
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Permanent Fault Injection and
Selective Hardening of Real Time

Operating Systems

Supervisors Candidate

Prof. Alessandro Savino Giovanni De Florio
Prof. Maurizio Rebaudengo

July, 2023

Acknowledgements

I would like to thank Professor Alessandro Savino for allowing me to work on
this research thesis and especially for the wonderful and important in-depth
technical discussions I was able to have with him, who was available through-
out the course of the thesis so that I could grow professionally along with the
project.

The most important thanks go to my family, my parents, my sister, and
my grandmother for always supporting me and allowing me to sustain this
course of study, for living with me the happy moments and the difficult ones,
for always believing in me unconditionally; the same thanks go to my girl-
friend Rita, for being the beacon that has illuminated my path, teaching me
day after day what commitment, sacrifice, to do what is right means.

I would also like to thank my friend Claudio with whom I have shared the
challenges and satisfactions of this course of study and especially for the
laughter.

Abstract

Real-Time Operating Systems (RTOS) are designed to provide deterministic
response within predefined time limits. This implies the ability to reliably
and predeterminedly manage the flow of events and operations in an elec-
tronic system.
Real-time Operating Systems are widely used in applications that require
strict control of execution time, such as industrial control systems, medical
equipment, autonomous vehicles, safety-critical systems and more. However,
when the hardware on which the operating system is based is affected by
ionizing radiation, such as during cosmic radiation events or failures in high-
radiation environments, undesirable, even severe, effects may occur. There-
fore, it becomes necessary to adopt a set of mitigation techniques at both the
hardware and software levels.
Before these mitigation techniques can be applied, it is essential to conduct a
thorough analysis of the behavior of real-time operating systems affected by
radiation, also using empirical data.
For the thesis project, a permanent fault injection model was implemented
to simulate the effects that irreversibly damage the electronic system. This
model is completely software-based and requires no additional hardware other
than that on which the injection environment is run. This offers the advan-
tage of creating a test environment without the need for testing on physical
systems.
Specifically, the goal of the research is to simulate permanent injections on
the data structures of the FreeRTOS real-time operating system (regardless of
version) and to develop fault mitigation techniques for that operating system.

i

Contents

Abstract ii

1 Introduction 1
1.1 Ionizing Radiation . 1

1.1.1 Environment Sources 2
1.1.2 Solar cycle . 3

2 Single Event Effects 4
2.1 Introduction . 4
2.2 Classification . 4

2.2.1 Non-destructive . 5
2.2.2 Destructive . 5

3 Real-Time Systems 9
3.1 Introduction . 9
3.2 Approaches to Achieving Real Time 9

3.2.1 Hardware . 9
3.2.2 Bare-Metal Firmware 10
3.2.3 Operating Systems . 10

3.3 FreeRTOS . 11
3.3.1 Characteristics of the Operating System 12
3.3.2 Simulator . 14

4 Fault Injection 15
4.1 Preliminary Concepts . 16

4.1.1 Definitions . 16
4.2 Environment . 16

4.2.1 The Orchestrator Process 16
4.2.2 The Golden Execution 17
4.2.3 Target extraction . 17

iii

5 Permanent Fault Injection Model 19
5.1 Introduction . 19
5.2 Clauses . 19
5.3 Implementation strategies . 20
5.4 Project structure . 24
5.5 Design and Implementation of the Kernel Modification Infras-

tructure . 26
5.6 ReinstatePermanentF function 27
5.7 Regular expression and pattern matching 30
5.8 Probability Distribution . 36
5.9 Function rand & Box-Muller transform 41

6 Experimental results 45
6.1 Introduction . 45
6.2 Operational groups . 46
6.3 Benchmarks . 47
6.4 Results of permanent fault injection campaigns 49
6.5 Results of transient fault injection campaigns 68

7 Conclusion 78

A Hardening 79
A.1 Introduction . 79
A.2 Error Correction Code (ECC) 80
A.3 Hamming Code . 81
A.4 Data Redundancy as a Solution for Data Integrity and Data

Recovery . 84

iv

Chapter 1

Introduction

For animal species, including humans, the surrounding environment has al-
ways presented a significant challenge. When we think of progress, we refer to
the paradigms and means created by humans through intellect to overcome
the challenges and limitations imposed by nature. One of the most current
and representative examples of human progress is the computer, or more
precisely, electronics and information technology, which find applications in
various fields and significantly support each of our lives, directly or indirectly.
Thus, progress in its various forms aims to address natural limits and miti-
gate their extremes. For example, consider human mortality: increasing the
average lifespan of humans has always been a goal of medicine, and electronic
systems play a leading role in supporting this objective, as seen in diagnos-
tic machines (e.g., imaging diagnostics). Another significant example is the
exploration of environments such as space, which were otherwise inaccessible
but have been reached through the development of means in which electronic
systems play a fundamental role.

1.1 Ionizing Radiation

Therefore, it is clear that electronic devices are bastions of progress, but
their ability to withstand the hostile universe is an ongoing and progressive
challenge between human intellect and the laws and composition of nature.
A significant challenge for electronic systems, especially in space where it is
particularly affected, is represented by ionizing radiation, which refers to radi-
ation with sufficient energy to remove electrons from atoms or molecules, thus
creating electrically charged ions. This type of radiation can be particularly
harmful to electronic systems, even rendering them completely inoperable [1],

1

a topic that will be further discussed in the next chapter.

1.1.1 Environment Sources

The main sources of ionizing radiation are:

• Trapped protons and electrons in the Van Allen belts
[2] The Van Allen belts are two regions of charged particles that sur-
round the Earth, forming a magnetic field around our planet. These
belts are named after the physicist James Van Allen, who discovered
them in 1958 during the early space flights with the Explorer satellites.
The two main belts are the inner Van Allen belt and the outer Van
Allen belt.

The inner Van Allen belt extends approximately 1,000-5,000 kilometers
above the Earth’s surface. It mainly contains protons and high-energy
particles called cosmic rays. This region is particularly hazardous for
satellites and astronauts due to its high density of energetic particles.

The outer Van Allen belt extends approximately 15,000-25,000 kilome-
ters above the Earth and is primarily composed of high-energy electrons.
This belt is influenced by interactions between the solar wind (a stream
of particles emitted by the Sun) and the Earth’s magnetic field. The
electrons in the outer Van Allen belt can be dangerous for low Earth
orbit satellites.

• Heavy ions trapped in the magnetosphere
The Earth has a magnetic field generated by the molten metallic core
of the planet. This magnetic field extends into space and forms the
Earth’s magnetosphere, which extends up to several tens of thousands
of kilometers into space from the planet’s surface.

The magnetosphere traps heavy ions, such as iron or carbon. These ions
can have a significant impact on space equipment due to their greater
mass and penetration potential.

• Cosmic protons and heavy ions
These particles come from sources such as supernova explosions. They
can reach very high energies and pose a challenge for the protection of

2

space missions.

• Protons and heavy ions originating from solar flares
Solar flares are violent eruptions on the surface of the Sun that release
tremendous amounts of energy. During a solar flare, protons and heavy
ions can be emitted at very high speeds.

1.1.2 Solar cycle

The levels of major natural sources of ionizing radiation are influenced by
solar activity, and therefore by the solar cycle [3]. The solar cycle, also known
as the magnetic solar activity cycle, sunspot cycle, or Schwabe cycle, is an
almost periodic change of 11 years in the Sun’s activity, measured in terms
of variations in the number of sunspots observed on the surface of the Sun.
During the span of a solar cycle, the levels of solar radiation and solar material
ejections, the number and size of sunspots, solar flares, and coronal loops all
exhibit a synchronized fluctuation from a period of minimum activity to a
period of maximum activity and back to a period of minimum activity.
The Sun’s magnetic field undergoes a reversal during each solar cycle, with
the reversal occurring when the solar cycle is near its maximum. After two
solar cycles, the Sun’s magnetic field returns to its original state, completing
what is known as the Hale cycle.

3

Chapter 2

Single Event Effects

2.1 Introduction

Single event effects (SEE) are individual events that occur when a single
incident ionizing particle deposits enough energy to cause an effect in a device.
SEE are one of two phenomena that cause damage to electronic devices, the
other is the total ionizing dose (TID) which instead of being a single event
due to a single particle, is a long-term cumulative degradation of a device
exposed to ionizing radiation[4].
The conditions of the devices affected by SEE depend on the incident particle
and the specific device therefore different types of SEE can occur, which may
not generate any observable consequence, or a simple transient bit flip as well
as they could lead to the permanent fault of the device.
Therefore, the treatment of SEE and the analysis of the consequences arising
from these plays a fundamental role when dealing with electronic systems,
especially when dealing with ”mission critical” systems, i.e. systems that
play a key role in the operation of a complex system or a vital mission.
”Mission critical” systems can involve a wide range of sectors such as aviation,
defense, medicine, public safety and aerospace, and therefore for these systems
reliability and safety are essential and any malfunction or interruption could
have serious consequences, such as loss of human lives or significant damage.

2.2 Classification

It is essential to understand the differences between the different categories
of SEE in order to correctly assess the level of risk and adopt appropriate

4

measures to mitigate their effects.

In general, we can classify SEE into two categories: non-destructive and
destructive[5].

2.2.1 Non-destructive

Single Event Upset (SEU) Single Event Upset (SEU) is a phenomenon
that occurs in electronic circuits when a high-energy charged particle
hits a memory cell or a logic component, causing a temporary distur-
bance in the state of the device. This disturbance can lead to an error
or a change in the value of the data stored or processed by the device[6].
The effect of SEUs depends on the sensitivity of the hit device. Mod-
ern semiconductor technologies, such as CMOS (Complementary Metal-
Oxide-Semiconductor) technology, are particularly vulnerable to SEUs.
In CMOS devices, an SEU can cause the generation of free charge pairs
that can induce a disturbance in the normal operation of the circuit. An
example of a disturbance due to an SEU is a bit-flip or bit inversion. A
bit flip occurs when an SEU causes a change in the value of a single bit
within a data stored or processed by the device. For example, a ”0” bit
could be flipped to a ”1” bit or vice versa. Bitflips can be problematic
because they can cause errors in calculations or in data storage. If a bit
needed for an operation is flipped, the final result might be wrong.

Single Hard Error (SHE) is an SEU which causes a permanent change to
the operation of a device. An example is a permanent stuck bit in a
memory device[7].

Single Event Functional Interrupt (SEFI) is a condition where the de-
vice stops normal functions, and usually requires a power reset to re-
sume normal operations. It is a special case of SEU changing an internal
control signal [8].

2.2.2 Destructive

Single Event Latch-up (SEL) When an energetic particle hits a critical
point of the device, such as a transistor, it can cause a transient voltage
and current. This transient can lead to the formation of an unwanted
short circuit between the power supply and the system ground. The

5

short circuit causes a very high current flow through the device, as
the transistor behaves as an effective connection between the power
supply and ground. This high current can cause the device to overheat,
damaging or destroying internal components[9].

The components most affected by SEL are generally high-voltage bipo-
lar transistors, such as bipolar junction transistors (BJT) and isolation
bipolar transistors (BIT). These transistors are sensitive to the effects
of high-energy particles and can undergo a short circuit between the
emitter and base or between the collector and base.

Other components that can be affected by SEL include high-voltage
MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistor), CMOS
(Complementary Metal Oxide Semiconductor) devices, and high-power
bipolar devices.

Latch-up, which is the undesired state in which the device remains
locked at a high current even after the energetic particle has left the
system, can occur due to positive feedback within the device. Posi-
tive feedback is a phenomenon in which the output signal of a system
is fed back and amplified, contributing to further increasing the input
signal. In other words, when positive feedback is present, a change in
the input signal causes a response that further amplifies that change,
creating a cycle of continuous amplification. Once latch-up occurs, the
device may remain in a malfunctioning state until the latch-up current
is interrupted. During latch-up, the system can experience a series of
unwanted effects. The high current can cause the malfunction of circuit
components, such as switches, amplifiers, microprocessors, or other in-
tegrated circuits. In some cases, the device may also be permanently
damaged, making it unusable. It is important to note that the SEL phe-
nomenon is often more frequent in high radiation environments, such as
in space or in aeronautical applications. However, it can also occur in
terrestrial environments, although with a lower probability.

Single Event Burnout (SEB) The fault of the Single Event Burnout (SEB)
is caused by the high voltage or current that occurs in the device. This
type of fault mainly affects high voltage transistors and power devices
used in high power applications such as DC-DC converters, inverters,
motor controllers, power supplies and other similar devices. When a
radiation energy pulse hits the device, a sudden increase in the collector
current can occur that exceeds the device’s dissipation capacity. This

6

can lead to local thermal fault, resulting in permanent damage or even
destruction of the device itself. High-voltage and power devices are de-
signed to handle high levels of voltage and current. However, in high
radiation environments such as those in space or nuclear research, SEB
represents a significant threat. It is important to emphasize that SEB
can cause a rapid and destructive collapse of the device, with serious
consequences. Furthermore, it is useful to distinguish SEB from Single
Event Latchup (SEL). While SEB often leads to a rapid and destruc-
tive collapse of the device, SEL can cause damage to electronic circuits
without completely destroying the device[10].

Single-Event Gate Rupture (SEGR) SEGR is caused by the interaction
between ionizing particles and the gate oxide of a MOSFET. When an
ionizing particle crosses the gate oxide, it creates electron-hole pairs,
generating localized charges. These localized charges can accumulate
near the gate oxide and create an electric field strong enough to break
the oxide layer. The gate oxide is a critical component of a MOSFET
as it serves as an insulating layer between the gate electrode and the
channel region. When the oxide

layer breaks, the gate loses the ability to control the current flow through
the channel, leading to malfunction or permanent damage to the de-
vice. SEGR can cause various fault mechanisms, including gate rup-
ture (physical rupture of the gate oxide), gate leakage (decrease in gate
control effectiveness due to the accumulation or dispersion of localized
charges) or even catastrophic collapse.

Single Event Snapback (SESB) It is a phenomenon that occurs in some
semiconductor devices, such as p-n junction diodes and MOSFETs (Metal
Oxide Semiconductor Field Effect Transistor), when they are subject to
a high-voltage or high-current transient event. During a transient event,
such as an overvoltage or overcurrent, the voltage or current through
the device exceeds nominal values. In response to this overload, the
device enters a high-current conduction state. However, once the tran-
sient event ends and normal operating conditions are restored, the de-
vice should return to the off state, where the current through it is very
low. The Single Event Snapback phenomenon occurs when, instead of
returning to the off state, the device remains in a high-current con-
duction state. Single Event Snapback can lead to device malfunction,
overheating or even its destruction.

7

Single Event Dielectric Rupture (SEDR) During a SEDR, the dielec-
tric material is unable to handle the amount of energy applied and a
rupture in its structure occurs. Dielectric materials are electrical insu-
lators that are used to separate conductive components within an elec-
tronic device, providing electrical insulation and protection from short
circuits. The rupture can manifest itself through a variety of mech-
anisms, such as the formation of an electric arc or the creation of a
conductive channel through the dielectric. SEDR can lead to a system
fault where the dielectric material is present.

8

Chapter 3

Real-Time Systems

3.1 Introduction

Any system that has a deterministic response to a given event can be con-
sidered ”real-time.” If a system is considered to fail when it doesn’t meet
a timing requirement, it must be real-time. How failure is defined (and the
consequences of a failed system) can vary widely. It is extremely important to
realize that real-time requirements can vary widely, both in the speed of the
timing requirement and also the severity of consequences if the required real-
time deadlines are not met[11]. There are many different ways of achieving
real-time behavior[12].

3.2 Approaches to Achieving Real Time

3.2.1 Hardware

Building specific hardware systems remains an important solution when there
are precise requirements or needs for quick timings. This type of system can be
implemented using discrete digital logic, analog components, or Application-
Specific Integrated Circuits (ASICs). Options for programmable logic devices
that can be used include Programmable Logic Devices (PLDs), Complex Pro-
grammable Logic Devices (CPLDs), and Field-Programmable Gate Arrays
(FPGAs). A hardware-based real-time system can cover a wide range of
applications, such as analog filters, closed-loop control, and simple state ma-
chines up to complex video codecs. When designed with a focus on power
conservation, an ASIC can consume less power compared to a solution based
on a microprogrammed control unit (MCU). However, there are also several

9

disadvantages in developing real-time hardware systems. These include the
lack of flexibility of non-programmable devices, difficulty in finding experts
with specific hardware skills (compared to software/firmware developers), and
the high cost of devices such as developing a custom ASIC[13].

3.2.2 Bare-Metal Firmware

Bare-metal firmware refers to software that runs directly on the hardware
without a complete operating system. In this approach, the programmer
writes code directly to control hardware resources, such as registers, timers,
interrupts, etc. This gives complete and deterministic control over the system.
Bare-metal firmware is particularly suited when there are a few relatively sim-
ple tasks to perform or a single, monolithic task. If the firmware is designed in
a focused manner and best practices are followed, deterministic performance
can be easily measured and guaranteed thanks to the reduced number of
interrupt interactions. In some extreme cases, when working with microcon-
trollers heavily constrained in terms of memory space, bare-metal firmware
might be the most viable solution. However, when bare-metal firmware be-
comes more complex and needs to handle events that occur asynchronously,
it can become challenging to ensure proper synchronization and management
of such events. In these cases, it starts to be advantageous to consider the
use of a Real-Time Operating System (RTOS) to ensure the correctness and
reliability of the system.

3.2.3 Operating Systems

Operating Systems (OS) provide a level of abstraction between the hardware
and user programs, offering services such as memory management, process
management, I/O device management, and implementation of security poli-
cies. A Real-Time Operating System (RTOS) is a special kind of operat-
ing system designed for executing applications with stringent timing require-
ments. Unlike general-purpose operating systems, an RTOS is able to guar-
antee that certain processes are run within a specific time, making them par-
ticularly useful for time-critical applications. RTOSs typically run on boards
with a Memory Management Unit (MMU) that manages the access to physical
memory by running programs. This allows the operating system to isolate
the execution of various processes, preventing one process from interfering
with the memory used by another process, thus increasing the robustness

10

of the system. The use of an RTOS has various advantages over the use
of bare-metal firmware, especially when dealing with complex systems with
multiple asynchronous processes. However, using an RTOS also introduces
an overhead, both in terms of memory resources needed to run the operating
system and in terms of CPU time needed to handle the operating system ser-
vices. It is important to note that the choice of using an RTOS or bare-metal
firmware largely depends on the specifics of the project, timing, performance
requirements, and the complexity of the system to be implemented.

3.3 FreeRTOS

FreeRTOS is an open-source real-time operating system designed for embed-
ded systems.
There are several advantages to using FreeRTOS, including:

1. Reliability: FreeRTOS is known for its stability and reliability. It
has been widely used in a range of real-time critical applications, such
as medical devices, automobiles, industrial control systems, and many
more. Its rigorous design and lightweight architecture allow reliable
execution of real-time tasks and processes without compromising the
system’s overall performance.

2. Compact Size: FreeRTOS is designed to be highly resource-efficient.
The binary image of FreeRTOS is usually very small and requires a
minimal amount of system memory. This makes it suitable for resource-
limited devices, like microcontrollers and microprocessors with little
memory space.

3. Scalability: FreeRTOS is highly scalable and can be used in systems
with varying levels of complexity. It can be configured to execute pri-
ority tasks deterministically, allowing efficient management of real-time
constraints. It also supports both preemptive and cooperative schedul-
ing, allowing designers to adapt the system’s behavior to the specific
needs of the application.

4. Wide Range of Features: FreeRTOS offers a range of useful features,
such as task and queue management, event management, semaphores,
mutexes, and more. These features simplify the development of complex
applications and allow for better code organization.

11

5. Active Community and Support: FreeRTOS has a very active de-
veloper and user community that provides support, answers questions,
and contributes to system improvement. There are discussion forums,
detailed documentation, and a wide range of examples available to help
developers quickly start and resolve any issues they might encounter
during development.

In summary, using FreeRTOS offers reliability, resource efficiency, scalability,
and a wide range of features, making it a popular choice for developing real-
time embedded systems.

3.3.1 Characteristics of the Operating System

1. Task Scheduler

The task scheduler is a fundamental component of the FreeRTOS ker-
nel. It is responsible for scheduling and executing tasks based on their
priority and system needs. FreeRTOS supports both preemptive and co-
operative scheduling, allowing for great flexibility in task management.
In preemptive mode, the highest priority task that is ready for execu-
tion is always run. This means that if a higher priority task becomes
ready for execution, it will immediately interrupt the execution of the
current task. In cooperative mode, on the other hand, a task continues
to run until it explicitly yields control. This mode requires careful task
design to avoid conditions where a lower priority task might block a
higher priority one[14].

2. Tick Interrupt

FreeRTOS uses a tick interrupt to track the passage of time. The tick
interrupt is a hardware timer that generates an interrupt at regular
intervals, typically every 1 millisecond. This tick interrupt is used to
update task lists (like the Delayed Task List), track task execution time,
and trigger processor reallocation by the scheduler.

3. Memory Management

FreeRTOS offers several options for memory management, including dy-
namic and static memory management. In addition, FreeRTOS includes
a memory allocator that supports fragmentation and allows developers

12

to implement their own memory management logic if necessary. Devel-
opers can also choose between different allocation schemes, like First
Fit, Best Fit, or

Worst Fit, depending on their specific needs.

4. Task Control Block (TCB)

Each task in FreeRTOS is associated with a Task Control Block (TCB).
The TCB contains important information about the task’s state, such
as priority, status (ready, blocked, or suspended), the stack pointer, and
other control information. The TCB is crucial for the task scheduler to
determine which task should be run next.

5. Ready List and Delayed Task List

FreeRTOS maintains two main lists for task management: the Ready
List and the Delayed Task List. The Ready List contains tasks that
are ready for execution, while the Delayed Task List contains tasks that
are waiting or blocked. These lists allow the scheduler to plan task
execution efficiently.

6. Queue Management

FreeRTOS provides queue management functionality for passing data
and signals between tasks. Queues are used to implement inter-task
communication mechanisms and to synchronize task execution. Each
queue has an associated buffer for data storage and a set of pointers for
controlling access to the data.

7. Synchronization Primitives

Synchronization primitives, such as semaphores and mutexes, are pro-
vided by FreeRTOS to coordinate task execution. These mechanisms
are crucial for avoiding race conditions and ensuring the correct execu-
tion of tasks in multi-thread environments.

8. Interrupt Management

FreeRTOS generally has good support for interrupt management, allow-
ing developers to leverage the power of hardware interrupts to respond
promptly to external events. Interrupts can be used to awaken waiting
tasks and to trigger the execution of specific functions.

13

9. System Calls

FreeRTOS provides a set of system calls to interact with the kernel
and manage tasks, queues, semaphores, interrupts, and other system
features. These system calls offer a high-level programming interface
that simplifies the development of complex applications[15].

3.3.2 Simulator

Within the FreeRTOS archive, you can find a port for POSIX and Windows,
but for our purposes, we will focus on the POSIX one as we will be dealing
with running FreeRTOS in a Linux environment.
Through this porting, also known as a simulator, it will be possible to exper-
iment with FreeRTOS and develop applications, provided an approximation
of real-time behaviors, because the hardware interrupts will be simulated and
imprecise and rely on the underlying operating system (Linux in our case).
The POSIX porting layer can be found in the folder:
FreeRTOS/Source/portable/ThirdParty/GCC/Posix

It consists of port.c, which is the heart of the simulator, portmacro.h, and
the utils folder, which in turn contains wait for event.c\.h. One of the
main points to consider in the porting system is task management. FreeR-
TOS is a real-time operating system based on tasks. These tasks need to be
executed in some way in the POSIX environment. This is done by mapping
each FreeRTOS task onto a POSIX thread. Furthermore, in the porting sys-
tem, interrupt management is very important. When porting FreeRTOS to
Linux, these interrupts are mapped onto POSIX signals. For instance, the
timer interrupt might be mapped onto a SIGALRM signal in Linux. Another
important aspect of porting is managing interaction with the standard C li-
brary. Some functions from this library can cause synchronization issues or
deadlock if not handled correctly. This is a particular problem in the context
of a multitasking system like FreeRTOS, where multiple tasks might attempt
to access the same resource simultaneously. To handle this, the porting must
ensure that functions like printf are used by only one task at a time, hence
access to these functions is serialized.

14

Chapter 4

Fault Injection

In previous chapters, we understood that one of the most significant chal-
lenges concerning electronic systems exposed to ionizing radiation is single
event effects. Furthermore, we also learned that Real Time Operating Sys-
tems (RTOS) are widely used when dealing with electronic systems. There-
fore, it becomes necessary to mitigate the effects and, most importantly, the
damages caused by these single events.
Before thinking about effective mitigation, however, we need to take an ad-
ditional step, i.e., conducting an analysis supported by experimental verifica-
tions on the effects caused by SEE on electronic systems. This allows us to
intervene both on the hardware and software side to strengthen the systems,
making them fault-tolerant.
The most effective way is undoubtedly to expose a certain number of test
electronic systems in the same hostile natural environments in which the
systems we are interested in protecting are employed. Clearly, this implies
enormous costs, as it would involve sending several systems into orbit for
testing purposes, which would be prohibitively expensive. A less costly, but
still expensive alternative, is to conduct tests in experimental environments
with machines that artificially produce ionizing radiation.
There are several cost limitations to these approaches, not only in terms of
economic cost but also in terms of the required energy, etc.
Therefore, what we explore in this thesis is a purely software solution that
simulates the behavior of a real-time operating system working on a device
hit by SEE. This allows us to perform analyses supported by various experi-
mental tests without the aid of any additional device other than the computer
on which we run the simulation environment.

15

4.1 Preliminary Concepts

4.1.1 Definitions

• Fault: A fault represents a defect or a failure in the system. A fault can
be caused by human errors, hardware failures, external interferences, or
other factors[16]. For example, a fault can be a defective hardware
component.

• Failure: A failure represents the observable effect produced by a fault
in the system[16]. A failure can manifest as a system crash, unexpected
behavior, error output, or malfunction detectable by the end-user. For
example, a failure can be an application that suddenly crashes or a
system that no longer responds to user requests.

• Error: An error represents the human action or process that leads to
the introduction of a fault in the system[16]. Errors can be made during
the design, implementation, testing, or maintenance of the system. Er-
rors can include wrong design choices, programming errors, omissions,
entering incorrect data, or any other human action that leads to a fault.
For example, an error can be a programmer who introduces a bug in
the code or an operator who enters incorrect data into the system.

4.2 Environment

The following discusses the starting project which was the basis on which I
developed this thesis.

4.2.1 The Orchestrator Process

The project I started from is based on the FreeRTOS simulator in a Linux
environment running parallel to an injector thread that simulates the effects
on the operating system of an SEU, particularly on the FreeRTOS data struc-
tures.
The project allows for the creation of multiple simulations, each starting from
a process (and this aspect can be used to parallelize the injections).
The simulation starts from a main process, called the orchestrator, which will
give rise to as many children as there are injections to manage within an in-
jection campaign.

16

Each child process, in turn, will give rise to: threads for the FreeRTOS in-
stance (the FreeRTOS simulator uses multiple concurrent threads but not
in parallel, because each POSIX thread is used to manage the context of a
FreeRTOS task) and an injector thread for the bit flip on the data structures.
The use of multiple threads within the same process means that they share
the addressing space and consequently that the injector thread has access to
the FreeRTOS instance data structures launched by that process.

4.2.2 The Golden Execution

To determine whether a fault injection has caused a failure in the execution of
a task launched on simulated FreeRTOS, it could be sufficient to observe the
output produced at the end of the execution of the FreeRTOS instance and
see if it corresponds to the desired output. But if we want to do an analysis
on the errors and failures induced by the injection then it will be necessary
to compare data (such as execution time) between the system execution with
injection and a clean execution i.e., free of injections and therefore of faults,
the Golden execution.
This is because, most likely, since the injections are launched on the data
structures of the FreeRTOS kernel and not on the local data of the tasks, the
errors usually do not cause variations in the output of the task as much as, for
example, in the times to be respected (remember that this is a fundamental
issue for a real-time operating system).
Therefore, the base project contains a command to start a golden execution,
and at the end of this, create a file in which the execution time in nanoseconds
is written in the first line (i.e., the time between the launch of the FreeRTOS
instance and the moment it ends following the production of the output by
the tasks) and in the following lines, the output generated by the tasks is
reported.

4.2.3 Target extraction

The recovery of the targets to inject takes place during the execution of the
simulator through a set of functions that have been added to the FreeRTOS
kernel; it is important to stress the fact that the base project was therefore
based on a modified FreeRTOS kernel, not a virgin one precisely because one
of the objectives achieved in my thesis is to provide a tool where one does not
have to worry about manually modifying the FreeRTOS kernel on which one

17

wants to run the tests, but on the contrary, a user of the injection environment
should simply load a FreeRTOS kernel of choice into the project folder.
Returning to the functioning of target extraction, functions of the modified
kernel are used to fill a globally accessible list (and therefore to the injector
thread) with information about the targets (through a target t structure).
For each target, the target t structure stores details such as the name, address,
size, and type of the target itself. These data are used during the injection
phase to calculate the memory address of the target.
It is important to note that most of FreeRTOS’s data structures are declared
as static, which means they cannot be referenced directly. Therefore, through
the developed functions, it is possible to read and retrieve the injection targets
using the globally accessible list. This approach allows access to information
about the injection targets at the start of the execution, allowing them to be
listed and the final injection addresses for each target to be calculated.

18

Chapter 5

Permanent Fault Injection
Model

5.1 Introduction

The objective of this thesis focuses on complementing the simulator discussed
in the previous sections with a model of permanent fault injection, i.e., sim-
ulating a Single Event Effect (SEE) with permanent effects such as Single
Hard Error (SHE), which ”burns” memory bits used by kernel data struc-
tures, preventing further modifications of these throughout the execution of
a FreeRTOS instance. Clearly, this involves additional considerations com-
pared to the implementation of a transient fault model, as in the transient
fault model, once a bit of a data structure is modified, it is legitimate within
the context of an injection simulation for the bit to be modified again by the
operating system. The same cannot be said if we want to simulate the be-
havior of a bit subject to permanent failure and therefore should not change
its value for an entire execution of a FreeRTOS instance.

5.2 Clauses

A concept that has accompanied the development of this project from its
foundations is versatility. Indeed, creating a model that works on a modified
operating system could be an end in itself. We must not forget that the goal
is to have a simulated fault injection that produces effects on the simulated
operating system, similar to those that would be obtained in the presence of
hardware failure. Therefore, the environment must be able to work smoothly

19

on different versions of the kernel in order to cover a broader range of elec-
tronic systems on board different versions of the operating system.
This leads to other considerations, namely the number and degree of modi-
fications that can be tolerated in the design phase for the project to be ap-
preciable. To be more explicit, it might be more interesting to have a larger
number of additional lines of code in the kernel that involve a low overhead
cost, rather than adding a smaller number of lines of code but having a higher
overhead cost. However, an opposite approach might also be preferred.
The advantages and disadvantages of the two policies are as follows:
In the case of the insertion of a substantial number of lines but with lower
overhead, we would have a simulation closer to a real fault situation (which
affects an original system) precisely because the changes would not be very
costly in performance terms. This would not make, from a performance point
of view, a custom system that implements policies to simulate the perma-
nence of a bit-stuck, very different from an original one.
On the other hand, adding a substantial number of lines would limit the pos-
sibility of the fault simulator being exported for other kernel versions that are
not those for which it was developed. This is due to the fact that it would
mean applying from scratch all the necessary modifications for that system
to simulate faults.
The problem expressed does not arise with the permanent fault model. In-
deed, even the Single Event Upsets (SEUs) already implemented in the base
project require, as explained in the previous paragraphs, a certain number
of changes that result in a difficulty in exporting the test environment for
different kernel versions.
The best solution would therefore be to have the right trade-off between the
number of changes and the computational cost that these entail, trying to
limit both as much as possible.

5.3 Implementation strategies

The following are the thought processes that led me to choose one strategy
for the implementation of the permanent fault model over others:

1. The first reasoning centered on the timer for ticks. The tick timer in
the FreeRTOS port for POSIX is managed by the function vPortSys-
temTickHandler (whose body is located in port.c) which is the func-
tion that calls xTaskIncrementTick which serves to increment the tick

20

counter.
Therefore, the idea to implement a permanent fault model could have
been to also call a function that, at each tick, modifies the variable
of the kernel on which the permanent injection has been carried out,
taking into account precisely the bit that should have remained at a
given value. In this way, it does not matter if a variable is modified at a
certain instant by any kernel function (in particular it does not matter
if the bit of interest for the injection is modified), since at the next tick
that bit will be reset to the value decided at the injection phase.
This approach, as simple and apparently resolving as it may seem, actu-
ally hides numerous pitfalls. The first concerns the problem of overhead,
clearly making a modification to a variable at each tick increases the
overhead. The main problem, however, is due to the fact that the in-
structions of the FreeRTOS kernel are not atomic within a single tick,
and this therefore means that there can be multiple writes and reads
within the same tick. Therefore, a possible scenario (reasoning sup-
ported by experimental checks) is that a variable is injected, then mod-
ified by a kernel function and before the tick counter is triggered and
therefore we arrive at the next tick, that this variable is read effectively
with the possibility that the injected bit has undergone a variation, thus
nullifying the permanence of the fault.
Therefore, a way to ensure that, following an injection on a variable,
the modification of a variable by a kernel function and a subsequent
reading do not fall within the same tick (so as to allow the rewriting of
the bit of interest from the injection before a reading) can be to increase
the frequency of the tick rate. By increasing the frequency of the tick,
we would also reduce the time between one injection restoration (mod-
ifying the bit to the value of the injection) and another. So the result
we would have is that it would be much less likely that, given a kernel
modification to a variable, it would then be read within the same tick,
improbable but not impossible.
So we would fall into a situation of non-determinism and this ”solu-
tion” would not be cost-effective either, this due to the disadvantages
that a high tick rate entails. The tick rate is set in the FreeRTOS
configuration file: FreeRTOSConfig.h changing the value to the con-
figTICK RATE HZ macro and usually this value is kept at 1 kHz or at
most 10 KHz. Increasing it on the simulator to obtain a desirable effect
would mean taking it to at least 100 KHz; this has a significant disad-

21

vantage, i.e., the simulation would only apply to systems that work with
the tick rate at 100 KHz and therefore we would not have a versatile
solution, i.e., a free simulation for different systems.

In general, as mentioned previously, embedded systems with FreeRTOS
onboard do not operate with a high tick rate due to these reasons:

• Higher energy consumption: A higher tick rate requires a higher
frequency of interrupts and task execution, which can result in
higher energy consumption. This can be a critical problem in
battery-powered or energy-saving embedded systems, where en-
ergy efficiency is a priority.

• Reduced available resources: A higher tick rate means that the pro-
cessor has to dedicate more time to running the operating system,
reducing the time available for other tasks or for the main appli-
cation computation. This can limit the computational resources
available for performance-critical applications.

• Increased latency: With a higher tick rate, tasks are executed at
a higher frequency, but there may be additional delays due to in-
terrupts and context switching operations. This can increase the
latency of critical operations and affect the real-time performance
of the system.

• Design complexity: A higher tick rate requires greater attention
to system design. It is necessary to ensure that tasks are designed
efficiently to meet the required execution times and that resources
are managed correctly. This may require more design effort and
testing to ensure that the system works correctly.

Therefore, the non-determinism of this solution and the fact that it
restricts the discussion to little-used systems (with high tick rates) leads
us to discard this solution.

2. The first solution centered on the use of a timer, i.e., the tick timer.

A second possible approach would be to use an injector thread that
continuously rewrites FreeRTOS’s memory (shared) and thus continu-
ously applies the same injection on the same kernel variable in a sort of
polling, a mirror view, therefore, to that of the interrupts.
The negative implications here are easy to imagine, we would fall into a

22

concurrency problem with the implications that this brings, for example,
we can imagine interference problems due to the hierarchical models of
multi-core processors. Therefore, it would be necessary to use synchro-
nization mechanisms that provide that after each kernel modification
to an injected variable, control is given from the kernel thread to the
injector one so that it reapplies the changes and releases control to the
kernel and so on; this type of behavior would lead to a substantial modi-
fication of the kernel, moreover, the execution (as the kernel would have
to yield control to the injector) would be disturbed.

3. The third possibility is very interesting and would be very appropriate
if it did not clash with the limits of C.

The third possibility concerns operator overloading, i.e., the possibility
of assigning programmer-pleasing behaviors to operators such as as-
signment operators. This idea might prove interesting from the point of
view of realization in more modern languages like C++ and Rust but
C unfortunately does not provide the possibility to change behavior to
operators and being the FreeRTOS kernel programmed in C it is not
possible to try to apply this idea.
So the solution would be based on the fact of modifying the behavior
of certain operators such as assignment operators of the real-time op-
erating system kernel; in this way, the normal assignment operator ’=’
besides assigning normally to the operand on its left the result of the
expression on its right, would immediately reapply the injection modi-
fication.
So it would be possible through operator overloading to modify only the
behavior of certain operators without the need to change much of the
rest of the kernel code.

4. A fourth possibility, like the first, considers the use of timers, but this
time not the tick timer.
Therefore, it would be possible to use a specific timer different from the
one for ticks and make this work at a high frequency, leaving the tick
timer unchanged.
Here too, we would have heavy overhead and therefore we would impact
on a normal simulated execution, heavily burdening the FreeRTOS ker-
nel.
We should also consider that the timers of the FreeRTOS simulator for
Linux (as well as that for Windows) are not based on a hardware-based

23

interrupt but on a high-priority thread based on the Clock of the op-
erating system on which FreeRTOS is simulated, so we do not have a
true real-time behavior on simulated FreeRTOS, and this introduces a
certain uncertainty and inaccuracy in the use of timers.

5. The fifth idea for the realization of the permanent fault model was the
road that I actually considered as winning and therefore undertook for
the realization of the model.

This is based on the realization of a software infrastructure that auto-
matically modifies the original FreeRTOS kernel by applying the nec-
essary changes to obtain the desired behavior of permanent faults in
the presence of a fault injection; this approach ensures that we do not
have to worry about the number of extra lines that will be added to
the original kernel but only about the computational costs that derive
from these. Moreover, this approach is designed to work on the differ-
ent versions of the FreeRTOS kernel. More specifically, the behavior of
permanence will be obtained by adding a function call after each mod-
ification of a variable (within the kernel). In this way, it is possible to
obtain a deterministic behavior since it is ensured that after every write
operation that occurs on the kernel side of a variable, the operation
following the rewrite will take into account the injection and therefore
simply reapply the fault to the bit.
So after each clean write operated by the kernel and only after a clean
write has actually occurred, there will be a subsequent rewrite to reap-
ply the bit fault modification. In this way, it will not be possible for
a clean write not taking into account the fault and a read not to have
first re-applied the permanence and nor will it be possible for there to
be more injection modifications (to reapply the permanence) between a
clean write and another and this clearly makes the overhead minimal.

5.4 Project structure

The thesis project basically consists of 3 folders:

• The Source folder which contains the original kernel of FreeRTOS which
will be automatically modified to allow fault injections

• The FreeRTOS folder which is the folder that will contain the modified
FreeRTOS kernel

24

• And the simulator folder that contains the folder with the modified port-
ing files of FreeRTOS for linux (which will replace the original one) and
thus allows the simulation of FreeRTOS; moreover, the simulator folder
contains all the files needed for fault injections that are not attributable
to the kernel and are therefore external to the kernel.

In the main folder beyond these 3 folders, we have the script file for the com-
pilation compile posix.sh, the CMakeLists.txt file and some useful csv for the
injections, these will be explained in more detail later.

Going into detail about the simulator folder, the most important files and
folders are:

• main.c
It is the heart of the project, in fact, here is the code that the main pro-
cess (i.e., Orchestrator) starts executing, so the code for the commands
accepted by the fault injection simulator is written here.

• main blinky.c
This file retains the name of the example code of the FreeRTOS simu-
lator for Linux, in fact, it is used to run the benchmark code which in
our case runs a qsort on words taken from an external file; therefore, it
is nothing but the activity that FreeRTOS will execute whether it is a
golden execution or an execution with injection.

• The injection folder

– injection.c
From the name itself, it can be inferred that it is a fundamental
file regarding injections on the data structures of the FreeRTOS
kernel, in fact, it is the file where the code is specified on how to
reconstruct the memory address (starting from the target in the
global list) on which to perform the injection. In particular, inter-
cepting the memory address on which to carry out the injection
changes depending on whether the target of interest on which you
want to carry out the injection is a list, a pointer or a variable of
another type.

• The posix folder

25

– fork.c
file where the code regarding the creation and management of child
processes concerning POSIX is written.

– thread.c
This file contains the code to launch the injector thread.

• mod kern.c/mod kern.h
These files are the heart of the permanent fault model and are used to
modify the kernel appropriately to have the behavior of fault persistence
but are also fundamental for transient faults as they generally deal with
preparing the kernel for injections (modifying it accordingly).

• perma fault.c/perma fault.h
These files contain the body and the heading of the ReinstatePerma-
nentF function which is used to reapply the fault after a modification to
the injected target, by the kernel. The ReinstatePermanentF function
and its behavior will be explained in more detail in the next paragraphs.

• targets.csv
file that contains the targets for which to call the ReinstatePermanentF
function after each modification before the kernel compilation. Poten-
tially, therefore, all possible targets should be there to have the widest
range of possible runtime injections.

5.5 Design and Implementation of the Kernel
Modification Infrastructure

As we have said, the behavior of permanent fault injections within this the-
sis project is inevitably linked to changes made to the kernel that precede
the kernel compilation phase. The changes, as mentioned in previous para-
graphs, are automated for the purpose of allowing to hide the implementation
details on the kernel side of the injection infrastructure and therefore make it
immediately usable for any user, starting from an original kernel, the injec-
tion simulation on FreeRTOS. To pursue these goals, the idea was to mod-
ify the scripting file that started the compilation of the project creating the
sim.out executable. The scripting file that started the compilation in question
is compile posix.sh and with appropriate modifications now serves the pur-
pose of recursively deleting the contents of the FreeRTOS folder (if present)

26

which contains the kernel already modified previously then within FreeRTOS
it moves a copy of the kernel in the Source folder (which is the folder contain-
ing an intact FreeRTOS kernel). The steps just mentioned are useful for not
causing conflict between modifications already applied to the kernel with new
modifications and this is useful when some kernel modification file is modified.
Therefore at this point we find ourselves in the condition of having a copy
of the original kernel in the FreeRTOS folder but clearly the source has not
been removed because it will be useful if we want to recompile everything. At
this point, compile posix.sh begins to make the first modifications to the ker-
nel, keeping in mind that only an initial part of the modifications (i.e., those
that involve moving files and folders) will be operated by compile posix.sh.
The first folder to insert into the original kernel is the porting folder, this
is already present but modifications have been applied that allow the execu-
tion of the injector threads (for each instance the injector is one, the plural
refers to the execution of multiple instances such as for example in the cam-
paign or in general in the execution of multiple runs). The modified porting
folder is located inside the simulator folder, so compile posix.sh takes care of
removing the porting folder from the FreeRTOS kernel to be modified and
in its place puts a copy of the folder with modifications. The last files that
we will need to move are perma fault.c and perma fault.h which contain the
injection function that will interest the FreeRTOS files where the structures
that are possible targets are contained. At this point, we need to intervene
on the kernel code, for this we will use a modification process produced by an
executable that we will produce from the files mod kern.c and mod kern.h.
So through this executable, the files for the injections will be modified for
example tasks.c and timers.c adding the files to import for injections for ex-
ample perma fault.h, the code with the information on the data structures
for the production of the global list of targets and of course the calls to the
ReinstatePermanentF function. Only after the kernel modification process
has finished will the fault simulator compilation process start so that the
Orchestrator process can be started through the sim.out executable.

5.6 ReinstatePermanentF function

The ReinstatePermanentF function, where the name stands for (Reinstate
Permanent Fault), is the function that takes care of reintroducing into a
kernel variable the modification suffered due to a permanent fault injection,
and is used to simulate the persistent effect of a permanent fault. In other

27

words, every time the kernel variable is genuinely modified by the kernel but
subsequently to a permanent injection, the effect will be that the kernel will
call the ReinstatePermanentF function which takesinto account the injection
and modifies the bit marked by the injection to the value that this has induced,
thus reintroducing the injection.
From a logical point of view, what needs to happen in order to reapply a
permanent fault modification will depend on the value we intend to restore
for the bit hit by the injection.

Figure 5.1: Example of action of the ReinstatePermanentF function that re-
applies the modification of the injected bit by setting it to 1.

As can be seen in the image above, to reintroduce a fault to a bit in a way
that maintains the value 1, we will have to do a bitwise ”or” between a value
that is likely to have a size of 1 Byte (in which only the bit in the position
of interest by the fault will appear as 1) and the byte of the injected variable
(for which we are reintroducing the fault).
Please note that for the bit flip of an SEU, we do not use bitwise or but
bitwise xor because in the case where the bit at 1 of the mask corresponds
to a bit at 1 in the variable to be injected, then in that case the bit should
invert and therefore become 0, an effect that we do not want when we decide
to inject 1 in a given bit even if 1 is already present.

28

Figure 5.2: Example of action of the ReinstatePermanentF function that re-
applies the modification of the injected bit by setting it to 0.

To introduce persistence with a value set to 0, we will instead need an extra
step, in fact we will need to do a bitwise not on the value to be injected and
then we will do a bitwise and between the obtained value and the byte where
to reintroduce the modification, of the desired kernel variable.
To reintroduce the injection, we will therefore need to use auxiliary kernel
variables.
One variable will therefore be the mask, i.e., it will contain the bit to be
injected set to 1 and the other bits to 0. Another auxiliary kernel variable
that we are interested in using will be the one that contains the memory
address of the kernel variable on which we are interested in carrying out the
injection. In fact, what happens in the code is that in the injection phase, the
injector thread, in addition to injecting the kernel variable on which we want
to carry out a permanent injection, will make two other injections: it will set
the mask (which is a new kernel variable introduced in the automatic kernel
modification phase) and will set in another auxiliary variable (also introduced
in the automatic kernel modification phase) the memory address starting from
the byte that we are interested in considering, of the injected variable.

29

5.7 Regular expression and pattern matching

To identify the assignment patterns or modification of a FreeRTOS kernel
variable, to which it is necessary to follow the call to the f function, I chose
to use the POSIX library: regex.h.
The regex or regular expressions in formal language theory are a represen-
tation of regular languages (type 3 languages according to Noam Chomsky’s
classification).
In general, a language is nothing more than a set of strings that we are in-
terested in considering, the strings of this set (the language of interest) can
be described by a grammar i.e., by an alphabet (set of symbols) and by rules
(also called productions);

Regular languages will be described by grammars with productions in the
form:

Figure 5.3: Representation of the productions of regular language grammars

Regular languages are the simplest languages to deal with in Chomsky’s
classification and are the languages that require a worst-case computational
cost lower to solve the membership problem; the pattern-matching algorithm
of our interest is largely reducible to the membership problem, i.e., the prob-
lem in which given a string we want to know if this is part or not of a prede-
termined language.
In our case, in fact, the language of interest will be that given by all strings
in which an assignment appears or in general a modification to a variable
through assignment operators or modification operators such as increment,
decrement etc., and we want to recognize whether or not a substring that is
accepted by this language appears within a line of FreeRTOS kernel code.

A grammar that can exemplify this language will be in the form:

30

Figure 5.4: Representation of the grammar of interest

In which G represents the tuple of the grammar given by the set of non-
terminal symbols, the set of terminal symbols, the set of productions, and
the start symbol; P contains all the productions of the grammar.
It can be inferred that such a grammar does not correspond to a type 3 gram-
mar i.e., a regular language. It is easy to see that more than one terminal
symbol appears alongside a non-terminal (on the right side of the productions)
but this is not necessarily determining because it could be a linear grammar
reducible to a regular language, but this is not the case.

Remembering that a linear grammar has a form:

Figure 5.5: Representation of the productions of linear language grammars

It is possible to prove that a linear grammar can be reduced to a regular
language grammar only if it is a right linear or left linear (i.e., the non-
terminal in the right part of a production is only preceded or followed by
terminals).

31

Figure 5.6: Representation of the productions of right-linear and left-linear
grammars

Figure 5.7: Example of equivalence between a right-linear grammar and a
right-regular grammar

In our case, however, it is immediately noticed that this grammar has termi-
nal symbols both to the right and to the left of non-terminal symbols so it
is linear but not regular. As much as in formal language theory, regexes are
representations of regular languages, in reality the POSIX regex.h library as
well as various libraries for programming languages are more powerful tools
capable of doing pattern-matching also outside of regular languages and thus
the term regex loses a bit of its rigorous meaning. It should be considered

32

that a regular language is representable through deterministic finite state au-
tomata DFA, for which it is possible to solve the membership problem with
complexity O(n) in which n represents the size of the string; differently from
type 3 of the formal languages (the regular languages) type 2 i.e., the context-
free-languages have complexity to solve the membership problem O(n3̂) while
only in the case of deterministic CFLs (content-free languages) it is possible
to solve the membership problem with complexity O(n). Considering that
linearlanguages are a subset of CFLs (halfway between regular ones), we can
consider O(n3̂) as the worst-case complexity.

The regular expression of our interest, therefore, has the form:

(-{2}|\+{2})(*)([a-zA -Z_][a-zA-Z0 -9_]*) |([a-zA-Z_]

[a-zA -Z0 -9_]*)(*) -{2}|\+{2}|=[^=]|\+=| -=|*=|\/=| < <=

|>>=)

• (-{2}|\+{2})(*)

This indicates that the expression may or may not start with two con-
secutive pluses or minuses. This is important to us because ++ and --

are clearly not atomic operations, but they hide an assignment as well
as an increment.

• ([a-zA-Z_][a-zA-Z0 -9_]*)

We are seeing this as a separate piece to be explained for simplicity, but
for all intents and purposes, it was part of the previous case. This piece
is used to describe a string of characters that can make up a variable
name in C. Therefore, this piece is preceded by

(-{2}|\+{2})(*)

Exactly because after ++ and -- there must be the name of a target (as
we were saying from the implementation point of view, this piece in the
code is replaced by the names of the targets).

• ([a-zA-Z_][a-zA-Z0 -9_]*)(*) (-{2}|\+{2})

33

So this part is found after a ”—” (or) to indicate that it can be in
place of the previously explained possibility, that is, in place of the
prefix increment or decrement. It represents the postfix increment and
decrement.

• =[^=]

This part concerns the case where there are no postfix increments or
decrements (in fact it is found after a ”— (or)”) and it is used to say
that there must not be two consecutive equals because that would be a
case of comparison and not assignment.

• \+=| -=|*=|\/=| < <=| > >=)

This part handles the remaining types of assignments that might be
found in FreeRTOS, remembering that the backslash is used to not
recognize the next character as a regex rule but only as a character of
the strings to be identified.

The regular expression just presented may appear daunting at first glance,
but the advantage of being able to represent the patterns of our interest in
a single line of code allows us to avoid writing a significantly more complex
algorithm, below we see an example:

1 char input [100]; // We assume the input string has

a maximum length of 100 characters

2 printf("Enter a string: ");

3 fgets(input , sizeof(input), stdin);

4
5 // Remove the final newline character generated

by fgets

6 if (input[strlen(input) - 1] == ’\n’) {

7 input[strlen(input) - 1] = ’\0’;

8 }

9 char *ptr = input;

10
11 while (*ptr != ’\0’) {

12 // Check the first pattern: (-- or ++)

13 if ((* ptr == ’-’ && *(ptr + 1) == ’-’) ||

(*ptr == ’+’ && *(ptr + 1) == ’+’)) {

34

14 ptr += 2; // Skip the two characters --

or ++

15 while (isspace (*ptr)) {

16 ptr ++; // Skip the subsequent

spaces , if any

17 }

18 // Print or execute action for the

pattern (-- or ++)

19 printf("Pattern (-- or ++): ");

20 }

21 // Check the second pattern: (variable or

function followed by --, ++, =, +=, -=,

*=, /=, <<=, >>=)

22 else if (isalpha (*ptr) || *ptr == ’_’) {

23 int validName = 1; // Flag to check the

validity of the variable or function

name

24 while (isalnum (*ptr) || *ptr == ’_’) {

25 ptr ++; // Skip the valid characters

for the variable or function name

26 }

27 while (isspace (*ptr)) {

28 ptr ++; // Skip the subsequent

spaces , if any

29 }

30 // Check the third pattern: (-- or ++ or

=)

31 if (*ptr == ’-’ || *ptr == ’+’ || *ptr

== ’=’) {

32 ptr ++; // Skip the character --, ++

or =

33 if (*ptr == ’=’) {

34 ptr ++; // Skip the character =

for cases +=, -=, *=, /=,

<<=, >>=

35 }

36 // Print or execute action for the

pattern (variable or function

35

followed by --, ++, =, +=, -=,

*=, /=, <<=, >>=)

37 printf("Pattern (variable or

function followed by --, ++, =,

+=, -=, *=, /=, <<=, >>=): ");

38 } else {

39 validName = 0; // The name is not

followed by one of the valid

patterns

40 }

41 // Print or execute action for the

variable or function name

42 if (validName) {

43 printf("Name: ");

44 }

45 } else {

46 ptr ++; // Skip the current character and

move to the next one

47 }

48 }

49 return 0;

Another advantage offered by the use of regular expressions is the fact that
most programming languages offer valid ways to use Regex. Therefore, ex-
porting this type of solution for a project with a different programming lan-
guage can be much simpler.

5.8 Probability Distribution

To select the time instants at which an injection will be executed on a FreeR-
TOS variable, within an injection campaign, the idea was to use random
instants given by probability distributions; in this way there will be a realis-
tic simulation precisely because it reflects reality where the exact moment in
time when a SEE will hit our system cannot be known even when carrying
out statistical analyses.
The simplest example of a probability distribution that comes to mind is the

36

uniform distribution, in which every instant has an equal probability of being
the candidate for the injection.
The probability density formula for the uniform distribution is given by:
f(x) = 1/(b-a)

Figure 5.8: Uniform distribution

To establish the ends of the time interval to be considered and therefore the
ends of the distribution, we will use the execution time of the golden execution
reported in the first line of golden.txt.
The left end will be instant 0, i.e. the start of execution, while the right end
will correspond to the execution time of the golden.
Therefore, with this type of distribution, the variability of the data extends
over the entire interval considered.

37

Figure 5.9: Representation of the uniform distribution used for injections,
simplified (In the algorithm, the rightmost end is represented by GoldTime,
from which a user-chosen percentage is subtracted)

But if we wanted to observe the behavior of the operating system when the
injections are concentrated around a certain time instant, we would have to
use a probability distribution different from the uniform one, and therefore we
would have to think about a distribution that guarantees us a low dispersion
of data compared to a central value.
We might think, for example, of using a Normal (otherwise called Gaussian)
probability distribution.
Using the Normal probability distribution for the random extraction of the
time instant of an injection, we will have a higher probability that this will
occur in a given range of the average of the distribution; where the range is
given by the standard deviation.

38

Figure 5.10: Gaussian (Normal) distribution

In particular, considering a standard normal probability distribution, i.e. with
zero mean (µ = 0) and standard deviation one (σ = 1), we can consider 3
standard deviation intervals:

• Interval ±δ: This interval extends one standard deviation (σ) from both
sides of the mean (µ). In a standard normal distribution, this interval
includes about 68% of the data. Thus, about 68% of the data will be
in the interval from −δ to +δ.

• Interval ±2δ: This interval extends two standard deviations (2σ) from
both sides of the mean (µ). In a standard normal distribution, this
interval includes about 95% of the data. Thus, about 95% of the data
will be in the interval from −2δ to +2δ.

• Interval ±3δ: This interval extends three standard deviations (3σ) from
both sides of the mean (µ). In a standard normal distribution, this
interval includes about 99.7% of the data. Thus, about 99.7% of the
data will be in the interval from −3δ to +3δ.

39

Figure 5.11: Gaussian standard distribution

So in short, the value of the extraction will fall with a 68% probability ”close”
to the average, i.e. in the interval [µ − δ, µ + δ] and this value reaches 95%
deviating a little more from the average, i.e. in the interval [µ − 2δ, µ + 2δ]
up to touch 99.7% in the interval [µ− 3δ, µ+ 3δ].
We can consider these standard deviation intervals valid with a certain ap-
proximation even for non-standard normal distributions.
The Normal distribution that interests us is not standard and in general we
will not have a constant value of the standard deviation and the mean among
the various injections and this is because we start with the start time of ex-
ecution and the end time, i.e. the duration of the golden. So, given the
considerations made earlier, we need to adapt the graph of the distribution to
our interval; as we know, however, a probability distribution is not limited to
an interval but has an approximate 0.3% chance that the measurement falls
in the interval [−∞, µ− 3δ] ∪ [µ− 3δ,+∞].
Given that the 99.7% probability falls in the interval [µ− 3δ, µ+ 3δ] then we
will make sure that this standard deviation interval coincides with our execu-
tion interval [0,goldenTime], by putting µ− 3δ = 0 and goldenTime=µ+ 3δ;

40

in this way we will have the value of the mean µ and the measurement of the
deviation δ for a distribution of our interest.
The knot of the 0.3% that hits outside the interval [0,goldenTime] still re-
mains, for this we will operate a truncation to make sure that the algorithm
does not draw numbers outside the interval.

Figure 5.12: Representation of the truncated Gaussian distribution used for
injections

5.9 Function rand & Box-Muller transform

In the previous paragraph, the motivations and statistical foundations used
to choose the instants of the injections within a campaign were explained;
what was not explained are the implementation details of the distribution
algorithms.
Both algorithms are based on the rand function.

In C, the rand() function is used to generate pseudo-random numbers. This
function returns a random integer in the range from 0 to RAND MAX, a pre-
defined constant that represents the maximum value that can be generated

41

by the rand() function.

To properly use the rand() function, you need to initialize the random number
generator using the srand() function. It is common to use the value of the
system clock as a seed for initialization, so that the generated numbers are
different at each run of the program.

Therefore, in itself, the randfunction is already a way to extract pseudo-
random numbers using the uniform distribution, you just need to narrow
down the interval of extractable values to the one of interest.

It should be noted that the interval chosen for the values to be extracted
is not: [0, goldenTime] but [0, goldenTime -x%*goldenTime] where x repre-
sents a percentage value that we will subtract from the golden time to narrow
the interval by decreasing the right end; in this way we can increase the prob-
abilities that the injection falls within the execution in progress, and this is
because the execution times are not always the same and therefore the value
of the execution time of the golden execution might not be reached by the
other executions but be close, narrowing the interval by decreasing the right
end ensures that the maximum value of this interval falls within the lifespan
of the execution in progress.

To narrow the range of uniform values to an interval of interest:

int randomNumber = min + (rand() % (max - min + 1));

Where in our case min is 0 and max is goldenTime -x%*goldenTime

As for the normal distribution, the discussion is more complex, precisely be-
cause rand uses a uniform and not normal distribution, we need a way that
allows us to switch from the uniform to the normal.

The Box-Muller transformation is an algorithm used to generate random
numbers from a normal (Gaussian) distribution from uniformly distributed
random numbers. The algorithm requires two uniformly distributed random
numbers (often referred to as z1 and z2) to generate two normally distributed
random numbers.

The reason why two random numbers are used is that the Box-Muller trans-

42

formation exploits the properties of the polar coordinate system. The method
converts the two-dimensional Cartesian coordinates of the random numbers
into polar coordinates. The random numbers are then transformed so that
the polar distances are proportional to the square root of the opposite of the
natural logarithm of the random numbers.

The process of generating a single random number from a normal distribution
through the Box-Muller method therefore requires two uniformly distributed
random numbers, which are used to calculate two normally distributed ran-
dom numbers, but only one of these is used as the final result.

This method is based on the following idea:

Generate two independent and uniformly distributed random numbers in the
range [0, 1]. Let’s call them U1 and U2. Calculate the following variables:

Z1 =
p

−2 log(U1) cos(2πU2)

Z2 =
p
−2 log(U1) sin(2πU2)

The numbers Z1 and Z2 obtained in this way will be independent and will
follow a normal distribution with mean 0 and variance 1.

To adapt the normal distribution generated by the inverse Box-Muller trans-
formation to a desired normal distribution with a specified mean (mean) and
standard deviation (stddev), you can use the following formula:

X = mean+ stddev · Z

Where X is the random number generated with the desired normal distribu-
tion.

So the code will look like this:

U1 = random_uniform ()

U2 = random_uniform ()

Z1 = sqrt(-2 * log(U1)) * cos(2 * pi * U2)

Z2 = sqrt(-2 * log(U1)) * sin(2 * pi * U2)

43

X = mean + stddev * Z1

44

Chapter 6

Experimental results

6.1 Introduction

The injection environment presented so far has been developed with the aim
of obtaining experimental results that could be consistent. For this purpose,
I created a module that could automatically generate datasets with the spec-
ifications on the injections chosen by the user. The specifications present in
the datasets for the injections are then used by another module, the injec-
tion campaign module, which reads from the dataset the targets on which to
perform the injections and for each target sees the number of injections to be
made on that target, the type of distribution to be used for the extraction of
the moments in time to perform the injection on the target, the type of injec-
tion i.e. whether the fault should be transient or permanent, I also included
the possibility of choosing whether the injection should be on a single bit
or multiple (this for when this second possibility will be implemented), and
also from the dataset for an injection campaign it is possible to also take the
data relating to the percentage to subtract from GoldenTime to generate an
upper right extreme of the injection (in terms of time) that could also be less
than the golden time, effectively allowing us for example to shift the mean
of the Gaussian with respect to GoldenTime/2 with the result of considering
standard deviation intervals that potentially fall towards the initial moments.
The parameters chosen to evaluate during the injection campaign for the total
number of injections on the single target are (in percentage): Ok, Delay, SDC
(silent data corruption), Hang, Crash.
These are all exit conditions that a single execution with fault injection may
be subject to and particularly concern the execution time of a benchmark task
on FreeRTOS when a fault is injected on a target and the output produced

45

by this execution. Indeed, the execution time can be significantly greater in
the presence of an injection compared to a golden execution and in that case
it will be evaluated as an execution time delay, in general the goldenTimes
that use the same benchmark carried out on the same machine, never have
a percentage difference greater than 5%, so to assess whether an execution
has suffered slowdowns compared to the golden execution, we will see that it
is more than 105% of the golden execution; moreover, within the campaign,
the output produced by the task is also evaluated, in the presence of a fault,
if it does not correspond to that given by the golden execution, it will be
evaluated as incorrect.
Therefore, if there is no delay in the execution and the output is correct we
will say that the injection has led to an Ok, if instead there is only a delay
but the result is correct we will be in the presence of Delay.
If the output is different but there is no delay in the execution then it will be
said that there has been an SDC, if instead there is a delay and the output
is different then we will have a Hang. The crash is detected at the moment
there is an incorrect termination and therefore there was a problem with the
ISR (Interrupt Service Routine)
From each campaign we will therefore have the percentage of Ok, Delay, SDC,
Hang, Crash given a number of injections for each single target. From a first
analysis it became clear how the results showed a high variability with a
number of injections on the single target less than 50 per campaign, effec-
tively stabilizing and not showing big differences between 100 injections and
a larger number of injections (in fact, up to 1000 injections per target on a
single campaign were tested). For the injection campaigns that will be shown,
it was chosen to use as a limit instant a value lower by 10% compared to the
GoldenTime.

6.2 Operational groups

To examine the impact of the injection campaigns on the different aspects of
the real-time system more effectively, it was decided to group the targets into
operational groups:

• System State Variables: This category includes global variables or
data structures that maintain the current state of the operating system.
These variables might represent, for instance, the state of the system

46

clock, the number of currently running tasks, or whether the operating
system is currently in an idle or execution state.

• Task Lists: FreeRTOS manages tasks using various lists. For example,
there might be a list for tasks that are ready for execution, one for
tasks that are waiting for a resource or event, and one for tasks that
are suspended. Each list is a data structure that contains pointers to
Task Control Blocks (TCB) for each task in the list. Performing tests
on these lists could help evaluate the robustness of the operating system
functions related to task scheduling and resource management.

• Current TCB: This category refers to the Task Control Block (TCB)
for the currently executing task. In FreeRTOS, a TCB contains all the
necessary information for managing and scheduling a task. This includes
details such as the task’s priority, the task’s state, the task’s stack in-
formation, and much more. Performing tests on the current task’s TCB
could help evaluate how the operating system manages the current task
and identify any weaknesses or issues in the system operating code or
logic related to this aspect.

6.3 Benchmarks

To carry out an evaluation on the target injections, it was chosen to use the
benchmarks from MiBench. MiBench is a set of free benchmarks, widely used
in both academic and industrial fields to test and evaluate the performance of
embedded systems. The benchmark set is divided into various categories that
represent different real-world applications, including automotive, consumer,
network, office, security, and telecommunications. In particular, it was cho-
sen to use the automotive benchmarks that simulate applications typically
performed in embedded systems within vehicles. These benchmarks focus on
control applications, sensors, and communication systems typically used in
the automotive industry.
Specifically, the following tests were used:

• Bitcount: Counts the number of bits set in an integer, simulating bit-
level operations often used in embedded systems.

• Qsort: Implements the quicksort algorithm, useful for sorting large

47

amounts of data, as might be needed in an automotive embedded sys-
tem.

• Basicmath: Simulates the basic mathematical operations that might
be required by an automotive embedded system, such as square root,
division, etc.

Below, several permanent fault injection campaigns will be shown, for which,
for each benchmark, there will be a permanent fault injection campaign that
exploits uniform distributions (for the selection of time instants) and a cam-
paign that exploits Gaussian distributions; moreover, for each benchmark,
there will be a division into operational groups.

48

6.4 Results of permanent fault injection cam-
paigns

Figure 6.1: System State Variables - uniform distribution - permanent injec-
tion - Bitcount

49

Figure 6.2: System State Variables - gaussian distribution - permanent injec-
tion - Bitcount

50

Figure 6.3: Task Lists - uniform distribution - permanent injection - Bitcount

51

Figure 6.4: Task Lists - gaussian distribution - permanent injection - Bitcount

52

Figure 6.5: Current TCB - uniform distribution - permanent injection - Bit-
count

53

Figure 6.6: Current TCB - gaussian distribution - permanent injection - Bit-
count

54

Figure 6.7: System State Variables - uniform distribution - permanent injec-
tion - Qsort

55

Figure 6.8: System State Variables - gaussian distribution - permanent injec-
tion - Qsort

56

Figure 6.9: Task Lists - uniform distribution - permanent injection - Qsort

57

Figure 6.10: Task Lists - gaussian distribution - permanent injection - Qsort

58

Figure 6.11: Current TCB - uniform distribution - permanent injection -
Qsort

59

Figure 6.12: Current TCB - gaussian distribution - permanent injection -
Qsort

60

Figure 6.13: System State Variables - uniform distribution - permanent in-
jection - Basicmath

61

Figure 6.14: System State Variables - gaussian distribution - permanent in-
jection - Basicmath

62

Figure 6.15: Task Lists - uniform distribution - permanent injection - Basic-
math

63

Figure 6.16: Task Lists - gaussian distribution - permanent injection - Basic-
math

64

Figure 6.17: Current TCB - uniform distribution - permanent injection -
Basicmath

65

Figure 6.18: Current TCB - gaussian distribution - permanent injection -
Basicmath

66

It is possible from the previous tables to notice a very interesting aspect
about the results obtained. Indeed, by observing the differences between
similar campaigns that differ only in the distributions (used for the extraction
of the injection times), we can see how the moment in which an SHE occurs
in the execution interval of a certain FreeRTOS task can be decisive. Just
look at the difference in SDC (Silent Data Corruption) between the uniform
and the Gaussian with the Bitcount task, on the set of targets of the ”Task
Lists”. With the uniform, we have percentages higher than 50% on all targets
up to reaching 97%, while with the Gaussian, the peak is at 10%. In general,
except in the case of Quicksort, it is possible to see high percentage values
of SDC in the targets of the ”Task Lists” and in general it is possible to
see how with Quicksort there are never any SDCs and the percentage of
Hang is often nil or less than 10% in those few targets that do not show
a null percentage. It is also possible to notice that in general the crash
percentage of the targets referable to the ”current TCB” group is very low or
nil, except for pcTaskName, xEventListItem, xStateListItem, pxTopOfStack.
Targets from the ”System State Variables” group like xSchedulerRunning and
uxTopReadyPriority are very sensitive to SHEs, effectively causing the system
crash with almost probability 1.

67

6.5 Results of transient fault injection cam-
paigns

For completeness, transient fault injection campaigns using uniform distribu-
tions are shown below.

Figure 6.19: System State Variables - uniform distribution - transient injec-
tion - Bitcount

68

Figure 6.20: Task Lists - uniform distribution - transient injection - Bitcount

69

Figure 6.21: Current TCB - uniform distribution - transient injection - Bit-
count

70

Figure 6.22: System State Variables - uniform distribution - transient injec-
tion - Qsort

71

Figure 6.23: Task Lists - uniform distribution - transient injection - Qsort

72

Figure 6.24: Current TCB - uniform distribution - transient injection - Qsort

73

Figure 6.25: System State Variables - uniform distribution - transient injec-
tion - Basicmath

74

Figure 6.26: Task Lists - uniform distribution - transient injection - Basicmath

75

Figure 6.27: Current TCB - uniform distribution - transient injection - Ba-
sicmath

76

From what can be deduced from the xSchedulerRunning tables, this vari-
able is not affected by SEUs like SHEs, in fact the SEU almost never leads
this variable to a system crash, the values are almost null. Another inter-
esting consideration that can be made concerns the group of ”task lists”. In
fact, here unlike the case of SHEs the percentage of SDCs using the uniform
distribution with Bitcount, does not exceed 9%.

77

Chapter 7

Conclusion

With the following thesis, the predefined objectives have been achieved, namely
the development of a permanent fault simulation environment capable of sim-
ulating the effects on the real-time operating system FreeRTOS following a
Single Hard Error (SHE) that affects the kernel data. Furthermore, the fault
simulator has been enhanced and improved, particularly regarding transient
faults. To benefit both types of faults, more accurate algorithms have been
implemented for generating time instances using distributions. Moreover, an
important aspect that has been achieved is the goal of decoupling from spe-
cific versions of the FreeRTOS kernel, by implementing adaptive code that is
not bound to a specific kernel version. This was made possible by focusing
on writing an environment that makes changes to the kernel automatically,
avoiding manual kernel modifications. This approach helped reduce technical
debt and facilitated the decoupling from a specific kernel.
Among the achieved objectives, there is also the implementation of a mod-
ule that enables the automatic generation of datasets for injection campaigns
based on a command with desired specifications for the injection campaign.
On the other hand, an aspect that would be interesting to explore is that of
hardening, because during the development of the thesis project, I was able
to address it by also developing a Hamming algorithm (15,11), which is an
Error Correction Code (ECC), discussed in the appendix. However, further
study should be conducted on the computational complexity of an error cor-
rection code (ECC) solution for this type of operating system. Alternatively,
a hybrid solution with data redundancy could be implemented, or one that
solely considers redundancy.
The hope is that this thesis work can be useful in the future and possibly
further developed and enhanced for the benefit of scientific research.

78

Appendix A

Hardening

A.1 Introduction

Software hardening, in the context of fault tolerance, refers to the process of
reinforcing a system or software application through a series of code modifi-
cations and improvements, aiming to reduce potential points of failure and
increase the overall robustness of the software[17].
Hardening techniques can include implementing stricter error controls, adding
error recovery procedures, using error-resistant code (such as defensive pro-
gramming), improving resource management (such as memory management),
creating backups or restores, and enhancing the resilience of dependent ser-
vices.
Hardening may also involve intensive testing to identify and resolve bugs or
vulnerabilities, using code analysis tools to identify code quality issues, and
adhering to coding best practices and software quality standards.
In summary, software hardening is an essential component of software quality
assurance, helping to create software that is more resistant, reliable, and less
susceptible to malfunctions. Some hardening techniques include:

• Error Correction Code (ECC): Under this name, a set of error
correction techniques is used to prevent or correct errors that can be
caused by various forms of electrical interference or hardware failures.
ECC techniques can detect and correct errors, significantly improving
system resilience.

• Improved isolation between software components: The princi-
ple of isolation implies that software components should operate inde-
pendently of each other as much as possible. If one component fails,

79

isolation can help limit the impact of the failure to that particular com-
ponent, preventing error propagation to the rest of the system. This can
be achieved through various techniques, such as sandboxing, containers,
and virtualizers.

• Replication and redundancy techniques: Replication and redun-
dancy are fundamental techniques for increasing fault tolerance. Repli-
cation involves creating multiple copies of data or functionality so that
if one copy fails, another can take its place. Redundancy, on the other
hand, involves using additional hardware or software components that
are not necessary for normal system operation but can be utilized in
case of component failure, thus increasing system resilience.

• Implementation of stricter control protocols: Implementing stricter
control protocols can help prevent failures or limit their impact. For
example, implementing regular integrity checks can quickly detect any
failures or corruptions. Additionally, implementing robust recovery pro-
tocols can ensure that, in the case of transient failures, the system can
quickly restore to a correct operating state.

A.2 Error Correction Code (ECC)

Error Correction Codes (ECC) are particularly useful for hardening real-time
systems as these systems require high reliability and low latency. The need to
reduce errors is crucial for maintaining data integrity and system operability.
Below is a list of various ECCs, including Hamming code, with a detailed
explanation of each:

1. Hamming Codes: These codes, developed by Richard Hamming,
are capable of detecting and correcting single-bit errors and detecting
double-bit errors. They work by adding parity bits to the data that is
sent from a source to a destination. The parity bits are positioned at
powers of 2 (1, 2, 4, 8, etc.), and each checks the bits in positions that
are a subset of that power of 2. They are ideal for hardening real-time
systems as they have low computational overhead.

2. Reed-Solomon Codes: These codes are particularly useful for correct-
ing burst errors, which are errors that occur in consecutive sequences
of bits. They operate on data blocks rather than individual bits, which

80

makes them suitable for correcting larger errors. They are widely used
in communication systems, such as CDs and 2D barcodes, and can be
used to enhance the robustness of real-time systems.

3. Bose, Ray-Chaudhuri, Hocquenghem (BCH) Codes: Similar to
Reed-Solomon codes, BCH codes can correct multiple errors per symbol.
They use a mathematical approach based on finite field theory, which
makes them more complex but capable of correcting a higher number
of errors per data block. These codes are used in various applications,
including flash memory and optical disks.

4. Low Density Parity Check (LDPC) Codes: LDPC codes can
correct multiple errors and are known for their decoding efficiency.
They use a sparse parity check matrix, which makes decoding very ef-
ficient. Although they are computationally more intensive than Ham-
ming codes, they provide more robust error correction and can be used
in situations where reliability is crucial.

5. Turbo Codes: These codes leverage two separate convolutional codes
with an interleaver in between to redistribute bits. This enables very
effective error correction, albeit with higher computational complexity.
Turbo codes are widely used in wireless communication applications,
where error correction is essential for maintaining signal quality.

Hardening a real-time system requires a trade-off between error correction
and computational overhead. While Hamming codes offer low overhead and
single-bit error correction, other ECCs allow for the correction of multiple
errors or burst errors at the cost of increased complexity.

A.3 Hamming Code

Hamming code is a type of error-correcting code used to detect and correct
errors in a stream of binary data. Hamming code is based on adding parity
bits to the original data stream.
The main idea behind Hamming code is to place the parity bits at specific
power-of-2 positions within the data stream. These parity bit positions are
calculated based on the positions of the data bits, which are numbered start-
ing from 1.

81

The steps of the encoding process are as follows:

1. Given a binary data stream of length n, a new data stream is generated
that includes both the original data bits and the parity bits. The length
of the encoded data stream is given by m, where m ≥ n + r and r is
the number of parity bits to be added.

2. Power-of-2 positions (within the encoded data stream) are reserved for
the parity bits. For example, with a data stream length of 7 (n = 7),
positions 1, 2, 4, and 8 are reserved for the parity bits. To determine the
number of parity bits, a binary inequality 2r ≥ n+ r+1 is used, finding
the smallest value of r for which this inequality holds. For example,
trying r = 3: 23 = 8 ≥ 7 + 3 + 1 = 11 (not satisfied). Trying r = 4:
24 = 16 ≥ 7+4+1 = 12 (satisfied). Therefore, 4 parity bits are required
for n = 7.

Figure A.1: Representation of sequence expansion with the addition of
parity bits

3. The values of the parity bits are calculated based on the corresponding
data bits. For each parity bit, the following operations are performed:

• Consider the position of the parity bit for which we need to cal-
culate the value, and consider the bits whose positions (in binary)
have a 1 in

82

the position of the parity bit to be calculated. For example, for
the parity bit at position 1, consider the bits that have a binary
index with the least significant bit equal to 1 (1, 3, 5, 7, etc., as
their binary representations are 1, 11, 101, 111). For the parity
bit at position 2, consider the data bits that have the second least
significant bit equal to 1 in their binary representation. In other
words, consider the data bits whose binary index has a 1 in the
second rightmost position (2, 3, 6, 7, etc., as they correspond to
10, 11, 110, 111, which have 1 in the second bit).

• Perform an XOR operation on the values of the considered data
bits (excluding the parity bit not yet set) for each parity bit, and
assign the result of the XOR operation to the respective parity bit.
This XOR operation checks whether the sum of the values of the
considered bits is even or odd, and the parity bit will be set to 1
if the sum is odd and 0 if it is even. For example, if data bits 3, 5,
and 7 are 1, the value of the parity bit at position 1 will be 1 (1
XOR 1 XOR 1), while with values 1, 0, 1, it will be 0 (1 XOR 0
XOR 1).

83

Figure A.2: Calculation of parity bit values in Hamming code

During decoding, the parity bits can be used to detect and correct any errors
in the original data stream. It should be noted that Hamming code can
detect and correct 1-bit errors if present or detect up to 2-bit errors without
correction[19].

A.4 Data Redundancy as a Solution for Data
Integrity and Data Recovery

We have seen how error correction codes (ECCs) can be extremely useful
in detecting and correcting bit errors. However, when considering their im-
plementation in a real-time operating system, they come with an inherent
disadvantage: a high overhead that can easily be too burdensome for such

84

systems.
The excessive overhead is due to the fact that data protection mechanisms
like ECC cannot distinguish between ”illegitimate” modifications (such as ac-
cidental errors or attacks) and ”legitimate” modifications (such as intentional
data updates). For them, a modification is a modification, and if the goal is
to protect data integrity, every modification would require an update of the
protection mechanism, resulting in recalculating the code (including parity
bits) for every legitimate modification of each individual variable to be pro-
tected.

One possible approach is to selectively choose which kernel variables need
to be protected, reducing the overall computational cost by recalculating par-
ity bits only for specific variables. However, when considering the desire to
protect as many variables as possible, a specific need arises: ensuring that if
a variable is modified due to an undesired alteration on a bit, that change
can be detected and restored. At the same time, it is necessary that when
a variable is legally modified, no further complications arise, such as contin-
ually updating parity bits. An alternative solution could be the use of hash
functions for data integrity verification. While effective in detecting changes,
hash functions have a significant limitation: they do not provide a mechanism
for data recovery in case of alteration.
Faced with these challenges, a solution that could prove more efficient is the
implementation of data redundancy. Although it requires increased memory
consumption, this strategy presents significantly lower computational costs
compared to ECCs.
Data redundancy not only enables error detection but also offers the ability to
restore data to its original form if it is altered. In a real-time operational con-
text, where system performance and responsiveness are crucial, implementing
data redundancy can be a particularly advantageous strategy. This approach
reduces the computational burden, preventing potential system overload, and
ensures effective data management regardless of the presence of single-event
upsets (SEUs) or single hard errors (SHEs).
It should be noted that an ECC code, in terms of error detection and cor-
rection, can certainly be effective in the case of SEUs. However, in the case
of SHEs, it is ineffective on its own. Therefore, at the very least, a hybrid
solution that considers data redundancy, specifically variable duplication, is
necessary. Therefore, despite requiring higher memory consumption, data
redundancy appears as an efficient and practical solution to maintain data

85

integrity and ensure data recovery in the context of real-time operating sys-
tems.

86

Bibliography

[1] Srivastava, A. K., & Sharma, M. (2018). Impact of Ionizing Radiation
on Electronic Devices and Modeling of Displacement Damage in Silicon.
In Ionizing Radiation Effects and Applications, InTech.

[2] Thorne, R. M. (2010). Van Allen Probes: Resolving the Radiation Belts’
Mysteries. EOS, Transactions American Geophysical Union, 91(17), 153-
154.

[3] Hathaway, D. H. (2010). The solar cycle. Living Reviews in Solar Physics,
7(1), 1-65.

[4] J. R. Schwank, M. R. Shaneyfelt, P. E. Dodd, J. A. Felix, P. Paillet, M.
Gaillardin, E. W. Blackmore, “Radiation Effects in Microelectronics,” in
Fundamentals of Radiation Materials Science: Metals and Alloys, Second
Edition, G. S. Was, Ed. Berlin, Germany: Springer, 2017, pp. 713-803.

[5] S. Buchner, ”Single Event Effects in Avionics,” IEEE Transactions on
Nuclear Science, vol. 43, no. 2, pp. 461-474, Apr. 1996.

[6] K. A. LaBel et al., ”Emerging radiation hardness assurance (RHA) issues:
Hard errors, nondestructive effects and single-event effects (SEEs),” in
IEEE Radiation Effects Data Workshop, 2015.

[7] T. Heijmen, ”Single Event Effect Criticality Analysis (SEECA),”
ESA/ESTEC, Noordwijk, The Netherlands, Technical Note, 2000.

[8] J. L. Titus, ”Single Event Effects in Avionics,” IEEE Transactions on
Nuclear Science, vol. 43, no. 2, pp. 461-474, Apr. 1996.

[9] T. F. Miyahira, P. Y. K. Cheung, L. W. Massengill, A. T. Kelly, B. L.
Bhuva, ”Single-Event Effects in SOI Technologies and Devices,” IEEE
Transactions on Nuclear Science, vol. 60, no. 3, pp. 1855-1875, June 2013.

87

[10] J. C. Pickel, J. B. Blish II, ”Single Event Burnout,” IEEE Transactions
on Nuclear Science, vol. 38, no. 6, pp. 1437-1444, Dec. 1991.

[11] J. W. S. Liu, ”Real-Time Systems,” Prentice Hall, 2000.

[12] A. Burns, A. Wellings, ”Real-Time Systems and Programming Lan-
guages: Ada, Real-Time Java and C/Real-Time POSIX,” Pearson, 4th
Edition, 2009.

[13] H. Kopetz, ”Real-Time Systems: Design Principles for Distributed Em-
bedded Applications,” Springer, 2nd Edition, 2011.

[14] R. Barry, ”Using the FreeRTOS Real Time Kernel - a Practical Guide,”
Real Time Engineers Ltd, 2010.

[15] R. Barry, ”Mastering the FreeRTOS Real Time Kernel: A Hands-On
Tutorial Guide,” Real Time Engineers Ltd, 2016.

[16] Avizienis, A., Laprie, J. C., Randell, B., & Landwehr, C. (2004). Ba-
sic concepts and taxonomy of dependable and secure computing. IEEE
transactions on dependable and secure computing, 1(1), 11-33.

[17] Pomeranz, I. (2016). Software hardening through reverse engineering.
IEEE Design & Test, 33(4), 95-102.

[18] Lin, S., & Costello, D. J. (2004). Error control coding. Pearson Education.

[19] Hamming, R. W. (1950). Error detecting and error correcting codes. The
Bell system technical journal, 29(2), 147-160.

88

