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Summary

Through the examination of human gait in challenging environments, valuable
knowledge can be acquired regarding the biomechanics of walking on unstable
surfaces. This understanding is crucial for advancing the development of resilient
and steady robotic systems. Human gait serves as a benchmark for performance
and a significant source of inspiration for legged machines, improving the stability
and functionality of robotic technology.

Wearable systems offer distinct advantages over traditional laboratory-based
setups when studying human gait in challenging conditions. They enable data
collection in real-world environments that closely resemble the conditions encoun-
tered by legged robots. This study aims to validate the use of the INDIP system, a
wearable multi-sensor system comprising inertial modules, pressure insoles, and
distance sensors, for accurately characterizing gait in diverse and unstructured
terrains. In this work, a comprehensive study was conducted to extract spatio-
temporal parameters and events from human gait on irregular surfaces. The INDIP
algorithm was improved to ensure its robustness across various types of terrains.
The obtained results were validated using a stereophotogrammetry system called
Vicon, known for its accuracy in gait analysis. The validation of the INDIP system
in regular terrains for both healthy and pathological subjects has already been
established. However, this research takes a significant step forward by validating
its effectiveness in analyzing human gait within challenging terrains.

Through the optimization of the algorithm, remarkable improvements have been
achieved. The maximum time difference in event identification between the INDIP
system and a Stereophotogrammetry system has been reduced to less than 0.1
seconds for different terrains. Additionally, the maximum mean error for stride
length achieved is approximately 4%, for stride time it is around 1%, for cadence
it is 1.3%, and for walking speed it is 3%. These advancements highlight the
enhanced accuracy and reliability of the INDIP system in capturing and analyzing
gait parameters in demanding terrains. The findings can aid in improving the
stability and performance of legged robotic systems by incorporating insights gained
from the biomechanics of human gait.
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Chapter 1

Introduction

1.1 Relevance
Over the years, significant progress has been made within the robotics community
to augment the potential of robots, catering to the ever-expanding demands of
emerging application domains. This relentless pursuit has culminated in the seam-
less integration of robots into shared spaces alongside human counterparts, breaking
down the barriers that once confined their presence to controlled environments.
Previously inaccessible environments, including bustling public areas, collaborative
industrial settings, and residential spaces, are now accessible to robots.

To ensure optimal performance in these dynamic contexts, the latest generation
of collaborative robots must showcase their remarkable interaction capabilities
with both humans and the surrounding environment. Achieving high levels of
reliability, safety, and adaptability in such conditions has intensified the need for
comprehensive performance evaluation across multiple sectors of the robotics field.

Ultimately, the domain of locomotion has witnessed groundbreaking devel-
opments, marked by the advent of highly sophisticated legged robots boasting
exceptional biomimetic abilities. Drawing inspiration from nature’s own mecha-
nisms, these robots have demonstrated remarkable proficiency in navigating through
unstructured and challenging natural environments. Their agile and versatile na-
ture opens up new horizons for applications such as search and rescue missions,
exploration of hazardous terrains, and diverse industrial tasks.

Legged robotic movement in uneven and extreme terrains is a field of research and
development that focuses on designing and developing robots capable of traversing
challenging landscapes. Unlike wheeled or tracked robots, legged robots possess the
ability to adapt to various terrains by mimicking the locomotion of humans. This
adaptability enables them to navigate through environments where conventional
vehicles or machines face significant limitations. Figure 1.1 illustrates various
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Introduction

instances of robotic applications in demanding environments, where robots play
different roles, either assisting human locomotion or replacing it entirely.

Figure 1.1: Robotic applications in uneven terrains.

The primary motivation behind legged robotic systems is to extend the capabili-
ties of robots beyond structured and predictable environments [1], such as smooth
floors or flat surfaces. By employing legs, these robots can negotiate uneven terrain,
including rocky surfaces, steep inclines, stairs, and even hazardous or disaster-
stricken areas. The goal is to create robots that can efficiently and effectively
navigate natural and human-made environments [2], mimicking the agility and
versatility of living organisms.

Researchers and engineers in the field of legged robotics face numerous challenges.
One of the key challenges is developing robust and dynamic control algorithms that
enable stable locomotion on unpredictable and irregular terrain [3]. These algo-
rithms must account for variations in ground height, slope, and surface conditions
to ensure the robot maintains balance and stability during movement.

Sensors play a vital role in legged robotic systems as they provide real-time
feedback for balance, navigation, and terrain analysis [4]. These sensors can include
cameras, depth sensors, accelerometers, gyroscopes, and force sensors. By fusing
data from these sensors, the robot can perceive its surroundings, adapt to changing
terrain, and adjust its movements accordingly.

The applications of legged robotic systems in uneven and extreme terrains are
diverse. They have potential uses in search and rescue operations, exploration of
hazardous environments, military operations, agricultural tasks, and even assis-
tance for people with mobility impairments [5]. By overcoming the limitations of
traditional wheeled or tracked robots, legged robotic systems offer the potential to
revolutionize how we interact with challenging terrains.

In summary, legged robotic movement in uneven and extreme terrains is a
multidisciplinary field that combines robotics, control theory, mechanical design, and
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sensor technology. Through the development of advanced algorithms, mechanical
structures, and sensor integration, researchers strive to create legged robots capable
of traversing complex and unpredictable landscapes, opening up new possibilities
for a range of applications.

1.2 Project Outline
The primary objective of this project is to enhance and strengthen the durability of a
multi-sensor wearable system called "INDIP" (INertial module with DIstance sensors
and Pressure insoles) for characterizing gait under extreme terrain conditions. By
analyzing and measuring human gait on uneven terrains, the project seeks to
establish reliable gait characteristics that will serve for robotic purposes. The
INDIP system, which incorporates inertial modules, distance sensors, and pressure
insoles, has already been validated in previous studies [6] involving both healthy
individuals and those with pathological conditions during various tasks. This
system aims to automatically identify events in gait and extract spatiotemporal
parameters accurately. Through further development and validation, the project
aims to refine the INDIP system, making it a robust tool for assessing gait in
extreme conditions.

The project involves comparing the spatio-temporal parameters, events, and
their variability obtained using the original algorithm of the system with those
obtained using a modified and more robust version. Various experiments were
conducted to collect the necessary data for processing. The results of the updated
algorithm are validated by comparing them with measurements obtained using the
stereophotogrammetry system (SP), which is an optoelectronic motion capture
system based on markers and IR cameras that allow to obtain subject movement
and trajectories being used as a Gold Standard for gait parameters calculation.

In the current state of the art, the estimation of spatio-temporal parameters
is not only performed in the human motion analysis laboratory by means of SP
and force plates [7], but also there is plenty of investigations developing and
validating tools and algorithms that facilitate gait analysis in uneven terrains
[8]. Inertial measurement units (IMUs) are well-suited for quantifying gait due to
their affordability and lightweight nature, allowing for prolonged data collection
[9]. However, it is important to note that IMUs have their own set of limitations,
which can impact their effectiveness in characterizing gait [10]. These limitations,
will be further elaborated and discussed in detail in the relevant chapter of the
project. Numerous studies [11] have demonstrated that multi-sensor wearable
systems, such as the INDIP system, offer a reliable approach to characterizing
gait, effectively addressing the limitations associated with standalone IMUs. These
wearable systems combine multiple sensors, including IMUs, to enhance the accuracy
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and robustness of gait analysis. By integrating data from various sensors, these
systems mitigate the inherent issues of IMUs and provide a more comprehensive
understanding of human gait dynamics. The INDIP system, in particular, has
shown promising results in accurately assessing gait parameters, making it a
valuable tool for advancing gait analysis research and applications [6].

As detailed in the state of the art of Chapter 2, there is a noticeable gap in the
existing literature when it comes to studies utilizing multi-sensor systems (that
includes IMUs), for automatically identifying gait events under extreme conditions.
This research gap highlights the significance of the current thesis, which aims to
fill this void and address this specific objective. By leveraging the capabilities of
multi-sensor systems, the thesis seeks to develop a novel approach to automatically
detect and identify gait events during extreme conditions. This contribution will
not only advance the understanding of gait in challenging environments but also
offer valuable insights for the development of robust and adaptable robotic systems.

The proposed thesis was conducted through three resumed steps to accomplish
its objective:

1. Laboratory acquisitions were performed following an experimental protocol
that incorporated various types of terrains. This step aimed to compare the
outcomes of the INDIP system with those obtained from the SP system.

2. The performance of the original algorithm, which had been previously validated
[6], was evaluated in comparison to the SP system.

3. An algorithm optimization process was undertaken to enhance its performance
specifically in uneven terrain conditions. The optimized algorithm was then
validated against the SP system.
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Chapter 2

State of the Art

2.1 Human gait as a gold standard for robotic
locomotion

Understanding and incorporating principles of human gait into robot motion is
of utmost importance for efficient and stable locomotion in diverse terrains. By
studying the biomechanics and motor control behind human walking, robots can
achieve energy efficiency, balance, adaptability, and enhanced human-robot in-
teraction. Replicating the stability and balance exhibited in human gait helps
robots maintain equilibrium and adapt to uneven or challenging terrains, enhancing
overall performance and preventing falls [12]. Furthermore, the adaptability of
human gait allows robots to navigate various terrains with ease, enabling them
to adjust foot placement and motion based on the characteristics of the terrain.
Incorporating human-like walking patterns also improves human-robot interaction,
as it enhances acceptance and facilitates intuitive communication between humans
and robots. Lastly, human gait serves as an inspiration for biomimetic robot design,
allowing engineers to develop robots with similar functionalities and capabilities
[13]. Overall, understanding and incorporating human gait principles into robot
motion is essential for creating efficient, stable, adaptable, and interactive robots ca-
pable of navigating complex terrains and performing a wide range of tasks effectively.

Human gait is characterized by periods of loading and unloading of the limbs to
move around providing independence. It allows many of the activities of daily living,
sports, facilitates many social activities, and it is required in many occupations. Gait
analysis is supported by technologies and instrumentation for not only measuring
body mechanics and movements but also muscle activity, allowing to study better
the locomotion pattern. [14]. New technologies have provided tools and devices to
obtain accurate and reliable measurements of the gait profile.
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Humans are expected to move above different kind of outdoor environments
during their whole life, they can walk on various environments with adapting to each
situation. By studying these adaptive strategies, researchers can develop control
algorithms and leg mechanisms that enable robots to adjust their movements
and foot placement based on the characteristics of the terrain. This adaptability
enhances the robot’s ability to navigate complex environments and improves its
overall performance [12].

For quantifying and characterizing gait, key metrics such as spatiotemporal
parameters are well used. Gait parameters play a crucial role in improving robotic
motion. These parameters, which encompass measurements of both space and time
during the gait cycle, provide quantitative insights into the timing and spatial
characteristics of human walking or running. By analyzing parameters such as
step length, stride length, cadence, and stance duration, researchers can identify
areas for improvement and optimize the robotic gait pattern [15]. This information
helps in developing control algorithms and mechanical designs that enhance the
efficiency, stability, and adaptability of legged robots, ultimately enabling them to
navigate complex terrains with greater effectiveness.

2.2 Gait Analysis on uneven terrain
Human gait analysis in uneven terrains is a critical area of study that aims to un-
derstand how individuals adapt their walking patterns and maintain stability when
traversing challenging and unpredictable surfaces. Researchers employ sophisticated
motion capture systems, force plates, and wearable sensors to capture data on foot
placement, step length, joint angles, and ground reaction forces during locomotion
on uneven surfaces [16]. By analyzing this data, researchers gain valuable insights
into the strategies employed by the human body to navigate such terrains, including
changes in stride length, alterations in muscle activation patterns, and adjustments
in center of mass trajectory.
Spatio-temporal parameters in gait are used for measurements and timing of vari-
ous aspects of human walking or gait. These parameters are commonly used to
characterize and analyze gait patterns. Evaluation of spatio-temporal parameters
in gait encompasses various methods and technologies, including wearable and
non-wearable systems. Wearable options consist of stereophotogrammetry systems,
inertial-based systems, goniometers, and others. SP is considered the gold standard
but has drawbacks, such as high cost, time-consuming patient preparation, and
limited applicability in controlled laboratory conditions due to infrared sensitivity.

In recent years, microelectromechanical systems (MEMS) have emerged as
significant and widely used tools, particularly IMUs. IMUs consist of miniaturized
accelerometers and gyroscopes. They have gained popularity in gait analysis due
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to their advantages, including low power consumption, affordability, lightweight
design, lack of external power requirements, fast data management, portability,
and self-contained data processing through embedded microprocessors. Sensorizing
patients with IMUs is relatively straightforward, and they can be used both inside
the laboratory and in external environments.

It is worth mentioning that IMUs alone do not offer direct data for a thorough
analysis of gait, including spatio-temporal parameters and joint angles. Instead,
IMUs provide an indirect measurement of temporal parameters and cannot be
considered as a gold standard. Thus, it becomes necessary to utilize a multi-sensor
system that can provide dependable and strong measurements, serving as a reliable
reference even outside the controlled laboratory environment.

Within the existing literature on gait analysis in uneven terrains, a variety of
systems have been employed to capture spatio-temporal parameters. These systems
encompass treadmills [17, 18], commonly used stationary machines for gait studies,
as well as stereophotogrammetry systems [19, 20, 21] and force plates [18]. In
certain studies [22, 22], inertial-based wearable systems were combined with the
aforementioned systems. As previously mentioned, the INDIP system was utilized in
a study that validated the calculation of spatio-temporal parameters in overground
terrains [6]. Additionally, a considerable number of automatic algorithms and
methods in the literature have been proven and validated for characterizing gait
in real-world scenarios, involving both healthy [23] and pathological subjects [24,
25]. However, there is a paucity of literature specifically focusing on the combined
use of these systems within a comprehensive multi-sensor system to obtain spatio-
temporal parameters in uneven and extreme terrains. Furthermore, no research
has been found that addresses the presence of an automated algorithm ensuring
high levels of accuracy, precision, and reliability in calculating these parameters
across multiple terrain conditions.

In light of the aforementioned considerations, by combining data from inertial
sensors, pressure insoles and distance sensors that the INDIP system use, exists
the possibility to provide a comprehensive and reliable analysis of gait dynamics,
enabling a more thorough understanding of human locomotion in uneven and
extreme terrains for being applied to the field of robotics, specifically in the
development of robotic systems capable of navigating challenging environments.
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Chapter 3

Theoretical Framework

3.1 Introduction to Gait Analysis
The human ability of walking is achieved through the movement of the pelvic
limbs in an alternating and rhythmic way allowing the movement of the body in
anteroposterior direction and is divided into different steps. The human locomotion
is possible because of the activation of the lower limb muscles in conjunction with
sensory information of the neuronal network to allow joint movement and muscle
contraction control [26]. The gait cycle is the functional unit of gait analysis and
can be defined from the foot contact with the ground to the subsequent same
ground contact of the same foot.

3.1.1 Anatomic Considerations
HIP

Throughout the walking cycle, the hip joint undergoes movement in three directions:
Flexion-extension happens around a side-to-side axis, adduction-abduction occurs
around a front-to-back axis, and internal-external rotation takes place around a
forward-backward axis [27].

KNEE

When it comes to the knee, three types of angular rotation are also possible during
walking. The main movement involves knee flexion-extension around a side-to-
side axis. Knee internal-external rotation around a forward-backward axis and
adduction-abduction around a front-to-back axis may also happen, although they
are less consistent and have smaller amplitudes among individuals without any
health issues [27].
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ANKLE AND FOOT

The movement of the ankle is limited by the structural constraints of the talocrural
joint, allowing only for plantarflexion (pointing the foot downward) and dorsiflexion
(raising the foot upward). The foot has a dual role, functioning as a partially rigid
structure, acting as a spring during weight transfer, and as a lever arm during
push-off. It also provides necessary stability to support the body’s weight [27].

UPPER BODY

When considering the pelvis and thorax, their movements are primarily passive
and are a consequence of the lower body’s motion rather than being actively and
purposefully initiated. Additionally, the reciprocal arm swing during walking also
helps constrain the angular momentum of the trunk [27].

3.1.2 Gait Phases and Events
A full gait cycle is defined by the occurrence of two sequential phases, these are:

1. Stance Phase: The stance phase constitutes 60% of the stride and
consists of two periods of double limb support (initial and terminal), when
the contralateral foot is in contact with the ground, and an intermediate
period of single limb support, when the contralateral limb is engaged in
the swing phase. It begins with the initial contact of the foot on the
ground and represents the period of adjacency on the ground where it
supports all or part of the body weight [27]. The stance phase can be
divided into six events and periods:
(a) Initial Contact (IC) or Heel Strike (HS): The initial contact or

heel contact is defined as the instant the foot makes contact with the
floor. In healthy subjects, this occurs through the use of the heel, and
continues until the sole of the foot is completely in contact with the
ground (Flat Foot). It represents the moment in which the center of
mass is in its lowest position and at the joint level the knee is extended,
the hip flexed, and the ankle dorsiflexed [27].

(b) Loading Response (Foot Flat): This interval occurs when the sole
of the foot comes into contact with the floor and the weight of the body
is accepted onto the supporting limb. The loading response period
coincides with the end of initial double limb support at approximately
10% to 12% of the stride [27].

(c) Midstance: This period involves the rotation of the tibia over the
stationary foot in the direction of locomotion. The swinging limb
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exceeds the supporting foot, and the center of mass reaches its highest
point. The knee and hip begin to extend, and the ankle is dorsiflexed.
The beginning of midstance coincides with single limb support and
lasts from approximately 10% to 30% of the stride [27].

(d) Terminal Stance: This period is characterized by the transfer of
body weight from the hind and mid-foot regions onto the forefoot. It
occurs from 30% to 50% of the stride and coincides with the beginning
of terminal double limb support. The calf muscles initiate plantar
flexion of the ankle, the knee extends again and then flexes slightly,
and the hip is more extended [27].

(e) Pre-swing: Pre-swing occurs simultaneously with terminal double
limb support and lasts from approximately 50% to 60% of the stride.
During pre-swing, weight is transferred onto the contralateral limb in
preparation for the swing phase. It involves greater knee flexion and
plantar flexion of the ankle but also a loss of hip extension.

(f) Final Contact (FC) or Toe Off (TO): This corresponds to the end
of pre-swing, the moment when the foot breaks contact with the floor,
thereby demarcating the beginning of the swing phase. It starts with
the Flat Foot and continues until the opposite foot lifts. In this period,
the knee flexion is due to the limb’s cushioning response because the
weight of the body is transferred to the forelimb. There is plantar
flexion of the ankle and the hip is still flexed from the initial contact
[27].

All these events can be seen in the Figure 3.1.

Figure 3.1: Illustration of the Stance Phase.
[27]

2. Swing Phase: The swing phase occupies the remaining percentage of
the gait cycle (38%) and corresponds to the period when the foot is not in
contact with the ground, but rather in the air, as the leg extends toward
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the next foot contact. It is associated with limb advancement. The swing
phase can be further divided into three periods:
(a) Initial Swing: This period is characterized by acceleration as the limb

moves forward by lifting the foot through hip flexion and increased
knee flexion. It lasts from approximately 60% to 73% of the stride
(about one-third of the swing phase), starting from toe-off (TO) until
the swinging foot aligns with the stance foot. The ankle is slightly
dorsiflexed [27].

(b) Midswing: This period extends from 73% to 87% of the stride and
concludes when the swinging limb’s tibia becomes vertically oriented.
During midswing, there is further hip flexion, knee extension, and the
ankle continues in dorsiflexion [27].

(c) Terminal Swing: This is the final phase of the swing phase and
also involves deceleration. It lasts from 87% to 100% of the stride,
concluding at the moment of initial contact. The limb advancement is
completed through knee flexion as the foot prepares to make contact
with the ground. The hip is flexed, and the ankle is dorsiflexed in a
neutral position [27].

In the Figure 3.2 both stance and swing phase are presented.

Figure 3.2: Schematic diagram of the spatial sequence of the gait cycle [27].

3.2 Gait global Characterization
As has been said, a stride could be defined as a sequence of the foot contact with
the ground and the next contact of the same foot. Left and right strides are
independent and a stride of one side overlaps with the preceding and subsequent
strides of the opposite foot.[28] A step can also be defined as the sequence between
a foot contact and the next contact of the opposite foot. Two steps, one for each
side, constitute a stride. Gait parameters can be divided into temporal and spatial.

11



Theoretical Framework

3.2.1 Temporal Parameters
Provides temporal references, these are the parameters that have to do with time,
such as timing and duration [28]. This is where automation of gait research shows
it true colors. These include:

• Cadence [step/min]: number of steps performed in a minute..

• Stride Time [sec]: stride duration.

3.2.2 Spatial Parameters
Looking at gait from a spatial perspective allows us to measure gait asymmetries
related to distance between steps and strides lengths [28].

Figure 3.3: Spatial parameters representation.
[29]

The main spatial parameters studied in this project is:

• Stride Length [m]: distance between a point at the first contact of the foot
with the ground and the point on the same foot at the next contact. The
stride length determines the local gait direction of progression;

3.2.3 Velocity Parameters
The velocity parameters of gait refer to the specific measurements and characteristics
related to the speed at which a person walks or runs [30]. In this thesis the velocity
parameter studied is:

• Walking Speed [m/sec]: distance traveled in a given time, the average one is
basically the product between the cadence and the length of the stride.The
speed depends on the length which in turn depends above all on the duration
of the oscillation phase on each side.
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3.3 Gait Analysis Instrumentation Systems
The study of human motion biomechanics, particularly gait analysis, can be
conducted using qualitative or quantitative methods. Qualitative analysis describes
movements as models through expert observation, while quantitative analysis
employs numerical terms and aims for objectivity and comparability using evaluation
scales and acquisition tools.

Quantitative analysis methods include optical and non-optical motion capture
systems. Optical systems use cameras and markers, while non-optical systems
utilize various instruments based on inertial, electromagnetic, electromechanical,
or acoustic principles. Wearable systems use body sensors, while non-wearable
systems prioritize comfort and often employ RGB systems. The main technologies
used in this project are the SP system and multi-sensor wereable system with
IMUs, pressure insoles and distance sensors. Inertial electromechanical sensors,
such as accelerometers, gyroscopes, and magnetometers, measure linear and angular
accelerations, rotation angles, and magnetic fields. Pressure insoles capture the
distribution of forces during gait, while distance sensors provide measurements
related to stride length or step distance. Optical systems rely on cameras, markers,
and specialized hardware and software. In this section, we provide a summary of
the operational principles of the aforementioned systems.

3.3.1 Optoelectronic stereophotogrammetry
The optoelectronic stereophotogrammetry is usually considered as a Gold Standard
system in laboratories, is one of the most popular motion capture systems. The
SP system works by tracking the trajectories of spherical retroflective markers
positioned in the anatomical points of interest over the subject.

Optical Motion Capture Process

The SP system enables the capture of 2D grayscale images using infrared (IR)
cameras, which need to be calibrated before use [31]. This calibration process allows
for the extraction of labeled two-dimensional positions of markers from the pixel-
based image planes through image processing techniques like linear thresholding.
The next step involves transitioning from the 2D to 3D space, requiring the
capture of a single marker by at least two cameras to reconstruct its position.
Specifically, 3D correspondences are established between the two camera views and
then triangulated, resulting in a reconstruction that places all the markers within
a common coordinate frame [31].

During the calibration phase, a series of markers mounted on a predefined
geometric structure (Active wand) are used. This structure is moved around the
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laboratory while being recorded, allowing for the acquisition of an image of the
markers with a known geometry [32]. By utilizing the known geometric information,
the relationship between the x-y coordinates (which represent the projection of
individual markers from the image planes onto the cameras) and the 3D coordinates
of the markers can be understood. This relationship facilitates the reconstruction
of the 3D position of a marker recorded by at least two cameras providing 2D
information [32].

Using the acquired information during the data acquisition phase, an inverse
relationship is applied to estimate the 3D coordinates from the 2D coordinates.
To achieve this, the correspondence between each marker and its respective point
in the point cloud needs to be determined. A naming convention is assigned to
each marker, enabling the identification of specific points corresponding to markers
placed at anatomical locations (using component labeling and 3D correspondence
search) [31].

At this stage, for each frame of acquisition, a point cloud is obtained representing
the 3D positions of individual markers. The next step involves reconstructing the
local reference system that defines the orientation of each body segment. The
marker retirement protocol used determines this orientation reconstruction. The
simplest approach is to obtain the orientation of a segment by utilizing at least three
markers: two markers defining the longitudinal axis of the segment, one marker for
the medio-lateral axis, and one marker for the anteroposterior axis. Using the 3D
coordinates of these individual markers, the orientation of the segments in space
can be reconstructed for each sampling instant. This process is also known as rigid
body search [31].

This entails searching for and assigning rigid marker targets within the 3D point
cloud and recovering their poses. All the obtained information must be related
to a human model. Consequently, the trajectories of the markers, representing
specific parts of the body, become known outputs. Subsequently, various other
quantities such as joint kinematics, spatio-temporal parameters, events, etc., can
also be derived. In Figure 3.4 a flowchart of the whole process can be beheld.

3.3.2 Multi-sensor wearable systems
Multi-sensor wearable systems, like the INDIP system, have gained significant
attention in recent research due to their potential to capture comprehensive and
detailed information about human movement. These wearable devices integrate
multiple sensors, such as accelerometers, gyroscopes, and magnetometers, to capture
various aspects of human motion. Accelerometers measure linear acceleration,
gyroscopes capture angular velocity. This combination of sensors allows for a
more holistic understanding of the complex movements involved in gait. Moreover,
multi-sensor wearable systems often incorporate additional sensors like pressure
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Figure 3.4: Optical motion capture procerss flowchart.

insoles and distance sensors. Pressure insoles provide valuable information about
the distribution of forces during gait, enabling analysis of foot pressure patterns
and identifying potential gait abnormalities. Distance sensors, on the other hand,
offer measurements related to stride length or step distance, providing insights
into the spatial parameters of gait [6]. By integrating data from these different
sensors, it is possible to obtain a more comprehensive and accurate assessment of
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gait parameters. The IMUs contribute to capturing the dynamic movements and
orientation of the body during walking, while the pressure insoles provide insights
into the forces exerted by the feet and the timing of foot contact with the ground.
Distance sensors complement this information by offering spatial measurements
related to the stride length or step distance [33].

Sensor fusion techniques can be applied to merge and synchronize the data from
these sensors, enabling a more holistic analysis of gait. By combining information
on body movements, forces exerted on the feet, and distance information, errors
can be reduced, and a more detailed characterization of gait can be achieved.
This integrated approach allows for a more comprehensive understanding of gait
patterns, detection of gait abnormalities, and monitoring of rehabilitation progress.

3.3.3 Magneto-Inertial Measurement Units
Wireless sensor-based systems using magneto-inertial measurement units (MIMUs)
have emerged as an alternative to camera-based laboratory systems. These sensors,
which typically include tri-axial accelerometers, gyroscopes, and magnetometers,
offer advantages such as light weight, portability, low costs, and miniaturization,
enabling outdoor analysis over extended periods of time. In the case of MIMUs,
orientation estimates are derived from the sensor’s alignment with gravity (ac-
celerometer), the Earth’s magnetic field (magnetometer), and angular velocity
(gyroscope). These estimates are represented in quaternion format, which defines
3D rotations in space [9]. However, in the specific project mentioned, the devices
are referred to as IMUs instead of MIMUs, as the magnetometer data is excluded
due to limited usability.

Despite their advantages, sensor-based systems have limitations that should be
considered. One such limitation is the presence of drift, which introduces errors and
leads to inaccurate orientation estimations. Ferromagnetic disturbances also affect
IMUs and can result in errors in heading accuracy [9]. To mitigate these errors,
various data correction algorithms can be employed. Furthermore, inaccuracies
in sensor-based spatiotemporal parameters may arise from misalignment between
anatomical and sensor-based body segment coordination systems. Calibrating these
two coordination systems can help reduce such errors and improve accuracy.

Nevertheless, despite these limitations, wireless sensors have been successfully
utilized in obtaining spatiotemporal parameters during gait analysis [34].

Accelerometer

An accelerometer measures proper linear acceleration, which refers to the physical
acceleration experienced by an object. This can be expressed as:
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ap = as − g (3.1)

Thus, acceleration is measured relative to a free-falling or inertial observer who
is temporarily at rest in relation to the object being measured. Since gravity acts
uniformly on the inertial observer, it does not contribute to the proper acceleration
[35].

The equivalence principle ensures the existence of a local inertial frame at every
point in spacetime, and an accelerometer measures acceleration relative to that
frame. These accelerations are often referred to as g-forces, which represent forces
relative to ordinary gravity. On the Earth’s surface, a normal force is exerted
upwards with respect to the local inertial frame. Therefore, an accelerometer at
rest relative to the Earth will read approximately 1 g upwards (the frame of a freely
falling object near the surface). To obtain accurate measurements, this "gravity
offset" must be subtracted from the acceleration resulting from motion relative to
the Earth, and adjustments must be made for any effects caused by the Earth’s
rotation in relation to the inertial frame [35].

An accelerometer can be modelled as a second order spring mass damper system.
When an acceleration (a) is applied to proof mass (m) suspended by springs with
a spring constant (k), and having a damping (b), then the force (Fapplied) acting on
the proof mass is given by:

Fapplied = maapplied (3.2)

The force exerted by springs and damping in the system can be defined as:

Fspring = kx (3.3)

Fdamping = bẋ (3.4)

Applying Newton’s second law which states that the algebraic sum of all the forces
equals the inertial force of the proof mass:

Fapplied + Fspring + Fdamping = mẍ (3.5)

mẍ + bẋ + kx = Fapplied = mẍg = ma (3.6)

The transfer function H(s) of the system is given by:

ms2x(s) + bsx(s) + kx(s) = Fapplied = ma (3.7)

s2x(s) + b

m
sx(s) + k

m
x(s) = a(s) (3.8)

H(s) = x(s)
a(s) = 1

s2 + b
m

s + k
m

= 1
s2 + ω0

Q
s + ω2

0
(3.9)
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ω0 is the resonance frequency and (Q) is the quality factor given by:

ω0 =
ó

k

m
(3.10)

Q = mω0

b
(3.11)

Accelerometers work in the low frequency domain (ω « ω0) with their mechanical
sensitivity calculated by setting s = 0 in the transfer function H(s) to get:

x

a
≈ m

k
= 1

ω2
0

(3.12)

We require a high resonance frequency to have a wide sensing bandwidth, which
can be attained by decreasing the size of the proof mass and increasing the stiffness
of the springs. Unfortunately, the device’s sensitivity is decreased as a result. There
is a trade-off between sensitivity and bandwidth as a result[35].

Figure 3.5: Model of an Accelerometer [35].

Gyroscope

As an inertial sensor, the gyroscope measures the angular velocity (rate) or angle
of rotation (rate integrating) of an object. The Coriolis vibration gyroscope (CVG)
is a type of gyroscope that uses vibrational elements to determine angle or angular
velocity and is based on the Coriolis principle. It has a simple structural design
and relies less on rotating elements than earlier mechanical rotor gyroscopes. The
CVG is a great contender for gyroscope miniaturization because it combines the
benefits of MEMS technology with large quantity, low cost, tiny size, lightweight,
and low power consumption. On the other hand, the MEMS CVGs are able to
detect multi-axis angular velocity on a single-chip architecture, in contrast to other
kinds of gyroscope [36]. Considering a disk rotating about a vertical axis with a
constant angular velocity ω and a mass m oscillating with a transverse velocity vt.
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From an observer fixed with the rotating disk, it appears that a force Fc

perpendicular to the velocity vt acts to oscillate the mass along the perpendicular
direction.

Figure 3.6: Model of a rotating disk for gyroscope explanation [36].

Fc is proportional to the angular velocity, the displacement is proportional to
the force Fc. By measuring the displacement of the mass along the perpendicular
direction it is possible to determine the angular velocity .

Fc = −2mvt × ω (3.13)

The driving mode of the MEMS vibrating gyroscope provides a constant and
continuous vibration along the driving axis, and the sensing mode detects the
movement of the vibration along the sensing axis when an external rotation is
provided. These two operational modes make up the fundamental structure of the
MEMS vibrating gyroscope [36].

Figure 3.7: Simple depiction of a proof mass vibrating system [36].

The simplest two degrees of freedom equations of motion for MEMS vibrating
gyroscopes and the equation of the Coriolis force are:

m
d2x

dt2 + c
dx

dt
+ kx = FD + 2mΩdy

dt
(3.14)
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The response of the sensing mode is generally very small in magnitude compared
to the driving mode response, so the Coriolis force 2mΩdy

dt
will become negligible:

m
d2x

dt2 + c
dx

dt
+ kx = FD (3.15)

m
d2y

dt2 + c
dy

dt
+ ky = FS − FC (3.16)

where FD,FS, and FC are the driving, sensing, and Coriolis forces, respectively, m is
the inertial mass, x is the displacement of the driving motion, y is the displacement
of the sensing motion, c is the damping coefficient, k is the stiffness constant, and
Ω is the external rotation rate [36].

In the Figure 3.8 the simplest vibratory gyroscope structure is shown. The
sensing system is made up of a Coriolis force detector, while the driving system is
made up of driving electrodes that produce oscillations with a specific amplitude.
When the driving electrodes deliver a consistent and continuous momentum along
the driving axis direction, the proof mass begins to oscillate. The identical proof
mass rotates outside, which causes it to oscillate in the opposite direction from the
driving axis. The driving momentum and external rotation combine to produce the
Coriolis force, which is detected by the detecting electrodes on the orthogonal axis.

Figure 3.8: Schematic architecture of a single proof mass vibrating gyroscope
[36].

The output error model of the MIMU gyroscope at room temperature is created
in accordance with the error source and output characteristics of the gyroscope
without taking the impact of temperature changes into account [37], as indicated
in equation 3.17:Wx

Wy

Wz

 =

ωx0
ωy0
ωz0

 +

 Lωx Kωxy Kωxz

Kωyx Lωy Kωyz

Kωzx Kωzy Lωz


ωx

ωy

ωz

 (3.17)
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Where, Wi(i=x,y,z) is the measured angular rate, ωi0(i=x,y,z represents the
zero bias, ωi(i=x,y,z is the real angular rate, Kωij(i,j=x,y,z,i/=j) represents the
non-orthogonal installation error coefficient, Lωi(i=x,y,z) represents scale factor.

The gyroscope’s error compensation model can be generated using the output
error model discussed before, as illustrated in equation 3.18 :

ωx

ωy

ωz

 =

 Lωx Kωxy Kωxz

Kωyx Lωy Kωyz

Kωzx Kωzy Lωz


−1 Wx − ωx0

Wy − ωy0
Wz − ωz0

 (3.18)

3.3.4 Pressure Insoles
Pressure insoles (PI) are devices used to measure and analyze the distribution of
pressure on the feet during walking or other weight-bearing activities. They consist
of thin, flexible sensor arrays that are inserted into the shoes, between the foot and
the sole, and connected to a data acquisition system that records and analyzes the
pressure patterns [38].

In prior studies the effectiveness of pressure-sensitive insoles to estimate ground-
reaction force in real-time with reasonable accuracy has been proved [39]. These
insoles have also proven to be beneficial for gait segmentation, enabling the pro-
vision of sensory feedback based on different phases of the gait cycle [40]. This
particular sensing technology, offers advantages such as cost-effectiveness, immunity
to temperature changes, and the elimination of unnecessary calibration procedures,
making it suitable for everyday use [39].

There are different types of pressure insoles, including capacitive, resistive, and
piezoresistive sensors. Capacitive sensors measure changes in the capacitance of a
thin film in response to pressure, while resistive sensors use changes in resistance
to measure pressure. Piezoresistive sensors use piezoresistive materials that change
their resistance in response to applied pressure [41].

Several studies have evaluated the accuracy and reliability of pressure insoles.
One study compared different types of pressure insoles and found that capacitive
insoles provided the most reliable and accurate measurements of pressure distribu-
tion during walking [41]. Another study used pressure insoles to measure the effect
of footwear on pressure distribution during walking and found that footwear with
soft soles decreased pressure under the forefoot and heel, while footwear with hard
soles increased pressure under the forefoot and midfoot [42].

The PI and their respective algorithms included in the INDIP system has already
been validated for gait event identification in overground terrain [43]. Where the
utilization of low-cost PI in conjunction with specific signal processing algorithms
demonstrated minimal errors for both IC and FC. Then, these PI has been validated
for characterizing gait by integrating them with IMUs as part of a multi-sensor
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wearable system [6]. This integration enables accurate temporal estimations and
facilitates a more comprehensive assessment of gait, even in real-world, free-living
environments.

In the Figure 3.9 pressure insoles from the INDIP system are shown, these
insoles contain 16 resistive pressure sensors that allow to measure more accurately
the pressure made from each part of the foot.

Figure 3.9: Pressure insoles from INDIP System.

3.3.5 Distance Sensors
Distance sensors (DS) , also known as proximity sensors, are devices that measure
the distance between the sensor and an object. These sensors use a variety of
technologies to detect the presence of an object, including ultrasound, infrared,
and laser.

Ultrasound sensors emit high-frequency sound waves and measure the time it
takes for the waves to bounce back off of an object. These sensors are commonly
used in applications such as parking sensors, object detection in robotics, and
distance measurement in industrial applications [44].

Infrared sensors use infrared light to detect the presence of an object. These
sensors are commonly used in applications such as proximity sensors in smartphones,
motion sensors in home security systems, and obstacle detection in robotics [44].

Laser sensors emit a laser beam and measure the time it takes for the beam to
bounce back off of an object. These sensors are commonly used in applications
such as rangefinders, robot navigation, and distance measurement in industrial
applications [44].
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DS in gait studies and particullarly with the INDIP system are time-of-flight
infrared distance sensors to detect the alternating movements of the lower extremi-
ties. These DS were used in a previous study to evaluate a novel step-detection
method called the inter-foot distance step counter (IFOD), which directly mea-
sures the distance between the feet [44]. By focusing on inter-foot distance, the
IFOD method offers a unique approach to step detection, potentially overcoming
limitations encountered by traditional IMU-based methods in challenging walking
conditions.
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Chapter 4

Materials

This chapter focuses on the acquired data, providing a detailed explanation of
the systems utilized throughout the experiments. A comprehensive overview is
provided regarding the selection of patients, the experimental protocol, and the
setup established to gather the necessary data. Additionally, emphasis is placed on
the methods employed for data processing, organization, and statistical analysis,
highlighting their significance in ensuring accurate and reliable results. The chapter
not only outlines the technical aspects of the data acquisition process but also
delves into the steps taken to prepare the data for subsequent analysis, making it a
comprehensive resource for understanding the entire experimental workflow.

4.1 VICON System
The Vicon Motion Capture System is a SP system widely regarded as the most
precise and accurate motion capture (MOCAP) solution currently available [45]. It
is utilized in gait analysis, rehabilitation, and can be integrated with other devices
such as force plates or EMG sensors. It supports multiple programming languages,
including Matlab and Python.

4.1.1 Hardware Components
Active Wand

The Vicon Active Wand is an electronic motion capture calibration device that
contains five LEDs. The Active Wand is used to calibrate both optical and reference
video cameras. As some reference video cameras don’t have strobes, the LEDs in
the Active Wand make it easier to identify and locate markers from the reference
video camera images. [46]. This is first used for the dynamic calibration of the
cameras once the LEDs start flashing, as soon as the brightness stabilizes it means
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that the cameras and the wand are synchronized, then the wand it needs to be
shaken in all the analysis volume up to the point in which the software indicates a
successfully calibration.

Figure 4.1: Active Wand.

Motion Capture Cameras

For this project, fourteen infrared cameras are used as seen in Figure 4.3. These
are positioned at the top on fixed and immobile supports (Truss System) to avoid
movements that could affect the accuracy of the results (Figure 4.2).

Figure 4.2: Truss System for Vicon Cameras.

Markers

In motion capture two different types of markers are used, these are passive or
active. In this particular work only passive markers were used (Figure 4.4). These
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Figure 4.3: Vicon Cameras Positioning in Nexus Software.

types of markers are retroreflective, they reflect light when illuminated in the
infrared.

Figure 4.4: Vicon Passive Markers.

4.1.2 Camera Calibration Process
This is a step for determining the calibration matrix that maps coordinates in
the 3D world into the 2D image. This can be recovered linearly by the Direct
Linear Transform Method. The output from this method are the parameters of
the cameras that allow to find, starting from the 3D coordinates of the markers
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recorded by the cameras, the 2D coordinates of a single marker.

4.1.3 Software
The software used is called Nexus, this is used for analyzing and obtaining the
output data that retrieves the motion capture system. The software allows the
creation and labelling of a a 3-dimensional skeleton for the whole bunch of tests
by considering the set of markers used and the antropometric parameters of the
subject, such as height, weight, and length of the body segments. Then, from
the predefined biomechanical model, the kinematic and/or kinetic parameters of
interest, the names of the markers used, and the relationships between them are
extracted.

First, a static test is carried out, with the subject standing in the center of the
movement volume considered by the cameras so the system is allowed to collect all
the data on the markers positioned on the subject.

4.2 INDIP System
This is a inertial based system which includes a magneto-inertial unit sensor, a
distance sensor, and a plantar pressure insole combining them into a multi-sensor
werable system. A comprehensive depiction of the INDIP system hardware has
been presented in [6], offering detailed information about its components and
specifications. Additionally, each of the advanced algorithms incorporated in
the INDIP computational pipeline has been thoroughly explained in the same
article, where respective algorithms have been previously described, validated, and
evaluated.

Figure 4.5: INDIP System with PI, IMUs and DS.
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4.3 Data Collection
Ten healthy subjects (Table 4.1) were chosen to be studied in different terrain
conditions. All of the experiments were performed in the Hospital "Los Madroños"
located in Brunette, Spain. The phases of the study are listed as:

• Phase 1: Recruiting subjects following the inclusion and exclusion criteria
listed above.

• Phase 2: Providing information to the participant about the structure, dura-
tion, and other relevant topics of interest for the experiment, and obtaining
the informed consent signature.

• Phase 3: Experimentation and data acquisition with INDIP, and VICON.

– Instrumenting the subjects.
– Conducting the tests.
– De-instrumenting the subjects.

• Phase 4: Data processing and obtaining results.

• Phase 5: Evaluating the results based on metrics.

Table 4.1: Summary of participants for trials acquisitions.

Subject Gender (M/F) Age (y) Height (cm) Weight (Kg) Shoe Size
1 F 23 170 66 39
2 F 24 163 55 39
3 F 25 168 57 38
4 M 23 182 78 43
5 F 32 166 57 37
6 F 26 164 53 39
7 F 25 170 60 37
8 M 24 183 80 43
9 F 24 162 52 39
10 M 24 179 65 41

4.4 Subject Selection
People participating in this study met the inclusion/exclusion criteria designed for
this project. These criteria are the following:
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Inclusion Criteria:

• Age between 18 and 50 years.

• Do not have any medical condition which prevent the subject to walk over
irregular terrain or slope.

• Do not have any skin sensibility that does not allow the use of measure
instrumentation.

• Height of 150 to 195 meters.

• Both genres.

• A maximum wight of 100 kg.

• Capable of following instructions.

Exclusion Criteria:

• Pregnant, lactating or postmenopausal woman.

• Usage of an external device that supports the spine or head, neck, or trunk.

• Hospitalization due to heart attack, cardiac surgery, or acute heart failure
within 3 months prior to study entry or cardiovascular disease or major deep
vein thrombosis (DVT) in the lower extremities (within the last 3 months)).

• Suffer balance disturbances.

It is important to emphasize that after the complete acquisition process, certain
subjects had to be excluded from the study. The first two subjects were excluded
due to a protocol change, the sixth subject experienced an issue with INDIP, and
the acquisitions with the last subject could not be completed due to personal
reasons. At the end, only data from six subjects were considered for the final
results.

4.5 Experimental Protocol
The protocol involves a single experimental session for each evaluated case. The
session begins with an explanation and clarification phase of the protocol to be
followed.

The participant is instrumented with the measurement systems - VICON and
INDIP - and the necessary anthropometric measures are taken. The participant
performs different walks on a walkway (Figure 4.6), which may be in a horizontal
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position or inclined at a 15-degree angle. The platform system consists of a 7 x
1 m walkway composed of two lateral platforms of 3 x 1 m joined to a central
platform of 1 x 1 m by means of hinges. Beneath the central platform, there is a
hydraulic lifting platform capable of reaching a height of up to 2 m. The created
mechanism allows generating terrain inclinations on the lateral ramps of up to
15 degrees. Different terrains with varied hardness and shape are placed on top
of this walkway. The participant performs four walks for each terrain condition

Figure 4.6: Base platform for experiments.

(approximately 4 min per condition), one trial is considered as a one-way walk.
The conditions to be performed are listed in the following list:

• Flat terrain with the platform at 0 and 15 degrees. The flat terrain or over-
ground is allways necessary to start with a reference system. (2 configurations).
Figure 4.6

• Wooden modules with a 15-degree inclination, in the sawtooth configuration.
These are used to simulate terrain with positive and negative slopes. The
tests will be carried out on the platform at 0 and 15 degrees. These modules
are not symmetric so the subject will walk in an upward direction and in a
downward direction, both in 0° and 15°. In this case each step will have a
positive slope or negative slope with an angle that will vary respect of the
platform inclination. (4 configurations). Figure 4.8.

• Unstructured terrain modules with the platform at 0 and 15 degrees. This
is a soft terrain trying to simulate a mountain terrain with different floor
irregularities. (2 configurations). Figure 4.8
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• Mat with the platform at 0 and 15 degrees. (2 configurations). To replicate
challenging conditions such as mud or surfaces that pose difficulty in executing
FC, a soft terrain is simulated by placing a mat. Figure 4.8.

A resume of all terrain conditions with their respective condition number can
be found in Table 4.2.

# Condition Terrain Degree
1 Overground 0°
2 Overground 15°
3 Mat 0°
4 Mat 15°
5 Unstructured 0°
6 Unstructured 15°
7 Sawtooth Upward 0°
8 Sawtooth Upward 15°
9 Sawtooth Downward 0°
10 Sawtooth Downward 15°

Table 4.2: Terrain conditions name and numbers.

In Figure 4.7 a graphic representation of all the conditions is presented.

Figure 4.7: Graphical representation of each terrain condition.

The chronological sequence of the type of terrain is chosen randomly for each
subject, completing all proposed combinations. The subject has 5 minutes of rest
during the change of terrain. The subject performs the test at a comfortable speed,
with which they feel safe and stable. Once the tests are completed, the markers and
sensors are removed, and the study concludes. There are 10 configurations in total,
so considering three walks and three returns per configuration, 60 acquisitions
are obtained for each subject, taking a total time of approximately 60 minutes
of acquisitions. Considering 5 minutes of terrain changes, a total of 40 minutes

31



Materials

is added. In summary, the total time of participation in this experiment is 100
minutes. The walking path from one side to the other of the platform is treated
as a trial, without distinguishing between walking and returning. However, this
distinction is only relevant in the case of the Sawtooth terrain, because of its
asymmetry. A total amount of 600 data files from VICON and another 600 files
from INDIP were acquired.

Figure 4.8: I) Mat terrain, II) Downward Sawtooth Terrain, III) Unstructured
Terrain, VI) Upward Sawtooth Terrain, V) Plane Terrain.

It is important to note that an Excel sheet was maintained throughout the
acquisition process. Table 4.3 presents an example of this table, which includes
details such as trial information or file name, acquisition start time, Vicon trial
number, GoPro video number, terrain description, acquisition state, and any
relevant problems or additional information. This Excel sheet serves not only to
describe the conducted experiment but also plays a crucial role in renaming the
raw data exported by the INDIP system.

4.5.1 Systems Calibration
Before starting the acquisition both VICON and INDIP systems need to be cali-
brated.

Vicon Calibration.

For calibrating Vicon, as it has been introduced in Chapter 4, the following steps
were performed:

• Active wand connection: The active wand was securely connected to the Vicon
system. The active wand contained markers that emitted infrared signals,
which were used for calibration.

• Preparation of calibration space: The Vicon cameras were set up in the desired
configuration for calibration. The cameras had a clear view of the calibration
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Table 4.3: Experiments description sheet.

File_name Time Vicon GoPro Description State
subject_06_cond_15_run 17:28 4 GX015138 Upward Sawtooth OK
subject_06_cond_15_run 17:29 5 GX015139 Upward Sawtooth NO.
subject_06_cond_15_run 17:29 6 GX015140 Upward Sawtooth OK
subject_06_cond_17_run 17:33 1 GX015141 Downward Sawtooth OK
subject_06_cond_17_run 17:33 2 GX015142 Downward Sawtooth OK
subject_06_cond_17_run 17:34 3 GX015143 Downward Sawtooth OK
subject_06_cond_17_run 17:34 4 GX015144 Downward Sawtooth OK
subject_06_cond_17_run 17:35 5 GX015145 Downward Sawtooth OK
subject_06_cond_17_run 17:35 6 GX015146 Downward Sawtooth OK
subject_06_cond_09_run 18:27 1 GX015171 Mat OK
subject_06_cond_09_run 18:27 2 GX015172 Mat OK
subject_06_cond_09_run 18:28 3 GX015173 Mat OK
subject_06_cond_09_run 18:28 4 GX015174 Mat OK
subject_06_cond_09_run 18:29 5 GX015175 Mat OK
subject_06_cond_09_run 18:29 6 GX015176 Mat OK
subject_06_cond_10_run 18:31 1 GX015177 Mat slope OK
subject_06_cond_10_run 18:31 2 GX015178 Mat slope OK
subject_06_cond_10_run 18:32 3 GX015179 Mat slope OK
subject_06_cond_10_run 18:32 4 GX015180 Mat slope OK
subject_06_cond_10_run 18:32 5 GX015181 Mat slope OK

space, and obstructions were avoided. The Vicon software was launched: The
Vicon software was opened on the computer, and the appropriate calibration
option was selected.

• Active wand definition as a calibration tool: The active wand was designated
as a calibration tool in the Vicon software.

• Calibration process performance: The instructions provided by the Vicon
software were followed to perform the calibration. The active wand was waved
within the calibration space while the Vicon cameras tracked its movements.

• Calibration data collection: The active wand was moved around the calibration
space in various orientations and positions. The Vicon cameras tracked the
markers on the wand, collecting data to calibrate the system.

• The calibration was completed: Once sufficient data was collected, the Vicon
software processed the information and generated a calibration result. This
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calibration result was used to improve the accuracy of the motion capture
system.

• Reference axis definition: After calibration, the active wand was positioned in
the middle of the platform for setting the reference axis.

INDIP Calibration

• IMU Static Test: static acquisition using the 3 INDIP MIMUs. In this
test, the operator places all the devices on a level surface and initiates an
acquisition that lasts for a minimum of 60 seconds. It is important to avoid
any knocking or movement of the sensors during the acquisition.

• Pressure Insoles Static Test: this is conducted to ensure their proper
functionality. During this test, an operator records the signals from the
pressure insoles by applying pressure to the individual sensing units one by
one. The order in which the sensing elements are pressed is not significant.
This procedure is performed separately for both the right and left pressure
insoles, one acquisition at a time.

• Standing Test: a brief static acquisition is conducted with the participant
wearing all the INDIP MIMUs, pressure insoles, and distance sensors as
shown in Figure 4.12. The participant is instructed to maintain a stationary
position for a minimum of 10 seconds. This test is necessary to determine the
orientation of the MIMUs in the global framework, enabling the computation
of a rotation matrix to align the MIMU recordings during dynamic acquisitions.
The recorded signals for the IMUS are presented in Figure 4.9.

• Data Personalization Test: this test is conducted to ensure proper
placement of the pressure insoles inside the shoes and to identify any sensors
that may not activate correctly The test involves the following steps:

– Stand still for a minimum of 10 seconds.
– Lift the left foot and maintain the position for at least 5 seconds, repre-

senting a single right support phase.
– Stand still again for at least 5 seconds, representing a double support

phase.
– Lift the right foot and hold the position for 5 seconds, representing a

single left support phase.
– Stand still once more for at least 5 seconds, representing a double support

phase.
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Figure 4.9: Signals for the Standing acquisition for the right foot of subject 3. A)
Accelerometer readings; B) Gyroscope readings; C) Magnetometer readings.

– Walk comfortably at a normal pace along a J path where the subject
starts walking and then returns to a point that is distanced from the
initial point, creating an imaginary J on the floor. These actions are
performed to validate the correct functioning and positioning of the
pressure insoles, as well as to capture relevant data for personalization
purposes. Personalization signals are presented in Figure 4.10.

4.6 Instrumentation
The participants were equipped with the two motion capture systems:

i) The placement of 43 reflective optical markers required for the photogrammetry-
based system (VICON) was performed. These markers were positioned according
to the Plug-in-gait standard model on the subject’s chest, legs, and feet, following
the arrangement shown in Figure 1 (estimated duration: 15 minutes). To prevent
markers from being obscured by uneven surfaces, two additional markers were
included on each side of the feet. This was done to mitigate the possibility of marker
loss caused by surface irregularities. Additionally, each terrain was designated with
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Figure 4.10: Signals for the Personalization acquisition for the right foot of
subject 3. A) Accelerometer readings; B) Gyroscope readings; C) Magnetometer
readings.

a predetermined set of markers to enable easier reconstruction using the NEXUS
software. This facilitated the manual identification of events, streamlining the
process.

ii) The sensors from the INDIP system were placed, which included two distance
sensors on each leg, two magneto-inertial sensors on the feet and one on the pelvis,
and two sensorized insoles with pressure sensors on the feet (estimated duration:
15 minutes). Anthropometric measurements were taken simultaneously to calibrate
the VICON system model.

Next, the already mentioned calibration tests were carried out, and a quality
check conducted.

In the Figure 4.12 is presented one subject instrumented before starting the
acquisition.
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Figure 4.11: Representation of the subject instrumentation, vicon markers are
red painted.

Figure 4.12: Experimental subject instrumentation.

4.7 Experimental Set Up
The initiation of all acquisitions in the Vicon system is done by connecting a
trigger INDIP unit to the sync output connector of the Vicon Lock, as depicted in
Figure 4.13. The acquisition process begins with the recording from the INDIP
GUI via Bluetooth on the INDIP units. Subsequently, the Vicon recording is
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initiated, which triggers the INDIP unit connected to the lock. Upon completion
of the acquisition, the Vicon recording is stopped, followed by the cessation of the
Bluetooth-connected INDIP units.

Figure 4.13: Experimental setup.

4.8 Data Preprocessing
4.8.1 Vicon Data Preprocessing and Organization.
The Vicon data is organized according to the EUROBENCH format [47] format
which is presented in the Figure 4.14.

Figure 4.14: Data organization.

• The first output of the Nexus software is a CSV file with all the gait event
information. Due to the irregularities of the surfaces, gait cycle segmentation
for the reference system that consists in event identification was manually
performed.

• The second output is a .mat file that contains all the marker trajectories.
These trajectories are extracted to enable the calculation of spatio-temporal
parameters.
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4.8.2 INDIP Data Preprocessing and Organization

After completing all the Tests, the data recorded by each sensor are manually
downloaded using the Matlab INDIP GUI. These data files are then saved as
text files (TXT) into the Experimental Protocol folder within the corresponding
Participant Folder. To organize and standardize the data, a Python code is
employed. This code automatically reads the Excel table that was generated during
the acquisition process and processes the corresponding TXT files. The TXT
files are then saved as renamed files within the participant’s designated folder.
Furthermore, the automated organization process involves not only saving and
organizing the data into a .mat structure but also interpolating the data from the
INDIP units that were started using the GUI through Bluetooth. This interpolation
is performed to synchronize the data based on the timestamps recorded by the
trigger INDIP unit, which is connected to the VICON lock. The information in this
arrangement is structured according to each individual, categorized by various types
of environmental conditions. Within each category, you can locate individual trials
or runs, with the sensor data divided into two parts: data obtained from distance
sensors and pressure insoles, and data collected from the body’s IMU for each body
part. The standardized data is then saved as a Matlab structure (data.mat) into
the corresponding Participant Folder. Finally, the data.mat structure serves as
input to the collection of Matlab scripts and functions of the INDIP algorithm.
These scripts and functions are designed to process the data and generate the
desired output, which includes events and parameters related to the study. In
order to increase the robustness of the INDIP system some algorithm modifications
where implemented, which are discussed in the next chapter. The INDIP data is
organized by also following the EUROBENCH format as seen in Figure 4.15.

Figure 4.15: A) Input data organization for the INDIP algorithm, B) Output
data organization from the INDIP algorithm.
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StridesNew is a mat struct which contains:

• Initial Contact Events.

• Final Contact Events.

• ICFlags.

• FCFlags.

• Stride duration for each stride.

• Stride length for each stride.

• Stride clearance for each stride.

• Vertical displacement for each stride.

• Velocity for each stride.

• Foot Identification.
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Methods

This chapter delves into the detailed explanation of the algorithms utilized for
processing the data acquired from the SP and INDIP systems. The data obtained
from the Vicon system underwent both automated and manual processing within
the system’s software. The original algorithm of the INDIP system underwent
a rigorous analysis and subsequent modifications. Consequently, this section
exclusively highlights the specific components of the algorithm that were subjected
to modification, while a comprehensive elucidation of the complete algorithm can be
referenced in [6]. Additionally, the chapter concludes by presenting the respective
metrics and methodologies employed for analyzing the processed data. These
metrics and methods play a pivotal role in unraveling valuable insights from the
collected dataset, ultimately contributing to a comprehensive understanding of gait
dynamics in extreme terrain conditions.

5.1 Vicon Data Processing
To obtain the CSV output of the VICON system seen in Figure 4.14 where gait
event information is contained, all trials are manually processed with Vicon Nexus.
The complete pipeline is presented in Figure 5.1.

The first step involves importing the collected data into the software, where the
markers are automatically reconstructed and labeled. If any data is missing, it is
manually filled based on specific criteria. Then, the Dynamic Body Language Model
is executed, and the trajectories are filtered using the Woltring filter. Afterward,
the Dinamic Plug in Gait Model is applied to the processed data. During this
process, events like Initial Contact (IC) and Final Contact (FC) are manually
identified, considering a mean value between 10 and 12 gait cycles per trial, and
4 trials processed for each subject, at the end 4000 gait cycles were manually
processed in the Vicon software, the FlowChart related to the event identification
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Figure 5.1: Vicon Processing Pipeline.

is presented in Figure 5.2. To accurately identify FC, the trajectory of the TOE
marker and two additional markers placed in each side of the foot are evaluated
using the software graphic interface. Similarly, the trajectory of the HEE marker
is analyzed to identify IC, an example of this can be seen in Figure 5.3. These
markers were selected based on their placement near the heel and toe regions of
the foot, as these areas make initial contact with the ground and lift off from it,
respectively. Additionally, to improve identification and minimize human error, the
terrain structures are reconstructed in the software using terrain marker positioning
(Figure 5.4). This enables the reconstruction of irregularities and the precise
identification of the moment when the trajectory makes contact with the terrain.
Finally, the events are exported in ASCII format, specifically as a CSV file that
contains comprehensive event information.

As it has already said, the second output seen in Figure 4.14 contains the
trajectories of the markers that are used for obtaining spatio-temporal parameters.
In order to obtain them, the mean value between the trajectory of the TOE marker
and the trajectory of the HEE marker is computed. This is necessary because no
marker was placed on the INDIP system, so an approximate point is considered
instead. Subsequently, the manually identified event instances from the Nexus
software are imported, and these trajectories are segmented to estimate spatial
parameters such as stride length. In Figure 5.5 an example of the anteroposterior
trajectory with the respective IC is presented for each foot.

5.2 INDIP Data Processing and Algorithm Opti-
mization

In order to enhance the INDIP robustness for characterizing gait in extreme terrains
conditions some algorithm adaptations were conducted. The existing algorithms
needed to be refined to account for the unique challenges posed by such terrains,
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Figure 5.2: Flow Chart related to the manually event identification in Vicon.

Figure 5.3: Marker trajectory in Nexus Software.

ensuring accurate and reliable gait analysis. The goal was to accurately capture
and analyze gait patterns despite the unique challenges posed by these terrains.

Refinement of the algorithms was a key aspect of the modification process.
Advanced signal processing techniques were developed and applied to effectively
handle the dynamic nature of extreme terrains. This involved filtering the sensor
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Figure 5.4: Nexus visualization of the reconstructed pose and terrain.

data and extracting relevant gait information while mitigating noise, artifacts, and
motion interference arising from the challenging terrain conditions. The validation
phase involved comparing the results obtained from both the original and modified
algorithms to analyze the algorithm’s improvement. This chapter solely focuses on
presenting the modified methods, while the discussion of the results is reserved for
the nexts chapters.
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Figure 5.5: Left and Right Foot Antero-Posterior Trajectory from Vicon with IC
identificated.

5.2.1 Automatization of Personalization Phase

The original INDIP algorithm incorporates a function for obtaining quality flags
from the data personalized acquisition explained in the preceding chapter. This
function was designed to establish intervals for the Standing, Fly, and Personal-
ization Phases based on the total standard deviation of each foot. Ideally, two
time points were derived for each phase to indicate their respective beginnings
and ends. However, due to noise or subject movement, the algorithm sometimes
identified more than three phases, necessitating manual intervention by the opera-
tor. To optimize this function and minimize operator input, a verification process
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was implemented after identifying the phase intervals. This check calculates the
time differences between all phases and determines their minimum and maximum
values. If a minimum difference exists after the third index, it is eliminated as
it is likely a mistake since no phase should follow the third phase, which is the
largest one. An example of this issue is illustrated in Figure 5.6, where a small
interval was erroneously considered, causing the algorithm to crash. Following the
aforementioned implementation, this problematic interval was disregarded, ensuring
improved algorithm performance and stability.

Figure 5.6: Stance,Fly and Personalisation problem identification.

Furthermore, changes were made to the threshold for finding high right and
left foot motion to define the flags of each foot. Firstly, a constant value was used
as treshold and this has been changed for a percentage of the maximum value.
Additionally, modifications were made to the definition of trusted swing and stance
phases when obtaining the dynamic flag. Originally, a constant number was used,
which the operator adjusted for each subject. The stance phase is now defined as
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the portion of the signal that is higher than 60% of the maximum value from the
mean between all PI signals, while the swing phase is defined as the portion of the
signal smaller than 35% of the mean between all PI signals. This last change was
made to avoid algorithm crashes when signals were not intense enough to reach a
constant number, an example of this case is shown in Figure 5.7, where the swing
phase was previously defined with a threshold of 0.6, in this case, the mean signal
it does not arrive to that amplitude.

Figure 5.7: Problem of using a constant treshold for defining Stance Phase.

5.2.2 PI signal quality enhancement for improving event
identification.

An illustration of a PI signal during normal walking is depicted in Figure 5.8.
The figure displays the plotted signals from 16 sensors positioned on the insole.
The swing phase, characterized by the absence of sensor activity, is clearly visible.
Conversely, during the stance phase, the pressure exerted by the foot activates
different sensors, resulting in their active state.
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Figure 5.8: PI signal in normal walking condition.

A possible assumption is that surface irregularities can have an impact on the
quality and accuracy of pressure insole measurements. When pressure insoles
are used to analyze gait or assess foot pressure distribution, they rely on the
assumption that the foot maintains consistent contact with the surface. However,
in the presence of surface irregularities, such as depressions, or uneven terrain, this
assumption could be challenged [48].

Surface irregularities can disrupt the normal distribution of pressure across the
foot [48], leading to inaccurate measurements. For example, when encountering a
bump or uneven surface, the pressure insole may register higher pressure readings in
certain areas of the foot, even if the actual pressure applied by the foot is relatively
low. Conversely, when walking over a depression or uneven terrain, the pressure
insole may fail to detect or register adequate pressure in specific regions of the foot.

These discrepancies in pressure readings can possibility impact the quality
of the data obtained from the pressure insoles. They can introduce noise and
inconsistencies into the measurements, making it difficult to interpret and analyze
the data accurately.

After checking some of the signals and results obtained with the original algo-
rithm it was possible to realize that in some subjects the quality of the PI signals
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was poor, increasing the time differences between INDIP and VICON results. In
Figure 5.9, an example of the PI signal under extreme terrain conditions is shown.
In this particular case, it can be observed that certain sensors remain active during
the swing phase, suggesting that the foot is applying some pressure. However,
according to the conventional definition of the swing phase, this should not be pos-
sible. This discrepancy in sensor activation during the swing phase can potentially
result in misidentification of gait events. Therefore, it is crucial to minimize sensor
activation during the swing phase to ensure accurate event detection.

Figure 5.9: PI signal in extreme terrain walking condition.

With the purpose to increase the quality of the signals and reduce the time
difference error between INDIP and VICON firstly the sensors were classified in
two groups:

• False Positive Active sensors (FPAS): sensors that present signals that are
active when they should be disabled, for example, in swing phase.

• True Positive Active sensors (TPAS): sensors that present signals that are
disabled when they should be disabled, for example, in swing phase.

This classification was obtained by computing the correlation between the 16
sensors of the PI. Correlation is a measure of the degree to which two signals or
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datasets are related to each other. It measures the similarity between two signals
and indicates how much they vary together [49]. Considering two discrete-time
signals x[n] and y[n] which are signals for two different sensors of the PI, the C(x, y)
correlation between them is defined as:

C(x, y) =
n2Ø

n=n1

x[n]y[n] (5.1)

where n1 and n2 define the interval over which we are calculating the correlation.
In words, to compute a correlation between two signals, they are multiplied together
and then added up the product. This gives a single number that represents how
similar the signals are to each other. Considering this, the idea is to use the
correlation to put signals which has a undesired activation together and separate
them from those which are correctly activated. The correlation matrix between all
sensors is represented in a heat map and shown in Figure 5.10.

First, a column mean is performed to obtain a single correlation value for each
sensor related to the others, then, a second average is carry out to compute a
unique threshold for separating between false positive sensors and true positive
sensors. Experimental results shown that those sensors which have a correlation
value higher than the threshold are the ones which are considered false positive
sensors. An example of these groups is shown in Figure 5.11.

Once sensors were classified the general aim is to reduce the active part of the
signal in the swing phase to a number close to zero. To do this the mean of these
sensors is computed and multiplied for each signal of the false positive sensor.
Figure ?? illustrates the calculated mean signal derived from all the falsely positive
active sensors. Additionally, Figure 5.13 demonstrates the outcome of multiplying
this mean signal with each of the falsely positive sensors.

Subsequently, a sigmoid function is applied for each sensor’s signal for preserving
the peaks and deepens the valleys [50]. Applying a sigmoid function to pressure
insole signals can have several advantages such as:

• Non-linearity: The sigmoid function is non-linear, which means that it can
capture complex relationships between the input and output signals [51]. In
the context of pressure insole signals, this can help to capture more nuanced
changes in pressure over time.

• Improved interpretability: The sigmoid function can normalize the output
values to a range between 0 and 1, which can make it easier to interpret the
data. For example, if the pressure insole signals are being used to measure
the gait of a person, the sigmoid function can provide a normalized output
that can be more easily interpreted by a clinician or researcher.
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Figure 5.10: Correlation Heatmap between sensors.

• Noise reduction: The sigmoid function can smooth out noise in the input signal
by compressing extreme values towards the center of the sigmoid function [52].
This can help to reduce the impact of random fluctuations in the data and
make it easier to identify patterns and trends.

Overall, applying a sigmoid function to pressure insole signals can help to
improve the interpretability and usefulness of the data, while also providing a
non-linear approach to analyzing the data. Mathematically the sigmoid signal is
defined as 5.2:

xnew = 1
1 + e−ϕ·x (5.2)

In this equation, ϕ represents the output of the sigmoid function for a given
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Figure 5.11: False positive sensors and true positive sensors classification.

input value x, which is the PI signal, and ϕ determines the slope of the sigmoid
curve. Increasing the value of ϕ makes the curve steeper, while decreasing the value
of ϕ flattens the curve.

With ϕ = 0.05, x the PI signal to which is applied the sigmoid function and
xnew the modified PI signal, the applied function with its coefficient is presented in
Figure 5.14.

It is necessary to mention that this function is applied to the "False positive"
sensor’s signals after the mean correction as well as to the "True positive" sensors
in order to enhace the general quality of the signals. As a result, there is not only
a clearly quality improvements of the PI signals as seen in Figure 5.15 but also
a reduction of the mean absolute difference respect to those events find with the
Vicon system.
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Figure 5.12: Mean FPAS Signal.

Figure 5.13: False positive active sensors after mean multiplication.

5.2.3 Rising and Falling edge new criteria
To obtain potential IC and FC instants, the INDIP algorithm detects minimum
values associated with the ascending and descending segments of the PI signals.
The algorithm operates on the principle that the IC corresponds to the minimum
value preceding a rise in the signal, whereas the FC is determined as the minimum
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Figure 5.14: Applied sigmoid function with ϕ = 0.05.

Figure 5.15: PI signals after sigmoid application.

value prior to a decline in the signal. This procedure entails calculating the first
derivative of the signal and identifying the peaks as the rising and falling edges,
respectively. By employing this approach, the algorithm effectively identifies the
specific points in the PI signals that correspond to the IC and FC events during
gait analysis.

Once the initial IC and FC are identified, a verification step is carried out to
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discard insignificant rising and falling edges using two criteria. The first criterion
involves analyzing the amplitude reached by the signal within a specific window,
based on two conditions: the length of the window and the threshold for the
amplitude. The second criterion considers the time interval between consecutive
falling edges.

In Figure 5.16, the Final Contacts (FC) for one channel of the pressure insole
sensor are shown. These FC points were determined by identifying the falling edge
using the Original Algorithm. The preliminary FC points are indicated by the red
markings, following the applied criteria.

It becomes evident that the original criteria and conditions are not effectively
capturing the characteristics of the signal. This discrepancy arises from visually
observing the signal, where the expected FC falling edges should transition from
an amplitude close to one to a small value close to zero.

However, it is noticeable that certain falling edges with amplitudes smaller
than one are incorrectly identified as definitive FC. This misidentification can have
adverse effects, including impacting the accurate detection of true FC, as evidenced
by the FC around 400 samples. Although lacking the red marking, it is clear that
this is a valid FC. Additionally, the duration between consecutive falling edges is
not accurately represented, and it is apparent that the first two FC, for example,
are in close proximity to each other.

To address the issues with automatic identification, three procedures were
implemented. Firstly, the window values for the first condition of the first criteria
and the second condition of the first criteria were adjusted to 15 and 35 samples,
respectively. Secondly, the amplitude thresholds for the first condition of the first
criteria and the second condition of the first criteria were modified to 0.5 and
0.8, respectively. These threshold values were determined through experimental
adjustments to ensure effectiveness across most channels.

Additionally, a second condition was introduced for the second criteria, which
utilizes the derivative signal of the PI signal. Prior to applying the sigmoid method,
the signals were not constrained within the range of zero to one. Consequently,
the derivative signal exhibited inhomogeneity, with falling and rising edges being
represented with varying amplitudes. However, after applying the sigmoid method,
which possesses normalization properties, the signal is scaled between zero and one.
This enables a steeper slope in the derivative signal when falling and rising edges
occur in the original signal.

Considering this, a criterion was established that identifies proper FC based on
the derivative value of the falling edge, requiring it to exceed 60% of the maximum
value of the derivative signal. In Figure 5.17 is possible to appreciate that after the
new conditions and criteria applied, the right FC were finally obtained.

It is important to clarify that this condition was exclusively applied to the falling
edge check. In the case of the rising edge check, it was not necessary to implement
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Figure 5.16: FC Candidates with the Original algorithm.

this condition since the slope of the curve is not as steep, and the original thresholds
functioned effectively. This procedure was implemented to improve the accuracy of
event identification in each channel, with the goal of achieving a more consistent
identification across all channels. The objective was to identify sensors that belong
to the same neighborhood and exhibit similar event patterns. By identifying closer
candidate sensors within the same neighborhood, the overall event identification
could be enhanced, resulting in more accurate results.

5.2.4 IC and FC selection refinement
After identifying events for each sensor, a neighborhood of active sensors is estab-
lished for each sensor that has detected an event. A tern for each IC and FC events
is found, composed by the respective rising or falling edge instant values, rising or
falling minima and the three active sensors that belong to the same neighborhood
and have registered those instants. Figure 5.18 displays all the potential events
detected by each sensor in the pressure insoles for one complete gait cycle. Each
event corresponds to an active sensor.
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Figure 5.17: FC Candidates with the new criteria.

To identify the active sensors, the event detected by the first sensor is chosen
as a candidate event, either IC or FC. The neighboring events detected by other
sensors are considered as additional potential candidates. Consequently, three final
candidates for each type of event are obtained by considering the events found
by the sensor’s neighborhood. It is important to highlight that the original code
identifies the candidates sensors as those belonging to the same neighborhood to
the first active sensor, without establishing any criteria. At the end an IC or FC
candidate cell with 3 candidates for each active group is obtained. The candidate
selection respect to the active sensors of Figure 5.18 is presented in Figure 5.19.

By examining Figure 5.18, it is evident that the active groups of FC and IC
are widely dispersed across the falling and rising edges. This variability could be
attributed to the signal fluctuations. One possible assumption is that the most
accurate IC and FC are the ones that are closest to the majority of rising and
falling edges observed across all channels.

In Figure 5.19, the candidates identified using the original code are displayed. It
is distinct that some candidates are not well considered, as can be observed from
various factors. Firstly, there are instances where the temporal distance between
IC and FC is too short, indicating that some candidates from both groups are
too closely positioned. Moreover, certain candidates within the same group are
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Figure 5.18: IC and FC found by each pressure sensor.

widely spread and exhibit significant temporal differences, implying that active
sensors in the same neighborhood have detected different time instances of the
respective events. The unsatisfactory outcome can be attributed to the absence of a
criterion for selecting candidates from the active sensors. As previously mentioned,
the original code operates by sequentially examining the neighborhood of the
active sensors in increasing order. This approach lacks a systematic criteria for
determining which candidates should be considered, leading to suboptimal results.

To address the issue and improve the selection of candidates based on the previ-
ously discussed assumptions, an additional algorithmic change was implemented.
Instead of solely considering the first active sensor and its neighborhood, a new
criterion was introduced that takes into account the concept of high density of
active sensors. This criterion emphasizes the need for candidates to be located
around areas with a higher concentration of active sensors.

The updated approach can be statistically translated into selecting the mode,
which can be seen in Equation 5.3, among all events as the initial candidate.
Subsequently, the neighborhood of this candidate is carefully evaluated to refine
the final selection.
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Figure 5.19: IC and FC candidates found with the original algorithm.

mode = L + h
(fm − f1)

(fm − f1) + (fm − f2)
(5.3)

Where L is the lower limit of the modal class, h is the size of the class interval,
representing the number of active sensors, fm is the frequency of the modal class,
f1 is the frequency of the class that comes just before the modal class, f2 is the
frequency of the class that comes just after the modal class.

It is important to mention that if the mode of the active sensors does not have
any active sensors in its immediate neighborhood, the closest value to this mode is
considered as the first active sensor. This process continues until a group of active
sensors belonging to the same neighborhood is identified. This ensures that even if
the mode itself is not an active sensor, the algorithm searches for the closest value
that represents an active sensor and then proceeds to find other active sensors in
the vicinity to form a cohesive group.

The resulting candidates are presented in Figure 5.20. It is evident that the
chosen candidates are not only closer to each other with increased homogeneity
but also in closer proximity to the prominent falling and rising edges observed in
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the signal. Additionally, it can be observed that there is a more distinct separation
between IC and FC events, indicating improved accuracy compared to the previous
case.

Figure 5.20: IC and FC candidates after applying the high density criteria.

5.3 Equally weighted PI and IMU event identifi-
cation contribution

In the original algorithm, under normal overground walking conditions, if an event
is detected by both PI and IMU systems from INDIP, the PI temporal value is
defined as the right time instant if the difference between the two values falls below
a predefined threshold. However, if the difference exceeds the threshold, a mean
value is computed. This is done because the PI signals give direct information
of the instant in which the foot touches or leaves the ground, a flowchart of the
process can be seen in Figure 5.21.

Due to the already mentioned degradation in the quality of the PI signals, the
reliability of PI as a gold standard in this particular case is questionable. Given
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Figure 5.21: Original Algorithm Flowchart for merging PI and IMUs event
information.

this, greater emphasis is placed on the IMU data. Therefore, the instantaneous
values of each event detected by both systems are consistently averaged to achieve
a balanced representation that considers the significance of the IMU data. Both
systems receive equal weight in this process, the flowchart of the modified process
can be seen in Figure 5.22.

Figure 5.22: Modified Algorithm Flowchart for merging PI and IMUs event
information.
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To support this theory and perform this approach, the event instants identified
with the SP system were compared with both PI and IMU systems by calculating
the Mean Absolute Error. This comparison was conducted for each condition and
each subject, resulting in two heatmaps. Furthermore, these results demonstrate
that the inertial sensors are more sensitive but have lower specificity compared to
the pressure insoles (PI). This implies that the PI system is better at identifying
events and rarely misses any, while the values obtained from the inertial sensors
are more accurate when an event is detected by both systems. Only in this case,
the measurements from the inertial sensors can be considered the more precise
and reliable option. Ultimately, all the values were averaged, and the resulting
heatmaps can be observed in Figure 5.23 and Figure 5.24 respectively.

Figure 5.23: Heatmap showcasing the MAE between events detected using the
INDIP’s PI and events identified through the SP system.

Figure 5.24: Heatmap showcasing the MAE between events detected using the
INDIP’s IMUs and events identified through the SP system.
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Both figures were color-coded using the same scale, enabling the use of a color
palette to discern differences. Figure 5.24 exhibits a slightly lighter color compared
to Figure 5.23, suggesting that the time differences obtained with the IMUs are
smaller than those obtained with the PI system. However, despite this distinction,
the discrepancies between the values are not significant, allowing for an average to
be calculated using the instants identified by both systems.

5.4 Data analysis
5.4.1 Event Identification Analysis
As explained before events were obtained from both INDIP and VICON systems.
The PI of the INDIP system serves as the benchmark for event identification. This
is because by analyzing foot pressure, it becomes possible to determine when an IC
or FC occurs, as explained in previous chapters. Consequently, when it comes to
identifying events, there is no notion of error, but rather distinctions (or differences)
between systems. Metrics adopted to study the differences between these events
are:

• Mean Absolute Difference (secs): refers to the expected value, or average, of
the absolute difference between two independently and identically distributed
random variables X and Y, which have the same unknown distribution (referred
to as Q). With the respective standard deviation of the error.

• Mean Difference (secs): measures the absolute difference between the mean
value in two different groups. In clinical trials, it gives you an idea of how
much difference there is between the averages of the experimental group and
control groups. With the respective standard deviation of the error.

A more graphic comparasion is obtained trough the use of a Bland Altman plot:

• Bland Altman Plot: is a type of graph used to assess the agreement between
two methods of measurement or between two observers. The plot displays the
differences between the two methods or observers (y-axis) against the mean of
the two methods or observers (x-axis). The mean difference is represented by
a horizontal line on the plot, and the limits of agreement are calculated as the
mean difference plus and minus two standard deviations of the differences.

5.4.2 Spatio-temporal Parameters Analysis
In this particular scenario, VICON serves as a reliable reference point or gold stan-
dard because it directly provides trajectories through its system. These trajectories,

63



Methods

in turn, allow for the estimation of parameters. Therefore, the parameters obtained
using the INDIP system will be compared to those obtained using VICON. Among
the various parameters that could be considered, this project focused on studying
the following ones:

• Spatial Parameters:

– Stride Length.

• Temporal Parameters:

– Stride Time.
– Cadence.

• Velocity Parameters:

– Walking Speed.

To analyze and determine statistical significance between these parameters in
different conditions, a t-test was conducted. The t-test evaluates whether the
means of the two data groups are statistically similar or different. It assesses the
null hypothesis that there is no significant difference between the means of the two
groups, determining if any observed differences are statistically significant or simply
due to random chance. By performing the t-test, is possible to assess whether the
observed differences in the parameters across conditions are statistically meaningful.
Besides, for a deeper statistical analysis various metrics were derived:

• Mean: is the average value of all the parameters. It is calculated by adding
up all the values and dividing the sum by the number of data points. The
mean is a measure of central tendency that represents the typical value in the
dataset.

Mean = 1
n

nØ
i=1

yi (5.4)

• Standard Deviation: is a measure of the amount of variation or dispersion in
the parameters. It represents the average distance of each data point from
the mean.

SD =
öõõô 1

n

nØ
i=1

(yi − µ)2 (5.5)

Where µ is the mean of the data.
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• Mean Error (ME): refers to the average difference between the predicted and
actual values of the parameters. It is calculated by taking the mean of the
differences between the predicted and actual values.

ME = 1
n

Ø
(yi − ŷi) (5.6)

Where n is the number of data points, yi is the actual value of the i-th data
point, and ŷi: the predicted value of the i-th data point.

• Mean Absolute Error (MAE): is a measure of the accuracy of a model, which
represents the average absolute difference between the predicted and actual
values. It is calculated by taking the mean of the absolute differences between
the predicted and actual values.

MAE = 1
n

nØ
i=1

|yi − ŷi| (5.7)

• Median Error (MDE): is a statistical metric that measures the central tendency
or the average value of errors in a set of predictions or estimates. It provides
an indication of the typical deviation between the predicted values and the
actual values, without considering the direction of the errors.

MDE = median(y − ŷ) (5.8)

Where y represents the actual or observed values, ŷ represents the predicted
or estimated values, and median denotes the median value of the set. If the
number of absolute differences is odd, the median is the middle value. If the
number of absolute differences is even, the median is the average of the two
middle values.

• Median Absolute Error (MDAE): is a statistical metric that measures the
central tendency or typical deviation of errors in a set of predictions or
estimates. It is a robust alternative to Mean Absolute Error (MAE) that is
less affected by outliers. The formula for calculating the median absolute error
is as follows:

MDAE = median(|y − ŷ|) (5.9)

Where y represents the actual or observed values, ŷ represents the predicted
or estimated values, and median(|x|) denotes the median of the absolute
differences between the values in the set x.
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• Interquartile Range Error (IQRE): is a statistical metric that measures the
spread or dispersion of errors in a set of predictions or estimates. It is calculated
based on the interquartile range, which is a measure of the variability within a
dataset. The IQRE represents the spread or dispersion of errors in the dataset.
It provides a measure of the middle 50% of the absolute differences, indicating
the range in which the majority of the errors fall. The IQR Error is useful
for understanding the variability and distribution of errors, particularly in
situations where there may be outliers or skewed distributions.

IQRE = Q3 − Q1, (5.10)

where Q1 represents the first quartile (25th percentile) of the absolute differ-
ences and Q3 represents the third quartile (75th percentile) of the absolute
differences.

• Intraclass Correlation (ICC): is a statistical measure used to assess the similar-
ity between two or more measurements made by different observers or methods.
It represents the proportion of the total variance in the measurements that is
due to the differences between the observers or methods. ICC values range
from 0 to 1, with higher values indicating greater agreement between the
measurements.

ICC = MSu − MSe

MSu + (k − 1) ∗ MSe

(5.11)

Where MSu is the between-group mean square, MSe is the within-group mean
square and k: the number of groups being compared.

For obtaining a graphic comparison between parameters values, bar plots with
the proper standard deviation for both systems are used.
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Results

This chapter presents the results obtained using the original algorithm and compares
them to the SP system. Additionally, it compares the results obtained using the
modified code against the SP system. The chapter is divided into a first part in
which the identification and differentiation of gait events between both systems
are analyzed, and a second part for the calculation of spatio-temporal parameters.
The results from both the original code and the modified code are compared with
the reference system.

6.1 Event identification analysis
6.1.1 Original vs Modified Algorithm comparison
To enhance the clarity and structure of the comparison between event identification
methods, the results will be categorized based on different terrain conditions. This
categorization will allow for a direct comparison with the already explained metrics,
between the original algorithm results and those obtained with the modified version,
aiding in the evaluation of both codes. In every scenario, a Bland-Altman analysis
will be carried out to showcase the differences in time between VICON and INDIP
for all events, initially without discriminating between IC and FC. Subsequently, a
separate analysis for specifically the IC and FC events is presented.

Plane Terrain at 0°

Figures 6.1, 6.2 and 6.3 presents the Bland Altman plots representing the time
differences between the original INDIP algorithm in the first column with the
optimized algorithm in the second column, both compared against the SP system
for the plane terrain at 0°. For a more quantitative representation, in Table 6.1,
the MD, MAD and STD of the MD are presented.
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Figure 6.1: Bland Altman event differences for Plane Terrain at 0° with the A)
Original Code and B) Modified Code.

Figure 6.2: Bland Altman IC differences for Plane Terrain at 0° with the A)
Original Code and B) Modified Code.

Plane Terrain at 15°

Figures 6.4, 6.5 and 6.6 presents the Bland Altman plots representing the time
differences between the original INDIP algorithm in the first column with the
optimized algorithm in the second column, both compared against the SP system
for the plane terrain at 15°. For a more quantitative representation, in Table
6.2, the MD, MAD and STD of the MD are presented.

68



Results

Figure 6.3: Bland Altman FC differences for Plane Terrain at 0° with the A)
Original Code and B) Modified Code.

Table 6.1: Time differences for Plane Terrain at 0° between the original and
modified code.

Mat terrain at 0°

Figures 6.7, 6.8 and 6.9 presents the Bland Altman plots representing the time
differences between the original INDIP algorithm in the first column with the
optimized algorithm in the second column, both compared against the SP system
for the mat terrain at 0°. For a more quantitative representation, in Table 6.3,
the MD, MAD and STD of the MD are presented.

Mat terrain at 15°

Figures 6.10, 6.11 and 6.12 presents the Bland Altman plots representing the time
differences between the original INDIP algorithm in the first column with the
optimized algorithm in the second column, both compared against the SP system
for the mat terrain at 15°. For a more quantitative representation, in Table 6.4,
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Figure 6.4: Bland Altman event differences for Plane Terrain at 15° with the A)
Original Code and B) Modified Code.

Figure 6.5: Bland Altman IC differences for Plane Terrain at 15° with the A)
Original Code and B) Modified Code.

the MD, MAD and STD of the MD are presented.

Unstructured Terrain at 0°

Figures 6.13, 6.14 and 6.12 presents the Bland Altman plots representing the
time differences between the original INDIP algorithm in the first column and the
optimized algorithm in the second column, both compared against the SP system
for the unstructured terrain at 0°. For a more quantitative representation, in
Table 6.5, the MD, MAD and STD of the MD are presented.
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Figure 6.6: Bland Altman FC differences for Plane Terrain at 15° with the A)
Original Code and B) Modified Code.

Table 6.2: Time differences for the overground terrain at 15° between the original
and modified code.

Unstructured Terrain at 15°

Figures 6.16, 6.17 and 6.18 presents the Bland Altman plots representing the
time differences between the original INDIP algorithm in the first column and the
optimized algorithm in the second column, both compared against the SP system
for the unstructured terrain at 15°. For a more quantitative representation, in
Table 6.6, the MD, MAD and STD of the MD are presented.

Upward Sawtooth at 0°

Figures 6.19, 6.20 and 6.21 presents the Bland Altman plots representing the
time differences between the original INDIP algorithm in the first column and the
optimized algorithm in the second column, both compared against the SP system
for the upward sawtooth terrain at 0°. For a more quantitative representation,

71



Results

Figure 6.7: Bland Altman event differences for Mat Terrain at 0° with the A)
Original Code and B) Modified Code.

Figure 6.8: Bland Altman IC differences for Mat Terrain at 0° with the A)
Original Code and B) Modified Code.

in Table 6.7, the MD, MAD and STD of the MD are presented.

Upward Sawtooth at 15°

Figures 6.22, 6.23 and 6.24 presents the Bland Altman plots representing the
time differences between the original INDIP algorithm in the first column and the
optimized algorithm in the second column, both compared against the SP system
for the upward sawtooth terrain at 15°. For a more quantitative representation,
in Table 6.8, the MD, MAD and STD of the MD are presented.
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Figure 6.9: Bland Altman FC differences for Mat Terrain at 0° with the A)
Original Code and B) Modified Code.

Table 6.3: Time differences for the Mat terrain at 0° between the original and
modified code.

Downward Sawtooth at 0

Figures 6.25, 6.26 and 6.27 presents the Bland Altman plots representing the
time differences between the original INDIP algorithm in the first column and
the optimized algorithm in the second column, both compared against the SP
system for the downward sawtooth terrain at 0°. For a more quantitative
representation, in Table 6.9, the MD, MAD and STD of the MD are presented.

Downward Sawtooth at 15°

Figures 6.28, 6.29 and 6.30 presents the Bland Altman plots representing the
time differences between the original INDIP algorithm in the first column and
the optimized algorithm in the second column, both compared against the SP
system for the downward sawtooth terrain at 15°. For a more quantitative
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Figure 6.10: Bland Altman event differences for Mat Terrain at 15° with the A)
Original Code and B) Modified Code.

Figure 6.11: Bland Altman IC differences for Mat Terrain at 15° with the A)
Original Code and B) Modified Code.

representation, in Table 6.10, the MD, MAD and STD of the MD are presented.

6.2 Spatio-temporal Parameters Analysis
In Table 6.11 all the final values calculated with the already mentioned metrics
are presented, is important to highlight that these values are calculated with the
spatio temporal parameters obtained with the modified code.

For presenting the mean and standard deviation values in a more graphic and
visible way, the respective bar plot for each parameter is presented.

74



Results

Figure 6.12: Bland Altman FC differences for Mat Terrain at 15° with the A)
Original Code and B) Modified Code.

Table 6.4: Time differences for the Mat at 15° between the original and modified
code.

Figure 6.13: Bland Altman event differences for Unstructured Terrain at 0° with
the A) Original Code and B) Modified Code.
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Figure 6.14: Bland Altman IC differences for Unstructured Terrain at 0° with
the A) Original Code and B) Modified Code.

Figure 6.15: Bland Altman FC differences for Unstructured Terrain at 0° with
the A) Original Code and B) Modified Code.

Table 6.5: Time differences for the unstructured terrain at 0° between the original
and modified code.
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Figure 6.16: Bland Altman event differences for Unstructured Terrain at 15° with
the A) Original Code and B) Modified Code.

Figure 6.17: Bland Altman IC differences for Unstructured Terrain at 15° with
the A) Original Code and B) Modified Code.

Table 6.6: Time differences for the unstructured terrain at 15° between the original
and modified code.
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Figure 6.18: Bland Altman FC differences for Unstructured Terrain at 15° with
the A) Original Code and B) Modified Code.

Figure 6.19: Bland Altman event differences for Upward Sawtooth Terrain at 0°
with the A) Original Code and B) Modified Code.

Table 6.7: Time differences for the Upward sawtooth terrain at 0° between the
original and modified code.
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Figure 6.20: Bland Altman IC differences for Upward Sawtooth Terrain at 0°
with the A) Original Code and B) Modified Code.

Figure 6.21: Bland Altman FC differences for Upward Sawtooth Terrain at 0°
with the A) Original Code and B) Modified Code.

Table 6.8: Time differences for the Upward sawtooth terrain at 15° between the
original and modified code.
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Figure 6.22: Bland Altman event differences for Upward Sawtooth Terrain at 15°
with the A) Original Code and B) Modified Code.

Figure 6.23: Bland Altman IC differences for Upward Sawtooth Terrain at 15°
with the A) Original Code and B) Modified Code.

Figure 6.24: Bland Altman FC differences for Upward Sawtooth Terrain at 15°
with the A) Original Code and B) Modified Code.
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Figure 6.25: Bland Altman event differences for Downward Sawtooth Terrain at
0° with the A) Original Code and B) Modified Code.

Figure 6.26: Bland Altman IC differences for Downward Sawtooth Terrain at 0°
with the A) Original Code and B) Modified Code.

Table 6.9: Time differences for the Downward sawtooth terrain at 0° between the
original and modified code.
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Figure 6.27: Bland Altman FC differences for Downward Sawtooth Terrain at 0°
with the A) Original Code and B) Modified Code.

Figure 6.28: Bland Altman event differences for Downward Sawtooth Terrain at
15° with the A) Original Code and B) Modified Code.

Table 6.10: Time differences for the Downward Sawtooth terrain at 15° between
the original and modified code.
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Figure 6.29: Bland Altman IC differences for Downward Sawtooth Terrain at 15°
with the A) Original Code and B) Modified Code.

Figure 6.30: Bland Altman FC differences for Downward Sawtooth Terrain at
15° with the A) Original Code and B) Modified Code.
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Table 6.11: Spatio-temporal parameters values obtained with the final algorithm
modification.
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Figure 6.31: Barplot for comparing mean and standard deviation values for SL
obtained with both systems.

Figure 6.32: Barplot for comparing mean and standard deviation values for ST
obtained with both systems.
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Figure 6.33: Barplot for comparing mean and standard deviation values for WS
obtained with both systems.

Figure 6.34: Barplot for comparing mean and standard deviation values for
Cadence obtained with both systems.
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Chapter 7

Discussion

The discussion chapter provides a comprehensive analysis and interpretation of the
obtained results from the study evaluating the performance of the INDIP system
in estimating gait parameters using both the original and modified algorithms.
This section aims to delve into the implications and significance of the findings,
comparing them with existing literature and shedding light on the strengths and
limitations of the system. To begin the discussion, an analysis based on the
identified events is conducted to evaluate the enhancement of the new optimized
system in automatic event identification. This analysis examines the accuracy
and reliability of the system in detecting key gait events, such as heel strike and
toe-off, comparing the performance of the original and modified algorithms. The
implications of improved event identification for subsequent parameter estimation
are discussed, emphasizing the potential benefits of the modified algorithm in
enhancing the overall accuracy of the INDIP system. Subsequently, the discussion
shifts towards the results of spatiotemporal parameters obtained using the modified
algorithm. The findings are analyzed and compared with existing literature to assess
the system’s performance and determine its effectiveness in accurately estimating
these spatiotemporal parameters. By comparing the obtained results with previous
research findings, the discussion highlights the system’s advancements, potential
applications, and areas that require further investigation or refinement. Ultimately,
this comprehensive analysis and interpretation of the results contribute to a deeper
understanding of the INDIP system’s capabilities and limitations in estimating gait
parameters, supporting its potential use in clinical and research settings. It is worth
noting that out of the initial 10 subjects, only data from 6 subjects were processed.
This reduction in the sample size was due to protocol changes, a recording error by
the INDIP system, and a subject’s withdrawal from the experiment for personal
reasons.

87



Discussion

7.1 Event Identification Analysis
In this section, the results presented in the previous chapter will be discussed.
As observed, the results for gait events were analyzed separately for each terrain
condition. Consequently, the discussion of the results will be organized accordingly.
The Bland-Altman plots provide valuable insights into the mean differences and
dispersion of the values. Therefore, comments on these images will be made, along
with quantitative descriptions related to the tables presenting the mean differences
and mean absolute differences.

For this part, the focus will be on examining the performance of the original
algorithm compared to the optimized algorithm. The observed trends, improve-
ments, and limitations in each terrain condition will be explored. Furthermore, the
impact of the modifications on key metrics such as mean differences, mean absolute
differences, and standard deviations will be discussed. By considering both the
visual representation of the Bland-Altman plots and the numerical data presented
in the tables, a comprehensive analysis can be provided.

7.1.1 Plane Terrain at 0°

This is the most frequently observed scenario in gait studies, where the ground
is flat and there is no inclination. The INDIP algorithm has previously been
validated for this specific terrain [6]. The results obtained from the original code,
presented in the first column, demonstrate an acceptable range along the y-axis for
temporal differences between systems. This range spans from a minimum of -0.1
seconds to a maximum of 0.1 seconds, with only a few outliers belonging to the
third subject falls beyond this range. Notably, in the FC identification, there is
a few number of events near or outside the acceptable range for subjects 5 and 8.
This occurrence may be attributed to insufficient quality control measures before
conducting the tests. Upon examining the second column, it becomes apparent
that the modified algorithm does not significantly alter the results obtained from
the original algorithm. This outcome can be attributed to the already acceptable
level of error in the algorithm, indicating its effective functioning. However, there
is a slight reduction in the range difference, and it is also noticeable that the
overestimation of FC events for subject 8 has been mitigated, but now the negative
range of the FC events has been increased. The mean difference between events
is in zero so with the optimization of the algorithm results are more close to the
ones obtained with the Vicon system. This observation is also evident in Table
6.1, where a significant reduction in errors is not observed. However, the most
noticeable reduction is observed in the case of subject 8, which aligns with the
previous discussion regarding the FC events.
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7.1.2 Plane Terrain at 15°
This scenario also exemplifies a case where the algorithm performs well, and the
errors are not significant enough to warrant concern. Figures 6.4, 6.5, and 6.6
illustrate that there is no substantial reduction in time differences between systems
before and after the code modification. This observation is further supported by
the data presented in Table 6.2.

7.1.3 Mat Terrain at 0°
This is the first instance where the algorithm begins to exhibit failures. The terrain
in question is a mat, and it is reasonable to assume that the pressure will vary along
the path. Table 6.3 reveals that NaN values are present for Subject 8. This occurs
because the original algorithm failed to correctly identify all the events, resulting in
a mismatch with the events recorded by the Vicon System. Consequently, no time
difference can be computed. Additionally, Figures 6.7, 6.8, and 6.9 clearly depict
the significant time differences between events, not showing the upper positive
range in the plot and also exhibiting a high dispersion. This pattern is further
reflected in Table 6.3, which displays the highest difference for Subject 3.

After implementing the modified algorithm, the range of time differences is not
only reduced but also the dispersion of events, notably for the fifth subject. Fur-
thermore, events performed by Subject 8 are now properly identified for comparison
with the Vicon system, a feat that was initially unattainable.

7.1.4 Mat Terrain at 15°
Upon examining Figure 6.10, it can be observed that the maximum range has been
reduced from approximately 0.16 seconds to 0.08 seconds. However, in this case, the
minimum value of the range has slightly increased. Figure 6.12 indicates that this
reduction is due to an underestimation of the FC, where the minimum range value
has changed from 0.05 to approximately 0.09 in the original code. Nonetheless, it
is positive to note that the mean difference, represented by the red line, is now
centered around 0. This indicates that the range is more balanced, and most of
the values obtained with the modified algorithm have a lower difference compared
to the SP system. Table 6.4 reveals that while the reduction of differences is not
very noticeable for subjects 3, 5, or 9, the differences have been roughly halved for
subjects 4, 6, 7, and 8.

7.1.5 Unstructured Terrain at 0°
In Figure 6.13, for the unstructured terrain at 0°, it is evident that the range of
time differences is quite wide, reaching a maximum value of almost 0.2 seconds.

89



Discussion

Notably, there are numerous yellow dots representing outliers, for subject 8. Exam-
ining Figure 6.15, it becomes clear that this increase and presence of outliers are
primarily due to FC events. However, with the optimized algorithm, the maximum
difference is reduced to 0.1 seconds, and the outliers for subject 8 are corrected.
Conversely, the outliers for subject 5 in blue either remain unchanged or may have
increased slightly. Returning to Figure 6.13, the results obtained with the modified
algorithm demonstrate a maximum difference below 0.1 seconds. Although the
minimum difference has increased, it remains within the acceptable range of 0.1
seconds for accuracy. Moreover, the mean difference with the modified algorithm is
approximately 0, as observed in Table 6.5. Subject 8, in the original code, exhibited
a relative MD of -2.28% and a relative MAD of 2.65%, both of which were reduced
to 1.43% with the modified code. Additionally, the standard deviation of the mean
difference decreased from 0.1 to 0.5, indicating more consistent data. It is worth
noting that for subject 7, although the differences were reduced, the standard
deviation of these differences slightly increased with the optimized code. Another
noteworthy observation is the sign of the mean differences in the original code,
where there was an underestimation of values, leading to negative values for this
metric in most cases. However, this issue is resolved in the modified code for the
majority of cases.

7.1.6 Unstructured Terrain at 15°
In a similar manner to the previous case, the time differences between the INDIP
and VICON systems using the original INDIP code exhibited a wide range of up to
approximately 0.2, with some outliers, particularly for subject 8. However, these
issues were resolved in the optimized algorithm. In Figure 6.16, the range of time
differences is significantly reduced, which can be attributed to the enhancement
of the PI signals and the modification of the criteria for selecting possible IC
values. The same improvement is observed in Figure 6.18 for FC instants. These
enhancements are further supported by the data presented in Table 6.6. For
instance, the relative MAD for subject 8 was reduced from almost 6% to 3%.

7.1.7 Upward Sawtooth at 0°
This represents another scenario where the original algorithm fails to identify the
same number of events as the SP system for subject 8. Moreover, as illustrated in
Figure 6.19, subject 5 poses a problem as all the data points are widely scattered,
resulting in a significant range of time differences. This issue is observed not only
for the FC (Figure 6.20) but also for the IC, as evident in Figures 6.20 and 6.27. In
Figure 6.20(B), it is noticeable that the error with subject 5 is consistently reduced,
leading to a meaningful improvement. This improvement is also reflected in Table
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6.7, where subject 8 is marked with a NaN value, indicating the impossibility of
calculating the respective values for this subject. Additionally, subject 5 exhibits
the highest MAD with a value of 25%, which is reduced to 7% after applying
the modified algorithm. Another noteworthy observation is the reduction in the
standard deviation of the differences, with most cases experiencing a decrease. For
instance, subject 5, which initially had a variability of the error around 0.82, sees
it reduced to 0.36. In general, most of the values are reduced after applying the
modified algorithm. However, it is worth noting that subject 7 shows a slight
increase in terms of MD and MAD.

7.1.8 Upward Sawtooth at 15°
The original code encountered a significant problem in this case, as evident in
Figure 6.22, where the range of time differences spans from -0.6 to approximately
0.8, which are not indicated in the plot. The presence of numerous outliers indicates
a specific issue with subject 5, as all the blue data points are widely scattered.
This problem affected both IC and FC, as depicted in Figures 6.24 and 6.24. Table
6.8 provides further insights, revealing a relative MAD of approximately 25%,
indicating an extreme case of error. However, with the optimized algorithm, this
error is mitigated, reducing the relative MAD to 13.25%. Additionally, it is worth
noting that SD of MD is close to 1, suggesting heterogeneity in the errors. This
indicates that there may have been issues during data acquisition, which have been
partially addressed by the more robust algorithm.

7.1.9 Downward Sawtooth at 0°
In this particular case, the original code initially performed well, with a range
of time differences between systems, reaching around 0.15, as shown in Figure
6.25. This slight excess can be attributed to a problem in the identification of
FC, as evident in Figure 6.27. With the optimized algorithm and the applied
methods, the overestimation of FC values is reduced, with a maximum difference of
approximately 0.8 seconds. Besides, it has also been a reduction on the maximum
negative value of the range of differences, being now smaller than 0.1 seconds. On
the other hand, the differences in IC instants, depicted in Figure 6.26, are highly
reduced, likely due to the application of the sigmoid function that enhances the
valleys.

7.1.10 Downward Sawtooth at 15°
In this case, the original algorithm performs worse compared to the previous case,
resulting in a high range of time differences being close to 0.2. Moreover, the
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minimum value of the range is more negative than the acceptable limit of -0.1, as
shown in Figure 6.28. Notably, in Figures 6.29 and 6.30, it can be observed that
this significant difference occurs in both event results. However, with the modified
code, the range of time differences is reduced to fall within the acceptable value of
0.1, but maintaining the performance related to the negative value of the range.
It is important to mention that subject 5 still exhibits outliers that persist in the
optimized algorithm. This aspect is also evident in Table 6.10, where the row for
subject 5 indicates a slight increase in the relative MAD with the optimized code.
For the remaining cases, the MAD is not significantly reduced, suggesting that the
optimization methods may be less robust in these instances.

7.2 Spatio-temporal Parameters Analysis
The gait parameters studied are:

• Stride Length (m)

• Stride Time (secs)

• Walking Speed (m/sec)

• Cadence (steps/min)

Upon examining the bar plots presented in Figures 6.31, 6.32, 6.33, and 6.33,
it is evident that the results obtained from both the VICON and INDIP systems
regarding the spatio-temporal parameters are remarkably similar between all cases.
The mean and standard deviation of both parameters exhibit close resemblance in
all conditions. However, it is worth noting that there is a slightly higher variation
in the INDIP results observed in the stride length among all conditions, which can
be attributed to the integration techniques involved in the calculation of spatial
parameters. In Figure 6.31 and 6.33 some asteristcs can be seen, these indicates
the conditions that present statistical significant difference, calculated with the
T-Test. For the stride length, there is statistical significant differences for:

• Condition 1: Overground Terrain at 0°.

• Condition 15: Upward Sawtooth Terrain at 0°.

• Condition 16: Upward Sawtooth Terrain at 15°.

• Condition 17: Upward Sawtooth Terrain at 0°.
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The Walking Speed presents statistical significant differences in all the same
conditions except for the 16.

Table 6.11 provides an overview of the parameter values along with the cor-
responding metrics, which were defined in Chapter 5. These calculations were
performed for all subjects, categorized based on the different terrain conditions. A
similar validation procedure was followed in the study "A multi-sensor wearable
system for the assessment of diseased gait in real-world conditions," which also
utilized these metrics.

In that study, the INDIP system demonstrated good performance compared to
the SP system, with maximum errors for Stride Length of 1.22% (relative ME),
0.92% (relative MDE), an IQRE up to 16%, a maximum relative MAE of 10%, a
maximum relative MDAE of 6%, and ICC values ranging from 0.92 to 0.98. These
results were obtained for overground conditions, and they are consistent with the
findings of the present study. Specifically, our study yielded a relative ME of 1.58%,
an MDE of approximately 1.52%, an IQRE with a maximum of 6.15%, an MAE of
around 4%, an MDAE also around 4%, and ICC values as low as 0.8, indicating
some discrepancies between the two systems.

As anticipated, similar terrain conditions exhibited comparable parameter values
for stride length. However, in the case of inclined terrain, the relative ME and
MDE were slightly lower. This is likely due to the smaller number of steps taken
on inclined surfaces compared to overground conditions. The relative IQRE, MAE,
and MDAE were slightly higher for inclined terrain.

Regarding the other types of terrains, the ME ranges from 0.12% to 4.04%, with
the latter being the only one higher than 3%. This indicates that there are some
variations depending on each type of terrain, but overall, the range of errors is
quite low, which makes the estimations acceptable. Additionally, the MDE ranges
between 0.03% and 2.78% for the different types of terrains. Furthermore, the
MDAE values consistently remain lower than the MAE values.

For unstructured terrain at 0° and 15°, the system also performed well, demon-
strating similar parameter values as previously mentioned. In the case of unstruc-
tured terrain at 0°, the ICC was lower than that of 15°, which can be attributed to
the larger number of steps taken in the first condition. In the soft terrain where the
mat is placed results are similar to the previous case, but now the ICC is slightly
higher for the 15° of inclination. The higher error is observed in the Sawtooth
Upward condition at 15°, with a relative percentual mean error of 4%, IQRE of
13%, and an ICC of 0.15. These results indicate that this scenario represents the
worst case for the INDIP, where it performs poorly. The elevated IQRE value is
also observed in the Downward condition at 15°. This could be attributed to the
increased slope, as it introduces not only a 15° terrain inclination but also a 15°
inclination of the modules relative to the platform. This situation poses challenges
in defining the dynamic reference system for each stride.
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Furthermore, it is important to note that in this type of sawtooth terrains, the
majority of error values are higher compared to other types of terrains, not only at
15° but also at 0°. This may be due to the minimal 15° inclination of each module
and the distribution of pressure during each step. During the experiments, it was
observed that the difficult terrain conditions caused subjects to walk differently.
Some subjects only placed their foot at the extreme end of the module without
fully placing the entire foot on it, while others only placed their heel or toe down.
These variations in walking patterns contribute to the worst-case scenario.

The comparison of stride time with the previous study mentioned [6] cannot be
directly made because the parameters were not calculated, and the duration is based
on a walking bout defined as a sequence of at least two strides. However, in terms
of stride time, a much better absolute agreement can be observed, with an ICC of
0.97. The higher relative mean error is approximately 1.20%, which is remarkably
low, corresponding to a time difference of only 0.02 seconds. Moreover, the mean
values and standard deviations are similar, differing only by a few hundredths.
These findings suggest that the INDIP system is more accurate in calculating
temporal parameters compared to spatial parameters. This difference can be
easily understood as spatial parameters are indirectly derived through integration
processes of acceleration and velocity signals, whereas temporal parameters are
directly calculated using the time measured by the sensors, estimated through the
collected samples.

In the previous study [6], the higher mean error related to the duration of certain
gait phases was approximately 3%. In contrast, in the current study, the higher
error is about 1.2%, which is extremely acceptable considering the results obtained
with the INDIP system. This particular value is obtained for the Sawtooth Upward
terrain at 15°, and the standard deviation of these values is very similar for both
the INDIP and SP systems, indicating that the time variability of the walk for
different subjects was captured by both systems.

In the mentioned article, the relative ME and MDE for walking speed ranged from
0.3% to 1.57% and 0.37% to a maximum of 1.24%, respectively, with reliable data
values (ICC>0.93). The MAE had a maximum of 11.21%, while the MDAE ranged
between 3.20% and 7.10%. For cadence, the maximum ME was 0.92% and 0.37%,
with MAE ranging between 3.45% and 6.28%, and MDAE with a maximum of 2.75%
and a minimum of 1.37%. The minimum ICC was approximately 0.73, indicating a
significant amount of variability or inconsistency between the measurements, and
a maximum IQRE of 6.28% was observed. In the current project, the maximum
ME for walking speed was 3% in the Sawtooth Downward at 0°. The MDE values
were lower than the ME, with a maximum of 2.89%, but a negative value of -0.49%
was observed for the overground condition. The ICC values were generally reliable
for some terrains, but in the worst case, it did not exceed 0.34, with an IQRE of
approximately 15.35%, indicating a lack of precision and accuracy in the estimation

94



Discussion

or measurement process. As usual, the MDAE values were slightly lower than the
MAE, ranging between 3.5% and 8.15% for the former, while the latter varied
between 4% and 9.91%. In terms of cadence, the variability observed by both the
SP and INDIP systems is quite similar. There are some ME values close to 0, but
there are also negative errors, with the lowest being -1% for the Sawtooth Upward
at 15° condition. The MDE values are mostly around 0%, indicating minimal
deviation from the true values, while the MDAE ranges from 0% to 3%. The
highest MAE value recorded is 4.16%, and the maximum IQRE is approximately
7%. In terms of reliability, the ICC values are generally high, with only 2 cases
falling below 0.90.
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Chapter 8

Conclusions

The primary aim of this thesis was to optimize and validate the algorithm of a
multi-sensor system known as INDIP, which incorporates IMUs, PI, and DS. This
system was modified to accurately characterize human gait in extreme terrain
conditions. Analyzing gait in such terrains provides valuable reference data that
can be utilized in the development of robotic systems aimed at replacing or assisting
human locomotion.

This study marks the first instance where a multi-sensor system has been
employed to gather information on gait across various complex terrains. The
experiments conducted in this project were not only unique but also introduced novel
methods for enhancing the performance of the system. The implementation of these
methods had not been previously explored, further contributing to the innovative
nature of this research. After a comprehensive analysis of the results, it can be
concluded that the INDIP system performs effectively in overground conditions,
consistent with previous studies cited throughout the thesis. It demonstrates
minimal time differences between identified events and exhibits accurate parameter
calculations when compared to the SP system. However, when applied to different
terrain conditions characterized by irregular pressure distribution and diverse
inertial signals, the system’s performance is affected, particularly in relation to the
signals from pressure insoles. The quality of these signals is compromised, resulting
in suboptimal outcomes.

To address these challenges, modifications and additional methods were incorpo-
rated into the INDIP system’s algorithm. These enhancements aimed to create a
more robust version capable of handling variations in pressure distribution, which
proved to be a critical factor in these non-standard terrain conditions. The evalua-
tion of results obtained with the original algorithm, combined with an assessment
of signal quality, guided the development of this improved version.

Comparing the outcomes of the SP system and the modified INDIP system,
a notable reduction in time differences for event identification and a decrease in
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errors concerning gait parameters were observed in most cases. Consequently, a
robust system that can accurately characterize gait in extreme terrain conditions
was achieved.

In terms of limitations encountered during the progress of this thesis, it should
be noted that the number of subjects included in the study was ultimately lower
than initially anticipated. Furthermore, not all the PI were properly calibrated
before the experiments, resulting in increased time difference errors between events.
Another limitation pertains to the reduced length of the platform used for the
studies. Particularly, when the platform was set at a 15° incline, the length was
halved compared to the standard length at 0°, consequently reducing the number of
steps available for analysis. The smaller sample size limited the statistical power and
may impact the generalizability of the results to a larger population. Additionally,
the presence of uncalibrated PI could have introduced inaccuracies in the event
identification process. Moreover, the reduced length of the platform, especially at
an incline, limited the number of steps that could be analyzed, potentially affecting
the overall assessment of gait performance.

Future developments can offer several avenues for exploration. Firstly, expanding
the study to include a larger and more diverse sample size would enhance the
generalizability of the findings and provide a more comprehensive understanding
of gait performance in this type of terrains. Incorporating advanced calibration
techniques for PI and exploring alternative sensor technologies or combining multiple
sensor modalities would improve accuracy and robustness. Additionally, future
developments should include an emphasis on exploring a wider range of extreme
terrains, not only simulated but also in real world environments. This could involve
studying gait in environments with challenging surfaces such as rocky terrains,
slippery surfaces, or even extreme weather conditions. This broader exploration
would deepen our understanding of how gait is affected by different environmental
factors, allowing the development of algorithms and control strategies that enable
robots to navigate and traverse similar environments. Finally, the development of
real-time analysis and feedback methods would enable immediate adjustments and
interventions to optimize gait performance. By addressing these areas of future
development, researchers can advance the field of gait analysis in extreme terrains,
refine assistive technologies, and improve outcomes in various challenging scenarios.

In conclusion, the INDIP system demonstrates its efficacy in overground condi-
tions and successfully addresses the challenges posed by different extreme terrains
through algorithmic modifications. By significantly reducing time differences and
improving parameter accuracy, it offers a reliable and practical solution for gait
analysis in such conditions. Further research and development may continue to
refine the system and explore its potential applications in various challenging
scenarios.
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