
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Evolutionary Techniques for Maximizing
the Processor Stress

Supervisors

Matteo SONZA REORDA

Nikolaos DELIGIANNIS

Riccardo CANTORO

Candidate

Chenghan ZHOU

July 2023

Table of Contents

List of Tables iii

List of Figures iv

Acronyms v

1 Introduction 1
1.1 Problem To Be Solved . 1
1.2 Brief Summary . 2
1.3 Thesis Structure . 2

2 Background 4
2.1 Burn-In Test . 4
2.2 Stimuli Generation Strategy . 6
2.3 Evolutionary Algorithm . 7
2.4 MicroGP3 Tool-Kit Introduction 8

3 Implementation 10
3.1 RI5CY Stimuli Generation . 13

3.1.1 Node Pair Extraction Strategy 13
3.1.2 Evolutionary Algorithm Constraint 14
3.1.3 Evolutionary Algorithm Setting And Population Setting . . 20

3.2 IBEX Stimuli Generation . 22
3.2.1 Node Pair Extraction Strategy 22
3.2.2 Evolutionary Algorithm Constraint 24
3.2.3 Evolutionary Algorithm Setting And Population Setting . . 32

4 Results 33
4.1 The Result Of Switching Activity 33
4.2 The Result Of Running Time . 36

5 Discussion And Conclusions 37

i

Bibliography 39

ii

List of Tables

3.1 adder instruction group classification 15
3.2 adder instruction group classification 17
3.3 LSU instruction group . 20
3.4 Operator list . 22
3.5 IBEX adder instruction group . 25
3.6 IBEX compressed decoder instruction group 27
3.7 IBEX decoder instruction group . 28
3.8 IBEX operator list . 32

4.1 stress efficiency of RI5CY stimuli on different functional unit 34
4.2 stress efficiency of IBEX stimuli on different functional unit 35
4.3 Table of result . 36

iii

List of Figures

2.1 Bathtub curve which represents the reliability of a product during
its life cycle [5] . 5

2.2 Scenario of failure rate in the early stage with and without BI testing
[7] . 5

2.3 Typical BI process [1] . 6
2.4 Typical BI process . 7
2.5 Genetic algorithm workflow . 9
2.6 MicroGP3 framework . 9

3.1 Flowchart of "run.py" . 11
3.2 Flowchart of "ugp3.evaluator.py" 12
3.3 flow chart of parser . 23
3.4 relax mode . 24
3.5 insane mode . 24
3.6 instruction fetch stage structure . 27

4.1 QuestaSim GUI simulation interface 34
4.2 dis-assembler interface . 35

iv

Acronyms

IC
Integrated Circuit

PPM
Parts Per Million

DUT
Device Under Test

SBST
Software Based Self Test

ATPG
Automatic Test Pattern Generation

BI
Burn-In

SE
Stress Efficiency

IF
Instruction Fetch

ID
Instruction Decoder

LSU
Load-Store Unit

v

ISA
Instruction Set Architecture

vi

Chapter 1

Introduction

As predicted by Moore’s Law, the density of components integrated on ICs (Inte-
grated Circuit) has significantly increased over the past few decades, resulting in
smaller and more compact embedded systems. However, this progress has come
with increased manufacturing complexity and difficulty. In particular, reliability is
of utmost importance for embedded systems used in fields such as military and
aerospace equipment, where their performance can have life-or-death consequences.
Some of these applications must comply with high reliability standards, currently
set to less than 1 PPM(Parts Per Million) failing [1]. Therefore, testing and evalu-
ation of ICs and embedded systems are critical for all stakeholders involved in the
manufacturing process, from design to market.

In order to improve the reliability of the product, functional testing is applied to
products that have already been manufactured, but there may be some defects in the
product that cannot be detected in this way. These products may perform well in
functional testing or other end-of-manufacturing tests without device depreciation.
In general, defects can be classified into two groups: time zero defects which can be
detected by production tests without any stress, and latent defects which require
stress to accelerate to the failing state in order to be detected [2].To further enhance
the reliability of the product, burn-in testing is usually used as a complement to
functional testing mentioned above.

1.1 Problem To Be Solved
The main idea of the commonly used burn-in test is to age the DUT (Device
Under Test) by applying voltage or heating to the circuit in a climatic chamber, i.e.
static burn-in. Dynamic burn-in is a screening simulating application conditions
close to real use. It is also expected to help understand characteristics variations
beforehand as commercial product failure recently comes up more frequently [3].

1

Introduction

Several methods have been utilized for generating stimuli, including SBST (Software
Based Self Test) and ATPG (Automatic Test Pattern Generation). However,
this thesis describes a state-of-art method for generating stimuli, using a genetic
algorithm, to achieve maximum switching activity for dynamic burn-in tests.
This approach leverages gate level circuit description and other interconnection
distribution information to generate stimuli that satisfy specific requirements based
on multi-point stress metrics. The aim of this research is to explore the effectiveness
of this new method and compare the properties when it is applied to 2 RISC-V
based processors (i.e. RI5CY and IBEX) and additional information of the circuit.

1.2 Brief Summary
The main works and activities of this thesis could be summarized as follow:

• Study of the theory and the rationale of genetic algorithm;

• Study how to use the genetic algorithm tool-kit MicroGP3;

• Study the concept of multi-point stress metrics and the related papers;

• Implement a MicroGP3 generation workflow on RI5CY processor with random
node pairs;

• Implement a full work flow on a real IBEX processor from node list generation
with QestaSim to; generation of maximum toggle activity stimuli, but with
additional information of layout description.

1.3 Thesis Structure
This thesis is divided into chapters which contain the following information:

• Chapter 2 provides an introduction to burn-in testing and reviews recent
research in the field. It covers basic concepts and theories, as well as popular
implementation methods. The chapter also includes a brief introduction to
the evolutionary algorithm and the ugp3 tool-kit.

• Chapter 3 outlines the workflow of the burn-in test system and describes in
detail the implementation methods and processes of the stimulus generation
system using RI5CY and IBEX processors as DUTs.

• Chapter 4 presents the results of the developed GA-based maximum toggle
activity burn-in stimuli generator. The chapter compares the running time and
multi-point stress metrics which is designed to indicate the toggling activity
of the circuit.

2

Introduction

• Chapter 5 summarizes the conclusions drawn from the results obtained in
Chapter 4.

3

Chapter 2

Background

At the end of the electronic device manufacturing process, all products must undergo
functional testing to ensure their reliability. In most cases (over 90%), defects can
be detected through methods such as functional testing, wafer testing, and initial
electrical testing [4]. However, some defects cannot be directly detected by these
methods, even if the test patterns and algorithms are perfectly designed. Typically,
these defects are only detected as functional failures after the device has undergone
a certain degree of degradation. If these weaknesses can’t be detected before they
goes to the market, the products usually have a very high infant morality, which
means that they may produce some failures during their early stage, and this issue
may costs a lot for enterprises. The curve which represents the relationship between
failure rate and time is shown in figure 2.1

Based on the figure, the observed failure rate can be divided into three parts.
Initially, the failure rate is dominated by the infant mortality failure, which is
usually caused by latent manufacturing faults. This high failure rate in the early
stage of the product life cycle decreases rapidly over time [6]. In the later stage, the
main reasons for failure are random failure and wear-out failure, which gradually
become more prominent as the product continues to age and undergo usage. By
using the Burn-In testing before the product goes to the market, the infant morality
failure rate will be obviously lower compared to the scenario without it, as show in
figure 2.2 [7].

2.1 Burn-In Test
BI(Burn-In) test is a well know procedure in the microelectronics industry. It
was first used to screen defects in low-volume immature parts in the sixties and
was incorporated in the military standards by 1968 [8]. Nowadays, burn-in test
has already become a main countermeasure against the infant-morality [9]. The

4

Background

Figure 2.1: Bathtub curve which represents the reliability of a product during its
life cycle [5]

Figure 2.2: Scenario of failure rate in the early stage with and without BI testing
[7]

BI process typically encompasses different stress and test steps that are shown
in figure 2.3 and these steps are executed in a loop. By aging products, different
types of defects that probably occur in the early life stages can be detected, such as
resistive contacts/vias, resistive opens, resistive bridges, gate oxide shorts, improper
implants and silicide breaks [1]. In general, burn-in test can be divided into two
categories: static BI and dynamic BI. According to their different application

5

Background

scenarios, they can be applied at either the wafer level or the package level.

Figure 2.3: Typical BI process [1]

The static BI test is a method of subjecting materials to static stresses such as
voltage and temperature in a climatic chamber. This involves heating the chips
up to their specification limits using tunable voltage regulators mounted on the
cold part of the test equipment to introduce voltage margins. To ensure precise
control over the behavior of the test, the Arrhenius equation, which describes the
relationship between temperature and chemical reaction, has been employed in this
process. And for dynamic burn-in test, it involves multiple not only external stress
such as factors mentioned above, but also internal stress effect that is produced by
activating during the BI phase the different operational modes of the device under
test (DUT) [10]

Up until recently, the most commonly applied BI procedure was static BI, during
which the DUTs are exposed to a fixed and elevated temperature for an extended
period of time without any application or stimulus during the test. This is achieved
by placing the circuits into a climatic chamber that is able to heat the DUTs
according to their specification limits. A drawback of static BI is that the circuit
is not exercised. As the circuits’ feature size continues to scale down and their
structural and architectural complexity increases, so does the complexity and the
cost of the BI test, rendering it unaffordable. BI test can be very time consuming,
since its duration can be in the order of hours (especially for new technologies) and
thus it can become a bottleneck for the whole manufacturing process.

2.2 Stimuli Generation Strategy
For BI process, switching activity measurement is performed through logic simula-
tion by counting the number of transitions observed at gate-level for both state
transitions and glitches according to equation 2.1 [1]. But in this thesis, we don’t
care about the effect of glitches.

SW teval
i = #transitionsi + γ · #glichesi (2.1)

Figure 2.4 illustrates the behavior under evaluation, which involves a node pair
α and β produced based on gate-level description and other layout information.

6

Background

During the sampling time window W, an algorithm generates stimuli to drive these
nodes from their initial state to their reverse state and back. The behavior is
then recorded as an SE (stress efficiency) function, as shown in equation 2.2, with
possible values of 1, 2, 3, 4. Our objective is to generate functional sequences for
each node pair that maximize the SE function’s value of 4, indicating that both
nodes underwent both transitions.

Figure 2.4: Typical BI process

SE(seq) :=
Ø

i∈{α,β}
T (i, seq) |init (2.2)

2.3 Evolutionary Algorithm
Evolutionary algorithms are a family of search algorithms that are inspired by
biological evolution and natural selection. They are used to solve optimization
problems by iteratively generating and improving candidate solutions.

The basic idea behind evolutionary algorithms is to create a population of
candidate solutions, and then use selection, reproduction, and mutation to evolve
the population towards better solutions. The process of evolution is modeled
by creating new solutions through recombination and mutation of the existing
solutions, and then selecting the best solutions for the next generation.

The most commonly used types of evolutionary algorithms are genetic algo-
rithms, evolutionary strategies, and evolutionary programming. Genetic algorithms
model the process of natural selection by using the concepts of fitness, crossover,
and mutation to generate new candidate solutions. Evolutionary strategies and
programming are similar to genetic algorithms, but differ in the way they handle
the creation and mutation of candidate solutions.

To understand the process of GA algorithm, first of all, we have to define some
basic terminals and glossaries:

7

Background

• Individual: This is the basic unit that is manipulated by the algorithm. It can
be used to represent every target that is going to be optimized. During the
GA process, different individuals can generate new genotypes through gene
exchange or mutation, which will result in individuals with new traits.

• Population: This is a set of individuals that are still alive (or haven’t been
removed from tournament). Mutation and crossover operations only occur on
individuals contained in the population.

• Selection: This is a primary method for selecting individuals in a population,
where individuals that are relatively poorer than others according to the
evaluation standard are removed from the population through this process.
And the standard of quality evaluation of each individual is indicated by the
fitness value which should be defined by the engineer.

• Elitist: Individuals that is obviously better than others, it has less effect from
aging (automatically removed from the population due to its existence for too
long).

The genetic algorithm workflow can be visualized in Figure 2.5. It begins with
a population of randomly generated individuals that are assessed based on their
fitness function. Individuals with higher fitness scores are selected as parents for the
subsequent generation, and genetic operators such as crossover and mutation are
applied to create new offspring. The process of selection, crossover, and mutation
is repeated for multiple generations until the stopping criteria are met [11] [12]. In
this thesis, the fitness value is measured using the SE function that we proposed in
the previous section, which is a multiple-point stress metric inspired by [10].

2.4 MicroGP3 Tool-Kit Introduction
MicroGP3 is an optimization tool that utilizes evolutionary algorithms to solve
problems. Its framework is depicted in Figure 2.6, which includes configuration
files used to define some basic configuration and the log files which is going to be
preserved (ugp3.settings.xml), population settings for defining the parameters and
operations of the evolutionary algorithm (ugp3.population.settings.xml), and con-
straints that specify the features required for each individual (ugp3.constraint.xml).
For the sake of simplicity, the implementation of these files are elaborated in the
chapter 3.

8

Background

Figure 2.5: Genetic algorithm workflow

Figure 2.6: MicroGP3 framework

9

Chapter 3

Implementation

As the optimization process is time-consuming, it is essential to use concurrent
threads to do this job. The structure of our project can be described as list 3.1. In
the main directory, which is named "./ugp3" contains a public constraint file, the
pair map extracted from gate level description and a run.py which is used to start
the whole MicroGP3 optimization process.

Listing 3.1: MicroGP3 main folder structure
1 ugp3 (main d i r e c t o r y)
2 −run . py
3 −ugp3 . c o n s t r a i n t . xml
4 −pa i r .map
5 −run_dirN
6 −sb s t
7 −individual_N . S
8 − l i n k . ld
9 −Makef i l e

10 − i n i t _ s t a t e . txt
11 −ugp3 . s e t t i n g s . xml
12 −ugp3 . populat ion . s e t t i n g s . xml
13 −ugp3 . eva luato r . xml

Since the optimization process is time-consuming, we have implemented parallel
processing using the "multiprocessing" package of Python to optimize multiple
node pairs defined in the "pair.map" file. The "run.py" script assigns pairs to
different "run_dirN" directories (assuming the number of "run_dirN" directories
is N, meaning N pairs are assigned to N "run_dirN" directories). Under each
"run_dirN" directory, the "ugp3.evaluator.py" script concurrently evaluates M
individuals. Therefore, the total number of concurrent threads used is N × M . At
the end of each batch run, N optimized individuals are generated simultaneously.
And the limitation of this strategy only related to the capability of the processor.
The workflow of "run.py" is shown in figure 3.1

10

Implementation

Figure 3.1: Flowchart of "run.py"

In addition, the shared constraint file also included in the main directory. For
different processor, the epilogue and prologue are different. Except that, some
instructions supported by the processor are different as well, so, the implementation
of this file will be discussed separately later.

In the "run_dirN" directory, you can find the configuration files "ugp3.settings.xml"
and "ugp3.population.settings.xml", as well as the external evaluator invoked by
MicroGP3. The evaluator’s primary function is to read the "individualsToEval-
uate.txt" file generated by MicroGP3 and evaluate the individuals stored in the
"/sbst" folder through QuestaSim. then it records the result of stress efficiency that
returned from QuestaSim to "fitnessvalue.txt" which is regarded as the interface to
tell the MicroGP3 which individual is better.

As the evaluator isn’t provided by the MicroGP3, we designed this part by
ourselves. The flowchart of ugp3.evaluator.py is shown in figure 3.2. Similar to the
"run.py", this part of our system is almost the same for different processor during
the experiment process. The only differences are the methods to run QuestaSim
and the configurations of parallel threads of evaluation. For the RI5CY processor,
the number of CPU cores that we can use is 60, therefore M in this experiment is
6 and N is 10, which means 10 pairs can be optimized in parallel. For each of these
pairs, 6 individuals that are generated by MocroGP3 are evaluated concurrently.
Similarly, for the IBEX processor, the number of cores that we can use is 84, so
M=7 and N=12. Since QuestaSim cannot run in a single workspace, we invoke
the "compile_n_testbenches.sh" script and the "make compile/questa/gate-dir
DIRNAME=..." command respectively to generate the simulator workspace. The
scripts used to run QuestaSim are shown in 3.2 and 3.3. The res is the result that

11

Implementation

is extracted from the content printed on the terminal by regular expressions defined
after the “grep” command.

Figure 3.2: Flowchart of "ugp3.evaluator.py"

Listing 3.2: RI5CY simulator run function
1 r e s = os . popen (" bash run_gate_nogui . sh −d %s − i %s −t %s −a %s −b %s

<<< nn | grep −E ’STRESS EFFICIENCY=’ | grep −Eo \"[0 −9]+\" " % (
run_dir , i nd iv idua l , target_module , net1 , net2)) . read ()

Listing 3.3: IBEX simulator run function
1 r e s = os . popen ("make l s im / gate /nogui−mps−pair−ugp3 FIRMWARE=%s

PROBE_PAIR=%s DIRNAME=%s <<< nn | grep −Eo ’ (Current MAX SE :
[0 −9]+) | (Maximum SE achieved) [0 −9]+ ’ | grep −Eo [0−9]+ " % (
ind iv idua l , net_pair , run_dir)) . read ()

In both experiments, we gradually optimized the running scripts and made
minor adjustments based on the experimental simulation environment and our
operating habits. As a result, the command that triggers the program to start
running has been slightly modified. In the case of the RI5CY experiment, the
QuestaSim simulation is triggered by the bash script "run_gate_nogui.sh", which
accepts the QuestaSim run directory, individual, the name of the functional unit,
and the pair that we are going to measure. However, the "pair.map" file and the
functional unit that contains the node pair in this file are not explicitly indicated.
Therefore, in the "run.py" script for RI5CY, we have to provide the pair map and

12

Implementation

the target functional unit for research. The corresponding command is shown in
Listing 3.4.

Listing 3.4: RI5CY MicroGP3 process run command
1 python3 run . py { pa i r .map} { name_of_functional_unit }

But in IBEX experiment, we used a makefile to trigger the QuestaSim simulation.
Additionally, since the path of the node in QuestaSim is already included in the
pair.map, only the "pair.map" needs to be specified in "run.py" for IBEX. The
corresponding command is shown in Listing 3.5.

Listing 3.5: IBEX MicroGP3 process run command
1 python3 run . py { pa i r .map}

3.1 RI5CY Stimuli Generation
3.1.1 Node Pair Extraction Strategy
Since we only have the gate level description of the RI5CY processor and it lacks
distance information, we used QuestaSim to extract nodes contained in the targeted
functional unit. To create node pairs, we developed a script that randomly combines
these nodes and generates a pair map for different functional units. If the number
of nodes is odd, the remaining node is appended to the first pair, which means
that there will be a triplet inside the pair map. And in the following process, this
triplet’s maximum stress efficiency is 6 rather than 4. code of pair generator is
shown in listing 3.6

Listing 3.6: Gate level description random node pair generator
1 import os
2 import sys
3 import random
4

5 de f main () :
6 # with open (" ")
7 i f sys . argv [1]== "−h" :
8 pr in t (" \n∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ HELP DOC ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ")
9 pr in t (" param2 : map f i l e name RI5CY_xxxx_enumerate .map")

10 pr in t (" param3 : out f i l e name RI5CY_XXXX.map\n")
11

12 e l i f l en (sys . argv)==3:
13 with open (sys . argv [1] , " r ") as enumerate_map :
14 enumerate_map_list=enumerate_map . r e a d l i n e s ()
15 with open (sys . argv [2] , "w") as output :
16 whi le l en (enumerate_map_list) >0:

13

Implementation

17 # get net couple
18 i f l en (enumerate_map_list)%2==0:
19 pa i r=random . sample (enumerate_map_list , 2)
20 enumerate_map_list . remove (pa i r [0])
21 enumerate_map_list . remove (pa i r [1])
22 e l i f l en (enumerate_map_list)%2==1:
23 pa i r=random . sample (enumerate_map_list , 3)
24 enumerate_map_list . remove (pa i r [0])
25 enumerate_map_list . remove (pa i r [1])
26 enumerate_map_list . remove (pa i r [2])
27

28 # parse pa i r s t r i n g
29 p_lst =[]
30 f o r p in pa i r :
31 p_lst . append (p . r s t r i p (" \n ") . s p l i t (" , ") [1])
32 i f l en (p_lst)==2:
33 output . wr i t e (" {} ;{}\n " . format (p_lst [0] , p_lst [1])

)
34 e l i f l en (p_lst)==3:
35 output . wr i t e (" {} ; {} ; {}\ n " . format (p_lst [0] , p_lst

[1] , p_lst [2]))
36

37 e l s e :
38 pr in t (" p l e a s e input f i l ename (RI5CY_xxxx_enumerate .map) and

ouput f i l e name")
39

40 i f __name__=="__main__" :
41 main ()

3.1.2 Evolutionary Algorithm Constraint
“Ugp3.constraints.xml” defines the format of each individual, with three different
constraints for each targeted functional unit based on their behavior.

Adder

The type definition contains two blocks. The first block (name=riscv_reg) is
the register list that we use to store data used as an operand. The second block
(name=adder_instructions_g1 to adder_instructions_g7) contains instructions
that relate to the adder. To reduce the ugp3 processing time and search space,
instructions should be as minimal as possible.

RI5CY’s ISA includes RV32I, RV32C, RV32M, RV32F, and PULP extension
instructions. Adder-related instructions are those that contain comparison, sub-
traction, addition between register and register or register and immediate. Satisfied
instructions mentioned in the RI5CY user manual and RISCV specification can be

14

Implementation

classified into 7 groups from “adder_instructions_g1” to “adder_instructions_g7”
according to their instruction formats. For example, p.abs compares the contents
of the source register to 0 and stores -rs or rs according to the result. This process
contains comparison and should be added to the satisfied instruction list. We put
it in group 7 due to its format “p.abs rd, rs1”. Formats of different groups are
shown in table 3.1.

Table 3.1: adder instruction group classification

Group Format
adder_instructions_g1 xxx rd, rs1, rs2
adder_instructions_g2 xxx rd, rs1, imm[-2048, 2047]
adder_instructions_g3 xxx rd, rs1, rs2 imm[0, 31]
adder_instructions_g4 xxx rd, rs1, imm[0, 31]
adder_instructions_g5 xxx rd, rs1, imm[-32, 31]
adder_instructions_g6 xxx rd, rs1, imm[0, 63]
adder_instructions_g7 xxx rd, rs1

The constraint consists of only one section (id=main) that contains two sub-
sections. The first subsection (id=load_subsection) initializes all registers, while
the second subsection (id=main_subsection) covers all possible instruction sce-
narios. To ensure maximum diversity, different registers are initialized with a
random number ranging from 0x00000000 to 0xffffffff. To avoid interference from
other subroutines, we use only 7 tx registers and 12 sx registers. In the second
subsection, expressions in macros for different formats are set according to the
format of each group. Since the calculation process of random values stored in
registers could update registers to a new random value, the initialization process
occurs only once in each individual to simplify testing and save time. Therefore,
the parameter of the macro should be set to maxOccurs=1, minOccurs=1, and
averageOccurs=1. To increase the possibility of getting maximum stress efficiency
and shorten testing time, 2 to 10 instructions should be arranged in each individual
with maxOccurs=10, minOccurs=10, and averageOccurs=10.

Decoder

The RI5CY decoder translates the instruction memory contents into control signals
and data that are transmitted to the execution and control units. To fully exercise
the decoder, all instructions should be added to "ugp3.constraint.xml". However,
since the constraint contains load and store instructions, we need to be careful not
to interfere with the data and addresses stored in the registers. To explore the
addresses that maximize switching activity for storing and loading instructions,

15

Implementation

we defined as many addresses as possible in the item "data_mem_address" in the
"typeDefinitions".

To address this, we separated the addresses stored in the registers into two groups:
"riscv_reg" for normal data registers, and "riscv_reg_data_addr" for addresses
defined in "data_mem_address". To save time during the evaluation process, we
generated only addresses with the lowest 2 bytes equal to 0 in "data_mem_address".
This way, the constraint limits the store and load instructions to specific data
memory and prevents unexpected access during simulation and execution.

Listing 3.7: registers used in decoder constraints
1 <item type=" constant " name=" r i s cv_reg ">
2 <value>t0</ value>
3 <value>t1</ value>
4 <value>t2</ value>
5 <value>t3</ value>
6 <value>s0</ value>
7 <value>s1</ value>
8 <value>s2</ value>
9 <value>s3</ value>

10 <value>s4</ value>
11 <value>s5</ value>
12 <value>s6</ value>
13 <value>s7</ value>
14 </ item>
15 <item type=" constant " name=" riscv_reg_data_addr ">
16 <value>t4</ value>
17 <value>t5</ value>
18 <value>t6</ value>
19 <value>s8</ value>
20 <value>s9</ value>
21 <value>s10</ value>
22 <value>s11</ value>
23 </ item>

Table 3.2 contains the mnemonic codes for 16 groups of instructions based on
their format, excluding branch and jump instructions and some instructions related
to the processor’s control register to avoid program control issues.

"load_subsection" for initializing registers and "main_subsection" for stress
testing the processor with instruction expressions. Both of these subsections
appear only once with parameters maxOccurs="1" and minOccurs="1". In each
of the macros of the "main_subsection", their expression imitates the format of
instructions. For example the expression of group 1 which is shown in listing 3.8.
Its rd, rs1, and rs2 are registers that store random data or all 0s (in this case
initialization is located at the end of the program). In the first run of this process,
as seen in the real-time rundir_X.log, there were many 0s and 2s, which is likely
due to the instruction searching space. To overcome this issue, we optimized the

16

Implementation

Table 3.2: adder instruction group classification

Group Format
adder_instructions_g1 xxx rd, rs1, rs2
adder_instructions_g2 xxx rd, rs1, imm12 [-2048, 2047]
adder_instructions_g3 xxx rd, rs1, rs2, imm5 [0,31]
adder_instructions_g4 xxx rd, rs1, imm5 [0,31]
adder_instructions_g5 xxx rd, rs1, imm6 [-32, 31]
adder_instructions_g6 xxx rd, rs1, imm6 [0, 63]
adder_instructions_g7 xxx rd, rs1
adder_instructions_g8 xxx rd, imm20
adder_instructions_g9 xxx rd, imm12(rs)
adder_instructions_g10 xxx rd, imm12(rs!)
adder_instructions_g11 xxx rd, rs2(rs1)
adder_instructions_g12 xxx rs3, rs2(rs1!)
adder_instructions_g13 xxx rd, rs1, imm5(is3), imm5(is2)
adder_instructions_g14 xxx rd, rs1, imm[0,1]
adder_instructions_g15 xxx rd, rs1, imm[0,2]
adder_instructions_g16 xxx rd, rs1, imm[-0x20, 0x1f]

parameters that govern the selection of instructions in the "main_subsection" by
fixing the number of instructions to 10 (i.e., maxOccurs="10" minOccurs="10"
averageOccurs="10"). This way, the appearance of excessive 0s and 2s in the
program was reduced. Additionally, we increased the diversity of individuals in the
population by enlarging the fitnessHole from 0.8 to 0.9 in the population settings.
This allowed MicroGP3 to explore a larger space of potential solutions, resulting in
a greater variety of individuals being generated and tested.

Listing 3.8: constraint example
1 <expre s s i on>
2 <param r e f=" ins_g1 " /> <param r e f=" rd " /> , <param r e f=" r s1 " /> , <

param r e f=" r s2 " />
3 </ expr e s s i on>

Load And Store Unit

RI5CY processor has a Load-Store Unit (LSU) which is responsible for managing
data transfers to and from memory. This is the only way to manage data transfers.
Therefore, instructions related to LSU are stored and loaded in its Instruction Set
Architecture (ISA). RI5CY is a byte-addressable processor with word alignment,
which means that the memory address that can be accessed must have its lowest

17

Implementation

2 significant bits set to 00, indicating that the address ends with 4, 8, c, or 0.
However, RI5CY is able to perform misaligned access, meaning access that is
not aligned with natural word boundaries. Despite this, the type definition of
data_mem_address limits the data memory address that can be accessed from
0x200000 to 0x240000, according to the data memory boundary.

During the initial run of this process, we used the full memory address range
with the expectation of finding the best solution. However, due to the large size
of the constant typeDefinition, the optimization process of stimuli took too much
time, and the number of improved individuals was very high. This is not acceptable
for a normal test stimuli generation process. Therefore, we reduced the number
of memory addresses to 10 patterns that can toggle nodes in the LSU as much as
possible. These patterns are shown in Listing 3.9. By doing this, the MicroGP3 is
able to skip evaluating patterns that contain consecutive similar addresses.

Listing 3.9: data memory address
1 <item type=" constant " name=" data_mem_address ">
2 <value>0x200000</ value>
3 <value>0x20abcd</ value>
4 <value>0 x21 f0 f 0</ value>
5 <value>0x21a0a0</ value>
6 <value>0 x21cc00</ value>
7 <value>0 x 2 2 f f f f</ value>
8 <value>0x22aaaa</ value>
9 <value>0x231111</ value>

10 <value>0 x23bee f</ value>
11 <value>0 x 2 3 f f f f</ value>
12 </ item>

For stimuli generation process of LSU, MicroGP3 presents a challenge in pre-
venting unexpected memory access, which can lead to fatal errors during simulation.
Without a mechanism in place to detect or avoid such errors before running, these
faulty stimuli are unusable. For instance, loading r1 with the correct address during
initialization and subsequently storing a random value in memory can cause a load
instruction to retrieve an out-of-range value into r1, rendering it unsuitable for
storing addresses. To address this issue, we separated registers into two groups:
"riscv_reg" for storing random data and "riscv_reg_data_addr" for storing legal
addresses, as illustrated below.

Listing 3.10: data memory address
1 <item type=" constant " name=" r i s cv_reg ">
2 <value>t0</ value>
3 <value>t1</ value>
4 <value>t2</ value>
5 <value>t3</ value>
6 <value>s0</ value>

18

Implementation

7 <value>s1</ value>
8 <value>s2</ value>
9 <value>s3</ value>

10 <value>s4</ value>
11 <value>s5</ value>
12 <value>s6</ value>
13 </ item>
14 <item type=" constant " name=" riscv_reg_data_addr ">
15 <value>t4</ value>
16 <value>t5</ value>
17 <value>t6</ value>
18 <value>s7</ value>
19 <value>s8</ value>
20 <value>s9</ value>
21 <value>s10</ value>
22 <value>s11</ value>
23 </ item>

In the third part of the type definition, we classified load and store instructions
into eight groups based on their format and function. These instructions have four
different types of formats:

• xxx rd, imm12(rs)

• xxx rd, imm12(rs!)

• xxx rd, rs2(rs1)

• xxx rd, rs2(rs1!)

To ensure maximum toggling activity in the shift register of LSU, it is important
to initialize the bytes with random values before executing load instructions, as
the source data of these instructions come from memory, and if a memory cell is
empty, the corresponding node in the shift register won’t toggle. Thus, to address
this issue, we have divided load and store instructions into 8 groups based on their
format and function, with 4 groups for load instructions (lsu_instructions_g13 to
lsu_instructions_g16) and 4 groups for store instructions (lsu_instructions_g9 to
lsu_instructions_g12).

Comparing to the previous constraint, the new constraint consists of two sec-
tions. The first section (di=init) contains only one subSection (di=load_subsection),
which defines a single macro (id=instruction_ld). This macro initializes 19 differ-
ent random values, with values assigned to data address registers taken from
"data_mem_address" and other values assigned randomly from the range of
0x00000000 to 0xFFFFFFFF. The reason for this constraint is to ensure that
the initialization position is not placed at the end of the assembly, which could
lead to unexpected load and store operations and fatal errors.

19

Implementation

Table 3.3: LSU instruction group

Group Format
lsu_instructions_g9 xxx rd, imm12(rs)
lsu_instructions_g10 xxx rd, imm12(rs!)
lsu_instructions_g11 xxx rd, rs2(rs1)
lsu_instructions_g12 xxx rd, rs2(rs1!)
lsu_instructions_g13 xxx rd, imm12(rs)
lsu_instructions_g14 xxx rd, imm12(rs!)
lsu_instructions_g15 xxx rd, rs2(rs1)
lsu_instructions_g16 xxx rd, rs2(rs1!)

The section with id = "main" contains all possible formats and instructions
that may appear in the assembly code. The store instructions do not require any
additional initialization or manipulation. However, for load expressions, a random
value must first be loaded into memory. Therefore, in each of these expressions,
there is an "sw" before the "load" instruction, and this store-load pair uses the same
address. An example of these two different expressions is shown in 3.11 and 3.12.

Listing 3.11: store instruction constraint
1 <expre s s i on>
2 <param r e f=" ins_gX " /> <param r e f=" rd " /> , 0(<param r e f=" r s " />)
3 </ expr e s s i on>

Listing 3.12: load instruction constraint
1 <expre s s i on>
2 sw <param r e f=" rd " /> , 0(<param r e f=" r s " />)
3 <param r e f=" ins_gX " /> <param r e f=" rd " /> , 0(<param r e f=" r s " />)
4 </ expr e s s i on>

3.1.3 Evolutionary Algorithm Setting And Population Set-
ting

The population setting is designed according to the structure and operations that
we want to apply on the constraint. The constraint of decoder and adder contain
the operation of vertices and subsections.The structure is shown below

• section(main)

– subSection(load_subsection)
– subSection(main_subsection)

20

Implementation

Macros defined in the subsection will appear in the individuals generated by
the algorithm. The population setting configuration defines the behavior of these
elements (subsection, macro) manipulated by genetic algorithms. To operate on
these two subsections, there are two operators towards subGraph. It should be noted
that onePointImpreciseCrossover and twoPointImpreciseCrossover actually do the
same thing compared to the precise version because there aren’t any “outerLabel”
parameters in the constraint. Similarly, “combinatorial” parameters do not appear
in the constraint; therefore, inverOverCrossover operator doesn’t work. However,
we didn’t remove them because they didn’t have any effect on the final result.
During the experiment with a superset of satisfied operators, we could know if
there are any other possibilities to optimize the result. So in this experiment, we
just removed some operators that are illegal to the current constraint.

Similarly, structure of LSU constraint are listed below:

• section(init)

– subSection(load_subsection)

• section(main)

– subSection(main_subsection)

In this way, the location of register initialization and main segment is fixed.
This constraint ensures correct operations on the address of store in the individual.
Since the expected algorithm behavior of each functional unit is very similar, we
used the same operators for them. The operators that work in the genetic process
are shown in Table 3.4.

To generate the optimum individual in this project, we increased the diversity
of its population. We adjusted two parameters in this file to achieve this – “tour-
namentFitnessHole” and “cloneScalingFactor”. During every tournament process,
fitnessHole was assigned to 0.9 which means that 90% of tournament comparisons
invoke diversity as standard to choose the best individuals. CloneScalingFactor
was assigned to 0 which indicates that fitness value of those individuals generated
by cloning will be 0 and naturally being removed from the current tournament.
We also tried modifying their values during the experiment to get a better result.

Finally, in the "evaluation" segment, we use ugp3.evaluator.py as our external
evaluator. We name the generated individuals X_mps.S and store them in the
sbst_asm folder. We use fitness_value.txt as the fitness value for this process.

21

Implementation

Table 3.4: Operator list

onePointCrossover
twoPointCrossover

singleParameterAlterationMutation
insertionMutation
removalMutation

replacementMutation
scanMutationCONSTANT

alterationMutation
subGraphInsertionMutation
subGraphRemovalMutation

subGraphReplacementMutation
allopatricDifferential
inverOverCrossover

onePointImpreciseCrossover
twoPointImpreciseCrossover

uniformCrossover
localSearch

3.2 IBEX Stimuli Generation
3.2.1 Node Pair Extraction Strategy
The IBEX pair extraction strategy is a bit different from RI5CY. The goal of this
experiment is to detect the short wires that might occur during its early stage
between two nearest nodes. First of all, as in the experiment of RI5CY, we need the
gate level description of the processor and then generate nodes that are included
in the specific functional unit. However, rather than providing adder module
description, the source code of IBEX directly fuses its 32 bit adder with other ALU
functional modules. Therefore, the first thing we have to do is to modify the RTL
description of IBEX (we created a new RTL description file named ibex_adder.sv,
and invoked this module in ibex_alu_modified.sv, then substitude this file with
the old ibex_alu.sv), so that we can extract all the related nodes of adder by using
QuestaSim conveniently, the tcl script we used in QuestaSim GUI to generate the
node is shown in listing 3.13.

Listing 3.13: functional unit’s node extraction
1 t o g g l e r epor t −a l l −i n s t anc e { func t i ona l_un i t } − f i l e {

node_l i s t_report . txt }

We obtained the physical layout information report for the processor, ibex_top.def,

22

Implementation

using Cadence. Based on this report, we designed a parser (its flowchart is shown in
Figure 3.3) to determine node distances. The parser has three distance calculation
modes: "relaxed", "accurate", and "insane".

Figure 3.3: flow chart of parser

The relax mode sets the position of the node to its starting point, the distance
of two node we defined is the euclidean distance between their starting points
on the same metal layer, Figure 3.4 shows an example of this scenario. Assume
N0, N1, N3 on the same metal layer, N2 on another layer. Obviously, for N0 the
relationship of distance between nodes is L0 − 2 < L0 − 1 < L0 − 3, but since N2
and N0 aren’t on the same layer, the closest node is N1, thus N0-N1 is a node pair
that can be added to the list.

However, it should be noted that the "relaxed" mode cannot accurately measure
the distance between wires, which is where a short circuit may occur. The “insane”
mode, it’s more precise than the previous one. It splits the wire into several
segments and compares the starting point of each segment. The two nodes with
the shortest distance defined in this way are the easy-to-short-circuit node pairs.
The two starting points with the shortest distance in this process are the possible
short-circuit locations in the actual circuit. For example, in the Figure 3.5, SN0-1,

23

Implementation

Figure 3.4: relax mode

SN0-2, SN2, SN1 are starting points of the segment on the wire. The distance
between SN0-1 to SN1 is less than the distance between SN0-2 to SN2. Therefore,
the couple of N0 is N1. In this experiment, we used insane mode to generate the
node pair list of IBEX.

Figure 3.5: insane mode

3.2.2 Evolutionary Algorithm Constraint
As we mentioned in the previous chapter, the constraint defines the format of
individuals. In this experiment, we are going to generate stimuli of IBEX adder,
compressed decoder, decoder, and load and store unit. Different from RI5CY,
IBEX processor only support RV32I, RV32M, and RV32C [13].

Adder

The constraint for the IBEX adder consists of three sections: "load_section", "main",
and "label_section", with a fixed relative positioning that cannot be altered by the

24

Implementation

operator in MicroGP3. This ensures that initialization errors do not occur after
running the constraint. Additionally, the constraint includes a label subsection that
handles branch and jump instructions, allowing for the inclusion of more available
instructions. This also prevents infinite loops in the stimuli, regardless of the result
of the branch instruction.

• load_section

– load_subsection

• main

– main_subsection

• label_section

– label_subsection

Instructions related to adder can be divided into 5 groups according to their
format, as shown in the Table 3.5. According to the user manual of IBEX, the
operands of instructions in "adder_instructions_g2" are signed number, on the
contrary, other instruction groups are unsigned number. Therefore we separated
the registers into two groups, one of them contains signed register which means that
the operand stored in these registers are regarded as signed number. In the other
group, they stored unsigned number. The register’s "typeDefinitions" is shown in
listing 3.14.

Table 3.5: IBEX adder instruction group

Group Format
adder_instructions_g1 xxx rd rs1 rs2
adder_instructions_g2 xxx rd rs1 imm12 [-2048, 2047]
adder_instructions_g3 xxx rd rs1 rs2
adder_instructions_g4 xxx rs, label

Listing 3.14: ibex adder register type definition
1 <item type="constant " name="s igned_riscv_reg">
2 <value>t0</value>
3 <value>t1</value>
4 <value>t2</value>
5 <value>t3</value>
6 <value>t4</value>
7 <value>t5</value>
8 <value>t6</value>

25

Implementation

9 <value>s0</value>
10 <value>s1</value>
11 </item>
12

13 <item type="constant " name="unsigned_riscv_reg">
14 <value>s2</value>
15 <value>s3</value>
16 <value>s4</value>
17 <value>s5</value>
18 <value>s6</value>
19 <value>s7</value>
20 <value>s8</value>
21 <value>s9</value>
22 <value>s10</value>
23 <value>s11</value>
24 </item>

To increase the possibility of achieving a stress efficiency of 4, we fixed the
number of instructions that appear in the main section to 10, given that this is the
maximum length allowed. This was reflected in the XML code using the attributes
maxOccurs="10", minOccurs="10", averageOccurs="10", and sigma="0".

Compressed Decoder

Figure 3.6 illustrates the structure of the IF stage, which includes an embedded
compressed decoder functional unit, known as RV32C in RISC-V ISA (Instruction
Set Architecture). This unit is responsible for handling compressed instructions,
expanding them to an uncompressed version, which is then sent directly to the
Instruction Decoder (ID) stage. This ensures that the decoder always processes
uncompressed instructions. [13]. As the same as adder’s constraint, compressed
decoder’s included 3 sections as well, as shown below:

• load

– load_subsection

• main

– main_subsection

• label_section

– label_subsection

According to this description, instructions that should be included in the con-
straint are the compressed instructions i.e. RV32C. Instructions related to this
functional unit can be divided into 13 groups, which is listed in the Table 3.6

26

Implementation

Figure 3.6: instruction fetch stage structure

Table 3.6: IBEX compressed decoder instruction group

Group Format
compressed_decoder_instructions_g1 xxx rd, uimm5*4(x2)
compressed_decoder_instructions_g2 xxx rd’, uimm5*4(rs’)
compressed_decoder_instructions_g3 xxx rs’, label
compressed_decoder_instructions_g4 xxx rd, imm6[-0x20, -0x1][0x1, 0x1f]
compressed_decoder_instructions_g5 xxx rd, uimm6[0x1, 0x1f]
compressed_decoder_instructions_g6 xxx x2, imm6*16[-0x200, 0x1f0]
compressed_decoder_instructions_g7 xxx rd’, x2, imm6*4[0x0, 0x3fc]
compressed_decoder_instructions_g8 xxx rd’, uimm6[0,63]
compressed_decoder_instructions_g9 xxx rd’, uimm6[-32,31]
compressed_decoder_instructions_g10 xxx rd, rs
compressed_decoder_instructions_g11 xxx rd’, rs’
compressed_decoder_instructions_g12 xxx
compressed_decoder_instructions_g13 xxx label
compressed_decoder_instructions_g14 xxx rd,rs,imm12 [-2048, 2047]
compressed_decoder_instructions_g15 xxx rd, rs1, rs2

As for the RISC-V specification, rd’ and rs’ are commonly used registers for
compressed instructions, such as s0, s1, a0, a1, a2, a3, a4, a5. In our experi-
ment, we classified the registers we used into four groups based on their usage for
signed/unsigned and normal/popular registers.

In addition to fixing the number of instructions in the main section, we also
created three immediate items to handle the compressed store and load instructions
based on past experiences. These items were designed to mimic the address and
address bias, with "uimm5_4" representing the bias of the load and store address,
and "imm6_16" and "imm6_4" serving as biases for c.addi16sp and c.addi4spn,

27

Implementation

respectively. IBEX and RI5CY are quite similar, allowing for misalignment, the
address in the register are random values but the values of these items were set
accordingly to satisfy the format of instruction, as shown in Listing 3.15.Decoder
instruction can be classified into 8 groups, which is shown in the Table 3.7.

Listing 3.15: bias and address immediate patterns
1 <item type="constant " name="uimm5_4">
2 <value >0x20</value>
3 <value >0x34</value>
4 <value >0x58</value>
5 <value >0x7c</value>
6 </item>
7 <item type="constant " name="imm6_16">
8 <value >−0x120</value>
9 <value >0x1d0</value>

10 <value >−0x30</value>
11 <value >0xc0</value>
12 </item>
13 <item type="constant " name="imm6_4">
14 <value >0x120</value>
15 <value >0x1d4</value>
16 <value >0x38</value>
17 <value >0xcc</value>
18 </item>

Table 3.7: IBEX decoder instruction group

Group Format
decoder_instructions_g1 xxx rd, rs1, rs2
decoder_instructions_g2 xxx rd, rs1, imm12 [-2048, 2047]
decoder_instructions_g3 xxx rd, imm12(rs) [-2048, 2047]
decoder_instructions_g4 xxx rs1, rs2, label
decoder_instructions_g5 xxx rs1, label
decoder_instructions_g6 xxx rd, uimm20
decoder_instructions_g7 xxx rd, csr, rs
decoder_instructions_g8 xxx rd, csr, uimm5
decoder_instructions_g9 xxx

Decoder

The Instruction Decode (ID) controls the overall decode/execution process. It
contains the muxes to choose what is sent to the ALU inputs and where the write
data for the register file comes from. A small state machine is used to control

28

Implementation

multi-cycle instructions (see Ibex Pipeline for more details), which stalls the whole
stage whilst a multi-cycle instruction is executing.[13] The decoder is responsible for
accepting uncompressed instructions from IF stage and issues appropriate control
signals to the other blocks to execute the instruction. Therefore the constraint
should contain as much uncompressed instruction as possible i.e. RV32I and RV32M.
In addition, the structure of the individual can be the same as the compressed
decoder.

The registers that serve the decoder instructions use a mix of representations
for signed and unsigned numbers. This is because, in the case of the BI test, the
result of the calculation is not relevant; what is important is the activation of
the transistors in the processor. Therefore, the register initialization is designed
to follow the pattern shown in 3.16 and 3.17. During the running process of the
stimuli, the numbers in the registers will be interpreted as either signed or unsigned
based on the instruction being executed. Additionally, any errors or calculations
that occur provide an opportunity to toggle the transistors that can’t be affected
by correct operations.

Listing 3.16: decoder register initialization
1 <item type="constant " name=" r i s cv_reg ">
2 <value>t0</value>
3 <value>t1</value>
4 . . .
5 <value>t6</value>
6 <value>s0</value>
7 <value>s1</value>
8 . . .
9 <value>s11</value>

10 </item>

Listing 3.17: macro of register initialization
1 <macro id=" in s t ru c t i on_ ld ">
2 <parameters>
3 <item name="load_number1 " type=’ in t ege r ’ minimum="0" maximum

="4294967295"/ >
4 <item name="load_number2 " type=’ in t ege r ’ minimum="0" maximum

="4294967295"/ >
5 . . .
6 <item name="load_number19 " type=’ in t ege r ’ minimum="0" maximum

="4294967295"/ >
7 </parameters>
8 <expres s ion >
9 l i t0 , <param r e f ="load_number1"/>

10 l i t1 , <param r e f ="load_number2"/>
11 . . .
12 l i t6 , <param r e f ="load_number7"/>

29

Implementation

13 l i s0 , <param r e f ="load_number8"/>
14 l i s1 , <param r e f ="load_number9"/>
15 . . .
16 l i s11 , <param r e f ="load_number19"/>
17 </expres s ion >
18 </macro>

To handle instructions related to CSRs i.e. "decoder_instructions_g7" and
"decoder_instructions_g8", we included CSR read and write instructions in our
test. In order to prevent unpredictable behavior, we just defined all read-only CSRs
as the operand for these instructions, as shown in listing 3.18.

Listing 3.18: read-only CSRs type definition
1 <item type="constant " name="riscv_CSR_reg">
2 <value>mhartid</value>
3 <value>mimpid</value>
4 <value>marchid</value>
5 <value>mvendorid</value>
6 <value>mip</value>
7 </item>

Load And Store Unit

The Load-Store Unit (LSU) of the core takes care of accessing the data memory.
Loads and stores of words (32 bit), half words (16 bit) and bytes (8 bit) are
supported.The LSU is able to handle misaligned memory accesses, meaning accesses
that are not aligned on natural word boundaries. However, it does so by performing
two separate word-aligned accesses. This means that at least two cycles are needed
for misaligned loads and stores.

So, the structure that we designed is as follows:

• load

– load_subsection

• main

– main_subsection

• label_section

– label_subsection

In the type definition segment, we divided the registers into two groups:
"riscv_addr_reg" stores the addresses, while "riscv_reg" stores the data. Since the

30

Implementation

data memory addresses span from 0xCD080 to 0xFDFFF, we created a look-up-
table for the memory addresses rather than a full map. This approach allowed
us to achieve high coverage with special address patterns, while also reducing the
search space of this subset compared to a full address map. As a result, it saved
a significant amount of time in generating the individual. The item definition is
listed in listing 3.19

Listing 3.19: memory address subset list
1 <item type="constant " name="mem_addr">
2 <value >0xCD880</value>
3 <value >0xCFFFF</value>
4 <value >0xD0000</value>
5 <value >0xE3C3C</value>
6 <value >0xEAAAA</value>
7 <value >0xE5555</value>
8 <value >0xF5A5A</value>
9 <value >0xF3333</value>

10 <value >0xFCCCC</value>
11 <value >0xD3C30</value>
12 <value >0xF5A54</value>
13 <value >0xDC3C8</value>
14 <value >0xC535C</value>
15 <value >0xCACAC</value>
16 <value >0xFD800</value>
17 </item>

Instructions related to the LSU (Load and Store Unit) can be divided into three
groups: the load group (lsu_instructions_g1), store group (lsu_instructions_g2),
and load immediate group (lsu_instructions_g3). However, if the data being
loaded from an address is empty, certain structures, such as the shift register used
to transmit the data from memory, may not be activated. To address this issue,
we combined the load and store instructions as a pair, as shown in Listing 3.20.

Listing 3.20: IBEX lsu constraint
1 <macro id=" ins t ruc t i on_g1 ">
2 <parameters>
3 <item name="rd " type="definedType " r e f =" r i s cv_reg "/>
4 <item name=" r s " type="definedType " r e f ="riscv_addr_reg "/>
5 <item name="imm12" type=" i n t e g e r " minimum="−2048" maximum

="2047"/>
6 <item name="ins_g1 " type=’definedType ’ r e f ="

l su_ins t ruct ions_g1 " />
7 <item name="ins_g2 " type=’definedType ’ r e f ="

l su_ins t ruct ions_g2 " />
8 </parameters>
9 <expres s ion >

31

Implementation

10 <param r e f ="ins_g2"/> <param r e f ="rd"/>,<param r e f ="imm12
"/>(<param r e f =" r s "/>)

11 <param r e f ="ins_g1"/> <param r e f ="rd"/>,<param r e f ="imm12
"/>(<param r e f =" r s "/>)

12 </expres s ion >
13 </macro>

Due to this design, if we fix the occurrence of this pattern to 10, the total
number of instructions could reach up to 20 in the worst case scenario. Therefore,
in this experiment we set the parameters to maxOccurs="5", minOccurs="5",
averageOccurs="5", and sigma="0".

3.2.3 Evolutionary Algorithm Setting And Population Set-
ting

As discussed in the previous chapter, the ugp3.settings.xml file is used to set the
path for "ugp3.population.settings.xml", statistics, and status logs; hence, the
configuration of this file remained unmodified. In addition, the parameters for
the evolutionary algorithm, such as µ, ν, and λ, remained intact in the operator.
However, we removed some unnecessary operators from the population settings
to streamline the process. The operators used in this experiment are shown in
Table 3.8, which support all mutation and crossover behaviors for the individual
functions we defined.

Table 3.8: IBEX operator list

onePointCrossover
twoPointCrossover

singleParameterAlterationMutation
insertionMutation
removalMutation

replacementMutation
scanMutationCONSTANT

alterationMutation
subGraphInsertionMutation
subGraphRemovalMutation

subGraphReplacementMutation

32

Chapter 4

Results

4.1 The Result Of Switching Activity

The result of these 2 experiment are extracted from different python script. The first
one takes advantage of each individuals that already generated from the MicroGP3,
compile them to hex file and simulated in QuestaSim. Finally, extracted the result
that from out put of QuestaSim. However, in practice, this method was found
to be very time-consuming. Therefore, we changed our extraction strategy for
the IBEX experiment. In the IBEX experiment, we extracted result directly from
statistics.xml generated by the MicroGP3, in this way, we don’t need any overhead
on simulation and compilation any more.

The results for the RI5CY processor are presented in Table 4.1, which shows
the optimized version of our constraint. However, it should be noted that our
initial constraint resulted in an even worse performance. The main issue was that
when we designed the constraint for the processor, we only had access to the ISA
and limited information regarding the relationship between the ISA and the real
architecture. This limited information made it difficult to ensure that the constraint
was accurate. To ensure accuracy, we could have investigated the RTL description
and opcode definition of the architecture, or we could compare the instructions
used in the SBST stimuli to identify any missing instructions.

We experienced a similar challenge in the IBEX experiment where some in-
structions related to specific functional units weren’t completed. To improve the
results, we needed to identify which pairs didn’t reach an SE of 4. To accomplish
this, we first examined the report generated by the statistics to identify all of the
node pairs that could be improved. Next, we simulated the SBST stimuli using
QuestaSim and configured the node probes using the commands shown in 4.1. Here,
the FIRMWARE refers to the hex file of the SBST stimuli, while PROBE_PAIR
represents the node pair we want to improve. By viewing the waveform of the node

33

Results

Table 4.1: stress efficiency of RI5CY stimuli on different functional unit

Functional
Unit Stress efficiency

0 1 2 3 4
Adder
(269)

2
(0.74%) 0 39

(14.50%) 0 228
(84.76%)

Decoder
(308)

3
(0.97%) 1 73

(0.32%)
9

(2.92%)
222

(72.08%)
LSU
(502)

8
(1.59%) 0 119

(23.71%) 0 375
(74.70%)

Figure 4.1: QuestaSim GUI simulation interface

pair during "sbst_stuck-at_78pct.S" execution, which is the SBST stimuli that
covers 81% stuck-at-fault of the IBEX processor, we could check the address of the
instruction on the ID stage and thus determine the address of the instruction that
toggled the pair 4 times. The running interface is shown in 4.1, As we can see 4
toggling happens on the location which is labeled in the red circle. And these 2
toggle activity matches with the address pointed by the arrow.

Listing 4.1: SBST QuestaSim simulation
1 make l s im / gate / gui−mps−pa i r FIRMWARE= . . . PROBE_PAIR=. .

Next, we disassembled the ".elf" file using the commands shown in Listing 4.2 to
identify which instruction caused the toggle activity. However, it should be noted
that the disassembly result is not always accurate, as some instructions in the
disassembly may not actually appear in the SBST stimuli, for example "c.fld" is
at addr=0x3228, but actually they can’t be found in the "sbst_stuck-at_78pct.S".
The running result is shown in Figure 4.2, as we can see, the number in the red
square is the address that we are going to match.

34

Results

Figure 4.2: dis-assembler interface

Listing 4.2: disassembly command
1 r i s cv32 −unknown−e l f −objdump −d sbs t / sbst_stuck−at_78pct . e l f −M

numeric , no−a l i a s e s

Finally, table 4.2 shows the improved result. As we know the "ebreak" instruction
is a machine-level instruction in RISC-V architecture used for debugging and
software testing purposes. When executed, the instruction causes a debug exception,
which triggers a debug handler that stops the program’s execution and enters debug
mode. This isn’t the running state we want our processor to be. therefore this
instruction shouldn’t appear in the constraint. Due to this reason the switching
activity is lower compared to "sbst_stuck-at_78pct.S".

Table 4.2: stress efficiency of IBEX stimuli on different functional unit

Functional
Unit Stress efficiency

0 1 2 3 4
Adder
(423) 0 0 1

(0.24%) 0 422
(99.76%)

Compressed
Decoder

(154)

1
(0.65%) 0 27

(15.5%)
3

(1.95%)
123

(79.87%)

Decoder
(221)

11
(4.977%) 0 29

(13.12%)
4

(1.81%)
177

(80.09%)
LSU
(341)

7
(2.053 %) 0 27

(7.918 %)
3

(0.88%)
304

(89.15%)

35

Results

4.2 The Result Of Running Time
Table 4.3 presents the running time of the two experiments. As can be seen from
the table, the decoder stimuli generation on RI5CY took much longer than on IBEX.
This is because we used the emulated address in the item "data_mem_address",
which resulted in a huge number of 1025 addresses that needed to be handled by
the genetic algorithm, thereby leading to a large search space. However, subsequent
experiments have proven that such a large search space is unnecessary. In fact,
when bit-reversed patterns are included in the combinations, the algorithm is more
efficient than when using random numbers. For example, combinations such as
0x353535 and 0xCACACA were found to be more effective.

The running time is also related to the simulation process, as it involves invoking a
command that calls QuestaSim. In terms of the individuals of these two processors,
RI5CY lacks a register initialization segment that sets all registers to 0 in its
prologue, whereas IBEX has it. Therefore, the individual running duration of
RI5CY is generally shorter than that of IBEX, and this may be the reason why
the running time of the IBEX processor on adder and LSU is approximately twice
as high as that of RI5CY, even though the searching space of RI5CY is larger than
that of IBEX.

Table 4.3: Table of result

RI5CY IBEX
Adder 6.36h 17.77h

Compressed Decoder - 1.07h
Decoder 171.25h 1.33h

LSU 16.35h 32.21h

36

Chapter 5

Discussion And Conclusions

In this thesis, we used the genetic algorithm to generate the stimuli for the BI test.
It proves that with the proper definition of instructions to be used and the format
of these instructions, we can generate a stimuli with the help of self-defined multi
point metrics. And these stimulus are able to toggle the transistor in the processor
and aging the node pairs that are most likely to experience short circuits during
early use. And the statistics collected from experiment of RI5CY was sorted out
and published on a paper of IEEE European Test Symposium.

Even the Evolutionary algorithm is more convenient and faster than manual
generation strategy three are still some defect on constraint design:

• The first problem is that it’s not able to represent the branch and jump
target very well. Because the emulated random label can be duplicated
when generating the individual, which may causes error when compiling the
individual, or if the position can’t be fixed, the process will be stuck in infinite
loop. In this thesis we fixed the label at the end of this process as is mentioned
before. But when the branch or jump is taken, the instruction between the
branch and label will be neglected. So the mutually exclusive emulated variable
is necessary for the process, in this way this segment of death code can be
automatically removed by the genetic algorithm.

• The second issue with our strategy is that we used a fixed length for individuals
in the previous process. Some processes use a range of lengths from a small
number to the maximum number. While this strategy can increase the
possibility of achieving the highest stress efficiency, we did not have complete
control over the length of our individuals. To address this, we can set the
length of the individual as the second fitness value.

• The third issue is the instruction we are using target for the specific functional
unit. And this is also the largest problem we met in the experiment. Always,

37

Discussion And Conclusions

the instruction that we used for the process isn’t completed, we need to
optimize our constraint comparing to the SBST stimuli. Otherwise the result
might not be able to get a good result.

38

Bibliography

[1] D. Appello et al. «A comprehensive methodology for stress procedures evalua-
tion and comparison for Burn-In of automotive SoC». In: Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2017. 2017 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE). Lausanne,
Switzerland: IEEE, Mar. 2017, pp. 646–649. isbn: 978-3-9815370-8-6. doi:
10.23919/DATE.2017.7927068. url: http://ieeexplore.ieee.org/
document/7927068/ (cit. on pp. 1, 5, 6).

[2] Chen He. «Advanced Burn-In - An Optimized Product Stress and Test Flow for
Automotive Microcontrollers». In: 2019 IEEE International Test Conference
(ITC). 2019 IEEE International Test Conference (ITC). Washington, DC, USA:
IEEE, Nov. 2019, pp. 1–6. isbn: 978-1-72814-823-6. doi: 10.1109/ITC44170.
2019.9000147. url: https://ieeexplore.ieee.org/document/9000147/
(cit. on p. 1).

[3] Dynamic Burn-in | Reliability Technology Division | Services | OKI Engi-
neering. url: https://www.oeg.co.jp/en/semicon/burn-in.html (cit. on
p. 1).

[4] Zhenkai Ji and Wenhu Xie. «Design of FPGA Multi-Program Dynamic Burn-
In System». In: Electronics and Packaging 22.4 (2022), pp. 72–76. issn:
1681-1070. doi: 10.16257/j.cnki.1681-1070.2022.0401. url: https:
//kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKib
YlV5Vjs7iJTKGjg9uTdeTsOI_ra5_XUd2qFe5mleAKxzFfuvMlp68Gu5tAhqr1k
FHdXfO3DcE&uniplatform=NZKPT (cit. on p. 4).

[5] Ephraim Suhir. «To Burn-In, or Not to Burn-In: That’s the Question».
In: Aerospace 6.3 (Mar. 6, 2019), p. 29. issn: 2226-4310. doi: 10.3390/
aerospace6030029. url: https://www.mdpi.com/2226- 4310/6/3/29
(visited on 04/01/2023) (cit. on p. 5).

[6] Jens Lienig and Hans Bruemmer. Fundamentals of Electronic Systems Design.
Cham: Springer International Publishing, 2017. isbn: 978-3-319-55839-4 978-
3-319-55840-0. doi: 10.1007/978-3-319-55840-0. url: http://link.
springer.com/10.1007/978-3-319-55840-0 (cit. on p. 4).

39

https://doi.org/10.23919/DATE.2017.7927068
http://ieeexplore.ieee.org/document/7927068/
http://ieeexplore.ieee.org/document/7927068/
https://doi.org/10.1109/ITC44170.2019.9000147
https://doi.org/10.1109/ITC44170.2019.9000147
https://ieeexplore.ieee.org/document/9000147/
https://www.oeg.co.jp/en/semicon/burn-in.html
https://doi.org/10.16257/j.cnki.1681-1070.2022.0401
https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7iJTKGjg9uTdeTsOI_ra5_XUd2qFe5mleAKxzFfuvMlp68Gu5tAhqr1kFHdXfO3DcE&uniplatform=NZKPT
https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7iJTKGjg9uTdeTsOI_ra5_XUd2qFe5mleAKxzFfuvMlp68Gu5tAhqr1kFHdXfO3DcE&uniplatform=NZKPT
https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7iJTKGjg9uTdeTsOI_ra5_XUd2qFe5mleAKxzFfuvMlp68Gu5tAhqr1kFHdXfO3DcE&uniplatform=NZKPT
https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7iJTKGjg9uTdeTsOI_ra5_XUd2qFe5mleAKxzFfuvMlp68Gu5tAhqr1kFHdXfO3DcE&uniplatform=NZKPT
https://doi.org/10.3390/aerospace6030029
https://doi.org/10.3390/aerospace6030029
https://www.mdpi.com/2226-4310/6/3/29
https://doi.org/10.1007/978-3-319-55840-0
http://link.springer.com/10.1007/978-3-319-55840-0
http://link.springer.com/10.1007/978-3-319-55840-0

BIBLIOGRAPHY

[7] Melanie Po-Leen Ooi, Zainal Abu Kassim, and Serge N. Demidenko. «Short-
ening Burn-In Test: Application of HVST and Weibull Statistical Analysis».
In: IEEE Transactions on Instrumentation and Measurement 56.3 (2007),
pp. 990–999. doi: 10.1109/TIM.2007.894165 (cit. on pp. 4, 5).

[8] R.-P. Vollertsen. «Burn-In». In: 1999 IEEE International Integrated Reliability
Workshop Final Report (Cat. No. 99TH8460). 1999 IEEE International Inte-
grated Reliability Workshop Final Report. Lake Tahoe, CA, USA: IEEE, 1999,
pp. 167–173. isbn: 978-0-7803-5649-8. doi: 10.1109/IRWS.1999.830588.
url: http://ieeexplore.ieee.org/document/830588/ (cit. on p. 4).

[9] T.M. Mak. «Infant Mortality–The Lesser Known Reliability Issue». In: 13th
IEEE International On-Line Testing Symposium (IOLTS 2007). 2007, pp. 122–
122. doi: 10.1109/IOLTS.2007.40 (cit. on p. 4).

[10] Walter Ruggeri, Paolo Bernardi, Stefano Littardi, Matteo Sonza Reorda,
Davide Appello, Claudia Bertani, Giorgio Pollaccia, Vincenzo Tancorre,
and Roberto Ugioli. «Innovative methods for Burn-In related Stress Met-
rics Computation». In: 2021 16th International Conference on Design &
Technology of Integrated Systems in Nanoscale Era (DTIS). 2021 16th In-
ternational Conference on Design & Technology of Integrated Systems in
Nanoscale Era (DTIS). Montpellier, France: IEEE, June 28, 2021, pp. 1–6.
isbn: 978-1-66543-654-0. doi: 10.1109/DTIS53253.2021.9505067. url:
https://ieeexplore.ieee.org/document/9505067/ (cit. on pp. 6, 8).

[11] Ernesto Sanchez, Massimiliano Schillaci, and Giovanni Squillero. Evolutionary
Optimization: the µGP toolkit. Boston, MA: Springer US, 2011. isbn: 978-
0-387-09425-0 978-0-387-09426-7. doi: 10.1007/978-0-387-09426-7. url:
http://link.springer.com/10.1007/978-0-387-09426-7 (cit. on p. 8).

[12] Seyedali Mirjalili. «Genetic Algorithm». In: Evolutionary Algorithms and
Neural Networks. Vol. 780. Series Title: Studies in Computational Intelligence.
Cham: Springer International Publishing, 2019, pp. 43–55. isbn: 978-3-319-
93024-4 978-3-319-93025-1. doi: 10.1007/978-3-319-93025-1_4. url:
http://link.springer.com/10.1007/978-3-319-93025-1_4 (cit. on
p. 8).

[13] Ibex: An embedded 32 bit RISC-V CPU core — Ibex Documentation 0.1. url:
https://ibex-core.readthedocs.io/en/latest/ (cit. on pp. 24, 26, 29).

40

https://doi.org/10.1109/TIM.2007.894165
https://doi.org/10.1109/IRWS.1999.830588
http://ieeexplore.ieee.org/document/830588/
https://doi.org/10.1109/IOLTS.2007.40
https://doi.org/10.1109/DTIS53253.2021.9505067
https://ieeexplore.ieee.org/document/9505067/
https://doi.org/10.1007/978-0-387-09426-7
http://link.springer.com/10.1007/978-0-387-09426-7
https://doi.org/10.1007/978-3-319-93025-1_4
http://link.springer.com/10.1007/978-3-319-93025-1_4
https://ibex-core.readthedocs.io/en/latest/

	List of Tables
	List of Figures
	Acronyms
	introduction
	problem to be solved
	brief summary
	thesis structure

	Background
	Burn-In Test
	Stimuli Generation Strategy
	Evolutionary Algorithm
	MicroGP3 Tool-Kit Introduction

	Implementation
	RI5CY stimuli generation
	node pair extraction strategy
	Evolutionary algorithm constraint
	evolutionary algorithm setting and population setting

	IBEX stimuli generation
	node pair extraction strategy
	evolutionary algorithm constraint
	evolutionary algorithm setting and population setting

	results
	The Result of switching activity
	the result of running time

	discussion and conclusions
	Bibliography

