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 Abstract 

 
In safety-critical applications, such as aerospace, automotive, medical, and industrial 
control systems, the occurrence of faults can have serious consequences, including 
loss of human life, property damage, and environmental damage. For this purpose, 
fault occurrence is a critical concern in these applications. 

It is crucial to prevent defects from arising in the first place, but it is equally 
necessary to detect and reduce the faults when they do arise. This is accomplished by 
using a combination of fault-tolerant architecture, redundancy, and error detection 
and correction systems in both hardware and software designs. 

Typically, measures like the probability of failure on demand (PFOD), the 
probability of dangerous failure per hour (PFH), or the safety integrity level are used 
to quantify fault occurrence in safety-critical systems (SIL). These metrics offer a 
numerical assessment of the level of safety that the system is capable of achieving 
and are applied to direct the design and testing procedures. 

This thesis aimed to figure out the reliability of application execution on a 
processor with and without an operating system and choose which one is more 
reliable for safety-critical applications. 

To this end, In order to examine the impact of radiations hitting the hardware 
while an application is being run, a system-on-chip architecture has been examined. 
Furthermore, two platforms have been produced to cover the aim of using a processor 
with the operating system and without. Then a fault injection platform has been 
developed with the goal of injecting faults in the main memory of RAM. The idea is 
to replicate radiation-related errors while an application is running. SEU (single event 
upset) has been chosen as the fault model for this experiment. Two programs from 
the MiBench benchmark suite and two other programs from a random source have 
been used as test input for the radiation impacts of an investigation. For the injection 
result, SDC, Halt, and Empty files have been chosen as the output classifications. 

It was possible to see that the fault rate in some programs running on processors 
with operating systems is greater than the error rate in the same applications running 
on processors without operating systems by comparing the results given by the fault 
injection platform. Therefore, it may be concluded from this conclusion that 
reliability could alter in the same program operating on a different system. So, in 
order to decrease the probability that an error would occur, we must choose an 
application carefully and supply it with a proper system.  
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     Chapter 1 
Introduction 
 

The NASA Mars surveyor project aimed to study Mars with a number of robotic 
missions, including the Mars climate orbiter mission. The Mars climate orbiter was 
created to examine the seasonal fluctuations, dust storms, and water cycle of the 
planet as well as its climate and weather patterns. 

The spaceship was sent into orbit on December 11, 1998, and on September 23, 
1999, it began orbiting Mars. Nevertheless, a software malfunction led to a navigation 
error as the spacecraft approached Mars. Based on the spacecraft’s speed and 

position, the engines were set up to fire for a particular amount of time. Even so, some 
of the software utilized the metric system, while other applications used the imperial 
units, to calculate these figures. 

On September 23, 1999, the spacecraft hit the Martian atmosphere and was finally 
destroyed. Until a NASA Mars Climate Orbiter Mishap investigation board study, the 
precise reason for the spaceship’s failure remained unknown. The committee 
eventually decided that a software flaw caused the issue. 

The mistake happened as the spacecraft was approaching Mars and was around 
60 miles (100 km) above the surface of the planet. When the engine fired, the 
spacecraft was traveling at a speed of around 1.5 miles per second (2.4 km/s), 
however, the wrong duration made it slow down far more than anticipated. Because 
of this, the spacecraft reached an improper orbit and approached the Martian 
atmosphere too closely, where it burnt up and was destroyed. 

The lack to adapt to accepted software design and verification standards was 
found to be the primary contributor to the software issue. In particular, one team 
created the navigation system for the spaceship using metric units, while another team 
integrated the program into the spaceship using imperial units. The navigation issue 
was caused by the unit’s incompatibility, which went undetected throughout testing 

and verification. 

The incident served as a reminder of the significance of rigorous software testing 
and verification procedures as well as efficient communication and interaction across 
several teams involved in the preparation and execution of a space mission. It also 
led to adjustments to NASA's software validation and development processes, such 
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as the adoption of standardized software design approaches and the establishment of 
a different review panel to oversee software testing and verification. 

In addition, the automotive industry is one in which fault tolerance is crucial to 
guaranteeing the safe and dependable running of automobiles. Modern cars are 
becoming more complicated and linked, thus it is crucial to develop and deploy 
systems that can manage mistakes, malfunctions, and breakdowns without affecting 
the car's general usefulness and safety. Electronic systems and control units are one 
area in the automobile industry where fault tolerance is essential. To operate a variety 
of tasks, including engine management, brake systems, entertainment systems, and 
advanced driver assistance systems (ADAS), modern automobiles primarily rely on 
electronic parts and software. These systems combine a large number of sensors, 
actuators, and sophisticated software algorithms to create a seamless and secure 
driving experience. Electronic devices, nonetheless are sometimes subject to faults or 
mistakes because of a variety of reasons, including component failures, 
electromagnetic interference, software problems, or even cyberattacks. Redundancy 
systems and fault-tolerant designs are used by vehicle manufacturers to lessen the 
effects of these errors. For instance, backup sensors or actuators that can take over in 
the event of a breakdown may be present in essential systems. To detect problems 
and fix them before they have a substantial impact or endanger safety, control units 
are frequently fitted with error detection and correction devices. 

A system’s reliability is determined by how consistently it can carry out its 

planned function over time without failing or degrading. To ensure that a system can 
operate continuously and reliably, it must be designed a constructed using the proper 
techniques and processes, such as fault tolerance, redundancy, and maintenance 
which will explain in the following. 

-Fault Tolerance: A system's fault tolerance is its capacity to continue operating 
effectively in the face of flaws, errors, or failures. A fault-tolerant system is created 
to identify and resolve such problems with a minimum negative effect on the system 
as a whole. Redundancy is frequently used to create fault tolerance, which entails 
replicating crucial components or adding backup systems that can seamlessly take 
over in the event of a breakdown. Additionally, techniques for error detection and 
correction are used to spot and minimize any faults or inconsistencies that could occur 
while the system is in use. Fault-tolerant systems enable continuous and dependable 
operation by integrating redundancy and error detection/correction mechanisms, 
which lowers the possibility of failures and their potential effects. 

-Redundancy: Particularly in critical areas where errors can have serious 
repercussions, redundancy is essential to guaranteeing the reliability and accessibility 
of systems. Redundancy offers backup or alternate functioning in the case of a 
breakdown or failure by including additional pieces or processes. This strategy 
increases the system's overall resilience and lessens the effects of failures. Creating 



11 
 

multiple communication links, using backup power sources, or duplicating essential 
components are just a few examples of how redundancy may be done. Redundancy 
plays a crucial role in fault-tolerant systems to guarantee that the system can keep 
running even if a component or subsystem fails, minimizing downtime and 
preserving continuous operation. Organizations may increase reliability and 
resilience by using redundancy and eventually, provide a useful service that is more 
reliable. 

-Maintenance: Regular inspections, fixes, and replacements are crucial for 
ensuring a system's long-term reliability. While reactive maintenance is carried out 
when necessary to address detected problems, scheduled maintenance can be 
arranged at certain periods. By resolving possible failure points and maintaining the 
system in top operating shape, maintenance aims to maintain the dependability of the 
system. Replace worn-out parts, updating software to fix bugs or vulnerabilities, and 
cleaning system components to avoid performance deterioration are just a few 
examples of chores that may be involved. 

Incorporating suitable redundancy and backup systems is necessary to ensure 
reliability in addition to maintenance activities. In order to lessen the impact on 
system operation, redundancy offers backup components or processes that can take 
over in the case of a breakdown. Backup solutions, such as redundant data storage or 
backup power sources, add to system reliability by guaranteeing ongoing functioning 
even in the face of unforeseen circumstances. 

Regular testing and maintenance are essential to preserving system reliability 
over time. Potential problems can be proactively handled by following a regular 
maintenance plan and carrying out exhaustive testing, enabling the early 
identification and correction of flaws. This proactive strategy lowers the likelihood 
of unanticipated failures and guarantees the system's dependability, minimizing 
downtime and increasing overall operational effectiveness. Therefore, to assuring the 
long-term dependability and performance of a system, a complete strategy that 
incorporates appropriate redundancy, trustworthy error detection and repair 
techniques, and regular maintenance is essential. 

1.1 Motivation 
 

The primary goal of this thesis, which falls under the category of reliability analysis, 
is to analyze and contrast the reliability of two platforms, one of which is a processor 
using an operating system and the other which is a processor without an operating 
system, so-called bare metal, especially in the context of safety-critical applications. 

A complete experimental setup has been developed to look at the two systems' 
reliability further. The experiment involves the creation of the operating system and 
the two platforms, Baremetal. In addition, four programs have been chosen at random 
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to run on each platform. These programs will save their output so that it may be 
analyzed later. The experiment's next phase introduces a platform for injecting faults. 
By purposefully inserting a defect into the RAM where the application code is stored, 
this platform may mimic errors. Multiple fault injections are performed to ensure a 
wide variety of failure circumstances. The output of the apps as a result of each fault 
injection is noted and preserved. A separate platform for comparison is created in 
order to assess the effect of defects on application execution and compare the 
reliability of the platforms. This platform contrasts the output of the application 
execution, referred to as the Faulty-Outputs (obtained after fault injection), with the 
output of the application execution known as the Golden Outputs (obtained from the 
fault-free execution). It is feasible to comprehend the effectiveness of errors on each 
program and acquire insights into the general reliability of application execution on 
both platforms by studying and contrasting these outputs. 
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  Chapter 2 
State of the art 
 

An integrated circuit's ability to function reliably and consistently over time and 
under diverse operating conditions is evaluated during reliability analysis. The 
reliability, efficiency, and lifetime of the circuit depend on this study. Evaluating 
probable breakdown mechanisms, such as electromigration[1], heat stress, voltage 
spikes, or material deterioration, is usually the first step in the procedure. These 
failure modes may result in decreased performance, sporadic malfunctions, or total 
circuit failure. 

Identification and evaluation of potential failure modes that can have an impact 
on the performance of the circuit constitute the first stage in reliability analysis. For 
instance, the term "electromigration" describes the movement of atoms in the metallic 
interconnects of the integrated circuit (IC) as a result of the passage of high current 
densities, which can result in wire thinning and possible open circuits. Heat stress can 
lead to structural damage, mechanical stress, thermal expansion, and even thermal 
failure in the IC components. Voltage spikes, whether brief or prolonged, can cause 
electrical stress that can result in malfunctions or irreparable damage if they exceed 
the circuit's tolerance thresholds. The performance and overall dependability of the 
IC might be jeopardized by material degradation caused by aging effects or chemical 
interactions. 

 

 

Figure 2. 1   Definition of the Electromigration[2] 
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Several methods are used to assess reliability. By submitting the circuit to rapid 
stress conditions, accelerated life testing (ALT) is frequently used to simulate and 
forecast the lifetime of the circuit. This aids in locating weak spots and determining 
the circuit's dependability when used normally. 

As it seeks to identify the primary reason why circuit failures occur, failure 
analysis is a vital part of reliability analysis. To avoid future occurrences of failures 
and raise the circuit's general reliability, it is crucial to comprehend the underlying 
causes of each one. Failure analysis uses a variety of methodologies and procedures 
to identify the root cause and particular parts of a failure.[3] 

Visual inspection of the failing circuit and its parts constitutes physical 
inspection. In order to find any obvious indicators of damage, such as burned or 
cracked components, solder connection flaws, or physical stress on the circuit board, 
this inspection may involve the use of microscope or other magnification equipment. 
To evaluate the electrical behavior of the failing circuit, electrical testing is carried 
out. Signal analysis, voltage measurements, current profiling, and other methods are 
used to spot anomalies, short circuits, open circuits, and performance deviations from 
expectations. 

Another crucial stage of failure analysis is fault localization, which aims to 
identify the precise element or area at fault. Fault localization techniques include 
thermal imaging, X-ray imaging, and infrared analysis, which can assist locate 
hotspots, soldering flaws, and short circuits. In order to check the circuit at the 
microscopic level and find any tiny faults or damage, advanced methods like electron 
microscopy or scanning probe microscopy may also be used.[4] 

There are numerous methods that may be used to check if a device meets the 
required radiation sensitivity requirements. The radiation test is the easiest to 
understand. In particular testing facilities, integrated circuits are exposed to 
controlled radiation dosages during radiation testing. These facilities consist of 
neutron generators, gamma irradiators, and particle accelerators. The gadgets are then 
observed and assessed for any modifications in functionality, performance, or 
reliability. Here is one example of an experiment using radiation testing in[5]. In this 
practical experiment, results gained from radiation test used to Programming the 
connectivity module, which is constructed on programmable circuitry, especially 
targets the configuration memory section. For a variety of applications and mitigation 
strategies, including hardware-accelerated designs and dynamic partial 
reconfiguration, this connector module is an essential component.  

The biggest disadvantage of radiation testing is that it requires a lot of time and 
financial resources to complete. For it to be successfully completed, a very particular 
technological facility and months of planning are needed. These factors make a 
number of other strategies potential excellent compromises, avoiding the main 
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downsides of the radiation test. The radiation test may also be appropriately prepared 
using these techniques, increasing its usefulness and efficacy. 

A useful technique in reliability analysis, simulation testing provides a cheap and 
accurate way to assess system behavior under diverse circumstances. Radiation 
testing is one area where simulation testing is frequently used. Electronic systems are 
particularly vulnerable to radiation dangers in the aerospace, nuclear, and space 
exploration industries. Engineers may evaluate the system's reaction to various 
radiation levels and kinds by simulating radiation impacts in a controlled environment 
without the requirement for costly and time-consuming real-world testing. An 
example of simulation could be find in [6]. 

Emulation, which focuses on modeling different defects that may arise as a result 
of environmental conditions particular to the operational sectors, is another testing 
approach used in reliability analysis in addition to simulation. Emulation goes beyond 
imitating a system's predicted characteristics and aims to mimic real-world fault 
events, such as those forced on by extremely high or low temperatures or other 
environmental stresses [7]. Emulation testing can simulate these circumstances in a 
controlled laboratory setting, for instance, in automotive applications where 
electronic components are subjected to temperature extremes and difficult working 
conditions. Engineers can evaluate the performance, reliability, and potential failure 
modes that may develop under such intense thermal stress by submitting the system 
to increased temperatures or thermal cycling. They can use this to create reliable heat 
management systems, pick appropriate materials, or arrange components optimally 
to increase the system's reliability and lifetime. 

When preforming radiation testing, one the most probable faults which could 
occur is (SEE) and in this category of fault, the most probable one is (SEU), so-called 
as bitfilp, which usually preform on SoC memory. In[8], [9] and [10] you can see two 
examples of SEE.[11] is concentrated on creating a fault injection environment that 
is capable of analyzing the effects of errors on an ARM microprocessor integrated 
inside a Zynq-7000 AP-SoC, taking into account various fault models impacting the 
embedded processor's system memory and register assets. In addition, there is a fault 
injection platform which allows for the injection of a SEU into a randomly selected 
variable while a test program is running[12]. An alternative strategy has been used in 
the PROPANE injection tool[13], which is explained. When a specific breakpoint is 
reached, PROPANE's fault injector module seeks to halt the execution. The execution 
is then restarted when a part of the executable code that is fault-free is replaced with 
a defective one. Last but not least, preset variables and their contents are used to 
examine the execution results and the propagation of the error. Another example can 
be seen in [14], which is a time-based platform. In [15] A method for testing the 
resilience of neural networks utilizing hybrid platforms with programmable 
hardware. For the purpose of simulating the target hardware platform and carrying 
out the fault injection procedure, the technique depends on reconfigurable hardware. 
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Regarding the impacts of the SEE on embedded systems, the study given in this thesis 
follows all the research previously mentioned. It specifically examines the effects of 
the SEU injected into the main memory of the CPU while the application under study 
runs twice, once on a system running an operating system (FreeRTOS), and again on 
a system not running an operating system(Baremetal). The platform under 
consideration then permits as many injections as the user requests. Additionally, this 
platform gives us a classification of errors that occur as a result of the injection, 
together with a tracking of where they happened in the memory, at the very end. A 
reliability analysis could be performed by examining the error rate at the conclusion 
of the injection procedure on both systems. 
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Chapter 3 
Background 
 

 

3.1   Embedded Systems 
 

Embedded systems are specialized systems for computing created to carry out 
particular functions and communicate with other machines or gadgets. They can be 
as simple as discrete devices, like a thermostat that regulates a room's temperature, 
or as complicated as modern autos' multifaceted management and control systems. 
Consumer electronics, automobile systems, medical gadgets, industrial machinery, 
and many other applications incorporate embedded systems. These systems 
frequently operate in resource-constrained contexts with unique needs, therefore they 
are typically tuned for efficiency, reliability, and real-time performance. Embedded 
systems enable automation, enhance functionality, and boost overall system 
performance in a variety of disciplines and industries by smoothly integrating with 
other hardware and software parts.[16]  

Microcontrollers are essential parts of embedded systems because they offer 
small, low-power processing capabilities that may be customized for a variety of 
applications. They act as specialized hardware that gives embedded systems the 
ability to efficiently carry out particular tasks. Input/Output (I/O) ports, integrated 
memory, and other essential elements are frequently found in microcontrollers, 
allowing the system to communicate with the outside world and serve its intended 
function. These devices provide a balance between processing power, energy 
efficiency, and cost while being customized for the unique needs of the embedded 
system they are built into. The software that runs on microcontrollers can range from 
basic, specialized programs to very complicated and convoluted software structures, 
depending on the complexity of the work and the needs of the system. The software 
gives the microcontroller the ability to carry out the required operations, process data, 
and interact with other components, enabling the embedded system to perform 
successfully in the targeted application domain. 

3.1.1   Key Features 
 

The capability of embedded systems to function with little to no human input is one 
of their fundamental characteristics. Several embedded systems are created to run 



18 
 

autonomously with little to no human interaction. An industrial control system may 
be configured to automatically regulate the temperature and humidity levels in a 
plant, while a home automation system can be designed to turn on the lights at a 
specified time each day. 

Furthermore, Real-Time performance is another capability of these systems. 
Many of these systems are designed to respond to real-time inputs, which implies 
changes fast and predictably. Real-time operating systems (RTOS), which are created 
to manage the real-time limitations of the system and guarantee that it functions 
successfully and efficiently, are used by many embedded devices to do this. 

3.1.2   Pros & Cons 
 

High performance, cheap cost, tiny size, low power consumption, and real-time 
processing are only a few benefits of embedded systems. These benefits are especially 
helpful in situations where real-time computing, low power consumption, and high 
reliability are requirements. High performance is one of the main advantages of these 
systems. As they are optimized for the unique purposes for which they were created, 
hence they are far more effective than general-purpose computers. Embedded 
systems frequently use specialized hardware and software that can swiftly and 
correctly carry out complicated computations. 

Embedded systems, however, have a few disadvantages as well. Their restricted 
functioning is a serious drawback. They aren’t normally intended to be general-
purpose computers; instead, they are made to carry out specialized functions. In 
addition, It might take a lot of time and effort to develop embedded systems. It may 
be necessary to have particular knowledge and abilities to integrate hardware and 
software components, cope with time restrictions, and optimize the system for 
resource efficiency.  

Moreover, developing embedded systems might be expensive upfront. So, 
compared to general-purpose computers, their usefulness is constrained. 

3.1.3   Safety-Critical Applications 
 

Applications that are considered to be "safety-critical" are those whose malfunction 
or failure might have severe repercussions, such as endangering human life, seriously 
harming the environment, or significantly increasing financial losses. These 
applications are often found in sectors including aviation, healthcare, automobiles, 
nuclear power, transportation, and defense where safety is of the utmost importance. 

Safety-critical application design, development, and operation entail adherence to 
stringent safety standards, the use of redundancy, fault tolerance, and error detection 
methods, as well as thorough testing and verification to reduce the risk of failures or 
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errors. Additionally, the continued safety and dependability of these applications 
must be guaranteed by regular maintenance, monitoring, and mechanisms for 
continuous improvement. 

In safety-critical applications, embedded systems must meet strict reliability, 
safety, and performance requirements. These systems must be designed and tested to 
ensure that they can operate correctly under a wide range of conditions and that they 
can handle unexpected inputs and events 

3.2 Radiation 
 

The emission or transfer of energy as electromagnetic waves or particles across a 
material is referred to as radiation. This energy can take the form of gamma rays, X-
rays, ultraviolet radiation, visible light, infrared radiation, microwaves, or radio 
waves. 

The phenomenon of radiation is one that occurs naturally all around us and has 
many different sources. Cosmic rays from space, solar radiation, and radioactive 
substances in the Earth's crust are a few examples of natural sources of radiation. X-
ray devices, nuclear power plants, and some industrial operations are examples of 
man-made sources of radiation.[17] 

Ionizing radiation is made up of particles with enough energy to deplete electrons 
from atoms or molecules, causing them to become ionized. As a result, ions and other 
charged particles like free radicals may be produced, which may harm biological 
tissues and other materials. Gamma rays, X-rays, and highly charged protons, 
neutrons, and alpha particles are a few examples of ionizing radiation. Although these 
kinds of radiation are frequently utilized in medical imaging and cancer therapy, they 
can also be created naturally by cosmic rays from space and radioactive elements in 
the earth's crust. On the other hand, non-ionizing radiation lacks the energy to ionize 
atoms or molecules. As an alternative, it communicates with matter via different 
methods including absorption, reflection, and transmission.[18] 

3.2.1   Radiation Effects 
 

Highly charged particles may be present when an electronic circuit is working in the 
hostile environments of space. An energetic ion may permanently or temporarily 
change the physical makeup of a section of an integrated circuit (IC), which might 
have an impact on how well it functions. 

There is a study predicting the development of radiation –induced faults caused 
by earthly cosmic rays in the years to come. Contrary to popular belief, dangerous 
radiation environments are actually present here on the planet.[19] 
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Depending on the kind, intensity, and amount of radiation as well as the particular 
electronic component or system subjected to it, radiation impacts can appear in the 
electronic world in a variety of ways. The following are some typical traits of 
radiation impacts in electronics: 

Total Ionizing Dose (TID): is the sum of all ionizing radiation doses that a system 
or device has ever received. TID can result in physical modifications to the 
components of the device, such as the development of traps and flaws, which might 
impair its functionality or result in long-term harm.[20] 

Radiation-Induced Degradation (RID): RID stands for radiation-induced 
degradation, which is the deterioration of electronic systems or parts over time as a 
result of radiation exposure. Both ionizing and non-ionizing radiation can produce 
RID, which might show up as a rise in failure rate or a steady decline in 
performance.[21] 

Radiation Hardness Assurance (RHA): Designing, evaluating, and certifying 
electronic systems and components to assure their functionality and dependability in 
radiation conditions is known as radiation hardness assurance (RHA). RHA entails 
assessing the radiation impacts on electronic systems and components and putting 
mitigation measures in place to lessen their influence.[22] 

3.3   Fault Description 
 

 

Figure 3. 1   Fault and its Relation with Error and Failure 

A fault is a circumstance that arises abnormally or flawlessly that stops the system 
from working properly in the context of electronics and embedded systems. Physical 
harm, electrical component failure, software bugs, or environmental conditions like 
radiation or temperature are just a few of the causes of faults that might occur. 

It is important to remember that faults can range from tiny bugs to serious system 
failures and are not always catastrophic disasters. The maintenance of system 
dependability, safety, and performance depends on the capacity to recognize and 
diagnose issues. Testing, monitoring, redundant systems, and error handling systems 
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are examples of fault detection and correction procedures that are frequently used to 
reduce the effects of failures and maintain system resilience. 

Engineers may reduce the occurrence of faults and improve the overall resilience 
of electrical and embedded systems by comprehending the many sources of defects 
and putting into practice suitable design methods, assuring their optimal performance 
even under difficult operating situations. 

3.3.1   Single Even Effect (SEE) 
 

 

Figure 3. 2   Single Event Effect with its classification 

Since electronic components are continuously getting smaller, high-performance 
microprocessors have been created that are even suited for safety-critical applications 
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where radiation-induced mistakes, such as the single event effect, are one of the most 
significant reliability challenges. 

There are two basic classifications of fault models, which will be discussed in the 
following: Destructive faults and Non-Destructive faults. Although non-destructive 
faults, also known as soft errors, have undesirable consequences that vanish after a 
set amount of time or after the key cycle or the relevant components, destructive 
faults, also known as hard errors, irreversibly destroy the device itself. In the 
following, some types of single even effects will be discussed. 

 Single Event Upset (SEU) 

 

Figure 3. 3   SEU in the memory 

A modification in the state brought on by a single ionizing particle (electrons, 
photons, …) impacts a susceptible node in devices such as a microprocessor, or 
memories. The free charge generated by ionization at or near an essential node of a 
logic element causes the state change (Bit-Flip, change 0 to 1 or 1 to 0). An SEU 
which is also a soft error is a strike-related fault that affects the output or functionality 
of the related device.[23][24]   

Single Event Functional Interrupt (SEFI) 

 

Figure 3. 4   SEFI indication using hardware reset 
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The sensitive areas of a digital circuit can be affected by high-energy ionizing 
particles, which can deposit charge and produce electron-hole pairs. A brief or 
momentary functional stoppage may result from this charge deposition interfering 
with the circuit's regular operation. Inaccurate data processing, software crashes, or 
transient system failures are only a few faults or unanticipated behaviors that the 
interruption may result in. [25][26] 

Single Event Latch-Up (SEL) 

 

 

Figure 3. 5   Generation of single event latch-up effect 

A malfunctioning device condition is characterized by an abnormally high current 
induced by the passage of a single energetic particle across vulnerable areas of the 
device’s structure, which could harm the device permanently. 

It is occurring under specific circumstances, primarily due to environmental 
radiation, which causes one of the many silicon PNPN structures to flip from their 
blocking state to a latched state, which causes the circuitry to misbehave and 
frequently causes a power supply or ground link to fuse.[27] 

 

Single Event Gate Rupture (SEGR) 

Failure of power MOSFETs in space may result from single-event gate rupturing. 
When a heavy ion hits the device's neck area, the SEGR process begins. The region 
among the surface p-body diffusions is known as the neck zone. An electron-Hole 
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pair filament is produced by the impact of the ions. A positive drain bias creates an 
electric field that causes the produced holes and electrons in an n-channel power 
MOSFET to move toward the interface and the drain contact, respectively [28]. 
Engineers may improve the performance and reliability of power MOSFETs in space 
applications by comprehending the processes involved in SEGR and putting the right 
safeguards in place, assuring the resilience of electronic systems working in 
challenging conditions. 

Single Event Transient (SET) 

 

 

Figure 3. 6   Single Event Transient impact on a logic circuit 

When an energetic subatomic particle comes into contact with a component, single-
event transients take place. The particle’s charge results in a brief voltage disturbance 

that can latch onto a storage element and trigger a single event upset. The likelihood 
that an SEU will result from a set is significantly influenced by the logic design 
approach, storage element behavior, and system timing constraints. Circuit modeling 
and heavy ion testing of prototype devices are used to investigate these effects.[29] 

Single Event Burnout (SEB) 

A substantial quantity of charge is deposited in the silicon-based power device's 
sensitive areas, such as the gate oxide, when a high-energy ionizing particle, such as 
an energetic proton or alpha particle, impacts the component. Single Event Burnout, 
which is caused by a high current flowing through the device as a result of this charge 
deposition, can result in a rapid, catastrophic collapse of the device. The silicon 
lattice's ionization, which produces electron-hole pairs and causes an electron-hole 
plasma to develop, is what causes the breakdown. A conductive channel is then 
created by the plasma, allowing a significant current to pass through the apparatus. If 
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the device's high current is not adequately regulated, it might quickly become hot and 
eventually fail. 

Different design strategies may be used to reduce the risk of SEB, including radiation-
hardened components, ionizing radiation shielding for the equipment, and 
redundancy and fault-tolerant designs. To analyze the vulnerability of power devices 
to SEB and gauge their performance in radiation-rich situations, modeling, and 
testing methods are also employed.[30] 

3.4   Hardware Background 
 

Electronic gadgets have become more complicated and advanced thanks to modern 
technology, which necessitates hardware with great performance and low power 
consumption. Electronic device design must take into account power consumption, 
and optimizing the hardware is crucial to achieving maximum power effectiveness. 

In the past, discrete components were used to build electronic systems. These 
parts were different, independent entities that carried out particular tasks for the 
system. Individual chips or components created for particular purposes, such as 
amplification, signal processing, logic operations, or memory storage, were used to 
accomplish a variety of electronic duties. On a printed circuit board (PCB), these 
discrete components were physically joined and interconnected using a variety of 
techniques, such as soldering or wire bonding. With traces or conductive pathways 
etched onto the board's surface to simplify the passage of electrical signals between 
the components, the PCB served as a platform for mounting and arranging the 
components. Different components might be chosen and combined to form electronic 
systems suited to certain applications, allowing for flexibility and customisation. 
However, compared to the integrated approach provided by contemporary integrated 
circuits and microcontrollers, this strategy frequently led to bigger system sizes, 
greater power consumption, and complicated interconnections, making it less 
effective. 

The system-on-chip (SoC) architecture is one approach that has been developed 
to fulfill this demand for streamlined hardware. Several hardware elements, including 
microprocessors, memory, communication interfaces, and other peripherals, are 
combined onto a single chip in an SoC, a form of integrated circuit. The device’s 

overall power consumption is decreased because of the integration of the 
components, which allows for more effective use of space and power [31].although 
all the benefits of SoC, there are also some drawbacks. In[32], a new method to 
improve the reliability of SoC could be seen. 

Several methods, like power gating, clock gating, dynamic voltage and frequency 
scaling, and low-power circuit design, can be utilized to reduce the power 
consumption of SoCs. By using these methods, SoCs may run at lower power levels 
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without compromising performance. Software optimization is just as important for 
SoCs' energy-efficient functioning as hardware optimization is. To achieve maximum 
power efficiency, it is essential to build software that is optimized for low power 
consumption and effective utilization of hardware resources. 

It takes knowledge of several different fields, including digital and analog circuit 
design, system architecture, software development, and verification/validation 
methods, to build and construct a SoC. SoC design often entails the integration and 
customization of pre-designed intellectual property (IP) blocks with custom-designed 
components to satisfy application-specific needs. 

3.4.1   ZYNQ-7000 
 

A high-performance processing system (PS) and programmable logic (PL) fabric are 
combined on a single chip by the Zynq-7000 series of Xilinx System on Chip (SoC) 
devices. The ARM Cortex-A9-based Zynq-7000 series of processors come in a 
variety of configurations with varying degrees of processing power and 
programmable logic resources. 

 

Figure 3. 7   Architecture of ZYNQ-7000 [33] 
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The two primary series of the Zynq-7000 family are the Zynq-7000 AP SoC and the 
Zynq-7000 MP SoC. The AP SoC is targeted for applications that demand high levels 
of programmable logic resources and I/O capabilities, whereas the MP SoC is 
optimized for applications that require high levels of real-time processing and high-
speed processing.  

A dual-core ARM Cortex-A9 processor with a maximum clock speed of 1 GHz, 
on-chip memory with a Level 1 cache and a Level 2 cache, on-chip peripherals like 
DMA, timers, and interrupt controllers, as well as a variety of industry-standard 
interfaces like USB, Ethernet, and SDIO make up the PS component in the Zynq-
7000. Several operating systems, including Linux, FreeRTOS, and bare-metal 
firmware, can be used with the PS.[34] 

A field-programmable gate array (FPGA) fabric known as the PL component of 
the Zynq-7000 enables designers to construct unique logic circuits, interfaces, and 
accelerators. The PL is a programmable logic array made up of DSP blocks, 
customizable I/O blocks, and programmable logic cells that may be modified to 
implement specific hardware capabilities. High-level design languages like Verilog 
or VHDL, as well as high-level synthesis tools like Vivado HLS, can be used to 
program the PL. 

On the Zynq-7000 SoCs, the CPU is surrounded by blocks that include a 512KB 
level 2 cache and a 256KB On-Chip Memory. This final point might be especially 
helpful when translating logical addresses. Additionally, there are two level 1 32KB 
cache memories for data and instructions inside the CPU. 

Other integrated peripherals included on the Zynq-7000 SoC include Gigabit 
Ethernet MAC, USB, UART, CAN, SPI, and I2C interfaces. The Advanced 
eXtensible Interface (AXI), a high-bandwidth connection included in the Zynq-7000, 
links the PS and PL components and enables effective data transmission and 
communication between them. Moreover, it is a component of the ARM AMBA 
standard and has an on-chip communication interface with a high-speed multiple-
master multiple-slave architecture.[35] 

The Zynq-7000 SoC's ARM Cortex-A9 CPU has an MMU that supports, 
safeguards and caches virtual memory. It permits the parallel operation of numerous 
processes, safeguards memory from illegal access, and provides for effective memory 
usage and caching.[36] 

This SoC is frequently utilized in industries. Examples include robots and space 
applications, as well as industrial automation, vision in computers, medical devices, 
and high-resolution media processing. 
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3.4.2   PYNQ-Z2 Board 
 

 

Figure 3. 8   ZYNQ-Z2 Board [37] 

The PYNQ-Z2 board, created in partnership between Xilinx and Digilent, aims to 
give developers an accessible and cheap platform for building embedded systems. It 
is based on the Zynq-7000 SoC, which integrates an FPGA fabric with an ARM 
Cortex-A9 dual-core CPU. This CPU and FPGA combo enables the development of 
both software and hardware components on a unified platform. 

The device has a 1.3 million logic cell, 53,200 slices, and 120 DSP slice Xilinx 
XC7Z020-1CLG400C FPGA. The Vivado Design Suite from Xilinx, a potent and 
adaptable design environment that supports a variety of development processes, may 
be used to program the FPGA. The PYNQ-Z2 board contains an FPGA, 512MB 
DDR3 memory, 16MB quad SPI Flash, and a microSD card connector for extra 
storage in addition to the FPGA. A variety of connectivity choices are also available 
on the board, including Gigabit Ethernet, USB 2.0, HDMI input and output, and Pmod 
connectors. This allows interacting with other gadgets and sensors simple.[38][37] 

Support for the PYNQ (Python Productivity for Zynq) framework is one of the 
PYNQ-Z2 board's standout characteristics. An open-source project called PYNQ 
offers a Python environment for use with the Zynq SoC. As a result, software writers 
find it simple to design programs that communicate with the board's physical 
components. Moreover, PYNQ offers several pre-built overlays, which seem to be 
hardware accelerators that may be utilized to accelerate particular calculations. 
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Chapter 4 
Fault Injection Platform 

 

This thesis's goal, as we've already established, is to compare the reliability of 
application execution on a processor with and without an operating system. A fault 
injection platform, which is discussed in this chapter, will be created with that goal 
in mind. It needs an executable program SW as input data. The SEU fault model, 
sometimes referred to as bit flip, on the processor system's SRAM has been chosen 
for this investigation. The intended outcome will be utilized as an investigation for 
the reliability study. This fault model will be used on both systems, the one with the 
operating system (FreeRTOS) and the one without an operating system (Baremetal). 
SEU will be injected into PS's main memory while a program is running. The findings 
that are presented will be categorized at the conclusion of the procedure.  

4.1   SEU In Memory 
 

As previously mentioned, the PYNQ-Z2 board is the device utilized for this project. 

The Pynq-Z2 board's main memory is prone to single event upsets (SEUs), much 
like any other electrical equipment. When ionized particles from radiant energy or 
other sources impact the sensitive parts of electronic equipment, they can produce 
SEUs, which can result in short-term or long-term behavioral changes in the affected 
electronics. 

An adaptable and strong platform featuring a dual-core ARM Cortex-A9 CPU 
and programmable logic fabric is the Xilinx Zynq-7000 System on Chip (SoC). The 
flexibility of software and the power of hardware's parallel processing are combined 
through this integration to enable a wide range of applications. 

The main system memory utilized to run programs is one of the most important 
parts of the Zynq-7000 SoC, and consequently, the Pynq-Z2 board. Here, DDR3 
RAM (Double Data Rate 3 Random Access Memory) serves as the primary system 
memory. DDR3 RAM is a frequently utilized form of memory because of its very 
high bandwidth and capacity.A bit flip in the data stored in the DDR3 RAM might 
result from an SEU in the Pynq-Z2 board's main memory and create problems or 
flaws in the system's functionality. For instance, it could modify a few numbers or 
stop the application from running. 
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4.2   Injection Platform 
 

 

Figure 4. 1   Fault Injection Platform Diagram 

The fault injection platform's objective is to provide a platform that automatically 
injects an SEU during program execution and gathers the results for the final 
comparison and categorization. It is intended to have a platform that runs the program 
normally initially before saving the output as error-free output (golden output). The 
next step is to run the program again, but this time set breakpoints at certain addresses 
obtained by reading the program counter step by step, and use these addresses as the 
time intervals at which the breakpoints should be enabled. In this manner, every time 
an application's execution reaches one of these breakpoints, it is stopped. The value 
is then read into the required address, and the ELF file is made flawed by injecting a 
bit flip into a random bit of its binary. Upon injection, the application's execution will 
continue, and the output will be stored as erroneous output at the conclusion. The 
output will be saved in a particular text file as many times as this process needs to be 
repeated. All of these flawed outputs will ultimately be compared against the golden 
output, and the results will be classified. Keep in mind that Python 3 and its 
connection to the ZYNQ board through the serial communication protocol embedded 
into the ZYNQ board—in this example, UART—perform all these actions and 
updates automatically. The following sections go into further depth about each phase. 

4.2.1   Fault Injection Technique 
 

A number of methods, such as single event upset (SEU), single event Latchup (SEL), 
and other models, can create errors in memory. SEU served as the fault model for 
injection to both platforms in this project. In this case, both systems will be examined 
by SEU separately. 
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4.2.2   Determine Target Memory 
 

The choice of where to inject the fault is crucial. On-chip memory or off-chip memory 
might be the injection target. The location to inject the fault should be decided once 
the memory has been specified. That implies that I should select a specific address or 
region in the memory where I wish to inject the fault. The reason for this aim is that 
a use injecting addresses with application code already present in them is more 
efficient. In other words, if injection occurs at empty memory locations, the outcome 
could not be affected. The main memory on the PYNQ-Z2 board is DDR3 RAM 
which has all of the executable files put into it. In Figure 4.1, addresses of each part 
of memory that the program binary will load into are shown (note that these addresses 
are different for each application). 

I included a random address generator in the injection platform, which randomly 
selects a memory address from among all the addresses in the SRAM memory and 
uses that address to inject SEU into it. As the application code was loaded between 
0x00000000 and 0x0000f36f, the random address generator chose a random address 
within this range to inject into. 

 

section, .text:       0x00000000 - 0x000088df 

section, .init:       0x000088e0 - 0x000088eb 

section, .fini:       0x000088ec - 0x000088f7 

section, .rodata:     0x000088f8 - 0x00008d56 

section, .data:       0x00008d58 - 0x00009743 

section, .eh_frame:   0x00009744 - 0x00009747 

section, .mmu_tbl:    0x0000c000 - 0x0000ffff 

section, .init_array: 0x00010000 - 0x00010003 

section, .fini_array: 0x00010004 - 0x00010007 

section, .bss:        0x00010008 - 0x0001006f 

section, .heap:       0x00010070 - 0x0001206f 

section, .stack:      0x00012070 - 0x0001586f 

 

Figure 4. 2   memory sections with the desired addresses of each part 

 

4.2.3   Random Bit Generator and Injection 
 

It is now time to begin the injection operation after choosing the memory and memory 
address for the injection. Of course, the address location selected for injection has 
value. I developed a random bit generator that reads the value of the selected address 
and randomly selects one of the 32 bits of that value. The selected bit will be the bit 
for the SEU injection. So its value will change from 0 to 1 or 1 to 0. 
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4.2.3   Monitor The Result 
 

When the injection operation is complete, the program will continue to run while the 
desired output is saved into a text file. The procedure will run for as long as the user 
specifies. In the end, all the faulty outputs produced by the platform will be compared 
with the golden ones. 

4.2.4   Code Explanation 
 

As has been explained before, the fault injection platform has been provided by 
python3 which runs all the injection processes automatically and saves the result for 
further classification. 

To control the Xilinx board by Python, first, we have to access the XSCT which 
stands for Xilinx Software Command-Line Tool. This could be done by using a 
Python library called Pyserial which setup a serial connection for several types of 
devices. In Xsct, commands are written in TCL. We can create TCL commands and 
call them from a python script. There are some steps to run the application with the 
Xsct usingTCL command, which will be discussed in the following. 

The first step is to configure the hardware programming part. To do this, select 
the path where the application will be executed and connect the Xilinx server program 
with the JTAG port. This could be done with the "Connect" command. Then using 
the "Targets" command all the devices connected to the JTAG port will be listed. 
Then  FPGA bit stream which was provided by Vivado before, has to be downloaded. 

Once hardware programming is finished, the software part is started. The first 
thing that has to be done is to target a processor core to run the software, In our case, 
ARM Cortex-A9. Then we have to initialize different parts of PS. This is done using 
the "Source ps7_Init.tcl" command followed by "ps7_init" and "ps7_post_config". 
The last command is used to provide hardware with the clock. After initialization, it’s 

time to download the ELF file. The command to download the ELF is "dow <elf 
name>.elf". after this command, the ELF file is downloaded but the processor does 
not start to execute it and stops and the processor will be in a suspended state. To run 
the processor, the "con" command has to be issued and it will start to execute from 
the address it suspended. 

After starting the execution, the idea is to stop the execution and inject the fault. 
To do this, some breakpoints will be added to the program on some addresses, which 
have been chosen randomly. "bpadd -addr " is the TCL command to put a breakpoint 
at a certain address. These breakpoints will be enabled using "bpenable" command. 
Then there is a random address generator which every time execution stopped at the 
breakpoint, chooses a random address from memory. Bitflip injection starts after 
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choosing the random address. The value in the random address will be read, 1 bit of 
this value will be chosen randomly, and SEU will be injected into this random bit 
which changes it either to 1 or 0. Then the breakpoint will be removed using 
"bpremove" command and the processor will continue to executant with "con" 
command. This algorithm will be repeated a number of times as requested by the user. 
At each time of execution, the result will be saved on a text file. 

4.3   Output Classification 
 

The project's results will be examined in this section of the thesis. I created a platform 
that, at the end of the test operating period, gathers all the findings generated by the 
fault injection platform, compared these results with the non-faulty ones (one-time 
execution of application without injecting bit flip), the so-called golden output, and 
then categorizes and classifies the results gained after comparison. In order to do this, 
many categories will be mentioned and explained in the sections that follow. 

4.3.1   Silent Data Corruption (SDC) 
 

An anomaly in data transfer or storage that goes unnoticed by the system or 
application and may cause data loss or corruption is referred to as silent data 
corruption (SDC), where the computation result differs from what was anticipated. 
As the system might not notice the fault or notify the user of it, the user could not be 
aware of the issue until it poses a major problem, which is why it is dubbed a "silent" 
error.[39] 

SDC may manifest itself in a variety of ways, including bit flips, memory 
problems, and network issues. When a single bit in a binary file is switched from 1 
to 0 or vice versa, this is known as a "bit flip," because it may alter the data's meaning. 
When a bit of memory flips, memory errors can happen, resulting in improper data 
read or write operations. When data is transported through a network but becomes 
damaged in the process, network faults can happen. 

 

Golden matrix: 

[
1 1
2 2

] × [
1 1
2 2

]=[3 3
6 6

] 

SDC occurrence after fault injection:  

[
1 1
2 2

] × [
−5546967 −1704372
−1360752 2138963

]=[−6907719 1968526
−1381543 −3579159

] 
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You can see an example of SDC occurrence, created as the result of bit flip injection 
in the memory. The matrices above indicate a multiplication of two identical matrices, 
which should have the same elements. After fault injection, matrix two is affected by 
the fault, and its value changes. 

4.3.2   Halt 
 

Stop in application execution describes a circumstance in which an application 
freezes or stops operating, frequently as a result of an unforeseen error or problem. 
The user may need to force stop or restart the application once it halts since it may 
become unresponsive to user interaction. 

A halt in the running of a program can be brought on by a number of things, 
including hardware issues, resource conflicts, or code flaws. A program could stall 
or crash, for instance, if it attempts to access a resource that is no longer accessible, 
such as a file or network connection. Similarly to this, an application may cease or 
stop responding if it takes up all of the memory or processing resources that are 
available. 

4.3.3 Empty Files 
 

This occurs when the impact of an error prevents sending the necessary data to the 
output, leaving the file with no output and the classification platform returning empty 
files. 

In addition to these categories, I offer another classification of memory to 
determine precisely which parts of memory will have more faults. In another word, 
to observe the fraction of the fault's propagation over several memory parts. Each 
memory sector has a unique address, as seen in Figure 4.2, which shows memory 
sections. We can categorize the occurrence of faults in each sector of memory with 
ease if we know the start and end addresses of each section. We can specifically track 
errors and see how frequently they occurred in each part of memory. 
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Chapter 5 
Experimental Analysis 
 

This section includes the Application selection for the fault injection process and the 
results gained by the injection platform on both Baremetal and FreeRTOS. By 
comparing and analyzing the experimental results given in this chapter, we can reach 
a conclusion for the reliability analysis in both platforms. 

In addition, there are also some other experimental results, which are the 
comparison of application execution time, SoC temperature, and the Vcc in the 
selected applications to observe how these elements change during execution in both 
bare-metal and FreeRTOS platforms. 

5.1   Application Selection 
 

I selected four applications for the injection process in this experiment. Two of them 
were chosen from the MiBench benchmark, automotive subcategory (basicmath and 
qsort). The other two applications are Dhrystone and Matrix multiplier. MiBench 
benchmark chosen because of its importance in safety-critical applications as it has 
automotive benchmarks inside it. The other applications were chosen as they have 
mathematical operations to test the system’s reliability over hard calculations. Each 
of these applications will be explained in the paragraphs that follow. 

 MiBench 

MiBench benchmark suite is a popular benchmarking tool used to assess the 
effectiveness of embedded systems. It is made up of a collection of small to medium-
sized applications that mimic typical embedded system workloads. These C-coded 
applications have a variety of application areas, such as those in the automobile, 
telecommunications, consumer electronics, and network security industries.[40] 

 Basicmath 

Basicmath is one of the applications that exist in the MiBench benchmark suite with 
a focus on the measurement of the efficiency of mathematical operations on 
embedded systems. It is made up of a collection of algorithms that operate on arrays 
of set-point integers to add, subtract, multiply, divide, and take the square root of 
numbers. 
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Qsort 

Qsort is another application in the MiBench benchmark suite and is widely used as a 
sorting algorithm on embedded devices. It is an accurate representation of real-world 
applications, which utilize for sorting huge quantities of data. This application is 
frequently employed to evaluate how well sorting algorithms perform across many 
platforms because it is made to be modular and operates on various embedded 
devices. 

Dhrystone 

This benchmark counts the instances of a group of C expressions that represent 
common operations in practical applications. These operations could be integer 
arithmetic and memory access. It returns DMIPS as the result, which is Dhrystones 
per second and is a measurement of the number of actions that the machine can carry 
out in a single second. One of the cons that this benchmark has is, it could not be used 
for contemporary computer workloads, since it excludes Floating-point operations. 
Nevertheless, it is one of the important benchmarks for assessing performance. [41] 

Matrix Multiplier 

As it is obvious from the name of this benchmark, the matrix multiplier benchmark 
consists of the multiplication of matrixes. This benchmark has the possibility to do 
different matrixes with different sizes, and it has a variety of algorithms to perform 
different types of measurements (real, complex, and so on). 

5.2   Experiment Result 
 

A reliability examination of two systems is what this thesis's goal is. This section 
conducts an in-depth, experimental investigation of each platform. A thorough 
discussion on how reliable each platform will be possible thanks to the reliability 
analysis, which will be built on the gathered data from the experiment. A thorough 
evaluation of the platforms' reliability performance and suitableness for safety-critical 
applications may be made by evaluating and contrasting the experimental results. 
This will provide important insights into how well the platforms perform in terms of 
reliability. 

As we saw in section 5.1, four applications are considered, as applications under 
test, and for the fault model, I chose SEU. In this way, there will be four experimental 
results for each platform. In other words, once we have an experiment on each of the 
four applications in the Baremetal Platform, there will be the same experiment on 
these applications in the FreeRTOS platform. Then as I share with you in the 
following, there are some tables to show the result of these experiments. 
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5.2.1   Baremetal platform 
 

 

Figure 5. 1   Matrix_Mul experimental results (Baremetal) 

The figure provides a view of the application's tendency to experience execution 
halts, showing that these halts most frequently occur in the text area of memory. This 
suggests that the majority of execution halts may be caused by problems with code 
execution, such as crashes, infinite loops, or exceptions. The figure also shows that 
SDC errors are the second most common type of error seen. 

 

 

Figure 5. 2   Qsort experimental results (Baremetal) 

The most frequent errors seen when using the Qsort application are empty files. 
According to the figure provided, these mistakes are primarily found in the text 
section of the memory. The presence of empty files indicates possible problems with 
the application's input/output or file-handling functions. 
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Figure 5. 3   Basic_math experimental results (Baremetal) 

Based on the presented graphic, it is clear that the majority of halts in the basic_math 
application take place in a particular area that is outside the addresses stored in the 
SRAM. This shows that causes other than the SRAM itself, such as external 
dependencies, input/output processes, or computational logic situated outside the 
SRAM module, may be the cause of these halts. 

 

 

Figure 5. 4   Dhrystone experimental results (Baremetal) 

The Dhrystone application displayed a higher rate of SDC (Setup and Hold Violation) 
errors than other Baremetal platform programs. According to the provided figure, the 
heap and text sections of memory held an excessive quantity of these errors. This 
implies that the SDC errors seen in the Dhrystone application may have been caused 
by the memory management and code execution within these sections. 
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5.2.2   FreeRTOS Platform 
 

 

Figure 5. 5   Matrix_Mul experimental results (FreeRTOS) 

In the FreeRTOS platform, the results are different with respect to the Baremetal one. 
Here as we see, an empty file is listed as the most error which is occurred and it 
mostly happens in the other section. 

 

 

Figure 5. 6   Qsort experimental results (FreeRTOS) 

For Qsort application, there is a sharp rise in facing with errors in mmu_tbl and other 
sections of memory with respect to the Matrix_mul, While SDC is only happened in 
the text part. 

 

 

0

2

4

6

8

10

data text rodata heap stack bss mmu_tbl other

Matrix_Mul

SDC Halt Empty

0

2

4

6

8

10

data text rodata heap stack bss mmu_tbl other

Qsort

SDC Halt Empty



40 
 

 

Figure 5. 7   Basic_math experimental results (FreeRTOS) 

In this application, as it is obvious, the errors appeared in almost all sections of 
memory except stack and rodata sections, and we see that in heap, halts and SDC  
errors counted as the most probable faults, while in other sections, empty is. 

 

 

Figure 5. 8   Dhrystone experimental results (FreeRTOS) 

Results gained in the Dhrystone application in the FreeRTOS platform are different 
from the same application in Baremetal, figure5.8. Here, halts mainly happened in 
the heap and SDC happened more times in the test than in other sections. 

In the figures above, results contain three types of categories, SDC, Halt, Empty, 
and for sure, there is a category for the correct results, which I did not mention in the 
chart. These three categories appear when there is a fault in a system or when the 
comparison of the golden result does not match with the faulty ones. Hence, the 
figures indicate the type of diversity, with the indication of these fault appearances in 
each memory section. 
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5.2.3   Temperature and Execution Time 
  
The temperature of an SoC is a key factor in guaranteeing reliable and efficient 
operation in the fields of semiconductor design, system integration, and performance 
enhancement. Thermally-induced problems including timing errors, increased power 
consumption, and lower reliability can be brought on by excessive heat. The 
temperature of the SoC is managed and controlled using efficient thermal 
management techniques, including as thermal design, and power distribution 
optimization. 

For SoCs, temperature is a crucial factor since high temperatures can lead to 
instability and shorten chip life. High temperatures can also have an impact on the 
functionality and dependability of other system parts, including memory and power 
supply circuits. To maintain the temperature within acceptable ranges, it is essential 
to design SoCs with effective cooling technologies and to carefully monitor the power 
consumption. 

Another important consideration is application execution speed, especially in 
contexts like high-performance computing, data centers, and mobile devices. 
Increased productivity, less latency, and enhanced user experience are all benefits of 
faster execution times. As a result, there is a big emphasis on software and hardware 
design, including the use of specialized hardware accelerators, parallel processing 
methods, and software optimization, to optimize application performance. 

This experiment was carried out to determine which platform is more effective 
for our purposes and is used in sectors like aerospace or automotive by measuring the 
temperature and application execution time on both platforms.  

Result of table 5.1 shows, temperature and execution time, which are almost the 
same on both platforms. Hence, we can take into account that, these two factors are 
not depended on the platform in our case of study. 

 

Benchmarks Baremetal Operating system 
Rad2Deg Exe_time Temp(C°) Exe_time Temp(C°) 

0.070 41.98 0.070 41.02 

Matrix_mul 0.004687 41.04 0.004666 40.02 
Qsort 0.003034 42.41 0.004601 42.01 

Dhrystone 0.138793 39-42 0.138793 40-42 

Table 5. 1   Experimental result of execution time and Temperature 
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5.2.4   Error Rate Analysis 
 

A crucial procedure used to evaluate and interpret the error rate of experimental data 
once an experiment is complete is called error rate evaluation. By dividing the number 
of inaccurate or false results by the total number of observations or predictions made 
during the experiment, the error rate can be calculated. This estimate, which is 
typically expressed as a percentage, offers a numerical assessment of the precision 
and reliability of the results of the study. Researchers can learn more about the 
performance and efficacy of their experimental methods, identify potential error 
sources, and make well-informed choices on the validity of their findings and the 
quality of the data. In [42] a novel estimate method that provides an accurate 
assessment of the possibility of Application Error Rate by taking radiation effects on 
the configuration memory and logic layer of FPGAs into account. 

In this experiment, errors appear when system finish the process of the injection 
and the output is present, but the output is not the expected one and is not equal with 
the golden output. Hence, error rate is the sum of all the errors appear, as the result 
of the comparison of golden outputs and faulty outputs and it is in percentage. 

Results of the fault injection experiment are shown in tables 5.2 and 5.3, which are 
the results on both platforms. With comparison of the error rate appearance, seen in 
tables, in Matrix mul and Qsort, in baremetal system, error rate is less with respect to 
the operating system, while for the Basic math and Dhrystone, FreeRTOS has less 
error rate. The results of this experiment demonstrate that an application's reliability 
is impacted by its underlying platform in addition to the application itself. Different 
platforms may display varied degrees of reliability, which can affect how frequently 
mistakes or failures occur within the same application. As a result, while choosing an 
application, it is essential to provide it with a suitable platform that is renowned for 
its reliability. The probability of an error occurring may be reduced by assuring a 
compatible and reliable platform, thereby improving the system's overall 
performance and reliability. The key to developing reliable and error-resistant apps 
is careful platform selection. 

 

Applications Error Rate In [%] 

Matrix Mul 1.6 

Qsort 0.9 

Basic Math 3.8 

Dhrystone 4 

Table 5. 2   Error Rate of Memory Fault Injection in Baremetal platform 
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Applications Error Rate In [%] 

Matrix Mul 2.7 

Qsort 3.4 

Basic Math 2.4 

Dhrystone 3.5 

Table 5. 3   Error Rate of Memory Fault Injection in FreeRTOS platform 
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Chapter 6 
Conclusion 
 

In this thesis, reliability analysis on two platforms has been examined. This analysis 
can show reliability on two platforms, including a platform with the operating system 
and one without the operating system, the so-called "bare metal". These two platforms 
created and examined by SEU faults on the memory of resource of Zynq-7020 in 
which the software is executing on the ARM microprocessor integrated into the Zynq. 
Be aware that we can add different sorts of SEE with a small adjustment to the fault 
injection environment. Due to the necessity to verify the reliability of a system using 
different fault models and different benchmarks, tool development is still ongoing 
and will continue along with the relevant work that is already scheduled for the future. 

A fault categorization campaign begins after fault injection is finished. The tool's 
primary goal is to identify impacts of injected fault to the main memory, and classify 
and display the occurrence of different sorts of faults that constitute misbehavior in 
each area of the main memory. This is done by first identifying the mistakes by 
comparing the golden outputs with the outputs generated by the fault injection 
platform, and then the fault categorization tools begin to process and categorize the 
faults. 

 

6.1   Future Work 
 

As I complete this thesis on reliability analysis of application execution on a 
processor, take into account potential future research and development opportunities 
in this field. The goal of this section is to suggest potential directions for future study 
that would build on the findings and implications discussed in this work. By 
identifying these areas, I plan to produce processor reliability analysis, which will 
inspire and guide future academics in their pursuit of knowledge. 

In this thesis bitflips, or Single Event Upsets (SEUs), were the major fault model 
for reliability analysis in this work. Other fault models, including MBU, SET, and 
SEL, can be performed for upcoming work, and this fault model expansion could 
uncover a wide range of probable failures, including soft errors and timing issues. 
This addition would provide an improved understanding of the weaknesses and 
reliability difficulties that contemporary CPUs deal with. 
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In addition to performing other fault models for this analysis, adding other 
applications and benchmarks also could be a good idea to improve the vulnerability 
of the system. It would be beneficial to select the benchmark applications from those 
that will be employed in an operational environment in accordance with the system 
being tested and its purposes. 
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Appendix 
 

 

Fault Injection Platform 
 

from pylinx import XsctServer,Xsct 

import serial 

import random 

import time 

import os 

import chardet 

random.seed(42) 

 

SKIP = 0 

DONT_SKIP = [] 

pc_address = 

"C:\Xilinx\Vitis\XSCT_auto\matrix_mul_addr_nxt_sram.txt" 

 

ser=serial.Serial('COM7',baudrate=115200, timeout=1) 

win_xsct_executable = 

r'C:\Xilinx\Vitis\2022.1\bin\xsct.bat' 

xsct_server = XsctServer( win_xsct_executable, port=99, 

verbose=False) 

xsct= Xsct('localhost', 99) 

 

start = 0x0 

end =   0x30000 

xsct.do('cd C:/Xilinx/Vitis/XSCT_auto/os') 

time.sleep(1) 

 

xsct.do('source matrix_mul_exe.txt') 

pc_address_file = open(pc_address,"r") 

data=pc_address_file.readlines() 

file_number = 1   

j=0 

for i in range(1000): 

  print(f'Doing file #{file_number}') 

  exit_loops = 0 

   breakpoint 

  random_data_time = random.choice(data) 

  print(random_data_time) 
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  j+=1 

  if j==150: 

    print("its time") 

  if i!=0: 

   xsct.do('rst') 

   if not SKIP or file_number in DONT_SKIP: 

    time.sleep(1)  

   if not SKIP or file_number in DONT_SKIP : 

      xsct.do('ps7_init') 

      xsct.do('ps7_post_config')      

      xsct.do('dow matrix_mul.elf')      

  address, n = random_data_time[0:8], 

random_data_time[9:].strip() 

  if not n: 

    n=0 

  else: 

    n=int(n) 

  if not SKIP: 

    print(xsct.do('bpenable -all')) 

    print(xsct.do('bpadd -addr' + ' 0x' + address)) 

    print(xsct.do('bpenable -all')) 

    time.sleep(1) 

  while n !=0: 

    n-=1 

    time.sleep(.00001) 

  def generate_random_address(start, end): 

    return random.randint(start, end) 

  random_address = hex(generate_random_address(start, 

end)) 

  print(random_address +"    random addr") 

  value_in_rnd_addr = xsct.do('mrd '+random_address) 

  value_in_rnd_addr = value_in_rnd_addr[12:20] 

  print(value_in_rnd_addr + "    value in random addr") 

 

  def bitflip(value_in_rnd_addr):   

    hex_number = int(value_in_rnd_addr,16) 

    binary_representation = 

bin(hex_number)[2:].zfill(32) 

      # Choose a random bit to flip 

    random_bit = random.randint(0, 

len(binary_representation) - 1) 

      # Flip the chosen bit 

    new_binary_representation = 

binary_representation[:random_bit] + str(1 - 

int(binary_representation[random_bit])) + 

binary_representation[random_bit + 1:] 
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      # Convert the binary representation back to 

hexadecimal 

    new_hex_number = hex(int(new_binary_representation, 

2)) 

    return new_hex_number,random_bit 

    print(new_hex_number +"   random bit bitflip")    

  new_hex, rnd_bit = bitflip(value_in_rnd_addr) 

  if SKIP and file_number not in DONT_SKIP: 

     SKIP-=1 

     file_number += 1 

     continue 

  xsct.do('mwr'+' '+ random_address + ' ' + 

str(new_hex)) 

  value_after_bitflip = xsct.do('mrd'+' 

'+random_address) 

  value_after_bitflip = "0x"+ value_after_bitflip[12:20] 

  print(value_after_bitflip +"    value bitflip") 

  xsct.do('bpremove -all') 

  xsct.do('con') 

 

  path = r'C:\pythonProject\final_output\output' 

  output='' 

  start_time = time.time() 

  start_application_time = start_time 

  stop_reading = False 

  while not stop_reading: 

    if time.time() -start_application_time > 30: #stop 

if is runnning for more than 30 sec 

        print("This took too long") 

        break 

    output_tmp = ser.readline().decode("utf-8", 

errors="replace") 

    output+=output_tmp 

    if output_tmp: 

        if "stop" in output_tmp: 

          stop_reading=True 

          print("Stop word found") 

        start_time = time.time() 

    else: 

        if time.time() - start_time > 10: 

          stop_reading = True 

          print("TIMEOUT") 

  random_data_time = random_data_time.strip() 

  file_path = os.path.join(path, str(file_number)+"_"+ 

str(random_address)+"_"+ 

str(rnd_bit)+"_"+str(random_data_time)+".txt") 
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  print("Writing to file...", end ='') 

  final_output_file = open(file_path, 'w', 

encoding='utf-8') 

  final_output_file.write(output) 

  final_output_file.close() 

  print("Wrote")  

  file_number += 1 

 

 

Classification Platform 
 

import os 

import filecmp 

 

dic_classify = {} 

def Mem_section_classification (output_file):  

    parts = output_file.split("_") 

    if len(parts) >= 2 : 

        section = int(parts[1],16) 

         # Check if the second part is within the 

specified range 

        if 0x0000 <= section <= 0x1a8b:   

            return "text"  

        elif 0x1a8c <= section <= 0x1a97:#init 

            return "init" 

        elif 0x1a98 <= section <= 0x1aa3:#fini 

            return "fini"  

        elif 0x1aa4 <= section <= 0x1c84:#rodata 

            return "rodata" 

        elif 0x1c88 <= section <= 0x20f7:#data 

            return "data" 

        elif 0x20f8 <= section <= 0x20fb:#eh_frame 

            return "eh_frame"  

        elif 0x4000 <= section <= 0x7fff:#mmu_tbl 

            return "mmu_tbl" 

        elif 0x8000 <= section <= 0x8003:#init_array 

           return "init_array" 

        elif 0x8004 <= section <= 0x8007:#fini_array 

           return "fini_array" 

        elif 0x8008 <= section <= 0x9b6b:#bss 

           return "bss" 

        elif 0x9b6c <= section <= 0xbb6f:#heap 

           return "heap" 
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        elif 0xbb70 <= section <= 0xf36f:#stack 

           return "stack" 

        else: 

           return "other" 

# Set the path to the file you want to compare to 

golden_file_path = 

"C:/pythonProject/golden_output/matrix_mul_golden.txt" 

golden_file = open(golden_file_path,"r") 

length_golden = len(golden_file.read()) 

 

# Set the path to the directory containing the files 

you want to compare 

final_output_file_path = 

"C:/pythonProject/final_output/matrix_mul_output" 

 

# Loop through each file in the directory and compare 

its content with output 

with open(golden_file_path,'r') as golden: 

    golden_content = golden.read() 

for output_file in os.listdir(final_output_file_path): 

    full_path = os.path.join(final_output_file_path, 

output_file) 

    with open(full_path,'r' , encoding='utf-8') as 

output: 

        output_content = output.read() 

    if golden_content==output_content: 

        print(f"{golden_file_path} and {output_file} 

same.") 

        if 'Correct' not in dic_classify: 

            dic_classify['Correct']={'total':0} 

        dic_classify['Correct']['total']+=1 

        result = Mem_section_classification 

(output_file) 

        if result not in dic_classify['Correct']: 

            dic_classify['Correct'][result] = 0 

        dic_classify['Correct'][result]+=1 

    else: 

        print(f"{golden_file_path} and {output_file} 

different.")    

        file_path = 

os.path.join(final_output_file_path, output_file) 

        if os.path.getsize(file_path) != 0:         

            length_content = len(output_content) 

            if length_golden <= length_content: 

               if 'SDC' not in dic_classify: 

                    dic_classify['SDC']={'total':0} 



51 
 

                dic_classify['SDC']['total']+=1 

                result = Mem_section_classification 

(output_file) 

                if result not in dic_classify['SDC']: 

                    dic_classify['SDC'][result] = 0 

                dic_classify['SDC'][result]+=1            

            elif length_golden > length_content: 

                if 'Halt' not in dic_classify: 

                    dic_classify['Halt']={'total':0} 

                dic_classify['Halt']['total']+=1 

                result = Mem_section_classification 

(output_file) 

                if result not in dic_classify['Halt']: 

                    dic_classify['Halt'][result] = 0 

                dic_classify['Halt'][result]+=1 

        else: 

                if 'Empty' not in dic_classify: 

                    dic_classify['Empty']={'total':0} 

                dic_classify['Empty']['total']+=1 

                result = Mem_section_classification 

(output_file) 

                if result not in 

dic_classify['Empty']: 

                    dic_classify['Empty'][result] = 0 

                dic_classify['Empty'][result]+=1 

for key, value in dic_classify.items(): 

    print(key,value) 
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