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Introduction

In recent years, Deep Neural Networks (DNNs) have become increasingly
present and used in any field, it is now a fundamental element for all artifi-
cial intelligence applications and is expanding more and more. Today these
networks are being introduced in the medical, automotive, financial, and in-
dustrial fields, all requiring high-security parameters [18]. Hardware faults
can compromise the functionality of the DDNs and the safety of the system
on which they are connected, the increased use of DNNs in safety-critical
domains has led to the need to accompany their exceptional performance
with diagnostic systems to ensure safety and reliability. Therefore the issue
of network resilience has become very important, it is now mandatory to
introduce the ability to maintain standards performance while managing to
inhibit, or correct, factors such as hardware-induced faults, wrong inputs,
and any type of disturbance.

Considering a DNN for image recognition, this thesis proposes a new
experimental technique to generate high-quality test stimuli in the form of
automatically generated test images. the goal is to create an Automatic
Test Pattern Generation (ATPG)-based approach to generate an Image Test
Library (ITL) such as those mentioned in the article [11], with the task of
identifying permanent faults. Going into detail, the main idea behind the
thesis is to create a virtual test environment in which to simulate hardware-
induced faults through a fault injection within various Neural Networks for
image recognition. The ITLs are created by an evolutionary algorithm, which
receives feedback on the observability of the outputs of the generated images.
Therefore the algorithm is driven to try to produce new images which have
the effect of propagating the hardware-induced fault up to the output of
the Neural Network. During the training of Artificial Neural Networks, the
weights are modified and their influence re-balanced, this introduces a natu-
ral ability to mask irrelevant input elements. This feature is certainly very
powerful because it can allow you to maintain the same performance, but
at the same time, it can hide the accumulation of vulnerabilities within the
system. Therefore, the main task of the ITLs is that of reducing the masking
effect of the model and enhance the detection of potential failures.
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Figure 1: Test images set

In this work, the focus is on Convolutional Neural Networks (CNNs)
including ResNet-18, ResNet-34, and DenseNet-161 Networks trained with
CIFAR-10, one of the most used datasets in the academic and scientific fields.
Regarding the generation of inputs, the evolutionary algorithm used is called
µGP, and it is used to generate 32x32 color images like those of CIFAR-10 to
then be fed to the neural network. Then there is an evaluator, in this case,
a Python code, capable of generating a fitness file that will be delivered as
feedback to µGP.

Now the thesis is organized as follows. Chapter 1 describes the back-
grounds problem and the notions to know previous the start of the project,
in particular, it is discussed the architectures of the deep neural networks,
their functioning, and the description of the concept of evolutionary algo-
rithm together with a more accurate explanation regarding the fault injec-
tion topic. Chapter 2 and chapter 3 explain first the proposed approach to
create the environment and then the actual performed work done to achieve
it, chapter 4 contains the results obtained using it as a test bed. In chapter
5 the conclusions are discussed.
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Chapter 1

Background

In this chapter, the foundation is laid for the comprehensive exploration
of various areas covered in this thesis. Here, it is provided a comprehensive
overview of the fundamental and preliminary concepts that form the bedrock
of the entire project. By delving into these concepts, the aim is to establish
a solid understanding of the diverse domains and disciplines that intersect
within the scope of this research. The chapter is divided into 3 sections, the
first aims to explain the architecture of neural networks and to underline
their characteristics and their advantages, the second focuses on the func-
tioning of the evolutionary algorithm and in particular on the structure and
functionality of µGP, finally, the last section concerns more specifically the
problem of the problem of the faults within the analyzed case.

1.1 Artificial Neural Networks

At their core, artificial neural networks (ANNs), consist of interconnected
nodes, called artificial neurons or units, organized into layers. These networks
leverage the mathematical concept of weighted connections to propagate and
transform information throughout the layers. Activation functions determine
the output of each neuron, providing non-linear transformations that enable
ANNs to model complex relationships in the data. The inception of ANNs
draws inspiration from the intricate workings of human biology, specifically
the remarkable interplay between neurons in the human brain. These net-
works aim to emulate the collective functionality of neurons in processing
and comprehending inputs received through human senses. By mirroring
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the remarkable capabilities of the human brain, ANNs strive to unlock new
frontiers in understanding and interpreting complex information.

1.1.1 Artificial Neural Network base structure

The base structure of an ANN comprises interconnected layers of nodes,
known as artificial neurons or units. These layers are organized in a hier-
archical manner and play a fundamental role in information processing and
decision-making within the network. In agreement with [13] and [19], the
structure of an ANN typically consists of three key components: the input
layer, hidden layer(s), and the output layer.

• Input layer: It serves as the entry point for data into the neural
network. It receives the initial input data, each node in the input
layer corresponds to a specific input feature, and the number of nodes
matches the dimensions of the input data.

• Hidden layer(s): It(they) sits between the input and output layers
and is/are responsible for extracting and transforming the input data
through a series of computations. The number of hidden layers and
the number of nodes within each layer are design choices that can vary
depending on the complexity of the problem at hand.

• Output layer: It is the final layer of the ANN and produces the
network’s predictions or outputs. The number of nodes in the output
layer depends on the nature of the task, for example, if the network has
to recognize one of the CIFAR 10 labels, the number of output nodes
must be 10.

When the architecture contains multiple layers (more than 3) of artificial
neurons or units we can refer to a deep neural network (DNN), this
structure contains many layers and a vast number of artificial neurons.
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Figure 1.1: Deep neural network structure [4]

1.1.2 How does it work?

In the realm of DNNs, according to [19], each node can be envisioned as a dis-
tinct regression model with input data, weights, a bias, and an output. Upon
establishing an input layer, weights are assigned to the connection between
nodes. These weights serve as indicators of the relative importance of specific
variables, with larger weights contributing more significantly to the overall
output compared to the inputs. The inputs are then multiplied by their
weights and summed together, the resulting value undergoes an activation
function, which governs the final output of the node, if the output surpassed
a predefined threshold, the node is said ”activate” and it passes its data to
the next layer. This sequential process of transmitting data from one layer to
the next characterizes the DNNs as a feedforward network. This feedforward
architecture enables DNNs to efficiently process and analyze complex data,
making them highly valuable tools in various domains, including pattern
recognition, regression, and classification tasks.
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1.1.3 Deep Neural Networks typologies

DNNs encompass various typologies that are designed to handle specific types
of data and tasks. This overview doesn’t cover every single type, by consult-
ing [26] or [6] it is provided a glimpse into the most prevalent neural network
variants frequently encountered:

• Feed-forward NN (FNN): It is widely used for facial recognition
technologies, it is designed to process input data in a unidirectional
manner, flowing from the input layer through hidden layers to the out-
put layer, without any loops or feedback connections.

• Recurrent NN (RNN): This artificial neural network is designed
to process sequential or time-dependent data. The key feature of an
RNN is its ability to maintain an internal memory (hidden state) and
update it to propagate information through time. it is popular in text-
to-speech applications.

• Convolutional NN (CNN): One of the most used in the field of
processing and analyzing data like videos and images. The idea is to
leverage the concept of convolution, which is a mathematical operation
that involves filters in the input data able to capture local patterns or
features to create feature maps.

1.1.4 Advantages and Disadvantages

These structures offer several advantages and they can be revolutionary in
many fields, but they can also have certain disadvantages such as those de-
scribed in [5] and [8]. Here I list some o the pros and cons of using them:

Pros:

• Ability to learn complex patterns: They excel at learning complex
patterns and relationship data to solve highly intricate problems.

• Ability to process large-scale data: DNNs can handle huge datasets
with high dimensional features, furthermore they can process and be
trained on modern computer architectures.
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• Transfer learning and fine-tuning: Pre-trained models can be eas-
ily used as a foundation or starting point for solving different but related
tasks, these features save significant time and computational resources.

• Non-linearity: The non-linear activation function enables non-linear
relationships in data, this flexibility is very useful to deal with real-
world problems.

Cons:

• Need for large amounts of data: DNNs require a significant amount
of labeled training data, this information can be time-consuming, or in
certain cases almost impracticable.

• Computational Complexity and training time: Training a DNN
is computationally speaking intense, generally deeper is the architecture
more time and hardware resources are necessary.

• Over-fitting: Proper regularization techniques are mandatory to mit-
igate overfitting and improve generalization because these structures
are very susceptible.

• Data dependence: Quality and diversity of data is a very important
topic to not lead to biased predictions end potentially dangerous.

1.2 Evolutionary algorithm

Evolutionary algorithms are a family of computation techniques inspired by
biological evolution and natural selection. They mimic the process of nat-
ural evolution to iteratively search for optimal or near-optimal solutions to
complex problems, this approach is called Genetic programming, a field dis-
covered in the 1960s by J. H. Holland, who was the first to notice simi-
larities between environment system adaptability and biological evolution.
These algorithms are particularly effective when the problem lacks a well-
defined mathematical formulation or when traditional optimization meth-
ods are computationally expensive or infeasible. There are generally defined
stages, such as those described in [15] and [2], involving evolutionary algo-
rithms:
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1. Initialization: A population of individuals is generated, each of
them representing a potential solution to the problem.

2. Evaluation: Each individuals is described by a fitness value. This
is usually one o more numbers that represent how well the individual
satisfies the objective of the problem.

3. Individual selection: A group of individuals is chosen in a deter-
ministic or stochastic way based on their fitness scores, then a specific
selection method can be applied.

4. Crossover: This is the reproduction phase, also called recombina-
tion, where the individual’s genetic material is shared between parents
to generate an offspring with different features from the previous pop-
ulation.

5. Mutation: This part introduces diversity and explore new regions of
the solution space with random changes, this phase is crucial to prevent
premature convergence to suboptimal solutions.

6. Replacement: The new offspring is integrated with some old individ-
uals and create the next generation, here replacement strategies can be
applied.

7. Termination: The algorithm continues to iterate until a termination
criterion is met. Termination criteria may be related to the number of
generations, time, fitness, and many other things.

In summary, evolutionary algorithms are powerful optimization tech-
niques, they can search a large solution space, handle complex problems and
offer robustness, however, they come with high computational complexity.
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1.2.1 Micro Genetic Programming

Citing [17], µGP was initially created to generate assembly-language pro-
grams by a CAD group at Politecnico di Torino, but then its use has widened
to create test programs of Bayesian networks, mathematical functions, real-
values optimization, and many other fields. The algorithm is capable of
generating different solutions and the process for doing it mimics modern
evolutionary principles. The first step is always to generate random solu-
tions, then it uses a heuristic algorithm combined with information intro-
duced by the user to explore the possible solutions better and better until
the optimal or sub-optimal one is found. In the system, the candidates’ so-
lutions are represented internally as directed multigraphs, these multigraphs
must adhere to a set of rules defined by the user to ensure sensible structures
(constraints). The individuals are converted into text files and then passed
to a user evaluation program (evaluator) which ultimately has the task of
generating a numerical value to evaluate them (fitness), the basic goal of the
algorithm is to increase these values with the next generation.

1.2.2 µGP structure

The typology of the µGP architecture is stratified, to divide in the most
concrete way possible the internal structure of the individuals and the char-
acteristics of the constraints to the concepts linked purely to the evolutionary
method. As described in [22], the basic structure is a tagged graph structure,
which therefore allows each individual to be represented with his phenotypic
features. Furthermore, there is a library that contains all the instructions and
descriptions to which individuals are bound, this means that the structure is
transformed into a Constrained tagged graph. Within this structure there is
the concept of the individual represented as a class, modifiable by the user,
however, the individual class can directly influence the population through
selection and mating, or the death of the individual himself due to aging. A
set of individuals is represented by the population class, this too modifiable
and subject to genetic operators. Lastly, the evolutionary algorithm uses the
population class to generate new ones and determine their structure, size,
and genetic operators type to apply. In figure 1.2 is possible to see a scheme
that summarizes the basic structure of the software.
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Figure 1.2: µGP structure

To sum up, µGP is composed by 3 main blocks [20]:
To sum up, µGP is composed by 3 main blocks [20]:

1. Evolutionary core: Place where computation and selection are per-
formed. Here population and individuals are managed by the algo-
rithm.

2. External evaluator: Tool to which individuals are given as input
and which produces a post-elaboration report as output to provide the
necessary feedback to the evolutionary core to close the evolution loop.

3. Instruction library: It provides and applies rules to individuals so
that they can always be generated or modified correctly.
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1.2.3 Settings for optimization process

The personal modifications that can be made to set the optimization process
are various, as described previously, they can concern the algorithm in gen-
eral, the single individual, or the population to which it belongs, they can be
divided into 3 categories:

1. Main settings: These options are represented in the file ugp3.settings.xml,
inside can be added several parameters tied to the general evolution.
This file contains the lists of all the populations with which the algo-
rithm will have to interact during the next run of the program. Fur-
thermore, there are references to the related files for the recovery of
the interrupted experiments and the description of the entire evolu-
tionary process. There are also optional parameters, one of the most
interesting is called ’RandomSeed’, which allows you to set the internal
random number generator of µGP is seeded with, useful if you want to
reproduce an experiment [14].

2. Population’s constraints: This file is called by default constraints.xml
and describes the individual structure the experiment is trying to run.
The great flexibility can reproduce multitudes of individuals and at
the same time impose constraints that each element must rigorously
respect. The structure is composed of any number of types of defi-
nitions and sections, each one containing a prologue and an epilogue
with the possibility to add an arbitrary number of internal sub-sections
[16]. The sub-sections are characterized again with a prologue and an
epilogue but now can contain one of the most powerful tools in µGP,
the macros [23].

• Expressions: It’s the text of the macro, everything that is written
will be printed, moreover, this is where the references to the pa-
rameters that the algorithm will fill with the appropriate values
are declared.

• Parameters: This section allows to specify the type of the pa-
rameter µGP can use, the type can be numerical(integer, float), a
string(bit array), and so on.

3. Population’s settings: This is a very important settings file, where
the most important population parameters are described, such as the
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population typology (enhanced or multiObjective) [24], the link to the
individuals constraints file or to more general parameters like:

• Population size.

• Number of genetic operators applied at each step.

• Strength of the genetic operator’s regulators(sigma).

• Tuning and self-adapting µGP mechanism like the inertia or the
resistance of the system to change.

• The tournament selection to compare individuals.

• Stopping conditions related to the number of generations, the fit-
ness value, the steady state condition, or the elapsed time.

• Aging options to remove old individuals or to create an elite.

Always in this settings file it is necessary to declare which types of ge-
netic operators are to be used, then they are randomly selected to be
able to generate new individuals and introduce variability to the new
populations. Furthermore, they follow a basic rule which increases the
use of the operators that give rise to the best individuals, but with-
out ever excluding the use of the less performing ones. The operators
are described by 3 classes [21], standard mutations or single-parent
operators, they can repeat the mutation on a single parameter more
than once depending on the sigma value, scan mutations, they select
macro’s variable in the population’s constraint and generate child for
all the possible parameters, the last is the crossovers operators, able
to cut and swap slices of subgraphs between individuals.
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1.3 Reliability issues

Much research has been done on the performance of DNN accelerators and
their application, however, the topic of reliability is still not well understood.

The fundamental problem is that DNNs, due to their great potential
for data analytics in industrial applications, need to adhere to the safety
and reliability requirements of modern industries. The consequences of soft
errors in DNN can be catastrophic, especially in safety-critical scenarios.
By consulting [7], a simple example can be an object miss-classification for
self-driving cars. There are numerous cases where soft errors can cause the
miss-classification of a truck as a bird and the braking action cannot be
applied in time to prevent the collision (figure 1.3).

Figure 1.3: Miss-classification [7]

So this topic remains challenging still today, there is a lack of common
systematic methods and tools for evaluating fault tolerance and more dif-
ficulties arise from the involvement of various architectural and functional
features within different conceptual frameworks.

1.3.1 Faults concept

The first important thing to know is to understand the difference between
the 3 basic concepts in fault-tolerant systems such as those described in [25]:
fault, error, and failure.

• Fault: It refers to an abnormal physical condition in a system that
leads to an error.

• Error: It is the manifestation of a fault within a system and represents
a deviation from the expected output.
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• Failure: It refers to the system’s inability to perform its intended
functionality or behavior due to errors

It’s important to note that a fault in a system does not necessarily result
in an error or failure if it remains inactive. Faults can be further classified
based on their temporal characteristics:

• Permanent faults: They are continuous and stable over time, typi-
cally resulting from irreversible physical damage.

• Transient faults: They are temporary and often caused by external
disturbance, furthermore if they start to occur within a fixed period
are called intermittent faults.

Fault detection and error correction is a research field where new models
are developed to understand all the different types of faults. These stud-
ies aim to major requirements like accuracy, replicate realistic faults, and
tractability, to ensure fault modeling feasibility.

One of the main concerns is the occurrence of soft errors, which occur
when the electronic device is hit by high-energy particles, or by its degra-
dation and many other external factors that cause malfunctions. Hardware
faults can arise from various sources such as electrical noise, manufactur-
ing defects, thermal effects, and external environmental factors. The most
common hardware faults in AI accelerators are:

• Stuck-at faults: A circuit node gets permanently stuck at a specific
logic level due to manufacturing defects or physical damage.

• Transient faults: Temporary and non-permanent faults caused by
external factors such as radiation or electric noise.

• Power-related faults: Power supply issues, such as voltage fluctua-
tions or power spikes.

• Overheating: Overheating can cause performance degradation or even
lead to the accelerator shutting down to protect itself.

• Wear and Tear: Continuous usage of AI accelerators can cause wear
and tear on the hardware components, such as connectors, sockets, or
solder joints. These physical faults can degrade performance or lead to
complete failure over time.
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The listed faults in addition to permanently not working the hardware
can also only interact with the binary codes installed on the hardware and
potentially lead to problems. Here are a few examples of issues that can
arise:

• Bit flips: In this case, a bit that was supposed to be 0 may be flipped
to 1 or vice versa.

• Data corruption: This corruption can affect the binary representa-
tions of the software’s data, for example, when a bit is flipped during
a memory write operation.

• Register errors: If a fault occurs in a register, it can result in the
corruption of the stored binary values.

• Arithmetic and logic errors: A fault in the arithmetic logic unit(ALU)
can cause incorrect mathematical operations.

1.3.2 Fault models

Several faults models have been used to accurately represent an abstraction of
physical defects within electronic systems and devices, in particular, sources
such as [10] and [25], explain that the 2 most proposed models over the years
are:

• Stuck-at: This model represents a data or control line that appears to
be consistently held at high (stuck-at-1) or low (stuck-at-0) state, ba-
sically, in a stuck-at-faults model, individual elements of the electronic
device are tied to a logical state. The model has been extensively re-
searched and remains popular due to its ability to model permanent
faults at the logic level, capturing defects in transistor and intercon-
nections structures.

• Random bit-flip: This model captures the occurrence of incorrect and
random values in data or memory elements, it is designed to model
transient faults that typically occur in registers or memory elements
due to external disturbances. The main characteristic of this model is
that only data are affected or corrupted, the circuit itself is completely
undamaged. Usually, this model involves a register bit that randomly
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switches, resulting in the memory element holding an incorrect logic
value.

It is worth mentioning that these faults models may not fully cover the
newer fault mechanisms found in deep-submicrometer technologies, however,
over the years these 2 models have been shown to allow effective investigation
of fault tolerance, even at the application level, so they are widely used
for reliability studies in the field of deep learning. The ultimate goal of
these failure models is to analyze the dependability or trustworthiness of the
system, these terms are described in [25] by analyzing various properties such
as:

• Reliability: High probability to perform correctly under specified con-
ditions and for a specified period in the presence of faults.

• Fault tolerance: Property guarantees a proper operation also in the
event of faults. It can be passive, where the system doesn’t react in
any special way to the internal faults and try to apply fault-masking
mechanisms, or it can be active, in which a dynamic error recognition
manages a process of adaptation or self-repair of the system.

• Graceful degradation: System’s ability to exhibit low sensitivity to
occurring faults to prevent a complete failure.

• Robustness: Property used to describe the ability to continue oper-
ating in the right way despite noise.

• Error resilience: Tolerance to wrong computations inside the system.

1.3.3 DNN faults

One notable property of deep neural networks is their ability to still perform
their overall functions even if some neurons or synapses are not functioning
properly. These systems don’t have a minimum number of neurons required
to solve a task, so any neuron or synapse can fail independently. This feature
can provide a natural robustness and fault tolerance, but at the same time
enable the problem of masked soft errors, hard to fix because hard to see.
The errors can occur in various elements like the communication channels
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resulting in faulty interconnections or disturbances between neurons, synap-
tic weights, the values that represent the strength of the connections, or the
neuron body, the nucleus of the neuronal cell.

By consulting [7], four general parameters impact the effect of soft errors
in DNNs :

• Topology and Data type: All the different typologies of DNNs have
their unique features and different data types, these 2 things affect a
lot the error propagation of the system.

• Bit position: Different data types interpret each bit differently, and
understanding how errors in specific bits of each data type affect the
soft errors detection is fundamental.

• Layers: Many layers in DNNs are different from each other, so it’s
important to understand how errors propagate in all possible types of
layers.

• Data Reuse: Data reuse implementations in the dataflows of DNNs
affect the soft error detection probability.

1.3.4 Fault injection methods

The fault injection (FI) methodologies are techniques used in software and
hardware testing to simulate all the vulnerabilities, weaknesses, and faults in
a system, the idea is to introduce faults to evaluate the system properties.
As [12, 10] explains, the typologies can be categorized as follows:

• Simulation-based: Injection process is conducted without a physical
device executing, in our case, a DNN. The abstraction level is the
highest.

• Platform-based: Analyses are performed directly on a physical device
that emulates the final implementation.

• Radiation-based: It’s an accelerated radiation test that mimics ex-
ternal electromagnetic interference.

Analyzing in particular the simulation-based, one can still make a further
distinction. First the software-level simulation-based FIs, where the aim
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is to inject a high-level model of DNN, independent of any specific hardware,
to identify only the weakness in the DNN. The second distinction is the
hardware-level simulation-based FIs, here the abstraction level is lower
and the model tries to simulate the target hardware architecture and allow
a more realistic fault injection.

Finally, it is important to list the qualitative parameters [10] to be able
to compare the various methods with their advantages and disadvantages:

• Cost: The resources that are involved to conduct the analyses.

• Development effort: Level of effort required to develop the FI method.

• Exactness: Degree of accuracy in replicate reality

• Controllability: The simple ability to control the process

• Observability: Capacity to identify events

• Repeatability: Number of times the process can be repeated using
the same framework

• Fault injection time: Time to execute a single cycle of injection
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Chapter 2

Proposed Approach

In this chapter, the goal is to explain the approach and methodology of the
system created for the realization of tests. The task of the tests is to be
able to create new input stimuli that allow the recognition of a fault injected
into a CNN by simply displaying the output. The first decision was on
which networks to create the environment to experiment on, the choice fell
on networks based on image recognition, in particular, we are talking about:

• ResNet18 and ResNet34: Short for ”residual network”, they are 2
CNNs that are fundamental for taking a step forward in the field of im-
age recognition as they can use residual links to add information to the
data stream, these technique allows to learn much more representations
deep.

• Densenet161: ”Densely connected network”, another CNN which,
unlike traditional ones, has a direct connection between all levels, cre-
ating a densely connected structure.

2.1 Proposed flow

It is necessary to explain that the test environment can be divided into
2 blocks, the first is the evolutionary algorithm (µGP), set so that it
auto-generates a population of individuals represented by 32x32 color images
of the same type to be fed to the network, corresponding to the ITL first
introduced in [11], and the second is the evaluator, a python code where the
individuals are shipped and the networks, data converters, fault injection and
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fitness conversion of the output evaluation are integrated. It is important to
underline that the software only sends to the evaluator one individual at a
time, and an individual always means one or more images collected in a batch.
The steps that are explained below always refer to the single individual taken
from the generated population and are repeated until fitness is obtained for
each of them.

Figure 2.1: 2 blocks environment structure

21



2.1.1 Images conversion

The first step inside the evaluator is to convert the images produced by
the evolutionary algorithm, the conversion is necessary because the format
in which they are generated is not the classic one used in Cifar-10, but as
explained in 1.2 is a text file that describes the images, but this topic will be
covered in more detail in the next chapter. So the individual, represented by a
text file, must be converted into a NumPy array that holds the contents with
a structure that corresponds to an 8-bit unsigned integer, so each element in
the array is represented by a single byte from the file. This step is crucial
because it allows us to reshape the data to subdivide the created images and
extract and rearrange the color channels of the pixels. Finally, it is necessary
to transform the images into PyTorch tensor form for one last time to be
used by the network.

Figure 2.2: Images conversion and transformation
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2.1.2 Fault injection and data collection

In this moment of the process, the individual is inserted as an input in the
CNN for the first time, the network is in optimal conditions, and no faults
have been injected into it yet. The collected output, which in our experiment
is represented by as many vectors of 10 values as there are images in the
batch, represents the system’s predictions and is saved to then be used in
comparison with corrupted outputs. Now the integration of the faults injector
with the neural network takes place. Inside the code there is a loop capable
of inserting and correcting faults in the form of bit-flips in the weights of the
CNNs, these faults are previously selected and written with a certain format
inside an external text file faults.txt. On the first cycle, the injector tool takes
the first error in the list and inserts it into the network, reloads the same
individual we used before, and stores the corrupted output values. In this
moment of the process, both the original and the corrupted output are stored
and it is possible to extrapolate information by comparing them with each
other. Once all the necessary data has been collected, the tool corrects the
network, inserts the next fault in the list, generates and stores by overwriting
the old corrupted output with the new one, and collects information again
by comparing it with the non-corrupted one. This loop repeats until all
the faults in the list have been used. It is important to underline that the
experiment is focused on understanding how the network behaves with the
injection of a single fault and not a hypothetical accumulation of these. The
summary of this flow can be seen in figure 2.3.
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Figure 2.3: Images processing and fault injection loop
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2.1.3 Fitness

At the end of the flow, outside the loop, there is the calculation of the fitness,
the value that describes the differences between the outputs, it represents the
quality and performance of each individual. The type of evaluation chosen is
based on the assignment of higher values to individuals who perform better,
the function used for the calculation is:

fitness =
Observed faults

Total Injected Faults
(2.1)

The ratio between the observed faults and the total number of injected
faults, the higher this value is, the more the individuals generated will be
able to identify and unmask the injected faults. The observed faults are
calculated when the 2 collected outputs are compared, the original one and
the corrupted one, if they are different a counter takes note and signals the
fault. Instead, if there is no difference between the two, it means that the
fault is masked and the individual has failed to unmask it. Therefore fitness
always has a value between the 2 limit cases, 0 and 1, the first when the
evaluator has not been able to recognize any faults in the individual, and
the second when it has identified them all. The information collected as
explained in 2.1.2 can be of 2 types based on the experiment to be carried
out:

1. Logit observation: A more expensive approach where the data is
represented by all the information within the output.

2. Max-Logit observation: A cheaper approach is to use only, one per
image in the batch, stored value to make a comparison between the
outputs, the highest of all 10 of the vector score.

Once the fitness of the individual has been collected, the software’s task
is to load the next individual in the population into the evaluator and repeat
all the previous steps. When all the individuals have been evaluated, the
evolutionary algorithm uses all the collected fitness scores to generate the
next generation. The higher the score, the more likely it is that the cor-
responding individual will be selected for reproduction. In conclusion, this
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process described has the final objective of generating new images that are
increasingly capable of showing faults, in particular, to increase sensitivity to
masked ones; the criteria for interrupting the simulation are better described
in the next chapter. Here ends the explanation regarding the concrete ap-
proach that has defined this thesis, now the next chapter focuses on the
precise definition and description of all the components discussed so far.

Figure 2.4: Proposed approach representation
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Chapter 3

Work environment

The purpose of this chapter is to go into more detail about each component of
the working environment, there are step-by-step descriptions of each element
within the software with associated reasons and problems.

3.1 Evolutionary algorithm setup

The first step is to compile the µGP settings files, which are three, as ex-
plained in 1.2.3. These files are important because they affect all the param-
eters of the populations and generations, they must be chosen carefully to
obtain the best possible result. The three files are all scripts in XML and
differ in the area and level of the software they modify.

3.1.1 µGP settings

The setting.ugp3.xml file is the one with the fewest options directly related
to the evolutionary algorithm, in this case, it contains the name of the gen-
erated population P1, the reference file population.settings.xml and also a
reference to the statistics.csv file which stores data on fitness and generations.
There is also a section on recovery options, which allows an experiment to
be interrupted and restarted via the status.xml file, which contains essential
information about the populations.
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1 <?xml version=” 1 .0 ” encoding=”utf−8” ?>
2 <s e t t i n g s>
3 <context name=” evo lu t i on ”>
4 <opt ion name=”randomSeed” value=”0” />
5 <opt ion name =” popu lat ions ”>
6 <populat ion name=”P1” value=” populat ion . s e t t i n g s . xml” />
7 </ opt ion>
8 <opt ion name=” stat i s t i c sPathName ” value=” s t a t i s t i c s . csv ” />
9 </ context>

10 <context name=” recovery ”>
11 <opt ion name=” recoveryOutput ” value=” s ta tu s . xml” />
12 <opt ion name=” recoveryOverwriteOutput ” value=” true ” />
13 <opt ion name=” recove ryDi s ca rdF i tne s s ” value=” true ” />
14 </ context>
15 <context name=” logg ing ”>
16 <opt ion name=” s t d : : c o u t ” value=” i n f o ; b r i e f ” />
17 <opt ion name=”debug . l og ” value=”debug ; b r i e f ” />
18 </ context>
19 </ s e t t i n g s>

Listing 3.1: ugp3.settings.xml code

3.1.2 Constraints settings

The 2.1.1 section indicates that the output of the evolutionary algorithm will
be text files representing batches of images, the rules for generating which
are defined in the constraints.xml script. The purpose of this element is to
introduce a suitable structure for the generation of 32x32 RGB images such
as those of Cifar-10. The image batches of the dataset have a well-defined
binary structure and it is necessary to reproduce it correctly. It is made up of
3073 bytes for images, of which the first byte represents a number between 0
and 9, i.e. the label to which the image is assigned, then the remaining 3072
bytes are the color channels of the pixels, 1024 bytes each for red, green and
blue. For example, in the Cifar-10 database, there are five training batches,
each one with 10000 images, but in the case of the thesis, there are much
fewer to make the process manageable and functional. The idea is to create
a text file with the same format, where the colors of the pixels represented
by a byte are described by a number between 0 and 255, all non-negative
integers being describable with 8 bits.

1 <1 x l a b e l><3072 x p i x e l>
2 . . .
3 <1 x l a b e l><3072 x p i x e l>
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Figure 3.1: 8-bit representation [3]

The structure of constraints has already been briefly explained in 1.2.3.
The code 3.2 defines a type called ”byte type”, when this term is invoked
within a macro, a number with the characteristics listed above is inserted.
The script is composed of a main section called ”byte string”, which repre-
sents the generated image, with the parameters ”maxOccurs” and ”minOc-
curs” it is possible to decide how many times to repeat the sequence of 3073
numbers that define the image. Further down there is a sub-section called
”main” which contains a prologue and an epilogue. In the former, the image
label is printed, in the latter, all the macros that represent the colors are
declared. In line 36 we see how the expression <expression>, which is the
command capable of printing on the file, contains all the 3072 macros linked
to the ”byte type” definition in the <parameters> section immediately fol-
lowing it. Thanks to this code, µGP will never be able to generate images
with characteristics other than those desired; it also allows the modification
and mutation of each of the macros in the reproduction process and the use
of genetic operators.

1 <?xml version=” 1 .0 ” encoding=”utf−8”?>
2 <?xml−s t y l e s h e e t type=” text / x s l ”
3 h r e f=” ht tp : //www. cad . p o l i t o . i t /ugp3/ trans forms / c on s t r a i n t s S c r i p t e d . x s l t ”?>
4 <c on s t r a i n t s
5 xmlns=” ht tp : //www. cad . p o l i t o . i t /ugp3/schemas/ c on s t r a i n t s ”
6 id=”One−Max” xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”
7 xs i : s chemaLocat ion=” ht tp : //www. cad . p o l i t o . i t /ugp3/schemas/ c on s t r a i n t s
8
9 h t tp : //www. cad . p o l i t o . i t /ugp3/schemas/ c on s t r a i n t s . xsd”>

10
11 <t yp eDe f i n i t i o n s>
12 <item name=”byte type ” type=” i n t e g e r ” minimum=”0” maximum=”255” />
13 </ typeDe f i n i t i o n s>
14
15 <commentFormat><value /></commentFormat>
16 <i d en t i f i e rFo rmat>n<value /></ id en t i f i e rFo rmat>
17 <labelFormat><value /> : </ labelFormat>
18 <uniqueTagFormat><value /></uniqueTagFormat>
19 <pro logue id=” g loba lPro logue ”/>
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20 <ep i l ogue id=” g loba lEp i l ogue ”/>
21 <s e c t i o n s>
22 <s e c t i o n id=” byteSt r ing ” prologueEpilogueCompulsory=” true ” maxOccurs=”1” minOccurs=”1” maxReferences=”1”>
23 <pro logue id=” sec t i onPro l ogue ”/>
24 <ep i l ogue id=” se c t i onEp i l ogue ”/>
25 <subSect ions>
26 <subSect ion id=”main” maxOccurs=”1” minOccurs=”1” maxReferences=”1”>
27 <pro logue id=” s t r ingPro l ogue ”>
28 <exp r e s s i on><param r e f=”byte ”/> </ expr e s s i on>
29 <parameters>
30 <item name= ”byte ” type=” i n t e g e r ” minimum=”0” maximum=”9” />
31 </parameters>
32 </ pro logue>
33 <ep i l ogue id=” s t r i ngEp i l ogue ”/>
34 <macros maxOccurs=”1” minOccurs=”1” averageOccurs=”1” sigma=”0”>
35 <macro id=” byteSt r ing ”>
36 <exp r e s s i on><param r e f=”byte1”/> <param r e f=”byte2”/> . . . <param r e f=”byte3072”/>

</ expr e s s i on>
37 <parameters>
38 <item type=”definedType ” r e f=” byte type ” name=”byte1” />
39 <item type=”definedType ” r e f=” byte type ” name=”byte2” />
40 . . .
41 . . .
42 <item type=”definedType ” r e f=” byte type ” name=”byte3072” />
43 </parameters>
44 </macro>
45 </macros>
46 </ subSect ion>
47 </ subSect ions>
48 </ s e c t i o n>
49 </ s e c t i o n s>
50 </ c on s t r a i n t s>
51 </ c on s t r a i n t s>

Listing 3.2: constraints.xml code

3.1.3 Population settings

The next and final file is the population.settings.xml, which contains all
the population parameters. The most important ones concern the size, the
way, and the number of modifications applied to each generation and the
conditions of interruption of the experiment, they are very easy to visualize
in the code population.settings.xml code. The values concerning the
size of the population were decided after numerous experiments, the criteria
used for the choice were mainly related to the general computational cost of
the process, instead the most important decisions were related to the genetic
operators. 3 genetic operators are used:

• AlterationMutation

• OnePoinCrossover

• TwoPoinCrossover
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The first can change the value of the macros to introduce differentiation
between populations, the second and third are quite similar, they cut slices
of values between individuals in the same position and of the same size to
mix them and produce children with cross-genetic inheritance. Numerous
macros are applied to the generated files, printing thousands of numbers, so
the choice of these 3 operators is important, they can work with individuals
with high genetic content and mix them efficiently.

1 <?xml version=” 1 .0 ” encoding=”utf−8” ?>
2 <parameters type=”enhanced”>
3
4 < !−− BASIC POPULATION PARAMETERS −−>
5 < !−− the i n i t i a l s i z e of the populat ion −−>
6 <nu value=”10”/>
7 < !−− the maximum s i z e of the populat ion −−>
8 <mu value=”10”/>
9 < !−− the numbers of gene t i c operators app l ied at every s tep of the evo lu t ion −−>

10 <lambda value=”15”/>
11 < !−− the i n e r t i a for the s e l f −adaptat ing parameters [ 0 ,1 ] −−>
12 < i n e r t i a value=” 0 .9 ”/>
13 < !−− the number of dimensions of the f i t n e s s −−>
14 <f i t n e s sPa ramete r s value=”1”/>
15 < !−− the s t reng th of the mutation operators (0 ,1) −−>
16 <sigma value=” 0 .9 ”/>
17 <c l oneSca l i ngFac to r value=”0”/>
18 <maximumTime hours=”74”/>
19 <maximumAge value=”10”/>
20 <maximumEvaluations value=”1000000”/>
21 <maximumFitness value=”1”/>
22 <maximumSteadyStateGenerations value=”100”/>
23 <i nva l i da t eF i tn e s sA f t e rGene ra t i on value=”0”/>
24 < !−− parents s e l e c t o r parameters −−>
25 <s e l e c t i o n type=” tournamentWithFitnessHole ” tau=”2” tauMin=”1” tauMax=”4” f i t n e s sHo l e=”0”/>
26 < !−− the d e f i n i t i on of the cons t ra in t s of the problem −−>
27 <c on s t r a i n t s value=” con s t r a i n t s . xml”/>
28 < !−− eva luator parameters −−>
29 <eva lua t i on>
30 <concurrentEva luat ions value=”1” />
31 <removeTempFiles va lue=” true ” />
32 <evaluatorPathName value=”python3 batch eva luato r . py” />
33 <evaluatorInputPathName value=” i nd i v i d u a l %s . in ” />
34 <evaluatorOutputPathName value=” f i t n e s s . out” />
35 </ eva lua t i on>
36
37 < !−− operator s t a t i s t i c s −−>
38 <ope ra to r s default=”none”>
39 <operator r e f=” a l t e ra t i onMutat i on ”/>
40 <operator r e f=” twoPointCrossover ”/>
41 <operator r e f=” onePointCrossover ”/>
42 </ ope ra to r s>
43 </parameters>

Listing 3.3: population.settings.xml code

Once the software has been started, thanks to these 3 scripts, the algo-
rithm can create the first population with its individuals; once this step has
been completed, it will come into contact with the evaluator. µGP, once the
population is finished, does not immediately create all the files containing
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the values of all the individuals to be given to the evaluator, but it prints
the first one together with another file called ”individuals to evaluate” in
which the name of the file is present. The second individual and its name
are only overwritten when the fitness of the first individual is delivered. This
cycle continues until all individuals have gone through the evaluator and all
fitness reports have been collected. The fitnesses are analyzed, the genetic
operators are applied and the new population is born to which the same pro-
cess is applied, this is the role of the evolutionary algorithm. The conditions
for stopping the experiments vary according to the objective to be achieved,
it can be linked to performance or time, but these criteria are discussed in
the chapter 4 where the experiments performed are described and the data
collected.

3.2 Evaluator

3.2.1 1st block: image conversion

The evaluator collects the individuals, i.e. the sequence of numbers generated
by µGP, the general task is the one explained in 2, converts the individual
images, and evaluates the outputs of the CNNs. In the beginning, the nu-
merical values must be transformed into images of the format [x, 3, 32, 32],
where x is the number of images in the individual.

Figure 3.2: Individual.txt file
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An example of an individual’s text file is shown in figure 3.2, the color
values are extracted from the text and converted to a NumPy vector.

individual_list = open(’individualsToEvaluate.txt’, ’r’)

individual_name = individual_list.readline().split()

numbers = []

with open(individual_name[0], "r") as numbers_file:

for line in numbers_file:

data.extend(int(x) for x in line.strip().split(

The values are converted one by one into the vector called ”data”, with
this element it is now possible to transform the data and extract the colors
of the different images. First, the data is decomposed and reassembled to
obtain a matrix [n. of images, 3073], then the 3 channels can be isolated to
obtain the actual images.

with open(batch_path, ’rb’) as f:

data = np.fromfile(f, dtype=np.uint8)

# Reshape the data into (num_images, 3073) and split it into labels and pixels

num_images = len(data) // 3073

data = data.reshape(num_images, 3073)

labels = data[:, 0]

pixels = data[:, 1:]

# Reshape the pixel data into (num_images, 3, 32, 32) format

red_channel = pixels[:, :1024].reshape(num_images, 32, 32)

print(red_channel)

green_channel = pixels[:, 1024:2048].reshape(num_images, 32, 32)

blue_channel = pixels[:, 2048:].reshape(num_images, 32, 32)

images = np.stack([red_channel, green_channel, blue_channel], axis=1)

images = np.transpose(images, (0, 2, 3, 1))
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Figure 3.3: 32x32 RGB generated image

The result is a batch of images like the one in figure 3.3, which are not
yet ready to use because they need to be transformed into PyTorch tensors
to be uploaded to the network. PyTorch is an open-source machine learning
library that is widely used for deep learning tasks. It provides a high-level
interface, known as torch.nn, which offers a wide range of pre-built functions
and classes for building neural networks, and is a popular choice among
researchers and practitioners in the field of artificial intelligence.

transforms_list = [transforms.ToTensor()]

transform = transforms.Compose(transforms_list)

pil_images = [Image.fromarray(img) for img in images]

tensor_images = torch.stack([transform(img) for img in pil_images])

3.2.2 2nd block: fault injection loop and data storage

To proceed with the experiment, it is necessary to decide which type of fault
to inject and where. The idea is to simulate bit-flips on the weights of the
CNN caused by malfunctions of the hardware on which it is installed. To
be precise, not all bit-flips are interesting, only those that are difficult to
visualize, those that don’t change the weights very much, and those that are
more susceptible to masking. The image 3.4 shows the 32-bit structure of
each weight inside the mesh, the format is the single precision floating point
format. The formula to calculate which value it represents is

value = (−1)b31 × 2(b30b29...b23)2−127 × (1.b22b21 . . . b0)2
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Figure 3.4: 32-bit floating-point structure [27]

The first bit is the sign, the next 8 bits are the exponent, and the last 23
are the mantissa. The most interesting bit flips for the thesis tasks are those
on the mantissa, because these values, if modified, slightly distort the weight
value, which leads to difficult fault propagation, in fact, the experiments will
be done on a pool of faults distributed over it. Furthermore, the faults are
all injected into the first layer of all the CNNs tested. Understanding error
propagation is one of the most important things, the goal and the main focus
of the thesis can be summarised exactly in trying to move the observability
from the first layer to the last one.

Figure 3.5: First layer fault injection
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To proceed with the evaluation process, before fault injection is activated,
the model of the CNN to be used must be activated and a ”state dict” of it
created, a Python dictionary object that maps each parameter. ”state dict”
is used throughout the process as a checkpoint for saving and loading model
data, an uncorrupted copy of the CNN is immediately made, and network
outputs are collected.

# Load the ResNet model

model = resnet18(pretrained=True)

# Set the model to evaluation mode

model.eval()

# Get the state dictionary of the model

state_dict = model.state_dict()

# Pass the images through the model

Vector_score = model(tensor_images)

Now the fault list ”faults.txt” has to be opened and each error has to
be injected one by one. For practical reasons, an external customized error
generator has been realized for the experiment:

import random

rows = set()

while len(rows) < 1000:

a = random.randint(10,32)

b = random.randint(0, 63)

c = random.randint(0, 2)

d = random.randint(0, 2)

e = random.randint(0, 2)

row = f"{a} [{b},{c},{d},{e}] conv1\n"

rows.add(row)

with open("faults.txt", "w") as f:

f.writelines(rows)
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The format in which the code generates the faults.txt output file is made
up of 3 elements for each line, each of which describes the characteristics and
the location where the fault is injected. The first element is the bit of the
mantissa that is modified, the distribution as previously explained is prac-
ticed randomly with the last 23 bits. The second element is the coordinate
of the weight inside the layer, stored in ”state dict”, the third is the name of
the first layer of the CNN being worked on. The formats and names of the
first layers of the 3 neural networks used can be found in the table 3.1.

Table 3.1: Neural Networks First Layer Format

Model first layer name f.l. format
ResNet18 conv1.weights [64, 3, 3, 3]
ResNet34 conv1.weights [64, 3, 3, 3]

Densenet161 features.conv0.weights [64, 3, 3, 3]

Each line of the printed file is a fault that is fed into the CNN, each
randomly generated and different from the others. An example of how a
fault list might be presented in a ResNet-18 might be:

14 [56,0,2,1] conv1

15 [44,1,2,1] conv1

27 [42,1,1,0] conv1

14 [51,1,2,2] conv1

...

Each of these faults is entered one by one by reading the file line by line,
and it is also necessary to introduce a counter to note the number of times a
fault is injected into the loop, which is essential for calculating fitness.

# open the file

with open(’errors.txt’, ’r’) as f:

# read each line in the file

for line in f:

num_faults += 1

...
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Inside the loop, the 3 elements are divided and saved for use.

# extract the first, second, and third terms

bitflip_pos = int(parts[0])

coordinated = parts[1]

Layer = parts[2]

Now it is necessary to take advantage of ’state dict’ again, to enter it
and extrapolate the weight given in the coordinate. The weight is not stored
in binary form, but in decimal form, so a conversion is required to inject
the fault. When the binary value is changed from 0 to 1 or vice versa, it is
converted back to decimal and printed on the previous state dict coordinate,
replacing the old weight with the faulty one. Once the modified state dict
has been loaded into the model, the faulty output can be collected and the
bit-flip can be corrected so as not to accumulate faults for the next cycle.

# use these terms to access the corresponding value in the state_dict

value = state_dict[f’{Layer}.weight’][tuple(map(int, coordinated.strip(’[]’)

.split(’,’)))].item()

# convert the float to binary representation

binary = bin(struct.unpack(’!I’, struct.pack(’!f’, value))[0])[2:].zfill(32)

# simulate a bit flip

bit_to_flip = bitflip_pos - 1

flipped_binary = binary[:bit_to_flip] + str(int(not int(binary[bit_to_flip])))

+ binary[bit_to_flip + 1:]

# convert the flipped binary back to a float

flipped_f = struct.unpack(’!f’, struct.pack(’!I’, int(flipped_binary, 2)))[0]

# modify the state_dict of the model and load it

state_dict[f’{Layer}.weight’][tuple(map(int, coordinated.strip(’[]’)

.split(’,’)))] = flipped_f

model.load_state_dict(state_dict)

# Pass the images through the model
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Corrupted_vector_score = model(tensor_images)

# restore the injection

state_dict[f’{Layer}.weight’][tuple(map(int, coordinated.strip(’[]’)

.split(’,’)))] = value

model.load_state_dict(state_dict)

Now both the uncorrupted and corrupted output are stored in the vari-
ables ’Vector score’ and ’Corrupted vector score’ so that the necessary data
can be collected. The comparison methods as described in 2.1.3 are two,
the first, the ”logit observation” check if the 10 output values of all images
are equal with a decimal digits of precision of 7.22, in case even one value is
different a counter signals that the injected fault has been detected.

# compare the 2 vectors’ score

for i in range(Vector_score.shape[0]):

if not torch.equal(Vector_score, Corrupted_vector_score):

critical_faults += 1

The second method of comparison does not compare all 10 values of each
image in the individual, but selects only one per image, the highest one,
to be able to test and analyze results with another method with a lower
computational cost.

# compare the 2 vectors score

for i in range(Vector_score.shape[0]):

max_values = torch.max(Vector_score, dim=0)

max_values2 = torch.max(Corrupted_vector_score, dim=0)

if max_values == max_values2:

critical_faults += 1

At this point, the for loop moves on to the next line and repeats all the
steps described concludes the faults to be injected, closes the errors.txt file,
and calculates the fitness from all the information collected. One has to
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pay attention to the fact that the critical faults are injected into each of the
individual’s images and the comparison is made on all images together, so
the total faults are only those within the list, and should not be multiplied
by the number of images within each individual.

injected_faults = num_faults

fitness = critical_faults / injected_faults

Fitness is calculated, so now it only remains to create the output file to
send to the evolutionary algorithm.

# Generate fitness.out file

output_ugp3 = open("fitness.out", "w+")

output_ugp3.write(str(fitness))

output_ugp3.close()

With these last lines, the code of the evaluator ends, and fitness data were
collected by µGP. Another individual from the population is loaded, to which
the same transformation processes are applied again, and the same faults as
the previous individual are injected, with the same bit-flip and the same
coordinate. Once all the individuals have been evaluated and all the fitness
values have been collected by the algorithm, the new population is generated
to start a new cycle of evaluations. In the next chapter, it will be shown how
this simulation environment was used and what data was collected during
the experiments.
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Chapter 4

Results

This chapter has the task of explaining the last chosen setups about the
application of the µGP evolutionary algorithm and the faults injector, and the
results obtained from the generation of ITLs to increase the observability of
the faults at the output of the networks. the type of experiments carried out
are two, those already discussed in 2.1.3, each on a different network among
the three chosen, ResNet-18, ResNet-34, and DenseNet161. The mentioned
networks have been trained and tested with CIFAR-10 [1]. The author [9]
by changing the number of classes, the size of the filters, the stride, and the
padding figure, modified the versions of the networks implemented in the
official version of PyTorch. The changes applied made it possible to adapt
the networks to the images of the CIFAR-10 data set, with which they were
then trained and tested. In table 4.1 is possible to check the accuracy rate
and the number of parameters of the three networks.
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Table 4.1: Neural Network details

Model Accuracy No. Params
ResNet18 93.07 2 11.174 M
ResNet34 93.34 21.282 M

Densenet161 91.07 8 26.483 M

Furthermore, it is important to emphasize a feature of these experiments
that concerns observability at the network output. The values to be observed
are usually normalized through the SoftMax function, which transforms the
output vector into a probability vector, but in the case of the framework
used, PyTorch, this does not happen unless applied by the user. All the
analyses and data collected do not make use of the SoftMax function, the
motive being due to its non-linear characteristics, which introduce a loss of
information when a fault is injected and consequently lower its observability.

To enable a direct and functional comparison of the application of the
evolutionary algorithm and the different networks, all experiments were per-
formed by setting certain parameters, such as genetic and population size.
these parameters were chosen after numerous experiments aimed at balanc-
ing the parameters, the goal was to obtain the right balance between results
and computational cost. Also, the amount of execution time is equal between
all networks in the 2 experiments. The Logit experiment lasts 3 days, while
the Max-Logit experiment lasts 24 hours.

4.1 Experimental Results

In the 4.2 and 4.3 tables it is possible to check all the parameters fixed during
the experiments. For each generation, a population of 10 individuals each
represented by an image is evaluated and 15 genetic operators among the
three listed in 3.1.3 are applied. Furthermore, it is important to empha-
size that all network analyses were made using the first 20 generations as
a reference, the reason being to make not only a temporal but above all a
generational comparison.
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Table 4.2: Population settings table

Population settings:
Initial size of the population = 10

Maximum size of the population = 10
Genetic operators applied at every step of the evolution = 15

Inertia for the self-adapting parameters = 0.9

Table 4.3: Detail about µGP and evaluator settings and generations

Networks Observed Time Injected Generations
element [h] faults

ResNet-18 Logit 72 657 41
ResNet-32 Logit 72 657 22

DenseNet-161 Logit 72 662 20
ResNet-18 Max-Logit 24 657 30
ResNet-32 Max-Logit 24 657 23

DenseNet-161 Max-Logit 24 662 19

The results of the final experiments are shown in figures 4.1 and 4.2.
For both experiments, the x-axis describes the number of generations, while
the y-axis describes the fitness percentage rate. In the figure, the fitness is
expressed as described in 2.1.3 and the results are representative of the trend
of the best score of the images in all the generated populations.
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Figure 4.1: Logit experiment results

Figure 4.2: Max-Logit experiment results
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Figure 4.1 shows how the various image populations increased the ratio
of observable faults at the network output in the first experiment. The
results show that in all 3 networks, there is an increase. The first completely
randomly generated images of generation 0 are able to detect between 57%
and 62% injected errors in all 3 networks. During the 20 generations, there
is a modest but significant increase in fitness, which increases by at least
10 percentage points in all networks. It is interesting to note that at certain
times, for several generations, fitness has great difficulty in increasing, such as
between generation 0 and 10 in DenseNet-161, or as the ResNet-34 between
generation 7 and 15. It is intuitive to think that during those generations
µGP continues to insert genetic operators, without being able to find the
right strategy to increase fitness. This fact, in addition to the generally
increasing trend of observable faults, suggests that a larger population, the
inclusion of more genetic operators, and a longer duration of the experiment
can lead to ever greater improvements.

Figure 4.2 shows the data collected from the second experiment, the one
on the Max-logit. The first noticeable thing is the sudden increase in fitness
compared to the first experiment, especially in the case of the ResNet-18 net-
work, where there is even a 25% improvement over the 20 generations. Only
the DenseNet-161 struggles to scale up, reaching the maximum of 50% total
fault coverage. Here too it is clear that using other parameters at the cost
of a computational request and more time can lead to further improvement.

If the 2 experiments are compared, it is immediate to think that the
second one does not meet the minimum fault observability requirements, the
best result is a 65% of the ResNet-18, much lower than the corresponding
one in the first experiment. However it is necessary to underline that 65%
of identified faults are higher than that of all randomly generated images
(generation 0) by observing the entire Logit, furthermore, the execution time
linked to the increase in fitness is representative of 24 hours, a third compared
with the best results. In the 4.4 table it is possible to check the data relating
to the first and last fitness achieved by both experiments with the actual
improvement.
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Table 4.4: Experiments fitness details

Networks Observed First Last improvement
element fitness fitness

ResNet-18 Logit 61% 78% 17%
ResNet-32 Logit 60% 77% 17%

DenseNet-161 Logit 58% 76% 18%
ResNet-18 Max-Logit 41% 64% 20%
ResNet-32 Max-Logit 44% 61% 17%

DenseNet-161 Max-Logit 37% 50% 13%
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Chapter 5

Conclusions

This thesis describes a different methodology to generate and produce Input
Test Images (ITL) to stimulate the observability of faults injected into the
output of the neural networks such as those mentioned in the article [11]. The
approach is based on the automatic generation of images by means of an evo-
lutionary algorithm capable of finding optimal or suboptimal solutions. The
search for new safety strategies using neural networks is constantly evolving.
With the arrival of numerous companies and realities that are integrating
these new technologies, the old methodologies and approaches are no longer
sufficient to guarantee the standards required today. The evolutionary al-
gorithm, used to generate 8-bit RGB images, is µGP, a very versatile tool
capable of achieving numerous objectives thanks to its structure. The neural
networks used for testing are of the convolutional type, networks that are very
adept at image recognition due to their ability to encode image-specific fea-
tures in their architecture. The injected faults simulate permanent hardware
faults in order to create a virtual working environment capable of achieving
fast, reliable, and inexpensive results. The faults induced are of the bit-flip
type and change the values of the network weights. The aim is to amplify
the effect of these faults by attempting to increase the observability at the
output of the networks, thereby reducing the natural masking characteristic.
All the test structure has been implemented, experiments have been done,
and data have been collected to understand whether the proposal is func-
tional for the problem. Experimental results show that in all cases there was
always an improvement in observability on the output of the networks. In
particular, the improvements in max-logit, which show increases of several
percentage points over the use of randomly generated test images, support
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this thesis. In conclusion, the data collected shows that this methodology is
functional for the main objective on which this thesis is based. In addition,
numerous improvements can be made, both in the evolutionary algorithm
and in a more careful selection and analysis of the injected faults. A great
advantage of the project is that it can be reproduced on any CNN with the
right setup, and in addition, an attempt can be made to extend the proposed
approach to other types of networks. In the future, more powerful analyses
can be carried out, along with other possible improvements. In addition,
more specific studies can be carried out on the characteristics and effects of
bit flips, with particular attention to their location and distribution.
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[2] Thomas Bäck and Hans-Paul Schwefel. “An overview of evolutionary
algorithms for parameter optimization”. In: Evolutionary computation
1.1 (1993), pp. 1–23.

[3] Giuseppe Carichino. BIT E BYTE. url: https://www.youmath.it/
domande-a-risposte/view/6866-bit-byte.html.

[4] IBM. Cosa sono le reti neurali? url: https://www.ibm.com/it-
it/topics/neural-networks.

[5] Michael I Jordan and Tom M Mitchell. “Machine learning: Trends,
perspectives, and prospects”. In: Science 349.6245 (2015), pp. 255–
260.

[6] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”.
In: nature 521.7553 (2015), pp. 436–444.

[7] Guanpeng Li et al. “Understanding error propagation in deep learning
neural network (DNN) accelerators and applications”. In: Proceedings
of the International Conference for High Performance Computing, Net-
working, Storage and Analysis. 2017, pp. 1–12.

[8] Gary Marcus. “Deep learning: A critical appraisal”. In: arXiv preprint
arXiv:1801.00631 (2018).

[9] Huy Phan. PyTorch models trained on CIFAR-10 dataset. url: https:
//github.com/huyvnphan/PyTorch_CIFAR10.

[10] Annachiara Ruospo et al. “A survey on deep learning resilience assess-
ment methodologies”. In: Computer 56.2 (2023), pp. 57–66.

50



[11] Annachiara Ruospo et al. “Image Test Libraries for the on-line self-test
of functional units in GPUs running CNNs”. In: 28th IEEE European
Test Symposium 2023. IEEE. 2023.

[12] Annachiara Ruospo et al. “Pros and Cons of Fault Injection Approaches
for the Reliability Assessment of Deep Neural Networks”. In: 2021
IEEE 22nd Latin American Test Symposium (LATS). 2021, pp. 1–5.
doi: 10.1109/LATS53581.2021.9651807.

[13] Amazon Web Services. What Is A Neural Network? url: https://
aws.amazon.com/what-is/neural-network/.

[14] Giovanni Squillero. Main Settings. url: https://sourceforge.net/
p/ugp3/wiki/Main%20Settings/.

[15] Giovanni Squillero. Natural and Artificial Evolution. url: https://
sourceforge.net/p/ugp3/wiki/EAs/.

[16] Giovanni Squillero. Population’s Constraints. url: https://sourceforge.
net/p/ugp3/wiki/Population%5C%20Constraints/.

[17] Giovanni Squillero. µGP (MicroGP). url: https://sourceforge.
net/p/ugp3/wiki/MicroGP/.

[18] International Organization for Standardization (ISO). 26262:Road ve-
hicles - Functional safety. url: https://www.iso.org/standard/
68383.html.

[19] Vivienne Sze et al. “Efficient processing of deep neural networks: A tu-
torial and survey”. In: Proceedings of the IEEE 105.12 (2017), pp. 2295–
2329.

[20] Alberto Tonda. A brief summary of µGP’s structure. url: https://
sourceforge.net/p/ugp3/wiki/Structure%5C%20Summary/.

[21] Alberto Tonda. Genetic operators. url: https://sourceforge.net/
p/ugp3/wiki/Genetic%5C%20operators/.

[22] Alberto Tonda. The Evolutionary Core. url: https://sourceforge.
net/p/ugp3/wiki/Core/.

[23] Alberto Tonda and Giovanni Squillero.Macros. url: https://sourceforge.
net/p/ugp3/wiki/Macro/.

[24] Alberto Tonda and Giovanni Squillero. Population’s Settings. url: https:
//sourceforge.net/p/ugp3/wiki/Population%5C%20Settings/.

51



[25] Cesar Torres-Huitzil and Bernard Girau. “Fault and error tolerance
in neural networks: A review”. In: IEEE Access 5 (2017), pp. 17322–
17341.

[26] SAS Viya. Artificial Neural Networks What they are why they matter.
url: https://www.sas.com/en_us/insights/analytics/neural-
networks.html#technical.

[27] Wikipedia. Single-precision floating-point format. url: https://en.
wikipedia.org/wiki/Single-precision_floating-point_format.

52


