but they are strongly related to the network part of the game that is
usually related to multiplayer features. In [117] there is another testing goal called
Graphic performance testing. Graphic performance is strongly related to graphic
optimization while general performance testing is about hardware usage. For
simplicity, I will consider Graphic performance testing as a subgenre of performance
testing.

Explorative testing

Creative thinking and an unconventional approach are used here. No pre-formed
conditions and tasks. It is an effective method that detects specific bugs and
errors at any development stage, which would have gone unnoticed in the case of
classical testing [126]. Explorative testing is executed on the entire system on the
fly emphasizing more “imagination ability” rather than traditional testing using
the concept of “Thinking and Investigation” [124]. Explorative testing is often
based on agents that explore the entire game to find bugs in the game.

Visual testing

The purpose of this test goal is to check the visuals of the games., such as rendering,
shaders, game UI, 3-D models, animations, etc. [2] [30]. This type of issue can
also be detected with screenshots [3]. In [94] 3 testing goals can be associated with
visual testing (they are defined with some practical examples):

• UI testing

30

Literature review

– When the player shoots someone, does the score update on the HUD?
After the end of a match, does a specific menu appear on the screen?

• Rendering testing

– Are post-processed effects visible after a specific event that should trigger
that effect? is the camera centred correctly on the screen?

• Animation testing

– Is the character moving using the selected animation in the right direction
over a sequence of N frames?

Combinatorial testing

Test the game using a set of combinations of values of the parameters. Tests
are systematically generated by identifying each distinct attribute (or parameter)
which can be changed to data or configuration. [116] [126] [115] [124]. Some of
the parameters of games include Events, settings, gameplay options, character
attributes, customization options, and hardware configurations [120]. Combinatorial
testing can use: category partition testing, pair testing and catalogue-based testing
[115]. In [120], test a game with a different hardware configuration is included in
the combinatorial tests, but this type of test is intended to verify compatibility
problems between different devices, operating systems and browsers.

Load testing

Load tests are designed to determine the system’s boundaries, for instance, how
many players an MMO server can accommodate, the number of active sprites
a screen can display, or the number of threads a specific program can execute
concurrently [118] [116]. So it is designed to test heavy activity and whether the
application can function property [119] [116] [122] [128]. In [117] Load testing is
defined as a non-functional testing process that checks things like the maximum
number of players that can play on a server, if the player can communicate with the
server and how much memory the game uses. In some cases, like in the situation
described by the last definition, Load testing is the union of performance and
multiplayer testing where the scalability and the sustainability of the application
are tested. In [33] what other papers call limit testing is called stress testing.

31

Literature review

Localization testing

Localization testing aims to evaluate the game’s quality, taking into account the
cultural context and language of the target country. This becomes essential when
a game is targeted for the global Game titles, content, and texts need to be
translated and tested with devices in multiple languages [118] [119] [128] [123] [131].
Special attention should be given to regions like the MENA (Middle East/North
Africa), considering aspects such as pseudo-localization testing, Arabic localization
(Right-to-Left text support, Bi-directional displays), and local time/date, address
formats, currency, and specific local requirements [125]. In [120], 2 types of issues
related to localization testing are mentioned: Language issues, which refer to
spelling, grammar, numeric formats, measurement system, voice-over, translation
and so on and Visual issues which are related to the visual representation of the
characters/string of the GUI like font issues’, visual placement and characters that
are not recognized.

Compatibility testing

Compatibility testing checks whether the game runs smoothly on different hard-
ware and software configurations. The hardware encompasses brands of different
manufacturers and assorted connected peripherals such as gamepads, joysticks,
screens and other similar gaming paraphernalia [118] [119] [116] [121] [122] [126]
[123] [131] [125] [115] [124]. The software compatibility is related to the co-existence
between the game and other programs. For instance, many players run programs
like Spotify and Team Speak in the background while they play [121]. In order to
test the compatibility the test can run in different screen sizes, devices, browsers
and operating systems [116]. This testing goal is particularly important in PC and
mobile games since there is a large number of devices with diverse specifications.
For this reason, developers have to be sure that the game works properly on
different devices [102] even if this is a hard task. In fact, a lot of bugs related to
compatibility issues are not found during the testing phase [120]. In [75] there is no
clear distinction of compatibility testing; we can find testing on changes in screen
resolutions and orientations under the “user interface and functionality” type of
testing. However, the tests that check the correctness of the graphics in a different
type of screens is related to compatibility testing. In [117] there is no definition of
compatibility testing, however, the check on device compatibility is mixed in other
descriptions (especially in UI/Functionality).

32

Literature review

Clean room testing

In [32] clean room is defined as the process in which the game is tested on the
assumptions of how the players will play the game. The test cases are generated
based on the data of users’ tendencies. Although [119], [116], [126], [115], [124],
[120], [126] and [124] define it as the software development process intended to
develop gaming software with a certifiable level of reliability. The main purpose of
clean room testing is to produce minimal defects by combining mathematical and
statistical reasoning and design refinement during test case generation and testing.

Play testing

The initial release of a game, often publicly available and sometimes unfinished,
is commonly referred to as the "beta" version. During this phase, thousands of
fans may discover bugs that went unnoticed by the developer’s testers, as noted in
references [118], [119], and [122]. However, it’s important to remember that the
primary focus of players during this phase should be evaluating the overall game
experience in terms of fun factor, difficulty levels and balance, rather than solely
identifying bugs. References [116], [122] and [115] emphasize this point. Based
on these sources, although beta testing reveals both user experience issues and
bugs, the primary objective ought to be assessing the gaming experience from the
player’s perspective. In fact in [124] both functional and non-functional elements
are included in playtesting. [120] gives 4 different types of playtesting:

• Gross Playtesting

– This is done when the first draft of the playable game is done in the
development cycle. It is usually performed by the design team to check
the gameplay and make sure that it’s smooth

• In-house playtesting

– This type of testing is performed by an in-house team or contract gamers.
These gamers will be proficient in gaming, and they will go through every
aspect of the gameplay to ensure that the gameplay is smooth and the
game is interesting and can lure in a lot of users.

• Blind testing

– Usually, a beta version of the game will be sent to selected players and
will ask them to do a survey or log the issues they have found in the

33

Literature review

gameplay. Since the game is tested by real users, insights gained will be
much more useful than relying on someone who has preoccupied thoughts
in mind.

• Final playtesting

– The mechanics of the game won’t be considered in this type of testing.
The aesthetics of the game will be fine-tuned upon the suggestions of
testers.

Soak testing

Soak Testing is a technique that consists in leaving the game running for a long
time (hours or days) in various modes of operation such as idling, pausing, or at
the title screen. This testing requires no user interaction beyond initial setup and
is usually managed by lead testers. Automated tools may be used for simulating
repetitive actions, such as mouse clicks [118] [119] [116]. Some logs can be generated
during the soak testing phases to check the performance by combining performance
testing with soak testing.

Ad hoc testing

In [32] Playtesting and ad hoc testing seem to be the same thing. However,
according to other definitions like [120], [116] and [122], ad hoc testing is an
unplanned testing technique that is generally utilized for breaking down the system
where testers randomly test the app without test cases or any documents while
in play testing the testers play the game and give feedbacks on the overall player
experience of the game. So, the difference between ad hoc and playtesting is the
actual objective of the tests.

Plus, due to its unplanned chaotic structure, ad-hoc testing can find bugs that
can be found only when a random combination of actions happens [122]. This
allows developers to find these errors at times especially when the developers try
to fix a bug reported by some player.

34

Literature review

Social media integration

Integration with social media is a critical aspect of your game. Many games allow
users to share their scores with their social network in public or private feeds.
To ensure full functionality and ease of use, this integration should be tested on
Android and iOS devices, with various OS versions and device combinations. [117].
Even if this testing goal seems to be a subgenre of compatibility testing, some
papers consider it as a separate testing goal due to its relevance in video game
industries. I.e. the wildly successful game, Angry Birds, used social integration
to keep their players hooked to the game. Players were prompted to link their
Facebook accounts and invite their friends to play the game. Players received
in-app rewards for recommending friends, which they could use to purchase in-game
items [117]

Compliance testing

To ensure full functionality and ease of use, this integration should be tested on
Android and iOS devices, with various OS versions and device combinations. [117].
Even if this testing goal seems to be a subgenre of compatibility testing, some
papers consider it as a separate testing goal due to its relevance in video game
industries. I.e. the wildly successful game, Angry Birds, used social integration
to keep their players hooked to the game. Players were prompted to link their
Facebook accounts and invite their friends to play the game. Players received
in-app rewards for recommending friends, which they could use to purchase in-game
items [117]

Security testing

Third-party tools including advertisements and payment gateways can present
potential vulnerabilities that can be used by attackers [117]. This type of testing
goal is important to ensure security, particularly in multiplayer games, where
security properties like confidentiality, integrity, accountability and authenticity
must be checked to deny unauthorized users or systems to read or modify protected
data [121] [119] [128] [123] [33]. [75] and [125] outline the importance of checking
the vulnerabilities and licensing restrictions every time a developer uses third-party
code.

35

Literature review

Recovery testing

This testing goal aims to check how well the game can be recovered from crashes,
hardware failures, and other similar failures [128] [123]. The game is forced to
fail, and later it is evaluated how it recovers from the failure conditions and the
environment. [116]

Figure 4.6: Testing goals taxonomy Part 1

36

Literature review

Testing Goal Has been goal of # papers

Functionality testing

[41],[42],[106],[43],[44],[45],
[29],[49],[34],[52],[53],[54],
[27],[108],[132],[57],[28],[58],
[59],[60],[61],[62],[113],[36],
[64],[66],[68],[69],[70],[71],
[72],[74],[76],[133],[78],[79],
[114],[38],[84],[85],[87],[89],
[90],[110],[93],[39],[12],[94],
[95],[96],[33],[40],[32],[100],
[101],[102],[103],[104],[134],
[10],[99],[81],[67]

63

Regression testing
[41],[49],[34],[108],[132],[60],
[36],[64],[80],[83],[88],[12],
[103],[38],[45],[90]

16

Balance testing
[43],[46],[55],[58],[78],[91],
[92],[95],[98],[114],[10],[93],
[69],[94],[71],[97]

16

Flow testing
[41],[112],[59],[70],[12],[94],
[32],[103],[104],[114],[57],[100],
[106],[49],[97]

15

Multiplayer testing
[106],[46],[57],[35],[36],[65],
[70],[73],[96],[97],[104],
[134],[10]

13

(UX) Usability testing [107],[43],[46],[48],[109],[82],
[84],[100],[102],[111],[38],[10] 12

Mobile game testing [42],[45],[61],[62],[35],[64],
[76],[85],[100],[102],[101],[77] 12

Performance testing [46],[53],[60],[35],[63],[133],
[38],[96],[104],[64],[36],[97] 12

Explorative Testing [40],[114],[113],[84],[69],[50],
[27],[81],[71],[79],[42] 11

Visual testing [38],[101],[10],[100],[94],[27],
[67],[85] 8

Combinatorial testing [41],[46],[112],[113],[68],[32],
[100],[103] 8

Table 4.4: Testing Goals found in the literature Part 1

37

Literature review

Testing Goal Has been goal of # papers

Load testing [46],[63],[36],[65],[96],[97],
[38],[64] 8

Localization testing [73],[82],[86],[88],[12],[38],
[100] 7

Compatibility testing [108],[86],[101],[102],[38],[49] 6
Clean Room testing [41],[34],[103],[38] 4
(UX) Fun factor testing [107],[114],[10] 3
Play testing (Alpha/Beta) [106],[10] 2
Soak testing [12],[104] 2
Ad hoc testing [34],[53] 2
Social media integrations [10] 1
Compliance testing [12] 1
Security testing 0
Recovery testing 0
Tree testing 0

Table 4.5: Testing Goals found in the literature Part 2

4.5.3 RQ1.3 - Metrics

The literature revealed and defined 43 different metrics. The metrics can be used
for four main purposes:

• Test quality (15 metrics)

– How the test is good and easy to write/execute

• Game correctness (21 metrics)

– How well the game is tested and covered by the tests

• Game balance (6 metrics)

– How the game is balanced and playable

• Game performance (7 metrics)

– How the game runs in terms of efficiency

Figures 4.12, 4.13, and 4.14 showcase the associated taxonomy of the metrics
that were identified in the literature.

38

Literature review

Figure 4.11 exhibits a clear emphasis on Game Correctness and Test Quality
metrics, whereas there seems to be a noticeable deficiency of metrics related to
Balancing Testing and Game Performance.

Figure 4.10 emphasizes the preponderance of the Test Execution Time metric.
This measurement is frequently employed to assess the efficiency of the test itself.
It also serves as an indicator of how effectively the chosen approach (like various
Machine Learning models) is functioning. Furthermore, the metrics like the number
of player states and the number of objects are used for evaluating agent behaviours,
exploration effectiveness, and visual recognition capabilities. As seen in Figure 4.10,
the number of sounds tested is one of the least common metrics. This is indicative
of the fact that sound testing is not a frequently explored area in game testing.

Test execution time

Time required to execute an entire test or a subpart of it. In [107], it is time to
process and analyse a gameplay video. To have a more precise metric, execution
time is evaluated for each phase of the test [68].

Number of player states

For platformers, the player character’s position and velocity are part of the player’s
state. In other games, the number of keys obtained and the set of opened doors
would be player-state variables since they will alter during a single playthrough. The
placement of the walls and doors is part of the problem instance because it differs
between level designs but is static within a playthrough. Finally, the rules that
prevent the player from walking through walls are part of the fundamental rules,
which are the same for each level design [112]. In [87], the number of unique states
reached is used. For regression testing the number of visited states is compared
with the previous version of the game [80]. In [84] player states are only related to
player location because that test aimed to explore the playable map. Graph-based
coverage such as Vertex (or node) coverage can be used as a metric for navigation
or explorative tests. However, not all of them would make sense (e.g. trying to
cover all non-cycling paths would quickly become unfeasible) [113]. Also in [71]
and [104] the number of paths (that can be attributed to the number of player
states) is used to evaluate the test coverage of a specific level.

In [88], [69] the nav-mesh goals and unique positions found in the tests can be
considered player states.

39

Literature review

In [106], game states are considered as different steps in a game such as a start,
play, pause, win and lose. During the gameplay, the player changes game states
when some conditions are met performing state transitions.

In [110], instead of the number of different states, the size of the files containing
the state information is evaluated.

To summarize, the player state is characterized by each variable affecting specific
goals’ reachability. This metric can be useful for explorative agent-based tests.

Num of bugs found

The number of already existing (known or unknown) or injected bugs found. This
metric is more related to the quality of the test rather than the quality of the
code that has been tested. However, especially in agent-driven tests, this metric
can be helpful to compare different versions of the tested game with or without a
specific bug. If the test is not able to recognize that specific bug the agent may
not work correctly and some kind of adjustments are required. Regression bugs
that were triggered during regression testing can also be evaluated in this coverage
in addition to known, unknown and injected bugs [80]. In [69] the number of bugs
found by the agents during training are evaluated, these bugs are not necessarily
identified as game-related issues. On the other hand, the bugs detected by their
second algorithm are identified as game issues.

Num of object

The interactable object coverage refers to the ratio of triggered interactable objects
to the total number of interactable objects in a given context [59]. The count of
virtual objects present either within a scene or the entire project is denoted by
[59]. The number of buttons (interactable), doors and obstacles in a single level
[41], [68]. The quantity of detected objects is measured as indicated by [84]. These
objects can encompass UI elements such as buttons or images [100], in this case,
this metric is used to evaluate the quality of the test. In the case of [99] the number
of objects are considered as the number of different weapons tested. In [79] objects
counted are walls, collectables and enemies in the tested level.

40

Literature review

Num of in-game variable

In [46] this metric is used for agents used in a racing game. In this case, the
variables include parameters such as average speed, number of collisions, final score,
mid-air time, number of crashes, nearest car and lap time. These statistics differ
depending on the agents’ playstyle and can be useful for game balance activities.
In [107] continuously track game statistics like health level, stamina and weapon
used. They are used to check if the game reacts correctly with visual effects that
the game should enable when these statistics reach certain thresholds like flashing
icons, life bar colours and other graphical effects. In [91] in-game variables like
damage dealt, weapons equipped, turns taken, cards played etc are used to evaluate
the deck’s strength. In [79] loses, wall collisions, collectable items collected and
close enemies are used as game statistics. In [71] game events relate to the number
of monsters, treasures, doors and deaths in the level played.

Num of image checked

The number of template images that were created and used for each game [76]
[62]. The number of UI images collected and detected [100], [62] and [89]. In this
case, this metric is used to evaluate the quality of the test. In [86], the number
of the images checked is evaluated and compared with the number in which these
images contain graphical bugs. In [62] and [90] to check widgets or GUI states
Widget Similarity and State Similarity are evaluated. In [86] and [62] test quality
is evaluated using these metrics on the test results:

• Precision

– “Precision presents the proportion of correctly classified screenshots as UI
glitch among all screenshots predicted as UI glitch”

• Recall

– “Recall indicates the proportion of correctly classified screenshots as UI
glitches among all screenshots that have UI display issues”

• Accuracy

– “Accuracy reflects the trained model’s ability to make correct decisions
on the test set. The more correct samples the model predicts, the higher
accuracy it will output”

41

Literature review

• F1-score

– “F1-score is calculated from the precision and recall of the test and it
reflects the harmonic mean of precision and recall. The highest possible
value of an F1-score is 1 which indicates perfect precision and recall, and
the lowest possible value is 0 if either precision or recall is zero”

• Mean average precision

Memory usage

the amount of memory consumed by the game during performance tests, typically
measured in megabytes (MB). This metric provides insights into the game’s memory
footprint and helps evaluate its efficiency in managing system resources.

FPS value

FPS (Frames Per Second) value is a performance metric that measures the number
of frames rendered per second in a game. It is commonly evaluated using three key
indicators: minimum, average, and maximum FPS.

Num of steps

The number of game steps performed. Notice that steps can be mandatory or
optional, in [76] there is a clear distinction between optional and mandatory steps
in their metrics. In [74] [71] [95] this metric is defined as test sequence length or
trajectory, which is the number of player actions performed in a test run (these
actions do not necessarily have to be useful to the progress of the game).

Code coverage

lines of code (LoC) that are executed during the running of the test suite. It
provides an indication of the proportion of the codebase that is exercised by the
tests [87].

42

Literature review

Lines of code (LoC) written for testing

Line of code written in the test script [76] or Line of code of the project [59] [62]
[96] [27]. In [27] the complexity of the code is also evaluated with the LoC using
the cyclomatic number.

Num of functions

In [39] the number of logic and the number of functions are used. In [27] the
functions are called instructions, also classified using the cyclomatic complexity.

CPU usage

The percentage of the CPU’s computational capacity utilized during performance
tests. It measures the amount of processing power consumed by the game during
gameplay scenarios.

Difficulty

In [55] a difficulty score is evaluated for each level using their tool. In [91] empirical
and simulated difficulty are evaluated and compared.

Num of graph edges

The number of graph edges that connect a player state to another (see num of
player state definition) [112]. In [103] and [27] graph edges are called transitions
between player states, and the transition coverage is evaluated.

Level size

Room or level size in terms of tiles or units[41]. In [88] the size of the levels
implemented in Unreal Engine 5 is evaluated in meters.

43

Literature review

Win rate

In [91] (called success rate in [95]) the number and percentage of victories are
evaluated to test the strength of the card decks. In [104] the possibility to complete
a procedurally generated level is tested, to do so the win rate of the bots that play
the level is considered.

Agent training time

Time spent to train agents, in [40] training time is measured in minutes and the
number of rounds while in [88] this time is measured in timesteps.

Num of persona

Time spent to train agents, in [40] training time is measured in minutes and the
number of rounds while in [88] this time is measured in timesteps.

Num of levels

The number of levels (or puzzles) is used as a metric in [44]. In [34] the number of
isolated platforms that are used to test specific features of the game are considered.

Num of clients

The number of bots connected in a single server [65] [104]. It represents the number
of simulated clients or automated agents interacting with the game server during
testing or gameplay scenarios.

Num of classes

The number of different classes refers to the count of distinct classes present in
a project [96] [39]. It quantifies the number of unique classes or object-oriented
structures within the project’s codebase.

44

Literature review

Sampling rate and frequency

Audio sampling rate and bin frequency used to compare FFT transform [12]. In
addition to audio signals, it is worth noting that other types of signals, such as
EEG signals, also require a specific sampling rate. The sampling rate of EEG
signals plays a crucial role in evaluating the accuracy and limitations of the test
[48].

Num of input paths

Number of execution paths through the input-handling code identified [87]. To
categorize better the input paths these factors can be added to this metric:

• if the path contains a button or a key

• if the path contains an axis

• input device (if keyboard or controller)

In [99] the number of action sequences tested is used as a metric.

Mutations

Changes in terms of location or logic changes in a level. This is useful to test the
robustness of the level and the test that uses dynamic testing (in the case of [41]).

Change in terms of the card changed in a specific deck [91].

Time required to master a task

The time it takes for the agent to master a task can be used as an indicator of how
difficult the game would be for a human player, the time required can be evaluated
also as the number of frames executed [114]. In [98] is considered the number of
attempts to win and the win rate per run.

45

Literature review

Network activity

Network activity refers to the monitored data traffic, encompassing both incoming
(ingress) and outgoing (egress) communication, that is initiated by the game [35].
This metric is particularly valuable in mobile online games, especially considering
that data usage may be constrained by internet service providers.

App startup time

Startup time refers to the measurement of the duration it takes for a game to
initialize and become fully operational [35]. It evaluates the impact and efficiency
of the game’s startup process by quantifying the time required for the game to
start.

Num of decision

count of decisions made to to achieve a specific goal, such as solving a maze [33].
This metric quantifies the number of choices or actions taken by an agent or player
to navigate and successfully complete the given task. It provides insights into the
decision-making complexity and strategy employed during the gameplay.

num of action

In [99] the number of different actions is used as metrics. These actions can include
various player interactions such as moving, attacking, bashing, character selection,
and combining movements with bashing.

confusion matrix

Confusion matrixes are used in [109] to evaluate the emotions predicted against
the actual emotions in a gameplay scenario.

46

Literature review

Image recognition time

This metric is used to evaluate the efficiency of UI feature recognition. This time
depends on the hardware but also the resolution of the game.

Num of behaviour tree

The study conducted in [78] examines the impact of code issues, imposed metrics,
and tournament evaluation on the number of distinct behaviour tree types generated.
The analysis sheds light on how these factors influenced the initial set of proposed
behaviour trees. The different types of Behaviour trees (BTs) are:

• Number of BTs created

• Number of unclassified BTs

• Number of BTs that crashed or encountered other issues

• Number of BTs rejected by the tournament evaluation

Num of hit

The number of actions that hit an operable object. It is evaluated as the number
of total hits, number of unique hits, hit ratio and number of valid operations in a
specific time window [42].

Num of observations

Observations are specific player feedback (in terms of actions, sentences, and
physical and verbal reactions such as the player that is yelling at because it is
too hard or yawning in front of boring moments). Observations are divided into
3 primary categories, these categories are further subdivided into other micro
categories as follows [10]:

• Design

– Game design

47

Literature review

– Visual design

– Audio design

• Product

– Quality

– Time-related

• Context-sensitive

– Player specific

– Multiplayer

– Livestream-based

Num of attempts

The count of attempted subgoals before successfully completing the level’s testing
task [41].

Num of speech

the count of speech instances or samples that have been tested, as part of a specific
evaluation or analysis [12].

Num of animations

the count of animations that have been tested as part of a specific evaluation or
analysis [12].

Num of sounds

the count of sound assets that have been tested as part of a specific evaluation or
analysis [12].

48

Literature review

Mutant score

In [103] mutants are created in the Lab Recruits application in which the association
between buttons and doors is changed, i.e., a link between a button and a door
is removed. The mutation score is computed as the ratio of killed mutants to the
total number of mutants generated

Num of Belief desire intention (BDI)

The Number of backtracking performed in a level. i.e. after entering a second
room, the player needs to back to the first room to complete a required task to
complete the second room.

Milliseconds (ms) to render frames

Represents the milliseconds needed to render four frames in response to an agent’s
action. [63]

Num Source files

the count of distinct source code files present in a project [59]. It provides insights
into the size and complexity of the project’s code structure.

4.5.4 RQ2.1 - Tools and approaches

From the literature, 129 tools/approaches have been discovered which 50 are free,
specific to video games and can discover at least one type of bug like [135], [136],
[137], [138] and much more.

To ensure the quality of a game, a large number of generic GUI testing tools are
commonly utilized at the system testing level. In contrast, other testing frameworks
that check into the majority of the game’s logic tend to be game-specific.

In this section only these 50 tools/approaches are described, the rest of the tools
are considered for the bug coverage statistics.

49

Literature review

RiverGame

The tool also addresses the challenge of input priorities and test scheduling, facil-
itating dynamic testing efforts. RiverGame’s architecture is engine-independent
and platform-agnostic, making it compatible across different devices and operating
systems. This flexibility extends to programming languages as well, enabling non-
technical stakeholders to write tests and expected behaviours for the game under
scrutiny.

A standout feature is its sound processing techniques that automatically evaluate
in-game sounds. In addition, the tool evaluates statistical metrics registered by the
end user to assess performance aspects.

RiverGame improves the performance of evaluation processes by utilizing efficient
methods for pose recognition and object detection.

RiverGame implements the testing features as follows [6]:

• Behavior-Driven Development (BDD)

– a methodology that fosters collaboration among stakeholders and allows
both technical and non-technical individuals to use natural language to
describe the purpose and expected outcomes of software features. This
approach, aided by the Behave library, enhances test reusability and
accessibility, particularly for those without programming experience.

• computer vision analysis

– RiverGame employs a combination of methods to test expected behaviours.
It leverages external technologies like Tesseract OCR [139] from OpenCV
[140] for text recognition and utilizes techniques such as template matching
or scene segmentation for the object or feature recognition in images.
Additionally, it is equipped to detect environmental changes through
specific object class training and motion analysis of objects in reconstructed
3D space from 2D image frames. This setup allows RiverGame to cover a
wide array of testing requirements.

• Animation testing

– RiverGame tackles issues such as character immobility or inconsistent
movement direction. The process is twofold. Firstly, it identifies a set of
fixed points in the scene, acting as reference points. Secondly, it utilizes

50

Literature review

MoveNet to extract the skeleton of the character in each test frame.
The character’s movement trajectory relative to the fixed point is then
compared to the expected trajectory defined by the user. This method is
versatile, applicable not only to human figures but also to other entities
like animals, vehicles, and buildings that can be represented with a skeletal
structure.

• Sound testing

– RiverGame employs automated testing methodologies to verify in-game
sound accuracy. It tests background sounds using the Librosa library
[14] and the FFT transform to convert and compare the spectrum of
the sounds. For character dialogues, it utilizes Facebook’s wav2vec [13]
2.0 model to convert the voice to text, which is then compared with the
original text for similarity.

iv4XR

The iv4XR framework, largely written in Java, is an advanced game testing platform
that employs specialized agents for automating tests in both 2D and 3D gaming
environments [141]. It goes beyond traditional automated testing techniques, by
addressing the dynamic and non-deterministic nature of modern games through goal-
driven, adaptive, and reasoning agent-based testing. This is achieved using aplib,
a Java library module within iv4XR, that provides a Domain Specific Language
(DSL)-like fluency while retaining the broad features and robust tools of Java for
the creation of intelligent test agents [50].

iv4XR is inspired by the Belief-Desire-Intent (BDI) concept, where agents possess
a belief that represents their understanding of their current environment, and their
own goals symbolizing their desire.

It introduces the concept of ’goal structures’ and ’tactics’. A ’goal structure’
is a tree that contains basic goals as leaves and goal-combinators as nodes, used
to decompose complex goals into simpler subgoals. A ’tactic’ is a method to
hierarchically combine basic actions using tactic-combinators. This enables the
formulation of complicated testing tasks purely at the goal level, without specifying
the required tactics, significantly increasing the ease of testing [27].

The iv4XR framework, with its adaptable and extensible architecture, eases
the integration of additional testing tools [27], thereby amplifying its capabilities
in game testing. This feature highlights the framework’s inherent versatility and

51

Literature review

promising prospects in the expansive domain of automated game testing.

To demonstrate its capabilities, the iv4XR project provides a demo application,
LabRecruits, in which it executes various test cases.

Wuji

Wuji is an agent-based testing tool which explores game space [40].

Iftikhar et al.

Automated model based testing tool for platform games that uses UML state
machine.

Ariyurek et al.

Defines both synthetic agents, trained in a completely automated manner, and
human-like agents, trained on trajectories used by human testers using RL and
MCTS [63]. To test a game the focus of these agents, instead of maximizing the
game score, is finding defects [74].

Bergdahl et al.

An approach to augment existing manually written test scripts with reinforcement
learning [59] [114].

ICARUS

This tool consists in an agent that play the game detecting and reporting crash,
stuck bugs and performance bugs. It can also be used for aesthetic bugs such as
graphical, animation, sound, or spelling issues. But in these cases ICARUS does
not have any reporting feature and a human that monitor these kind of issues while
ICARUS agents play the game is required [60].

52

Literature review

Hernández Bécares et al.

Testing tool based on record and play. It can be used to automate beta testing to
check changes in the source code and the game’s playability [108].

Unity test framework

Unity’s testing tool for integration and unit tests [142].

PathOS

PathOS+ is a playtesting tool that uses AI playtesting data to help enhance expert
level designer evaluation through an user interface. [93].

PathOS

is the first version of PathOS+, it is a testing tool built to aid the level design
process of game developers by simulating the navigation of any 3D game [52] [93].

GameDriver

A freemium testing tool with multiple features like object identification, input
recording (record and play testing), multi-platform execution, method execution
and continuous delivery integration [49].

Varvaressos et al.

This tool allows run time monitoring of different game states reached by the player.
It can also be integrated with bug reporting platform such as Mantis [110].

53

Literature review

Paduraru et al.

The framework is capable of automatically generating behaviors for game agents
across various difficulty levels, ensuring an adequate level of diversity. By doing so,
it enables the creation of a larger number of automated tests, reducing the reliance
on human effort for identifying defects in the source code or potential logic exploits
[78].

Wu et al.

Regression testing MMORPG,A tool that automatically performs regression testing
in video games. It has been used to test different versions of MMORPGs [80].

Unreal testing framework

A functional testing framework is designed to do gameplay-level testing, which
works by performing one or more automated tests. Most tests that are written will
be functional tests, low-level core or editor tests [38]. Unreal automation system,
which is built on top of the testing framework, provides the ability to perform
Unit testing, feature testing and content stress testing. It also contains an FBX
Test builder to test FBX files and a screenshot comparison tool to check the visual
representation of the game [143].

POCO

UI Automation test framework [144]

Crushinator

Crushinator is a framework that provides a game-independent testing tool that
implements different testing methods. It incorporates Model-based testing and
exploratory testing. It can also test server limits, defects and performances by
simulating large numbers of virtual clients [96].

54

Literature review

MAuto

MAuto records the user actions in the game and replays the tests on any Android
device. MAuto uses image recognition, through AKAZE features, to record the test
cases and the Appium framework to replay the user actions automatically [101].

Song

This framework consists in an automatic game-testing system that blends an adver-
sarial inverse reinforcement learning algorithm with multi-objective evolutionary
optimization. The system is designed to maintain the quality of various games
across the market, requiring minimal manual adjustments for each game [54].

Albaghajati et al.

This approach uses coloured Petri nets representations of the software workflow to
automatically test a game [58].

Dandey et al.

An automated testing strategy that performs simulation-based testing using record
and replay testing strategy [39].

Paduraru et al.

This tool uses computer vision techniques to detect game states and expected
behaviours [94].

García-Sánchez et al.

A playtesting approach that improves and accelerates the balancing process of card
games (Hearthstone [145]). It uses an evolutionary algorithm to analyse some
possible card combinations in decks [91].

55

Literature review

AirTest

AirTest is an E2E UI testing tool for mobile and Windows videogames [146].

Inspector: Pixel-based agent

Using only screenshots/pixels as input for automated game testing and build a
general game testing agent, Inspector, that can be easily applied to different games
without deep integration with games [84].

Nelson and Yasunobu Think-aloud testing

This approach discovers quality and design issues by observing the live streams.
Observations are acquired by paying particular attention to the player’s behaviour
outside of the game including things such as yawing, snacking or chatting with the
viewers and then classified using predefined categories (see Observations metrics)
[10].

Kljajic et al. client-server game testing

A testing approach to test the connection in a client-server multiplayer game [73].

WHENet

A tool that gives real-time head pose estimation in a video [109].

Ye et al.

GUI testing tool that detects GUI images and widgets in mobile games [89].

56

Literature review

Kwon et al.

A framework that can automatically analyse facial expressions in video in a remote
environment, the results can be. The expressions analysed can be categorized in
emotions during the gameplay [109].

Sestini et al.

The CCPT testing method combines curiosity and imitation learning to train agents
to explore certain game levels [69].

Lee et al.

Difficulty prediction tool used for balancing games using moving target acquisition
[92].

EEG UX testing for VR Games

It uses Electroencephalography (EEG) signals and brain functional connectivity
(FC) to test VR Games. This method objectively measures the overall player
experience without the explicit detection of bugs or emotions [48].

AKAZE

AKAZE is a testing approach that records user interactions, exporting them for
playback in Appium. After the recording phase, it uses image recognition to identify
objects in the screenshots taken during the record and play phase [147].

Yamamoto et al.

The approach chosen in [82] to reduce false positive test results uses OpenCV image
recognition algorithms to detect and access the hand-drawn GUI elements on the
screen, allowing them to be interacted with from within automated test scripts
[82].

57

Literature review

GAutomator

GAutomator, or Game Automator, is an open-source testing automation frame-
work specifically designed for mobile games. Mirroring the design of Android’s
UIAutomator, it can interact with engine components like GameObjects and their
components [85].

xUnit

http://xunit.net/ is a community-centred, open-source tool for unit testing within
the .NET Framework [148].

KRF Level generator

The tool is designed to automatically generate new building blocks in the style of
the original game using Procedural Content Generation (PCG) techniques. These
blocks are then assembled to create fresh levels. Additionally, this tool incorporates
functionality to ensure that the generated content is playable, maintaining a suitable
level of challenge and coherence within the game [55].

DroidGamer

DroidGamer is a GUI traversal-based Android game testing tool that uses deep
learning models to recognize interactable GUI widgets. It adopts a GUI model
traversal algorithm and a new GUI state equivalence criterion over the widget
recognition results of the deep learning models [62].

Marczak et al. Feedback-based gameplay tool

A methodology that has been used to gather data on player behaviour by analysing
video and audio streams. This innovative approach involves automated analysis of
game interface features, which serve as indicators of player behaviour and significant
gameplay events [107].

58

Literature review

Altom

Altom is a freemium Test automation framework that supports several testing
features like functional testing, performance testing, load testing, usability testing,
compatibility testing, security testing, regression testing and a great number of
testing tools [45].

Go-Explore

Go-Explore is a tool that broadens the scope of behavioural procedural personas,
incorporating the facet of player experience. This tool pioneers the concept of
generative agents, which can mimic both the actions and perceived experiences of
human players within a gaming setting. Though not explicitly applied to direct
game testing, these agents can be integrated with other testing utilities to enhance
automated playtesting that closely simulates human behaviour [46].

GLIB

A tool that is based on a code-based data augmentation technique that detects
visual bugs [86]. It can detect these graphical glitches: Abnormal colour block,
Random noise, Partial repetition, frame overlay, Object missing, Abnormal text,
Overexposed, Black border

GoExplore

Efficiently discovers challenging software bugs and comprehensively explores com-
plex environments without the need for human demonstration or knowledge of the
game dynamics

Mawhorter et al. Softlock model

Check if a map is playable and if it has some Softlock inside it where the player
can be stuck [112].

59

Literature review

SPADE

Python scripts used to control a bot in an online game. It has an API and can be
used for testing purposes [57] [70].

RELINE

An approach exploiting RL to train agents able to play a given game while trying
to load test it with the goal of minimizing its FPS [63].

UnityActionAnalysis

Static analysis and exploration tool to explore game valid states [149].

TestifyInput

Simolator of keyboard and mouse inputs, used in the context of Video Game Test
Automation [99].

Interactive design exploration

Game level authoring tool that uses synthetic testers, which enable the control of
different play-styles and skill levels. It also implements a graphical interface to
help designers to design levels in each part of the game [43].

4.5.5 RQ2.2 - Bugs Discovered

Bugs discovered in the literature are described in this section, and statistics about
bugs coverage with the testing tools/approaches found are shown in this graph 4.15

60

Literature review

Table 4.6: List of filtered testing tools/approaches Part 1

Tool / approach Covered Bugs Mentioned in Used in
Mawhorter et al.
Softlock model Stuck

SPADE Logical, Event,
Balance

Inspector:
Pixel-based agent

Graphical, UI,
Camera, Logical,

Interaction
[88]

iv4xr

Logical, Interaction,
Stuck, Position,
Event, Action,

Interrupt

[12],[94],[27]

RELINE UX, Graphical
Unity Action

Analysis Stuck, Action

RiverGame Audio, Graphical,
Performance, Logical [71]

TestifyInput Logical
Interactive design

exploration
Balance, Logical,

Stuck

Unity test
framework

Stuck, Logical,
Interrupt, Event,

Camera, Interaction,
Action, Position

[113],[132],
[126],[30]

[32],[81],
[28],[29]

Wuji Stuck, Interrupt,
Logical

[54],[41],[59],[86],
[114],[63],[87],[12],
[80],[84],[62],[69],
[94],[68],[89],[27],

[58],[81],[71]

MAuto Graphical, UI,
Camera, Logical [113],[81]

Logical

Logical bugs often do not break the game like the previous two types of bugs but
lead to unexpected results (e.g., errors in score computation). This type of bug is
usually caused by incorrect implementation of game logic [40].

61

Literature review

Table 4.7: List of filtered testing tools/approaches Part 2

Tool / approach Covered Bugs Mentioned in Used in

GameDriver

Graphical, Logical,
UI, Interaction,
Event, Position,
Interrupt, Stuck,

Action

[99],[113],[56]

ICARUS

Stuck, Event, Logical,
Interaction, Interrupt,
Performance, Position,

Action

[63],[52],[12],[113],
[84],[74],[94],[27],

[71]

GoExplore Stuck, Interaction,
Position

GLIB Graphical
Go-Explore Performance, Interrupt

Altom
Graphical, Logical,

UI, Info,
Performance, UX

[45]

Marczak et al. UX, Graphical,
UI

DroidGamer Graphical, UI
Crushinator Performance, Logical [87],[66]

PathOS Balance, Stuck,
Position [69],[63],[79]

KRF Level
generator Balance

POCO UI [146],[89]
xUnit Logical [30]
GAutomator UI, Logical

Unreal testing
framework

Logical, UI,
Graphical, Event,

Interaction, Interrupt
[126],[56]

Iftikhar et al.
Stuck, Interrupt,
Position, Event,
Action, Logical

[76],[87],[40],[63],
[103],[113],[84],[74],
[69],[68],[27],[37],

[81],[71]

UI

Bugs are related to the user interface of the player such as misrepresented elements,
elements allocated in the wrong position, or elements not visible on the screen.62

Literature review

Stuck

Stuck bugs, also called soft lock errors [112], are bugs which freeze the game. Game
players face limitations in their capacity to maintain interactions due to potential
bugs that arise when a player enters an abnormal state, causing them to become
stuck and unable to progress further in the game. [40] [112].

Graphical

In [86] a detailed description is used to detect UI glitches. They categorized these
bugs into 8 categories:

• Abnormal colour block

• Random noise

• Partial repetition

• Frame overlay

• Object missing

• Abnormal Text

• Overexposed

• Black border

Event

Event bugs refer to situations where the game does not behave as expected during
specific in-game events.

Interrupt / Crash

Leads the entire game to crash and exit. For example, the zero-dividing problem,
memory leak issue or recursive function calls will result in a game crash [40]. The
game crashes or stops rendering [69].

63

Literature review

Gaming balance

Which disrupts the equilibrium of play between human participants and AI players,
thereby deviating from the initial intentions of the designers. [40].

Interaction (Collision)

Interaction or Collision Bugs occur when the collision or the interaction of a specific
game object is absent or deviates from the expected behaviour. This can manifest
as game objects passing through one another, objects not responding to contact, or
inconsistent reactions to player-initiated actions.

Action

Action bugs refer to inconsistencies or faults in the expected behaviours of specific
in-game actions.

Position

Position Bugs pertain to the inappropriate or erroneous placement of game objects.

Performance

Bugs that affect the performance of the machine that is running the game, perfor-
mance metrics are often used to evaluate and quantify this type of issue.

User experience

Problems that downgrade the experience of the player in terms of usability [40]
and emotions.

64

Literature review

Camera

Camera bugs often refer to issues arising with the in-game camera system. These
can include the camera getting stuck or moving erratically, displaying an improper
view of the game environment, or not following the player as intended.

Info

Info Bugs involve inconsistencies between the information displayed to the user
and the actual in-game values. These may lead to incorrect data presentation or
misrepresentation of game statistics, causing confusion for the player.

AI

AI or NPC Bugs pertain to issues with the game’s artificial intelligence or non-player
characters.

Audio

Bugs related to the audio of the game, the most common bugs are [12]:

• Sound not played due to an incorrect trigger

• Sound that is interrupted or covered by different sounds due to in-game events

• Not understandable or wrong speech played

65

Literature review

Figure 4.15: Number of tools that discover that specific bug

4.6 Considerations

The review of the literature in this section highlights a growing trend. Over recent
years, there has been an escalating interest among researchers and developers in
the field of video game testing automation, as evidenced by the increasing number
of published papers on this topic (Fig 4.2. This surge not only reflects the dynamic
nature of the video game industry but also underscores the pressing need for
enhanced tools and methodologies in game testing.

On examining RQ1.1 (testing levels), it is clear that the focus is shifting towards
high-level testing systems such as acceptance and system testing. This preference
possibly stems from the immense variety of games and corresponding test cases.
Creating universally applicable tools or frameworks is a complex task. However,
employing high-level testing systems increases the flexibility and adaptability
of these tools, allowing them to cater to a broad range of contexts. Moreover,
this approach enables a closer emulation of real user interactions, facilitating an
assessment of the user’s gaming experience.

Considering RQ1.2 (testing goals), it is apparent that the current definitions of
testing goals are ambiguous and could benefit from being more precise. This
precision could assist developers in maintaining game quality and identifying the
most suitable testing methodologies for assessing critical aspects of the game. It

66

Literature review

is also evident that functionality testing and regression testing are the dominant
themes within the literature. Despite their importance in maintaining core game
quality, this focus is insufficient. The success of a game title relies heavily on
usability and the overall gaming experience, which currently poses a significant
challenge in testing due to the inherent complexity of the games.

In addressing RQ1.3, the literature reveals two primary types of metrics: those
focused on the correctness of the game and those centred around the performance of
tests and utilized models. The predominance of metrics related to test performance
illuminates a crucial divergence between the needs of developers and the areas
of focus for researchers. This disconnection is further underscored by [7], which
insightfully explores the gap between academia’s automated video game testing
solutions and the practical necessities of game developers. This discrepancy is also
evident in papers that employ agents in exploratory testing, where the primary
concern often lies in the quality of the machine learning models used by the agents,
rather than the efficacy of game testing.

Reviewing RQ2, it is evident that the existing tools and approaches for game testing
automation, while varied and capable of detecting a wide range of bugs, still require
further refinement before they can be successfully applied to real-world projects.
The more innovative approaches are often tested within reduced and simplified
contexts, limiting their potential applications. For these tools to demonstrate
their true efficacy and adaptability, they need to be tested within larger and more
complex gaming environments.

Finally, two frameworks stood out during this review—RiverGame and iv4xr.
RiverGame offers an interesting approach to testing elements closer to the user
experience, while iv4xr presents a flexible, modular structure that allows the
seamless integration of various testing tools. iv4xr’s versatility, in particular,
presents opportunities to comprehensively test games using agents and machine
learning models, simulating the real-world application of the game.

67

Literature review

Figure 4.7: Testing goals taxonomy Part 2

68

Literature review

Figure 4.8: Number of papers with the specific testing Goal

69

Literature review

Figure 4.9: Testing goals over the years

70

Literature review

Figure 4.10: Metrics popularity, in this graph there is shown how much a metric
has been used

71

Literature review

Figure 4.11: Popularity of type of metrics

72

Literature review

Figure 4.12: Metrics taxonomy part 1

73

Literature review

Figure 4.13: Metrics taxonomy part 2

74

Literature review

Figure 4.14: Metrics taxonomy part 3

75

Chapter 5

Sound testing

This chapter exposes the second part of the thesis, wherein the literature review
pinpointed a void in the domain of sound testing. In this more practical section of
the study, this issue was tackled, providing a preliminary insight into the potential
solutions for addressing the most prevalent bugs.

5.1 River Game and iv4XR

RiverGame is an innovative tool designed to facilitate automated testing for game
developers. It analyzes various aspects of a game including the rendered output,
sound production, entity movements, performance, and statistical data. Notably, it
addresses sound testing concerns, often raised by industry partners, which pertain
to audio assets not playing correctly or being interrupted unnecessarily.

RiverGame’s sound testing framework confirms the accuracy of game-generated
sound through a defined methodology. The tool uses two different testing techniques
depending on the context:

• For testing background music and effects like engine noise or explosions, the
Librosa [14] library is used to convert sound data from the time domain to
the frequency domain using the FFT transform. The difference between the
two spectrograms - the one that should have played and the one that actually
played - is compared. The decision on whether they belong to the same class
is evaluated using a statistical T-test.

76

Sound testing

• For in-game character dialogues, RiverGame employs Natural Language Pro-
cessing (NLP) to transform the voice into text. It uses Facebook’s wav2vec [13]
model for this conversion, which leverages Deep Learning and Transformers
methods. The similarity check involves calculating the ratio between the
original text and the longest common substring (LCS) from the converted
voice and the database entry.

Iv4XR is one of the most promising testing frameworks for video games, it is
written mostly in Java and it provides modules for agent-based testing, exploratory
testing, reinforcement learning-based testing, motion sickness on VR, difficulty
estimation and persona agents and emotion prediction-based testing. It also
provides a solid demo [5] useful to get started with the framework and try to
develop and test new modules. When the tests in the Demo project run, first
they open a build version of LabRecruit (that is a simple puzzle game) and then a
connection with the interface provided by the game itself is established. Thanks to
the connection established, the game creates the level, spawns a defined amount of
agents and plays the game controlling each agent in the scene depending on the
indication provided by Java tests. The tests pass if specific conditions of the game
state are satisfied, these conditions can be checked using special observable objects
that monitor in-game variables.

In the following section, the first implementation of sound testing integrated
with the iv4xr framework is described.

5.2 Implementation

After conducting an in-depth study of the aforementioned tools and carrying out
tests to better understand their functionalities, I gained substantial familiarity with
them. Subsequently, the first objective of this practical part was the implementation
of a sound recognizer.

5.2.1 Sound recognizer system

The initial challenge in this phase was the resolution of audio compatibility issues.
A common audio format was necessary for the sound comparison process. The
decision was to use the Waveform Audio File Format (wav) [150]. The chosen
specifications included a sample rate of 44100Hz, a 16-bit sample size, mono, and

77

Sound testing

Figure 5.1: Class Diagram of audio analyser

little-endian.

Audio recorder and converter

The sound assets in the game were converted to this chosen format using an online
converter [151], thereby creating a database of in-game sounds and eliminating
potential compatibility issues.

Next, a Python script was developed, using the Librosa library [14], to record
and analyze the audio stream from the Realtek’s Stereo Mix while the game was
running on a Windows 11 system. The recorded audio was saved in the chosen
format. For the purpose of this thesis, a recording duration of 60 seconds was
found to be sufficient for completing each chosen levels in the LabRecruits demo.

78

Sound testing

Audio analyser

Once validated the audio recorder, the next phase involved the implementation of
the audio analyser and recognizer. The corresponding class diagram is displayed in
Fig 5.1.

The process starts with the reading of a wav file, leading to the creation of an
AudioSignal object. This object is constructed by inputting the audio samples,
represented as an array of shorts (16-bit sample size). The constructor of the
AudioSignal then proceeds to evaluate the Spectrogram of the audio input, through
the Fast Fourier Transform (FFT), and a Map, which are utilized in the recognition
algorithm. It also stores the ’shorts’ array that contains the samples of the audio in
the time domain, along with the format, which is intended for debugging purposes.

The FFT [152] is an algorithmic technique employed for the efficient computation
of the Discrete Fourier Transform (DFT) and its inverse. The DFT is defined for a
sequence of N complex numbers x0, x1, ..., xN−1 as follows:

Xk =
N−1Ø
n=0

xne−2πikn/N

where for each k ∈ {0, 1, ..., N − 1}, Xk is a complex number.

FFT is used to translate a signal from its time domain to its frequency domain.
In the context of audio analysis, this translation allows for the visualization and
understanding of the different frequencies that constitute the sound at any given
time.

Although the calculation of DFT directly from the formula is straightforward,
it requires N2 complex multiplications, making it computationally expensive for
large values of N . The FFT, however, exploits the symmetrical properties of the
twiddle factors e−2πikn/N to reduce the computational complexity to O(N log N),
making it a much more efficient method for calculating the DFT, especially for
large sequences of data.

Thus, the FFT is utilized to convert a signal from its original time domain to
the frequency domain, isolating different frequencies present in a sound at any
given moment.

Nonetheless, an individual FFT provides only a snapshot of the frequencies
present at one specific time. A more complete view of how the frequencies in a

79

Sound testing

sound evolve over time requires multiple FFTs at regular intervals (time chunks).

The product of this process is a series of FFTs, each providing information about
the frequencies in a different temporal section of the sound. When these FFTs
are graphically represented next to each other, with time on the x-axis, frequency
on the y-axis, and the intensity of a particular frequency at a certain time shown
through color or brightness, a spectrogram is created.

Hence, a spectrogram can be considered a sequence of FFTs conducted on
successive temporal sections of the sound. The size of these segments can be
configured in the AudioConfig class, providing flexibility in the frequency analysis’s
granularity over time (useful for short sounds present in the assets of the game).

Upon calculation of the spectrogram, the subsequent step is to evaluate the
Map that holds the song’s fingerprint. This Map, designed such that the keys
correspond to the numbers that distinctly represent the stored chunks, has keys
that correspond to the numbers uniquely representing these stored chunks. Each
chunk’s value holds information about the song’s name and the chunk’s timestamp.
Each chunk’s identifier is determined through a hash function, which takes four
numeric values (p1, p2, p3, p4) as input along with a configurable fuzz factor. The
numeric values taken as input of the hash function are the frequencies related to
the maximum magnitude peak within four distinct frequency ranges. This is how
the unique identifier for each audio ’chunk’ is evaluated:

(p4 − (mod(p4, FUZ_FACTOR))) × 108

+ (p3 − (mod(p3, FUZ_FACTOR))) × 105

+ (p2 − (mod(p2, FUZ_FACTOR))) × 102

+ (p1 − (mod(p1, FUZ_FACTOR)))

Audio matcher

Before the execution of tests, it is necessary to load the game’s sounds into a Map
named "fingerprintDb". To do so, a static method is provided by AudioAnalyser
class, which also contains the previously mentioned fingerprintDb map. The
structure of this map is similar to the fingerprint map present in AudioSignal but
it contains the chunks of all the sounds loaded. Consequently, a singular identifier
used as a Map key might contain chunks from different songs.

80

Sound testing

With a particular gameplay record, the method "getMatchesAtTime" can gener-
ate data about the sounds present in the specified time window by creating a Set
of AudioMatches. A match is recognized when the identifier of a specific Chunk
of the analyzed record is within the time window and its identifier exists in the
fingerprintDb. Inside the AudioMatches are stored the ChunkDetail of the record’s
chunk that instigated the match and all the Chunks bearing the same identifier.

Statistics can be extracted, using the appropriate AudioAnalysis method, from
a set of AudioMatches and used to evaluate the best match and the presence of a
specific sound. These statistics contain the number of matched chunks for each
sound in the database. The higher this number, the higher the probability that
the sound was played in that time window.

To discern the optimal configuration, a receiver operating characteristic (ROC)
curve was plotted (5.2). Each line within the ROC represents a specific configuration
of chunk size and fuzz factor, while each point on the line indicates the coordinates of
the true positive ratio (TPR) and false positive ratio (FPR) with varying matching
thresholds. A sound is only recognized as present within the time window if the
number of matches are greater than the matching threshold; otherwise, the sound
is considered absent. The most effective configurations were found to be as follows:
Without any background:

• Threshold = 3, Fuz Factor = 2, Chunk Size = 512 samples

• Threshold = 11, Fuz Factor = 3, Chunk Size = 512 samples

• Threshold = 2, Fuz Factor = 2, Chunk Size = 1024 samples

with the background music’s volume deliberately reduced to 30% using the
volume mixer 5.3: Threshold = 13, Fuz factor = 3, Chunk size = 512

5.2.2 Integration with iv4xr

The sound recognition system, capable of verifying the presence or absence of a
sound within a specified time window of recorded gameplay, can be employed to
ascertain if a specific event has activated its associated sound. This section seeks
to identify the time windows in which a sound should be audible. The iv4xr’s
demo proves to be a perfect fit for this purpose, mirroring real-life scenarios in
video games where LabRecruits levels are played by agents, devoid of temporal
information regarding the occurrence of specific events.

81

Sound testing

Figure 5.2: ROC curve without noises

Initially, the game and the audio recording system are launched simultaneously.
To keep track of events like button presses, monster attacks, or fire damage, custom
observers were implemented for agents and environmental variables.

With each event observed, the details are recorded and stored in the event list..
Upon the level’s completion and the subsequent saving of the gameplay record, the
recorded gameplay undergoes analysis. The system then verifies the presence of
sounds corresponding to the events observed during gameplay.

Using this approach (the flow of a test is described in the sequence diagram in
fig 5.4) three different levels were tested, with each test checking at least three
events per level.

82

Sound testing

Figure 5.3: ROC curve with background music

83

Sound testing

Figure 5.4: Test execution sequence diagram

84

Chapter 6

Future work

This thesis has proposed a comprehensive approach to game testing automation,
particularly focusing on audio testing. The following are potential areas for further
investigation and development:

6.1 Literature review enhancements

To refine the outcomes of the literature review and achieve more precise results,
future studies could implement known quality assessment methods for the examined
papers. Furthermore, a snowballing technique, which involves tracing references in
initially selected studies to identify further relevant research, could be employed to
uncover additional pertinent studies.

6.2 Advancements in Audio Testing

6.2.1 Expanding Case Studies

As part of the continuous improvement of this study, it is crucial to enhance the
external validity of the approach. One way to achieve this would be to increase the
number of case studies examined. The use of multiple case studies could help to
avoid overfitting the threshold to a single project, providing a more reliable and
generalizable understanding of the effectiveness of the proposed approach.

85

Future work

Moreover, examining a variety of projects would help to discern whether the
success of the approach is due to its inherent efficacy or whether it’s the simplicity
of the project considered that contributes to the success. Thus, the study of more
complex or diverse projects could yield valuable insights into the robustness and
versatility of the approach.

6.2.2 Improvements in sound recognition

• Temporal sequence verification: The sound detection process could be
improved by verifying the temporal sequence of the chunk matches. This
approach could lead to more effective recognition of false positive results.

• Background sound removal: To account for scenarios where background
music or noise is present, noise cancellation or suppression technology could
be developed and implemented.

• Sound effect recognition: As video games often apply different effects
to sounds to enhance player immersion, recognizing and testing these sound
effects can be a promising area for further exploration.

6.2.3 Integration of Speech-to-Text testing

• Grammar Checker: The current speech-to-text feature used in RiverGame
could be enhanced with a grammar checker. This addition would complement
the existing similarity check, which requires expected text, thus making
the testing process more flexible and extensive. Instead of checking for
exact matches, the tool would validate the grammatical correctness and
comprehensibility of the spoken text.

• Speech-to-Text in iv4xr: The existing speech-to-text solution provided by
RiverGame can be integrated into the iv4xr framework. This would enhance
the testing capabilities by allowing verification of in-game dialogues and
voiceovers.

• Testing in Noise Overload Scenarios: Future research could use iv4xr
agents to simulate ’noise overload’ scenarios, where numerous sounds are
triggered simultaneously, potentially overwhelming the player. In such scenar-
ios, sound recognition and speech-to-text testing can be applied to ascertain
whether the game’s audio remains understandable amid the noise overload.

86

References

[1] James Batchelor Editor-in-Chief. GamesIndustry.Biz Presents... The Year
In Numbers 2018. GamesIndustry.biz. Dec. 17, 2018. url: https://www.gam
esindustry.biz/gamesindustry-biz-presents-the-year-in-numbers-
2018 (visited on 07/01/2023).

[2] Aghyad Albaghajati and Moataz Ahmed. «Video Game Automated Testing
Approaches: An Assessment Framework». In: IEEE Transactions on Games
15.1 (2020), pp. 81–94. issn: 2475-1510. doi: 10.1109/TG.2020.3032796.

[3] Cristiano Politowski, Fabio Petrillo, and Yann-Gaël Guéhéneuc. «A Survey
of Video Game Testing». In: 2021 IEEE/ACM International Conference
on Automation of Software Test (AST). 2021 IEEE/ACM International
Conference on Automation of Software Test (AST). May 2021, pp. 90–99.
doi: 10.1109/AST52587.2021.00018.

[4] Riccardo Coppola and Emil Alégroth. «A Taxonomy of Metrics for GUI-
based Testing Research: A Systematic Literature Review». In: Information
and Software Technology 152 (Dec. 1, 2022), p. 107062. issn: 0950-5849. doi:
10.1016/j.infsof.2022.107062. url: https://www.sciencedirect.
com/science/article/pii/S0950584922001719 (visited on 04/02/2023).

[5] Iv4xr-Project/iv4xrDemo: A Demo of Agent-Based Testing Using Iv4xr. url:
https://github.com/iv4xr-project/iv4xrDemo (visited on 07/01/2023).

[6] Unibuc-Cs/Game-Testing: Prototype for a Game Testing Framework Using
AI Methods. url: https://github.com/unibuc-cs/game-testing (visited
on 07/02/2023).

[7] Cristiano Politowski, Yann-Gaël Guéhéneuc, and Fabio Petrillo. «Towards
Automated Video Game Testing: Still a Long Way to Go». In: 2022 IEEE/ACM
6th International Workshop on Games and Software Engineering (GAS). 2022
IEEE/ACM 6th International Workshop on Games and Software Engineering
(GAS). May 2022, pp. 37–43. doi: 10.1145/3524494.3527627.

87

https://www.gamesindustry.biz/gamesindustry-biz-presents-the-year-in-numbers-2018
https://www.gamesindustry.biz/gamesindustry-biz-presents-the-year-in-numbers-2018
https://www.gamesindustry.biz/gamesindustry-biz-presents-the-year-in-numbers-2018
https://doi.org/10.1109/TG.2020.3032796
https://doi.org/10.1109/AST52587.2021.00018
https://doi.org/10.1016/j.infsof.2022.107062
https://www.sciencedirect.com/science/article/pii/S0950584922001719
https://www.sciencedirect.com/science/article/pii/S0950584922001719
https://github.com/iv4xr-project/iv4xrDemo
https://github.com/unibuc-cs/game-testing
https://doi.org/10.1145/3524494.3527627

REFERENCES

[8] Learn Software Testing Tutorial - Javatpoint. url: https://www.javatpoi
nt.com/software-testing-tutorial (visited on 07/02/2023).

[9] Mario Linares Vasquez, Kevin Moran, and Denys Poshyvanyk. Continuous,
Evolutionary and Large-Scale: A New Perspective for Automated Mobile
App Testing. Jan. 18, 2018. doi: 10.48550/arXiv.1801.06267. arXiv:
1801.06267 [cs]. url: http://arxiv.org/abs/1801.06267 (visited on
07/11/2023). preprint.

[10] Bailey Eric Nelson and Ito Yasunobu. «Livestreaming for User Testing
Context-Rich Observation of Game Player Behavior». In: 2017 International
Conference on Management Science and Engineering (ICMSE). 2017 In-
ternational Conference on Management Science and Engineering (ICMSE).
Aug. 2017, pp. 228–237. doi: 10.1109/ICMSE.2017.8574431.

[11] Tariq King. Transforming Gaming with AI-driven Automation - Sogeti.
Sogeti, provider of technology and engineering services. 2022. url: https:
//www.sogeti.com/ai-for-qe/section-4-1-automate-see/chapter-
5/ (visited on 07/02/2023).

[12] Ciprian Paduraru, Miruna Paduraru, and Alin Stefanescu. «RiverGame - a
Game Testing Tool Using Artificial Intelligence». In: 2022 IEEE Conference
on Software Testing, Verification and Validation (ICST). 2022 IEEE Con-
ference on Software Testing, Verification and Validation (ICST). Apr. 2022,
pp. 422–432. doi: 10.1109/ICST53961.2022.00048.

[13] Wav2vec 2.0: Learning the structure of speech from raw audio. url: https:
//ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-
speech-from-raw-audio/ (visited on 07/05/2023).

[14] Librosa/Librosa: Python Library for Audio and Music Analysis. url: https:
//github.com/librosa/librosa (visited on 07/05/2023).

[15] Vahid Garousi, Michael Felderer, and Mika V. Mäntylä. «Guidelines for
Including Grey Literature and Conducting Multivocal Literature Reviews
in Software Engineering». In: Information and Software Technology 106
(Feb. 1, 2019), pp. 101–121. issn: 0950-5849. doi: 10.1016/j.infsof.2018.
09.006. url: https://www.sciencedirect.com/science/article/pii/
S0950584918301939 (visited on 07/01/2023).

[16] Staffs Keele. Guidelines for Performing Systematic Literature Reviews in
Software Engineering. 2007.

[17] Towards Rigor in Reviews of Multivocal Literatures: Applying the Exploratory
Case Study Method - Rodney T. Ogawa, Betty Malen, 1991. url: https:
//journals.sagepub.com/doi/10.3102/00346543061003265 (visited on
07/05/2023).

88

https://www.javatpoint.com/software-testing-tutorial
https://www.javatpoint.com/software-testing-tutorial
https://doi.org/10.48550/arXiv.1801.06267
https://arxiv.org/abs/1801.06267
http://arxiv.org/abs/1801.06267
https://doi.org/10.1109/ICMSE.2017.8574431
https://www.sogeti.com/ai-for-qe/section-4-1-automate-see/chapter-5/
https://www.sogeti.com/ai-for-qe/section-4-1-automate-see/chapter-5/
https://www.sogeti.com/ai-for-qe/section-4-1-automate-see/chapter-5/
https://doi.org/10.1109/ICST53961.2022.00048
https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/
https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/
https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/
https://github.com/librosa/librosa
https://github.com/librosa/librosa
https://doi.org/10.1016/j.infsof.2018.09.006
https://doi.org/10.1016/j.infsof.2018.09.006
https://www.sciencedirect.com/science/article/pii/S0950584918301939
https://www.sciencedirect.com/science/article/pii/S0950584918301939
https://journals.sagepub.com/doi/10.3102/00346543061003265
https://journals.sagepub.com/doi/10.3102/00346543061003265

REFERENCES

[18] Grey Literature in Library and Information Studies. url: https://www.
degruyter.com/document/doi/10.1515/9783598441493/html?lang=en
(visited on 07/01/2023).

[19] Shades of Grey: Guidelines for Working with the Grey Literature in System-
atic Reviews for Management and Organizational Studies - Adams - 2017 -
International Journal of Management Reviews - Wiley Online Library. url:
https://onlinelibrary.wiley.com/doi/10.1111/ijmr.12102 (visited
on 07/01/2023).

[20] Imants Zarembo. «ANALYSIS OF ARTIFICIAL INTELLIGENCE AP-
PLICATIONS FOR AUTOMATED TESTING OF VIDEO GAMES». In:
ENVIRONMENT. TECHNOLOGIES. RESOURCES. Proceedings of the
International Scientific and Practical Conference 2.0 (0 June 20, 2019),
pp. 170–174. issn: 2256-070X. doi: 10.17770/etr2019vol2.4158. url:
http://journals.ru.lv/index.php/ETR/article/view/4158 (visited on
03/31/2023).

[21] S. M. Bindu Bhargavi and V. Suma. «A Survey of the Software Test Methods
and Identification of Critical Success Factors for Automation». In: SN
Computer Science 3.6 (Aug. 20, 2022), p. 449. issn: 2661-8907. doi: 10.
1007/s42979-022-01297-5. url: https://doi.org/10.1007/s42979-
022-01297-5 (visited on 03/31/2023).

[22] Table Capture, GeorgeMike.Com. url: https://www.georgemike.com/
tablecapture/ (visited on 07/01/2023).

[23] Publish or Perish. url: https://harzing.com/resources/publish-or-
perish (visited on 07/01/2023).

[24] MattiaRiola. Table Extractor from Google Search. Mar. 10, 2023. url: https:
//github.com/MattiaRiola/TableExtractor (visited on 07/01/2023).

[25] Zotero | Your Personal Research Assistant. url: https://www.zotero.org/
(visited on 07/06/2023).

[26] Notion – The All-in-One Workspace for Your Notes, Tasks, Wikis, and
Databases. url: https://www.notion.so/ (visited on 07/06/2023).

[27] I. S. W. B. Prasetya et al. «An Agent-Based Approach to Automated Game
Testing: An Experience Report». In: Proceedings of the 13th International
Workshop on Automating Test Case Design, Selection and Evaluation. A-
TEST 2022. New York, NY, USA: Association for Computing Machinery,
Nov. 9, 2022, pp. 1–8. isbn: 978-1-4503-9452-9. doi: 10.1145/3548659.
3561305. url: https://dl.acm.org/doi/10.1145/3548659.3561305
(visited on 03/31/2023).

89

https://www.degruyter.com/document/doi/10.1515/9783598441493/html?lang=en
https://www.degruyter.com/document/doi/10.1515/9783598441493/html?lang=en
https://onlinelibrary.wiley.com/doi/10.1111/ijmr.12102
https://doi.org/10.17770/etr2019vol2.4158
http://journals.ru.lv/index.php/ETR/article/view/4158
https://doi.org/10.1007/s42979-022-01297-5
https://doi.org/10.1007/s42979-022-01297-5
https://doi.org/10.1007/s42979-022-01297-5
https://doi.org/10.1007/s42979-022-01297-5
https://www.georgemike.com/tablecapture/
https://www.georgemike.com/tablecapture/
https://harzing.com/resources/publish-or-perish
https://harzing.com/resources/publish-or-perish
https://github.com/MattiaRiola/TableExtractor
https://github.com/MattiaRiola/TableExtractor
https://www.zotero.org/
https://www.notion.so/
https://doi.org/10.1145/3548659.3561305
https://doi.org/10.1145/3548659.3561305
https://dl.acm.org/doi/10.1145/3548659.3561305

REFERENCES

[28] Lior Tal. Introduction to Unity Test Tools. Game Developer. May 20, 2014.
url: https://www.gamedeveloper.com/programming/introduction-to-
unity-test-tools (visited on 07/02/2023).

[29] Ruben Gonzalez. Dependency Injection on Unity. Game Developer. Sept. 8,
2020. url: https://www.gamedeveloper.com/programming/dependency-
injection-on-unity (visited on 07/02/2023).

[30] Ash Davis, Adam Single, Mark Hogben, and Leigh Mannes. Testing for
Game Development. Game Developer. 2016. url: https://www.gamedev
eloper.com/programming/testing-for-game-development (visited on
07/02/2023).

[31] Game Developer staff. Bring Light into Darkness - Â How to Add Tests to
an Existing Project. Game Developer. Sept. 30, 2020. url: https://www.
gamedeveloper.com/programming/bring-light-into-darkness---how-
to-add-tests-to-an-existing-project (visited on 07/02/2023).

[32] Arlinta Christy Barus, Roy Deddy Hasiholan Tobing, Dani Novita Pratiwi,
Siska Adelina Damanik, and Jenny Pasaribu. «Mobile Game Testing: Case
Study of a Puzzle Game Genre». In: 2015 International Conference on
Automation, Cognitive Science, Optics, Micro Electro-Mechanical System,
and Information Technology (ICACOMIT). 2015 International Conference
on Automation, Cognitive Science, Optics, Micro Electro-Mechanical System,
and Information Technology (ICACOMIT). Oct. 2015, pp. 145–149. doi:
10.1109/ICACOMIT.2015.7440194.

[33] A. Nikas. «Automated Gui Testing for Games Using Pseudo-DSL». MA
thesis. 2015.

[34] Brendan LoBuglio. Welcome to Rabbit Hell! Reliable AI Locomotion with
TDD. 2019. url: https://www.gamedeveloper.com/programming/welc
ome-to-rabbit-hell-reliable-ai-locomotion-with-tdd (visited on
07/02/2023).

[35] Doug Stevenson. Test Your Game with Firebase Test Lab for Android.
The Firebase Blog. 2017. url: https : / / firebase . blog/ (visited on
07/02/2023).

[36] Robert Masella. Automated Testing of Gameplay Features in ’Sea of Thieves’.
2019. url: https : / / www . gdcvault . com / play / 1026366 / Automated -
Testing-of-Gameplay-Features (visited on 04/20/2023).

90

https://www.gamedeveloper.com/programming/introduction-to-unity-test-tools
https://www.gamedeveloper.com/programming/introduction-to-unity-test-tools
https://www.gamedeveloper.com/programming/dependency-injection-on-unity
https://www.gamedeveloper.com/programming/dependency-injection-on-unity
https://www.gamedeveloper.com/programming/testing-for-game-development
https://www.gamedeveloper.com/programming/testing-for-game-development
https://www.gamedeveloper.com/programming/bring-light-into-darkness---how-to-add-tests-to-an-existing-project
https://www.gamedeveloper.com/programming/bring-light-into-darkness---how-to-add-tests-to-an-existing-project
https://www.gamedeveloper.com/programming/bring-light-into-darkness---how-to-add-tests-to-an-existing-project
https://doi.org/10.1109/ICACOMIT.2015.7440194
https://www.gamedeveloper.com/programming/welcome-to-rabbit-hell-reliable-ai-locomotion-with-tdd
https://www.gamedeveloper.com/programming/welcome-to-rabbit-hell-reliable-ai-locomotion-with-tdd
https://firebase.blog/
https://www.gdcvault.com/play/1026366/Automated-Testing-of-Gameplay-Features
https://www.gdcvault.com/play/1026366/Automated-Testing-of-Gameplay-Features

REFERENCES

[37] Afza Kazmi, Anam Fatima, Arsalan Idris, and Shujaat Hussain. «Adaptive
Usage Statistical Testing for 3D Gaming Applications». In: 2018 Interna-
tional Conference on Computing, Electronic and Electrical Engineering (ICE
Cube). 2018 International Conference on Computing, Electronic and Electri-
cal Engineering (ICE Cube). Nov. 2018, pp. 1–6. doi: 10.1109/ICECUBE.
2018.8610975.

[38] Unreal Engine. Automation System Overview. 2021. url: https://docs.
unrealengine.com/4.27/en-US/TestingAndOptimization/Automation/
(visited on 07/02/2023).

[39] Santosh Raj Dandey. «An Automated Testing Framework for the Virtual
Cell Game». In: (2013). url: https://library.ndsu.edu/ir/handle/
10365/23082 (visited on 03/31/2023).

[40] Yan Zheng et al. «Wuji: Automatic Online Combat Game Testing Using
Evolutionary Deep Reinforcement Learning». In: 2019 34th IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE). 2019 34th
IEEE/ACM International Conference on Automated Software Engineering
(ASE). Nov. 2019, pp. 772–784. doi: 10.1109/ASE.2019.00077.

[41] Samira Shirzadehhajimahmood, I. S. W. B. Prasetya, Frank Dignum, Mehdi
Dastani, and Gabriele Keller. «Using an Agent-Based Approach for Robust
Automated Testing of Computer Games». In: Proceedings of the 12th In-
ternational Workshop on Automating TEST Case Design, Selection, and
Evaluation. A-TEST 2021. New York, NY, USA: Association for Com-
puting Machinery, Aug. 23, 2021, pp. 1–8. isbn: 978-1-4503-8623-4. doi:
10.1145/3472672.3473952. url: https://dl.acm.org/doi/10.1145/
3472672.3473952 (visited on 03/30/2023).

[42] Chenglong Sun, Zhenyu Zhang, Bo Jiang, and W.K. Chan. «Facilitating
Monkey Test by Detecting Operable Regions in Rendered GUI of Mobile
Game Apps». In: 2016 IEEE International Conference on Software Quality,
Reliability and Security (QRS). 2016 IEEE International Conference on
Software Quality, Reliability and Security (QRS). Aug. 2016, pp. 298–306.
doi: 10.1109/QRS.2016.41.

[43] Hirotaka Suetake, Tsukasa Fukusato, Christian Arzate Cruz, Andy Nealen,
and Takeo Igarashi. «Interactive Design Exploration of Game StagesUsing
Adjustable Synthetic Testers». In: Proceedings of the 15th International
Conference on the Foundations of Digital Games. FDG ’20. New York,
NY, USA: Association for Computing Machinery, Sept. 17, 2020, pp. 1–4.
isbn: 978-1-4503-8807-8. doi: 10.1145/3402942.3402982. url: https:
//dl.acm.org/doi/10.1145/3402942.3402982 (visited on 03/30/2023).

91

https://doi.org/10.1109/ICECUBE.2018.8610975
https://doi.org/10.1109/ICECUBE.2018.8610975
https://docs.unrealengine.com/4.27/en-US/TestingAndOptimization/Automation/
https://docs.unrealengine.com/4.27/en-US/TestingAndOptimization/Automation/
https://library.ndsu.edu/ir/handle/10365/23082
https://library.ndsu.edu/ir/handle/10365/23082
https://doi.org/10.1109/ASE.2019.00077
https://doi.org/10.1145/3472672.3473952
https://dl.acm.org/doi/10.1145/3472672.3473952
https://dl.acm.org/doi/10.1145/3472672.3473952
https://doi.org/10.1109/QRS.2016.41
https://doi.org/10.1145/3402942.3402982
https://dl.acm.org/doi/10.1145/3402942.3402982
https://dl.acm.org/doi/10.1145/3402942.3402982

REFERENCES

[44] Grendel games. Automating Level Testing with AI - Grendel Games. July 2,
2019. url: https://grendelgames.com/automating-level-testing-
with-ai/ (visited on 07/02/2023).

[45] Wael Awad. «Game Testing Automation Guidance». fi=Ylempi AMK-
opinnäytetyö|sv=Högre YH-examensarbete|en=Master’s thesis|. 2021. url:
http://www.theseus.fi/handle/10024/505977 (visited on 03/30/2023).

[46] Matthew Barthet, Ahmed Khalifa, Antonios Liapis, and Georgios Yan-
nakakis. «Generative Personas That Behave and Experience Like Humans».
In: Proceedings of the 17th International Conference on the Foundations
of Digital Games. FDG ’22. New York, NY, USA: Association for Com-
puting Machinery, Nov. 4, 2022, pp. 1–10. isbn: 978-1-4503-9795-7. doi:
10.1145/3555858.3555879. url: https://dl.acm.org/doi/10.1145/
3555858.3555879 (visited on 03/30/2023).

[47] «Automation in the Game Testing. Approaches and Solutions». In: 2020. url:
https://er.knutd.edu.ua/bitstream/123456789/15306/1/ITPF2020_
P232-235.pdf.

[48] Guanhua Hou, Hua Dong, and Yang Yang. «Developing a Virtual Reality
Game User Experience Test Method Based on EEG Signals». In: 2017 5th
International Conference on Enterprise Systems (ES). 2017 5th International
Conference on Enterprise Systems (ES). Sept. 2017, pp. 227–231. doi: 10.
1109/ES.2017.45.

[49] GameDriver. GameDriver: Home. GameDriver. 2019. url: https://gamed
river.io/ (visited on 07/02/2023).

[50] I. S. W. B. Prasetya and Mehdi Dastani. «Aplib: An Agent Programming
Library for Testing Games». In: Proceedings of the 19th International Confer-
ence on Autonomous Agents and MultiAgent Systems. AAMAS ’20. Richland,
SC: International Foundation for Autonomous Agents and Multiagent Sys-
tems, May 13, 2020, pp. 1972–1974. isbn: 978-1-4503-7518-4.

[51] WeTest. How to Automate Unity Games Using Altunity Tester. EuroSTAR
Huddle. Aug. 8, 2022. url: https://huddle.eurostarsoftwaretesting.
com/how-to-automate-unity-games-using-altunity-tester/ (visited
on 07/02/2023).

[52] Samantha Stahlke, Atiya Nova, and Pejman Mirza-Babaei. «Artificial Players
in the Design Process: Developing an Automated Testing Tool for Game
Level and World Design». In: Proceedings of the Annual Symposium on
Computer-Human Interaction in Play. CHI PLAY ’20. New York, NY,
USA: Association for Computing Machinery, Nov. 3, 2020, pp. 267–280.
isbn: 978-1-4503-8074-4. doi: 10.1145/3410404.3414249. url: https:
//dl.acm.org/doi/10.1145/3410404.3414249 (visited on 03/31/2023).

92

https://grendelgames.com/automating-level-testing-with-ai/
https://grendelgames.com/automating-level-testing-with-ai/
http://www.theseus.fi/handle/10024/505977
https://doi.org/10.1145/3555858.3555879
https://dl.acm.org/doi/10.1145/3555858.3555879
https://dl.acm.org/doi/10.1145/3555858.3555879
https://er.knutd.edu.ua/bitstream/123456789/15306/1/ITPF2020_P232-235.pdf
https://er.knutd.edu.ua/bitstream/123456789/15306/1/ITPF2020_P232-235.pdf
https://doi.org/10.1109/ES.2017.45
https://doi.org/10.1109/ES.2017.45
https://gamedriver.io/
https://gamedriver.io/
https://huddle.eurostarsoftwaretesting.com/how-to-automate-unity-games-using-altunity-tester/
https://huddle.eurostarsoftwaretesting.com/how-to-automate-unity-games-using-altunity-tester/
https://doi.org/10.1145/3410404.3414249
https://dl.acm.org/doi/10.1145/3410404.3414249
https://dl.acm.org/doi/10.1145/3410404.3414249

REFERENCES

[53] Ruben Torres Bonet. Unity Immediate and the Art of Automating Playtests.
Game Developer. 2019. url: https://www.gamedeveloper.com/design/
unity-immediate-and-the-art-of-automating-playtests (visited on
07/02/2023).

[54] Zihe Song. «An Automated Framework For Gaming Platform To Test Multi-
ple Games». In: 2020 IEEE/ACM 42nd International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion). 2020 IEEE/ACM
42nd International Conference on Software Engineering: Companion Pro-
ceedings (ICSE-Companion). Oct. 2020, pp. 134–136.

[55] Simon Liu et al. «Automatic Generation of Tower Defense Levels Using PCG».
In: Proceedings of the 14th International Conference on the Foundations of
Digital Games. FDG ’19. New York, NY, USA: Association for Computing
Machinery, Aug. 26, 2019, pp. 1–9. isbn: 978-1-4503-7217-6. doi: 10.1145/
3337722.3337723. url: https://dl.acm.org/doi/10.1145/3337722.
3337723 (visited on 03/31/2023).

[56] Designbeep. Learn the Basics of Automated Game Testing - Designbeep.
2022. url: https://designbeep.com/2022/06/28/learn-the-basics-
of-automated-game-testing/ (visited on 07/02/2023).

[57] Markus Schatten, Bogdan Okreša Ðurić, and Igor Tomičić. «Towards an
Application Programming Interface for Automated Testing of Artificial
Intelligence Agents in Massively Multi-Player on-Line Role-Playing Games».
In: Central European Conference on Information and Intelligent Systems.
Faculty of Organization and Informatics Varazdin, 2018, pp. 11–15.

[58] Aghyad Albaghajati and Moataz Ahmed. «A Co-Evolutionary Genetic
Algorithms Approach to Detect Video Game Bugs». In: Journal of Sys-
tems and Software 188 (June 1, 2022), p. 111261. issn: 0164-1212. doi:
10.1016/j.jss.2022.111261. url: https://www.sciencedirect.com/
science/article/pii/S0164121222000292 (visited on 03/31/2023).

[59] Xiaoyin Wang. «VRTest: An Extensible Framework for Automatic Testing of
Virtual Reality Scenes». In: Proceedings of the ACM/IEEE 44th International
Conference on Software Engineering: Companion Proceedings. ICSE ’22. New
York, NY, USA: Association for Computing Machinery, Oct. 19, 2022,
pp. 232–236. isbn: 978-1-4503-9223-5. doi: 10.1145/3510454.3516870.
url: https://dl.acm.org/doi/10.1145/3510454.3516870 (visited on
03/30/2023).

[60] Johannes Pfau, Jan David Smeddinck, and Rainer Malaka. «Automated
Game Testing with ICARUS: Intelligent Completion of Adventure Rid-
dles via Unsupervised Solving». In: Extended Abstracts Publication of the
Annual Symposium on Computer-Human Interaction in Play. CHI PLAY

93

https://www.gamedeveloper.com/design/unity-immediate-and-the-art-of-automating-playtests
https://www.gamedeveloper.com/design/unity-immediate-and-the-art-of-automating-playtests
https://doi.org/10.1145/3337722.3337723
https://doi.org/10.1145/3337722.3337723
https://dl.acm.org/doi/10.1145/3337722.3337723
https://dl.acm.org/doi/10.1145/3337722.3337723
https://designbeep.com/2022/06/28/learn-the-basics-of-automated-game-testing/
https://designbeep.com/2022/06/28/learn-the-basics-of-automated-game-testing/
https://doi.org/10.1016/j.jss.2022.111261
https://www.sciencedirect.com/science/article/pii/S0164121222000292
https://www.sciencedirect.com/science/article/pii/S0164121222000292
https://doi.org/10.1145/3510454.3516870
https://dl.acm.org/doi/10.1145/3510454.3516870

REFERENCES

’17 Extended Abstracts. New York, NY, USA: Association for Comput-
ing Machinery, Oct. 15, 2017, pp. 153–164. isbn: 978-1-4503-5111-9. doi:
10.1145/3130859.3131439. url: https://dl.acm.org/doi/10.1145/
3130859.3131439 (visited on 03/31/2023).

[61] T-Plan. Game Test Automation - T-Plan. 2017. url: https://www.t-
plan.com/game-test-automation/ (visited on 07/02/2023).

[62] Bo Jiang, Wenlin Wei, Li Yi, and W.K. Chan. «DroidGamer: Android
Game Testing with Operable Widget Recognition by Deep Learning». In:
2021 IEEE 21st International Conference on Software Quality, Reliability
and Security (QRS). 2021 IEEE 21st International Conference on Software
Quality, Reliability and Security (QRS). Dec. 2021, pp. 197–206. doi: 10.
1109/QRS54544.2021.00031.

[63] Rosalia Tufano, Simone Scalabrino, Luca Pascarella, Emad Aghajani, Rocco
Oliveto, and Gabriele Bavota. «Using Reinforcement Learning for Load Test-
ing of Video Games». In: Proceedings of the 44th International Conference
on Software Engineering. ICSE ’22. New York, NY, USA: Association for
Computing Machinery, July 5, 2022, pp. 2303–2314. isbn: 978-1-4503-9221-1.
doi: 10.1145/3510003.3510625. url: https://dl.acm.org/doi/10.
1145/3510003.3510625 (visited on 03/30/2023).

[64] AltTester. AltTester - Test Automation Tools for Unity Apps and Games.
AltTester. 2022. url: https://alttester.com/alttester/ (visited on
07/02/2023).

[65] Adity M. Sidiq, Jati H. Husen, and Sri Widowati. «A Bot Approach-Based Ca-
pacity Testing Automation for Online Video Games». In: Jurnal ELTIKOM
: Jurnal Teknik Elektro, Teknologi Informasi dan Komputer 6.2 (Nov. 17,
2022), pp. 118–125. issn: 2598-3288. doi: 10.31961/eltikom.v6i2.550.
url: https://eltikom.poliban.ac.id/index.php/eltikom/article/
view/550 (visited on 03/31/2023).

[66] Sidra Iftikhar, Muhammad Zohaib Iqbal, Muhammad Uzair Khan, and
Wardah Mahmood. «An Automated Model Based Testing Approach for Plat-
form Games». In: 2015 ACM/IEEE 18th International Conference on Model
Driven Engineering Languages and Systems (MODELS). 2015 ACM/IEEE
18th International Conference on Model Driven Engineering Languages and
Systems (MODELS). Sept. 2015, pp. 426–435. doi: 10.1109/MODELS.2015.
7338274.

[67] Jesper Lehtinen. «Automated GUI Testing of Game Development Tools».
Metropolia Ammattikorkeakoulu, 2016.

94

https://doi.org/10.1145/3130859.3131439
https://dl.acm.org/doi/10.1145/3130859.3131439
https://dl.acm.org/doi/10.1145/3130859.3131439
https://www.t-plan.com/game-test-automation/
https://www.t-plan.com/game-test-automation/
https://doi.org/10.1109/QRS54544.2021.00031
https://doi.org/10.1109/QRS54544.2021.00031
https://doi.org/10.1145/3510003.3510625
https://dl.acm.org/doi/10.1145/3510003.3510625
https://dl.acm.org/doi/10.1145/3510003.3510625
https://alttester.com/alttester/
https://doi.org/10.31961/eltikom.v6i2.550
https://eltikom.poliban.ac.id/index.php/eltikom/article/view/550
https://eltikom.poliban.ac.id/index.php/eltikom/article/view/550
https://doi.org/10.1109/MODELS.2015.7338274
https://doi.org/10.1109/MODELS.2015.7338274

REFERENCES

[68] Samira Shirzadehhajimahmood, I. S. W. B. Prasetya, Frank Dignum, and
Mehdi Dastani. «An Online Agent-Based Search Approach in Automated
Computer Game Testing with Model Construction». In: Proceedings of the
13th International Workshop on Automating Test Case Design, Selection and
Evaluation. A-TEST 2022. New York, NY, USA: Association for Computing
Machinery, Nov. 9, 2022, pp. 45–52. isbn: 978-1-4503-9452-9. doi: 10.1145/
3548659.3561309. url: https://dl.acm.org/doi/10.1145/3548659.
3561309 (visited on 03/31/2023).

[69] Alessandro Sestini, Linus Gisslén, Joakim Bergdahl, Konrad Tollmar, and
Andrew D. Bagdanov. «Automated Gameplay Testing and Validation with
Curiosity-Conditioned Proximal Trajectories». In: IEEE Transactions on
Games (2022), pp. 1–14. issn: 2475-1510. doi: 10.1109/TG.2022.3226910.

[70] Markus Schatten, Igor Tomičić, Bogdan Okreša Ðurić, and Nikola Ivković.
«Towards an Agent-Based Automated Testing Environment for Massively
Multi-Player Role Playing Games». In: 2017 40th International Convention
on Information and Communication Technology, Electronics and Microelec-
tronics (MIPRO). 2017 40th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO).
May 2017, pp. 1149–1154. doi: 10.23919/MIPRO.2017.7973597.

[71] Sinan Arıyürek. «AUTOMATED VIDEO GAME TESTING USING REIN-
FORCEMENT LEARNING AGENTS». In: (2022).

[72] KMS SOLUTIONS. Level Up Your Testing Game With Automation Testing
Life Cycle. 2022. url: https://blog.kms-solutions.asia/level-up-
your-testing-game-with-automation-testing-life-cycle (visited on
07/02/2023).

[73] Haris Kljajic and Oskar Karlsson. Applying Automated Testing in an Existing
Client-Server Game: A Pursuit for Fault Localization in Quake 3. 2015.

[74] Sinan Ariyurek, Aysu Betin-Can, and Elif Surer. «Automated Video Game
Testing Using Synthetic and Humanlike Agents». In: IEEE Transactions
on Games 13.1 (Mar. 2021), pp. 50–67. issn: 2475-1510. doi: 10.1109/TG.
2019.2947597.

[75] Ville-Veikko Helppi. The Basics Of Test Automation For Apps, Games And
The Mobile Web. Smashing Magazine. 2015. url: https://www.smashingm
agazine.com/2015/01/basic-test-automation-for-apps-games-and-
mobile-web/ (visited on 07/02/2023).

95

https://doi.org/10.1145/3548659.3561309
https://doi.org/10.1145/3548659.3561309
https://dl.acm.org/doi/10.1145/3548659.3561309
https://dl.acm.org/doi/10.1145/3548659.3561309
https://doi.org/10.1109/TG.2022.3226910
https://doi.org/10.23919/MIPRO.2017.7973597
https://blog.kms-solutions.asia/level-up-your-testing-game-with-automation-testing-life-cycle
https://blog.kms-solutions.asia/level-up-your-testing-game-with-automation-testing-life-cycle
https://doi.org/10.1109/TG.2019.2947597
https://doi.org/10.1109/TG.2019.2947597
https://www.smashingmagazine.com/2015/01/basic-test-automation-for-apps-games-and-mobile-web/
https://www.smashingmagazine.com/2015/01/basic-test-automation-for-apps-games-and-mobile-web/
https://www.smashingmagazine.com/2015/01/basic-test-automation-for-apps-games-and-mobile-web/

REFERENCES

[76] Gabriel Lovreto, Andre T. Endo, Paulo Nardi, and Vinicius H. S. Durelli.
«Automated Tests for Mobile Games: An Experience Report». In: 2018
17th Brazilian Symposium on Computer Games and Digital Entertainment
(SBGames). 2018 17th Brazilian Symposium on Computer Games and Digital
Entertainment (SBGames). Oct. 2018, pp. 48–488. doi: 10.1109/SBGAMES.
2018.00015.

[77] Timea Pusok. How to: Automated Tests for Unity Mobile Apps with Appium
and AltUnity. Game Developer. Apr. 22, 2021. url: https://www.gamedeve
loper.com/programming/how-to-automated-tests-for-unity-mobile-
apps-with-appium-and-altunity (visited on 07/02/2023).

[78] Ciprian Paduraru and Miruna Paduraru. «Automatic Difficulty Management
and Testing in Games Using a Framework Based on Behavior Trees and
Genetic Algorithms». In: 2019 24th International Conference on Engineering
of Complex Computer Systems (ICECCS). 2019 24th International Confer-
ence on Engineering of Complex Computer Systems (ICECCS). Nov. 2019,
pp. 170–179. doi: 10.1109/ICECCS.2019.00026.

[79] Oleguer Canal Anton. «Automatic Game-Testing with Personality: Multi-
task Reinforcement Learning for Automatic Game-Testing». 2021. url:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-309091 (visited
on 03/31/2023).

[80] Yuechen Wu, Yingfeng Chen, Xiaofei Xie, Bing Yu, Changjie Fan, and
Lei Ma. «Regression Testing of Massively Multiplayer Online Role-Playing
Games». In: 2020 IEEE International Conference on Software Maintenance
and Evolution (ICSME). 2020 IEEE International Conference on Software
Maintenance and Evolution (ICSME). Sept. 2020, pp. 692–696. doi: 10.
1109/ICSME46990.2020.00074.

[81] Felix Nilsson and Jesper Nilsson. «Comparing Automated Testing Ap-
proaches for FPS Games». 2021.

[82] Masato Yamamoto, Evgeny Pyshkin, and Maxim Mozgovoy. «Reducing
False Positives in Automated OpenCV-based Non-Native GUI Software
Testing». In: Proceedings of the 3rd International Conference on Applications
in Information Technology. ICAIT’2018. New York, NY, USA: Association
for Computing Machinery, Nov. 1, 2018, pp. 41–45. isbn: 978-1-4503-6516-1.
doi: 10.1145/3274856.3274865. url: https://dl.acm.org/doi/10.
1145/3274856.3274865 (visited on 03/30/2023).

[83] Michail Ostrowski and Samir Aroudj. «Automated Regression Testing within
Video Game Development». In: GSTF Journal on Computing (JoC) 3.2
(July 23, 2013), p. 10. issn: 2010-2283. doi: 10.7603/s40601-013-0010-

96

https://doi.org/10.1109/SBGAMES.2018.00015
https://doi.org/10.1109/SBGAMES.2018.00015
https://www.gamedeveloper.com/programming/how-to-automated-tests-for-unity-mobile-apps-with-appium-and-altunity
https://www.gamedeveloper.com/programming/how-to-automated-tests-for-unity-mobile-apps-with-appium-and-altunity
https://www.gamedeveloper.com/programming/how-to-automated-tests-for-unity-mobile-apps-with-appium-and-altunity
https://doi.org/10.1109/ICECCS.2019.00026
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-309091
https://doi.org/10.1109/ICSME46990.2020.00074
https://doi.org/10.1109/ICSME46990.2020.00074
https://doi.org/10.1145/3274856.3274865
https://dl.acm.org/doi/10.1145/3274856.3274865
https://dl.acm.org/doi/10.1145/3274856.3274865
https://doi.org/10.7603/s40601-013-0010-4
https://doi.org/10.7603/s40601-013-0010-4

REFERENCES

4. url: https://doi.org/10.7603/s40601- 013- 0010- 4 (visited on
03/31/2023).

[84] Guoqing Liu, Mengzhang Cai, Li Zhao, Tao Qin, Adrian Brown, Jimmy
Bischoff, and Tie-Yan Liu. «Inspector: Pixel-Based Automated Game Testing
via Exploration, Detection, and Investigation». In: 2022 IEEE Conference
on Games (CoG). 2022 IEEE Conference on Games (CoG). Aug. 2022,
pp. 237–244. doi: 10.1109/CoG51982.2022.9893630.

[85] Tencent. Tencent/GAutomator: Automation for Mobile Games - GitHub.
Tencent, 2017. url: https://github.com/Tencent/GAutomator (visited
on 07/02/2023).

[86] Ke Chen, Yufei Li, Yingfeng Chen, Changjie Fan, Zhipeng Hu, and Wei
Yang. «GLIB: Towards Automated Test Oracle for Graphically-Rich Ap-
plications». In: Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering. ESEC/FSE 2021. New York, NY, USA: Association
for Computing Machinery, Aug. 18, 2021, pp. 1093–1104. isbn: 978-1-4503-
8562-6. doi: 10.1145/3468264.3468586. url: https://dl.acm.org/doi/
10.1145/3468264.3468586 (visited on 03/30/2023).

[87] Sasha Volokh and William G.J. Halfond. «Static Analysis for Automated
Identification of Valid Game Actions During Exploration». In: Proceedings of
the 17th International Conference on the Foundations of Digital Games. FDG
’22. New York, NY, USA: Association for Computing Machinery, Nov. 4,
2022, pp. 1–10. isbn: 978-1-4503-9795-7. doi: 10.1145/3555858.3555898.
url: https://dl.acm.org/doi/10.1145/3555858.3555898 (visited on
03/30/2023).

[88] Cong Lu, Raluca Georgescu, and Johan Verwey. «Go-Explore Complex
3D Game Environments for Automated Reachability Testing». In: IEEE
Transactions on Games (2022), pp. 1–6. issn: 2475-1510. doi: 10.1109/TG.
2022.3228401.

[89] Jiaming Ye, Ke Chen, Xiaofei Xie, Lei Ma, Ruochen Huang, Yingfeng Chen,
Yinxing Xue, and Jianjun Zhao. «An Empirical Study of GUI Widget
Detection for Industrial Mobile Games». In: Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. ESEC/FSE 2021. New York, NY,
USA: Association for Computing Machinery, Aug. 18, 2021, pp. 1427–1437.
isbn: 978-1-4503-8562-6. doi: 10.1145/3468264.3473935. url: https:
//dl.acm.org/doi/10.1145/3468264.3473935 (visited on 03/31/2023).

[90] Sampo Tuisku. «Automated Regression Testing for Cloud Based Mobile
Games». 2020.

97

https://doi.org/10.7603/s40601-013-0010-4
https://doi.org/10.7603/s40601-013-0010-4
https://doi.org/10.7603/s40601-013-0010-4
https://doi.org/10.7603/s40601-013-0010-4
https://doi.org/10.1109/CoG51982.2022.9893630
https://github.com/Tencent/GAutomator
https://doi.org/10.1145/3468264.3468586
https://dl.acm.org/doi/10.1145/3468264.3468586
https://dl.acm.org/doi/10.1145/3468264.3468586
https://doi.org/10.1145/3555858.3555898
https://dl.acm.org/doi/10.1145/3555858.3555898
https://doi.org/10.1109/TG.2022.3228401
https://doi.org/10.1109/TG.2022.3228401
https://doi.org/10.1145/3468264.3473935
https://dl.acm.org/doi/10.1145/3468264.3473935
https://dl.acm.org/doi/10.1145/3468264.3473935

REFERENCES

[91] Pablo García-Sánchez, Alberto Tonda, Antonio M. Mora, Giovanni Squillero,
and Juan Julián Merelo. «Automated Playtesting in Collectible Card Games
Using Evolutionary Algorithms: A Case Study in Hearthstone». In: Knowledge-
Based Systems 153 (Aug. 1, 2018), pp. 133–146. issn: 0950-7051. doi:
10.1016/j.knosys.2018.04.030. url: https://www.sciencedirect.
com/science/article/pii/S0950705118301953 (visited on 03/31/2023).

[92] Injung Lee, Hyunchul Kim, and Byungjoo Lee. «Automated Playtesting
with a Cognitive Model of Sensorimotor Coordination». In: Proceedings
of the 29th ACM International Conference on Multimedia. MM ’21. New
York, NY, USA: Association for Computing Machinery, Oct. 17, 2021,
pp. 4920–4929. isbn: 978-1-4503-8651-7. doi: 10.1145/3474085.3475429.
url: https://dl.acm.org/doi/10.1145/3474085.3475429 (visited on
03/31/2023).

[93] Atiya Nova, Stevie Sansalone, Raquel Robinson, and Pejman Mirza-Babaei.
«Charting the Uncharted with GUR: How AI Playtesting Can Supplement
Expert Evaluation». In: Proceedings of the 17th International Conference on
the Foundations of Digital Games. FDG ’22. New York, NY, USA: Association
for Computing Machinery, Nov. 4, 2022, pp. 1–12. isbn: 978-1-4503-9795-7.
doi: 10.1145/3555858.3555880. url: https://dl.acm.org/doi/10.
1145/3555858.3555880 (visited on 03/31/2023).

[94] Ciprian Paduraru, Miruna Paduraru, and Alin Stefanescu. «Automated
Game Testing Using Computer Vision Methods». In: 2021 36th IEEE/ACM
International Conference on Automated Software Engineering Workshops
(ASEW). 2021 36th IEEE/ACM International Conference on Automated
Software Engineering Workshops (ASEW). Nov. 2021, pp. 65–72. doi: 10.
1109/ASEW52652.2021.00024.

[95] Electronic Arts and Linus Gisslén. Re•Work 2021: Automated Game Testing
- EA Games. Electronic Arts Inc. 2021. url: https://www.ea.com/seed/
news/re-work-2021-automated-game-testing (visited on 07/02/2023).

[96] Christopher Schaefer, Hyunsook Do, and Brian M. Slator. «Crushinator: A
Framework towards Game-Independent Testing». In: 2013 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE). 2013
28th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE). Nov. 2013, pp. 726–729. doi: 10.1109/ASE.2013.6693143.

[97] Tommy Thompson. How Tom Clancy’s The Division Manages AI Online.
Game Developer. Dec. 10, 2018. url: https://www.gamedeveloper.com/
design/how-tom-clancy-s-the-division-manages-ai-online (visited
on 07/02/2023).

98

https://doi.org/10.1016/j.knosys.2018.04.030
https://www.sciencedirect.com/science/article/pii/S0950705118301953
https://www.sciencedirect.com/science/article/pii/S0950705118301953
https://doi.org/10.1145/3474085.3475429
https://dl.acm.org/doi/10.1145/3474085.3475429
https://doi.org/10.1145/3555858.3555880
https://dl.acm.org/doi/10.1145/3555858.3555880
https://dl.acm.org/doi/10.1145/3555858.3555880
https://doi.org/10.1109/ASEW52652.2021.00024
https://doi.org/10.1109/ASEW52652.2021.00024
https://www.ea.com/seed/news/re-work-2021-automated-game-testing
https://www.ea.com/seed/news/re-work-2021-automated-game-testing
https://doi.org/10.1109/ASE.2013.6693143
https://www.gamedeveloper.com/design/how-tom-clancy-s-the-division-manages-ai-online
https://www.gamedeveloper.com/design/how-tom-clancy-s-the-division-manages-ai-online

REFERENCES

[98] Mihail Morosan and Riccardo Poli. «Lessons from Testing an Evolutionary
Automated Game Balancer in Industry». In: 2018 IEEE Games, Enter-
tainment, Media Conference (GEM). 2018 IEEE Games, Entertainment,
Media Conference (GEM). Aug. 2018, pp. 263–270. doi: 10.1109/GEM.2018.
8516447.

[99] Auguste Jerlström. «Utilizing Input Simulation for Video Game Test Automa-
tion : A Case Study». 2022. url: http://urn.kb.se/resolve?urn=urn:
nbn:se:kth:diva-321473 (visited on 03/30/2023).

[100] Xudong Li, Dajun Zhou, Like Zhang, and Yanqing Jing. «Human-like UI
Automation through Automatic Exploration». In: Proceedings of the 2020
2nd International Conference on Big Data and Artificial Intelligence. ISBDAI
’20. New York, NY, USA: Association for Computing Machinery, Jan. 4,
2021, pp. 47–53. isbn: 978-1-4503-7645-7. doi: 10.1145/3436286.3436297.
url: https://dl.acm.org/doi/10.1145/3436286.3436297 (visited on
03/30/2023).

[101] J. Tuovenen, M. Oussalah, and P. Kostakos. «MAuto: Automatic Mobile
Game Testing Tool Using Image-Matching Based Approach». In: The Com-
puter Games Journal 8.3 (Dec. 1, 2019), pp. 215–239. issn: 2052-773X. doi:
10.1007/s40869-019-00087-z. url: https://doi.org/10.1007/s40869-
019-00087-z (visited on 03/30/2023).

[102] Maxim Mozgovoy and Evgeny Pyshkin. «A Comprehensive Approach to
Quality Assurance in a Mobile Game Project». In: Proceedings of the 14th
Central and Eastern European Software Engineering Conference Russia. CEE-
SECR ’18. New York, NY, USA: Association for Computing Machinery,
Oct. 12, 2018, pp. 1–8. isbn: 978-1-4503-6176-7. doi: 10.1145/3290621.
3290835. url: https://dl.acm.org/doi/10.1145/3290621.3290835
(visited on 03/31/2023).

[103] R. Ferdous, F. Kifetew, D. Prandi, I.S.W.B. Prasetya, S. Shirzadehhajimah-
mood, and A. Susi. «Search-Based Automated Play Testing of Computer
Games: A Model-Based Approach». In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) 12914 LNCS (2021), pp. 56–71. issn: 0302-9743. doi:
10.1007/978-3-030-88106-1_5.

[104] Tommy Thompson. The Secret AI Testers inside Tom Clancy’s The Division.
Game Developer. 2020. url: https://www.gamedeveloper.com/design/
the-secret-ai-testers-inside-tom-clancy-s-the-division (visited
on 07/02/2023).

99

https://doi.org/10.1109/GEM.2018.8516447
https://doi.org/10.1109/GEM.2018.8516447
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-321473
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-321473
https://doi.org/10.1145/3436286.3436297
https://dl.acm.org/doi/10.1145/3436286.3436297
https://doi.org/10.1007/s40869-019-00087-z
https://doi.org/10.1007/s40869-019-00087-z
https://doi.org/10.1007/s40869-019-00087-z
https://doi.org/10.1145/3290621.3290835
https://doi.org/10.1145/3290621.3290835
https://dl.acm.org/doi/10.1145/3290621.3290835
https://doi.org/10.1007/978-3-030-88106-1_5
https://www.gamedeveloper.com/design/the-secret-ai-testers-inside-tom-clancy-s-the-division
https://www.gamedeveloper.com/design/the-secret-ai-testers-inside-tom-clancy-s-the-division

REFERENCES

[105] Ru Cindrea. AltUnityTester – Testing Unity Games and Apps Using Appium.
SmartBear.com. 2018. url: https://smartbear.com/blog/guest-blog-
testing-unity-games-using-appium/ (visited on 07/02/2023).

[106] David Andrade. «Designing Cloud-Based Gameplay Automation: Exploratory
Software Testing, Game State-Analysis, and Test-Driven Development (TDD)
Applied to Robotic Process Automation (RPA)». In: International Journal
of Intelligent Computing Research 13 (June 30, 2022), pp. 1125–1135. doi:
10.20533/ijicr.2042.4655.2022.0137.

[107] Raphaël Marczak, Jasper van Vught, Gareth Schott, and Lennart E. Nacke.
«Feedback-Based Gameplay Metrics: Measuring Player Experience via Au-
tomatic Visual Analysis». In: Proceedings of The 8th Australasian Confer-
ence on Interactive Entertainment: Playing the System. IE ’12. New York,
NY, USA: Association for Computing Machinery, July 21, 2012, pp. 1–10.
isbn: 978-1-4503-1410-7. doi: 10.1145/2336727.2336733. url: https:
//dl.acm.org/doi/10.1145/2336727.2336733 (visited on 03/31/2023).

[108] Jennifer Hernández Bécares, Luis Costero Valero, and Pedro Pablo Gómez
Martín. «An Approach to Automated Videogame Beta Testing». In: En-
tertainment Computing 18 (Jan. 1, 2017), pp. 79–92. issn: 1875-9521. doi:
10.1016/j.entcom.2016.08.002. url: https://www.sciencedirect.
com/science/article/pii/S1875952116300234 (visited on 03/31/2023).

[109] Seungjin Kwon, Jaehyun Ahn, Hyukgeun Choi, Jiho Jeon, Doyoung Kim,
Hoyeon Kim, and Shinjin Kang. «Analytical Framework for Facial Expression
on Game Experience Test». In: IEEE Access 10 (2022), pp. 104486–104497.
issn: 2169-3536. doi: 10.1109/ACCESS.2022.3210712.

[110] Simon Varvaressos, Kim Lavoie, Sébastien Gaboury, and Sylvain Hallé.
«Automated Bug Finding in Video Games: A Case Study for Runtime
Monitoring». In: Computers in Entertainment 15.1 (Mar. 1, 2017), 1:1–1:28.
doi: 10.1145/2700529. url: https://dl.acm.org/doi/10.1145/2700529
(visited on 03/31/2023).

[111] Timothy Ryan. AB Split Testing Hell or Highwater. Game Developer. Dec. 21,
2016. url: https://www.gamedeveloper.com/programming/ab-split-
testing-hell-or-highwater (visited on 07/02/2023).

[112] Ross Mawhorter and Adam Smith. «Softlock Detection for Super Metroid
with Computation Tree Logic». In: Proceedings of the 16th International
Conference on the Foundations of Digital Games. FDG ’21. New York,
NY, USA: Association for Computing Machinery, Oct. 21, 2021, pp. 1–10.
isbn: 978-1-4503-8422-3. doi: 10.1145/3472538.3472542. url: https:
//dl.acm.org/doi/10.1145/3472538.3472542 (visited on 03/30/2023).

100

https://smartbear.com/blog/guest-blog-testing-unity-games-using-appium/
https://smartbear.com/blog/guest-blog-testing-unity-games-using-appium/
https://doi.org/10.20533/ijicr.2042.4655.2022.0137
https://doi.org/10.1145/2336727.2336733
https://dl.acm.org/doi/10.1145/2336727.2336733
https://dl.acm.org/doi/10.1145/2336727.2336733
https://doi.org/10.1016/j.entcom.2016.08.002
https://www.sciencedirect.com/science/article/pii/S1875952116300234
https://www.sciencedirect.com/science/article/pii/S1875952116300234
https://doi.org/10.1109/ACCESS.2022.3210712
https://doi.org/10.1145/2700529
https://dl.acm.org/doi/10.1145/2700529
https://www.gamedeveloper.com/programming/ab-split-testing-hell-or-highwater
https://www.gamedeveloper.com/programming/ab-split-testing-hell-or-highwater
https://doi.org/10.1145/3472538.3472542
https://dl.acm.org/doi/10.1145/3472538.3472542
https://dl.acm.org/doi/10.1145/3472538.3472542

REFERENCES

[113] I.S.W.B. Prasetya et al. «Navigation and Exploration in 3D-game Automated
Play Testing». In: A-TEST 2020 - Proceedings of the 11th ACM SIGSOFT
International Workshop on Automating TEST Case Design, Selection, and
Evaluation, Co-located with ESEC/FSE 2020. 2020, pp. 3–9. isbn: 978-1-
4503-8101-7. doi: 10.1145/3412452.3423570.

[114] Joakim Bergdahl, Camilo Gordillo, Konrad Tollmar, and Linus Gisslén.
«Augmenting Automated Game Testing with Deep Reinforcement Learning».
In: 2020 IEEE Conference on Games (CoG). 2020 IEEE Conference on
Games (CoG). Aug. 2020, pp. 600–603. doi: 10.1109/CoG47356.2020.
9231552.

[115] QAble Testlab. 9 Different Types of Game Testing Techniques - Testbytes.
Testbytes. Mar. 6, 2022. url: https://www.testbytes.net/ (visited on
07/02/2023).

[116] Bultman Aaron. A Complete Guide to Game Testing - Its Types and Pro-
cesses. 2022. url: https://www.headspin.io/blog/game-testing-a-
complete-guide-to-its-types-and-processes (visited on 07/02/2023).

[117] Johnny Lam. Testing Mobile Games | Perfecto by Perforce. 2021. url:
https://www.perfecto.io/blog/testing-mobile-games (visited on
07/02/2023).

[118] Game Testing - Wikipedia. In: Wikipedia. 2022. url: https://en.wikipe
dia.org/w/index.php?title=Game_testing&oldid=1162271871 (visited
on 07/02/2023).

[119] Avanish Pandey. Game Testing | 13 Types of Techniques for Game Testing.
Astaqc Consulting. Feb. 4, 2023. url: https://astaqc.com/software-
testing- blog/game- testing- 13- types- of- techniques- for- game-
testing/ (visited on 07/02/2023).

[120] Testscenario. Types of Game Testing - Testscenario. 2022. url: https://www.
testscenario.com/types-of-game-testing/ (visited on 07/02/2023).

[121] Johan Hoberg. Game Testing: Exploring the Test Space. Game Developer.
Aug. 21, 2014. url: https://www.gamedeveloper.com/programming/
game-testing-exploring-the-test-space (visited on 07/02/2023).

[122] Antonio Torres. 5 Different Types of Game Testing Techniques. Game
Developer. May 22, 2019. url: https : / / www . gamedeveloper . com /
design/5- different- types- of- game- testing- techniques (visited
on 07/02/2023).

[123] pflb. Performance Testing for Online Games and Game Servers. Dec. 21,
2021. url: https://pflb.us/blog/performance-testing-for-online-
games-and-game-servers/ (visited on 07/02/2023).

101

https://doi.org/10.1145/3412452.3423570
https://doi.org/10.1109/CoG47356.2020.9231552
https://doi.org/10.1109/CoG47356.2020.9231552
https://www.testbytes.net/
https://www.headspin.io/blog/game-testing-a-complete-guide-to-its-types-and-processes
https://www.headspin.io/blog/game-testing-a-complete-guide-to-its-types-and-processes
https://www.perfecto.io/blog/testing-mobile-games
https://en.wikipedia.org/w/index.php?title=Game_testing&oldid=1162271871
https://en.wikipedia.org/w/index.php?title=Game_testing&oldid=1162271871
https://astaqc.com/software-testing-blog/game-testing-13-types-of-techniques-for-game-testing/
https://astaqc.com/software-testing-blog/game-testing-13-types-of-techniques-for-game-testing/
https://astaqc.com/software-testing-blog/game-testing-13-types-of-techniques-for-game-testing/
https://www.testscenario.com/types-of-game-testing/
https://www.testscenario.com/types-of-game-testing/
https://www.gamedeveloper.com/programming/game-testing-exploring-the-test-space
https://www.gamedeveloper.com/programming/game-testing-exploring-the-test-space
https://www.gamedeveloper.com/design/5-different-types-of-game-testing-techniques
https://www.gamedeveloper.com/design/5-different-types-of-game-testing-techniques
https://pflb.us/blog/performance-testing-for-online-games-and-game-servers/
https://pflb.us/blog/performance-testing-for-online-games-and-game-servers/

REFERENCES

[124] QAble Testlab. 7 Different Types of Game Testing Techniques - QAble.
QAble. Mar. 8, 2021. url: https://www.qable.io/7-different-types-
of-game-testing-techniques/ (visited on 07/02/2023).

[125] Zoheb Khan. Game Testing: Importance, Types, Techniques, Tools and
Benefits. 2021. url: https://www.bugraptors.com/blog/game- test
ing-importance-types-techniques-tools-and-benefits (visited on
07/02/2023).

[126] Sergey Almyashev. What Tools Do You Need for Automation Video Game
Testing? Dec. 20, 2021. url: https://zapple.tech/blog/test-automat
ion-frameworks/what-tools-do-you-need-to-automate-video-game-
testing/ (visited on 07/02/2023).

[127] Mammoth-AI. Finding Bugs in Game Testing - Mammoth-AI. Mammoth-AI.
Aug. 5, 2021. url: https://www.mammoth-ai.com/finding-bugs-in-
game-testing/ (visited on 07/02/2023).

[128] Game-Ace. Your Ultimate Guide to Game Testing - Game-Ace. Game-Ace.
2021. url: https://game- ace.com/blog/guide- to- game- testing/
(visited on 07/02/2023).

[129] Johan Hoberg. Differences between Software Testing and Game Testing.
Game Developer. July 21, 2014. url: https://www.gamedeveloper.com/
programming / differences - between - software - testing - and - game -
testing (visited on 07/02/2023).

[130] ISO 25010. url: https://iso25000.com/index.php/en/iso- 25000-
standards/iso-25010 (visited on 07/04/2023).

[131] Virtusa. Mobile Game Testing Services | Virtusa. 2021. url: https://www.
virtusa.com/solutions/mobile-game-testing (visited on 07/02/2023).

[132] Huixian Hu and Lu Lu. «Automatic Functional Testing of Unity 3D Game
on Android Platform». In: 2016 3rd International Conference on Materials
Engineering, Manufacturing Technology and Control. Atlantis Press, Apr.
2016, pp. 1136–1140. isbn: 978-94-6252-173-5. doi: 10.2991/icmemtc-
16.2016.225. url: https://www.atlantis-press.com/proceedings/
icmemtc-16/25852327 (visited on 03/31/2023).

[133] modl.ai. Modl:Test | Automated Game Testing Using AI Bots. modl.ai |
AI Engine for game development. 2021. url: https://modl.ai/our_
products/modl-test/ (visited on 07/02/2023).

[134] Vadeesh Budramane. Gaming Test Automation - AlgoShack. AlgoShack.
Aug. 16, 2022. url: https://www.algoshack.com/gaming-test-automat
ion/ (visited on 07/02/2023).

[135] Selenium. Selenium. url: https://www.selenium.dev/ (visited on 07/05/2023).

102

https://www.qable.io/7-different-types-of-game-testing-techniques/
https://www.qable.io/7-different-types-of-game-testing-techniques/
https://www.bugraptors.com/blog/game-testing-importance-types-techniques-tools-and-benefits
https://www.bugraptors.com/blog/game-testing-importance-types-techniques-tools-and-benefits
https://zapple.tech/blog/test-automation-frameworks/what-tools-do-you-need-to-automate-video-game-testing/
https://zapple.tech/blog/test-automation-frameworks/what-tools-do-you-need-to-automate-video-game-testing/
https://zapple.tech/blog/test-automation-frameworks/what-tools-do-you-need-to-automate-video-game-testing/
https://www.mammoth-ai.com/finding-bugs-in-game-testing/
https://www.mammoth-ai.com/finding-bugs-in-game-testing/
https://game-ace.com/blog/guide-to-game-testing/
https://www.gamedeveloper.com/programming/differences-between-software-testing-and-game-testing
https://www.gamedeveloper.com/programming/differences-between-software-testing-and-game-testing
https://www.gamedeveloper.com/programming/differences-between-software-testing-and-game-testing
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://www.virtusa.com/solutions/mobile-game-testing
https://www.virtusa.com/solutions/mobile-game-testing
https://doi.org/10.2991/icmemtc-16.2016.225
https://doi.org/10.2991/icmemtc-16.2016.225
https://www.atlantis-press.com/proceedings/icmemtc-16/25852327
https://www.atlantis-press.com/proceedings/icmemtc-16/25852327
https://modl.ai/our_products/modl-test/
https://modl.ai/our_products/modl-test/
https://www.algoshack.com/gaming-test-automation/
https://www.algoshack.com/gaming-test-automation/
https://www.selenium.dev/

REFERENCES

[136] Appium. url: https://appium.io/docs/en/2.0/ (visited on 07/06/2023).
[137] Robotium. RobotiumTech, May 27, 2023. url: https://github.com/

RobotiumTech/robotium (visited on 07/06/2023).
[138] Test Apps on Android. Android Developers. url: https://developer.

android.com/training/testing (visited on 07/06/2023).
[139] Tesseract OCR. tesseract-ocr, July 5, 2023. url: https://github.com/

tesseract-ocr/tesseract (visited on 07/05/2023).
[140] OpenCV. OpenCV. url: https://opencv.org/ (visited on 07/06/2023).
[141] iv4XR. GitHub. url: https://github.com/iv4xr-project (visited on

07/06/2023).
[142] Unity Technologies. Unity Test Framework for Video Game Development

| QA & Testing | Unity. url: https://unity.com/how-to/unity-test-
framework-video-game-development (visited on 07/06/2023).

[143] Automation System Overview. url: https://docs.unrealengine.com/4.2
7/en-US/TestingAndOptimization/Automation/ (visited on 07/05/2023).

[144] POCO. url: https://github.com/AirtestProject/Poco (visited on
07/05/2023).

[145] Hearthstone. url: https://hearthstone.blizzard.com/en-us (visited
on 07/05/2023).

[146] AirTest. How to Test Games Based on the Unity3D Engine. 2020. url: https:
//airtest.doc.io.netease.com/en/tutorial/11_test_Unity3D_game/
(visited on 07/02/2023).

[147] Pablo Fernández Alcantarilla, Adrien Bartoli, and Andrew J. Davison.
«KAZE Features». In: Computer Vision – ECCV 2012. Ed. by Andrew
Fitzgibbon, Svetlana Lazebnik, Pietro Perona, Yoichi Sato, and Cordelia
Schmid. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
2012, pp. 214–227. isbn: 978-3-642-33783-3. doi: 10.1007/978-3-642-
33783-3_16.

[148] Home > xUnit.Net. url: https://xunit.net/ (visited on 07/05/2023).
[149] UnityActionAnalysis: Automatically Analyze the Input-Handling Code of

Unity Games to Determine Valid Game Actions. url: https://github.
com/USC-SQL/UnityActionAnalysis (visited on 07/06/2023).

[150] WAV. In: Wikipedia. July 6, 2023. url: https://en.wikipedia.org/w/
index.php?title=WAV&oldid=1163811156 (visited on 07/07/2023).

[151] Online Audio Converter | Convert Your Audio Files to MP3, WAV, FLAC,
OGG and More. url: https://onlineaudioconverter.com/ (visited on
07/07/2023).

103

https://appium.io/docs/en/2.0/
https://github.com/RobotiumTech/robotium
https://github.com/RobotiumTech/robotium
https://developer.android.com/training/testing
https://developer.android.com/training/testing
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
https://opencv.org/
https://github.com/iv4xr-project
https://unity.com/how-to/unity-test-framework-video-game-development
https://unity.com/how-to/unity-test-framework-video-game-development
https://docs.unrealengine.com/4.27/en-US/TestingAndOptimization/Automation/
https://docs.unrealengine.com/4.27/en-US/TestingAndOptimization/Automation/
https://github.com/AirtestProject/Poco
https://hearthstone.blizzard.com/en-us
https://airtest.doc.io.netease.com/en/tutorial/11_test_Unity3D_game/
https://airtest.doc.io.netease.com/en/tutorial/11_test_Unity3D_game/
https://doi.org/10.1007/978-3-642-33783-3_16
https://doi.org/10.1007/978-3-642-33783-3_16
https://xunit.net/
https://github.com/USC-SQL/UnityActionAnalysis
https://github.com/USC-SQL/UnityActionAnalysis
https://en.wikipedia.org/w/index.php?title=WAV&oldid=1163811156
https://en.wikipedia.org/w/index.php?title=WAV&oldid=1163811156
https://onlineaudioconverter.com/

REFERENCES

[152] Michael T. Heideman, Don H. Johnson, and C. Sidney Burrus. «Gauss
and the History of the Fast Fourier Transform». In: Archive for History
of Exact Sciences 34.3 (Sept. 1, 1985), pp. 265–277. issn: 1432-0657. doi:
10.1007/BF00348431. url: https://doi.org/10.1007/BF00348431
(visited on 07/08/2023).

104

https://doi.org/10.1007/BF00348431
https://doi.org/10.1007/BF00348431

	List of Tables
	List of Figures
	Acronyms
	Summary
	Multi-Vocal Literature review
	Sound testing

	Introduction
	Importance of tests in video games
	Game design growth
	Importance of testing
	Literature gap

	Background
	Software testing
	Manual testing
	Automated testing
	Automated vs Manual testing

	Video game testing
	Sound testing
	iv4XR

	Literature review
	Multivocal Systematic Literature Review
	Secondary studies
	Planning phase
	Conducting
	Research questions
	Acquiring data
	Acquisition of search results
	Inclusion criteria
	Quality assurance
	Snowballing

	Results
	RQ1.1 - Testing Levels
	RQ1.2 - Testing goals
	RQ1.3 - Metrics
	RQ2.1 - Tools and approaches
	RQ2.2 - Bugs Discovered

	Considerations

	Sound testing
	River Game and iv4XR
	Implementation
	Sound recognizer system
	Integration with iv4xr

	Future work
	Literature review enhancements
	Advancements in Audio Testing
	Expanding Case Studies
	Improvements in sound recognition
	Integration of Speech-to-Text testing

