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Abstract

Fully autonomous nano-scale unmanned aerial vehicles (UAVs) represent a
specific category of UAVs characterized by dimensions below 10 centimeters
and weighing only a few grams. They enable new AI-enhanced smart applica-
tions within the Internet of Things (IoT) domain. These UAVs leverage their
exceptional speed and maneuverability to rapidly collect data from onboard
sensors and devices in the surrounding environment. Due to their tiny form
factor and compact size, they are particularly suitable for indoor applications
that require safe navigation close to humans. These applications encompass
surveillance, monitoring, ambient awareness, and interaction with smart en-
vironments. Recent research shows that deploying AI models in nano-drone
systems with onboard computations offers several advantages, including re-
duced operational costs, minimized inference latency for real-time scenarios,
and enhanced data security and privacy. However, these small devices face
significant constraints in terms of memory and computational resources.

The concept of adaptive inference, which forms the foundation of dy-
namic networks, has emerged as one of the most attractive research topics
over the past years. These networks dynamically adjust their structures and
parameters during inference, providing several advantages over static mod-
els. These advantages include efficient computational resource allocation by
selectively activating network components based on input, improved repre-
sentation power through data-dependent network architecture or parameters,
and addressing the trade-off between accuracy and efficiency when dealing
with varying computational budgets.

The objective of this thesis is to apply adaptive inference techniques to
construct networks for estimating and maintaining the relative 3D pose of a
nano-UAV with respect to a moving person in the environment. The task
requires mapping a low-resolution image to the relative pose of the subject,
consisting of 3D coordinates (X, Y, Z), and a rotation angle (ϕ) with respect
to the gravity Z-axis. Given the requirement for real-time performance under
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strict constraints on computational power and latency, we propose an input-
dependent adaptive inference methodology based on the Big/Little model
approach. This approach is based on constructing a network of two models,
a big accurate model, and a more efficient but less accurate little model, and
utilizing a decision function to control the execution of the two models, with
the goal of reducing the execution of the big model. By utilizing pre-trained
models optimized for the task, our methodology aims to minimize computa-
tional cost and inference latency with minimal changes in network regression
performance. Our approach has yielded promising results, achieving a reduc-
tion of ≈ 0.015 in Mean Absolute Error (MAEsum), along with reductions
of around 25% and 29% in inference cycles and NMACs, respectively, by
executing the big model only 40% of the time. To further demonstrate the
effectiveness of our method, we designed an output decision metric replicat-
ing the original Big/Little model approach and showcased our input decision
function. We constructed three networks to test each methodology, fixing
one big model and alternating the Little model.

Our experimental results show the superiority of our input decision func-
tion on MSE compared to randomly selecting the big or little model to be
solely executed. It accurately distinguishes between hard and easy sam-
ples, assigning them to the big and little models, respectively, with minimal
overhead in computing the decision metric. Furthermore, it addressed the
limitations of the original Big/Little approach, which involved the default
execution of the little model, leading to increased latency and computational
cost.

The proposed method demonstrates great potential in terms of generality
and flexibility, allowing for a controlled trade-off between network regression
performance, inference latency, and computational cost by selecting suitable
thresholds and models based on application needs and target devices. By
building a network with a fast lightweight little model, we have successfully
controlled the number of inference cycles to be below 2 million cycles, which
is ∼ 2× faster than executing the big model continuously (i.e. ≈ 3.7 million
cycles). The execution plan ranges from 10% to 50% utilization for the big
model, allowing for efficient resource allocation. Importantly, we observed a
minimal increase in MAEsum of 5% compared to the regression performance
of the static big model.
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Chapter 1

Introduction

Human-Drone-Interaction (HDI) is considered a new emerging subfield
of Human-robot-interaction with highly attractive research topics. On-
going research focuses on evaluating and developing new control modalities,
enhancing human-drone communication, evaluating interaction distance, and
exploring new use cases. Nano-drones, also known as nano-scaled unmanned
aerial vehicles (UAVs) [26], have emerged as a novel category of drones char-
acterized by their compact form-factor, measuring just a few cm2. These
drones have demonstrated remarkable speed and maneuverability while op-
erating on a low power budget. They possess the capability to swiftly gather
data from their onboard sensors as well as a diverse range of deployed de-
vices in the surrounding environment. The integration of advanced smart
sensors with AI technology on these versatile nano-drones has proven to be
highly suitable within the domain of the Internet of Things (IoT). Moreover,
their tiny size makes them exceptionally well-suited for indoor applications
that require safe navigation in close proximity to humans. Such applications
include surveillance, monitoring, ambient awareness, and interaction with
smart environments.

The deployment of AI models in Nano-Drones systems, with on-board
computations, offers several advantages, such as reduced operational costs by
avoiding data transmission to the cloud, which consumes significant power.
On-board computations also enhance data security and data privacy, and
most importantly, reduce inference latency, which is crucial for real-time sce-
narios. However, these advantages come with significant challenges that need
to be addressed. These challenges primarily arise from the severe constraints
on memory occupation (network size) and memory footprint (quantified as
computational cost in terms of NMACs) due to the limited availability of
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1 – Introduction

computational resources. Additionally, in real-time scenarios, the constraint
on inference latency necessitates minimizing the time required for dynamic
trajectory selection and detection of potential obstacles to prevent collisions.

The concept of adaptive inference has garnered substantial interest in the
field of deep learning. It serves as the fundamental principle behind dynamic
networks. Unlike static models, which rely on fixed computational graphs and
parameters during inference, dynamic networks have the capability to modify
their structures or parameters in response to input variations. This adapt-
ability yields numerous benefits, including enhanced accuracy, improved com-
putational efficiency, reduced inference latency, and increased adaptiveness.
Consequently, dynamic neural networks have emerged as a promising research
area within the field of deep learning.

Our work addresses a vision-based task that aims to predict the pose
estimation of a user using low-resolution images, enabling effective HDI. The
task, proposed by [26], is a multi-output regression problem that estimates
and maintains the relative 3D pose of a nano-UAV with respect to a moving
person in the environment. The objective is to map a low-resolution image
to the relative pose of the subject, represented as a 3D point in space (X, Y ,
Z), and a rotation angle with respect to the gravity Z-axis (ϕ).

The traditional approach to autonomous navigation, known as the localization-
mapping-planning cycle, is not always suitable for nano-drones operating in
crowded cities and dense indoor environments. In such areas, where drones
fly at low altitudes and GPS signals are often obstructed or weakened, the
traditional approach becomes inadequate, especially in real-time scenarios
requiring active exploration of unknown environments, collision avoidance,
and mapping. Moreover, this approach is computationally expensive for plat-
forms with limited computational resources, such as commercial nano-drones.
Although lighter algorithms based on convolutional neural networks (CNNs)
have been proposed for basic reactive navigation of small drones without
environment maps, their computational and power requirements still exceed
the severely limited resources of nano-drones.

Previous work, such as the Proximity NN [23], addresses the same task
of visual human pose estimation. The Proximity NN utilized the GPU of a
remote desktop computer in conjunction with a Parrot Bebop 2 quadrotor
drone flying near the user and streaming high-resolution (1920×1080 pix-
els) front-facing images to the remote computer. This allowed the model to
estimate the subject’s pose relative to the drone, determine the appropriate
control input, and send it back to the drone, achieving its control task of stay-
ing in front of the user. Building upon this, the authors of PULP-Frontnet
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1 – Introduction

[26] enhanced the work by running the models and computations entirely on
board a commercial nano-drone (Crazyflie 2.1). They achieved equivalent
drone behavior with significantly reduced computational cost and latency by
utilizing low-resolution grayscale images (up to 160×96×1 pixels).

Another approach to the same task was taken by [6], who applied a novel
NAS algorithm proposed by [30] to automatically discover multiple Pareto-
optimal convolutional neural networks (CNNs) specifically designed for visual
pose estimation. They enhanced the methodology and generated a range of
models with varying characteristics, including regression performance, model
size, number of multiply-accumulate (MAC) operations, and inference cycle.
Two seed CNNs, PULP-Frontnet [26] and MobileNetv1 [14], were used in the
process.

This thesis work extends the achievements made by PULP-Frontnet [26]
and [6], aiming to address the challenges associated with deploying AI mod-
els on nano-drones by exploring adaptive inference and dynamic network
approaches. Despite significant efforts dedicated to designing various types
of dynamic networks, current research does not cover all types of machine
learning tasks. To the best of our knowledge, all existing adaptive inference
approaches have primarily been developed and tailored for supervised clas-
sification or natural language processing tasks. Most techniques have been
tested on optimizing large CNN-based models or large RNN-based language
models [11]. However, it is not straightforward to adopt the same techniques
in regression tasks, where direct indicators of model confidence cannot be ex-
tracted using softmax probabilities, as in the case of supervised classification,
or dynamic hidden state updates using accumulated halting scores.

This thesis objective is centered around creating a comprehensive method-
ology that extends the concept of adaptive inference to multi-regression visual
pose estimation and can be applied to tiny models deployed on small-edge
devices. The aim is to effectively reduce latency and computational cost
while maintaining comparable regression performance. In our work, we con-
ducted two experiments. The primary approach involved adopting ConvNets
Adaptive Inference Graphs [41]. Although ConvNet-AIG was originally de-
signed for a classification task, we believe its applicability extends to our
scenario. It is a data-driven adaptive approach that does not rely on any
information derived from the output vector. The ConvNets are constructed
by building a high-level architecture similar to residual networks (ResNets
[12]), with a gating mechanism embedded within each ConvBlock, enabling
decisions on whether to execute the layer or not. Our main contribution, the
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1 – Introduction

second experiment, focused on implementing the Big/Little DNN models ap-
proach [27]. This methodology involves building a network consisting of two
models with distinct characteristics: a more efficient "little" model with low
latency and computation cost but lower accuracy, and a "big" model that
offers high accuracy but is computationally demanding with a longer infer-
ence cycle. A Decision Function is employed to determine when to execute
the larger model. However, since this approach is not directly applicable to
our case, we proposed two alternative methodologies: an input decision func-
tion based solely on the input inference samples, computed prior to invoking
the models, and an output decision function based on the predictions of the
Little model. We constructed several networks utilizing pre-trained models
that were specifically optimized for the target task using Neural Architec-
ture Search (NAS) [6]. We selected two models based on the MobileNetV1
architecture [14], namely Msmall1.0 and Msmall0.25, with width multipliers
of 1.0 and 0.25, respectively. Additionally, we chose two models, Fsmall22
and Fsmall11, based on FrontNet [26].

The proposed approach involved maintaining a fixed distinct big model
(Msmall1.0) while varying the little model among three models with different
characteristics: Msmall0.25, Fsmall22, and Fsmall11. The evaluation of our
proposed input decision function approach was conducted in two phases.
Firstly, we assessed the performance by randomly assigning input frames
to either the big or little model. We then performed a similar evaluation
for the output decision function approach. Additionally, we compared the
performance of our networks to state-of-the-art models, including FrontNet
and Msmall1.0, both of which were optimized for the specific task at hand.
The evaluation metrics considered included the sum of mean absolute error
for all regression variables (MAEsum), the reduction in latency measured
by inference cycles, and the computational cost quantified as the number of
multiply and accumulate operations (NMACs).

The evaluation of the proposed input decision function approach was con-
ducted in two phases. Firstly, we assessed the performance of randomly
assigning input frames to either the big or little model. We then performed
a similar evaluation for the output decision function approach. Additionally,
we compared the performance of our networks to state-of-the-art models,
including FrontNet and Msmall1.0, both optimized for the task at hand.
The evaluation metrics encompassed the sum of mean absolute error for all
regression variables (MAEsum), the reduction in latency measured by infer-
ence cycles, and the computational cost quantified as the number of multiply
and accumulate operations (NMACs). Utilizing the input decision function
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approach, our proposed method achieved ISO error rates comparable to the
static big model Msmall1.0. Moreover, we exceeded the regression perfor-
mance of the big static model, resulting in a 0.015 reduction in MAEsum.
Additionally, we reduced inference cycles and NMACs by approximately 25%
and 29%, respectively. Our approach offers flexibility and generality as we
can control the execution of the big and little models according to the appli-
cation’s needs through a predefined parameter selection. This allows us to
optimize for higher speed, higher accuracy, or lower power consumption by
choosing an appropriate little model for deployment.

The remaining chapters of this thesis work are organized as follows: Chap-
ter 2 provides a comprehensive introduction to the theoretical aspects related
to our work. It explains the technical aspects of machine learning, deep learn-
ing, and learning tasks. Furthermore, it offers a brief overview of the target
hardware, Nano Drone applications, resource limitations, and the concept
of adaptive inference and dynamic neural networks. Chapter 3 is dedicated
to discussing the related work to the thesis, specifically exploring previous
approaches in automated HDI. It focuses on visual pose estimation and em-
phasizes the currently available adaptive inference approach. In Chapter 4,
we describe the proposed methodologies in detail and provide insights into
the reasoning behind their adoption. We also explain the experimental setup,
the steps undertaken to conduct each experiment, and the evaluation process
and metrics employed. Chapter 5 presents our findings, including a detailed
comparison of the results accompanied by visualizations. Finally, in Chapter
6, we provide a conclusion summarizing the key findings of our work. Ad-
ditionally, we highlight possible enhancements and suggest experiments that
can be conducted in the future.
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Chapter 2

Background

This thesis focuses on leveraging adaptive inference and dynamic neural net-
work techniques to enhance the performance of deep neural networks in
addressing the 3-D pose estimation task through onboard computation on
nano-drones. This section provides a comprehensive summary of adaptive
or dynamic neural networks, encompassing the framework, current research,
applications, advantages, and challenges associated with their implementa-
tion in specific machine learning tasks. It also provides a brief explanation
of machine learning (ML) and deep learning (DL), highlighting the types of
learning and task categories. Additionally, the section discusses the charac-
teristics, applications, advantages, and significant challenges related to the
target device, nano-sized unmanned aerial vehicles (Nano-UAVs), particu-
larly the limitations imposed by their limited computational resources. Fur-
thermore, it explores the deployment approaches for ML and DL models on
edge devices. Subsequently, it explains the utilization of neural architec-
ture search (NAS) techniques to obtain optimized DL network architectures
suitable for deployment on such small devices.

This thesis explores the application of adaptive inference methodologies in
two previous studies related to nano-sized unmanned aerial vehicles (UAVs).
The first study, conducted by [26], addresses the complex task of precise
estimation and continuous tracking of the relative three-dimensional (3-D)
pose of a UAV in relation to a human subject. The authors introduced
PULP-Frontnet, a novel Convolutional Neural Network (CNN) that visually
estimates the pose of a freely-moving human subject and successfully per-
forms onboard computations, achieving remarkable regression performance.
Building upon the work of [26], further advancements were made by [6], who
leverage a novel neural architecture search (NAS) technique to automatically
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2 – Background

identify several Pareto-optimal convolutional neural networks (CNNs) for the
same task. Their approach surpasses the performance of PULP-Frontnet by
significantly reducing in-field error and lowering latency and computational
costs. This thesis focuses on achieving additional enhancements by optimiz-
ing inference latency and reducing Multiply and Accumulate (MAC) opera-
tions while maintaining comparable performance. These enhancements are
crucial due to the hardware constraints imposed by limited memory usage,
minimal latency, and energy consumption.

2.1 Machine learning and Deep learning
As stated by [34], Machine Learning (ML) encompasses the automated iden-
tification of meaningful patterns from historical data to enhance future per-
formance. ML primarily focuses on the development of autonomous learning
techniques, wherein algorithms can be modified or improved based on past
experiences represented by data, without the need for external human in-
tervention. The ultimate objective of this process is to create a computer
program capable of successfully executing a given task by leveraging the
knowledge acquired from input data. ML has found widespread applications
across various domains, yielding cutting-edge outcomes in tasks that are too
intricate for traditional algorithms or require adaptation to dynamic envi-
ronmental changes. A range of ML algorithms exists, including Decision
Trees, Random Forests, Support Vector Machines, regressions, K-Nearest
Neighbors, and Neural Networks, among others. These algorithms generally
demonstrate superior performance in scenarios with small datasets and well-
defined features, or in situations where computational resources are limited.
Nevertheless, [24] noted certain limitations of these models, emphasizing their
performance’s dependency on data quality and representational power. Even
an advanced and complex machine learner is likely to suffer reduced perfor-
mance with inadequate data representation, while a simpler machine learner
can achieve high performance with well-crafted features. Consequently, fea-
ture engineering plays a vital role in addressing these challenges by construct-
ing features and data representations from raw data. Feature engineering
constitutes a significant portion of the effort involved in a machine learning
task, as it is often domain-specific and requires a considerable amount of
human input and time for data preparation, feature extraction, and feature
engineering.

Deep learning, as illustrated in Figure 2.1, represents a subset of machine
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2.1 – Machine learning and Deep learning

learning techniques that leverage artificial neural networks to address intri-
cate problems. Central to deep learning algorithms is the automation of
extracting meaningful representations or abstractions from data. The hi-
erarchical structure of deep learning algorithms is inspired by the human
brain’s neocortex, specifically the deep, layered learning process observed in
primary sensorial areas. This emulation allows deep learning algorithms to
autonomously extract features and abstractions from the input data. These
algorithms demonstrate notable advantages when learning from extensive
amounts of unlabeled data, often acquiring data representations in a layer-
wise manner through a greedy approach.

While deep learning algorithms facilitate automated feature extraction,
enabling researchers to obtain discriminative features with minimal domain
knowledge and human effort, designing an optimal architecture for a spe-
cific task is nontrivial. Determining the ideal number and type of layers,
selecting the appropriate optimizer, and engaging in hyperparameter tuning
are among the challenges that arise in architectural design. The shift in fo-
cus from feature engineering, as seen in classical machine learning, to model
architecture design challenge in deep learning [24].

Figure 2.1: Deep learning in the context of artificial intelligence [3]

2.1.1 Types of learning
ML can be divided into different learning paradigms that aim to describe
the relationship between the learner algorithm and the environment, there
exist several ML approaches as indicated in [31]. We will discuss briefly the
two major used approaches which are Supervised and unsupervised learning.
Machine learning encompasses various learning paradigms, each seeking to
describe the interplay between the learner algorithm and the environment.
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Fig.2.2 encapsulates the different ML approaches available. In this discus-
sion, we will provide an overview of the two primary approaches commonly
employed: supervised and unsupervised learning.

Figure 2.2: ML/DL fields segmented by task [31]

Supervised learning

Supervised learning [34] is a method based on the idea of learning from
examples represented by training data where the outputs are already known,
The goal of the algorithm is to learn the relationships between the inputs
and outputs and then make predictions on a separate, unseen dataset where
the outputs are unknown called test data.

Formally the train data are composed of a set of n ordered pairs (x1, y1),
(x2, y2), . . . , (xn, yn) where xi represents a set of measurements for a single
example, and yi is the corresponding label. The test data are composed of m
examples (xn+1, xn+2, . . . , xn+m), and the goal of the algorithm is to predict
their corresponding labels (yn+1, yn+2, . . . , yn+m).

More detailed information about Supervised learning, its applications, and
algorithms can be found in [34].

Unsupervised learning

Unsupervised learning [3] is an approach that enables the learning process
to be implemented in the absence of labeled data, thereby eliminating the
need for explicit labels. In this context, the agent acquires knowledge of sig-
nificant features or internal representations necessary to uncover unknown
structures or relationships within the input data. Techniques such as gener-
ative networks, dimensionality reduction, and clustering are commonly clas-
sified under unsupervised learning. Several members of the DL family, such
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as restricted Boltzmann machines, autoencoders, and Generative Adversar-
ial Networks (GANs), have exhibited notable performance in nonlinear di-
mensionality reduction and clustering tasks. Additionally, Recurrent Neural
Networks (RNNs), including approaches like Gated Recurrent Units (GRUs)
and Long Short-Term Memory (LSTM), have found applications in unsuper-
vised learning across various domains. It is important to note that unsuper-
vised learning has limitations, such as the inability to provide precise data
categorization and its computational complexity. For example, clustering
algorithms like k-means or hierarchical clustering require iterative processes
to group data points, which can be computationally intensive. However, the
main reason is the lack of labeled data, which requires unsupervised learn-
ing algorithms to process a larger amount of data compared to supervised
learning algorithms. This increased volume of data necessitates more com-
putational resources and time. Among the popular unsupervised learning
techniques, clustering stands out as one of the most widely employed meth-
ods.

2.1.2 Machine Learing Tasks
Machine learning enables us to address challenging tasks that are beyond the
capabilities of fixed programs created by human programmers. As stated in
[10], the essence of learning lies not in the learning process itself, but rather
in acquiring the capability to accomplish a specific task. For example, if
our objective is to enable a robot to walk, then walking becomes the task at
hand.

Presently, machine learning finds application in a diverse array of tasks.
Within the field of machine learning, the primary tasks encompass the fol-
lowing:

Classification Tasks:

In this specific task, the computer program is assigned the responsibility of
determining the category to which a given input belongs from a set of k
categories. To address this task, the learning algorithm aims to generate a
function denoted as f : Rn → 1, ...., k. In this context, when y = f(x),
the model assigns an input, represented by the vector x, to a specific cate-
gory indicated by the corresponding numeric code y. Various variations of
the classification task exist, including cases where the function f outputs a
probability distribution across multiple classes [10].
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An illustrative example of a classification task is binary image classifica-
tion, which is particularly relevant in the field of medical devices, such as the
detection of diabetic retinopathy from retinal fundus images. The primary
goal is to accurately classify retinal fundus images as either exhibiting signs
of diabetic retinopathy or being considered normal [39].

Regression Tasks:

In this type of task[10]., the computer program is asked to predict a numerical
value given some input. To solve this task, the learning algorithm is asked to
output a function f : Rn → R. When y = f(x). This type of task is similar
to classification, except that the format of the output is different. An example
of a regression task is The task of PPG (Photoplethysmography) heart rate
monitoring using regression models involves predicting the numerical value
of a person’s heart rate based on the PPG signal obtained from a sensor on
a wrest-worn device [5].

2.1.3 Convolutional Neural Networks CNN
Convolutional Neural Networks (CNNs) represent a specialized type of neu-
ral network designed specifically for processing data that exhibits a known,
grid-like topology. Figure 2.3, illustrates a typical architecture employed in
CNN-based models. CNNs have been applied across various domains, en-
compassing time-series data, which can be regarded as a one-dimensional
grid with regularly spaced samples, and image data, which can be perceived
as a two-dimensional grid composed of pixels. The designation "convolu-
tional neural network" signifies the utilization of the convolution operation
as a fundamental operation within the network’s architecture [10].

The utilization of sparse interactions, parameter sharing, and equiv-
ariant representations constitutes a significant enhancement strategy for
machine learning systems. These key features provide CNNs with several ad-
vantages over conventional feed-forward neural networks (DNNs). The most
popular and extensive use of parameter sharing occurs in CNNs applied to
computer vision. Natural images exhibit statistical properties that are in-
variant to translation. For example, a photograph of a cat remains a cat
photo even if it is shifted one pixel to the right. CNNs take advantage of this
property by sharing parameters across multiple image locations. The same
feature, represented by a hidden unit with the same weights, is computed
over different locations in the input. This approach dramatically reduces
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the number of unique model parameters and allows for larger network sizes
without requiring a proportional increase in training data [10].

Notably, CNNs exhibit a closer resemblance to the human visual process-
ing system, displaying high optimization for processing two-dimensional (2D)
and three-dimensional (3D) images, as well as efficacy in learning and extract-
ing abstractions of 2D features. The max pooling layer in CNNs effectively
handles shape variations. Furthermore, CNNs employ sparse connections
and tied weights, resulting in a significantly reduced parameter count com-
pared to equivalently sized fully connected networks. Additionally, CNNs
trained with gradient-based learning algorithms encounter fewer issues asso-
ciated with diminishing gradients. Due to the direct minimization of an error
criterion by the gradient-based algorithm, CNNs are capable of generating
highly optimized weights [1].

Figure 2.3: Typical architecture of the CNN-based model includes an input layer, multiple
convolutions and max-pooling layers, a fully-connected layer, and a classification layer [1]

2.2 Unmanned aerial vehicles (UAVs)
The past decade has witnessed remarkable growth in the utilization of Un-
manned Aerial Vehicles (UAVs) across diverse domains. The Federal Avia-
tion Administration (FAA) report [28] predicts that the number of UAVs will
exceed 3.2 million flying units by 2022. The integration of artificial intelli-
gence (AI) algorithms into UAVs has emerged as a significant advancement
in the realm of the Internet of Things (IoT). Numerous applications have
been explored in various fields, encompassing search and rescue operations,
human-drone interaction (HDI), precision agriculture [33], monitoring and
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transportation tasks, provision of network and cellular coverage, enhance-
ment of ground network connectivity, coordination with ground vehicles, and
data collection from ground sensors [2]. However, the majority of these sys-
tems are predominantly reliant on standard- or microsized UAVs.

Nano-UAVs are an emerging class of aircraft distinguished by their com-
pact size (subten centimeters), lightweight (a few tens of grams), and limited
power requirements (sub-Watt). Figure 2.4 illustrates a size-based catego-
rization for some of the most prevalent small drones. These UAVs possess the
capability to perform onboard data analytics, enabling them to selectively
identify pertinent information for transmission to the IoT backbone. Conse-
quently, they have the potential to bridge the gap between costly, weather-
dependent, and low-resolution satellite imagery and ground-based imagery,
which is confined to human-level perspectives and the availability of accessi-
ble roads. Leveraging specialized aerial cameras and cloud-based data ana-
lytics, farmers can continually monitor the quality of crop growth. Moreover,
transportation drones capable of secure takeoff and landing in close proxim-
ity to buildings unleash the full potential of e-commerce telecommunication
infrastructure [9].

Nano-UAVs systems encompass various components[26], including sensors
like cameras, which capture information-rich data but pose interpretation
challenges. Consequently, the UAVs must tackle complex perception tasks
onboard to enable autonomous operation. However, a notable limitation
arises in the onboard computing capability of nano-aircraft, which has tradi-
tionally been confined to basic microcontroller units (MCUs). These MCUs
provide a computational capacity of merely a few hundred million operations
per second (MOp/s), proving inadequate to meet the real-time requirements
of cutting-edge perception and navigation algorithms employed in state-of-
the-art (SoA) systems. The primary challenges associated with the adoption
of these Nano-Drones systems have been concisely summarized in [3] as fol-
lows:

• The minimum real-time frame rate is required to select a new trajec-
tory on the fly or to detect a suspected obstacle in time to prevent a
potential collision, which is a crucial point in our work for real-time pose
estimation tasks.

• Maintaining the quality of results while utilizing an embedded ultralow-
power low-resolution camera.

• The crucial need for a strategy aimed at reducing the memory footprint
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and computational load to more easily fit within the available resources
while exploiting the architectural parallelism at best to meet the real-
time constraint.

Small Tactical UAVs Micro UAVsMiniature UAVs

Figure 2.4: UAVs categories by size

2.2.1 Bitcraze Crazyflie 2.1
To have a full picture of the restricted resource constraints we have to deal
with, we will briefly describe some of the characteristics of the system under
investigation within the scope of our research. Fig.2.5 shows a sample of the
Nano-Drone, and described in the data sheet crazyflie 2.1 Data Sheet :

• Onboard microcontrollers :

A. STM32F405 main application MCU (Cortex-M4, 168MHz, 192kb
SRAM, 1Mb flash)

B. nRF51822 radio and power management MCU (Cortex-M0, 32Mhz,
16kb SRAM, 128kb flash)

C. micro-USB connector
D. On-board LiPo charger with 100mA, 500mA and 980mA modes

available
E. Full-speed USB device interface
F. Partial USB OTG capability (USB OTG present but no 5V output)

8KB EEPROM

• Mechanical specifications :

A. Takeoff weight: 27g
B. Size (WxHxD): 92x92x29 mm (motor-to-motor and including motor

mount feet)
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Figure 2.5: BitCraze Crazyflie 2.1 Drone Sample

2.2.2 PULP architecture and GAP8 System-on-Chip

The "PULP" (Parallel Ultra-Low Power) processing paradigm has emerged
as a promising solution in the pursuit of enhanced performance and energy
efficiency for low-power edge devices, attracting attention from both industry
and academia. PULP computers combine a traditional Microcontroller Unit
(MCU), designed for I/O-centric operations, with a programmable general-
purpose accelerator dedicated to executing data-parallel computational ker-
nels [8]. These computational kernels often involve fundamental linear al-
gebra operations, which play a critical role in various artificial intelligence
applications. By integrating these components within a single System-on-
Chip (SoC), PULP computers provide a comprehensive solution to meet the
demanding requirements of performance and energy efficiency in low-power
edge devices.

The PULP paradigm, specifically the commercial implementation known
as the GAP8 System-on-Chip (SoC) by GreenWaves Technologies, represents
the brain of the nano-drone Bitcraze Crazyflie 2.1, as depicted in figure 2.6.
The GAP8 SoC incorporates a total of nine identical RISC-V cores, with
one core designated as the fabric controller (FC) that serves as the primary
core within the Microcontroller Unit (MCU). The remaining eight cores are
employed to construct a parallel general-purpose programmable accelerator,
forming the cluster (CL).
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Figure 2.6: GAP8 System-on-Chip architecture [26]

The key characteristics of the novel design of GAP8 by GreenWaves Tech-
nologies, are outlined as follows :

A - MCU class energy consumption

• Highly efficient parallelization
• Sophisticated architecture (including instruction set architecture ex-

tensions)
• Explicit memory movement

B - Agility

• Fine-grained compute / energy scaling
• Ultra fast state transitions

C - Programmability

• Applicable to many real-world problems – not just CNNs
• Exploits fast evolution of state-of-the-art
• Single code model across architecture

27

https://greenwaves-technologies.com/gap8_gap9
https://greenwaves-technologies.com/gap8_gap9


2 – Background

2.3 Adaptive Neural Network
Adaptive or Dynamic Neural Networks are an emerging research topic in deep
learning [11]. In various industrial fields, particularly in Robotics and IoT,
the focus extends beyond accuracy to optimizing efficiency in computations,
power management, inference latency, memory allocation, and representation
power.

Static models have played a crucial role in diverse areas, including com-
puter vision (CV), natural language processing (NLP), and the Internet of
Things (IoT). In recent years, significant advancements have been made with
successful deep models such as AlexNet [19], VGG [35], GoogleNet [36],
ResNet [12], and Transformers [40]. These architectural innovations have
facilitated the training of deeper and more accurate. Furthermore, research
on neural architecture search (NAS) [4], [22] has accelerated the process of
designing more powerful structures. However, most prevailing deep learning
models perform inference in a static manner, where both the computational
graph and network parameters are fixed after training. This static approach
may limit their representation power, efficiency, and interpretability.

In contrast, dynamic networks have the ability to adapt their structures
or parameters based on the input during inference, offering advantageous
properties absent in static models. Some of these properties include:

• Efficiency Dynamic networks can allocate computations on demand,
by selectively activating model components (e.g., layers, channels, or
sub-networks) conditioned on the input.

• Representation Power Dynamic networks have significantly enlarged
parameter space and improved representation power due to the data-
dependent network architecture or parameters.

• Adaptivenes Dynamic models can trade-off between accuracy and ef-
ficiency for dealing with varying computational budgets on the fly.

• Compatibility Dynamic networks are compatible with the most recent
advanced state-of-art optimization techniques such as architectural inno-
vations in lightweight models, NAS approaches or acceleration methods
developed for static models to boost their efficiency further, such as net-
work pruning, weight quantization, knowledge distillation, and low-rank
approximation.
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• Generality Many dynamic models are general approaches that can be
applied seamlessly to a wide range of applications, such as image clas-
sification, object detection, and semantic segmentation. Moreover, the
techniques developed in CV tasks are proven to transfer well to language
models in NLP tasks, and vice versa.

In general, the existing adaptive approaches can be categorized into 3 main
categories as mentioned in [11] :

• sample-wise Aiming at processing different inputs in data-dependent
manners, sample-wise dynamic networks are typically designed from two
perspectives:

A. adjusting model architectures to allocate appropriate computation
based on each sample, and therefore reducing redundant computa-
tion for increased efficiency.

B. adapting network parameters to every input sample with fixed com-
putational graphs, with the goal of boosting the representation power
with minimal increase in computational cost.

• spatial-wise spatially dynamic computation has great potential for re-
ducing computational redundancy. In other words, making a correct
prediction may only require processing a fraction of pixels or regions
with an adaptive amount of computation. Moreover, based on the obser-
vations that low-resolution representations are sufficient to yield decent
performance for most inputs.

• temporal-wise Adaptive computation can be performed along the tem-
poral dimension of sequential data, such as texts (e.g., dynamic Recur-
rent Neural Networks (RNNs)) and videos (e.g., Temporal Convolutional
Networks (TCNs)). Network efficiency can be improved by dynamically
allocating fewer or no computations to unimportant temporal locations
in the inputs.

2.3.1 Decision Making of Adaptive Networks
During the inference process, dynamic networks demonstrate the capacity to
make data-dependent decisions that allow for the alteration of their archi-
tectures and parameters. Additionally, they can identify and select signifi-
cant spatial or temporal regions within the input data. In their work, Han
et al[11] provided a comprehensive summary of three frequently observed
decision-making schemes in dynamic networks.
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Confidence-Based Criteria :

Several dynamic networks ([15], [45]) have the capability to generate "easy"
samples at early exits by satisfying specific confidence-based criteria. These
methods generally involve estimating the confidence of intermediate predic-
tions to be compared to a predefined threshold for decision-making purposes.

In classification tasks, the representation of confidence often relies on
selecting the maximum element from the SoftMax output [15]. Alterna-
tively, Entropy-based criteria have been explored, as demonstrated in the
BranchyNet approach [37]. Another approach, known as the Big/Little
models approach, incorporates the use of score margin [27]). The Big/Little
DNN architecture, as illustrated in Fig2.7, consists of a more efficient but
less accurate little DNN and a full-fledged big DNN. The main objective of
this architecture is to minimize energy consumption by avoiding the execu-
tion of the big DNN whenever possible. The little DNN is initially executed
for inference, and its result is directly used as the final inference result if it
is deemed accurate. However, if the result from the little DNN is consid-
ered inaccurate, the big DNN is then executed to produce the final inference
result.

Figure 2.7: big/LITTLE DNN architecture [27]

Empirically, confidence-based criteria offer a straightforward implementa-
tion and typically do not necessitate specific training techniques. By ma-
nipulating the thresholds, a trade-off between accuracy and efficiency can be
managed, with these thresholds often being tuned using a validation dataset.
It is important to note, however, that the issue of overconfidence in deep
models may impact the effectiveness of this decision paradigm. Specifically,
when incorrectly classified samples receive high confidence scores at early
exits, it can compromise the reliability of the decision-making process.
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2.3.2 Policy Adaptive Networks
The network setup comprises a SuperNet and a policyNet, where the latter
adapts the network topology based on different input samples. The poli-
cyNet processes each input sample and determines the activation of specific
parts within the main network. This approach, known as Dynamic Rout-
ing, is commonly employed in a Mixture of Experts (ME) frameworks. ME
is a popular and promising method for combining multiple neural network
experts, where The experts are supervised by a gating network, as demon-
strated in the works like in [21], [44]. The scheme has limitations including
the lack of adaptability in policy networks, which are tailored for specific
backbones and may not easily accommodate diverse architectures. More-
over, the substantial size of SuperNets (experts) makes them unsuitable for
deployment on edge devices. Additionally, utilizing a neural network as a
policy network can have negative implications on inference time and energy
consumption due to computational constraints.

2.3.3 Adaptive Network with Gating Functions:
The gating function serves as a versatile and adaptable method for decision-
making in dynamic networks. It can be easily integrated as a module within
any backbone network at various locations. During inference, each module
governs the local inference graph of a layer or block. By utilizing intermediate
features, the gating functions efficiently generate binary-valued gate vectors
to determine one of the following:

A- the activation of channels ([13], [7]).

B- the skipping of specific layers ([42], [41])

C- the selection of paths in a SuperNet ([20])

D- the allocation of computations to specific locations in the input ([18])

An example of an adaptive inference graph Network with Gating Functions
is shown in Fig.2.8. In comparison to other decision policies, the gating
functions exhibit remarkable versatility and applicability. However, their
lack of differentiability necessitates specific training techniques, which will
be discussed in subsequent sections.
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Figure 2.8: ConvNet-AIG taken from [41]
ConvNet-AIG (bottom left) follows a high-level structure similar to ResNets

(center left ) by introducing identity skip-connections that bypass each layer. The
key difference is that for each layer, a gate determines whether to execute or skip

the layer. This enables individual inference graphs conditioned on the input

2.4 Neural Architecture Search (NAS) :

NAS tools play a pivotal role in the design phase of Deep Neural Networks
(DNNs) by providing automated assistance in exploring an extensive archi-
tectural space encompassing various combinations of layers and hyperpa-
rameters. These tools are particularly significant on platforms with limited
resources, aiming to minimize an objective function that encompasses both
task-specific accuracy and non-functional cost metrics, including memory
usage, latency, and energy consumption. An essential prerequisite in this do-
main involves addressing the strict memory limitations of edge devices, typ-
ically employing Microcontrollers (MCUs) with restricted Flash and RAM
capacity. The primary focus revolves around achieving an optimal memory
footprint for DL models, ensuring compliance with these constraints. Si-
multaneously, efforts are directed toward minimizing energy consumption by
primarily reducing the overall number of operations (OPs) per prediction.

Early NAS algorithms primarily relied on evolutionary algorithms (EA)
and reinforcement learning (RL) methodologies. These approaches provided
the capability to navigate arbitrary search spaces and optimize any given
cost function through an iterative process involving network sampling, train-
ing until convergence, performance evaluation, and subsequent utilization
of the obtained information for guiding subsequent sampling. Nonetheless,
this approach had notable limitations pertaining to computational resources
and excessive time requirements, often amounting to 1000s of GPU hours.
The design space itself often encompasses a staggering number exceeding 108

potential architectures, thereby rendering manual design choices suboptimal
and challenging to scale.

A progressive advancement in NAS is observed with the emergence of
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differentiable neural architecture search (DNAS), which involves exploring
a supergraph containing all potential architectures and selecting a singular
path as the final neural network. DNAS exhibits the ability to explore exten-
sive combinatorial spaces within the time required to train a single model.
However, recent research by [46] highlighted additional limitations concern-
ing memory costs that constrain the search space due to the necessity of
storing feature maps in GPU memory during training. Furthermore, it was
revealed that the cost associated with these memory requirements grows
linearly with the number of options available per layer.

The recent study conducted by [30] has shed light on the limitations of
previous differentiable neural architecture search (DNAS) approaches. It
was revealed that existing DNAS methods primarily focus on optimizing
either the model size or the number of operations (OPs) separately. However,
from the perspective of a designer, the key concern lies in minimizing energy
consumption (OPs) while adhering to a given memory constraint. To address
this issue, the authors proposed a novel problem formulation that can be
applied to any DNAS framework. This formulation enables the identification
of a set of Pareto-optimal architectures within the accuracy versus OPs space
while considering a fixed model size constraint. By introducing this novel
approach, the authors have made significant progress in addressing the core
challenges related to energy optimization in DNAS.
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Chapter 3

Related work

Adaptive Neural Networks have become a very attractive field of research in
the past few years, The vast increase in the amount of data created by the
sensors is accelerating the emergence of the edge computing paradigm [29],
we can summarize its advantages as follows :

• Improve System Performance: Edge computing in IoT can achieve
ms level of data processing. resulting in an efficient reduction of the
overall delay of the system.

• Protect Data Security and Privacy: Cloud platform service uti-
lizes centralized data security protection solutions. However, serious
consequences can occur if the data get leaked. on the contrary, Edge
computing in IoT allows enterprises to deploy security solutions locally,
reducing the risk of data leakage during transmission and the data vol-
ume stored in the cloud platform, so as to minimize security and privacy
risks.

• Reduce Operational Costs Edge computing in IoT can reduce data
uploading volume, thereby reducing data migration volume, bandwidth
consumption, energy consumption, and latency. More specifically in
computer vision tasks (CV), sending images to the cloud is an extremely
costly process.

• lower latency with more accurate etimations : for real-time appli-
cations. Wireless WAN links (4G, LoRA, etc.) have significant Round-
Trip Times (RTTs). Additionally, they can be unstable or unavailable in
some places. In edge computing, since all computations are performed
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on board, the latency for all phases of the inference pipeline can be
measured accurately.

The last two points are the most crucial in our research. Our work aims
to utilize the adaptive neural network framework to Optimize the onboard
Computational cost and inference latency.

Human-Drone-Interaction (HDI) considered as a subfield of the Human-
robot interaction and can be defined as “the study field focused on under-
standing, designing, and evaluating drone systems for use by or with human
users” [38]. Despite the common characteristics between the two fields, the
drone’s unique characteristic to freely fly in a 3D space, and unprecedented
shape makes human-drone interaction a research topic of its own. As HDI
is a relatively new field, ongoing research focuses on 1-evaluating and devel-
oping new control modalities, 2- enhancing human-drone communication, 3-
evaluating interaction distance, and 4- developing new use cases. Our work
addresses a vision-based task that aims to predict a pose estimation of a user
utilizing low-resolution images, and enabling effective HDI [26].

In this section, we aim to conduct a comprehensive comparison of the ex-
isting works in dynamic neural networks, Human Drones Interaction models
deployed on Nano-UAVs, and Human Pose Estimation models.

3.1 Human Drones Interaction (HDI)
Fully autonomous nano-scale unmanned aerial vehicles (UAVs) have proven
to have a highly suitable implementation of AI smart sensors within this
domain of IoT [25]. Leveraging their exceptional speed and maneuverabil-
ity, these UAVs possess the capacity to rapidly acquire data from their on-
board sensors as well as from a diverse array of deployed devices within the
surrounding environment. Their tiny form-factor makes them exceptionally
well-suited for indoor applications wherein they must safely navigate in close
proximity to humans. Such applications include surveillance, monitoring,
ambient awareness, and interaction with smart environments, among others.

The traditional approach to autonomous navigation employed is com-
monly referred to as the localization-mapping-planning cycle. This ap-
proach encompasses a series of interconnected steps, involving the estimation
of the robot’s motion utilizing either offboard techniques, such as Global Posi-
tioning System (GPS), [32] mentioned the major limitation of this approach,
as crowded cities and indoor dense environments are the typical operating
areas for Nano-drones, they are required to fly at low altitudes, where GPS
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signals are often shadowed, or indoors where GPS signals that are frequently
obstructed or diminished, and to actively explore unknown environments
while avoiding collisions and creating maps. The authors developed The
Swarm of Micro Flying Robots(SFLY) a swarm of vision-controlled micro
aerial vehicles (MAVs) capable of autonomous navigation, three-dimensional
(3-D) mapping, and optimal surveillance coverage in GPS-denied environ-
ments. The system utilizes only a single onboard camera and an inertial
measurement unit (IMU). However, all localization-mapping-planning-cycle-
based approaches are very expensive for computationally constrained plat-
forms such as commercial Nano-Drones, Moreover, it is inadequate in real-
time scenarios applications.

Recent results have shown that much lighter algorithms, based on con-
volutional neural networks (CNNs), are sufficient for enabling basic reactive
navigation of small drones, even without a map of the environment. However,
their computational and power needs are unfortunately still above the allot-
ted budget of current navigation engines of nano-drones, which are based on
simple, low-power microcontroller units (MCUs). PULP-Frontnet [26] rep-
resents the state-of-the-art for the task of pose estimation of a user from
low-resolution images. The authors based their work on Proximity NN [23]
as the same vision-based task was addressed. The Proximity NN has been
demonstrated with a remote commodity desktop computer’s GPU and cou-
pled with a Parrot Bebop 2 quadrotor flying near the user and streaming
front-looking high-resolution images to the remote computer. This allows
the model to estimate the subject’s pose relative to the drone, determine the
appropriate control input, and send it back to the drone, achieving its control
task, i.e., staying in front of the user. on the other hand, PULP-Frontnet
achieved equivalent quality of robot behavior by employing a novel stream-
lined DL model with up to ≈ 24× and ≈ 33× fewer operations and memory,
respectively. Unlike Proxy NN, PULP-Frontnet exploits all the advantages
mentioned in (3) by running the model runs entirely aboard a Crazyflie 2.1
nano-drone, Fig.(2.5), with no need for any external computer/infrastruc-
ture. PULP-Frontnet minimizes its prediction to a 3D point in space (x, y ,
z) and a rotation angle w.r.t. the gravity z-axis(ϕ).

The vision task under consideration has been previously tackled by Cereda
et al[6]. In their study, the authors employed a novel neural architecture
search (NAS) technique to automatically discover multiple Pareto-optimal
convolutional neural networks (CNNs) specifically designed for visual pose es-
timation. Initially, two seed CNNs, namely PULP-Frontnet and MobileNetv1
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[14], were selected as seed models. Building upon the NAS algorithm pro-
posed by Risso et al.[30], the authors enhanced the methodology and gener-
ated a range of models with varying characteristics, encompassing regression
performance, model size, number of multiply-accumulate (MAC) operations,
and inference cycle. Their most optimal model demonstrated a noteworthy
improvement of 32% in reducing in-field control error compared to the ap-
proach presented by PULP-Frontnet[26]. Furthermore, this model achieved
a real-time inference rate of ∼50 Hz with a power consumption of 90 mW.
Despite the notable achievements of both studies, it is important to note
that their models remain static once deployed, lacking the ability for fur-
ther optimization. This limitation prompted numerous recent investigations
demonstrating the presence of intrinsic redundant computations within con-
volutional networks, particularly in layers, channels, and blocks, when deal-
ing with diverse sets of visually complex input images in the domain of com-
puter vision [41], [27],[11]. Our contribution focuses on developing a general
adaptive methodology to efficiently control the inference, latency, Number
of computations, and consequently the energy consumption with fully on-
board computations. Our approach has proven to achieve a reduction in
both NMACs and Inference cycles with a negligible margin of increase or
decrease in regression performance. we will conduct a comprehensive inves-
tigation and analysis to provide empirical evidence supporting these results
in the chapter.5.

3.2 Adaptive Inference/ Dynamic Neural Net-
works

The concept of adaptive inference, which forms the foundation of dynamic
networks, has been explored even prior to the widespread adoption of modern
deep neural networks (DNNs). Classical approaches to achieve adaptive infer-
ence involve constructing a model ensemble using either a cascaded structure
[47] or a parallel arrangement [17], and selectively activating specific mod-
els based on the input. Additionally, spiking neural networks (SNNs) [16]
perform data-dependent inference by propagating pulse signals. However,
the training strategy for SNNs significantly differs from that of popular con-
volutional neural networks (CNNs) and their application in vision tasks is
relatively limited.
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In the context of deep learning, the concept of dynamic inference in con-
junction with modern deep architectures has emerged as an attractive re-
search area, gaining significant attention over the past years. Despite the
substantial efforts dedicated to designing various types of dynamic networks,
there remains a dearth of systematic and comprehensive reviews on this sub-
ject matter [11]. To the best of our knowledge, all current adaptive inference
approaches have been primarily developed and tailored for supervised classi-
fication tasks. However, our research objective centered around the creation
of a comprehensive methodology that extends the concept of adaptive infer-
ence to the domain of Multi-regression visual pose estimation. In our work,
we took inspiration from [27], the authors propose a novel concept called
Big/Little DNN (BL-DNN), which aims to efficiently reduce the energy
consumption required for DNN execution at a negligible loss of inference ac-
curacy. The BL-DNN consists of two core components: a compact DNN
with low energy consumption (Little), and a comprehensive full-fledged large
DNN (Big). The primary objective of the BL-DNN is to minimize energy
usage by strategically minimizing the execution of the large DNN whenever
feasible. The concept behind this approach is straightforward: the Little
model is executed initially, and its predictions are considered as the final
inference result if the network exhibits sufficient confidence. However, if the
confidence falls below a certain threshold, the Big model is invoked to pro-
vide a more reliable inference outcome. the authors demonstrated that their
proposed methodology reduces the total energy consumption by obtaining
the inference result only with the Little, energy-efficient DNN in most cases.

Our main contribution is adopting the Big/Little adaptive approach to
the task under investigation (Visual pose estimation ) and overcoming the
limitations in the existing approach. The big little methodology is centered
around the utilization of a Decision Function that determines the necessity
of executing the large model. This approach has gained significant popularity
in the domain of classification tasks due to the ease of constructing a decision
function based on Softmax probabilities, which inherently represents a prob-
ability distribution reflecting the model’s confidence in its predictions. Con-
structing a decision function for a Multi-Output regression task, where the
network generates a vector of independent real number predictions, presents
a complex challenge. In our research, we propose and evaluate two distinct
methodologies for addressing this task:

• Input decision function: Based only on the input inference samples
and it’s computed initially before invoking the models.
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• Output decision function: Based on the predictions of the Little
model on the input inference samples.

Our proposed approach demonstrated significant effectiveness by achiev-
ing remarkable outcomes across multiple dimensions. It not only optimized
computational complexity and inference latency but also provided the flex-
ibility to balance accuracy, computational cost, and latency by controlling
the selection of the Little model and the threshold parameter within the de-
cision function. A more detailed description of our approach, along with a
thorough analysis, is presented in the subsequent chapters, namely 4 and 5.
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Chapter 4

Methodology

This chapter is devoted to a comprehensive description of the methodologies
employed to address the task at hand. It encompasses a brief introduction to
the task, the utilized datasets, the experimental setup, the decision function,
and the metrics associated as well as the three distinct approaches undertaken
to tackle the task.

Figure 4.1: Top-view of the in-field experimental setup [26] proposed a three refer-
ence frame: D, H, and O. Top-down view of the human subject H walking sideways
to their right and the drone D (violet) trying to stay in front at a distance ∆ by
moving toward target pose D

′ (red)

The task at hand was proposed by [26] as a multi-output regression prob-
lem that aims to estimate and maintain the nano-UAV’s relative 3-D pose
with respect to a person while they freely move in the environment. The
goal is to map one low-resolution image to the relative pose of the subject in
the form of a 3D point in space (X, Y , Z), and a rotation angle w.r.t. the

41



4 – Methodology

gravity Z-axis (Φ). An illustration of the infield test and the expected drone
behavior is provided in the following figure :

4.1 Data Sets

In this section, we will briefly introduce the data collection and augmentation
applied. The dataset used to train, validate, and test the PULP-Frontnet
models was collected in a 10 x 10 m room equipped with a motion capture
system (mocap), composed of 12 Optitrack PM13 cameras. The dataset
collection setup involved utilizing the onboard QVGA grayscale camera pro-
vided by Himax. In this setup, the quadrotor was equipped with a mocap
target (i.e., reflective marker) and secured in a horizontal attitude (zero pitch
and roll) on a wheeled cart with adjustable height. The captured images ex-
hibit varied backgrounds, and lighting conditions, and sometimes contain
cluttered objects such as furniture, lab equipment, and people other than
the subject

4.1.1 Data Augmentation

The authors of PULP-FrontNet [26] employed various techniques to enhance
the model’s generalization. The images captured by the camera initially had
dimensions of 160 x 160 pixels. For training samples, they randomly cropped
them to a size of 160 x 96 pixels. Additionally, other augmentation techniques
were applied, including contrast and brightness adjustments, gamma correc-
tion, the addition of a synthetic vignetting effect with random radius and
strength, and smoothing using a Gaussian kernel.

To further increase the diversity of the dataset, the authors also incorpo-
rated horizontal flipping of the images. This flipping process involved adjust-
ing the ground truth accordingly by inverting certain variables. By doing so,
the distribution of these variables in the dataset became symmetrical. Fig-
ure 4.2 provides a visual representation of the employed data augmentation
techniques.
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Figure 4.2: Original dataset image (left) is cropped at a random height to simulate
pitch variations; a random subset of photometric, optical, and geometric augmen-
tations (top) is then applied. Bottom: ten random augmentations originating from
the same source image [26]

4.1.2 Data Prepration
The final training dataset consisted of 26,290 samples, including the aug-
mented images. This dataset was shuffled and divided, with 80% (21,032
samples) allocated for training and 20% (5,258 samples) for evaluation. In
contrast, the test dataset comprised 4,028 consecutive frames without aug-
mentation.

4.2 Adaptive Inference With Adaptive Infer-
ence Graphs

As a preliminary experiment, we drew inspiration from ConvNet-AIG [41].
The motivation behind this choice stems from the infeasibility of using a de-
cision function based on model confidence due to the nature of our regression
task, as described earlier. Instead, we aimed to adopt an approach that mod-
ifies the internal representation of the model. Although ConvNet-AIG was
originally designed for a classification task, we believe it can be applicable to
our scenario since it does not depend on any information derived from the
output vector.

The fundamental concept underlying ConvNets was built around con-
structing a high-level architecture similar to residual networks (ResNets) [12].
To achieve this, a gating mechanism is embedded within each ConvBlock, al-
lowing for the decision of whether to execute the layer or not. The internal
representation of these gates, as applied in the ConvBlocks, is illustrated in
Figure 2.8.

In our experimental setup, we employed a similar gating mechanism used
in the FrontNet model architecture [26], with certain modifications made
to the ConvBlocks. These modifications are depicted in Figure 4.3. In this
architecture, each block receives a feature map from the preceding layer/block
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and passes it along to all three key components of the ConvBlockAIG, as
described below:

• classical convolutional pattern consist of convolution followed by
batch norm and Relu activation layer, this pattern is repeated twice
with a per-layer scaling effect.

• Gate layer The gate layer begins with an average pooling layer, fol-
lowed by a fully connected (FC) layer with 16 output nodes. Batch
normalization is then applied, followed by another FC layer with only 2
output neurons. The output of the gate layer is then passed through a
Gumbel-Softmax layer, which helps prevent model collapse and grants
gradient propagation during training. During inference, the Softmax
layer is replaced by an Argmax operation to make a binary decision.
For more detailed information, please refer to [41].

• Skip connection The skip connection layer serves the purpose of ad-
justing the size and/or depth of the feature map according to the output
dimensions of the 4.2 component.

The output of the Gate is then multiplied by the output of the original
convBlock 4.2, then added to the output of the skip connection, equation 4.1
describes the computational unit graph at inference time :

Xl = Xl−1 + gl(Xl−1) · fl(Xl−1) (4.1)
Where gl(Xl−1) ∈ {0,1}

Following the FrontNet architecture, we constructed two distinct models
by fixing the initial layers, which include a 5 × 5 convolutional layer followed
by a 2 × 2 max-pooling layer. These layers contribute to a 4× reduction
in the output feature map size due to a striding factor of two in both the
horizontal and vertical directions. Subsequently, a series of ConvBlockAIG
(4.3) are stacked in a repeated pattern block. Each block doubles the number
of output channels and achieves a 4× reduction in the output feature map
size. The final part of the model incorporates a dropout stage and is followed
by a fully connected layer that outputs the pose as a point in 3-D space (x,
y, z) and a rotation angle relative to the gravity z-axis (Φ).
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Figure 4.3: The internal representation of our proposed ConvBlockAIG with the
gating mechanism applied on Convblocks of FrontNet [26]

4.3 Adaptive Inference with Big/Little DNN
models

In the second phase of the experiment, we employed the Big/Little DNN
approach introduced by [27]. Our approach was based on leveraging a di-
verse range of pre-trained models that were specifically optimized for the
target task. These pre-trained models were developed by [6] using Neural
Architecture Search (NAS), resulting in a collection of model architectures
with varying characteristics in terms of inference latency (inference cycles),
memory occupation (model size/number of parameters), and the number of
multiply and accumulate operations (NMACs). By adopting this approach
and utilizing these diverse models, we gain the flexibility to choose different
combinations based on the specific application requirements. For instance,
one may choose to execute a "little" model with the lowest number of inference
cycles (minimal latency) but with higher NMACs (higher power consump-
tion) and lower regression performance.

Our experimental setup consisted of several distinct phases: the evalua-
tion of random models (employing stochastic model selection), the design of
the decision function, the extraction of candidate metric thresholds, the exe-
cution of the testing loop, and the collection of results pertaining to NMACs
(Number of Multiply and Accumulate Operations), the number of inference
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cycles, and the Mean Absolute Error (MAE). In the subsequent sections, we
will provide a comprehensive description of each of these phases.

Regarding the metrics employed within the decision function, we employed
two distinct methodologies: input metrics-based and output metrics-based.
The input metrics were computed on the input image prior to executing the
models, while the output metrics were computed based on the predictions
generated by the little model. In the following sections, we will provide a
detailed explanation of the specific metrics utilized and their relevance in the
decision-making process.

Figure 4.4: Pareto curves of the networks extracted from the NAS in the clock cycles
vs. MAE space (lower is better) [6]

In the phase of selecting models for our study, we utilized four pre-trained
models we will refer to as "Static" obtained from [6]. These models were char-
acterized based on their performance and resource requirements, as depicted
in Figure 4.4. Among them, we identified the following models: Msmall1.0,
positioned at the bottom right point of the blue curve, representing the
most accurate model but with the highest computational cost and latency.
Msmall0.25, located at the center green point, strikes a balance between ac-
curacy and significantly lower computational cost and latency. Furthermore,
we choose two FrontNet-based models from the red curve, namely Fsmall22
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and Fsmall11. These models were selected due to their lightweight nature
and fast execution. Specifically, Fsmall11, positioned at the top left point
on the red curve, corresponds to the fastest model but with lower accuracy
compared to the others. We fixed the Msmall1.0 as the Big model, while the
remaining three models were employed as the little models. By alternating
between these three little models, we were able to generate three distinct
combinations.

In order to evaluate the effectiveness of our methodologies, we employed
the regression performance metric utilized in the study by [6], namely the
Mean Absolute Error (MAE). This metric effectively captures the dispar-
ity between the predicted values and the corresponding ground truth values
as the summation of MAE for all regression variables, including x, y, z,
and Φ. Our evaluation encompassed two distinct phases: the comparison
between adaptive methods and random model selection, as well as the com-
parison between adaptive and static approaches. Additionally, we conducted
a comprehensive analysis of the performance exhibited by various input and
output metrics, allowing us to gain insights into their respective capabilities.
Throughout these evaluations, we examined the trade-offs between MAE
and Inference Cycles, as well as MAE and NMACs, providing valuable in-
sights into the relationship between regression accuracy and computational
efficiency.

4.4 Random model selection
As a baseline for our experiments, we decided to perform a stochastic process
for assigning the test samples to Little/Big models, the intuition is that our
methods with decision functions should outperform selecting random model
selection approach in terms of regression performance, assuming that it will
effectively assign the "Hard" samples to the big model and "Easy" samples to
the Little model, yielding in more comparable results with the static models.
To this purpose, we constructed our experimental setup as follows :

1. Test sample selection: In real applications where the samples are
passed sequentially, one sample at a time, a binary decision is typically
made for each sample using a Bernoulli random variable, where 0 rep-
resents the selection of the Little model and 1 represents the selection
of the Big model, In our experiments, we aimed to optimize the pro-
cess and take advantage of parallelization as indicated in 4.5 lines 10,

47



4 – Methodology

we choose to perform the index selection apriori by permutating (shuf-
fling) the test data, then in lines 12-13 we select the models based on a
parameter (ratio = p )that determined the proportion of samples to be
assigned to the Big model and the Little model.

2. External loop: In 4.5 line-2 We conducted a comparison by varying the
PBig parameters that control the proportion of test samples assigned to
the Big model, ranging from 0 to 1 with a step size of 0.1. This resulted
in eleven data points, including two extreme cases and nine intermediate
points. We compute the expected NMACs for each point as indicated in
4.5 line-5. The assignment of the test samples to models follows the rule:

PBig =


0, Invoke only the Little model
0 < PBIG < 1, PBIG× len(test set) → Big , 1- PBIG× len(test set) → Little
1, Invoke only the Big model

3. Internal loop: 4.5 line-8: Given the stochastic nature of our experi-
ment, we performed ten internal runs with different random seeds. In
line-25 the results for Mean Absolute Error (MAE) were averaged across
these runs to obtain a more reliable estimate.

The following pseudo-code can summarize the undertaken steps for the ex-
periment :

Figure 4.5: Random-Model-Selection-Pseudo Code

48



4.5 – Decision Function on Input Metrics

4.5 Decision Function on Input Metrics
The primary objective of the Big/Little approach [27] is to develop a method
that effectively differentiates between ’Hard’ Images, assigned for the Big
model, and ’Easy’ images, suited for the Little model. A key challenge
lies in formulating a decision function capable of making this distinction.
The decision functions proposed in the literature rely on the softmax prob-
abilities generated by the Little model as an indicator of model confidence.
However, in our specific task, the direct utilization of model predictions for
constructing a decision function is not feasible since the model outputs inde-
pendent real-valued numbers instead of softmax probabilities. Additionally,
the traditional approach always involves invoking the Little model, thereby
introducing computational overhead, increased inference latency, and power
consumption.

To overcome these limitations, we propose an alternative decision function
based entirely on information extracted from the input image, prior to invok-
ing the models. As visually illustrated in Figure 4.6, this approach eliminates
the additional computational cost associated with utilizing the Little model.
Our input decision function leverages image similarity metrics, exploiting
the sequential nature of the data in our task. We assume that consecutive
frames captured within a short time window, such as an average frame rate
higher than 30 frames per second in real-time applications, share significant
similarities. By considering this temporal coherence, our methodology intro-
duces minimal overhead, involving the storage of the previous image and the
computation of the similarity metric, in comparison to the original approach
presented by [27].

4.5.1 Mean Squared Error (MSE)
The mean squared error (MSE) stands out as a metric that has garnered
substantial attention within the field. Its simple formulation and clear in-
terpretation made it one of the most widely used metrics in many fields
including image processing. The metric is defined as in equation.4.2.

MSE = 1
n

nØ
i=1

(xi − yi)2 (4.2)

where n is the number of pixels in an n-dimensional image vector, and
xi and yi denote the gray levels of the ith pixels of the original and coded
image vectors x and y, respectively. Mathematically, the MSE represents the
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average squared distance between two vectors, in this case, x and y. MSE
score is a non-negative value on the interval [0,∞). A lower MSE score
indicates a smaller error and, consequently, a higher level of visual quality.
Conversely, a higher MSE score corresponds to a more substantial error and
lower visual quality.

The MSE suits our task perfectly since our objective is to minimize the
computational cost and the inference latency. The computational cost of
the metric is almost negligible. In the context of our task, where the input
images have dimensions of 160 × 96 × 1 (H, W, C). The overhead of MSE
≈ 40 kMAC can be computed using the following formula:

Number of MAC operations MSE = n × (1 m + 1 a) + (n-1) a + 1 d
where :

n ≡ Number of pixels in the image (H × W × C) = 160 × 96 × 1 = 15,360 pixels
a ≡ additions

m ≡ multiplications
d ≡ divisions

Figure 4.6: Adaptive Inference with Big/Little: decision function on MSE as input
Metrics

4.5.2 structural similarity index (SSIM)
The Structural Similarity Index (SSIM) is a widely used metric for assessing
the similarity between images. It measures the perceived quality of an image

50



4.5 – Decision Function on Input Metrics

by comparing its structural information with a reference image. SSIM takes
into account three components: luminance, contrast, and structure. The
index ranges from -1 to 1, with 1 indicating a perfect match between the
images. The SSIM was introduced by Wang et al. [43] to overcome the
limitations of existing metrics in capturing the human perception of image
quality. They proposed SSIM as an alternative metric that incorporates the
structural information of the images.

The SSIM formula involves comparing local image patches and comput-
ing their similarities. It consists of combining three primary components:
luminance, contrast, and structure. Given two images denoted as x and y,
with corresponding pixel values x(i, j) and y(i, j) at each pixel location (i, j),
the SSIM is calculated as follows:

1. The luminance component: estimated as the mean pixel intensity
Computed as :

µx = 1
N

Ø
i,j

x(i, j) µy = 1
N

Ø
i,j

y(i, j)

the luminance is a function of x and y utilizing (µx,µy ) as follows:

l = 2 · µx · µy + C1
µ2

x + µ2
y + C1

Where the constant C1 is included to avoid instability when (µ2
x,µ2

y )is
very close to zero. Specifically, the author suggested the following con-
stant :

C1 = (K1 · L)2

Where L is the dynamic range of pixel values (typically 2b − 1, where b
is the number of bits per pixel).

2. The constants component: the authors used the standard deviation
(the square root of variance) as an estimate of the signal contrast. An
unbiased estimate in discrete form is given by:

σx =
 1

n − 1
Ø
i,j

[x(i, j) − µx]2
1/2

, σy =
 1

n − 1
Ø
i,j

[y(i, j) − µy]2
1/2
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The contrast comparison c(x, y) is then a comparison function of (σx,σy)
as :

c = 2 · σx · σy + C2
σ2

x + σ2
y + C2

Where C2 is a constant to avoid instability (zero division) computed in
the same way as c1 (i.e. C2 = (K1 · L)2). This function is consistent
with the contrast masking characteristic observed in the Human Visual
System (HVS) since this measure tends to be less sensitive to the case
of high base contrast σx than low base contrast with the same amount
of contrast change (i.e. ∆σ = σx-σy).

3. The Structure component Structure comparison is conducted after
luminance subtraction and variance (contrast) normalization. The cor-
relation (inner product) between the normalized images ( (x−µx)

σx
, (y−µy)

σy
)

is a simple and effective measure to quantify the structural similarity.

s = σxy + C3
σx · σy + C3

C3 is another small constant to avoid division by zero.

4. The SSIM Index The Structural Similarity Index can be defined as a
function that combines the three mentioned functions :

SSIM = f (l(x, y), c(x, y), s(x, y))

To simplify the expression the authors choose C3 = C2/2, hence the
final formula to compute the SSIM is as follows:

SSIM(x,y) = (2 · µx · µy + C1) (2 · σxy + C2)
(µx + µy + C1)

1
σ2

x + σ2
y + C2

2
The selection of specific values for constants (K1, K2, C1, C2, C3) in the

SSIM formula may vary depending on the implementation and the specific
application requirements. These values are typically determined empirically
to achieve the desired performance. The SSIM ∈ [-1,1] can be interpolated
as follows:

SSIM =


−1, perfect anti-correlation
0, No similarity
1, perfect similarity
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In the context of our study, we encounter the challenge of real-time appli-
cation, and since this metric involves conducting three computational steps
and manually configuring multiple parameters, we decided to avoid it for now
as it is expected to introduce computational overhead and latency. However,
we plan to optimize the implementation in our future work.

4.5.3 Normalized Root Mean Squared Error (NRMSE)
RMSE is the square root of the average of squared errors. The effect of
each error on RMSE is proportional to the size of the squared error; thus
larger errors have a disproportionately large effect on RMSE. Consequently,
RMSE is sensitive to outliers. The normalized Root Mean Squared Error
(NRMSE) is often expressed as a percentage, where lower values indicate
less residual variance. There are no consistent means of normalization in the
literature. In our study, we applied a function provided by skimage.metrics,
with three options for normalization [‘euclidean’, ‘min-max’, ‘mean’]. In the
case of Euclidean normalization, we averaged by the Euclidean norm of the
reference image. Given X,Y where X is the reference image :

RMSE =
√

MSE =
öõõô 1

n

nØ
i=1

(xi − yi)2

NRMSE = RMSE ×
√

N/∥x∥

Where N ≡ Number of pixels in the reference image

4.6 Decision Function on Output Metrics
In order to further demonstrate the effectiveness of our proposed methodol-
ogy, we implemented a decision function inspired by the original Big/Little
approach introduced by [27]. As visually illustrated in Fig.4.7, this deci-
sion function leverages the predictions of a smaller model, referred to as the
"Little" model, to assess model confidence. We designed a metric based on
the distance between consecutive frames, considering the sequential nature
of our data. We assumed that consecutive frames should exhibit only small
shifts in the coordinates of the drone and, consequently, small deviations in
the consecutive model predictions.
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Figure 4.7: Adaptive Inference with Big/Little: decision function on Output Metrics

In our study, we devised four straightforward metrics based on the Abso-
lute Error (AE) between the regression-dependent variables: (x,y,Φ). Addi-
tionally, we considered the sum of the absolute errors as a metric. we decided
to exclude the variable z from the analysis due to its significantly lower stan-
dard deviation compared to the other variables (i.e., ≈ 0.2). The execution
of our approach can be summarized by the following steps:

1. In the upper left part of figure 4.7, as a default setting, ′Little′ model is
invoked on the input frame producing an output vector of predictions,
denoted as Y pred(t−1), store the predictions in a buffer to be compared
with subsequent predictions.

2. The current frame is passed to the ′Little′ model to obtain the prediction
vector Y pred(t−1)

3. To establish more general thresholds for the metric, we normalized the
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prediction vectors using the Min-Max normalization technique, con-
straining the values to the interval ∈ [0,1]. The normalization was per-
formed using the formula:

Xnormalized = X − Xmin

Xmax − Xmin

4. On the right part of figure 4.7, the 2 normalized vectors are fed to
the decision function which computes the metric score for the selected
variable as follows:

Score = | ŶT - ŶT −1 |

where :

Ŷ ≡ reprsents one of the regression variables ∈ [x,y,Φ,sum] normalized
SUMAE ≡ the sum of the normalized Absolute error on all regression variables

5. Compare the score to a pre-defined Score margin if :

a. path (A) Score ≤ Score Mergin → Little model prediction = Final
prediction.

b. path (B) Score > Score Mergin → pass the same current frame to
Big model → Invoke the Big model → prediction = Final prediction.

While this approach, which relies on model predictions, is expected to
yield more reliable results, our experimental results indicate a decrease in
performance compared to the Input-Metrics decision function, particularly
in terms of mean absolute error (MAE). Moreover, the constant execution
of the "Little" model introduces additional overhead, negatively impacting
inference latency and computational costs. It is noteworthy that the metric
itself incurs a negligible computational cost (i.e., X × W ≈ 15 kMACs). A
comprehensive numerical analysis of the performance of all metrics will be
conducted in the subsequent chapter 5, providing a more detailed evaluation
of their effectiveness.
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Chapter 5

Experimental Results

This chapter is dedicated to presenting the experimental results of the pro-
posed methodology applied to the tasks discussed in the previous chapters.
We will conduct a comprehensive analysis to evaluate the effectiveness of our
approach, utilizing the Big/Little approach outlined in Chapter 4. This anal-
ysis encompasses both quantitative and visual assessments to compare the
performance of input and output decision metrics. We will employ various
evaluation metrics, including the Mean Absolute Error (MAE) as a mea-
sure of regression performance, the number of Multiply-Accumulate (MAC)
operations as a metric for computational cost, and inference cycles as an in-
dicator of inference latency. Furthermore, this analysis will provide insights
into the behavior of the models and demonstrate how alternating between
Little models with different characteristics can yield diverse results. These
findings can be leveraged to optimize the approach according to the specific
requirements of the target application.

To evaluate the effectiveness of our approach, we conducted a baseline ex-
periment employing random model selection, referred to as "Stochastic." This
experiment serves as a benchmark for evaluation purposes. We hypothesized
that the random model selection behavior would demonstrate a linear decline
in Regression Error (MAE) as we move from the lower bound (representing
the Little model with the lowest regression performance) to increase computa-
tional cost and inference latency. Conversely, the upper bound (representing
the Big model) would exhibit the highest achievable regression performance
but at the expense of maximum computational cost and inference latency.
Between these extremes, a trade-off exists that can be customized to specific
requirements. However, our experimental results indicate that randomly as-
signing test samples for inference to either the Big or Little model does not
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yield optimal outcomes, as it fails to fully exploit the distinctive characteris-
tics of each model. In the subsequent sections, we will elaborate on how our
approach aims to effectively leverage these characteristics to enhance overall
performance.

The second experiment involved the development of a decision function
based on input metrics, which was executed beforehand to determine the
appropriate model for the current inference task. As previously discussed in
Chapter 4, this decision function was designed using an image similarity met-
ric, specifically the Mean Squared Error (MSE). This metric demonstrated
superior performance in achieving a favorable balance between accuracy, la-
tency, and computational cost with minimal overhead in terms of compu-
tation. In the subsequent sections, we present a comprehensive analysis of
the effectiveness of this decision function and the overall system that was
constructed around it.

The final experiment in our study involves the implementation of a deci-
sion function utilizing output metrics. As explained in Chapter 3, designing
a decision function that directly utilizes information from the model output
for our specific task is not a straightforward process. In Chapter 4, we pro-
posed four simple output metrics to showcase the significant enhancements
our approach brings to the original Big/Little methodology proposed by [27].
These metrics serve as a benchmark, comparing our approach to a similar
methodology that relies on output decision functions. We aim to provide
further evidence of the advancements achieved by our contribution. By uti-
lizing these output metrics, we demonstrate the notable improvements our
approach offers in comparison to the original methodology, shedding light on
the capabilities and benefits of our proposed methodology.

The evaluation process includes multiple phases, each involving specific
configurations. Throughout all phases, we maintained the Big model as a
fixed reference (Msmall1.0), while alternating between three different Little
models (Msmall0.25, Fsmall22, Fsmall11). By using these distinct combina-
tions of Little models, we can explore and compare their unique characteris-
tics. The subsequent sections will present detailed numerical evaluations to
analyze the differences observed among these models.

Finally, it is important to highlight that our primary approach, which is
based on ConvNets Adaptive Inference graphs [41], as discussed in Chapters
4 and 3, did not yield the anticipated results. While this work is still in
progress, we have decided not to share the specific outcomes at this time. We
are working on further optimizing this approach to enhance its effectiveness,
and we look forward to providing updates on our findings in future work.
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5.1 Experimental setup
The experimental setup for our study involved pre-trained models that were
optimized using Neural Architecture Search (NAS) by [6]. Therefore, our ex-
periments did not involve any additional training of the models. Instead, we
conducted re-testing on the test data to verify the consistency and reliability
of the results obtained. The experiments were implemented using Python 3.8
and various libraries, including Sklearn, Pandas, NumPy, torch, Torchvision,
Tqdm, Argparse, and Matplotlib, for data visualization. All experiments
were performed using the PyTorch framework and the PyTorch TorchVision
library. For image similarity, we utilized the Skimage library, which offers
a diverse range of image similarity metrics along with well-documented and
well-implemented functionalities.

While some of our experiments were carried out on a single GPU, specif-
ically the nVidia Tesla V100 16GB, the majority of the experiments were
conducted on a local machine equipped with a standard CPU, specifically
the Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz - 2.59GHz. It is impor-
tant to note that we have not yet performed an actual deployment of the
proposed methodology, as this is planned for future work. However, we have
relied on the actual infield test results conducted by our colleagues and the
findings presented by them in [27].

5.2 Results On Static models
Before conducting our experiments we needed to compute the upper extrema
(Big model accuracy on whole test data) and the lower extrema ( Little
model accuracy on whole test data ) by running the four candidate models
[Msmall1.0,Msmall0.25, Fsmall22, Fsmall11] and computing the MAEsumr
as follows:

MAESUM = MAEX + MAEY + MAEZ + MAEΦ

In our thesis work, we included the number of MAC operations calculated us-
ing the ptflops library, specifically by utilizing the "get_model_complexity_info"
class. It is important to note that the estimated number of MAC operations
serves as a preliminary reference. To accurately assess the actual compu-
tational cost on the target hardware or platform. It is worth mentioning
that using alternative libraries, such as "torchinfo summary" may result in
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different estimates of MAC operations. This variation can occur because cer-
tain libraries exclude certain layers (e.g., batch normalization, pooling layers)
from the computations.

Regarding the inference cycles, as the actual deployment of our models
has not been conducted, we relied on the actual deployment results on the
specific hardware reported by our colleagues in [6],[26]. The regression test
performance, along with the corresponding inference cycles and NMACs, for
the four candidate models are presented in the following table5.1:

Network MAE #param [M] #NMAC [K] #cycles[M]
X Y Z Φ SUM

MobileNet Msmall1.0 0.157 0.193 0.07 0.425 0.845 42 10.68 3.7
MobileNet Msmall0.25 0.158 0.179 0.081 0.453 0.871 18 5.58 2.2

Frontnet Fsmall11 0.257 0.137 0.212 0.519 1.125 14.7 5 1.2
Frontnet Fsmall22 0.2 0.189 0.103 0.449 0.941 44.5 7.6 1.5

Frontnet (SoA) 0.19 0.18 0.09 0.44 0.900 304 14.7 3.2

Table 5.1: TEST SET EXPERIMENT RESULTS

5.3 Input Metric Vs Random Model Selec-
tion

5.3.1 Input Metrics Benchmarking phase
As an initial step, to select the optimal input metrics for our task we con-
ducted an experiment for benchmarking the estimated performance of several
image similarity metrics, namely Mean Squared Error (MSE), Normalized
Mean Squared Error (NMSE_euclidean), and structural_similarity (SSIM)
as previously described in details in chapter 4.5. We built our benchmark-
ing strategy around an assumption that the deviation in coordinates of 2
consecutive frames, which reflects the temporal dependency, can be rep-
resented by the absolute difference between the 2 ground truth labels (i.e
Diff = |Y(T ) - Y(T −1)| ), and we took the sum of the differences for all regres-
sion variables (i.e Diffsum =Diffx +Diffy+Diffz+DiffΦ). To measure
the strength of the relation between these two quantities (i.e. MSE, Diffsum)
we utilized the Pearson correlation coefficient, we found the MSE to be the
metric with the highest Pearson correlation coefficient value. for this reason
and the simplicity of implementation and interpolation as discussed previ-
ously in chapter 4.5.1, we decided to implement only the MSE for now and
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the other will be implemented in future work.

5.3.2 MSE Vs Random Model Selection

In our initial experiment, we compare two methods for selecting the ap-
propriate model for inference: random selection and our proposed decision
function utilizing an input metric based on (MSE). These methods are ex-
ecuted prior to invoking the models for inference, hence the assessment will
be only in terms of regression performance, as measured by the (MAESUM).

The objective of this experiment is to demonstrate that the input deci-
sion function can effectively exploit the temporal dependencies of consecu-
tive input frames. By utilizing this information, we aim to assign the easier
frames to the little model and reserve the big model for more challenging
frames, thereby reducing computational load. In the case of random model
selection, the execution of the big model is controlled by a pre-defined pa-
rameter PBig, where PBig = 0.1 implies that the big model will be invoked
10% of the time, while the little model will be invoked 90% of the time
(PLittle = 1 − PBig = 0.9). In the subsequent sections of this thesis, we will
utilize the term "Execution Plan" to denote the process of selecting the
desired proportion of execution time for the big and little models. For ex-
ample, a balanced execution plan corresponds to a 50/50% execution ratio,
indicating an equal allocation of 50% of the application run time for both
the big and little models.

To determine the appropriate thresholds for each PBig value in our pre-
defined set [0.1, 0.2, ..., 1], we conducted a search on the test set. We
computed the MSE on consecutive frames and identified the thresholds that
corresponded to the desired PBig values. This process was performed for all
three combinations of the models mentioned earlier. For each combination,
the lower extrema (Little model) and upper extrema (Big model) were ob-
tained from deploying all models on the target hardware as described in5.1.
To calculate the intermediate values, we utilized a straightforward formula
to compute the inference cycles, nonetheless, the same formula is used to
interpolate the number of MAC operations :

InferenceCycles(p) = InferenceCyclesBig × p + InferenceCyclesLittle × (1-p)
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where :

InferenceCycles(p) : Number of Inference Cycles of the whole system
InferenceCyclesBig : Actual Number of Inference Cycles of the Big model

InferenceCyclesLittle : Actual Number of Inference Cycles of the Little model
p : the portion of execution time where the big model is invoked

1 − p : the portion of execution time where the Little model is invoked

After implementing our proposed approach using all three combinations
of models, we present the visualized results in Figures [5.3, 5.2, 5.1]. The
figures illustrate the (MAEsum) numerical results obtained by our method
compared to the random model selection approach at various intermediate
points. Our proposed metric consistently outperforms the random model
selection approach, indicating that our method effectively assigns the test
samples to the optimal model. In theory, we would expect the big model
to yield lower errors across all samples. However, our experimental findings
contradict this expectation, as can be indicated in the figures, by alternating
between the models we achieved lower overall MAE with much lower compu-
tational cost and lower latency. we plan to conduct a comprehensive analysis
by examining the MAE for each regression variable individually across all
model combinations. This analysis aims to provide deeper insights into the
observed behavior.

Figure 5.1: Input Metric MSE | MSmall1.0 vs Msmall0.25
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Figure 5.2: Input Metric MSE | MSmall1.0 vs Fsmall22

Figure 5.3: Input Metric MSE | MSmall1.0 vs Fsmall11

5.3.3 Results for MSE | MSmall1.0 vs Msmall0.25

In this experiment, we employed two models, denoted as Msmall1.0 and
Msmall0.25. These models are based on the MobileNetV1 architecture with
width multipliers of 1.0 and 0.25, respectively. They were optimized for
the specific task at hand using NAS techniques, as proposed by [6]. Figure
5.1 illustrates the performance of our method compared to random model
selection and an upper bound scenario where only the Big model is executed.
Notably, our method outperformed both random model selection and the
upper bound in terms of MAEsum at intermediate points. For example, at
PBig = 0.4, our method achieved a lower error of 0.836 compared to 0.863 for
random model selection and even surpassed the upper bound with an error of
0.845. To gain deeper insights into the behavior of the models, we extended
our investigation to analyze the individual regression variables, as shown in
Figure 5.4. We observed that as the execution of the Big model increased,
the accuracy of predicting Φ (phi) improved, while on the contrary, the error
in predicting Y increased. This observation is intuitive, as the Little model
exhibited better performance in predicting Y . However, it is important to
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note that the final MAEsum is highly influenced by MAEΦ. Analyzing the
intermediate points, we found that balancing the execution of the two models,
with PBig ∈ [0.4,0.5,0.6], yielded the optimal trade-off between the increase
in MAEY and the reduction in MAEΦ, with an approximate 0.3% reduction
in NMACs compared to executing only the Big model.

Figure 5.4: Network performance in terms of MAE[x-y-z-Φ]

5.3.4 Results for MSE | MSmall1.0 vs Fsmall22

The second model combination we employed utilized a model based on Front-
Net [26]. The FrontNet model demonstrated notable advantages in terms of
computational cost and latency reduction compared to the model based on
the MobileNet architecture but in the cost of a decrease in accuracy. This
can be due to its lightweight and straightforward model architecture. The
results presented in Figure 5.2 show that by executing the FrontNet model
50% of the time, we achieved the same MAEsum while experiencing a remark-
able reduction of over 30% in terms of inference cycles (latency). Figure 5.5
provides further insights into the performance of the FrontNet model com-
bination. It is evident that this comparable performance is primarily driven
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by the significant reduction in error for the Φ variable, which has the high-
est contribution to the MAEsum. Additionally, it is worth noting that the
error in the Z variable shows minimal variability when comparing the deci-
sion function based on MSE or random model selection. This observation
aligns with the intuition mentioned in previous sections, as the drone is typi-
cally positioned in front of the user and its Z coordinate does not frequently
change.

Figure 5.5: Network performance in terms of MAE[x-y-z-Φ]

5.3.5 Results for MSE | MSmall1.0 vs Fsmall11

The final model combination we utilized involved a model based on Front-
Net [26], referred to as Fsmall11. This model exhibits a highly compressed
architecture, resulting in exceptional speed with only 1.2 million inference
cycles, approximately 32% of the latency of MSmall1.0. However, this effi-
ciency comes at the cost of increased error, as the MAEsum is ≈ 32% higher
compared to MSmall1.0.

Nonetheless, our empirical results demonstrate that by executing the Fsmall11
model with a balanced (50/50%) execution plan, we can achieve a significant
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reduction of ≈ 35% in latency. However, this reduction in latency is accom-
panied by an increase of ≈ 12% in error compared to only executing the Big
model.

Figure 5.6: Network performance in terms of MAE[x-y-z-Φ]

In general, the utilization of the decision function based on the input met-
ric (MSE) has yielded highly promising results in optimizing computational
cost, latency, and, in some cases, even accuracy, offering a high degree of
flexibility in selecting the factor to optimize. The adoption of FrontNet-
based models has led to a significant reduction in terms of inference latency,
enhancing the system’s overall execution speed. On the other hand, the
combination with MobileNet-based models has resulted in higher regression
performance and lower errors, while still maintaining acceptable reductions
in latency and computational cost.

Our experiments have demonstrated the generalizability and customiza-
tion potential of our proposed methodology by showcasing the selection of
an appropriate little model for the specific application at hand. Moreover,
we have shown that systematic assignment of frames yields better system
performance compared to random assignment, and in certain scenarios, it
can even outperform the performance achieved by executing the big model
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exclusively.

5.4 Output Metrics Vs Random Models’ Se-
lection

To further explore the effectiveness of the proposed methodology, we adopted
a similar methodology a similar approach to the original Big/Little method
presented by [27] was adopted. The decision functions were designed using
four distinct metrics. Our aim was to keep the design as simple as possible;
therefore, we employed the absolute difference between the little model’s pre-
dictions on the previous frame (referred to as Ypred at time T ) and the current
frame (referred to as Ypred at time T − 1). The model’s output, denoted as
Ypred, consists of a vector [X, Y, Z, Φ]. Additional details regarding these
metrics are provided in the previous section 4.6. To evaluate the effectiveness
of these metrics, we followed a similar evaluation process as in comparing the
proposed approach to random model selection. The difference lies in the exe-
cution time of both approaches. In the case of random model selection, both
approaches are executed after the little model, and a binary decision is made
to either keep the predictions as the final inference results or invoke the big
model. On the other hand, in our proposed approach, the decision is made
by comparing the output of the decision function to a predefined threshold.

5.4.1 Decision on Sum errors
The first output decision function is constructed by calculating the sum of
the absolute differences in errors as follows:

Score = |Ŷ x
T − Ŷ x

T −1| + |Ŷ y
T − Ŷ y

T −1| + |Ŷ z
T − Ŷ z

T −1| + |Ŷ Φ
T − Ŷ Φ

T −1| (5.1)

where :

Ŷ x
T ≡ the normalized current prediction of the model for the variable x

Ŷ y
T ≡ the normalized current prediction of the model for the variable y

Ŷ z
T ≡ the normalized current prediction of the model for the variable z

Ŷ Φ
T ≡ the normalized current prediction of the model for the variable Φ

Score ≡ the sum of the normalized Absolute Error on [x, y, z,Φ]
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(a) MSmall1.0 and Fsmall11

(b) MSmall1.0 and Fsmall22

(c) MSmall1.0 and Msmall0.25

Figure 5.7: Decison on sum - MAE-SUM vS NMACs Results
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Figures 5.7a, 5.7b, and 5.7c depict the evaluation of the decision func-
tion based on sum errors 5.1, demonstrating superior performance compared
to random model selection across different combinations of models. How-
ever, the observed improvement is not substantial when compared to us-
ing only the big model or the small model individually. Among the model
combinations, the MSmall1.0 and Fsmall011 combination show the most
significant improvements, characterized by a steeper error curve. This is pri-
marily due to the notable variation in performance and computational cost
between these two models. Nevertheless, achieving a satisfactory trade-off
between performance, computational cost, and latency becomes challenging
when considering the default execution of the little model. For instance,
adopting a balanced execution plan with equal weights (50/50%) leads to a
modest reduction of approximately 17.5% in latency and 9.8% in NMACs.
However, this approach also results in an increase of approximately 12% in
error compared to exclusively executing the static big model (MSmall1.0).
It is worth noting that by utilizing the input decision function described in
Section 5.3.5 under the same execution plan, it becomes possible to achieve
equivalent regression performance with a reduction in latency by ×2 and a
computational cost reduction of around 35% and 29%, respectively.

5.4.2 Decision on X errors
The second output decision function focuses on the error specifically on vari-
able x, comparing the previous and current predictions of the little model.
The outcomes of this decision function are depicted in Figures 5.8a, 5.8b,
and 5.8c. However, the results are similar to those obtained from the de-
cision function based on sum errors, showing no significant improvements.
Similar observations were made for the decision functions based on variables
y and Φ. Therefore, we will not present detailed results in this section. In the
subsequent section, we will analyze the outcomes from a different perspective.
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(a) MSmall1.0 and Fsmall11

(b) MSmall1.0 and Fsmall22

(c) MSmall1.0 and Msmall0.25

Figure 5.8: Decison on x - MAE-SUM vs NMACs Results

70



5.4 – Output Metrics Vs Random Models’ Selection

5.4.3 Analysis of Output Decision Metrics in Relation
to Network Performance on Individual Regres-
sion Variables

In this section, we conducted an analysis to investigate the relationship be-
tween the variables used in the decision metric and the network’s predictions
for these variables. We calculated MAEsum for each regression variable and
visualized the results in Figures 5.10a, 5.10b, and 5.9. The focus of this
analysis was on the curves corresponding to the variable x, which showed
significant improvements in the network’s performance when the decision
metric was based on x compared to alternative decision metrics. A simi-
lar trend was observed for the variable y, indicating that the little model
performed better in predicting this variable.

Figure 5.9: Decision on Φ

Furthermore, the examination of the decision metric curves for the variable
Φ and the sum of errors (Sum) provided valuable insights. We observed a
proportional relationship between the decision metric and the variable Φ,
with Φ contributing the most to the MAE for the Sum decision metric due
to its larger margin of error. In contrast, the variable z was found to be the
easiest to predict, as it reflects the target height, which remains relatively
constant throughout the task.
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(a) Decision on x

(b) Decision on y

Figure 5.10: Analysis of Output Decision Metrics in Relation to Network Perfor-
mance on [x, y] Regression Variables
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5.5 Input Metrics Vs Output Metrics Vs Static
models

In this section, we conduct a comprehensive evaluation to compare the perfor-
mance of the proposed Big/Little approach, utilizing both input and output
decision functions, with the alternative approach of deploying a single static
model. Our analysis focuses on three key aspects: computational cost, infer-
ence latency, and the trade-off in regression performance. This assessment
will contribute to the understanding of the advantages and limitations of
each approach, enabling informed decision-making regarding the selection of
the most suitable model deployment strategy.

5.5.1 Input Metrics Vs Static Models
To illustrate the improvements achieved by the approach, we compare the
obtained results with the static model execution paradigm. Figure 5.11b
demonstrates the flexibility provided by the proposed method in selecting a
deployment strategy that better aligns with the computational limitations of
the target device. It can be observed that by deploying a network consisting
of the MSmall1.0 and Msmall0.25 models, with execution plans ranging
from 10% to 60% for the big model, we achieved better performance in terms
of regression performance (MAEsum) compared to all the static models and
other adaptive networks with different little models. This improvement was
accompanied by a significant reduction in computational cost compared to
the static models.

Another option for faster inference is illustrated in Figure 5.11a, where
the network denoted by MSmall1.0 and Fsmall22 exhibits promising re-
sults. By implementing an execution plan ranging from 10% to 40% for the
big model, we achieve comparable regression performance while keeping the
inference below 2 million cycles. This represents a substantial reduction in
latency, ≈ 2× faster than the execution of the MSmall1.0 static model, and
≈ 40% faster than the state-of-the-art FrontNet model for the given task.

Lastly, we examine the configuration of MSmall1.0 vs Fsmall11, which
demonstrates the greatest reduction in computational cost and latency. How-
ever, it also exhibits a significant decrease in network performance. This
trade-off may be acceptable for applications that prioritize strict real-time
inference and target devices with limited resources, where accuracy is not
the primary optimization factor.
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(a) Inference cycles Vs MAESum

(b) NMACs Vs MAESum

Figure 5.11: Analysis for the performance of Decision on MSE Vs Static Models
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5.5.2 Output Metrics Vs Static Models

In this section, we evaluate the proposed methodology utilizing output de-
cision functions, as depicted in Figures 5.12b and 5.12a. It is observed that
while this approach provides the ability to control latency and computational
cost, it comes at a significant compromise in terms of performance. Finding
an optimal trade-off is challenging due to the default execution of the little
model, which adds computational overhead to the network.

Additionally, the behavior of the different decision functions on variables
such as x, y, Φ, and sum varies across different networks. For instance,
for the MSmall1.0 and Fsmall11 network, the decision function based on
y error yields the best trade-off between regression performance, NMACs,
and inference latency. Conversely, the MSmall1.0 and Msmall0.25 network
achieves optimal performance through the decision function on sum errors.
However, as discussed in the previous section (5.4.3), there exists a rela-
tionship between the variable used to construct the decision metric and the
network’s performance on that specific variable. While the network’s predic-
tions may improve for that particular variable, the cost of increased errors
for other variables becomes evident, as the network becomes biased towards
improving predictions for a single variable. In summary, the main limita-
tions of this approach include the complexity of constructing the decision
function and the overhead associated with the default execution of the lit-
tle model. Despite efforts to optimize the execution plan, none of the plans
outperformed the regression performance of the static big model. These
findings highlight the challenges of developing an output decision function
that effectively addresses a multi-regression problem, where improvements in
predictions for one variable must be balanced with the overall performance
across all variables.
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(a) Inference cycles Vs MAESum

(b) NMACs Vs MAESum

Figure 5.12: Analysis of output decision functions Vs Static Models
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5.5.3 Input Metrics Vs output Metrics

In this section, we compare the performance of the decision function on input
metrics versus output metrics in figures [5.13,5.14,5.15,5.16].

(a) Inference cycles Vs MAESum

(b) NMACs Vs MAESum

Figure 5.13: Analysis of input decision function (MSE) Vs output decision function
on X
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(a) Inference cycles Vs MAESum

(b) NMACs Vs MAESum

Figure 5.14: Analysis of input decision function (MSE) Vs output decision function
on Y
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(a) Inference cycles Vs MAESum

(b) NMACs Vs MAESum

Figure 5.15: Analysis of input decision function (MSE) Vs output decision function
on Φ
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(a) Inference cycles Vs MAESum

(b) NMACs Vs MAESum

Figure 5.16: Analysis of input decision function (MSE) Vs output decision function
on Sum errors
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The visual results indicate that, in the worst-case scenario with the input
decision function, the big model is constantly executed. This execution is ac-
companied by the previously established negligible overhead associated with
computing the metric itself. In contrast, the worst-case scenario for the out-
put decision function involves executing the big model while considering the
default execution of the little model. As a result, the overall computational
cost and latency of the network experience a significant increase compared
to the execution of the static big model alone.

Notably, the figures (5.13, 5.14, 5.15, 5.16) demonstrate that despite the
simplicity of the Mean Squared Error (MSE) metric, it effectively distin-
guishes between hard and easy frames. This distinction allows for an opti-
mal assignment of hard frames to the big model and easy frames to the little
model. Consequently, this assignment strategy yields a substantial boost in
network regression performance, surpassing even the performance of the big
static models, while requiring less latency and computational resources. In
contrast, the output decision function fails to achieve a satisfactory trade-
off, even when considering the additional computations associated with this
approach.

5.6 Overall Assessment of adaptive methods

In this final section, we present the evaluation results of adaptive Big/Little
networks with input decision metrics and output decision functions, as well
as the comparison with static models. As discussed in previous sections,
the Big/Little approach with input decision functions demonstrated supe-
rior performance compared to other approaches. We provide a quantitative
analysis of the best-performing adaptive networks and static models in table
5.2.

By employing the input decision function approach with Mean Squared
Error (MSE) as the decision metric, two networks with different model com-
binations outperformed the most accurate static model (MSmall1.0). How-
ever, our main objective extends beyond improving network regression per-
formance; we also prioritize the reduction of inference latency and compu-
tational costs. It is important to highlight that these results were achieved
by employing different execution plans for the big model, showcasing the
flexibility of our proposed methodology.

Compared to MSmall1.0, the network combination of MSmall1.0 and
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MSmall0.25 achieved the largest reduction in MAEsum, decreasing the num-
ber of Multiply and Accumulate (MAC) operations from 10.68 million to
7.62 million MAC operations, while achieving a MAEsum reduction to 0.836.
Similarly, the network combination of MSmall1.0 and Fsmall22 achieved
nearly the same MAEsum as MSmall1.0, but with a significant reduction in
inference cycles from 3.7 million to 2.6 million cycles.

Network
Name

Network
type

Adaptive decision
Fuction probBig MAESUM

MAC Operations
[M]

Inference Cycles
[M]

MSmall0.25 static n.a. n.a. 0.871 5.58 2.2
Fsmall22 static n.a. n.a. 0.921 5.58 1.5
Fsmall11 static n.a. n.a. 1.125 5 1.2

MSmall1.0 static n.a. n.a. 0.845 10.68 3.7
FrontNet (SoA) static n.a. n.a. 0.9 14.7 3.2

MSmall1.0 | Fsmall22 adaptive Input Metric / MSE 0.5 0.8450 9.14 2.6
MSmall1.0 |MSmall0.25 adaptive Input Metric / MSE 0.4 0.8360 7.62 2.8

Table 5.2: Best performing Networks benchmarking results
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Chapter 6

Conclusions and Future
Work

In this thesis, we proposed a novel approach for input-dependent adaptive
inference in drone pose estimation. Our task involves mapping low-resolution
images to the relative pose of the subject, comprising 3D coordinates (X, Y ,
Z) and a rotation angle (Φ) w.r.t the gravity Z-axis. Real-time performance is
essential, considering strict constraints on computational power and latency.

We explore two approaches: Adaptive inference graphs utilizing convolu-
tional neural networks and the Big/Little models approach. For the Adaptive
inference graphs, we construct four networks with varying numbers of gates,
using two seed networks (FrontNet and MobileNetV1). We conduct several
experiments employing different training techniques and hyperparameters.
However, the preliminary results do not yield satisfactory outcomes. Nev-
ertheless, we consider this work as ongoing research with the potential for
future improvements.

The primary contribution of our work lies in adopting the Big/Little model
approach and addressing its limitations. We propose two methodologies: one
utilizing an input decision function based on image similarity metrics and
exploiting temporal dependencies between consecutive frames, and the other
utilizing an output decision function on the predictions of the little model
for consecutive frames.

We evaluate the proposed input decision function in two phases. Firstly,
we evaluate its performance with random model selection, where input frames
are randomly assigned to either the big or little model. We also conduct a
similar evaluation for the output decision functions. Finally, we compare the
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results of the input decision function with those of the output decision func-
tions. We further compare the performance of the networks to state-of-the-
art models, including FrontNet and Msmall1.0, which are already optimized
for the task at hand. The evaluation is based on the sum of mean absolute
error for all regression variables (MAEsum), as well as the reduction in la-
tency represented by inference cycles and the computational cost measured
in terms of the number of Multiply and Accumulate (NMACs).

To demonstrate the efficiency of the proposed methodology, we construct
three different big/little networks, fixing one distinct big model and alter-
nating between three little models with different characteristics. By utilizing
the decision function on MSE and employing the network Msmall1.0 and
Msmall0.25 with an execution plan ranging from 30% to 60% for the big
model, we achieve comparable error rates to the static model Msmall1.0
while reducing both latency and computational cost. With a 40% execution
plan, we even exceed the regression performance of the static Msmall1.0,
resulting in a 0.015 reduction in MAEsum and reducing inference cycles and
NMACs by approximately 25% and 29%, respectively.

The introduced input decision function effectively allocates resources by
accurately distinguishing between ‘hard’ and ‘easy’ samples, assigning them
to the big and little models, respectively, with a negligible computation over-
head. Moreover, it addresses the limitations of the original big/little ap-
proach (output decision function), which suffers from increased latency and
computational cost due to the default execution of the little model. Addi-
tionally, the proposed method offers flexibility in selecting models based on
specific application requirements and target devices and enables a control-
lable trade-off between network performance, and inference latency. Addi-
tionally, we analyzed the effects of the decision variable used in the output
decision function on the network performance of that variable. Our study
highlights the challenges of designing a simple decision function that cap-
tures information about all regression variables without incurring additional
computational overhead.

For future work, we plan to conduct in-field tests with different execu-
tion plans and explore dynamic threshold selection. Additionally, we aim to
benchmark the results of MSE against other image similarity metrics, such
as Structural Similarity Index (SSIM) and Normalized Root Mean Squared
Error (NRMSE). Furthermore, we intend to continue enhancing the approach
with ConvNets adaptive inference graphs.
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