
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering - Computer

Networks and Cloud Computing

Master’s Degree Thesis

Experimental Serverless Architecture for
Real-Time Sensor Data Monitoring in

Fog Computing Environments

Supervisor

Prof. RICCARDO SISTO

Tutors

Dott. MARCO SCHIAPPARELLI

Dott. DANILO ABBALDO

Candidate

GIULIA BIANCHI

ACADEMIC YEAR 2022/2023

Summary

The rapid growth of IoT (Internet of Things) and Fog Computing technologies
has brought about new opportunities and challenges in data monitoring and
processing. This research focuses on the feasibility of using a Function-as-a-Service
(FaaS) solution, specifically OpenWhisk, for monitoring sensor data in a Fog
Computing environment. The study includes an analysis of existing tools, the
development of an experimental use case, and evaluation of the solution’s real-time
properties and scalability. The objectives are to assess the practical viability of
the proposed serverless architecture for edge device monitoring and to provide
insights into its benefits and challenges. The thesis presents an introduction,
background information, analysis of FaaS tools, exploration of OpenWhisk, use case
definition, architecture details, experimental deployment, feasibility demonstration,
and conclusions. This research contributes to the understanding of efficient sensor
data monitoring in Fog Computing environments, offering valuable insights for
future studies and applications.

ii

Acknowledgements

To those who have been a constant presence by my side, your unwavering support
and belief in me have been the pillars of my success. Your encouragement, guidance,
and friendship have provided the strength and motivation needed to overcome
obstacles and reach new heights. I am forever grateful for the enduring connections
we have forged.

To those whose paths briefly intersected with mine, your influence, though fleet-
ing, has left an indelible impression on my heart. Through our shared moments,
conversations, and experiences, you have broadened my horizons and enriched my
perspective. I am grateful for the inspiration and insights you have brought into
my life.

And to those who have moved on from my journey, whether by choice or cir-
cumstance, your impact remains etched within me. The memories we created, the
lessons learned, and the growth we fostered together continue to shape my thoughts
and actions. I carry your presence as a cherished part of my story.

I would also like to extend my thanks to the Riccardo Sisto, my academic su-
pervisor, and to everyone I have met in Liquid Reply, who have provided valuable
insights and support throughout the duration of my thesis work. Your expertise,
patience, and willingness to share your knowledge have enriched my research ex-
perience. Your guidance and feedback have played an integral role in refining my
work and ensuring its quality. I am thankful for the opportunity to learn from your
expertise and to benefit from your mentorship.

As I stand here, presenting my master thesis, I extend my deepest gratitude
to each and every one of you. Your contributions have been invaluable, and I am
forever indebted to you for the role you have played in shaping my academic path.
May our paths continue to intersect, and may we inspire and uplift one another as
we forge ahead on our respective journeys.

iii

With deepest appreciation,

ありがとうございます!
Giulia

iv

Table of Contents

List of Tables x

List of Figures xi

Acronyms xvi

1 Introduction 1
1.1 Objectives . 3
1.2 Methodology . 3
1.3 Thesis Organization . 5

2 Background 7
2.1 Internet of Things . 7
2.2 Fog Computing . 8
2.3 Function-as-a-Service . 10

3 Analysis of Existing FaaS Tools 12
3.1 Criteria for Tool Evaluation . 12
3.2 Tools . 16

3.2.1 OpenFaaS . 17
3.2.2 OpenWhisk . 17
3.2.3 Knative . 18
3.2.4 AWS Lambda . 18
3.2.5 Google Cloud Functions . 19
3.2.6 Microsoft Azure Functions 19

3.3 Comparison Matrix . 19
3.4 Selection of OpenWhisk . 25

3.4.1 Exclusion Of Cloud Provider Tools 26
3.4.2 Exclusion of OpenFaaS and Knative 27
3.4.3 OpenWhisk: The Chosen Tool for Feasibility Assessment . . 30

vi

4 Deep Dive Into OpenWhisk 33
4.1 Introduction to OpenWhisk Components 34

4.1.1 Overview of OpenWhisk Architecture 34
4.2 OpenWhisk CLI . 36

4.2.1 Overview of OpenWhisk CLI 37
4.2.2 Working with the CLI: Installation and Configuration 37

4.3 Actions in OpenWhisk . 37
4.3.1 Understanding Actions in OpenWhisk 37
4.3.2 Creating and Managing Actions 38
4.3.3 Supported Programming Languages 38
4.3.4 Packaging and Deploying Actions 39
4.3.5 Versioning and Managing Action Lifecycle 39
4.3.6 Interaction Between Components To Invoke an Action . . . 39

4.4 Triggers and Rules in OpenWhisk 41
4.4.1 Creating and Managing Triggers and Rules 42
4.4.2 Triggering Actions with Triggers 44
4.4.3 Supported Trigger Types . 44
4.4.4 Combining Trigger with Rules for Event-Driven Workflows . 44

4.5 OpenWhisk Packages . 44
4.5.1 Introduction to OpenWhisk Packages 45
4.5.2 Action In OpenWhisk Packages 45
4.5.3 Feeds in OpenWhisk Packages 45
4.5.4 Packages Organization and Namespace 46
4.5.5 Browsing and Utilizing Packages 46
4.5.6 MQTT and Alarm Packages 46

4.6 Load Balancer . 46
4.6.1 Introduction to Load Balancer 47
4.6.2 ShardingContainerPoolBalancer Overview 47
4.6.3 Algorithm Explanation . 47
4.6.4 Capacity Checking and User-Memory Configuration 47
4.6.5 Invoker Health Checking . 47

5 Use Case Definition 48
5.1 Use Case Scenario . 48
5.2 Use Case Scenario Adaptability . 49

6 Architecture and Implementation Details 52
6.1 Use Case Architecture . 52

6.1.1 Architecture Overview . 53
6.1.2 Sensor Data Publication . 54
6.1.3 Data Storage for Sensor Readings 55

vii

6.1.4 Aggregates Storage . 56
6.1.5 OpenWhisk in Each Instance: Centralized CouchDB and

Local Caches . 58
6.1.6 Enable Action Execution . 59
6.1.7 Aggregates Visualization . 61
6.1.8 Architecture Summary . 62
6.1.9 Components of the Architecture 64

6.2 Implementation Details . 69
6.2.1 Main Action Mechanism . 70
6.2.2 Interaction Between Components 72

7 Experimental Deployment 76
7.1 Technologies and Tools . 76

7.1.1 Kubernetes . 76
7.1.2 Docker . 77
7.1.3 Helm . 78
7.1.4 ChartMuseum . 79
7.1.5 Traefik . 79
7.1.6 Arduino IDE . 80

7.2 Deployment Environment and Sensors Integration 81
7.2.1 Deployment Environment 81
7.2.2 ESP8266 Sensor Integration 82

7.3 Deployment Process . 83
7.3.1 Edge Instance Deployment 83
7.3.2 Centralized Instance Deployment 88

7.4 Deployed Charts . 97
7.4.1 Centralized Chart . 98
7.4.2 Edge Chart . 99
7.4.3 Subcharts . 99

8 Demonstration of Feasibility 109
8.1 Chosen Properties . 110

8.1.1 Scalability . 110
8.1.2 Real Time Capabilites . 111
8.1.3 Integration of System Components 113
8.1.4 Ease of System Managment 114

8.2 Evaluation Methodology . 115
8.2.1 Measurement of Response Times 115
8.2.2 Measurement of CPU and Memory Utilization 116
8.2.3 Measurement of Traffic Exchanged 117

viii

8.2.4 Evaluation of Fitted Models for Response Times, CPU, Mem-
ory Utilization and Traffic Exchanged 117

8.2.5 Analysis and Interpretation 118
8.3 Model Fitting . 118

8.3.1 Curve Fitting . 119
8.3.2 MATLAB and Fitting Functions 123
8.3.3 Error Rates and Model Evaluation 124
8.3.4 MATLAB Code Example . 129

8.4 Metrics and Tools . 131
8.4.1 Prometheus Overview . 131
8.4.2 Exporting Metrics from OpenWhisk 132
8.4.3 Exporting Metrics with k3s Exporter Stack 134
8.4.4 Prometheus as a Data Source for Grafana 134
8.4.5 Average Response Time and Maximum Response Time Metric135
8.4.6 CPU Utilization Metric . 136
8.4.7 RAM Utilization Metric . 137
8.4.8 Network Troughput Metric 138

8.5 Evaluation Results and Analysis . 139
8.5.1 Response Time Analysis . 139
8.5.2 CPU Utilization Analysis 145
8.5.3 Network Throughput Analysis 164

8.6 Final Considerations . 170

9 Conclusions 172
9.1 Research Objectives Overview . 172
9.2 Methodology Overview . 172
9.3 Feasibility Evaluation Overview . 173
9.4 Proven Benefits . 174
9.5 Limitations and Future Studies . 175
9.6 Final Statements . 176

A GitHub Repository 177

Bibliography 179

ix

List of Tables

3.1 Comparison Matrix – Open Source Tools [12] 20
3.2 Comparison Matrix – Cloud Provider Tools [12] 22

8.1 Average Response Time for Different Numbers of Sensors 141
8.2 Average Response Time Evaluation Metrics 142
8.3 Maximum Response Time for Different Numbers of Sensors 144
8.4 Average CPU Utilization for Different Numbers of Sensors 150
8.5 Fitting Results for Centralized CPU Utilization 152
8.6 Fitting Results for Edge CPU Utilization 154
8.7 Average RAM Utilization for Different Numbers of Sensors 160
8.8 Fitting Results for Centralized RAM Utilization 161
8.9 Fitting Results for Edge RAM Utilization 163
8.10 Average Network Throughput for Different Numbers of Sensors . . . 167
8.11 Fitting Results for Network Throughput 169

x

List of Figures

1.1 Methodology Adopted to Develop the Thesis 5

2.1 IoT . 8
2.2 Fog Computing Layers . 9
2.3 Cloud Computing Models . 10

3.1 Criteria for Tool Evaluation . 16
3.2 OpenFaas Logo . 17
3.3 OpenWhisk Logo . 17
3.4 Knative Logo . 18
3.5 AWS Lambda Logo . 18
3.6 Google Cloud Functions Logo . 19
3.7 Microsoft Azure Functions Logo . 19
3.8 Exclusion Of Cloud Provider Tools 27
3.9 Exclusion Of OpenFaaS . 28
3.10 Exclusion Of Knative . 29
3.11 Reasons for Choosing OpenWhisk 32

4.1 Main OpenWhisk Components . 35
4.2 OpenWhisk CLI . 36
4.3 OpenWhisk Action Execution Process 41
4.4 OpenWhisk Triggers and Rules . 42
4.5 Trigger-Rule-Action Mechanism in OpenWhisk 44
4.6 Feeds in OpenWhisk Packages . 45

5.1 Use Case General Architecture . 49
5.2 Use Case Adapted to Agriculture 50

6.1 Architecture Overview . 53
6.2 Sensor Data Publication . 55
6.3 Data Storage for Sensor Readings 56
6.4 Aggregates Storage . 57

xi

6.5 OpenWhisk in Each Instance: Centralized CouchDB and Local Caches 59
6.6 Enable Action Execution . 60
6.7 Aggregates Visualization . 62
6.8 Use Case Architecture . 64
6.9 MQTT Broker . 65
6.10 MQTT Provider . 66
6.11 OpenWhisk API Host . 66
6.12 OpenWhisk Alarm Provider . 67
6.13 OpenWhisk Cache . 67
6.14 InfluxDB . 68
6.15 CouchDB . 69
6.16 Grafana . 69
6.17 addReadingToDb Action Mechanism 70
6.18 Aggregate Action Mechanism . 71
6.19 Interaction Between Components for addReadingToDb action . . . 73
6.20 Interaction Between Components for the Actions Related to Aggregates 75

7.1 Components of Kubernetes . 77
7.2 Containerization Process . 78
7.3 Helm Architecture . 78
7.4 Chartmuseum and Its Interaction With Helm 79
7.5 Details About How Traefik Ingress Controller Works 80
7.6 Arduino IDE . 81
7.7 Single-Node Cluster Details . 82
7.8 Use Case Sensor . 82
7.9 Grafana Dashboards for the Use Case 96
7.10 IngressRoute for CouchDB . 100
7.11 Dockerfile for the Updated Runtime 101
7.12 Old Runtime vs New Runtime . 102
7.13 Old Configuration of Alarm Provider Pod vs New Configuration . . 103
7.14 IngressRoute for InfluxDB . 105
7.15 GrafanaDataSource for InfluxDB 107

8.1 Desired System Behaviour for Scalability 111
8.2 Desired System Behaviour for Real-Time Capabilities 112
8.3 Integration of System Components 113
8.4 Centralized Managment with Single CouchDB 114
8.5 Response Time . 116
8.6 Traffic Exchanged . 117
8.7 Example of Curve Fitting . 119
8.8 Example of a Plot for a Linear Curve 120

xii

8.9 Example of a Plot for a Logarithmic Curve 121
8.10 Example of a Plot for an Exponential Curve 122
8.11 R-Squared Visual Explanation . 126
8.12 Predicted Values and Actual Values in RMSE 127
8.13 Different BIC for Different Curve Fittings 128
8.14 Different AIC for Different Curve Fittings 129
8.15 General Architecture with Prometheus 132
8.16 Prometheus as a Data Source for Grafana 135
8.17 Average Response Time for 1 Sensor 139
8.18 Average Response Time for 2 Sensors 139
8.19 Average Response Time for 4 Sensors 140
8.20 Average Response Time for 8 Sensors 140
8.21 Average Response Time for 16 Sensors 140
8.22 Average Response Time for 32 Sensors 140
8.23 Average Response Time for 64 Sensors 141
8.24 Plot for Average Response Time Fittings 142
8.25 Average Centralized CPU Utilization for 1 Sensor 145
8.26 Average Centralized CPU Utilization for 2 Sensors 146
8.27 Average Centralized CPU Utilization for 4 Sensors 146
8.28 Average Centralized CPU Utilization for 8 Sensors 146
8.29 Average Centralized CPU Utilization for 16 Sensors 147
8.30 Average Centralized CPU Utilization for 32 Sensors 147
8.31 Average Centralized CPU Utilization for 64 Sensors 147
8.32 Average Edge CPU Utilization for 1 Sensor 148
8.33 Average Edge CPU Utilization for 2 Sensors 148
8.34 Average Edge CPU Utilization for 4 Sensors 148
8.35 Average Edge CPU Utilization for 8 Sensors 149
8.36 Average Edge CPU Utilization for 16 Sensors 149
8.37 Average Edge CPU Utilization for 32 Sensors 149
8.38 Average Edge CPU Utilization for 64 Sensors 150
8.39 Plot for Average Centralized CPU Utilization Fittings 151
8.40 Plot for Average Edge CPU Utilization Fittings 153
8.41 Average Centralized RAM Utilization for 1 Sensor 155
8.42 Average Centralized RAM Utilization for 2 Sensors 155
8.43 Average Centralized RAM Utilization for 4 Sensors 156
8.44 Average Centralized RAM Utilization for 8 Sensors 156
8.45 Average Centralized RAM Utilization for 16 Sensors 156
8.46 Average Centralized RAM Utilization for 32 Sensors 157
8.47 Average Centralized RAM Utilization for 64 Sensors 157
8.48 Average Edge RAM Utilization for 1 Sensor 157
8.49 Average Edge RAM Utilization for 2 Sensors 158

xiii

8.50 Average Edge RAM Utilization for 4 Sensors 158
8.51 Average Edge RAM Utilization for 8 Sensors 158
8.52 Average Edge RAM Utilization for 16 Sensors 159
8.53 Average Edge RAM Utilization for 32 Sensors 159
8.54 Average Edge RAM Utilization for 64 Sensors 159
8.55 Plot for Average Centralized RAM Utilization Fittings 161
8.56 Plot for Average Edge RAM Utilization Fittings 163
8.57 Average Network Throughput for 1 Sensor 165
8.58 Average Network Throughput for 2 Sensors 165
8.59 Average Network Throughput for 4 Sensors 165
8.60 Average Network Throughput for 8 Sensors 166
8.61 Average Network Throughput for 16 Sensors 166
8.62 Average Network Throughput for 32 Sensors 166
8.63 Average Network Throughput for 64 Sensors 167
8.64 Plot for Average Network Throughput Fittings 168

xiv

Acronyms

IoT
Internet of Things

FaaS
Function-as-a-Service

AWS
Amazon Web Services

CLI
Command Line Interface

GCP
Google Cloud Platform

CPU
Central Processing Unit

API
Application Programming Interface

S3
Simple Storage Service

SNS
Simple Notification Service

MIT
Massachusetts Institute of Technology

xvi

HTTP
Hypertext Transfer Protocol

SSL
Secure Socket Layer

REST
Representational State Transfer

NoSQL
Not Only SQL

URL
Uniform Resource Locator

SDK
Software Development Kit

PHP
Hypertext Preprocessor

NGINX
Engine X

MQTT
Message Queuing Telemetry Transport

LRU
Least Recently Used

SLA
Service Level Agreement

CRUD
Create, Read, Update, Delete

NodeMCU
Node Microcontroller Unit

xvii

HTTPS
Hypertext Transfer Protocol Secure

TLS
Transport Layer Security

IDE
Integrated Development Environment

k3s
Kubernetes on Small Scale

RAM
Random Access Memory

Wi-Fi
Wireless Fidelity

DHT11
Digital Humidity and Temperature Sensor 11

SSID
Service Set Identifier

EEPROM
Electrically Erasable Programmable Read-Only Memory

NPM
Node Package Manager

CRD
Custom Resource Definition

R2

Coefficient of Determination

RMSE
Root Mean Square Error

xviii

AIC
Akaike Information Criterion

BIC
Bayesian Information Criterion

SSR
Sum of Squared Residuals

SST
Sum of Squares Total

DevOps
Development and Operations

I/O
Input/Output

PromQL
Prometheus Query Language

JSON
JavaScript Object Notation

YAML
YAML Ain’t Markup Language

QoS
Quality of Service

GUI
Graphic User Interface

xix

Chapter 1

Introduction

The rapid growth of IoT (Internet of Things) and Fog Computing technologies has
introduced new opportunities and challenges in the field of data monitoring and
processing. [1] In this context, one significant problem arises: how to efficiently
monitor and analyze sensor data generated by distributed IoT devices in a Fog
Computing environment. Efficient monitoring refers to the ability to optimize
resource utilization, minimize latency, and ensure timely data analysis [2]. Another
challenge to consider in this context is addressing the centralized management of
a distributed architecture. These problems are of utmost importance in practical
applications, such as smart cities, industrial automation, and environmental moni-
toring, where real-time data analysis and decision-making are crucial [3].

This research focuses on the architectural experimentation and feasibility assess-
ment of a Function-as-a-Service (FaaS) solution within the context of IoT and Fog
Computing, in order to give an architectural basis to enable the future addressing
of most of these challenges. Timely data analysis and centralized management will
be covered as topics of this work when evaluation the feasibility of the solution,
but aspects like resource optimization and latency minimization are left to further
studies. The aim is to explore the viability of deploying a FaaS solution, specifically
OpenWhisk, for monitoring sensor data in a Fog Computing environment. This
approach allows for a thorough investigation of the architectural aspects and the
practical implementation of a scalable sensor data monitoring system.

A Function-as-a-Service (FaaS) solution, such as OpenWhisk, shows potential
for addressing these challenges and achieving scalability and efficiency in sensor
data monitoring. FaaS offers a serverless computing model where functions are
executed in response to specific events or triggers. This event-driven architecture
allows for automatic scaling of resources based on demand, making it highly suitable
for handling dynamic workloads generated by distributed IoT devices. As the

1

Introduction

number of sensors and data streams increases, the FaaS solution can seamlessly
scale resources, ensuring efficient utilization and responsiveness.

Furthermore, the modular nature of FaaS allows for fine-grained resource allo-
cation. Each function can be individually scaled, optimized, and managed, enabling
efficient resource utilization. Additionally, the serverless model eliminates the need
for manual provisioning and management of infrastructure, reducing operational
overhead and increasing overall system efficiency [4].

The research methodology involved conducting an analysis of existing tools and
technologies with a primary focus on functional criteria. By considering the func-
tional aspects, such as ease of use, event-driven capabilities, and compatibility with
distributed systems, the research aimed to identify a suitable FaaS platform for
the proposed application.

To validate the feasibility of the selected solution, an experimental use case was
developed and implemented using OpenWhisk. The use case represents a typical
scenario in which sensor data need to be collected, processed, and analyzed in a
distributed Fog Computing environment. The development and architecture of the
use case were designed to showcase the practical applicability of OpenWhisk in
addressing the challenges of sensor data monitoring.

The evaluation of the implemented solution involved conducting experiments to
assess its real-time properties and scalability. This evaluation provided insights
into the capabilities of OpenWhisk in handling a realistic workload and demon-
strated the feasibility of using a FaaS approach for sensor data monitoring in a Fog
Computing environment.

However, it is important to note that the specific evaluation of optimized re-
source utilization and minimization of latencies has not been conducted in this
research. The primary goal of this thesis was to assess the feasibility of the proposed
solution, in order to give a starting point to demonstrate its potential for addressing
challenges of sensor data monitoring that are not explored in this work. While
the architecture and implementation of the solution showcase the potential for
optimized resource utilization and efficient monitoring, a comprehensive evaluation
of these aspects, including performance comparisons with other architectures and
benchmarking, is a topic for future studies.

The architectural design employed in this research, utilizing a Function-as-a-Service
(FaaS) solution like OpenWhisk within a Fog Computing environment, exhibits
the potential for optimized resource utilization and efficient monitoring. The

2

Introduction

event-driven scalability of the FaaS model allows for automatic scaling of resources
based on demand, ensuring efficient utilization and responsiveness as the number of
sensors and data streams increases. Moreover, the fine-grained resource allocation
capabilities enable efficient utilization by scaling and managing individual functions.
The serverless infrastructure management aspect eliminates the need for manual
provisioning and management of infrastructure, reducing operational overhead and
increasing overall system efficiency. Additionally, the distributed nature of Fog
Computing, combined with the scalability of FaaS, supports efficient monitoring
and analysis of sensor data, bringing computation closer to the data source and
reducing latency.

To fully assess the optimality of the architecture in terms of resource utiliza-
tion and latency minimization, further studies involving performance evaluations
and comparisons with alternative architectures are necessary. These future evalu-
ations would provide a deeper understanding of the FaaS solution’s performance
characteristics and its efficiency compared to other approaches.

1.1 Objectives
The research aims to demonstrate the practical feasibility of the proposed server-
less architecture for edge device monitoring in a fog computing environment, with
one of the key objectives being to define the architecture itself. To showcase
the practical feasibility of the architecture, the initial step involves constructing a
proof-of-concept implementation. Subsequently, the focus shifts towards demon-
strating its applicability in real-world scenarios by evaluating key factors such as
scalability, real-time capabilities, and centralized component manage-
ment. Additionally, the objective is to evaluate the seamless integration of
diverse components within the architecture, ensuring their effective collaboration
and interoperability.

By achieving these objectives, the research aims to provide valuable insights
into the potential benefits and challenges of implementing such an architecture in
real-world scenarios. Furthermore, the research strives to ensure a cohesive and
well-integrated system for edge device monitoring, contributing to the advancement
of fog computing and its practical application in monitoring environments.

1.2 Methodology
To achieve the stated objectives, the following research approach and tools were
employed:

3

Introduction

1. Literature Review: A comprehensive review of existing literature and
research papers was conducted to gain a deep understanding of serverless
computing, fog computing and their applications in IoT environments. This
literature review served as the foundation for identifying key concepts, chal-
lenges, and potential solutions related to the implementation of a serverless
architecture in a fog computing environment.

2. Software Selection: A careful evaluation of available serverless platforms
was conducted based on functional requirements specific in a fog computing
environment. Criteria such as ease of deployment, compatibility with different
programming languages, and support for event-driven architectures were
considered. OpenWhisk was selected as the preferred serverless platform for
its suitability and alignment with the research objectives.

3. System Design: Based on the knowledge gained from the literature review
and the chosen serverless platform, a system design was developed to outline the
architecture and components of the proposed solution. The design focused on
leveraging computing capabilities, confining computation to the edge clusters,
and incorporating a centralized management component.

4. Implementation: A proof-of-concept system was implemented to demon-
strate the feasibility of the proposed architecture. OpenWhisk was deployed
on the edge clusters, enabling real-time monitoring capabilities with integrated
edge devices. Additionally, OpenWhisk was also deployed in the centralized
management component, providing seamless coordination between the edge
clusters and centralized operations. The implementation utilized ESP-8266
sensor to collect temperature, gas percentage, and humidity data from each
data center, ensuring comprehensive monitoring of their "health" status.

5. Experimentation and Evaluation: Experiments were conducted to eval-
uate the feasibility of the implemented system in the context of serverless
architecture and edge computing capabilities. The primary objective was to
demonstrate the system’s ability to scale and maintain real-time responsiveness
as the number of sensors increased, in order to have a proof of its fesibility.
To assess these aspects key metrics including average response time, average
network troughput, average CPU utilization, and average RAM utilization
were measured and analyzed.

6. Data Analysis and Findings: The collected data from the experiments
were analyzed to draw conclusions and evaluate the feasibility and effectiveness
of the proposed solution. The findings were compared against the objectives
and discussed.

4

Introduction

Figure 1.1: Methodology Adopted to Develop the Thesis

1.3 Thesis Organization
The thesis is organized in the following sections:

1. Introduction: This chapter provides an introduction to the research topic,
presents the objectives of the study, and outlines the methodology used to
achieve these objectives.

2. Background: In this chapter, the background information related to the
research topic is presented. It covers concepts such as Internet of Things (IoT),
Fog Computing, and Function as a Service (FaaS).

3. Analysis of Existing FaaS Tools: This chapter analyzes various FaaS
tools available in the market, including OpenFaaS, OpenWhisk, Knative,
AWS Lambda, Google Cloud Functions, and Microsoft Azure Functions. A
comparison matrix is provided, and the selection of OpenWhisk as the chosen
FaaS tool is explained.

4. Deep Dive into OpenWhisk: This chapter provides an in-depth exploration
of the OpenWhisk platform, its components, and functionalities. It covers
topics such as the OpenWhisk CLI, actions, triggers and rules, packages, and
the cache and load balancer mechanisms.

5. Use Case Definition: This chapter defines the use case scenario that will
be used to evaluate the feasibility of the proposed solution. It discusses the
use case scenario and its adaptability.

6. Architecture and Implementation Details: This chapter presents the
architecture of the proposed solution based on OpenWhisk. It describes the
components of the architecture and provides implementation details, including
the main action mechanism and component interaction.

7. Experimental Deployment: This chapter focuses on the practical implemen-
tation of the system, shedding light on the technologies, tools, and processes
involved in deploying the edge and centralized instances.

5

Introduction

8. Demonstration of Feasibility: This chapter focuses on the demonstration
of the feasibility of the system, in particular on the details of how scalability
and real-time properties are evaluated in the context of the centralized and
edge instances.

9. Conclusions: This final chapter summarizes the key findings of the research
and presents the conclusions drawn from the evaluation. It also discusses the
limitations of the study and suggests potential areas for future research.

6

Chapter 2

Background

In order to comprehend the context and significance of the proposed solution, it
is essential to establish a foundation by examining three key components: the
Internet of Things (IoT), fog computing, and Function-as-a-Service (FaaS).
These technologies play crucial roles in enabling efficient data processing, analysis,
and communication, thereby revolutionizing various domains and industries.

2.1 Internet of Things

The Internet of Things (IoT) is a transformative technology that encompasses a
vast network of interconnected devices, ranging from everyday objects to complex
machinery, embedded with sensors, software, and network connectivity [5] [6].
These devices have the ability to collect, exchange, and analyze data, enabling
them to communicate with each other and with centralized systems.

The significance of IoT in today’s world lies in its ability to revolutionize nu-
merous industries and sectors. By connecting physical objects and integrating them
into digital systems, IoT enables enhanced automation, monitoring, and control of
various processes [7] [8]. It has the potential to improve efficiency, productivity, and
decision-making across diverse domains, including manufacturing, transportation,
healthcare, agriculture, and more [9].

In this solution, IoT devices play a vital role as sensors deployed within the
data centers. These devices continuously collect data related to environmental
conditions, such as temperature, humidity, and gas levels. These real-time data
provide valuable insights into the health and performance of the data centers,
facilitating proactive maintenance.

7

Background

Figure 2.1: IoT

2.2 Fog Computing
Fog computing is a distributed computing paradigm that extends the cloud com-
puting paradigm to the edge of the network [10]. It provides a way to process
and store data closer to the source of the data, which can improve performance
and reduce latency. Fog computing is often used in applications where real-time
response is critical, such as in the Internet of Things (IoT).

The fog computing architecture consists of three layers:

1. The edge layer is the closest to the data source. It consists of devices such
as sensors, actuators, and gateways.

2. The fog layer is in the middle of the network. It consists of servers and
routers that can perform some processing and storage.

3. The cloud layer is the farthest from the data source. It consists of large data
centers that can provide a lot of processing and storage power.

8

Background

Figure 2.2: Fog Computing Layers

Fog computing has a number of advantages over cloud computing, including:

1. Improved performance: Fog computing can improve performance by re-
ducing latency. This is because data does not have to travel as far to be
processed.

2. Reduced bandwidth usage: Fog computing can reduce bandwidth usage
by performing some processing and storage at the edge of the network. This
can free up bandwidth for other applications.

3. Increased security: Fog computing can increase security by processing data
closer to the source. This can make it more difficult for attackers to access
the data .

Fog computing is a promising new technology that has the potential to revolutionize
the way we use the Internet. It has a number of advantages over cloud computing,
and it is well-suited for applications where real-time response is critical.

In this solution, fog computing plays a pivotal role in optimizing the monitor-
ing of multiple data centers in a fog computing environment. By deploying fog
nodes within each data center, it is possible to process and analyze sensor data
locally, reducing reliance on centralized cloud resources and minimizing network
congestion.

9

Background

2.3 Function-as-a-Service
FaaS (Function-as-a-Service) is a cloud computing model that allows developers to
execute small units of code (functions) in a serverless environment. In this model,
developers focus on writing and deploying individual functions without the need to
manage the underlying infrastructure or worry about server provisioning, scaling,
or maintenance [11].

FaaS platforms, such as AWS Lambda, Google Cloud Functions, or Microsoft
Azure Functions, provide the necessary runtime environment to execute the func-
tions in response to specific events or triggers. The functions are typically short-lived
and stateless, designed to perform specific tasks or computations [11].

The significance of FaaS lies in its ability to provide a highly scalable and cost-
effective solution for executing code. By abstracting away the complexities of
infrastructure management, FaaS enables developers to focus on writing code and
delivering functionality without worrying about the underlying infrastructure. FaaS
platforms handle the scaling and management of resources automatically, allowing
functions to scale up or down based on demand [11].

Figure 2.3: Cloud Computing Models

In this solution, FaaS plays a crucial role in processing and analyzing the sensor

10

Background

data collected from the data centers. The event-driven nature of FaaS allows us to
trigger these functions in real-time based on the incoming data streams from the
sensors.

By utilizing FaaS, it is possbile to achieve efficient and scalable processing of
sensor data without the need to provision and manage dedicated servers. FaaS
gives the possibility to dynamically scale the computing resources based on the
workload, ensuring optimal performance and cost-effectiveness [11].

11

Chapter 3

Analysis of Existing FaaS
Tools

This chapter analyzes various Function as a Service (FaaS) tools to determine
the most suitable framework for the proposed solution. The evaluation focuses
on functional criteria such as license, installation type, source code availability,
programming language support, interface types, community support, and docu-
mentation.

The chapter provides an overview of FaaS tools, including OpenFaaS, OpenWhisk,
Knative, AWS Lambda, Google Cloud Functions, and Microsoft Azure Functions.

A comparison matrix summarizes the key features of open-source tools and cloud
provider tools, facilitating easy comparison.

After a comprehensive analysis, OpenWhisk is chosen as the preferred frame-
work due to its superiority in aspects such as license, installation type, source code
availability, programming language support, interface types, community support,
and documentation.

The subsequent sections explore each FaaS tool in detail, providing deeper in-
sights into their capabilities and assisting in the selection process.

3.1 Criteria for Tool Evaluation
In the selection of the most suitable tool or framework in order to reach the primary
objective of demonstrating the feasibility of this architectural experimentation,
several criteria have been defined. The focus of the evaluation lies primarily on

12

Analysis of Existing FaaS Tools

functional requirements, as the goal is to assess the feasibility and practicality of
the tools rather than their optimality. To assess the feasibility of the architecture
it should be possible to build it, so the chosen FaaS tool should not limit the
creation of the defined architecture. By choosing functional requirements that
directly assist in building the architecture, it is possible to ensure that the selected
tools effectively support its construction. Additionally, the architecture should
be designed to support various integrations with different components, systems,
or services. Furthermore, the architecture should provide tools for monitoring,
which play a vital role in evaluating scalability, real-time performance, which are
some of the objectives of this research, in order to evaluate the feasibility of the
system. Lastly, the architecture should serve as a basis for further studies, enabling
researchers to explore its optimality and identify potential areas of improvement,
so the proposed tool should allow easily extension or integrations of the architecture.

The following functional criteria will be used to evaluate the different tools [12]:

1. License: The choice of an open-source license, such as Apache 2.0 or MIT, is
beneficial for demonstrating the feasibility of an architecture. Open-source
licenses provide more flexibility for customization and collaboration, allowing
developers to modify and enhance the FaaS tool to align with the specific
requirements of the architecture. By having access to the source code, devel-
opers can tailor the tool to better integrate with other components, improve
its functionality, and advance the architecture’s capabilities. This open nature
of the license promotes experimentation, innovation, and optimization, all of
which are crucial in assessing the feasibility and practicality of the architecture
[13].

2. Installation Type: The compatibility of the FaaS tool with various installa-
tion environments is crucial in building a feasible architecture. By ensuring
that the tool can be installed on preferred target hosts, such as Docker, Ku-
bernetes, Linux, macOS, Windows, or specific cloud platforms, developers can
seamlessly deploy and manage the architecture in their desired environment. A
smooth installation process and compatibility with the chosen platform reduce
deployment complexities, streamline management efforts, and contribute to
the overall feasibility of the architecture.

3. Source Code Availability: Open-source FaaS tools with accessible source
code are particularly valuable when evaluating the effective integration between
different architecture components. By allowing developers to access and modify
the source code, these tools facilitate customization and integration with
other components within the architecture. This flexibility enables developers
to experiment with different configurations, optimize interactions between

13

Analysis of Existing FaaS Tools

components, and ensure a well-integrated system. Access to the source code
also fosters collaboration and knowledge sharing among developers, further
enhancing the feasibility and effectiveness of the architecture [14].

4. Main Programming Language: The compatibility of the FaaS tool with
multiple programming languages supports flexibility in implementing and
evaluating the architecture. By supporting a wide range of languages, such as
Node.js, Python, Java, and more, the tool accommodates the preferences and
expertise of developers. This flexibility allows for the selection of the most
appropriate language for each component, taking into account performance,
developer productivity, and integration requirements. Compatibility with
multiple programming languages enables a diverse ecosystem of developers
to contribute to the architecture’s construction and evaluation, enhancing its
feasibility [15].

5. Interface Types: A FaaS tool that offers a variety of interfaces, including
command-line interface (CLI), application programming interface (API), and
graphical user interface (GUI), simplifies the usage, development, deployment,
and management of architecture components. These interfaces provide different
entry points for developers to interact with the tool and the architecture.
CLI interfaces enable automation and scripting, API interfaces facilitate
programmatic control and integration with other tools, and GUI interfaces
offer intuitive visual representations and management capabilities. Having
multiple interface types increases the usability and accessibility of the tool,
enabling developers to effectively work with the architecture and evaluate its
feasibility [16, 17].

6. Community Support: Robust community support plays a vital role in
demonstrating the feasibility of an architecture. Active communities on plat-
forms like GitHub and Stack Overflow provide valuable resources, knowledge
sharing, and troubleshooting assistance. Developers can leverage the collec-
tive expertise of the community to address challenges, seek guidance on best
practices, and overcome implementation obstacles. This support fosters col-
laboration, accelerates development, and ensures successful implementation of
the architecture. Additionally, community engagement promotes the discovery
of potential improvements and optimizations, laying the groundwork for future
studies on the architecture’s optimality [18].

7. Documentation: Comprehensive and well-maintained documentation is cru-
cial in building a feasible architecture and integrating different components
effectively. Documentation provides a clear understanding of the FaaS tool’s
features, capabilities, and best practices, guiding developers in utilizing the
tool to its full potential. It helps with the development, deployment, and

14

Analysis of Existing FaaS Tools

management of the architecture, ensuring smooth integration between different
components. Detailed documentation enhances the feasibility of the architec-
ture by reducing implementation errors, facilitating knowledge transfer, and
enabling developers to make informed decisions [19].

8. Event Sources: The compatibility of the FaaS tool with various event sources
is essential for effective data ingestion and processing in edge device monitoring
scenarios. Support for event sources such as HTTP, messaging protocols (e.g.,
MQTT, Kafka), and cloud storage services (e.g., AWS S3, Azure Blob Storage)
enables the architecture to receive and process data from diverse sources. This
compatibility is crucial in evaluating the architecture’s feasibility in handling
real-time data streams, scaling with increasing event volumes, and integrating
with different data providers. By supporting a wide range of event sources,
the FaaS tool contributes to the architecture’s versatility and effectiveness in
edge device monitoring [12].

9. Function Orchestration: Function orchestration capabilities provided by
the FaaS tool are essential for managing workflows involving multiple functions
within the architecture. This capability is particularly useful in coordinating
different components and subsystems, assessing their effective integration,
and evaluating the architecture’s feasibility. Function orchestration allows
developers to define the sequencing, dependencies, and interactions between
functions, ensuring the desired workflow behavior. It enables the evaluation
of how well different components work together and whether the architecture
can effectively fulfill its intended purpose. Function orchestration is crucial
in assessing the feasibility of the architecture’s workflow management and
integration capabilities [20].

10. Observability: The observability features provided by the FaaS tool, such as
logging, monitoring, and metrics collection, are crucial for assessing the per-
formance, scalability, and real-time characteristics of the architecture. These
features enable developers to gain insights into the behavior of the architecture
components, resource utilization, and system-level performance. By monitor-
ing and collecting relevant metrics, developers can evaluate the architecture’s
scalability under varying workloads, ensure real-time requirements are met,
and detect and diagnose performance issues. Observability tools contribute to
the feasibility assessment by providing valuable information for optimization,
identifying bottlenecks, and validating the architecture’s performance [21].

15

Analysis of Existing FaaS Tools

Figure 3.1: Criteria for Tool Evaluation

Considering the outlined criteria is instrumental in selecting a FaaS tool that
supports the construction, integration, monitoring, and evaluation of a feasible
architecture. Each criterion contributes to specific aspects of the architecture’s
feasibility, from customization and collaboration to compatibility, monitoring, and
optimization. By carefully evaluating and selecting a tool that fulfills these criteria,
researchers and developers can demonstrate the feasibility of the architecture while
laying the foundation for further studies on its optimality.

3.2 Tools

In this section, each analyzed FaaS tool will be shortly presented.

16

Analysis of Existing FaaS Tools

3.2.1 OpenFaaS
OpenFaaS is an open-source serverless computing platform that allows developers to
build and deploy functions quickly. It provides a framework for deploying container-
ized functions and managing them as microservices. OpenFaaS supports multiple
programming languages and integrates with popular container orchestration plat-
forms like Kubernetes. It offers a scalable and event-driven architecture, making it
suitable for building serverless applications. OpenFaaS is designed for flexibility
and can be deployed on various cloud providers or on-premises environments [22].

Figure 3.2: OpenFaas Logo

3.2.2 OpenWhisk
OpenWhisk is an open-source, event-driven serverless computing platform. It allows
developers to create and run functions in response to events, such as HTTP requests
or messages from message queues. OpenWhisk supports multiple programming
languages and provides a flexible and scalable infrastructure for running serverless
workloads. It offers fine-grained scaling, meaning that resources are allocated to
functions only when needed, reducing costs and improving efficiency. OpenWhisk
is part of the Apache Software Foundation and can be deployed on various cloud
platforms or on-premises environments [23].

Figure 3.3: OpenWhisk Logo

17

Analysis of Existing FaaS Tools

3.2.3 Knative
Knative is an open-source platform built on top of Kubernetes that provides a set of
building blocks for deploying and managing serverless workloads. It abstracts away
the complexity of deploying and scaling applications by offering automatic scaling,
eventing, and request-driven compute models. Knative allows developers to focus
on writing code without worrying about infrastructure management. It supports
various programming languages and integrates with container runtimes like Docker
and container orchestration platforms like Kubernetes. Knative is designed to be
portable and can be deployed on different cloud providers [24].

Figure 3.4: Knative Logo

3.2.4 AWS Lambda
AWS Lambda is a serverless computing service provided by Amazon Web Services
(AWS). It enables developers to run code without provisioning or managing servers.
With Lambda, developers can create functions in multiple programming languages
and configure them to be triggered by various events, such as API calls, file uploads,
or database updates. AWS Lambda automatically scales the functions based
on incoming requests, ensuring high availability and cost efficiency. It integrates
seamlessly with other AWS services, allowing developers to build powerful serverless
architectures [25].

Figure 3.5: AWS Lambda Logo

18

Analysis of Existing FaaS Tools

3.2.5 Google Cloud Functions
Google Cloud Functions is a serverless computing service offered by Google Cloud
Platform (GCP). It allows developers to write functions in languages like Node.js,
Python, or Go and deploy them to Google’s infrastructure. Google Cloud Functions
can be triggered by various events, including HTTP requests, Pub/Sub messages,
or changes in cloud storage. It automatically scales functions to handle incoming
requests and provides integration with other GCP services, enabling developers to
build serverless applications using a wide range of GCP offerings [26].

Figure 3.6: Google Cloud Functions Logo

3.2.6 Microsoft Azure Functions
Microsoft Azure Functions is a serverless computing service provided by Microsoft
Azure. It allows developers to build and deploy functions in different programming
languages such as C, JavaScript, or Python. Azure Functions can be triggered by
various events, including HTTP requests, timers, or changes in data storage. The
service automatically scales functions to handle incoming requests and integrates
seamlessly with other Azure services, enabling developers to create robust serverless
applications using the Azure ecosystem [27].

Figure 3.7: Microsoft Azure Functions Logo

3.3 Comparison Matrix

19

Analysis of Existing FaaS Tools

Table 3.1: Comparison Matrix – Open Source Tools [12]

Feature OpenWhisk OpenFaaS Knative
License Apache 2.0 MIT Apache 2.0

Installation
Type

Installable on
Docker,

Kubernetes,
Linux, macOS,

Windows, Mesos

Installable on
Docker,

Kubernetes,
Linux, macOS,

Windows

Installable on
Kubernetes

Source Code
Availability

Open Source,
Repository:

Apache Incubator
(GitHub)

Open Source,
Repository:

GitHub

Open Source,
Repository:

GitHub

Main
Programming

Language

Ballerina, Binary,
Docker Image, Go,

Java, .NET,
Node.js, PHP,
Python, Ruby,

Rust, Shell, Swift

C#, Docker
Image, Go, Java,
Node.js, Python,

PHP, Ruby

Docker

Interface Type CLI, API, GUI CLI, API, GUI CLI, API

Community
Support

16,800 GitHub
Stars, 932 GitHub
Forks, 274 GitHub
Issues, 2,790 Stack

Overflow
Questions

4,900 GitHub
Stars, 487 GitHub
Forks, 215 GitHub
Issues, 1,156 Stack

Overflow
Questions

3,600 GitHub
Stars, 764 GitHub
Forks, 173 GitHub
Issues, 632 Stack

Overflow
Questions

Documentation

Platform
Documentation:

usage,
development,
deployment,
architecture.
Functions

Documentation:
development,
deployment

Platform
Documentation:

usage,
development,
deployment,
architecture.
Functions

Documentation:
deployment

Platform
Documentation:

usage,
development,
deployment.
Functions

Documentation:
deployment

Continued on next page

20

Analysis of Existing FaaS Tools

Table 3.1 – Continued from previous page
Feature OpenWhisk OpenFaaS Knative

Event Sources

Scheduler, Apache
Kafka, IBM

Message Hub,
GitHub, Slack,

Weather Company
Data, IBM Push

Notifications,
Websocket API,
hooks, polling,

connection

Scheduler, AWS
SQS, AWS SNS,
MQTT, Apache

Kafka, Azure
Event Grid,

IFTTT, VMware
vCenter, NATS,

connector plugins

Scheduler, AWS
SQS, AWS SNS,
Google Cloud

PubSub,
RabbitMQ,

Apache Kafka,
AWS Kinesis,

Apache Camel,
Kubernetes API

server events,
GitHub, GitLab,

BitBucket, Google
Cloud Scheduler,

AWS
CodeCommit,
AWS Cognito,
FTP/SFTP,

Heartbeat events,
Websocket,

plugin-based

Event Sources
(Endpoint)

Synchronous
Endpoint:

HTTP.
Asynchronous

Endpoint:
HTTP.

Customization:
yes. TLS

support: yes

Synchronous
Endpoint:

HTTP.
Asynchronous

Endpoint:
HTTP.

Customization:
yes. TLS

support: yes

Synchronous
Endpoint:

HTTP.
Asynchronous

Endpoint: -.
Customization:

yes. TLS
support: yes

Continued on next page

21

Analysis of Existing FaaS Tools

Table 3.1 – Continued from previous page
Feature OpenWhisk OpenFaaS Knative

Function
Orchestration

Function
Orchestrator:

Apache
OpenWhisk
Composer.
Function

Workflows
Definition:

Orchestrating
function.

Orchestrating
Function

Languages:
JavaScript,

Python. Control
Flow

Constructs
Documentation:

Yes. Function
Workflow

Execution Time
Quota: Yes.
Function

Workflow Task
I/O Size Quota:

No

Function
Orchestrator: -.

Function
Workflows

Definition: -.
Orchestrating

Function
Languages: -.
Control Flow
Constructs

Documentation:
-. Function
Workflow

Execution Time
Quota: -.
Function

Workflow Task
I/O Size Quota:

-

Function
Orchestrator:

Knative Eventing.
Function

Workflows
Definition:
custom DSL.

Orchestrating
Function

Languages: -.
Control Flow
Constructs

Documentation:
yes. Function

Workflow
Execution Time

Quota: no.
Function

Workflow Task
I/O Size Quota:

no

Observability
Kamon,

Prometheus,
Datadog

OpenFaaS
Gateway +
Prometheus

-

Table 3.2: Comparison Matrix – Cloud Provider Tools [12]

Feature AWS Lambda Google Cloud
Functions

Azure
Functions

License
AWS Service

Terms
(proprietary)

Google Cloud
Platform Terms
(proprietary)

SLA for Azure
Functions

(proprietary)
Continued on next page

22

Analysis of Existing FaaS Tools

Table 3.2 – Continued from previous page

Feature AWS Lambda Google Cloud
Functions

Azure
Functions

Installation
Type as-a-service as-a-service

installable and
as-a-service.

Installable on
Kubernetes,

Linux, MacOS,
and Windows

Source Code
Availability Closed Source Closed Source

Open Source,
Repository:

GitHub

Main
Programming

Language

Go, Java, .NET,
Node.js, Python,

Ruby, Shell

Go, Java, Node.js,
Python

Docker, C#,
JavaScript, F#,
Java, Powershell,

Python,
TypeScript

Interface Type CLI, API, GUI CLI, API, GUI CLI, API, GUI

Community
Support

16,800 Stack
Overflow
Questions

12,386 Stack
Overflow
Questions

1,300 GitHub
Stars, 279 GitHub
Forks, 948 GitHub
Issues, 7,200 Stack

Overflow
Questions

Documentation

Platform
Documentation:
usage. Functions
Documentation:

development,
deployment

Platform
Documentation:
usage. Functions
Documentation:

development,
deployment

Platform
Documentation:
usage, deployment.

Functions
Documentation:

development,
deployment

Continued on next page

23

Analysis of Existing FaaS Tools

Table 3.2 – Continued from previous page

Feature AWS Lambda Google Cloud
Functions

Azure
Functions

Event Sources

Scheduler, AWS
SQS, AWS SNS,
Amazon Kinesis,
Amazon Alexa,

AWS CloudTrail,
AWS CloudWatch,

AWS
CodeCommit,

AWS
CodePipeline,

Amazon Cognito,
AWS Config, AWS
EC2, Elastic Load
Balancing, AWS

IoT, Amazon
Kinesis Data

Firehose, Amazon
Lex, Amazon MQ,

Amazon RDS,
Amazon SES,

AWS X-Ray, event
source mappings

Scheduler, Google
Cloud Pub/Sub,
Google Analytics

for Firebase,
Firebase

Authentication,
Firebase Remote

Config, Cloud
Logging, Gmail,

webhooks,
messaging-based

Scheduler, Azure
Queue Storage,

Azure Service Bus,
RabbitMQ, Azure

Event Hubs,
Apache Kafka,

Azure Event Grid,
Azure IoT Hub,
Azure Mobile
Apps, Azure

Notification Hubs,
Azure SignalR

Service, SendGrid,
Twilio, custom
I/O bindings

Event Sources
(Endpoint)

Synchronous
Endpoint:

HTTP.
Asynchronous

Endpoint:
HTTP.

Customization:
yes. TLS

support: yes

Synchronous
Endpoint:

HTTP, RPC.
Asynchronous

Endpoint: -.
Customization:

yes. TLS
support: yes

Synchronous
Endpoint:

HTTP.
Asynchronous

Endpoint: -.
Customization:

yes. TLS
support: yes

Continued on next page

24

Analysis of Existing FaaS Tools

Table 3.2 – Continued from previous page

Feature AWS Lambda Google Cloud
Functions

Azure
Functions

Function
Orchestration

Function
Orchestrator:

AWS Step
Functions.
Function

Workflows
Definition:
custom DSL.

Orchestrating
Function

Languages: -.
Control Flow
Constructs

Documentation:
Yes. Function

Workflow
Execution Time

Quota: Yes.
Function

Workflow Task
I/O Size Quota:

Yes

Function
Orchestrator: -.

Function
Workflows

Definition: -.
Orchestrating

Function
Languages: -.
Control Flow
Constructs

Documentation:
-. Function
Workflow

Execution Time
Quota: -.
Function

Workflow Task
I/O Size Quota:

-

Function
Orchestrator:
Azure Durable

Functions.
Function

Workflows
Definition:

orchestrating
function.

Orchestrating
Function

Languages: C#,
JavaScript,

Python,
PowerShell.

Control Flow
Constructs

Documentation:
yes. Function

Workflow
Execution Time

Quota: no.
Function

Workflow Task
I/O Size Quota:

no

Observability Amazon
CloudWatch

Google Cloud
Operations

Azure Application
Insights

3.4 Selection of OpenWhisk

After conducting a comprehensive analysis of various serverless computing tools
based on the defined evaluation criteria, OpenWhisk has been chosen as the preferred
framework for the proposed solution.

25

Analysis of Existing FaaS Tools

3.4.1 Exclusion Of Cloud Provider Tools
This section explores the decision to exclude cloud provider tools from the architec-
ture and the reasons behind this choice. The focus is on the potential obstacles
that these tools can pose to the demonstration of feasibility, real-time capabilities,
and scalability of the proposed solution. Additionally, an alternative approach is
outlined to overcome these challenges.

• Proprietary Licenses: The proprietary license of the explored cloud provider
tools may limit the ability to customize and modify the tools to fit the
architecture requirements. This can hinder the objective of demonstrating the
feasibility of the specific architecture. Customization and adaptation are often
crucial in implementing an architecture that aligns perfectly with any needs
[28].

• Limited Installation Types: Another factor that can impede the demonstra-
tion of feasibility is the limited installation options offered by cloud provider
tools such ad AWS Lambda and Google Cloud Functions, which operate just
as-a-service. Since these tools barely support any kind of deployment plat-
forms, it becomes challenging to validate the architecture’s feasibility across
different environments. The architecture may need to operate on specific
infrastructures, and the lack of installation flexibility within cloud provider
tools restricts the ability to assess feasibility comprehensively. To address this,
alternative solutions with extensive installation options are sought, ensuring
compatibility with a wide range of platforms.

• Limited Source Code Accessibility: The closed-source nature of cloud
provider tools such as AWS Lambda and Google Cloud Functions prevents
accessing and modifying their underlying source code. Understanding the tool
being used is critical in implementing the architecture effectively. Limitations
imposed by closed-source tools hinder the ability to adapt and fine-tune the
tools to meet specific requirements, potentially compromising the architecture’s
feasibility. By opting for alternative solutions with open-source availability,
access to the tool’s source code is gained, making customization and adaptation
feasible [29].

The exclusion of cloud provider tools from the architecture is a deliberate decision
driven by the need to address specific challenges that can hinder the demonstration
of feasibility. Adopting alternative solutions with open-source licensing, installation
flexibility and source code accessibility allows for closer alignment of the tools with
the architectural objectives. This approach enhances the ability to validate the
feasibility of the architecture.

26

Analysis of Existing FaaS Tools

Figure 3.8: Exclusion Of Cloud Provider Tools

3.4.2 Exclusion of OpenFaaS and Knative
This section explores the decision to exclude OpenFaaS and Knative and the reasons
behind this choice. The focus is on the specific advantages of OpenWhisk over
OpenFaaS and Knative, highlighting how these advantages directly contribute to
achieving the demonstration of feasibility of the proposed solution. Some features
that appear in the matrix will not be compared, since they are almost equivalent
between OpenFaaS, Knative and OpenWhisk.

OpenWhisk vs. OpenFaaS

• Language Support: OpenWhisk supports a broader range of programming
languages compared to OpenFaaS, including Ballerina, Binary, Go, Java, .NET,
Node.js, PHP, Python, Ruby, Rust, Shell, and Swift. This language diversity
provides developers with more flexibility in choosing the most suitable language
for their components, enhancing productivity and integration possibilities.
By supporting multiple languages, OpenWhisk enables us to evaluate the
feasibility of the architecture by accommodating a wider range of existing
codebases and developer preferences. This is important also considering the
possibility of further studies on the proposed architecture.

• Function Orchestration: OpenWhisk provides built-in function orchestra-
tion capabilities through Apache OpenWhisk Composer. In contrast, Open-
FaaS does not seem to offer a native orchestration solution. The availability of
function orchestration simplifies the coordination and sequencing of functions,
enabling developers to create more complex workflows. This capability is
crucial for evaluating the feasibility of the architecture’s workflow management
capabilities, as it allows the developer to define and analyze intricate function
compositions. This is important also considering the possibility of further
studies on the proposed architecture.

27

Analysis of Existing FaaS Tools

• Event Sources: OpenWhisk supports a wider range of event sources com-
pared to OpenFaaS. The broader support for event sources allows for more
diverse data ingestion and processing scenarios. By incorporating different
event-driven workflows, OpenWhisk enables us to evaluate the architecture’s
capabilities in handling various real-world use cases, contributing to the demon-
stration of feasibility. This is important also considering the possibility of
further studies on the proposed architecture.

Figure 3.9: Exclusion Of OpenFaaS

OpenWhisk vs. Knative

• Installation Flexibility: OpenWhisk supports multiple installation environ-
ments, including Docker, Kubernetes, Linux, macOS, Windows, and Mesos.
In contrast, Knative is primarily designed for Kubernetes-based deployments.
OpenWhisk’s broader installation options make it easier to deploy and man-
age the FaaS tool in various target hosts, reducing deployment complexities
and increasing the feasibility of the architecture in different environments.
This flexibility aligns with the objective of demonstrating the feasibility of
the architecture by ensuring that OpenWhisk can be seamlessly integrated
into different infrastructure setups. This is important also considering the
possibility of further studies on the proposed architecture.

• Community Support: OpenWhisk has a more extensive and active com-
munity compared to Knative, as evident from its higher number of GitHub
stars, forks, issues, and Stack Overflow questions. The vibrant community
around OpenWhisk provides developers with a wealth of resources, expertise,

28

Analysis of Existing FaaS Tools

and support. This strong community support is essential for the objective
of evaluating feasibility as it allows us to tap into a vast knowledge base,
seek assistance in overcoming challenges, and collaborate with other users,
ultimately contributing to the successful implementation and assessment of
the architecture.

• Observability: OpenWhisk offers observability features such as Kamon,
Prometheus, and Datadog for logging, monitoring, and metrics collection.
While Knative doesn’t seem to provide built-in observability capabilities,
OpenWhisk’s built-in support for these tools simplifies the setup and configu-
ration process. The availability of robust observability features enhances the
feasibility assessment by providing valuable insights into the architecture’s
performance, scalability, and resource utilization. By easily monitoring and
analyzing the behavior of the system, OpenWhisk empowers us to evaluate its
feasibility in terms of meeting scalability requirements. This is important also
considering the possibility of further studies on the proposed architecture.

Figure 3.10: Exclusion Of Knative

By highlighting these advantages, it becomes evident that OpenWhisk surpasses
OpenFaaS and Knative in terms of language support, function orchestration capa-
bilities, event source compatibility, installation flexibility, community support, and
observability features. These strengths make OpenWhisk the preferred choice for
evaluating the feasibility and practicality of the architecture, while also defining
the architecture itself.

29

Analysis of Existing FaaS Tools

3.4.3 OpenWhisk: The Chosen Tool for Feasibility Assess-
ment

After carefully evaluating various open-source options and excluding cloud provider-
specific tools, OpenWhisk emerged as the most suitable choice for assessing the
feasibility of the architecture. In this section, it will be shown how each evaluated
feature of OpenWhisk aligns with the objectives, in particular with the objective of
feasibility assessment.

• License: OpenWhisk utilizes the Apache 2.0 license. This open-source license
promotes customization, collaboration, and innovation, enabling developers
to modify and enhance the FaaS tool to align with the specific requirements
of the architecture. The open nature of the license facilitates experimenta-
tion, optimization, and integration efforts, contributing to the feasibility and
practicality of the architecture.

• Installation Type: OpenWhisk can be installed on various target hosts,
including Docker, Kubernetes, Linux, macOS, Windows, and Mesos. This
compatibility with multiple installation environments allows developers to
seamlessly deploy and manage the architecture in their preferred environment.
A smooth installation process and compatibility with different platforms reduce
deployment complexities, streamline management efforts, and contribute to
the overall feasibility of the architecture.

• Source Code Availability: OpenWhisk provides an open-source repository
on GitHub, allowing developers to access and modify the source code. This
accessibility facilitates customization and integration with other components
within the architecture. Developers can experiment with different configura-
tions, optimize interactions between components, and ensure a well-integrated
system. The availability of source code fosters collaboration, enhancing the
feasibility and effectiveness of the architecture.

• Main Programming Language: OpenWhisk supports a wide range of
programming languages, including Ballerina, Binary, Docker Image, Go, Java,
.NET, Node.js, PHP, Python, Ruby, Rust, Shell, and Swift. This flexibility
accommodates the preferences and expertise of developers, enabling the selec-
tion of the most appropriate language for each component. Compatibility with
multiple programming languages fosters a diverse ecosystem of developers,
enhancing the feasibility and versatility of the architecture.

• Interface Types: OpenWhisk offers a variety of interfaces, including a
command-line interface (CLI), application programming interface (API), and

30

Analysis of Existing FaaS Tools

graphical user interface (GUI). These interfaces simplify the usage, develop-
ment, deployment, and management of architecture components. CLI inter-
faces enable automation and scripting, API interfaces facilitate programmatic
control and integration with other tools, and GUI interfaces offer intuitive
visual representations and management capabilities. Having multiple interface
types increases the usability and accessibility of the tool, enabling developers
to effectively work with the architecture and evaluate its feasibility.

• Community Support: OpenWhisk boasts a robust community with 16,800
GitHub Stars, 932 GitHub Forks, 274 GitHub Issues, and 2,790 Stack Overflow
Questions. This active community provides valuable resources, knowledge
sharing, and troubleshooting assistance. Developers can leverage the collective
expertise of the community to address challenges, seek guidance on best
practices, and overcome implementation obstacles. The strong community
support accelerates development and ensures successful implementation of the
architecture, contributing to its feasibility.

• Documentation: OpenWhisk offers comprehensive and well-maintained doc-
umentation, covering various aspects such as platform usage, development,
deployment, architecture, and functions deployment. This documentation
provides a clear understanding of the tool’s features, capabilities, and best
practices, guiding developers in utilizing it to its full potential. Detailed
documentation enhances the feasibility of the architecture by reducing imple-
mentation errors, facilitating knowledge transfer.

• Event Sources: OpenWhisk’s support for various event sources, such as
Scheduler, Apache Kafka, GitHub, and more, plays a crucial role in demon-
strating the feasibility of the architecture’s scalability. By enabling developers
to trigger functions based on specific events or external triggers, OpenWhisk
allows the architecture to scale dynamically in response to workload demands.
This ability to handle events in real time and scale resources accordingly
showcases the feasibility of building scalable and responsive applications using
OpenWhisk.

• Function Orchestration: The function orchestration capabilities offered
by OpenWhisk, including Apache OpenWhisk Composer, are essential for
proving the feasibility of building complex workflows and demonstrating real-
time properties. By allowing developers to define and manage interconnected
functions as a cohesive workflow, OpenWhisk enables the orchestration of real-
time processes. This capability showcases the feasibility of implementing real-
time data processing, complex event-driven systems, and reactive applications
within the architecture.

31

Analysis of Existing FaaS Tools

• Observability: OpenWhisk’s observability features, such as integration with
monitoring tools like Kamon, Prometheus, and Datadog, contribute to prov-
ing the feasibility of the architecture’s real-time properties. By providing
comprehensive monitoring, logging, and tracing capabilities, OpenWhisk al-
lows developers to gain real-time insights into the system’s performance and
behavior. This observability enables proactive monitoring, timely troubleshoot-
ing, and optimization of the architecture’s responsiveness, demonstrating its
feasibility for real-time applications.

Figure 3.11: Reasons for Choosing OpenWhisk

In conclusion, OpenWhisk has been identified as the suitable tool for assessing
the feasibility of the architecture based on its various features and capabilities.
The criteria evaluated, such as license, installation type, source code availability,
programming language support, interface types, community support, and docu-
mentation, contribute to the overall feasibility of the architecture by promoting
customization, collaboration, ease of deployment, and developer productivity.

It’s important to note that the assessed criteria also enable the possibility of
further studies and improvements to the architecture. OpenWhisk’s open-source
nature and comprehensive documentation allow developers to experiment, optimize,
and integrate the architecture with other components. The strong community
support provides valuable resources and troubleshooting assistance, facilitating
ongoing development and refinement of the architecture.

Overall, by choosing OpenWhisk and considering the evaluated criteria, it is
possible to be more confident in the feasibility of the architecture and its potential
for scalability and real-time capabilities. The assessed features provide a solid
foundation for future studies, enhancements, and successful implementation of the
architecture.

32

Chapter 4

Deep Dive Into OpenWhisk

This chapter provides a comprehensive exploration of OpenWhisk, an event-driven
compute platform also known as Serverless Computing or Function-as-a-Service
(FaaS). The aim of this chapter is to examine the various aspects of OpenWhisk,
including its architecture, components, command-line interface (CLI), actions,
triggers, and rules.

The chapter begins by presenting an overview of the OpenWhisk architecture,
highlighting the key components that work together to enable the execution of
actions and processing of events. The roles and interactions of components are
explained.

Following the architecture discussion, the chapter dives into the OpenWhisk Com-
mand Line Interface (CLI). The installation and configuration of the CLI are
covered, along with demonstrations of its usage for creating, updating, and deleting
actions, triggers, and rules. The CLI’s capability to invoke actions and monitor
their execution is also explored.

The next section focuses on actions in OpenWhisk. The purpose of actions is
discussed, along with their creation, management, and support for multiple pro-
gramming languages. Packaging and deploying actions as self-contained entities,
as well as versioning and lifecycle management, are also examined.

Finally, the chapter delves into triggers and rules in OpenWhisk, which play
a crucial role in event-driven architectures and task automation. Triggers are
explained, along with their ability to initiate the execution of actions based on
events or conditions. The creation, management, and triggering of actions using
triggers are explored. Additionally, rules and their significance in associating actions
with triggers, thereby enabling the creation of event-driven workflows, are discussed.

33

Deep Dive Into OpenWhisk

By the end of this chapter, readers will have gained a comprehensive understanding
of OpenWhisk’s architecture, CLI, actions, triggers, and rules.

4.1 Introduction to OpenWhisk Components
OpenWhisk is an event-driven compute platform, also known as Serverless comput-
ing or Function as a Service (FaaS). It provides a scalable and flexible environment
for running code in response to events or direct invocations [23]. The architecture
of OpenWhisk is composed of several key components that work together to enable
the execution of actions and processing of events. This section provides an overview
of the OpenWhisk architecture and highlights the key components involved in the
system.

4.1.1 Overview of OpenWhisk Architecture
The OpenWhisk architecture is designed to handle the execution of actions in
response to events or direct invocations. It follows a distributed and scalable model
that leverages various components to achieve efficient and reliable computation.
At a high level, the architecture consists of the following components [30]:

• Nginx: Nginx serves as the entry point for user requests in the OpenWhisk
system. It handles tasks such as SSL termination, load balancing, and routing
of HTTP requests to the appropriate components within the architecture.

• Controller: The Controller component is the central orchestrator of the
OpenWhisk system. It provides the RESTful API interface for users to
interact with OpenWhisk. The Controller receives user requests, performs
authentication and authorization checks, and coordinates the execution of
actions by interacting with other components.

• CouchDB: CouchDB is a distributed NoSQL database used for storing
metadata and state information in OpenWhisk. It serves as the primary data
store for entities such as actions, triggers, rules, and user information. The
Controller interacts with CouchDB to store and retrieve data, including action
code, default parameters, resource restrictions, and authentication details.

• Load Balancer: The Load Balancer component plays a crucial role in
distributing incoming requests across multiple Invokers. It maintains a global
view of available Invokers and their health status. The Load Balancer selects
an appropriate Invoker to handle each request, ensuring efficient resource
utilization and load balancing across the system.

34

Deep Dive Into OpenWhisk

• Kafka: Kafka is a distributed event streaming platform used for reliable
messaging in OpenWhisk. It acts as a message broker between the Controller
and Invokers, buffering and persisting messages to ensure fault tolerance and
scalability. Kafka enables asynchronous communication and coordination
between components, allowing the Controller to publish action invocation
requests and Invokers to consume and execute them.

• Invoker: The Invoker component is responsible for executing actions in
OpenWhisk. It operates as a pool of execution environments, typically based
on Docker containers. When an action invocation request is received, the
Invoker selects an available container, injects the action code, and sets up the
execution environment. The action code is then executed within the container,
and the results are captured and stored for further processing.

• Activations Database: The Activations Database, stored in CouchDB,
serves as a persistent storage layer for storing the results and metadata of
action invocations. Each action invocation generates an activation record that
contains information such as the activation ID, response status, result data,
logs, and timestamps. The Activations Database allows users to retrieve past
invocations and access their results.

Figure 4.1: Main OpenWhisk Components

35

Deep Dive Into OpenWhisk

These components work together to create a scalable and event-driven compute
platform in OpenWhisk. Nginx serves as the entry point, forwarding requests to
the Controller, which handles request processing, authentication, and authorization.
CouchDB stores metadata and state information, while the Load Balancer ensures
efficient distribution of requests among Invokers. Kafka enables reliable messaging
between the Controller and Invokers, and the Activations Database stores the
results and metadata of action invocations for later retrieval.

4.2 OpenWhisk CLI
The OpenWhisk Command Line Interface (CLI) is a powerful tool that allows
developers to interact with OpenWhisk and manage serverless applications from
their local development environment. It provides a command-line interface with a
rich set of commands for performing various operations on actions, triggers, and
rules. This section provides an overview of actions in OpenWhisk CLI, including
its overview, installation and interaction with actions, triggers and rules. All the
informations about this paragraph have been retrieved from the same source, which
can be retrieved from the bibliography with the following number: [31]

Figure 4.2: OpenWhisk CLI

36

Deep Dive Into OpenWhisk

4.2.1 Overview of OpenWhisk CLI
The OpenWhisk CLI is built on top of the OpenWhisk API and provides a convenient
way to interact with OpenWhisk components using command-line commands. It
allows you to create, update, and delete actions, triggers, and rules, as well as
invoke actions and monitor their execution.

4.2.2 Working with the CLI: Installation and Configuration
To start using the OpenWhisk CLI, individuals are required to install it on their
local machines. The installation process is dependent on the operating system
being used. Once installed, the CLI can be configured by setting up authentication
credentials, including the API key and endpoint URL, to establish a connection
with the OpenWhisk instance. This configuration ensures secure and authorized
access to the OpenWhisk resources.

4.3 Actions in OpenWhisk
Actions are the fundamental building blocks in OpenWhisk that encapsulate units
of computation. They represent individual pieces of code that can be executed
in response to events or direct invocations. This section provides an overview of
actions in OpenWhisk, including their purpose, creation, management, supported
programming languages, packaging, deployment, and versioning. All the informa-
tions about this section have been retrieved from the same source, which can be
retrieved from the bibliography with the following number: [32]

4.3.1 Understanding Actions in OpenWhisk
Actions in OpenWhisk are the fundamental units of work that can be executed in
response to events or direct invocations. An action in OpenWhisk can be a small
snippet of code or a custom binary code embedded in a Docker container. Actions
are designed to be stateless, self-contained, and independently executable. They
can be written in various programming languages, allowing developers to choose
the language they are most comfortable with.

Actions in OpenWhisk are executed whenever a trigger fires, making them event-
driven. They can also be directly invoked using the OpenWhisk API, CLI, or SDKs.
Actions can be combined and chained together to create complex workflows without
the need to write additional code. The output of one action can be passed as input
to the next action in the sequence.

37

Deep Dive Into OpenWhisk

4.3.2 Creating and Managing Actions
Creating and managing actions in OpenWhisk is a straightforward process. Actions
can be created using the OpenWhisk CLI or API, allowing developers to define
the code and specify any required parameters or dependencies. Actions can be
associated with triggers to enable event-driven execution.

Once created, actions can be managed using various commands and APIs provided
by OpenWhisk. This includes updating the code or parameters of an action, en-
abling or disabling actions, and retrieving information about actions such as their
status and invocation history.

Considering the OpenWhisk CLI to interact with actions, they can be created using
the following command:

$ wsk action create <action-name> <action-file>

Where <action-name> is the name of the action and <action-file> is the file
containing the code. Actions can be updated using the following command:

$ wsk action update <action-name> <action-file>

Where <action-name> is the name of the action and <action-file> is the file
containing the code. To list all the actions in a specific OpenWhisk namespace,
the following command can be used:

$ wsk action list

This command provides an overview of the available actions, including their names
and associated parameters. Actions can be deleted using the following command:

$ wsk action delete <action-name>

Where <action-name> is the name of the action.

4.3.3 Supported Programming Languages
OpenWhisk supports multiple programming languages, providing developers with
flexibility in choosing the language that best suits their needs and expertise. Some
of the programming languages supported by OpenWhisk include:

• Node.js (JavaScript)

• Python

38

Deep Dive Into OpenWhisk

• Java

• Swift

• PHP

• Go

Each programming language has its own runtime environment and dependencies,
allowing developers to write actions in the language they are most comfortable
with. The OpenWhisk runtime environment takes care of executing the actions
and managing their lifecycle.

4.3.4 Packaging and Deploying Actions
In OpenWhisk, actions can be packaged and deployed as self-contained entities,
making it easy to share and reuse them across different applications and environ-
ments. Packaging actions involves bundling the code and any required dependencies
into a single artifact.

OpenWhisk provides support for packaging actions using Docker containers. Ac-
tions can be defined as custom binaries embedded within a Docker container,
allowing developers to specify the necessary runtime environment and dependencies.
Docker provides isolation and portability, ensuring consistent execution of actions
across different environments.

4.3.5 Versioning and Managing Action Lifecycle
Managing the lifecycle of actions is an important aspect of developing applications
with OpenWhisk. OpenWhisk allows developers to version their actions to maintain
different iterations and track changes over time. Versioning helps in maintaining
backward compatibility and enables easy rollback to previous versions if needed.

To manage the lifecycle of actions, OpenWhisk provides commands and APIs
for creating, updating, and deleting versions of an action. Additionally, develop-
ers can invoke specific versions of an action to ensure consistent behavior across
different invocations.

4.3.6 Interaction Between Components To Invoke an Action
Invoking an action in OpenWhisk involves a series of interactions between different
components of the system. Let’s explore the flow of processing that occurs behind
the scenes when invoking an action [30]:

39

Deep Dive Into OpenWhisk

1. Entering the system: Nginx
The user initiates the action activation process by sending an HTTP request
to OpenWhisk’s user-facing API. This request is intercepted by Nginx, an
HTTP and reverse proxy server, which forwards it to the next component in
the system.

2. Controller
The request is then passed on to the Controller, which serves as the interface
for user interactions in OpenWhisk. The Controller receives the request and
determines the action activation operation based on the HTTP method used.

3. Authentication and Authorization: CouchDB
Before proceeding with the action activation, the Controller verifies the user’s
identity and checks if the user has the necessary privileges. This authentication
and authorization process involves validating the user’s credentials against a
CouchDB database, ensuring that the user has the required permissions to
invoke the action.

4. Getting the action: CouchDB
As the Controller is now sure the user is allowed in and has the privileges to
invoke his action, it actually loads the action from the whisks database in
CouchDB. The record of the action contains mainly the code to execute and
default parameters that are passed to the action, merged with the parameters
included in the actual invoke request. It also contains the resource restrictions
imposed on it in execution, such as the memory it is allowed to consume.

5. Load Balancer
After the action activation is successfully validated, the Load Balancer com-
ponent comes into play. The Load Balancer maintains a global view of the
available resources in the system, specifically the invokers responsible for
executing actions. It selects an available invoker to handle the execution of
the newly created action.

6. Invoker and Docker
The selected invoker creates a Docker container, which provides a self-encapsulated
environment for executing the action. The action’s code is injected into the
Docker container, and any required dependencies are resolved. The invoker
then triggers the execution of the action within the container, passing the
necessary parameters.

7. Execution and Result Storage: CouchDB
The action code executes within the Docker container, producing a result. The
invoker captures the output, including any logs generated during the execution,

40

Deep Dive Into OpenWhisk

and stores it in a CouchDB database. The result, along with metadata such
as the activation ID and timestamps, is stored as an activation record.

8. Retrieving the Result
To access the result of the action execution, the user can make another HTTP
request or use the wsk CLI. By providing the activation ID associated with
the action, the user can retrieve the corresponding activation record from
the CouchDB database, obtaining the execution result and any additional
information.

Figure 4.3: OpenWhisk Action Execution Process

This interaction between different components within OpenWhisk enables the
seamless creation and execution of actions, providing users with a scalable and
efficient serverless computing experience.

4.4 Triggers and Rules in OpenWhisk
Triggers in OpenWhisk play a crucial role in enabling event-driven architectures
and reactive systems. They give the possibility to initiate the execution of actions

41

Deep Dive Into OpenWhisk

based on specific events or conditions. By associating actions to triggers with rules,
it is possible to build event-driven workflows and automate the execution of tasks
in response to events. This section provides an overview of triggers and rules in
OpenWhisk, including their purpose, creation, management, the action triggering,
supported types, and combination with rules. All the informations about this
paragraph have been retrieved from the same source, which can be retrieved from
the bibliography with the following number: [33]

Figure 4.4: OpenWhisk Triggers and Rules

4.4.1 Creating and Managing Triggers and Rules
Creating and managing triggers and rules in OpenWhisk is a straightforward process.
Triggers and rules can be created using the OpenWhisk CLI or API. Considering
the OpenWhisk CLI, it is possible to do several things to create and manage triggers

42

Deep Dive Into OpenWhisk

and rules. Triggers can be created using the following command:

$ wsk trigger create <trigger-name>

where <trigger-name> is the name of the trigger. Triggers can be updated using
the following command:

$ wsk trigger update <trigger-name>

where <trigger-name> is the name of the trigger. To list all the triggers in a
specific OpenWhisk namespace, the following command can be used:

$ wsk trigger list

This command provides an overview of the available triggers, including their names
and associated parameters. The following command can be used to delete a trigger:

$ wsk trigger delete <trigger-name>

where <trigger-name> is the name of the trigger. To create a rule, the following
command can be used:

$ wsk rule create <rule-name> <trigger-name> <action-name>

where <rule-name> is the name of the rule, <action-name> is the name of the
action and <trigger-name> is the name of the trigger. This command gives the
opportunity to specify the name of the rule and the trigger and action associated
with it. The rule defines the relationship between a trigger and an action, specifying
that the action should be executed when the trigger fires. To update an existing
rule, the following command can be used:

$ wsk rule update <rule-name> <trigger-name> <action-name>

where <rule-name> is the name of the rule, <action-name> is the name of the
action and <trigger-name> is the name of the trigger. This command enables the
modifications of the properties or configurations of a rule, such as changing the
associated trigger or action. To list all the rules in a specific OpenWhisk namespace,
the following command can be used:

$ wsk rule list

This command provides an overview of the available rules, including their names,
associated triggers, and actions. To remove a rule, the following command can be
used:

$ wsk rule delete <rule-name>

where <rule-name> is the name of the rule, <action-name> is the name of the
action and <trigger-name> is the name of the trigger. This command will delete
the rule and its associated trigger-action relationship.

43

Deep Dive Into OpenWhisk

4.4.2 Triggering Actions with Triggers
Once a trigger is created, one or more actions can be associated with it. When the
trigger is fired or activated, the associated actions are executed. In this way, specific
actions that should be triggered in response to certain events can be defined.

4.4.3 Supported Trigger Types
OpenWhisk supports various types of triggers to accommodate different event
sources. Some of the supported trigger types include feed-based triggers, periodic
triggers, and web triggers.

4.4.4 Combining Trigger with Rules for Event-Driven Work-
flows

In OpenWhisk, triggers can be combined with rules to create event-driven workflows.
With rules it is possible to define conditions that determine when actions associated
with a trigger should be executed. By combining triggers and rules, it is possible
to build complex event-driven systems and automate workflows based on specific
events or conditions.

Figure 4.5: Trigger-Rule-Action Mechanism in OpenWhisk

4.5 OpenWhisk Packages
This section presents a comprehensive examination of OpenWhisk packages, which
form an integral part of the OpenWhisk serverless platform. OpenWhisk packages
enable the bundling of actions and feeds, facilitating the organization, sharing,
and reuse of functionalities within the OpenWhisk ecosystem. Throughout this
chapter, the concept of OpenWhisk packages will be explored, their components
will be examined, and their potential for enhancing application development and
collaboration will be elucidated. Moreover, package organization, browsing, cre-
ation, sharing, and their significance in constructing serverless applications will

44

Deep Dive Into OpenWhisk

be discussed. The information provided in this chapter is derived from a specific
resource, which can be referenced in the bibliography under the number [34].

4.5.1 Introduction to OpenWhisk Packages
In OpenWhisk, packages play a crucial role in bundling together a collection of
related actions and feeds. They provide a convenient way to organize and share
sets of functionalities with other users. A package can consist of various actions
and feeds, each serving a specific purpose within the package.

4.5.2 Action In OpenWhisk Packages
Actions in OpenWhisk packages are individual pieces of code that can be executed
within the OpenWhisk environment. These actions encapsulate specific function-
alities and can be designed to perform various tasks. For example, the Cloudant
package includes actions to read and write records to a Cloudant database. By
including these actions in a package, users can easily access and utilize them as
part of their applications.

4.5.3 Feeds in OpenWhisk Packages
Feeds are an essential component of OpenWhisk packages and are used to configure
external event sources to trigger actions within the OpenWhisk system. A feed
within a package allows users to integrate external event-driven data into their
workflows. For instance, the Alarm package includes a feed that can fire a trigger
at a specified frequency, enabling users to schedule and automate actions based on
time intervals.

Figure 4.6: Feeds in OpenWhisk Packages

45

Deep Dive Into OpenWhisk

4.5.4 Packages Organization and Namespace
In OpenWhisk, every entity, including packages, belongs to a names-
pace. The fully qualified name of an entity follows the format
/namespaceName[/packageName]/entityName. This hierarchical structure allows
for efficient organization and management of packages, making it easier to locate
and reference specific functionalities within the system.

4.5.5 Browsing and Utilizing Packages
OpenWhisk provides various tools and commands to browse and interact with
packages. Users can obtain a list of packages within a specific namespace, list the
entities within a package, and obtain detailed descriptions of individual entities
within a package. For example, by executing the command:

$ wsk package list /whisk.system

users can retrieve a list of packages in the /whisk.system namespace, including
the MQTT provider and Alarm packages.

4.5.6 MQTT and Alarm Packages
The MQTT package integrates MQTT functionality into OpenWhisk applications,
enabling seamless communication between devices and applications in IoT scenarios.
Use cases for the MQTT Provider package include IoT data ingestion and real-time
event processing [35].

The Alarm package in OpenWhisk provides a convenient way to schedule and
trigger actions at specific times or intervals. The Alarm package is useful for im-
plementing scheduled tasks, event-driven automation, and periodic data processing
within OpenWhisk applications [36].

4.6 Load Balancer
The Load Balancer in OpenWhisk is responsible for distributing incoming workloads
across multiple invokers to ensure efficient utilization of resources and optimal
performance. One of the load balancing strategies employed by OpenWhisk is the
ShardingContainerPoolBalancer, which utilizes a hashing algorithm for workload
scheduling. All the following informations can be retrieved directly from the source,
which can be found in the bibliography at this number: [37].

46

Deep Dive Into OpenWhisk

4.6.1 Introduction to Load Balancer
The Load Balancer is a critical component in OpenWhisk’s architecture, designed
to evenly distribute incoming workloads across available invokers. By balancing
the load, it ensures that resources are utilized efficiently and that functions are
executed in a timely and responsive manner.

4.6.2 ShardingContainerPoolBalancer Overview
The ShardingContainerPoolBalancer is a load balancing strategy employed by
OpenWhisk. It uses a hashing algorithm to distribute workloads among invokers
based on a calculated hash value. This strategy aims to minimize collisions and
evenly distribute the workload across available resources.

4.6.3 Algorithm Explanation
The ShardingContainerPoolBalancer algorithm determines the home-invoker for
a given namespace and action pair by calculating a hash value. The hash value is
used to select the initial invoker, and if that invoker is healthy and has available
capacity, the request is scheduled to it. If the initial invoker doesn’t meet the
requirements, the algorithm increments the index by a step-size and checks the
next invoker in the progression. This process continues until all invokers have been
checked, at which point the load balancer employs an "overload" strategy to handle
situations where no invoker meets the criteria.

4.6.4 Capacity Checking and User-Memory Configuration
To ensure efficient load balancing, the Load Balancer performs capacity checking
on the invokers. It determines the maximum capacity per invoker based on various
factors such as available resources and configured limits. Additionally, the Load
Balancer takes into account the user-memory configuration to allocate appropriate
resources for each invocation, considering the needs and constraints of different
users.

4.6.5 Invoker Health Checking
The Load Balancer actively monitors the health status of the invokers. It performs
periodic health checks, including system error checks and ping responses, to ensure
that the invokers are functioning properly and can handle incoming workloads. If
an invoker is found to be unhealthy, it is temporarily removed from the pool until
it becomes available again.

47

Chapter 5

Use Case Definition

In this section, a specific use case scenario will be defined for monitoring multiple
data centers using sensor data. The use case scenario will be described, and the
requirements for its implementation will be outlined. This analysis aims to provide
insights into the monitoring process and offer guidance for developing a solution
that meets the identified needs and objectives.

5.1 Use Case Scenario
The use case scenario involves monitoring multiple data centers using sensor data.
In this scenario, each data center is equipped with sensors that capture temperature,
gas percentage, and humidity readings. The goal is to continuously monitor the
health and performance of the data centers by collecting and analyzing sensor data
in real-time.

The data centers are geographically distributed and can be located in different
regions or countries. Each data center houses critical infrastructure and servers,
and it is essential to ensure that they operate within optimal conditions to avoid
downtime, equipment failure, or safety hazards.

To achieve effective monitoring, an architecture is designed to collect, process,
and visualize the sensor data from each data center. The architecture utilizes
IoT sensors, a messaging protocol, a serverless computing platform, and a data
visualization tool.

The data is then processed and analyzed in real-time using a serverless com-
puting platform, like OpenWhisk, which triggers actions to perform operations
such as data validation, anomaly detection, and aggregation.

48

Use Case Definition

The processed data is stored in a database, such as InfluxDB, enabling historical
analysis and trend identification. Finally, a data visualization tool like Grafana is
used to create customizable dashboards that display real-time and historical sensor
data, allowing operators and administrators to monitor the data center conditions
effectively.

By continuously monitoring the sensor data from multiple data centers, potential
issues or anomalies can be detected early on. This enables proactive maintenance
and timely response to critical situations.

The use case scenario of monitoring multiple data centers using sensor data is
particularly relevant in industries that rely heavily on data center operations,
such as cloud computing providers, telecommunications companies, and large-scale
enterprises. Ensuring the smooth operation of data centers is crucial to maintain
service availability, meet SLAs (Service Level Agreements), and prevent costly
downtime.

Figure 5.1: Use Case General Architecture

5.2 Use Case Scenario Adaptability
The described use case of monitoring multiple data centers using sensor data can
be easily adapted to various other scenarios beyond data center monitoring. The
architecture and components involved can be leveraged to monitor and analyze
sensor data in different contexts, such as environmental monitoring [38], air quality
assessment [38], plant growth optimization [39], and more. By replacing or adding
appropriate sensors and configuring the data processing logic, organizations can
extend the use case to address specific monitoring requirements in different domains.

In the context of environmental monitoring [38], the architecture can be applied

49

Use Case Definition

to capture data related to air quality parameters, including pollutant levels, par-
ticulate matter, and carbon dioxide concentration. By deploying suitable sensors
and leveraging the existing architecture and processing pipeline, organizations
can collect, analyze, and visualize environmental sensor data in real-time. This
empowers them to monitor air quality in urban areas, industrial sites, or indoor
environments, enabling timely interventions and decision-making to improve air
quality and ensure the well-being of individuals.

Similarly, in agricultural settings [39], the architecture can be adapted to monitor
plant health and optimize growth conditions. By deploying sensors to measure
parameters such as soil moisture, temperature, light intensity, and nutrient levels,
organizations can collect valuable data. The collected sensor data can be processed
and analyzed to provide insights into the health and growth status of plants. This
information enables farmers to make informed decisions regarding irrigation, fertil-
ization, and pest control, ultimately leading to improved crop yield and resource
utilization.

Figure 5.2: Use Case Adapted to Agriculture

The versatility of the architecture and components outlined in this use case allows
organizations to tailor the solution to meet the specific monitoring needs of various
domains and applications. The ability to adapt and extend the use case to different
situations highlights its flexibility, making it a valuable framework for diverse

50

Use Case Definition

monitoring requirements.

51

Chapter 6

Architecture and
Implementation Details

In this chapter, an exploration will be conducted into the architecture and im-
plementation details of the use case, aiming to provide insights into the design
and components involved. The overall architecture, including all the different
components, will be examined, emphasizing their roles in enabling the monitoring
and analysis of multiple data centers using sensor data.

The implementation details will be delved into, focusing on two main aspects:
the main action mechanism and the interaction between components. The main
action mechanism will outline the primary steps, processes, and logic employed in
data processing, validation, and aggregation. This will provide an understanding
of how the collected sensor data is transformed into meaningful insights.

The interaction between components will be explored, highlighting how they
collaborate and exchange data within the architecture. This analysis will shed light
on the seamless communication and cooperation among the different components,
facilitating the monitoring and analysis process.

By delving into the architecture and implementation details, a comprehensive
understanding of the underlying framework and mechanisms that drive the success-
ful monitoring of multiple data centers using sensor data will be provided.

6.1 Use Case Architecture
The use case architecture is designed to monitor multiple data centers using sensor
data and consists of various components that enable data processing, storage, and

52

Architecture and Implementation Details

visualization. The architecture is designed to achieve specific objectives in order to
demonstrate its feasibility, including scalability, real-time data processing, central-
ized management, and seamless integration between components. To effectively
address these objectives, a deliberate decision was made to adopt a distributed
approach with both centralized and edge instances.

6.1.1 Architecture Overview
The architecture consists of two main components: the centralized management
instance and the edge instances. The centralized management instance serves
as the core component for storing aggregate data received from the edge instances.
On the other hand, the edge instances are strategically deployed close to the data
sources (sensors in the data centers) to facilitate real-time data processing and
aggregation.

Figure 6.1: Architecture Overview

The decision to split the architecture into centralized and edge instances stems
from the need to achieve scalability, real-time data processing, and centralized
management. By distributing the computation load across multiple edge instances,
the architecture should become inherently scalable. As the number of data centers
and sensors increases, the architecture should be able to handle the growing
workload by leveraging the additional edge instances. Each edge instance can
handle a portion of the overall computation, allowing for parallel processing and
accommodating the increased demand without overwhelming a single centralized

53

Architecture and Implementation Details

instance. Additionally, processing data at the edge brings computation closer to
the data source, reducing the latency between data collection and processing. With
edge instances handling data processing in close proximity to the sensors or data
centers, the architecture should be able to achieve faster response times [40].

6.1.2 Sensor Data Publication
The architecture should enable sensors to publish the data they collect in a scalable
manner. Sensors need a reliable mechanism to transmit their readings to the edge
systems for further processing and analysis.

To address this challenge, the architecture incorporates an MQTT broker as
the chosen instrument. The MQTT broker is deployed exclusively on the edge
instances, acting as a central communication hub for the sensors.

The usage of MQTT Broker brings several advantages that align with the ar-
chitecture’s objectives and requirements:

• Scalability: The MQTT broker enables scalability by providing a unified
platform for sensor data publication. As more sensors are added to the system,
they can connect to the MQTT broker deployed on the edge instances. The
broker efficiently handles the communication between sensors, supporting
concurrent connections and horizontal scaling [41].

• Real-time Data Processing: By utilizing the MQTT protocol, the ar-
chitecture facilitates real-time data processing. The MQTT broker enables
sensors to publish messages with their data in near real-time. The lightweight
publish-subscribe model of MQTT ensures minimal latency in transmitting the
sensor readings to the broker. This real-time data flow allows the centralized
management system to process and analyze the data as it arrives, enabling
prompt decision-making and timely responses to changing conditions [42].

There are several reasons why MQTT is a good choice for implementing the MQTT
broker in this architecture [43]:

• Efficiency: MQTT is designed to be lightweight and efficient, making it
well-suited for resource-constrained environments. The protocol minimizes the
overhead associated with message transmission, allowing sensors to publish
their data with minimal impact on system resources.

• Reliability: MQTT provides reliable message delivery mechanisms, ensuring
that sensor data is transmitted reliably to the MQTT broker. It supports
different levels of Quality of Service (QoS), allowing the architecture to choose

54

Architecture and Implementation Details

the appropriate level based on the reliability requirements. This reliability en-
sures that no data is lost during transmission, enhancing the overall robustness
of the system.

• Scalability: MQTT is designed to handle large-scale deployments and sup-
ports a large number of clients. It can efficiently handle the increasing number
of sensors in the architecture without introducing significant complexity or
performance degradation. This scalability enables the architecture to grow
and adapt as more sensors are added.

• Flexibility: MQTT provides flexibility in terms of message routing and
topic-based subscriptions. It allows sensors to publish messages to specific
topics, and subscribers can choose to receive messages based on their interests.
This flexibility enables selective data consumption and reduces unnecessary
network traffic, enhancing the overall efficiency of the system.

Figure 6.2: Sensor Data Publication

6.1.3 Data Storage for Sensor Readings
As sensors generate data in the data centers, there arises a need for a storage
solution to capture and retain the sensor readings. Without an appropriate data
storage mechanism, the architecture would struggle to process and analyze the
sensor data effectively.

To address the data storage requirement, the architecture adopts a decentral-
ized approach by incorporating local data storage within each edge instance. This
means that each edge instance has its own storage mechanism to capture and retain
the sensor data locally.

This decentralized approach to data storage brings several advantages that align
with the architecture’s objectives and requirements:

55

Architecture and Implementation Details

• Scalability: By storing data locally in each edge instance, the architecture
adopts a distributed approach. This distributed storage minimizes the need
for continuous communication with the centralized management instance for
every data retrieval, this approach should reduce network congestion thus
improving scalability. Each edge instance can handle its own data storage,
processing, and retrieval independently, this may enable the architecture to
seamlessly scale as the number of data centers and sensors grows [44].

• Real-time Data Processing: Local data storage allows for immediate
availability of the captured sensor data for processing and analysis within
the edge instances. This should facilitate real-time data processing, as the
edge instances can efficiently access and process the data without relying
heavily on external resources or frequent communication with the centralized
management instance [45].

Figure 6.3: Data Storage for Sensor Readings

InfluxDB is chosen as a suitable technology for local data storage within each edge
instance due to its strengths as a time-series database. Time-series databases excel
at efficiently handling data points with timestamps, making InfluxDB an excellent
choice for storing and retrieving sensor readings. Its design allows for optimized
storage and retrieval mechanisms specifically tailored for time-based data queries.
InfluxDB’s architecture ensures fast and efficient data ingestion, indexing, and
query execution, supporting real-time data processing requirements at the edge
[46].

6.1.4 Aggregates Storage
As sensor data is collected and processed in each edge instance, there is a require-
ment to compute aggregates periodically for each data center. These aggregates
capture meaningful information and insights from the sensor readings. The com-
puted aggregates need to be stored and managed effectively to facilitate further

56

Architecture and Implementation Details

analysis.

To address the storage requirement for processed and aggregated data, the architec-
ture employs a centralized component, such as InfluxDB, to store the aggregated
data from multiple edge instances. This centralized storage approach ensures that
all the computed aggregates are stored in a unified location.

The utilization of centralized aggregates storage contributes to the achievement of
several key objectives of the architecture:

• Scalability: By using a centralized storage solution, the architecture can
handle the aggregated data from multiple edge instances. As the number of
data centers and sensors grows, the centralized storage should ensure scalability
without overwhelming the individual edge instances.

• Centralized Management Ease: With a centralized storage component, the
management and handling of aggregated data should become more streamlined.
It provides a unified and standardized approach to storing, retrieving, and
managing the aggregated data from different edge instances. By reducing
the complexity of data handling, it should be possible to have an easier and
stronger centralized management.

Figure 6.4: Aggregates Storage

InfluxDB is chosen as a suitable technology for the centralized aggregates storage
component due to its capabilities as a time-series database. Time-series databases,
like InfluxDB, are optimized for storing and querying time-stamped data efficiently.
InfluxDB’s design allows for the storage and retrieval of large volumes of time-series
data with high performance. Its indexing and compression techniques ensure fast

57

Architecture and Implementation Details

and efficient access to the aggregated data. In addition, InfluxDB provides flexible
query capabilities that enable data analysis and integration with other components
of the architecture [46].

6.1.5 OpenWhisk in Each Instance: Centralized CouchDB
and Local Caches

To address the challenges of storing sensor data in local databases and computing
aggregates for subsequent storage in the centralized database, OpenWhisk actions
are utilized. These actions, implemented in OpenWhisk, enable the execution of
data processing tasks and the computation of aggregates. By deploying OpenWhisk
in each instance, the architecture should simplify the execution of actions in a
distributed and scalable manner.

A centralized CouchDB instance is employed to store the actions and trigger
code for all edge instances. This approach ensures a centralized repository of
actions and triggers, providing a unified and streamlined approach to manage the
behavior of the OpenWhisk system across all instances. By leveraging a centralized
and unique CouchDB, which is the default database of OpenWhisk, the architec-
ture benefits from its scalability, replication capabilities, and efficient handling of
document-oriented data. It is important to note that by default each OpenWhisk
instance deploys its own CouchDB, which would have involved the replication of
each action an trigger code: the choice of sharing a single CouchDB for the entire
system was taken in order to avoid this behaviour, also in order to go towards the
objective of centralized managment.

In addition to the centralized CouchDB for storing actions and triggers, each
edge instance maintains a local cache. This cache is used to store frequently
accessed action code, eliminating the need for continuous communication with the
centralized CouchDB. By utilizing a local cache, the architecture should enhance
system performance and scalability by reducing latency and network overhead.
The local cache allows the edge instances to access the frequently used action code
quickly, enabling faster response times for data processing and aggregation tasks.

The adoption of OpenWhisk in each instance, combined with a centralized CouchDB
for actions and triggers, and local cache, contributes to achieving the objectives of
the architecture:

• Scalability: By deploying OpenWhisk in each instance and utilizing CouchDB
as the centralized storage for actions and triggers, the architecture should
enforce its scalability. The distributed nature of OpenWhisk allows for par-
allel execution of actions across multiple edge instances, promising efficient

58

Architecture and Implementation Details

utilization of resources and handling of increasing workloads, which are key
elements to achieve scalability [47]. Centralized CouchDB ensures fewer copies
of actions and triggers across all instances, supporting scalability.

• Real-time Data Processing: OpenWhisk’s event-driven architecture and
serverless functions promise to facilitate real-time data processing. By trig-
gering periodic actions in the edge instances, the architecture should provide
timely computation of aggregates from sensor readings. On the other hand,
the presence of caches in the edge instances should enable a faster retrieval
of actions and triggers, without having to contact the centralized instance,
promising to save the time to reach the centralized CouchDB.

• Centralized Management Efficiency: The choice of using a centralized
CouchDB for storing actions and triggers ensures centralized management
efficiency. With a single repository for actions and triggers, the architecture
cleary simplifies administration, versioning, and deployment of the OpenWhisk
system. Having a unique point of storage for actions and triggers of the
entire system ensures that the system administrator should perform just one
operation when having to update, upgrade or create something, avoiding to
have to touch each single edge instance.

Figure 6.5: OpenWhisk in Each Instance: Centralized CouchDB and Local Caches

6.1.6 Enable Action Execution
To enable the execution of actions when sensor data is published, triggers associ-
ated with the actions need to be fired. In the case of edge instances, the MQTT
Provider is utilized to trigger actions in real-time as sensor data is published. This
should help ensuring immediate response and real-time data processing capabilities.
Additionally, for the computation of aggregates, triggers are periodically fired using

59

Architecture and Implementation Details

the OpenWhisk Alarm Provider. This mechanism allows for the periodic execution
of actions to compute aggregates based on sensor readings.

In the centralized instance, the MQTT Provider and OpenWhisk Alarm Provider
are used to create the triggers that will be shared across all instances. This cen-
tralized approach simplifies the trigger creation process, eliminating the need to
define triggers individually for each edge instance.

The operation of firing a trigger, invoking an action and creating actions and
triggers can be done by making the right HTTP request to the OpenWhisk API
Host, which can be found both on the edge and centralized instances. This is a
default component included in the OpenWhisk deploymet.

The choice to use of OpenWhisk Alarm Provider and MQTT Provider contributes
to achieving the objectives of the architecture:

• Real-time Data Processing: The MQTT Provider plays a crucial role in
trying to achieve real-time data processing. By firing triggers associated with
actions when sensor data is published, the architecture should provide fast
response and processing of data at the edge.

• Centralized Management Efficiency: In the centralized instance, the
MQTT Provider and OpenWhisk Alarm Provider are used to create triggers
that are shared across all instances. This centralized trigger creation approach
clearly enhances management efficiency by eliminating the need to define
triggers separately for each edge instance. This approach simplifies trigger
management, versioning, and deployment, leading to centralized control and
streamlined management of the architecture.

Figure 6.6: Enable Action Execution

60

Architecture and Implementation Details

6.1.7 Aggregates Visualization
One of the challenges is to enable administrators to monitor the computed aggre-
gates from each data center in a centralized manner. This requires a solution that
can provide a comprehensive view of the aggregated data from different locations,
facilitating monitoring and analysis.

In the centralized instance, a visualization tool like Grafana is integrated to address
the problem of monitoring aggregates. Grafana serves as a centralized platform
for data visualization and allows to create customized dashboards to monitor the
aggregated data from various data centers.

The usage of Grafana contributes to achieving the objectives of the architecture:

• Scalability: One of the reasons why Grafana should contribute to scalability
in the architecture is that it eliminates the need to have a separate Grafana
instance for each edge instance. By having a centralized Grafana installation,
the architecture should handle a growing number of data centers and sensors
without the need for additional resources to set up and maintain individual
Grafana instances. This centralized approach should ensure scalability by
reducing the overhead and complexity associated with managing multiple
Grafana installations.

• Centralized Management Ease: Grafana’s ability to create a single dash-
board that can be customized and shared across multiple data centers enables
centralized management of the visualization and monitoring process. Adminis-
trators can create a master dashboard template that includes all the necessary
metrics and visualizations, and then easily use it for each data center by
changing the data center identifier. This centralized management approach
streamlines the configuration and maintenance of the dashboards, allowing
administrators to manage and monitor the aggregated data from all data
centers from a single point of control.

Grafana is widely recognized as a powerful and versatile visualization tool with
several features that make it a good choice for integrating with the architecture
[48]. Some reasons include:

• User-Friendly Interface: Grafana offers an intuitive and user-friendly
interface, making it easy for administrators and stakeholders to create and
customize dashboards according to their specific requirements. Its drag-and-
drop functionality and extensive library of visualization options simplify the
process of creating informative and visually appealing dashboards.

• Real-time Monitoring: Grafana excels in real-time data monitoring and

61

Architecture and Implementation Details

visualization. It provides real-time updates and supports dynamic querying of
data, allowing users to view and analyze the computed aggregates as they are
being processed.

• Extensibility and Integration: Grafana offers extensive support for various
data sources and integrations. It can connect to a wide range of databases
and data storage systems, including InfluxDB, which is used for storing the
centralized aggregates. This flexibility enables seamless integration with
the architecture’s centralized component, enhancing the visualization and
monitoring capabilities.

Figure 6.7: Aggregates Visualization

6.1.8 Architecture Summary
To sum up, the architecture comprises two main components: edge instances and
the central management instance.

The edge instances can be deployed close to the data sources, which in this

62

Architecture and Implementation Details

case are the sensors in the data centers. They are responsible for processing and
aggregating data in real-time and sending it to the central management instance.
The main components of the edge instances include:

• OpenWhisk APIHost

• MQTT Broker

• MQTT Provider

• Local InfluxDB

• OpenWhisk Alarm Provider

• OpenWhisk Cache

The central management instance is responsible for storing and processing the data
received from the edge instances. Its main components include:

• OpenWhisk APIHost

• CouchDB

• MQTT Provider

• Centralized InfluxDB

• OpenWhisk Alarm Provider

• OpenWhisk Cache

• Grafana

63

Architecture and Implementation Details

Figure 6.8: Use Case Architecture

6.1.9 Components of the Architecture
This section presents in detail the main components that are part of the architecture,
providing a technical overview for each of them and presenting how they are used

64

Architecture and Implementation Details

in the chosen use case. The reasons why each component has been included in the
architecture have already been specified in the previous section.

MQTT Broker

The MQTT Broker, specifically using the Mosquitto implementation, serves as the
intermediary between the sensors and the edge instances. It acts as a lightweight,
open-source message broker that receives data from the sensors and publishes them
to the relevant subscribers. The broker facilitates the publish-subscribe pattern,
where sensors publish their data to specific topics, and the edge instances, acting
as subscribers, can subscribe to these topics to receive the data [49]. The MQTT
Broker ensures efficient and reliable message delivery between the sensors and the
edge instances.

Figure 6.9: MQTT Broker

MQTT Provider

The MQTT Provider component, present in both the edge and central instances,
plays a critical role in managing triggers and handling MQTT messages. It creates,
updates, and deletes specific triggers and listens to incoming MQTT messages,
ensuring the appropriate triggers are fired to initiate further actions [35].

65

Architecture and Implementation Details

Figure 6.10: MQTT Provider

OpenWhisk API Host

The OpenWhisk API Host component is deployed in both the edge and central
instances. It acts as the interface for managing API requests, such as adding
triggers, actions, and invoking them. In this use case, it is specifically used when
the MQTT broker fires a new trigger, triggering the corresponding actions.

Figure 6.11: OpenWhisk API Host

66

Architecture and Implementation Details

OpenWhisk Alarm Provider

The OpenWhisk Alarm Provider component is utilized in both the edge and central
instances. It is responsible for creating, updating, and deleting specific triggers
based on predefined schedules or intervals. It ensures that OpenWhisk triggers are
fired periodically, enabling timely data processing and analysis [36].

Figure 6.12: OpenWhisk Alarm Provider

OpenWhisk Cache

The OpenWhisk Cache component, found in the edge instances, is responsible
for caching data. It helps improve the overall performance by storing frequently
accessed data in memory, reducing the need for repeated data retrieval from the
underlying storage systems. When invoking an action, for example, OpenWhisk
first looks for the action’s code and metadata in the cache. If nothing can be found,
it searches for data in the centralized database.

Figure 6.13: OpenWhisk Cache

67

Architecture and Implementation Details

InfluxDB

InfluxDB is a time series database designed to handle high volumes of time-stamped
data efficiently. It provides a purpose-built storage solution for time-series data,
making it ideal for storing and analyzing sensor data in real-time. InfluxDB offers
powerful querying capabilities, retention policies, and downsampling techniques,
enabling organizations to effectively manage and analyze large amounts of time-
series data [50]. It serves as the storage system for the collected sensor data on the
edge instances, while it stores aggregate data in the central instance. In this use
case, it stores the data received from the sensors and processed by the OpenWhisk
actions, allowing historical analysis and trend identification.

Figure 6.14: InfluxDB

CouchDB

CouchDB is a NoSQL document-oriented database that provides a flexible and
distributed storage solution. It offers a schema-less data model, allowing for easy
and dynamic data storage and retrieval. CouchDB supports replication, making it
suitable for distributed and fault-tolerant architectures. It provides a RESTful API
for interacting with the database, allowing developers to perform CRUD operations
on documents and utilize powerful querying capabilities [51]. It is used in the
central instance to store OpenWhisk data such as actions, triggers, and other
relevant information.

68

Architecture and Implementation Details

Figure 6.15: CouchDB

Grafana

Grafana is an open-source analytics and visualization platform that allows users to
create and share customizable dashboards. It supports a wide range of data sources,
including InfluxDB, to retrieve and visualize data. Grafana provides a rich set of
visualization options, including graphs, charts, gauges, and alerting mechanisms,
enabling users to monitor and analyze data effectively. It offers a user-friendly
interface for building interactive ìdashboards and exploring data in real-time [48].
It is located in the centralized instance. It plays a crucial role in visualizing the
aggregates derived from the collected sensor data.

Figure 6.16: Grafana

6.2 Implementation Details
In the implementation details of the use case, two key aspects are focused on: the
main action mechanism and the interaction between components.

69

Architecture and Implementation Details

6.2.1 Main Action Mechanism

During the implementation phase, several choices were made to determine the
most suitable actions for the main action mechanism. These choices were driven
by the objectives of the thesis, ultimately leading to the implementation of the
addReadingToDb and the actions for computing aggregates.

The addReadingToDb action was implemented as the primary action responsi-
ble for capturing and storing sensor data from the MQTT broker. This choice
was motivated by the need to achieve real-time data storage and processing. By
implementing this action, the system should be able to capture the sensor data
as soon as it is received. As already explained in the previous section about
the use case architecture 6.1, the use of OpenWhisk serverless functions for the
implementation should ease the scalable execution of this action, accommodating
varying workloads and ensuring high availability.

Figure 6.17: addReadingToDb Action Mechanism

The implementation of the actions for aggregates was based on the requirement
to derive meaningful insights and analytics from the stored sensor data. These
actions are triggered periodically using the OpenWhisk Alarm Provider, allowing
for regular computation of aggregates based on the accumulated sensor readings.
By implementing these actions, valuable information regarding the data center’s
performance, trends, and anomalies can be extracted. The implementation of
the actions to compute aggregates facilitates efficient data analysis and supports
decision-making processes. As already explained in the previous section about
the use case architecture 6.1, by leveraging OpenWhisk serverless functions, the
implementation of these actions can be executed in a distributed and parallel
manner across multiple edge instances, and this aspect should enable scalability
and efficient resource utilization.

70

Architecture and Implementation Details

Figure 6.18: Aggregate Action Mechanism

These choices align with the objectives of the architecture and the desired outcomes:

• Real-time Data Processing: The implementation of the addReadingToDb
action has been done to enable real-time storage of sensor data, trying to
ensure immediate availability for monitoring. By implementing this action
to capture the data as soon as it is received, the system should promptly
store them in the local database. As already observerd, all these aspects have
already been presented in the section about the use case architecture 6.1.

• Scalability: The use of OpenWhisk serverless functions for both the actions
for aggregates and for the addReadingToDb action should be able to allow
scalable execution. As the workload increases, additional instances of the
actions can be automatically provisioned to handle the demand. This choice
has been done to try ensuring that the system can efficiently accommodate
varying data volumes without compromising performance or availability. As
already observerd, all these aspects have already been presented in the section
about the use case architecture 6.1.

• Centralized Management: The implementation phase also considered
the aspect of centralized management. By utilizing OpenWhisk actions and
triggers stored in a single CouchDB instance, the system achieves centralized
management of code. This choice has been done to enable efficient handling

71

Architecture and Implementation Details

of code across multiple instances. Updates or modifications to the code
can be easily applied universally, eliminating the need for individual code
changes on each instance. This centralized management approach simplifies
implementation, improves maintenance, and provides scalability and flexibility
to the system. As already observerd, all these aspects have already been
presented in the section about the use case architecture 6.1.

In summary, the choices made during the implementation phase led to the imple-
mentation of the addReadingToDb and of the actions to compute aggregates as the
main action mechanism. These choices were motivated by the requirements for real-
time data storage, scalability, and centralized managment. The implementation of
the addReadingToDb action has been done to try ensuring prompt storage of sensor
data, while the implementation of the actions for aggregates enables computation
of meaningful aggregates for analysis and decision-making. Leveraging OpenWhisk
serverless functions should further enhance the scalability and efficiency of the
chosen actions, aligning with the objectives of the architecture.

6.2.2 Interaction Between Components
Interaction for addReadingToDb action

When sensor data is published to the local MQTT broker within each data center,
a MQTT provider listens for these data publications. Once data is published, the
MQTT provider triggers an interaction with the local OpenWhisk instance.

The trigger, configured using the MQTT package, is responsible for firing an Open-
Whisk action called addReadingToDb. This action is implemented as a JavaScript
function and is deployed as a kubernetes pod. It is responsible for writing the
published sensor data to the local InfluxDB database.

Upon receiving the trigger, the local OpenWhisk instance checks if the trigger and
its parameters are present in the local cache. The local cache, automatically created
during OpenWhisk deployment, stores frequently used triggers and their parameters,
improving performance by reducing the need for accessing the centralized CouchDB.

If the trigger and its parameters are found in the local cache, the local OpenWhisk
instance retrieves them directly, avoiding the need for accessing the centralized
CouchDB. However, if the trigger or its parameters are not present in the local
cache, the local OpenWhisk instance queries the centralized CouchDB to retrieve
the required information. This ensures the availability of triggers and their associ-
ated action code and parameters, even if they haven’t been accessed recently or
have been evicted from the local cache. The same steps are followed to retrieve the

72

Architecture and Implementation Details

action code and metadata.

Once the local OpenWhisk instance has obtained the trigger, the action and
its parameters, it determines the appropriate invoker, which is an available cluster
node, to create a pod that runs the addReadingToDb action. The pod is responsible
for executing the JavaScript code of the action, which includes writing the sensor
data to the local InfluxDB database. After the action completes its execution, the
pod is terminated.

Figure 6.19: Interaction Between Components for addReadingToDb action

73

Architecture and Implementation Details

Interaction for the Actions Related to Aggregates

Computing aggregates from collected data in local data centers involves scheduled
actions triggered by OpenWhisk alarms. The local OpenWhisk instance optimizes
performance by employing a caching strategy for essential components like triggers,
action code, and parameters. When the scheduled time arrives, the alarm trigger
fires, and the local instance swiftly checks its cache for the required components. If
found, it efficiently retrieves them, avoiding additional queries.

If the trigger or its parameters are not present in the local cache, the local Open-
Whisk instance proceeds to query the centralized CouchDB, a reliable repository for
storing trigger and action-related information. By querying the CouchDB, the nec-
essary components, including the trigger, associated action code, and parameters,
are obtained, ensuring all the required data is available for the computation process.

Once the trigger and action components are obtained, the local OpenWhisk in-
stance determines the suitable invoker based on factors such as resource availability,
load balancing, and optimization. The chosen invoker then creates a dedicated
pod specifically designed for executing the actions related to aggregate computation.

Within the created pod, the JavaScript code associated with the actions is exe-
cuted. The pod establishes connections with the local InfluxDB instances, which
serve as the data sources for retrieving relevant information required for aggregate
computation. Leveraging the connectivity to the local InfluxDB instances, the pod
efficiently retrieves the necessary data and performs the required computations to
generate the aggregates.

Once the computation process is complete, the actions store the computed aggre-
gates in the centralized InfluxDB database. This centralized storage, located in
the centralized cluster, ensures consistent and centralized storage of the aggregates.
It facilitates further analysis, exploration, and data-driven decision-making based
on the processed data.

In summary, the periodic triggering of aggregate computation actions, along with
the caching mechanism and utilization of the OpenWhisk alarm package, enables
efficient and timely computation of aggregates from collected data. By leveraging
the connectivity to the centralized CouchDB and local InfluxDB instances, the
system efficiently retrieves and processes the required information. This comprehen-
sive workflow ensures reliable computation and centralized storage of aggregates,
empowering organizations to extract valuable insights and make data-informed
decisions that drive their success.

74

Architecture and Implementation Details

Figure 6.20: Interaction Between Components for the Actions Related to Aggre-
gates

75

Chapter 7

Experimental Deployment

This chapter focuses on the practical implementation of the system, shedding
light on the technologies, tools, and processes involved in deploying the edge and
centralized instances. By covering topics such as deployment environment, sensor
integration, deployment process, and deployed charts, it is possible to gain a
comprehensive understanding of the deployment process and its outcomes.

7.1 Technologies and Tools

This section presents the different technologies and tools used for the experimental
deployment phase of the chosen architecture.

7.1.1 Kubernetes

Kubernetes is an open-source container orchestration platform that automates the
deployment, scaling, and management of containerized applications. It provides
a robust framework for running distributed systems and managing containerized
workloads across a cluster of machines. Kubernetes offers features such as automatic
scaling, load balancing, self-healing, and rolling updates, making it an ideal choice
for deploying and managing microservices architectures [52].

In this thesis, Kubernetes has been utilized as the underlying infrastructure for
deploying and managing the central and edge instances of the system. Its power-
ful capabilities in container orchestration and management have enabled efficient
scaling, fault tolerance, and resource allocation for the application.

76

Experimental Deployment

Figure 7.1: Components of Kubernetes

7.1.2 Docker

Docker is an open-source platform that automates the deployment and management
of applications using containerization. It allows applications to be packaged into
containers, which encapsulate all the dependencies and configurations needed for
the application to run consistently across different environments. Docker provides a
lightweight, portable, and isolated runtime environment for applications, ensuring
reproducibility and simplifying deployment processes [53].

Docker has played a crucial role in this thesis by containerizing the application
components, making them independent of the underlying infrastructure. This
containerization approach has facilitated easy deployment, version control, and
scalability of the system.

77

Experimental Deployment

Figure 7.2: Containerization Process

7.1.3 Helm
Helm is a package manager for Kubernetes that simplifies the deployment and
management of applications by providing a templating and release management
system. It allows the definition of application configurations as charts, which are
collections of pre-configured Kubernetes manifest files. Helm charts enable the easy
installation, upgrade, and rollback of applications, making it a valuable tool for
managing complex deployments [54].

In this thesis, Helm has been used to define and deploy the central and edge
instances of the system. The charts provided a standardized and reproducible way
to configure and deploy the application, simplifying the deployment process and
ensuring consistency across different environments.

Figure 7.3: Helm Architecture

78

Experimental Deployment

7.1.4 ChartMuseum
ChartMuseum is an open-source Helm chart repository that allows the hosting and
distribution of Helm charts. It provides an easy way to store, share, and version
control charts, enabling teams to collaborate and deploy applications consistently.
ChartMuseum offers features such as chart indexing, authentication, and secure
chart serving over HTTPS [55].

ChartMuseum has been utilized in this thesis as the repository for storing and dis-
tributing the Helm charts used in the deployment of the central and edge instances.
It provided a centralized and reliable location for managing the charts, allowing
seamless integration with the Helm deployment process.

Figure 7.4: Chartmuseum and Its Interaction With Helm

7.1.5 Traefik
Traefik is a modern, dynamic, and cloud-native reverse proxy and load balancer
designed for microservices architectures. It acts as an entry point for incoming
traffic to the application and dynamically routes requests to the appropriate services
based on configurable rules. Traefik supports automatic service discovery, SSL/TLS
termination, circuit breakers, and various load balancing algorithms [56].

79

Experimental Deployment

In this thesis, Traefik has been utilized as the Ingress Controller for the Kubernetes
cluster, routing external traffic to the central and edge instances of the system. Its
dynamic configuration capabilities and seamless integration with Kubernetes have
facilitated efficient traffic management and load balancing.

Figure 7.5: Details About How Traefik Ingress Controller Works

7.1.6 Arduino IDE
The Arduino IDE is the software component that provides a user-friendly pro-
gramming environment for writing and uploading code to the Arduino boards. It
is based on the C/C++ programming language and simplifies the development
process by abstracting low-level details. The IDE offers a rich library ecosystem,
containing pre-built functions and examples, making it easier to interface with
sensors, perform data acquisition, and control devices [57].

Arduino IDE was utilized in this thesis to enable sensor integration and data
transmission. Arduino boards, such as the ESP8266 NodeMCU, were employed
to collect telemetry data from sensors and establish communication with remote

80

Experimental Deployment

servers or MQTT brokers.

Figure 7.6: Arduino IDE

7.2 Deployment Environment and Sensors Inte-
gration

7.2.1 Deployment Environment

The deployment environment for this thesis consists of a single-node cluster with
limited resources. The cluster is based on k3s, a lightweight Kubernetes distribution
[58], and is specifically designed for resource-constrained environments. The single-
node cluster is equipped with 6 CPU cores and 16 GB of RAM.

81

Experimental Deployment

Figure 7.7: Single-Node Cluster Details

7.2.2 ESP8266 Sensor Integration

In addition to the deployment environment, the thesis incorporates the integration
of a ESP8266 sensor. The ESP8266 is a widely used microcontroller with built-in
Wi-Fi capabilities, making it suitable for IoT applications. These sensor can collect
data from the physical environment and transmit it wirelessly to the edge instances
[59].

Figure 7.8: Use Case Sensor

82

Experimental Deployment

7.3 Deployment Process

7.3.1 Edge Instance Deployment

Deployment Script

The OpenWhisk edge deployment involves the configuration and deployment of
various components and services to create a robust environment. A central com-
ponent of this deployment is the deploy.sh script, which automates the entire
deployment process, ensuring a streamlined and efficient setup. By executing the
deploy.sh script, users can deploy the entire edge solution seamlessly.

The deploy.sh script plays a vital role in the deployment process by performing
several key functions. Firstly, it handles the parameter configuration, allowing users
to customize the deployment according to their specific requirements. This ensures
that the edge solution is tailored to meet the unique needs of the environment in
which it will operate.

Furthermore, the script handles the setup of the repository, specifically the chart-
museum repository for helm charts. This repository provides access to the required
helm charts for deploying the helm chart for the edge solution. By adding the
chartmuseum repository, the deploy.sh script ensures that the necessary resources
are available for the deployment process.

Finally, the deploy.sh script deploys the helm chart that comprises the edge
solution. The helm chart is a collection of multiple subcharts, each serving a
specific purpose in enabling edge computing capabilities. These subcharts in-
clude OpenWhisk, InfluxDB, Mosquitto, and an MQTT provider. Each subchart
contributes to the overall functionality of the edge solution, such as serverless
computing, data storage, and MQTT communication.

To ensure a successful deployment, proper configuration using the values.yaml
file is essential, which is used during the deployment of the helm chart. This file
contains crucial parameters that define the behavior and settings of the deployed
services. By carefully setting these parameters in the values.yaml file, users can
tailor the edge solution to their specific needs, such as specifying authentication
credentials, network configurations, and integration details. The script takes also
care of configuring in the right way those parameters.

In summary, the OpenWhisk edge deployment involves the configuration and
deployment of various components and services using the deploy.sh script. This

83

Experimental Deployment

script automates the process and performs key functions such as parameter config-
uration, repository setup, and helm chart deployment.

In order to access and utilize the deploy.sh script, it can be found in the
/openwhisk/deploy/edge folder of the GitHub repository for this thesis1. The
values.yaml file is also located in the same folder, providing the parameters modi-
fied by the script for the helm deployment. Additionally, the parameters.yaml file,
containing specific configuration parameters which are used to set the values.yaml
file, can be found in the /openwhisk/deploy/parameters folder2.

Sensors Setup

The sensor setup for the edge instance involves the utilization of an Arduino project.
This project employs an ESP8266 NodeMCU board and various sensors, including
a DHT11 temperature and humidity sensor and an analog pin for gas concentration
detection. The project enables the collection of telemetry data from these sensors
and the transmission of the data to an MQTT broker.

To successfully set up the send-telemetry.ino project, specific parameters need
to be configured. These parameters include the Wi-Fi network credentials (SSID
and password) and the MQTT broker details (address, topic, username, password,
and port). Administrators responsible for the data center must ensure the correct
configuration of these parameters to establish network connectivity and MQTT
communication.

This is the code in the file send-telemetry.ino:

1 // Pin c o n f i g u r a t i o n f o r ESP8266 NodeMCU connected to the output (OUT
) pin o f the DHT11 senso r

2 #d e f i n e tipoDHT DHT11
3 /∗ Def ines the type o f DHT senso r : in t h i s case , DHT11 i s s e l e c t e d ,
4 but there are other s e n s o r s such as DHT21 and DHT22
5 ∗/
6 DHT dht (D1 , tipoDHT) ; // I n s t a n t i a t e the dht ob j e c t o f the DHT c l a s s
7 f l o a t h ; // Humidity
8 f l o a t t ; // Temperature
9 f l o a t g ; // Gas

1https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/
deploy/edge

2https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/
deploy/parameters

84

https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/edge
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/edge
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/parameters
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/parameters

Experimental Deployment

10 i n t o = 1 ;
11 i n t l = 0 ;
12

13 // ∗∗∗ Wi−Fi Conf igurat ion : Network c r e d e n t i a l s ∗∗∗
14 const char ∗ s s i d = " s s i d " ; // I n s e r t the SSID here
15 const char ∗ password = " password " ; // I n s e r t the Wi−Fi password here
16 // WiFiClient c l i e n t ;
17

18 unsigned long t ime_last = 0 ; // Last measurement time
19 unsigned long time_current ; // Current time
20 const long i n t e r v a l = 10000; // Time i n t e r v a l between measurements (

e . g . , 15 minutes)
21

22 // MQTT Broker : TO BE CONFIGURED WITH YOUR BROKER VARIABLES
23 const char ∗ mqtt_broker = " 38 . 242 . 158 . 232 " ;
24 const char ∗ t op i c = " t e s t " ;
25 const char ∗ mqtt_username = " t e s t " ;
26 const char ∗ mqtt_password = " t e s t " ;
27 const i n t mqtt_port = 31345;
28

29 WiFiClient e spC l i en t ;
30 PubSubClient c l i e n t (e spC l i en t) ;
31

32 // Device f i n g e r p r i n t and s t r i n g with the ID o f the datacente r
33 uint32_t ucid = ESP. getChipId () ;
34 uint32_t dataCenterID ;
35

36 void setup () {
37 delay (1000) ;
38

39 pinMode (D3 , OUTPUT) ;
40 pinMode (D4 , OUTPUT) ;
41 pinMode (A0 , INPUT) ;
42 dht . begin () ;
43

44 // Open a s e r i a l connect ion f o r debugging purposes
45 S e r i a l . begin (115200) ;
46

47 // Get dev i c e f i n g e r p r i n t
48 S e r i a l . p r i n t ("UCID: ") ;
49 S e r i a l . p r i n t l n (ucid , HEX) ;
50

51 // I n i t i a l i z e the EEPROM l i b r a r y
52 EEPROM. begin (s i z e o f (dataCenterID)) ;
53 EEPROM. get (0 , dataCenterID) ;
54 S e r i a l . p r i n t ("DC ID from EPROM: ") ;
55 S e r i a l . p r i n t l n (dataCenterID , DEC) ;
56

57 WiFi . begin (s s id , password) ; // Connect to the Wi−Fi route r

85

Experimental Deployment

58 S e r i a l . p r i n t l n (" Connecting to Wi−Fi . . . ") ;
59 whi le (WiFi . s t a tu s () != WL_CONNECTED) {
60 delay (500) ;
61 S e r i a l . p r i n t (" . ") ;
62 }
63 S e r i a l . p r i n t l n (" ") ;
64 S e r i a l . p r i n t (" ESP8266 NodeMCU connected to Wi−Fi network : ") ;
65 S e r i a l . p r i n t (s s i d) ;
66 S e r i a l . p r i n t (" with IP address : ") ;
67 S e r i a l . p r i n t l n (WiFi . l o c a l I P ()) ; // ESP8266 ’ s IP as s i gned by DHCP
68 S e r i a l . p r i n t l n () ;
69 d i g i t a l W r i t e (D3 , 1) ; // Turn on LED 1 to i n d i c a t e that Wi−Fi i s

a c t i v e
70 delay (500) ;
71 r i l e v a _ i n v i a () ; // Ca l l the func t i on to read and send humidity

and temperature data
72 }
73

74 void loop () {
75 t ime_current = m i l l i s () ;
76 i f (t ime_current − t ime_last >= i n t e r v a l) {
77 t ime_last = time_current ;
78 r i l e v a _ i n v i a () ;
79 d i g i t a l W r i t e (D4 , 1) ;
80 delay (2 ∗ 60 ∗ 1000) ;
81 l += 2 ;
82 i f (l == 120) {
83 l = 0 ;
84 o = o ∗ 2 ;
85 }
86 d i g i t a l W r i t e (D4 , 0) ;
87 }
88 }
89

90 void r i l e v a _ i n v i a () {
91 f o r (i n t i = 0 ; i < 3 ; i++) {
92 h = dht . readHumidity () ; // Read humidity
93 t = dht . readTemperature () ; // Read temperature in C e l s i u s
94 g = (analogRead (A0) ∗ 100) / 1024 ;
95 delay (300) ;
96 }
97 i f (i snan (h) | | i snan (t)) {
98 S e r i a l . p r i n t l n (" Reading e r r o r . . . ") ;
99 re turn ;

100 h = 0 . 0 ;
101 t = 0 . 0 ;
102 g = 0 . 0 ;
103 }

86

Experimental Deployment

104 St r ing s = " Humidity= " + St r ing (h) + " Temperature=" +
St r ing (t) ;

105 S e r i a l . p r i n t l n (s) ;
106 St r ing s2 = St r ing (h) + "#" + Str ing (t) + "#" ;
107 c l i e n t . s e t S e r v e r (mqtt_broker , mqtt_port) ;
108 c l i e n t . setKeepAl ive (6000) ;
109 whi le (! c l i e n t . connected ()) {
110 St r ing c l i e n t _ i d = " esp8266−c l i e n t −" ;
111 c l i e n t _ i d += Str ing (WiFi . macAddress ()) ;
112 S e r i a l . p r i n t f ("The c l i e n t %s connects to the pub l i c MQTT

broker \n " , c l i e n t _ i d . c_str ()) ;
113 i f (c l i e n t . connect (c l i e n t _ i d . c_str () , mqtt_username ,

mqtt_password)) {
114 } e l s e {
115 S e r i a l . p r i n t (" Fa i l ed with s t a t e ") ;
116 S e r i a l . p r i n t (c l i e n t . s t a t e ()) ;
117 delay (2000) ;
118 }
119 }
120

121 // Convert s enso r data to JSON format
122 StaticJsonDocument <200> doc ;
123 doc [" humidity "] = h ;
124 doc [" temperature "] = t ;
125 doc [" gas_perc "] = g ;
126 doc [" d e v i c e _ f i n g e r p r i n t "] = ucid ;
127 doc [" datacenter_id "] = dataCenterID ;
128 St r ing json_data ;
129 s e r i a l i z e J s o n (doc , json_data) ;
130

131 // Publ i sh senso r data to MQTT top i c
132 c l i e n t . pub l i sh (top ic , json_data . c_str ()) ;
133

134 // Pr int s enso r data to s e r i a l monitor
135 S e r i a l . p r i n t l n (json_data) ;
136 }

Additionally, another project incorporates the storage of the data center ID in the
EEPROM of the device. This ID is retrieved and sent along with the telemetry
data to provide identification and context. By storing the data center ID in the
EEPROM, the device can maintain this information even after power cycles or
reboots, ensuring consistent identification throughout its operation.

This capability allows for effective data center identification within the edge com-
puting infrastructure, facilitating the organization, analysis, and management of
the collected data.

87

Experimental Deployment

This is the code in the file store-datacenterID-eeprom.ino:

1 #inc lude <ESP8266WiFi . h>
2 #inc lude <ESP_EEPROM. h>
3

4

5 // data cente r unique ID
6 uint32_t dataCenterID = 1 ; // r e p l a c e t h i s with a unique i d e n t i f i e r

f o r the data cente r
7

8 void setup () {
9 S e r i a l . begin (115200) ;

10 S e r i a l . p r i n t l n () ;
11

12 EEPROM. begin (s i z e o f (dataCenterID)) ;
13

14 EEPROM. put (0 , dataCenterID) ;
15 EEPROM. commit () ;
16

17 EEPROM. get (0 , dataCenterID) ;
18 S e r i a l . p r i n t ("DC ID from EPROM: ") ;
19 S e r i a l . p r i n t l n (dataCenterID , DEC) ;
20

21 }
22

23 void loop () {
24 // empty
25 }

In order to access and utilize the projects, they can be found in the folder
/openwhisk/deploy/edge/sensors of the GitHub repository for this thesis3.

7.3.2 Centralized Instance Deployment
Deployment Script

The OpenWhisk centralized deployment involves the configuration and deployment
of various components and services to create a robust environment. A central
component of this deployment is the deploy.sh script, which automates the entire
deployment process, ensuring a streamlined and efficient setup. By executing the
deploy.sh script, users can deploy the entire centralized solution seamlessly.

3https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/
deploy/edge/sensors

88

https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/edge/sensors
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/edge/sensors

Experimental Deployment

The deploy.sh script plays a vital role in the deployment process by performing
several key functions. Firstly, it handles the parameter configuration, allowing
users to customize the deployment according to their specific requirements. This
ensures that the centralized solution is tailored to meet the unique needs of the
environment in which it will operate.

Furthermore, the script handles the setup of the repository, specifically the chart-
museum repository for helm charts. This repository provides access to the required
helm charts for deploying the helm chart for the centralized solution. By adding the
chartmuseum repository, the deploy.sh script ensures that the necessary resources
are available for the deployment process.

Finally, the deploy.sh script deploys the helm chart that comprises the cen-
tralized solution. The helm chart is a collection of multiple subcharts. These
subcharts include OpenWhisk, CouchDB, InfluxDB, Grafana Operator, Grafana,
and MQTT provider. Each subchart contributes to the overall functionality of
the centralized solution, such as serverless computing, data storage, dahboard
capabilities, and MQTT communication.

To ensure a successful deployment, proper configuration using the values.yaml
file is essential, which is used during the deployment of the helm chart. This file
contains crucial parameters that define the behavior and settings of the deployed
services. By carefully setting these parameters in the values.yaml file, users can
tailor the edge solution to their specific needs, such as specifying authentication
credentials, network configurations, and integration details. The script takes also
care of configuring in the right way those parameters.

After deploying OpenWhisk, the script initializes the CouchDB database. This
step ensures that the necessary tables required by the MQTT provider, deployed
in edge instances, are available.

The script checks if the OpenWhisk actions, triggers, and rules have already
been created. If they are not found, it creates them. These components are crucial
for processing and handling incoming data from sensors. In the end, the script also
creates an external user to access the Grafana Dashboard. This allows authorized
users to monitor and visualize data through Grafana.

In summary, the OpenWhisk centralized deployment involves the configuration
and deployment of various components and services using the deploy.sh script.
This script automates the process and performs key functions such as parameter
configuration, repository setup, helm chart deployment, database setup, creation

89

Experimental Deployment

of actions and triggers and creation of Grafana users.

In order to access and utilize the deploy.sh script, it can be found in the
/openwhisk/deploy/central folder of the GitHub repository for this thesis4. The
values.yaml file is also located in the same folder, providing the parameters modi-
fied by the script for the helm deployment. Additionally, the parameters.yaml file,
containing specific configuration parameters which are used to set the values.yaml
file, can be found in the /openwhisk/deploy/parameters folder5.

addReadingToDb Action

To store sensor data in the local InfluxDB instance, an addReadingToDb action
is created using JavaScript code. This action receives messages published by the
sensor through an MQTT broker and provider. The deploy.sh script facilitates
the setup of the action and related components (trigger, feed, package) if necessary.
By leveraging MQTT infrastructure and InfluxDB, the proposed solution ensures
seamless data transfer and storage, enabling real-time data handling and subse-
quent analysis. The integration of the addReadingToDb action with MQTT and
InfluxDB aligns with the goal of utilizing serverless computing and IoT technologies
to capture and store sensor data effectively.

This is the code of the addReadingToDb action:

1 f unc t i on main (args) {
2 var r eque s t = r e q u i r e (’ r eque s t ’) ;
3 // Retr i eve the parameters to contact the l o c a l InfluxDB
4 const u r l= args . i n f l ux_ur l ;
5 const token= args . in f lux_token ;
6 const org= args . in f lux_org ;
7 const bucket= args . in f lux_bucket ;
8

9 t ry {
10 const data = JSON. parse (args . body) ; // Parse the s t r i n g in to a

JSON ob j e c t
11 const currentTime = Date . now () ∗ 1000000;
12 const keys = Object . keys (data) ;
13

14 // Construct the InfluxDB l i n e p ro to co l s t r i n g

4https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/
deploy/central

5https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/
deploy/parameters

90

https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/central
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/central
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/parameters
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/parameters

Experimental Deployment

15 l e t in f luxData = ’ ’ ;
16 f o r (l e t i = 0 ; i < keys . l ength ; i++) {
17 i f (keys [i] != " d e v i c e _ f i n g e r p r i n t " && keys [i] != " datacenter_id ")
18 in f luxData += ‘ ${ keys [i] } , datacenter_id=${ data [" datacenter_id

"] } , d e v i c e _ f i n g e r p r i n t=${ data [" d e v i c e _ f i n g e r p r i n t "] } va lue=${ data [
keys [i]] } ${ currentTime }\n ‘ ;

19 }
20

21 const opt ions = {
22 u r l : u r l+’ / api /v2/ wr i t e ? org=’+org+’&bucket=’+bucket+’&p r e c i s i o n

=ns ’ ,
23 method : ’POST ’ ,
24 headers : {
25 ’ Author i zat ion ’ : ’ Token ’+token ,
26 ’ Content−Type ’ : ’ t ex t / p l a i n ’ ,
27 ’ Accept ’ : ’ a p p l i c a t i o n / j son ’
28 } ,
29 body : in f luxData // Use the cons t ruc ted InfluxDB l i n e p ro to co l

s t r i n g as the r eques t body
30 } ;
31

32 r eque s t (opt ions , f unc t i on (err , res , body) {
33 conso l e . l og (e r r) ;
34 }) ;
35 }
36 catch (e) {
37 conso l e . l og (e) ;
38 }
39 }

In order to access and utilize the code of the action, it can be found in the
/openwhisk/deploy/central/openwhisk/actions-and-triggers folder of the
GitHub repository for this thesis6.

Actions for Aggregates

To process and store sensor data effectively, different aggregate actions are im-
plemented for various types of data (humidity, gas percentage, temperature) and
aggregates (minimum, maximum, and mean) over the last 30 minutes. These ac-
tions share a common purpose of connecting to the local and centralized InfluxDB,
retrieving the desired data, computing the target aggregate, and sending the result
to the centralized database. The deploy.sh script facilitates the setup of the
action and related components (trigger, feed, package) if necessary. The workflow

6https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/
deploy/central/openwhisk/actions-and-triggers

91

https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/central/openwhisk/actions-and-triggers
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/central/openwhisk/actions-and-triggers

Experimental Deployment

of the aggregate actions can be summarized as follows:

• Connection Parameters: Each aggregate action requires connection param-
eters for both the local and centralized InfluxDB instances. These parameters
include the URL, token, organization, and bucket information.

• Local InfluxDB Connection: Establish a connection with the local In-
fluxDB using the provided parameters to retrieve data from the local database.

• Data Retrieval: Retrieve the relevant data from the last 30 minutes based
on the specific data type (humidity, gas percentage, or temperature). Use
appropriate queries or filters to fetch the required information.

• Aggregate Computation: Compute the target aggregate (minimum, maxi-
mum, or mean) for the retrieved data. Utilize built-in InfluxDB functions or
custom calculations to determine the desired aggregate value.

• Centralized InfluxDB Connection: Connect to the centralized InfluxDB
using the provided parameters to send the computed aggregate for storage
and further analysis.

• Aggregate Transmission: Construct a write operation to send the computed
aggregate to the centralized InfluxDB. Ensure the appropriate formatting and
precision are maintained to accurately record the aggregate value.

• Scheduled Execution: Schedule the aggregate actions to run every 30
minutes using a scheduler or automation tool. This periodic execution ensures
that the aggregates are computed and stored at regular intervals, keeping the
data up-to-date.

By implementing separate aggregate actions for each data type and aggregate
(min, max, and mean), the system can efficiently handle sensor data, facilitate
real-time analysis, and store the computed aggregates for future reference. This
is the code of one of the actions to compute aggregates, in particular of the
aggregatesGasAvgAction:

1 f unc t i on main (params) {
2 const r eque s t = r e q u i r e (’ r eque s t ’) ;
3 conso l e . l og (params) ;
4

5 // Extract parameters
6 const l o c a l _ u r l= params . l o c a l _ u r l ;
7 const loca l_token= params . loca l_token ;
8 const loca l_org= params . loca l_org ;
9 const loca l_bucket= params . loca l_bucket ;

92

Experimental Deployment

10

11 const c en t ra l_ur l= params . c en t ra l_ur l ;
12 const centra l_token= params . centra l_token ;
13 const centra l_org= params . centra l_org ;
14 const centra l_bucket= params . centra l_bucket ;
15

16

17 // Compute d a i l y aggregate s
18 const today = new Date () ;
19 const halfHourAgo = new Date (today . getTime () − (30 ∗ 60 ∗ 1000)) ;
20

21

22

23 t ry {
24 const query = ‘
25 from (bucket : " measure ")
26 |> range (s t a r t : ${halfHourAgo . toISOStr ing () } , stop : ${ today .

toISOStr ing () })
27 |> f i l t e r (fn : (r) => r [" _measurement "] == " gas_perc ")
28 |> f i l t e r (fn : (r) => r [" _ f i e l d "] == " value ")
29 |> group (columns : [" datacenter_id " , " _measurement "])
30 |> aggregateWindow (every : 1d , fn : mean , createEmpty : f a l s e)
31 |> y i e l d (name : "mean")
32 ‘ ;
33

34 // Query InfluxDB in s tance
35 const queryURL = ‘ ${ l o c a l _ u r l }/ api /v2/ query ? org=${ loca l_org}&bucket

=${ loca l_bucket}&pre t ty=true ‘ ;
36 const requestOpt ions = {
37 u r l : queryURL ,
38 method : ’POST ’ ,
39 headers : {
40 ’ Author i zat ion ’ : ‘ Token ${ loca l_token } ‘ ,
41 ’ Content−Type ’ : ’ a p p l i c a t i o n / csv ’
42 } ,
43 j s on : {
44 query : query
45 }
46 } ;
47 r eque s t (requestOptions , f unc t i on (e r ror , response , body) {
48 i f (! e r r o r && response . statusCode == 200) {
49 const output= body ;
50 const rows = output . s p l i t (" \n ") ; // s p l i t the s t r i n g in to an

array o f rows
51 var gas_perc_avg ;
52 var l o c a t i o n ;
53 var j =0;
54

55 rows . forEach (row => {

93

Experimental Deployment

56 const columns = row . s p l i t (" , ") ; // s p l i t the row in to an
array o f columns

57 columns . s h i f t () ;
58 i f (j==0 && columns [0]== "mean") {
59 l o c a t i o n=columns [5] ;
60 j++;
61 }
62 i f (columns [0]== ’mean ’) {
63 i f (columns [4]== ’ gas_perc ’)
64 gas_perc_avg= columns [6] ;
65 }
66 }) ;
67 var tday = today . getTime () ∗ 1000000;
68 var year=today . getFul lYear () ;
69 var month= today . getMonth () +1;
70 var day=today . getDate () ;
71 // Construct the InfluxDB l i n e p ro to co l s t r i n g
72 var in f luxData =‘gas_perc , datacenter_id=${ l o c a t i o n } , year=${

year } ,month=${month} , day=${day} avg=${gas_perc_avg} ${ tday }\n ‘ ;
73

74

75 const opt ions = {
76 u r l : c en t ra l_ur l+’ / api /v2/ wr i t e ? org=’+centra l_org+’&bucket=

’+centra l_bucket+’&p r e c i s i o n=ns ’ ,
77 method : ’POST ’ ,
78 headers : {
79 ’ Author i zat ion ’ : ’ Token ’+central_token ,
80 ’ Content−Type ’ : ’ t ex t / p l a i n ’ ,
81 ’ Accept ’ : ’ a p p l i c a t i o n / j son ’
82 } ,
83 body : in f luxData // Use the cons t ruc ted InfluxDB l i n e

p ro to co l s t r i n g as the r eque s t body
84 } ;
85

86 r eque s t (opt ions , f unc t i on (err , res , body) {
87 conso l e . l og (r e s)
88 conso l e . l og (e r r) ;
89 i f (e r r) {
90 conso l e . e r r o r (‘ Error sending d a i l y aggregate s to remote

database : ${ e r r } ‘) ;
91 } e l s e {
92 conso l e . l og (’ Dai ly aggregate s i n s e r t e d in to remote

database ’) ;
93 }
94 }) ;
95 } e l s e {
96 conso l e . e r r o r (‘ Error querying l o c a l InfluxDB in s tance : ${

e r r o r } ‘) ;
97 }

94

Experimental Deployment

98 }) ;
99 }

100 catch (e) {
101 conso l e . l og (e) ;
102 }
103 }

In order to access and utilize the code of those actions, they can be found in the folder
/openwhisk/deploy/central/openwhisk/actions-and-triggers/aggregates
of the GitHub repository for this thesis7.

Grafana Dashboard for Monitoring Aggregate Data

The deployment of the centralized solution includes the deployment of a Grafana
instance, which serves as a powerful tool for visualizing and monitoring aggregate
data. A Grafana Dashboard is created using the provided Grafana chart, allowing
users to monitor various metrics related to the system. The dashboard features a
template variable that enables the selection of the desired data center, providing a
customizable and flexible monitoring experience.

7https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/
deploy/central/openwhisk/actions-and-triggers/aggregates

95

https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/central/openwhisk/actions-and-triggers/aggregates
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/central/openwhisk/actions-and-triggers/aggregates

Experimental Deployment

Figure 7.9: Grafana Dashboards for the Use Case

The Grafana Dashboard consists of three panels: Gas Percentage, Humidity Percent-
age, and Temperature. Each panel displays the average, maximum, and minimum
values of their respective metrics. These values are computed every half an hour
using an OpenWhisk action, ensuring that the dashboard reflects real-time data
trends and patterns.

To access the Grafana Dashboard, users can visit the following address:

https://grafana.<centralized-openwhisk-namespace>.<domain-name>

The necessary credentials for accessing Grafana can be found in parameters.yml
file under the grafana.username and grafana.password fields, which can be re-
trieved in the /openwhisk/deploy/parameters folder of the GitHub repository for

96

Experimental Deployment

this thesis8. The admin username and password are required for full administrative
access to Grafana.

In addition to the admin access, a default external user with read-only rights
is also created during the deployment process with the deploy.sh script. The
username and password for this external user are specified in the parameters.yml
file under the grafana.extUsername and grafana.extPassword fields. This user
profile is intended for use by the local data center administrators, allowing them to
monitor the system’s performance without making any modifications.

Adding new aggregate data to the Grafana Dashboard is a straightforward process,
allowing for easy customization and expansion of the monitoring capabilities. The
centralized admin has the flexibility to add new dashboards directly from the
Grafana user interface or by creating a new GrafanaDashboard and updating the
Helm chart.

The yaml file to create the current GrafanaDashboard can be found in the folder
/openwhisk/deploy/helm-charts/chartmuseum-charts/grafana/templates
of the GitHub repository for this thesis9.

7.4 Deployed Charts
In the upcoming section, the deployment process of the OpenWhisk solution will
be explored, with a focus on the Edge Chart and Centralized Chart. These charts
play a crucial role in deploying the edge and centralized instances, respectively.

The section will delve into the significance of Helm charts, which serve as a
packaging and deployment mechanism for the OpenWhisk solution. Both the
Edge and Centralized solutions utilize a top Helm chart, which consists of various
subcharts such as OpenWhisk, Mosquitto, MQTT provider, InfluxDB, CouchDB,
Grafana, and Grafana Operator. Each subchart contributes to the overall function-
ality of the deployment.

Throughout the section, detailed discussions will be provided on the function-
alities and interactions of these subcharts. This will give the necessary knowledge

8https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/
deploy/parameters

9https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/
deploy/helm-charts/chartmuseum-charts/grafana/templates

97

https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/parameters
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/parameters
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/grafana/templates
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/grafana/templates

Experimental Deployment

to effectively configure and deploy the OpenWhisk solution using Helm charts.

By the end of the section, it will be possible to have a comprehensive under-
standing of the deployment process and be empowered to utilize Helm charts
proficiently for deploying the OpenWhisk solution.

7.4.1 Centralized Chart
The Centralized Chart is specifically designed for deploying the centralized instance
of the OpenWhisk solution. This chart plays a crucial role in setting up the
necessary components to establish the centralized environment. It consists of
various subcharts, each responsible for deploying a specific component of the
solution. The subcharts included in the Centralized Chart are:

• CouchDB

• Grafana

• Grafana Operator

• InfluxDB

• OpenWhisk

• MQTT Provider

Each subchart contributes to the overall functionality of the centralized solution.
To retrieve the Centralized Chart and its subcharts, the following commands can
be used:

$ helm repo add chartmuseum https://chart.liquidfaas.cloud
$ helm pull chartmuseum/centralized-chart

These commands will add the Chart Museum repository and download the Central-
ized Chart, which contains all the necessary subcharts for deploying the centralized
instance of the OpenWhisk solution.

This chart can also be retrieved in the GitHub repository for this thesis10, in the
folder /openwhisk/deploy/helm-charts/chartmuseum-charts/central-chart.

10https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/
deploy/helm-charts/chartmuseum-charts/central-chart

98

https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/central-chart
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/central-chart

Experimental Deployment

7.4.2 Edge Chart
The Edge Chart is specifically designed for deploying the edge instance of the
OpenWhisk solution. This chart plays a crucial role in setting up the necessary
components to establish the edge environment. It consists of various subcharts,
each responsible for deploying a specific component of the solution. The subcharts
included in the Edge Chart are:

• InfluxDB

• OpenWhisk

• MQTT Provider

• Mosquitto

Each subchart contributes to the overall functionality of the edge solution. To
retrieve the Edge Chart and its subcharts, the following commands can be used:

$ helm repo add chartmuseum https://chart.liquidfaas.cloud
$ helm pull chartmuseum/edge-chart

These commands will add the Chart Museum repository and download the Edge
Chart, which contains all the necessary subcharts for deploying the edge instance
of the OpenWhisk solution.

This chart can also be retrieved in the GitHub repository for this thesis11, in the
folder /openwhisk/deploy/helm-charts/chartmuseum-charts/edge-chart.

7.4.3 Subcharts
The Edge and Centralized Chart consist of several subcharts that are responsible
for deploying different components of the edge and centralized solution. Each
subchart plays a specific role in setting up the edge and centralized environment.
In this section, all the subcharts included in the Edge and Centralized Chart will
be presented in detail.

CouchDB

The CouchDB - ChartMuseum is an extended version of the CouchDB chart
provided by Apache [60]. This chart incorporates additional functionalities and

11https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/
deploy/helm-charts/chartmuseum-charts/edge-chart

99

https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/edge-chart
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/edge-chart

Experimental Deployment

modifications to enhance the capabilities of the CouchDB deployment.

An IngressRoute has been added to the CouchDB - ChartMuseum to enable con-
nectivity between the edge instances and the CouchDB of the centralized instance.
This IngressRoute allows external access to the CouchDB service from outside the
Kubernetes cluster. The yaml file of the IngressRoute can be retrieved in the folder
/openwhisk/deploy/helm-charts/chartmuseum-charts/couchdb/templates
of the GitHub repository for this thesis12.

Figure 7.10: IngressRoute for CouchDB

To retrieve the CouchDB - ChartMuseum, the following commands can be used:

$ helm repo add chartmuseum https://chart.liquidfaas.cloud
$ helm pull chartmuseum/couchdb

Executing the above commands will add the ChartMuseum repository to the Helm
configuration and retrieve the CouchDB chart from the repository. The downloaded
chart can then be used to deploy the extended CouchDB instance within the
Kubernetes environment.

12https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/
deploy/helm-charts/chartmuseum-charts/couchdb/templates

100

https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/couchdb/templates
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/couchdb/templates

Experimental Deployment

This chart can also be retrieved in the GitHub repository for this thesis13, in
the folder /openwhisk/deploy/helm-charts/chartmuseum-charts/couchdb.

OpenWhisk

The OpenWhisk - ChartMuseum is an extension of the official OpenWhisk chart
provided by Apache [61].

To address certain issues with the provided Helm package for the nodejs14 runtime
in OpenWhisk, a new Docker image was created. The original Helm package
had problems with the installation of the "requests" module using npm. In order
to resolve this, a Docker image named giuliabianchi1408/action-nodejs-v14
was created, and the runtimes file was modified to utilize this new image. The
Dockerfile can also be retrieved in the GitHub repository for this thesis14, as for
the new configuration for runtimes15.

Figure 7.11: Dockerfile for the Updated Runtime

13https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/
deploy/helm-charts/chartmuseum-charts/couchdb

14https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/
prototypes/fixing-nodejsaction/Dockerfile

15https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/
deploy/helm-charts/chartmuseum-charts/openwhisk/runtimes.json

101

https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/couchdb
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/couchdb
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/prototypes/fixing-nodejsaction/Dockerfile
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/prototypes/fixing-nodejsaction/Dockerfile
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/openwhisk/runtimes.json
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/openwhisk/runtimes.json

Experimental Deployment

Figure 7.12: Old Runtime vs New Runtime

In order to facilitate communication between various services deployed within the
same namespace and enable external access when required, the network policies
provided by OpenWhisk were extended. The old network policies can be retrieved
in the GitHub repository for this thesis16, as for the new network policies17.

A bug was identified in the alarm provider component of OpenWhisk. Specif-
ically, when using the default image provided by OpenWhisk, the URI of the API
host is created using the internal API host name and port. This poses a security
concern since the internal port (port 80) does not provide any security options,
while the URI is configured for HTTPS. To address this issue, modifications were
made to the alarm provider to utilize the external API host name and port, which
are exposed on a secure port and support HTTPS. The old configuration for the
alarm provider pod can be retrieved in the GitHub repository for this thesis18, as
for the new configuration19.

16https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/
deploy/helm-charts/original-charts/openwhisk-1.0.0/templates/network-policy.
yaml

17https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/
deploy/helm-charts/chartmuseum-charts/openwhisk/templates/network-policy.yaml

18https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/
openwhisk/deploy/helm-charts/original-charts/openwhisk-1.0.0/templates/
provider-alarm-pod.yaml

19https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/
deploy/helm-charts/chartmuseum-charts/openwhisk/templates/provider-alarm-pod.
yaml

102

https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/original-charts/openwhisk-1.0.0/templates/network-policy.yaml
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/original-charts/openwhisk-1.0.0/templates/network-policy.yaml
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/original-charts/openwhisk-1.0.0/templates/network-policy.yaml
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/openwhisk/templates/network-policy.yaml
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/openwhisk/templates/network-policy.yaml
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/original-charts/openwhisk-1.0.0/templates/provider-alarm-pod.yaml
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/original-charts/openwhisk-1.0.0/templates/provider-alarm-pod.yaml
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/original-charts/openwhisk-1.0.0/templates/provider-alarm-pod.yaml
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/openwhisk/templates/provider-alarm-pod.yaml
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/openwhisk/templates/provider-alarm-pod.yaml
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/openwhisk/templates/provider-alarm-pod.yaml

Experimental Deployment

Figure 7.13: Old Configuration of Alarm Provider Pod vs New Configuration

To retrieve the OpenWhisk - ChartMuseum, use the following command:

$ helm repo add chartmuseum https://chart.liquidfaas.cloud
$ helm pull chartmuseum/openwhisk

By executing the above commands, the ChartMuseum repository will be added to
the Helm configuration, and the OpenWhisk chart will be retrieved from the repos-
itory. The downloaded chart can then be used to deploy the extended OpenWhisk
solution within the Kubernetes environment.

This chart can also be retrieved in the GitHub repository for this thesis20, in
the folder /openwhisk/deploy/helm-charts/chartmuseum-charts/openwhisk.

Mosquitto

The Mosquitto - ChartMuseum is an extension of another Mosquitto chart [62].

The modification made to the Mosquitto chart involves the addition of specific
labels to enable seamless integration with OpenWhisk Network Policies. These
labels ensure that the Mosquitto application functions correctly within the Open-
Whisk environment, allowing smooth communication between different components.

To retrieve the Mosquitto - ChartMuseum, use the following command:

$ helm repo add chartmuseum https://chart.liquidfaas.cloud
$ helm pull chartmuseum/mosquitto

20https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/
deploy/helm-charts/chartmuseum-charts/openwhisk

103

https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/openwhisk
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/openwhisk

Experimental Deployment

By executing the above commands, the ChartMuseum repository will be added to
the Helm configuration, and the Mosquitto chart will be retrieved from the reposi-
tory. The downloaded chart can then be used to deploy the extended Mosquitto
solution within the Kubernetes environment.

This chart can also be retrieved in the GitHub repository for this thesis21, in
the folder /openwhisk/deploy/helm-charts/chartmuseum-charts/mosquitto.

InfluxDB

The InfluxDB - ChartMuseum is an extension of the original InfluxDB chart [63].

An IngressRoute has been added to the InfluxDB - ChartMuseum to facilitate
the connection between the edge instances and the centralized InfluxDB. The
IngressRoute allows the edge instances to write aggregates and send data to the
central InfluxDB for storage and analysis. The yaml file of the IngressRoute can
be retrieved in the GitHub repository for this thesis22.

To retrieve the InfluxDB - ChartMuseum, use the following command:

$ helm repo add chartmuseum https://chart.liquidfaas.cloud
$ helm pull chartmuseum/influxdb

By executing the above commands, the ChartMuseum repository will be added to
the Helm configuration, and the InfluxDB chart will be retrieved from the repository.
The downloaded chart can then be used to deploy the extended InfluxDB solution
within the Kubernetes environment.

21https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/
deploy/helm-charts/chartmuseum-charts/mosquitto

22https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/
openwhisk/deploy/helm-charts/chartmuseum-charts/influxdb2/templates/
ingress-influxdb-centralized.yaml

104

https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/mosquitto
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/mosquitto
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/influxdb2/templates/ingress-influxdb-centralized.yaml
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/influxdb2/templates/ingress-influxdb-centralized.yaml
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/influxdb2/templates/ingress-influxdb-centralized.yaml

Experimental Deployment

Figure 7.14: IngressRoute for InfluxDB

This chart can also be retrieved in the GitHub repository for this thesis23, in the
folder /openwhisk/deploy/helm-charts/chartmuseum-charts/influxdb2.

MQTT Provider

The MQTT Provider - ChartMuseum is a chart that deploys an MQTT provider
for OpenWhisk. It is based on a solution provided at this bibliography reference [35].

This chart enhances the functionality of OpenWhisk by incorporating an MQTT
provider, allowing seamless integration with MQTT-based applications and devices.

23https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/
deploy/helm-charts/chartmuseum-charts/influxdb2

105

https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/influxdb2
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/influxdb2

Experimental Deployment

By deploying the MQTT Provider chart, it is possible to leverage the power
of OpenWhisk to process and react to MQTT messages, enabling event-driven
applications and workflows within your edge solution.

To retrieve the MQTT Provider - ChartMuseum, use the following command:

$ helm repo add chartmuseum https://chart.liquidfaas.cloud
$ helm pull chartmuseum/mqtt-provider

By executing the above commands, the ChartMuseum repository will be added to
the Helm configuration, and the MQTT Provider chart will be retrieved from the
repository. The downloaded chart can then be used to deploy the MQTT Provider
solution within the Kubernetes environment.

This chart can also be retrieved in the GitHub repository for this thesis24, in the
folder /openwhisk/deploy/helm-charts/chartmuseum-charts/mqtt-provider.

Grafana

The Grafana - ChartMuseum is a chart that deploys Grafana.

The chart includes a GrafanaDataSource that connects to an InfluxDB database.
This data source allows Grafana to retrieve data from InfluxDB for visualization
on the dashboards.

Another component of the chart is the GrafanaDashboard. The dashboard is
designed to display specific data retrieved from the connected InfluxDB database.
It provides visual representations and insights based on the collected data.

The yaml file of the GrafanaDataSource can be retrieved in the GitHub repository
for this thesis25, as for the GrafanaDashboard26.

24https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/
deploy/helm-charts/chartmuseum-charts/mqtt-provider

25https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/
deploy/helm-charts/chartmuseum-charts/grafana/templates/05-grafanadatasource.
yml

26https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/
deploy/helm-charts/chartmuseum-charts/grafana/templates/06-grafanadashboard.yml

106

https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/mqtt-provider
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/mqtt-provider
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/grafana/templates/05 - grafanadatasource.yml
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/grafana/templates/05 - grafanadatasource.yml
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/grafana/templates/05 - grafanadatasource.yml
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/grafana/templates/06 - grafanadashboard.yml
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/grafana/templates/06 - grafanadashboard.yml

Experimental Deployment

Figure 7.15: GrafanaDataSource for InfluxDB

To retrieve the Grafana - ChartMuseum, use the following command:

$ helm repo add chartmuseum https://chart.liquidfaas.cloud
$ helm pull chartmuseum/grafana

By executing the above commands, the ChartMuseum repository will be added to
the Helm configuration, and the Grafana chart will be retrieved from the repository.
The downloaded chart can then be used to deploy the Grafana solution within the

107

Experimental Deployment

Kubernetes environment.

This chart can also be retrieved in the GitHub repository for this thesis27, in
the folder /openwhisk/deploy/helm-charts/chartmuseum-charts/grafana.

Grafana Operator

The Grafana Operator - ChartMuseum is a chart that deploys Grafana Operator.

The Grafana Operator [64] extends the functionality of Grafana by providing
custom resource definitions (CRDs) [65] and controllers that enable declarative
management of Grafana instances. It simplifies the process of provisioning and
configuring Grafana instances, including the setup of data sources, dashboards,
and users.

To retrieve the Grafana Operator - ChartMuseum, use the following command:

$ helm repo add chartmuseum https://chart.liquidfaas.cloud
$ helm pull chartmuseum/grafana-operator

By executing the above commands, the ChartMuseum repository will be added
to the Helm configuration, and the Grafana Operator chart will be retrieved from
the repository. The downloaded chart can then be used to deploy the Grafana
Operator solution within the Kubernetes environment.

This chart can also be retrieved in the GitHub repository for this thesis28, in the path
/openwhisk/deploy/helm-charts/chartmuseum-charts/grafana-operator.

27https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/
deploy/helm-charts/chartmuseum-charts/grafana

28https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/
deploy/helm-charts/chartmuseum-charts/grafana-operator

108

https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/grafana
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/grafana
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/grafana-operator
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/deploy/helm-charts/chartmuseum-charts/grafana-operator

Chapter 8

Demonstration of Feasibility

This thesis presents a comprehensive solution for monitoring multiple data centers
in a Fog Computing environment using OpenWhisk actions and triggers. The feasi-
bility of the architecture is a crucial aspect that needs to be addressed, particularly
in terms of scalability and real-time response.

Scalability and real-time properties are essential factors for determining the feasi-
bility of any system architecture. In this case, they play a vital role in ensuring
timely processing and computation of aggregates every 30 minutes. Additionally,
having data available before the arrival of new data, preferably within a 2-minute
interval, enhances the overall effectiveness of the monitoring system.

To evaluate the scalability and real-time properties of the architecture, the fo-
cus will primarily be on the edge instances and their ability to handle increasing
sensor counts. By measuring response times and analyzing the results, the system’s
feasibility in maintaining real-time response rates as the workload grows can be
assessed.

The chosen approach of utilizing OpenWhisk actions and triggers aligns well
with the scalability and real-time requirements of the system. OpenWhisk actions
automatically scale based on the incoming workload, ensuring that the system can
handle the growing data from sensors while maintaining real-time response rates.
This dynamic scalability eliminates the need for manual intervention or infrastruc-
ture adjustments, further enhancing the feasibility and real-time capabilities of the
solution.

In the subsequent sections, the evaluation of scalability and real-time proper-
ties will be explored in detail. The metrics and tools employed, such as Prometheus
and Grafana, will be discussed, as they enable the measurement and monitoring

109

Demonstration of Feasibility

of scalability and response times. These tools provide valuable insights into the
system’s performance, allowing for visualization and analysis of the collected data.

By systematically increasing the sensor count and measuring response times, it is
possible to observe how the system handles the growing workload and evaluate its
scalability and real-time properties. This evaluation will provide valuable evidence
regarding the feasibility and scalability of the proposed solution for monitoring
multiple data centers while ensuring real-time processing.

In conclusion, this chapter highlights the importance of evaluating the scala-
bility and real-time properties of the experimental architecture. By focusing on the
scalability and real-time response of the edge instances when adding sensors, the
system’s ability to handle increasing workloads and maintain the necessary real-time
properties can be assessed. The subsequent sections will provide a comprehensive
analysis of the chosen approach, metrics, tools, evaluation results, and additional
considerations. Ultimately, this analysis will lead to a thorough conclusion re-
garding the feasibility, scalability, and real-time capabilities of the experimental
architecture.

8.1 Chosen Properties
The chosen properties of scalability, real-time capabilities, components’ integration
and ease of management play pivotal roles in demonstrating the overall feasibility
of the system. Each property addresses crucial aspects of the system’s functionality
and integration, providing valuable insights into its capabilities and effectiveness.

8.1.1 Scalability
Scalability is a pivotal property that showcases the system’s ability to handle
increasing workload demands and accommodate future growth [66]. It is crucial for
demonstrating the feasibility of the system. In the experimental setup, limitations
were faced regarding the deployment of additional edge instances due to physical
constraints and resource limitations. The Kubernetes cluster on a single node with
16 GiB RAM and 6 CPU cores proved insufficient to deploy more than two edge
instances and a centralized instance.

Considering these limitations, the focus was on demonstrating scalability by increas-
ing the workload through the addition of more sensors on a single edge instance.
Although it was not possible to add more edge instances to distribute the work-
load, this approach still allows the assessment of the system’s capability to handle
increasing demands and provides valuable insights into its scalability.

110

Demonstration of Feasibility

Acknowledging the limitation of not being able to increase the number of edge
instances, the focus on scalability through increased sensor workload still allows the
demonstration of the system’s feasibility in handling expanding workloads. This
approach provides valuable evidence of the system’s ability to efficiently process
data from a growing number of sensors and showcases its scalability within the
given experimental constraints.

Figure 8.1: Desired System Behaviour for Scalability

8.1.2 Real Time Capabilites
When we say "real-time," we mean that the system can process and analyze data
with minimal delay, ensuring that the information is available and actionable within
the required time frames. Real-time capabilities are essential in scenarios where
prompt decision-making and timely interventions are critical. By evaluating the
system’s performance in real-time scenarios, valuable evidence is obtained regarding
its ability to handle and process data in a time-sensitive manner [67].

111

Demonstration of Feasibility

It is important to note that the choice of a 30-minute interval for computing
aggregates is based on the specific requirements and constraints of the use case.
However, it is possible to calculate aggregates within smaller time intervals if
needed. This would increase the workload on the system, but once the scalability
of the solution is demonstrated, it would be possible to handle such increased
processing requirements.

Real-time capabilities are essential for demonstrating the feasibility of the sys-
tem’s overall functionality. By evaluating the system’s real-time processing and
response, it is possible to assess its ability to process and compute aggregates within
the required 30-minute interval. Additionally, having data available within the
2-minute interval enhances the system’s effectiveness in providing timely informa-
tion. Demonstrating the feasibility of real-time capabilities showcases the system’s
reliability and its ability to meet the time-sensitive nature of the monitoring system.
It provides evidence that the system can effectively handle and process data in
real-time, contributing to its overall feasibility.

Figure 8.2: Desired System Behaviour for Real-Time Capabilities

112

Demonstration of Feasibility

8.1.3 Integration of System Components

The practical experimentation conducted for this thesis conclusively demonstrated
the feasibility of integrating the system’s components. This successful integration is
vital to the overall feasibility of the system, as it ensures the smooth collaboration
and interaction of the components, enabling the system to function effectively and
achieve its objectives.

Furthermore, it is evident from the experimental results that the integration
of components has been successfully achieved. Therefore, there is no need to
reiterate the demonstration of practical feasibility.

Figure 8.3: Integration of System Components

113

Demonstration of Feasibility

8.1.4 Ease of System Managment
The feasibility of the system is further enhanced by the ease of system manage-
ment provided by the centralized storage of OpenWhisk actions. This centralized
approach, made possible by the decision to use a centralized CouchDB instance,
simplifies the overall management of the system and offers several advantages.

During the architecture implementation phase, it was decided to use a centralized
CouchDB instance to store the code for all the actions and triggers of the edge
instances. This architectural decision was motivated by the need for centralized
management. By utilizing the centralized CouchDB, the system administrator
gains control over the configuration and deployment of actions, enabling efficient
management of the system as a whole.

Through the experimental deployment phase, it was observed that instead of
creating and managing individual actions and triggers for each edge instance, a
single action and trigger could be created in the centralized instance and shared
between edge instances. This streamlined approach reduces complexity and effort
required for system management tasks, leading to more efficient management of
the system.

Figure 8.4: Centralized Managment with Single CouchDB

The decision to use a centralized CouchDB instance also facilitates swift and cen-
tralized modifications of actions. The system administrator can easily update or
replace actions in the centralized database, since the action code is retrieved from

114

Demonstration of Feasibility

the centralized CouchDB. This ensures that all edge instances consistently use
the most up-to-date and optimized versions of the actions, enhancing the system’s
performance and functionality.

In summary, the feasibility of the system is enhanced by its ease of manage-
ment. The centralized storage of OpenWhisk actions enables swift and efficient
modifications, simplifies system maintenance, and facilitates system upgrading.
This centralized control alleviates the burden on the edge instances, allowing them
to focus on their primary tasks. By providing a streamlined management process,
the system ensures consistent usage of the most up-to-date actions, enhancing its
overall feasibility. Since the nature and effectiveness of this property of the system
is extremely clear, it won’t be proved in the next sections of this chapter, as it
happens for scalability and real-time capabilities.

8.2 Evaluation Methodology
To evaluate the scalability and real-time properties of the experimental architecture,
a systematic methodology was employed. This methodology aimed to assess the
system’s ability to handle increasing workloads, maintain real-time response rates,
and verify the feasibility of the proposed solution for monitoring multiple data
centers. The following sections outline the key steps and procedures involved in
the evaluation.

8.2.1 Measurement of Response Times
In order to evaluate the scalability and real-time properties of the system, the re-
sponse times were measured for different message rates. However, due to limitations
in directly increasing the number of sensors, an alternative approach was adopted.
Instead, messages were published to the system at varying rates, simulating the
effect of increasing sensor counts.

To ensure stable conditions and sufficient observation time, the message rate
was doubled every two hours. This allowed for a gradual increase in workload
and provided ample time to monitor the system’s performance. It is worth not-
ing that during this evaluation, the simulation was capped at a maximum of
64 sensors. This limitation was imposed due to the constraints of the free dis-
tribution of OpenWhisk, which restricts the firing of only 60 triggers per minute [68].

To obtain reliable and consistent response time measurements, the initial 30
minutes following each increase in the message rate were excluded from the analysis.
This exclusion period allowed the system to adapt to the higher workload and reach

115

Demonstration of Feasibility

a steady state, ensuring that the response time measurements were representative
of the system’s performance under stable conditions.

Figure 8.5: Response Time

8.2.2 Measurement of CPU and Memory Utilization

In addition to measuring response times, the average CPU and memory utilization
of the centralized and edge systems were also monitored during the scalability
evaluation. This provided insights into the resource consumption patterns as the
message rate increased.

Considering the combined architecture approach with both the centralized and edge
instances running on the same cluster, it is important to note that the response
times, CPU utilization, and memory utilization might be higher compared to a
distributed setup. This is due to the practical limitations imposed on the system.

Multiple measurements were taken to capture variations in CPU and memory
utilization and ensure statistical accuracy.

116

Demonstration of Feasibility

8.2.3 Measurement of Traffic Exchanged
To further understand the system’s behavior as the number of sensors increased and
prove its scalability, the average traffic exchanged between the centralized and edge
instances was measured. This metric provided insights into the communication
load between the two components.

Similar to response times and resource utilization, the overall traffic exchanged
was measured for different message rates. The message rate was doubled every
two hours, and measurements were taken after the system reached a steady state
following each increase.

Figure 8.6: Traffic Exchanged

8.2.4 Evaluation of Fitted Models for Response Times,
CPU, Memory Utilization and Traffic Exchanged

In the context of analyzing response times, CPU and memory utilization, as well
as the overall traffic exchanged, mathematical models were fitted to the data. By
fitting models to the observed data, the best mathematical representation that
captures the relationship between the number of sensors and the corresponding
metrics can be identified.

To evaluate the fit of the models, various statistical measures such as R-squared

117

Demonstration of Feasibility

(R2), Root Mean Square Error (RMSE), Akaike Information Criterion (AIC), and
Bayesian Information Criterion (BIC) were employed. These measures quantified
the goodness-of-fit and provided insights into the performance of the fitted models
for response times, CPU and memory utilization, and traffic exchanged.

8.2.5 Analysis and Interpretation
After evaluating the fitted models for response times, CPU and memory utilization,
and traffic exchanged, the results were analyzed to assess the scalability of the
experimental architecture. The focus was on identifying patterns or trends in the
fitted models and understanding how the performance, resource utilization, and
communication load between the centralized and edge instances change as the
number of sensors increases.

Considering the practical limitations and constraints of the combined architecture
approach, the system demonstrated scalability within these limitations. The fitted
models provided insights into how response times, CPU and memory utilization,
and traffic exchanged increased as the number of sensors grew, indicating the
system’s capacity to handle a growing workload.

In addition to scalability, it was crucial to verify the real-time properties of the
architecture. The maximum response time for each sensor was considered to assess
if it exceeded a certain threshold, indicating a deviation from real-time requirements.
Ensuring that data was available before the new data was sent 2 minutes later was
also desirable for real-time processing.

By systematically evaluating the scalability and real-time properties of the ar-
chitecture using response times, CPU and memory utilization, traffic exchanged,
and fitted models, a comprehensive understanding of its performance and capac-
ity to scale up was gained. These insights guided decision-making, optimization
efforts, and further improvements to meet the desired performance and real-time
requirements.

8.3 Model Fitting
In this section, the concept of model fitting is explored, which plays a crucial role in
data analysis and modeling. The section discusses the significance of curve fitting
and its application in various fields. Three generic curve models, namely linear,
logarithmic, and exponential curves, are examined in detail. By understanding
these curves, it is possible analyze and model the relationships between variables
in this study.

118

Demonstration of Feasibility

8.3.1 Curve Fitting

In this section, the concept of curve fitting is explored, which involves finding a
mathematical model that best approximates the relationship between variables
based on the given data points. Curve fitting is a fundamental technique in data
analysis and plays a crucial role in various fields, including science, engineering,
finance, and social sciences.

Curve fitting aims to identify a curve or mathematical function that closely repre-
sents the observed data points. The chosen curve should capture the underlying
patterns, trends, or relationships between the independent and dependent variables.
By fitting a curve to the data, it is possible to make predictions, gain insights, and
understand the behavior of the variables beyond the available data points [69].

Figure 8.7: Example of Curve Fitting

Three generic curve models have been selected for fitting the data: linear, logarith-
mic, and exponential curves. These curves serve as the foundation for linear fitting,
logarithmic fitting, and exponential fitting, respectively. These fittings are going to
be called linear fitting, logarithmic fitting, and exponential fitting due to their use
of the corresponding generic curves.

119

Demonstration of Feasibility

Linear Curve

The linear curve represents a straight line relationship between the independent
variable(s) and the dependent variable. It is characterized by the equation:

y = mx + b (8.1)

where:

• y is the dependent variable

• x is the independent variable

• m is the slope of the line

• b is the y-intercept of the line

Linear curves are commonly used for fitting when there is a linear relationship
between the variables or when a simple and interpretable model is desired.

Figure 8.8: Example of a Plot for a Linear Curve

120

Demonstration of Feasibility

Logarithmic Curve

The logarithmic curve represents a logarithmic relationship between the independent
variable(s) and the dependent variable. It is characterized by the equation:

y = a + b · log(x) (8.2)

where:

• y is the dependent variable

• x is the independent variable

• a and b are coefficients to be determined

Logarithmic curves are useful for fitting when the relationship between the vari-
ables is expected to exhibit diminishing returns or when the data follows slow
growth/decay.

Figure 8.9: Example of a Plot for a Logarithmic Curve

121

Demonstration of Feasibility

Exponential Curve

The exponential curve represents an exponential relationship between the indepen-
dent variable(s) and the dependent variable. It is characterized by the equation:

y = a · eb·x (8.3)

where:

• y is the dependent variable

• x is the independent variable

• a and b are coefficients to be determined

• e is the base of the natural logarithm (approximately 2.71828)

Exponential curves are suitable for fitting when the data exhibits rapid growth or
decay.

Figure 8.10: Example of a Plot for an Exponential Curve

122

Demonstration of Feasibility

By understanding the concept of curve fitting and the chosen generic curves, namely
linear, logarithmic, and exponential curves, it is possible to analyze and model the
relationships between variables in this study. From now on, the fitting based on
the linear, logarithmic, and exponential curves will be referred to as linear fitting,
logarithmic fitting, and exponential fitting, respectively.

8.3.2 MATLAB and Fitting Functions
In this section, the usage of MATLAB will be presented as a powerful tool for
performing fittings and explore the main functions used to conduct different types
of fitting analyses. MATLAB provides a comprehensive set of functions and
capabilities for data analysis and modeling, making it a valuable resource for
researchers and practitioners [70]. The key functions used for linear, logarithmic,
and exponential fittings will be discussed.

Linear Fitting in MATLAB

MATLAB offers various functions to perform linear fitting. The primary function
used is polyfit, which fits a polynomial of a specified degree to the data [71]. In
the case of linear fitting, a first-degree polynomial (a straight line) is fitted to the
data points. The syntax for using polyfit is as follows:

coefficients = polyfit(x, y, degree)

where:

• x and y are the independent and dependent variables, respectively

• degree specifies the degree of the polynomial (1 for linear fitting)

The output of polyfit is a set of coefficients representing the slope and y-intercept
of the line. These coefficients can be used to evaluate the linear fit equation and
analyze the goodness of fit.

Logarithmic Fitting in MATLAB

MATLAB provides the function lsqcurvefit to perform nonlinear least squares
fitting [72]. For logarithmic fitting, a custom model function that captures the
logarithmic relationship between the variables has been defined. The syntax for
using lsqcurvefit for logarithmic fitting is as follows:

coefficients = lsqcurvefit(model, initialGuess, x, y)

where:

123

Demonstration of Feasibility

• model is a function handle representing the logarithmic model equation

• initialGuess is an initial guess for the model coefficients

• x and y are the independent and dependent variables, respectively.

The output of lsqcurvefit is a set of coefficients that provide the best fit to the
data. These coefficients can be used to evaluate the logarithmic fit equation and
assess the goodness of fit.

Exponential Fitting in MATLAB

Similar to logarithmic fitting, MATLAB’s lsqcurvefit function is used for ex-
ponential fitting as well. A custom model function that represents the exponen-
tial relationship between the variables has been defined. The syntax for using
lsqcurvefit for exponential fitting is as follows:

coefficients = lsqcurvefit(model, initialGuess, x, y)

where:

• model is a function handle representing the exponential model equation

• initialGuess is an initial guess for the model coefficients

• x and y are the independent and dependent variables, respectively.

The output of lsqcurvefit is a set of coefficients that provide the best fit to the
data. These coefficients can be used to evaluate the exponential fit equation and
assess the goodness of fit.

By utilizing these MATLAB functions, it is possible to perform linear, logarithmic,
and exponential fittings on your data.

8.3.3 Error Rates and Model Evaluation
In this section, the focus is on the error rates and model evaluation metrics that
were used to determine the best fit among the different models. These metrics
provide valuable insights into the quality of the fitted models and assist in the
selection of the most appropriate model for the given data. The coefficient of
determination (R-squared), root mean squared error (RMSE), Akaike Information
Criterion (AIC), and Bayesian Information Criterion (BIC) will be discussed.

124

Demonstration of Feasibility

Coefficient of Determination (R-squared)

The coefficient of determination, commonly referred to as R-squared, measures the
proportion of the variance in the dependent variable (for example, average CPU
utilization) that can be explained by the independent variable (number of sensors).
R-squared ranges from 0 to 1, where 0 indicates that the model does not explain
any variability in the data, and 1 indicates a perfect prediction by the model [73].

A data set has n values marked y1, . . . , yn (collectively known as yi or as a vector
y = [y1, . . . , yn]T), each associated with a fitted (or modeled, or predicted) value
f1, . . . , fn (known as fi, or sometimes ŷi, as a vector f). Define the residuals as
ei = yi − fi (forming a vector e). If ȳ is the mean of the observed data:

ȳ = 1
n

nØ
i=1

yi (8.4)

then the variability of the data set can be measured with two sums of squares
formulas: The sum of squares of residuals, also called the residual sum of squares:

SSres =
Ø

i

(yi − fi)2 =
Ø

i

e2
i (8.5)

The total sum of squares (proportional to the variance of the data):

SStot =
Ø

i

(yi − ȳ)2 (8.6)

The most general definition of the coefficient of determination is:

R2 = 1 − SSres

SStot
(8.7)

125

Demonstration of Feasibility

Figure 8.11: R-Squared Visual Explanation
The areas of the blue squares represent the squared residuals with respect to the linear
regression. The areas of the red squares represent the squared residuals with respect to

the average value.

Root Mean Squared Error (RMSE)

RMSE provides a measure of the average deviation between the predicted values of
the model and the actual data points. It quantifies how well the model’s predictions
align with the observed data. RMSE is expressed in the same units as the dependent
variable, and lower values indicate a better fit [74].

The root mean squared error (RMSE) can be calculated using the formula:

RMSE =
öõõô 1

n

nØ
i=1

(yi − xi)2 (8.8)

In this formula, y represents the predicted values of the model, x represents the
actual values of the dependent variable, and n represents the number of data points.

126

Demonstration of Feasibility

Figure 8.12: Predicted Values and Actual Values in RMSE

Akaike Information Criterion (AIC) and Bayesian Information Criterion
(BIC)

AIC and BIC are information criteria used to compare the goodness of fit of
different models. These criteria take into account both the goodness of fit and the
complexity of the model, providing a balanced assessment. Lower values of AIC
and BIC indicate a better fit, considering the trade-off between goodness of fit and
model complexity [75][76].
The BIC is formally defined as:

BIC = ln(n) − 2 ln(L̂) (8.9)

where:

• L̂ is the maximized value of the likelihood function of the model M , i.e.,
L̂ = p(x|θ̂, M)

• θ̂ are the parameter values that maximize the likelihood function

127

Demonstration of Feasibility

• x is the observed data

• n is the number of data points in x, the number of observations, or equivalently,
the sample size

• k is the number of parameters estimated by the model. For example, in
multiple linear regression, the estimated parameters are the intercept, the q
slope parameters, and the constant variance of the errors; thus, k = q + 2

Figure 8.13: Different BIC for Different Curve Fittings

The AIC (Akaike Information Criterion) value of the model is defined as:

AIC = 2k − 2 ln(L̂) (8.10)

where:

• k is the number of estimated parameters in the model

• L̂ is the maximized value of the likelihood function for the model

128

Demonstration of Feasibility

Figure 8.14: Different AIC for Different Curve Fittings

By considering these error rates and evaluation metrics, it is possbile to make
informed decisions regarding the best fit for the collected data.

8.3.4 MATLAB Code Example
This section is focused on the presentation of the MATLAB code used to perform
linear, logarithmic, and exponential fitting on the different considered metrics. The
code snippet that will be subsequently included is related to the average CPU
utilization data, but it has been easily adapted to the other kind of metrics.

1 % Data
2 numSensors = [1 2 4 8 16 32 6 4] ;
3 c p u U t i l i z a t i o n = [1 1 . 0 0 11 .00 11 .66 12 .50 12 .64 15 .49 1 6 . 3 9] ;
4

5 % Linear f i t t i n g
6 l i n e a r C o e f f i c i e n t s = p o l y f i t (numSensors , cpuUt i l i z a t i on , 1) ;
7 l i n e a r F i t = po lyva l (l i n e a r C o e f f i c i e n t s , numSensors) ;

129

Demonstration of Feasibility

8 l i nea rRsq = 1 − sum ((c p u U t i l i z a t i o n − l i n e a r F i t) . ^2) / sum ((
c p u U t i l i z a t i o n − mean(c p u U t i l i z a t i o n)) . ^2) ;

9 linearRMSE = sqr t (mean ((c p u U t i l i z a t i o n − l i n e a r F i t) . ^2)) ;
10

11 % Logarithmic f i t t i n g
12 logar i thmicModel = @(c o e f f i c i e n t s , x) c o e f f i c i e n t s (1) + c o e f f i c i e n t s

(2) ∗ l og (x) ;
13 l o g a r i t h m i c I n i t i a l G u e s s = [0 0] ; % I n i t i a l guess f o r c o e f f i c i e n t s
14 l o g a r i t h m i c C o e f f i c i e n t s = l s q c u r v e f i t (logar ithmicModel ,

l o g a r i t h m i c I n i t i a l G u e s s , numSensors , c p u U t i l i z a t i o n) ;
15 l o g a r i t h m i c F i t = logar i thmicModel (l o g a r i t h m i c C o e f f i c i e n t s , numSensors

) ;
16 l ogar i thmicRsq = 1 − sum ((c p u U t i l i z a t i o n − l o g a r i t h m i c F i t) . ^2) / sum

((c p u U t i l i z a t i o n − mean(c p u U t i l i z a t i o n)) . ^2) ;
17 logarithmicRMSE = sqr t (mean ((c p u U t i l i z a t i o n − l o g a r i t h m i c F i t) . ^2)) ;
18

19 % Exponent ia l f i t t i n g
20 exponent ia lModel = @(c o e f f i c i e n t s , x) c o e f f i c i e n t s (1) ∗ exp (

c o e f f i c i e n t s (2) ∗ x) ;
21 e x p o n e n t i a l I n i t i a l G u e s s = [1 0] ; % I n i t i a l guess f o r c o e f f i c i e n t s
22 e x p o n e n t i a l C o e f f i c i e n t s = l s q c u r v e f i t (exponentialModel ,

e x p o n e n t i a l I n i t i a l G u e s s , numSensors , c p u U t i l i z a t i o n) ;
23 exponen t i a lF i t = exponent ia lModel (e x p o n e n t i a l C o e f f i c i e n t s , numSensors

) ;
24 exponent ia lRsq = 1 − sum ((c p u U t i l i z a t i o n − exponen t i a lF i t) . ^2) / sum

((c p u U t i l i z a t i o n − mean(c p u U t i l i z a t i o n)) . ^2) ;
25 exponentialRMSE = sqr t (mean ((c p u U t i l i z a t i o n − exponen t i a lF i t) . ^2)) ;
26

27 % Plo t t i ng
28 f i g u r e ;
29 p lo t (numSensors , cpuUt i l i z a t i on , ’ bo ’ , ’ MarkerSize ’ , 8) ;
30 hold on ;
31 p lo t (numSensors , l i n e a r F i t , ’ r− ’ , ’ LineWidth ’ , 1 . 5) ;
32 p lo t (numSensors , l oga r i thmicF i t , ’ g− ’ , ’ LineWidth ’ , 1 . 5) ;
33 p lo t (numSensors , exponent ia lF i t , ’m− ’ , ’ LineWidth ’ , 1 . 5) ;
34 x l a b e l (’Number o f Sensors ’) ;
35 y l a b e l (’CPU U t i l i z a t i o n (%) ’) ;
36 l egend (’ Data ’ , ’ L inear Fi t ’ , ’ Logar ithmic Fit ’ , ’ Exponent ia l F i t ’) ;
37 t i t l e (’ F i t t i n g o f CPU U t i l i z a t i o n ’) ;
38

39 % Display equat ions o f f i t t i n g
40 l i n ea rEquat i on = s p r i n t f (’ L inear Fi t : y = %.8 f ∗ x + %.8 f ’ ,

l i n e a r C o e f f i c i e n t s (1) , l i n e a r C o e f f i c i e n t s (2)) ;
41 l ogar i thmicEquat ion = s p r i n t f (’ Logarithmic Fit : y = %.8 f + %.8 f ∗ l og

(x) ’ , l o g a r i t h m i c C o e f f i c i e n t s (1) , l o g a r i t h m i c C o e f f i c i e n t s (2)) ;
42 exponent ia lEquat ion = s p r i n t f (’ Exponent ia l F i t : y = %.8 f ∗ exp (%.8 f ∗

x) ’ , e x p o n e n t i a l C o e f f i c i e n t s (1) , e x p o n e n t i a l C o e f f i c i e n t s (2)) ;
43 di sp (l i nea rEquat i on) ;
44 di sp (logar i thmicEquat ion) ;

130

Demonstration of Feasibility

45 di sp (exponent ia lEquat ion) ;
46

47 % Display metr i c s
48 di sp ([’ L inear Fi t − R−squared : ’ num2str (l inea rRsq)]) ;
49 di sp ([’ L inear Fi t − RMSE: ’ num2str (linearRMSE)]) ;
50 di sp ([’ Logar ithmic Fit − R−squared : ’ num2str (logar i thmicRsq)]) ;
51 di sp ([’ Logar ithmic Fit − RMSE: ’ num2str (logarithmicRMSE)]) ;
52 di sp ([’ Exponent ia l F i t − R−squared : ’ num2str (exponent ia lRsq)]) ;
53 di sp ([’ Exponent ia l F i t − RMSE: ’ num2str (exponentialRMSE)]) ;
54

55 % Calcu la te AIC and BIC
56 n = length (c p u U t i l i z a t i o n) ;
57 l inearAIC = n ∗ l og (linearRMSE ^2) + 2 ∗ (l ength (l i n e a r C o e f f i c i e n t s) +

1) ;
58 logar ithmicAIC = n ∗ l og (logarithmicRMSE ^2) + 2 ∗ (l ength (

l o g a r i t h m i c C o e f f i c i e n t s) + 1) ;
59 exponentialAIC = n ∗ l og (exponentialRMSE ^2) + 2 ∗ (l ength (

e x p o n e n t i a l C o e f f i c i e n t s) + 1) ;
60 l inearBIC = n ∗ l og (linearRMSE ^2) + log (n) ∗ (l ength (

l i n e a r C o e f f i c i e n t s) + 1) ;
61 logar ithmicBIC = n ∗ l og (logarithmicRMSE ^2) + log (n) ∗ (l ength (

l o g a r i t h m i c C o e f f i c i e n t s) + 1) ;
62 exponentialBIC = n ∗ l og (exponentialRMSE ^2) + log (n) ∗ (l ength (

e x p o n e n t i a l C o e f f i c i e n t s) + 1) ;
63 di sp ([’ L inear Fi t − AIC : ’ num2str (l inearAIC)]) ;
64 di sp ([’ L inear Fi t − BIC : ’ num2str (l inearBIC)]) ;
65 di sp ([’ Logar ithmic Fit − AIC : ’ num2str (logar ithmicAIC)]) ;
66 di sp ([’ Logar ithmic Fit − BIC : ’ num2str (logar ithmicBIC)]) ;
67 di sp ([’ Exponent ia l F i t − AIC : ’ num2str (exponentialAIC)]) ;
68 di sp ([’ Exponent ia l F i t − BIC : ’ num2str (exponentialBIC)]) ;

8.4 Metrics And Tools
This section covers the metrics and tools used in the monitoring and analysis of
the experimental architecture.

8.4.1 Prometheus Overview
Prometheus is an open-source monitoring system widely used in the DevOps and
system monitoring domain. It serves as a data collection and storage system,
enabling the gathering, storage, and analysis of time-series data. Prometheus
employs a pull-based model to collect metrics from various sources, making it
highly flexible and compatible with different applications and platforms [77].

It is possbile to retrieve the helm charts used to deploy Prometheus and Prometheus

131

Demonstration of Feasibility

Operator in the /openwhisk/metrics folder of the GitHub repository for this the-
sis1.

Figure 8.15: General Architecture with Prometheus

8.4.2 Exporting Metrics from OpenWhisk
In the context of the experimental architecture, OpenWhisk exports different met-
rics through the invoker, user events, and controller [78] on port 8080. These metrics
provide valuable insights into the performance and behavior of the OpenWhisk
platform. By exporting metrics from OpenWhisk, Prometheus can effectively collect
and store these metrics for further analysis.

To enable OpenWhisk to export metrics, it is important to add this section to the
values.yaml file used when deploying the OpenWhisk helm chart:

1 metr i c s :

1https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/
metrics

132

https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/metrics
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/metrics

Demonstration of Feasibility

2 # s e t t rue to enable prometheus expor te r
3 prometheusEnabled : t rue
4 # pass ing prometheus−enabled by a c o n f i g f i l e , r equ i r ed by

openwhisk
5 w h i s k c o n f i g F i l e : " wh i skcon f i g . conf "
6 # s e t t rue to enable Kamon
7 kamonEnabled : t rue
8 # s e t t rue to enable Kamon tags
9 kamonTags : t rue

10 # s e t t rue to enable user metr i c s
11 userMetr icsEnabled : t rue

It it also important to create the following ServiceMonitors and PodMonitor,
adapting their code with the right namespace of the OpenWhisk deployment:

1 ap iVers ion : monitor ing . co r eo s . com/v1
2 kind : Serv iceMonitor
3 metadata :
4 name : openwhisk−c o n t r o l l e r
5 namespace : openwhisk−second
6 spec :
7 endpoints :
8 − path : / metr i c s
9 port : http

10 s e l e c t o r :
11 matchLabels :
12 name : openwhisk−c o n t r o l l e r
13 −−−
14 ap iVers ion : monitor ing . co r eo s . com/v1
15 kind : Serv iceMonitor
16 metadata :
17 name : openwhisk−user−events
18 namespace : openwhisk−second
19 spec :
20 endpoints :
21 − path : / metr i c s
22 port : http
23 s e l e c t o r :
24 matchLabels :
25 name : openwhisk−user−events
26 −−−
27 ap iVers ion : monitor ing . co r eo s . com/v1
28 kind : PodMonitor
29 metadata :
30 name : openwhisk−invoker
31 namespace : openwhisk−second
32 spec :
33 podMetricsEndpoints :

133

Demonstration of Feasibility

34 − port : invoker
35 path : / metr i c s
36 s e l e c t o r :
37 matchLabels :
38 name : openwhisk−invoker
39

8.4.3 Exporting Metrics with k3s Exporter Stack
To gather the desired metrics for monitoring and analysis, a k3s exporter stack is
utilized. This stack consists of multiple exporters that extract and expose specific
metrics from the k3s cluster. The exporters used in this stack include:

• Node Exporter: The Node Exporter is responsible for collecting and export-
ing metrics related to the host machine. It provides information about CPU
usage, memory utilization, disk I/O, and network statistics. By scraping the
metrics exposed by the Node Exporter, it is possible to monitor the host-level
resource consumption [79].

• kube-state-metrics Exporter: The kube-state-metrics Exporter collects
metrics about the state of various Kubernetes objects, such as deployments,
pods, services, and namespaces. These metrics include the number of running
pods, the status of deployments, and resource allocations. By leveraging the
kube-state-metrics Exporter, it is possible to gain insights into the overall
health and status of the Kubernetes cluster [80]

These exporters work together to scrape and export the desired metrics from
different components of the k3s cluster. The Prometheus server acts as the central
data source, collecting and storing the metrics exposed by these exporters. It
enables efficient monitoring and analysis of the cluster’s performance.

It is possbile to retrieve the helm chart used to enable the collection of the node
and kube metrics in the /openwhisk/metrics/k3s-exporter-stack folder of the
GitHub repository for this thesis2.

8.4.4 Prometheus as a Data Source for Grafana
To gather the desired information and visualize the metrics, Prometheus serves as
the data source for Grafana. Grafana is a popular open-source platform for data

2https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/
metrics/k3s-exporter-stack

134

https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/metrics/k3s-exporter-stack
https://github.com/s294547/Exploring-FaaS-Solutions/tree/main/openwhisk/metrics/k3s-exporter-stack

Demonstration of Feasibility

visualization and monitoring. By integrating Prometheus with Grafana, it becomes
possible to create dashboards and visualize the collected metrics in a meaningful
and informative way [81].

Figure 8.16: Prometheus as a Data Source for Grafana

8.4.5 Average Response Time and Maximum Response
Time Metric

One of the key metrics considered for measuring scalability is the average response
time. This metric provides insights into the performance of the system in terms
of processing requests and generating responses. The average response time is
calculated using the provided expression, which takes into account various factors
such as action duration, wait time, and initialization time [82].

To measure the average response time, the PromQL query below is used:

135

Demonstration of Feasibility

1 r a t e (openwhisk_action_duration_seconds_sum{ reg ion =~"() " , s tack
=~"() " , namespace=~"openwhisk−second " , a c t i on =~"addReadingToDb " ,
i n i t i a t o r =~" guest " } [1 5m]) ∗ 1000 / ra t e (
openwhisk_action_duration_seconds_count { r eg i on =~"() " , s tack =~"() " ,
namespace=~"openwhisk−second " , a c t i on =~"addReadingToDb " , i n i t i a t o r
=~" guest " } [1 5m]) + ra t e (openwhisk_action_waitTime_seconds_sum{
reg i on =~"() " , s tack =~"() " , namespace=~"openwhisk−second " , a c t i on =~"
addReadingToDb " , i n i t i a t o r =~" guest " } [1 5m]) ∗ 1000 / ra t e (
openwhisk_action_waitTime_seconds_count{ r eg i on =~"() " , s tack =~"() " ,
namespace=~"openwhisk−second " , a c t i on =~"addReadingToDb " , i n i t i a t o r
=~" guest " } [1 5m]) + ra t e (openwhisk_action_iniitTime_seconds_sum{
reg i on =~"() " , s tack =~"() " , namespace=~"openwhisk−second " , a c t i on =~"
addReadingToDb " , i n i t i a t o r =~" guest " } [1 5m]) ∗ 1000 / ra t e (
openwhisk_action_initTime_seconds_count { r eg i on =~"() " , s tack =~"() " ,
namespace=~"openwhisk−second " , a c t i on =~"addReadingToDb " , i n i t i a t o r
=~" guest " } [1 5m])

This query is calculating an average response time for the action addReadingToDb
in the OpenWhisk system, over a 15-minute time window. This expression com-
bines the durations of the action execution, wait time, and initialization time. By
calculating the rate of these durations and dividing them by their respective count
rates, it is possible to obtain the average response time in milliseconds. The step
for this query is set to 30 seconds, ensuring a value is computed every 30 seconds
to determine the average response time.

By selecting the right time window in which a certain number of sensors has
been used, it is also possible to retrieve the maximum response time of the average
response times computed every 15 minutes. It is also possible to compute the
overall average response time, computing the average of the average response times
in the right time window.

8.4.6 CPU Utilization Metric
CPU utilization is another crucial metric for assessing scalability. It indicates the
extent to which the system’s CPU resources are being utilized. By measuring CPU
utilization, it becomes possible to evaluate the efficiency and capacity of the system
to handle increasing workloads [82].

To measure the average CPU utilization for the edge and centralized instance, the
PromQL queries below are used:

1 sum(ra t e (container_cpu_usage_seconds_total {namespace="openwhisk−
second " } [1m])) / sum (machine_cpu_cores)

136

Demonstration of Feasibility

1 sum(ra t e (container_cpu_usage_seconds_total {namespace="openwhisk−
c e n t r a l " } [1m])) / sum (machine_cpu_cores)

This expression calculates the CPU utilization over a 1-minute time window and
normalizing it by dividing it by the total number of CPUs. The selection of the
namespace give the opportunity to choose the edge/centralized instance. The step
for this query is set to 30 seconds, ensuring a value is computed every 30 seconds
to determine the average CPU utilization.

By selecting the right time window in which a certain number of sensors has
been used, it is also possible to retrieve the overall average CPU utilization from
the average CPU utilization values computed every minute for each instance.

8.4.7 RAM Utilization Metric
RAM utilization is an essential metric for understanding the system’s memory
usage. It provides insights into how efficiently the system is managing and utilizing
available memory resources. By monitoring RAM utilization, it becomes possible
to assess the scalability of the architecture and ensure that memory resources are
effectively allocated [82].

To measure the average RAM utilization for the edge and centralized instances,
the PromQL queries below are used:

1 sum(container_memory_usage_bytes{namespace="openwhisk−second "}) −
sum(container_memory_usage_bytes{pod="openwhisk−in f luxdb2 −0" ,

namespace="openwhisk−second "})

1 sum(container_memory_usage_bytes{namespace="openwhisk−c e n t r a l " })
− sum(container_memory_usage_bytes{pod="openwhisk−in f luxdb2 −0" ,
namespace="openwhisk−c e n t r a l " })

This expression calculates the RAM utilization for a certain instance (centralized
or edge) by subtracting the space occupied by the data saved for the sensors or
the aggregates on InfluxDB. The result represents the utilized RAM of an instance.
The step for this query is set to 30 seconds, ensuring a value is computed 30 seconds
to determine the average RAM utilization.

By selecting the right time window in which a certain number of sensors has
been used, it is also possible to retrieve the overall average RAM utilization of

137

Demonstration of Feasibility

a certain instance from the average RAM utilization values computed every 30
seconds.

8.4.8 Network Troughput Metric

Network throughput is a crucial metric for monitoring the amount of data trans-
ferred between the centralized and edge instance. By measuring network throughput,
it becomes possible to identify bottlenecks and optimize the network performance
[82].

To measure the network throughput for the centralized CouchDB and InfluxDB
instances, the following PromQL query is used:

1 i r a t e (container_network_rece ive_bytes_tota l { dev i ce =" i n t e r f a c e I D
" } [$__rate_interval]) ∗8 + i r a t e (
container_network_transmit_bytes_total { dev i ce =" i n t e r f a c e I D " } [
$__rate_interval]) ∗8

This expression calculates the network throughput by summing the receive and
transmit rates of bytes for a specific interface, represented by interfaceID. The
rates are multiplied by 8 to convert them from bytes to bits. The irate function
calculates the per-second rate of change for the metric over the given interval,
specified by variable in square brackets. The step for this query is set to 15 seconds,
ensuring a value is computed every 15 seconds to determine the network throughput.

This query is going to be executed four times on four different interfaces, which
are the one of the centralized instance attached to CouchDB and InfluxDB. They
are going to be summed up together, in order to get the overall network throughput.

By using this query for four different interfaces attached to the centralized CouchDB
and InfluxDB, it is possible to monitor the network throughput between the edge
and centralized instances. The exchanges between them occur when there is a cache
miss, involving a reading in CouchDB, and whene there is the writing of aggregates
in InfluxDB. Monitoring the network throughput helps assess the performance and
efficiency of these data exchanges.

By selecting the appropriate time window, it is also possible to analyze the average
network throughput for a certain period, providing insights into the overall network
performance.

138

Demonstration of Feasibility

8.5 Evaluation Results and Analysis

In this section, the results obtained from the scalability and real-time evaluation
are presented and analyzed in detail. The focus is on the metrics of response times,
CPU utilization, and memory utilization at different message rates. The analysis
aims to highlight trends and notable observations observed in the data.

8.5.1 Response Time Analysis

The response time analysis was conducted by computing the average response time
for each number of sensors based on the averages calculated every 30 seconds. The
formula used to compute the average response time for each number of sensors
incorporates the duration, wait time, and initialization time metrics obtained from
the OpenWhisk platform for the addReadingToDb action initiated by the guest
user. The values are collected at a 30-second interval over a 15-minute window.

To provide a visual representation of the average response time at steady state for
each number of sensors, the following images display the graphs:

Figure 8.17: Average Response Time for 1 Sensor

Figure 8.18: Average Response Time for 2 Sensors

139

Demonstration of Feasibility

Figure 8.19: Average Response Time for 4 Sensors

Figure 8.20: Average Response Time for 8 Sensors

Figure 8.21: Average Response Time for 16 Sensors

Figure 8.22: Average Response Time for 32 Sensors

140

Demonstration of Feasibility

Figure 8.23: Average Response Time for 64 Sensors

The response times were computed as the average value for each tried number
of sensors, providing a comprehensive view of the system’s performance. It’s im-
portant to note that in some regions, the average response time appears slightly
higher. This can be attributed to the execution of additional OpenWhisk actions,
specifically the actions to compute aggregates. They are triggered every half an
hour to process and aggregate the collected sensor data. During their execution,
they may temporarily increase the overall response time of the system. However, it
is important to consider that these periodic actions have a minimal impact on the
overall scalability and efficiency of the system.

The following table displays the average response time (in milliseconds) for each
message rate:

Table 8.1: Average Response Time for Different Numbers of Sensors

Number of Sensors Average Response Time (ms)
1 329.32
2 797.27
4 1825.76
8 1890.68

16 1863.93
32 2907.03
64 3040.28

Analysis of Average Response Time Trends

To gain insights into the relationship between the number of sensors and the average
response time, various fitting techniques were performed using MATLAB. The aim
was to find the best mathematical model that accurately represents the observed
trend. Three different fitting approaches have been considered: linear, logarithmic,
and exponential. The results of these fittings indicate the following relationships
between the number of sensors (x) and the average response time (y) according to

141

Demonstration of Feasibility

each fitting model:

Linear Fit: y = 35.53961490 · x + 1162.96270115 (8.11)

Logarithmic Fit: y = 480.19 + 638.42 · log(x) (8.12)
Exponential Fit: y = 1335.41141767 · e0.01429924·x (8.13)

Figure 8.24: Plot for Average Response Time Fittings

To assess the quality of these fits, several metrics were calculated, including the
coefficient of determination (R-squared), root mean squared error (RMSE), Akaike
Information Criterion (AIC), and Bayesian Information Criterion (BIC).

Table 8.2: Average Response Time Evaluation Metrics

Fitting R-Squared RMSE AIC BIC
Linear 0.67073 528.8014 93.7886 93.6263

Logarithmic 0.92234 256.8074 83.6766 83.5143
Exponential 0.58548 593.3237 95.4004 95.2381

142

Demonstration of Feasibility

The logarithmic fit demonstrated the highest R-squared value (0.92234), indicating
a better fit compared to the linear and exponential fits. Additionally, the logarith-
mic fit had the lowest RMSE (256.8074), suggesting a smaller average deviation
from the actual data points. Moreover, the logarithmic fit had the lowest AIC
(83.6766) and BIC (83.5143) values, indicating a better fit in terms of information
criteria.

Considering these evaluations, the logarithmic fit is deemed the most suitable
model for representing the relationship between the number of sensors and the
average response time in the developed system. This logarithmic equation provides
a reliable estimation of the average response time based on the number of sensors.

The advantages of the logarithmic fitting in terms of scalability are notewor-
thy. The logarithmic equation suggests that as the number of sensors increases,
the average response time experiences diminishing returns. This indicates that
adding more sensors to the system has a diminishing impact on the response time
improvement. Such a characteristic is favorable for scalability as it implies that
the system can handle a growing number of sensors with a relatively stable average
response time.

However, it is important to note that while the logarithmic fit provides valu-
able insights into the scalability of the system, the complexities introduced by the
combination of edge instances and centralized instances should be considered, which
may affect the accuracy of the measured average response time. Nonetheless, the
logarithmic fit confirms the system’s scalability, indicating that the average response
time improves initially with the addition of sensors but at a decreasing rate. This
understanding enables organizations to make informed decisions regarding resource
allocation, capacity planning, and system optimization to effectively accommodate
future growth.

In summary, the logarithmic fit obtained through MATLAB serves as compelling
evidence of the system’s scalability and its ability to handle increasing workloads.
The logarithmic equation, with its diminishing returns, provides a reliable esti-
mation of the average response time and demonstrates the system’s capacity to
efficiently accommodate a growing number of sensors.

Real-time Evaluation

To assess the real-time properties of the system, the maximum response time for
each number of sensors was considered. Real-time requirements dictate that the
response time should not exceed a certain threshold, ensuring that data is available

143

Demonstration of Feasibility

for the computation of aggregates every 30 minutes and that new data is received
at least 2 minutes before the computation.

The selected threshold for the response time is of 10 seconds: it was determined to
ensure that the system can process and save the data within the specified timeframe.
This choice aligns with the requirement of having the previous data ready before
the arrival of new data every two minutes. By adhering to this threshold, the
system consistently handles incoming data in a timely manner.

The real-time nature of the application necessitates prompt data processing and
saving. Setting a threshold of 10 seconds allows for efficient turnaround, ensuring
the availability of data for analysis and subsequent processing without undue delays.

The decision to opt for a relatively low threshold provides a safety margin to
account for potential variations or spikes in processing time. This ensures that
even during periods of high workload or peak activity, the response time remains
within an acceptable range.

Maintaining a response time below 10 seconds facilitates the desired level of
responsiveness, allowing quick access to processed data. This enables informed
decision-making and timely actions based on the latest information.

The following table displays the maximum response time (in milliseconds) for
each number of sensors:

Table 8.3: Maximum Response Time for Different Numbers of Sensors

Number of Sensors Maximum Response Time
(ms)

1 623.00
2 1557.00
4 4487.00
8 4003.00

16 3681.00
32 7070.00
64 5007.00

Analyzing the maximum response time, it is possible to evaluate the real-time
properties of the system:

• For one sensor, the maximum response time is 623.00 milliseconds, well
below the threshold. This indicates that the system can process data from a

144

Demonstration of Feasibility

single sensor in real-time, ensuring timely computation of aggregates every 30
minutes.

• As the number of sensors increases, the maximum response time also increases.
However, even for 64 sensors, the maximum response time is 5007.00 mil-
liseconds, which is still within an acceptable range considering the real-time
requirements.

Based on the maximum response times observed, it can be concluded that the
system maintains its real-time properties, allowing for the computation of aggregates
every 30 minutes. Additionally, the data is received with a sufficient time buffer of
2 minutes before the computation, ensuring the availability of the latest data.

8.5.2 CPU Utilization Analysis

The CPU utilization analysis focuses on evaluating how the system’s CPU usage
scales with the increasing number of sensors. The CPU utilization data was col-
lected for each message rate, providing insights into the system’s ability to handle
the computational workload. The values are collected at a 30-second interval over
a 1-minute window.

To provide a visual representation of the average CPU utilization at steady state for
each number of sensors, the following images display the graphs for the centralized
instance:

Figure 8.25: Average Centralized CPU Utilization for 1 Sensor

145

Demonstration of Feasibility

Figure 8.26: Average Centralized CPU Utilization for 2 Sensors

Figure 8.27: Average Centralized CPU Utilization for 4 Sensors

Figure 8.28: Average Centralized CPU Utilization for 8 Sensors

146

Demonstration of Feasibility

Figure 8.29: Average Centralized CPU Utilization for 16 Sensors

Figure 8.30: Average Centralized CPU Utilization for 32 Sensors

Figure 8.31: Average Centralized CPU Utilization for 64 Sensors

To provide a visual representation of the average CPU utilization at steady state
for each number of sensors, the following images display the graphs for the edge
instance:

147

Demonstration of Feasibility

Figure 8.32: Average Edge CPU Utilization for 1 Sensor

Figure 8.33: Average Edge CPU Utilization for 2 Sensors

Figure 8.34: Average Edge CPU Utilization for 4 Sensors

148

Demonstration of Feasibility

Figure 8.35: Average Edge CPU Utilization for 8 Sensors

Figure 8.36: Average Edge CPU Utilization for 16 Sensors

Figure 8.37: Average Edge CPU Utilization for 32 Sensors

149

Demonstration of Feasibility

Figure 8.38: Average Edge CPU Utilization for 64 Sensors

The CPU utilization were computed as the average value for each tried number of
sensors, providing a comprehensive view of the system’s performance. It’s important
to note that in some regions, the average CPU utilization slightly higher. This can
be attributed to the execution of additional OpenWhisk actions, specifically the
actions to compute aggregates. They are triggered every half an hour to process and
aggregate the collected sensor data. During their execution, they may temporarily
increase the overall CPU utilization of the edge and centralized instance. However,
it is important to consider that these periodic actions have a minimal impact on
the overall scalability and efficiency of the system.

The following table displays the average CPU utilization (in percentage) for each
message rate:

Table 8.4: Average CPU Utilization for Different Numbers of Sensors

Number of Sensors
Average Centralized

CPU Utilization
(%)

Average Edge CPU
Utilization (%)

1 11.00 10.49
2 11.00 10.25
4 11.66 10.71
8 12.50 11.48

16 12.64 10.86
32 15.49 12.66
64 16.39 13.14

150

Demonstration of Feasibility

Analysis of Average CPU Utilizarion Trends

CENTRALIZED INSTANCE

To gain insights into the relationship between the number of sensors and the
average CPU utilization, various fitting techniques have been performed using
MATLAB. The aim was to find the best mathematical model that accurately repre-
sents the observed trend. Three different fitting approaches have been considered:
linear, logarithmic, and exponential.

The results of these fittings indicate the following relationships between the number
of sensors (x) and the average CPU utilization (y) according to each fitting model:

Linear Fit: y = 0.09 · x + 11.34 (8.14)

Logarithmic Fit: y = 10.15 + 1.35 · log(x) (8.15)
Exponential Fit: y = 11.49 · e0.01·x (8.16)

Figure 8.39: Plot for Average Centralized CPU Utilization Fittings

151

Demonstration of Feasibility

To evaluate the quality of these fits, several metrics were calculated, including the
coefficient of determination (R-squared), root mean squared error (RMSE), Akaike
Information Criterion (AIC), and Bayesian Information Criterion (BIC).

Table 8.5: Fitting Results for Centralized CPU Utilization

Fitting R-Squared RMSE AIC BIC
Linear 0.90011 0.63044 -0.45863 -0.6209

Logarithmic 0.87549 0.70385 1.0834 0.92117
Exponential 0.87151 0.71503 1.3039 1.1417

The linear fit demonstrated the highest R-squared value (0.90011), indicating a
better fit compared to the logarithmic and exponential fits. Additionally, the linear
fit had the lowest RMSE (0.63044), suggesting a smaller average deviation from
the actual data points. Moreover, the linear fit had the lowest AIC (-0.45863) and
BIC (-0.6209) values, indicating a better fit in terms of information criteria.

Considering these evaluations, the linear fit is deemed the most suitable model
for representing the relationship between the number of sensors and the average
CPU utilization in the developed system. This linear equation provides a reliable
estimation of the average CPU utilization based on the number of sensors.

The advantages of the linear fitting in terms of scalability are noteworthy. The small
coefficient of 0.09 in the linear equation indicates that for every additional sensor
added to the system, the average CPU utilization increases by only 0.09%. This
suggests a linear relationship with a relatively low rate of resource consumption
growth. Such a characteristic is favorable for scalability as it implies that the
system can handle an expanding sensor network without experiencing a significant
surge in resource demands.

However, it is important to note that while the linear fit provides valuable insights
into the scalability of the system, it also important to consider the complexi-
ties introduced by the combination of edge instances and centralized instances,
which may affect the accuracy of the measured CPU utilization. Nonetheless,
the linear fit confirms the system’s scalability, indicating that the average CPU
utilization increases proportionally with the number of sensors. This understanding
enables organizations to make informed decisions regarding resource allocation, ca-
pacity planning, and system optimization to effectively accommodate future growth.

In summary, the linear fit obtained through MATLAB serves as compelling evidence
of the system’s scalability and its ability to handle increasing workloads. The linear

152

Demonstration of Feasibility

equation, with its small coefficient, provides a reliable estimation of the average
CPU utilization and demonstrates the system’s capacity to efficiently accommodate
a growing number of sensors.

EDGE INSTANCE

To gain insights into the relationship between the number of sensors and the
average CPU utilization, various fitting techniques were performed using MATLAB.
The aim was to find the best mathematical model that accurately represents the
observed trend. Three different fitting approaches have been considered: linear,
logarithmic, and exponential.

The results of these fittings indicate the following relationships between the number
of sensors (x) and the average CPU utilization (y) according to each fitting model:

Linear Fit: y = 0.04 · x + 10.56 (8.17)

Logarithmic Fit: y = 9.99 + 0.67 · log(x) (8.18)
Exponential Fit: y = 10.67 · e0.001·x (8.19)

Figure 8.40: Plot for Average Edge CPU Utilization Fittings

153

Demonstration of Feasibility

To evaluate the quality of these fits, several metrics were calculated, including the
coefficient of determination (R-squared), root mean squared error (RMSE), Akaike
Information Criterion (AIC), and Bayesian Information Criterion (BIC).

Table 8.6: Fitting Results for Edge CPU Utilization

Fitting R-Squared RMSE AIC BIC
Linear 0.84213 0.4122 -6.4076 -6.5698

Logarithmic 0.79134 0.47388 -4.4552 -4.6175
Exponential 0.82905 0.42893 -5.8503 -6.0126

The linear fit demonstrates a relatively high R-squared value (0.84213), indicating a
good fit compared to the logarithmic and exponential fits. The RMSE for the linear
fit is the lowest among the three models (0.4122), suggesting a smaller average
deviation from the actual data points. Moreover, the linear fit has the lowest AIC
(-6.4076) and BIC (-6.5698) values, indicating a better fit in terms of information
criteria.

Based on these evaluations, the linear fit is considered the most suitable model for
representing the relationship between the number of sensors and the average CPU
utilization in the system. The linear equation provides a reliable estimation of the
average CPU utilization based on the number of sensors.

The advantages of the linear fitting in terms of scalability are noteworthy. The small
coefficient of 0.04 in the linear equation indicates that for every additional sensor
added to the system, the average CPU utilization increases by only 0.04%. This
suggests a linear relationship with a relatively low rate of resource consumption
growth. Such a characteristic is favorable for scalability as it implies that the
system can handle an expanding sensor network without experiencing a significant
surge in resource demands.

However, it is important to note that while the linear fit provides valuable insights
into the scalability of the system, the complexities introduced by the combination
of edge instances and centralized instances should also be considered, which may
affect the accuracy of the measured CPU utilization. Nonetheless, the linear fit
confirms the system’s scalability, indicating that the average CPU utilization in-
creases proportionally with the number of sensors. This understanding enables
organizations to make informed decisions regarding resource allocation, capacity
planning, and system optimization to effectively accommodate future growth.

In summary, the linear fit obtained through MATLAB serves as compelling evidence

154

Demonstration of Feasibility

of the system’s scalability and its ability to handle increasing workloads. The linear
equation, with its small coefficient, provides a reliable estimation of the average
CPU utilization and demonstrates the system’s capacity to efficiently accommodate
a growing number of sensors.

RAM Utilization Analysis

The RAM utilization analysis focuses on evaluating how the system’s RAM us-
age scales with the increasing number of sensors. The RAM utilization data
was collected for each message rate, providing insights into the system’s ability to
handle the computational workload. The values are collected at a 30-second interval.

To provide a visual representation of the average RAM utilization at steady state for
each number of sensors, the following images display the graphs for the centralized
instance:

Figure 8.41: Average Centralized RAM Utilization for 1 Sensor

Figure 8.42: Average Centralized RAM Utilization for 2 Sensors

155

Demonstration of Feasibility

Figure 8.43: Average Centralized RAM Utilization for 4 Sensors

Figure 8.44: Average Centralized RAM Utilization for 8 Sensors

Figure 8.45: Average Centralized RAM Utilization for 16 Sensors

156

Demonstration of Feasibility

Figure 8.46: Average Centralized RAM Utilization for 32 Sensors

Figure 8.47: Average Centralized RAM Utilization for 64 Sensors

To provide a visual representation of the average RAM utilization at steady state
for each number of sensors, the following images display the graphs for the edge
instance:

Figure 8.48: Average Edge RAM Utilization for 1 Sensor

157

Demonstration of Feasibility

Figure 8.49: Average Edge RAM Utilization for 2 Sensors

Figure 8.50: Average Edge RAM Utilization for 4 Sensors

Figure 8.51: Average Edge RAM Utilization for 8 Sensors

158

Demonstration of Feasibility

Figure 8.52: Average Edge RAM Utilization for 16 Sensors

Figure 8.53: Average Edge RAM Utilization for 32 Sensors

Figure 8.54: Average Edge RAM Utilization for 64 Sensors

The RAM utilizations were computed as the average value for each tried number
of sensors, providing a comprehensive view of the system’s performance. It’s
important to note that in some regions, the average RAM utilization slightly

159

Demonstration of Feasibility

higher. This can be attributed to the execution of additional OpenWhisk ac-
tions, specifically the actions to compute aggregates. They are triggered every
half an hour to process and aggregate the collected sensor data. During their
execution, they may temporarily increase the overall RAM utilization of the edge
and centralized instance. However, it is important to consider that these periodic
actions have a minimal impact on the overall scalability and efficiency of the system.

The following table displays the average RAM utilization (in GiB) for each message
rate:

Table 8.7: Average RAM Utilization for Different Numbers of Sensors

Number of Sensors
Average Centralized

RAM Utilization
(GiB)

Average Edge RAM
Utilization (GiB)

1 3.26 2.06
2 3.27 2.18
4 3.25 2.22
8 3.27 2.28

16 3.30 2.35
32 3.34 2.54
64 3.35 2.74

Analysis of Average RAM Utilization Trends

CENTRALIZED INSTANCE
To gain insights into the relationship between the number of sensors and the average
RAM utilization, various fitting techniques have been performed using MATLAB.
The objective was to identify the best mathematical model that accurately repre-
sents the observed trend. Three different fitting approaches have been explored:
linear, logarithmic, and exponential.

The results of these fittings indicate the following relationships between the number
of sensors (x) and the average RAM utilization (y) according to each fitting model:

Linear Fit: y = 0.0015929043 · x + 3.2625287356 (8.20)

Logarithmic Fit: y = 3.24 + 0.02 · log(x) (8.21)

Exponential Fit: y = 3.2627531228 · e0.0004794407·x (8.22)

160

Demonstration of Feasibility

Figure 8.55: Plot for Average Centralized RAM Utilization Fittings

To assess the quality of these fits, several metrics were calculated, including the
coefficient of determination (R-squared), root mean squared error (RMSE), Akaike
Information Criterion (AIC), and Bayesian Information Criterion (BIC).

Table 8.8: Fitting Results for Centralized RAM Utilization

Fitting R-Squared RMSE AIC BIC
Linear 0.84443 0.014519 -53.2518 -53.4141

Logarithmic 0.79669 0.016599 -51.3782 -51.5405
Exponential 0.84202 0.014631 -53.1444 -53.3066

The linear fit demonstrated the highest R-squared value (0.84443), indicating a
better fit compared to the logarithmic and exponential fits. Additionally, the linear
fit had the lowest RMSE (0.014519), suggesting a smaller average deviation from
the actual data points. Moreover, the linear fit had the lowest AIC (-53.2518) and
BIC (-53.4141) values, indicating a better fit in terms of information criteria.

161

Demonstration of Feasibility

Considering these evaluations, the linear fit is considered the most suitable model
for representing the relationship between the number of sensors and the average
RAM utilization in the developed system. The linear equation provides a reliable
estimation of the average RAM utilization based on the number of sensors.

The advantages of the linear fitting in terms of scalability are noteworthy. The
small coefficient of 0.0015929043 in the linear equation indicates that for every
additional sensor added to the system, the average RAM utilization increases
by only 0.0015929043 units. This suggests a linear relationship with a relatively
low rate of resource consumption growth. Such a characteristic is favorable for
scalability as it implies that the system can handle an expanding sensor network
without experiencing a significant surge in RAM demands.

However, it is important to note that while the linear fit provides valuable insights
into the scalability of the system, the complexities introduced by the combination
of edge instances and centralized instances should also be considered, which may
affect the accuracy of the measured RAM utilization. Nonetheless, the linear
fit confirms the system’s scalability, indicating that the average RAM utilization
increases proportionally with the number of sensors. This understanding enables
organizations to make informed decisions regarding resource allocation, capacity
planning, and system optimization to effectively accommodate future growth.

In summary, the linear fit obtained through MATLAB serves as compelling evidence
of the system’s scalability and its ability to handle increasing workloads. The
linear equation, with its small coefficient, provides a reliable estimation of the
average RAM utilization and demonstrates the system’s capacity to efficiently
accommodate a growing number of sensors.

EDGE INSTANCE
To gain insights into the relationship between the number of sensors and the average
RAM utilization, various fitting techniques have been performed using MATLAB.
The objective was to identify the best mathematical model that accurately repre-
sents the observed trend. Three different fitting approaches have been explored:
linear, logarithmic, and exponential.

The results of these fittings indicate the following relationships between the number
of sensors (x) and the average RAM utilization (y) according to each fitting model:

Linear Fit: y = 0.0097506562 · x + 2.1616666667 (8.23)

Logarithmic Fit: y = 2.03 + 0.15 · log(x) (8.24)
Exponential Fit: y = 2.1713004038 · e0.0038981277·x (8.25)

162

Demonstration of Feasibility

Figure 8.56: Plot for Average Edge RAM Utilization Fittings

To assess the quality of these fits, several metrics were calculated, including the
coefficient of determination (R-squared), root mean squared error (RMSE), Akaike
Information Criterion (AIC), and Bayesian Information Criterion (BIC).

Table 8.9: Fitting Results for Edge RAM Utilization

Fitting R-Squared RMSE AIC BIC
Linear 0.93186 0.055993 -34.3554 -34.5176

Logarithmic 0.92612 0.058305 -33.7889 -33.9512
Exponential 0.9182 0.061349 -33.0766 -33.2388

The linear fit demonstrates the highest R-squared value (0.93186), indicating a
better fit compared to the logarithmic and exponential fits. Additionally, the linear
fit has the lowest RMSE (0.055993), suggesting a smaller average deviation from
the actual data points. Moreover, the linear fit has the lowest AIC (-34.3554) and
BIC (-34.5176) values, indicating a better fit in terms of information criteria.

163

Demonstration of Feasibility

Considering these evaluations, the linear fit is deemed the most suitable model
for representing the relationship between the number of sensors and the average
RAM utilization in the developed system. This linear equation provides a reliable
estimation of the average RAM utilization based on the number of sensors.

The advantages of the linear fitting in terms of scalability are noteworthy. The
small coefficient of 0.0097506562 in the linear equation indicates that for every
additional sensor added to the system, the average RAM utilization increases
by only 0.0097506562 units. This suggests a linear relationship with a relatively
low rate of resource consumption growth. Such a characteristic is favorable for
scalability as it implies that the system can handle an expanding sensor network
without experiencing a significant surge in RAM demands.

However, it is important to note that while the linear fit provides valuable insights
into the scalability of the system, the complexities introduced by the combination
of edge instances and centralized instances should also be considered, which may
affect the accuracy of the measured RAM utilization. Nonetheless, the linear
fit confirms the system’s scalability, indicating that the average RAM utilization
increases proportionally with the number of sensors. This understanding enables
organizations to make informed decisions regarding resource allocation, capacity
planning, and system optimization to effectively accommodate future growth.

In summary, the linear fit obtained through MATLAB serves as compelling evidence
of the system’s scalability and its ability to handle increasing workloads. The
linear equation, with its small coefficient, provides a reliable estimation of the
average RAM utilization and demonstrates the system’s capacity to efficiently
accommodate a growing number of sensors.

8.5.3 Network Throughput Analysis

The network throughput analysis focuses on evaluating how the network traffic
between the edge and centralized instance scales with the increasing number of sen-
sors. The network throughput data was collected for each message rate, providing
insights into the system’s ability to handle the increasing traffic. The values are
collected at a 15-seconds interval.

To provide a visual representation of the average network throughput of each
relevant interface that receives/sends data at steady state for each number of
sensors, the following images display the graphs:

164

Demonstration of Feasibility

Figure 8.57: Average Network Throughput for 1 Sensor

Figure 8.58: Average Network Throughput for 2 Sensors

Figure 8.59: Average Network Throughput for 4 Sensors

165

Demonstration of Feasibility

Figure 8.60: Average Network Throughput for 8 Sensors

Figure 8.61: Average Network Throughput for 16 Sensors

Figure 8.62: Average Network Throughput for 32 Sensors

166

Demonstration of Feasibility

Figure 8.63: Average Network Throughput for 64 Sensors

The network throughput was calculated as the average value for different numbers
of sensors, providing a comprehensive performance overview. In some regions, the
average throughput is slightly higher due to additional OpenWhisk actions, mainly
for computing aggregates and storing data in the centralized InfluxDB. These
actions temporarily increase the network throughput but have minimal impact on
overall scalability and efficiency. The increase in throughput can also be attributed
to cache misses in edge instances, requiring data retrieval from the centralized
CouchDB.

The following table displays the average network throughput (in kb/s) for each
message rate. It is important to remember that this average network throughput
has been obtained by summing the average network throughput of four different
virtual interfaces, which are related to the centralized InfluxDB and CouchDB
instances.

Table 8.10: Average Network Throughput for Different Numbers of Sensors

Number
of Sensors

veth
e15bf18f
(kb/s)

veth
825c1580

(kb/s)

veth
54ed8c96

(kb/s)

veth
0d2c57d9

(kb/s)

Total
(kb/s)

1 38.99988 40.457 40.46125 2.037 121.9551
2 49.46092 51.55988 51.22196 2.045875 154.2886
4 55.26138 56.92196 57.05838 2.064208 171.3059
8 64.02867 65.73738 65.96988 2.117833 197.8538

16 73.29508 74.87588 74.44017 2.092375 224.7035
32 96.01183 98.32721 97.85879 2.095958 294.2938
64 112.8953 114.7505 114.8362 2.072125 344.5541

167

Demonstration of Feasibility

Analysis of Average Overall Network Troughput Trends

To gain insights into the relationship between the number of sensors and the average
overall network troughput between the centralized and edge instance, various fitting
techniques have been performed using MATLAB. The objective was to identify the
best mathematical model that accurately represents the observed trend. Three
different fitting approaches have been explored: linear, logarithmic, and exponential.

The results of these fittings indicate the following relationships between the number
of sensors (x) and the overall average network troughput (y) according to each
fitting model:

Linear Fit: y = 3.28996672 · x + 155.87557529 (8.26)

Logarithmic Fit: y = 108.29 + 51.59 · log(x) (8.27)

Exponential Fit: y = 167.15622250 · e0.01215438·x (8.28)

Figure 8.64: Plot for Average Network Throughput Fittings

168

Demonstration of Feasibility

To assess the quality of these fits, several metrics were calculated, including the
coefficient of determination (R-squared), root mean squared error (RMSE), Akaike
Information Criterion (AIC), and Bayesian Information Criterion (BIC).

Table 8.11: Fitting Results for Network Throughput

Fitting R-Squared RMSE AIC BIC
Linear 0.90611 22.4901 49.5831 49.4208

Logarithmic 0.94936 16.517 45.2615 45.0992
Exponential 0.84517 28.8804 53.0843 52.922

The logarithmic fit demonstrated the highest R-squared value (0.94936), indicating
a better fit compared to the linear and exponential fits. Additionally, the linear fit
had the lowest RMSE (16.517), suggesting a smaller average deviation from the
actual data points. Moreover, the logerithmic fit had the lowest AIC (45.2615) and
BIC (45.0992) values, indicating a better fit in terms of information criteria.

Considering these evaluations, the logarithmic fit is considered the most suit-
able model for representing the relationship between the number of sensors and the
average overall network troughput between the centralized and edge instance. The
logarithmic equation provides a reliable estimation of the average overall network
troughput based on the number of sensors.

The logarithmic fitting for network throughput provides several advantages in
terms of scalability:

• Moderate Growth Rate: The logarithmic relationship indicates a diminish-
ing rate of increase in network throughput as the number of sensors increases.
This allows for smoother scaling and better resource management without
experiencing a significant surge in resource demands.

• Stable Growth Pattern: The logarithmic fitting represents a stable growth
pattern for network throughput, providing a more gradual and predictable
increase in performance as the number of sensors grows. This stability aids in
capacity planning, resource allocation, and system optimization.

In summary, the logarithmic fit obtained through MATLAB serves as compelling
evidence of the system’s scalability and its ability to handle increasing workloads.
The logarithmic equation, provides a reliable estimation of the average overall net-
work troughput and demonstrates the system’s capacity to efficiently accommodate
a growing number of sensors.

169

Demonstration of Feasibility

8.6 Final Considerations

In this section, the feasibility of the experimental architecture for monitoring multi-
ple data centers in a Fog Computing environment was evaluated. The focus was on
assessing the scalability and real-time properties of the system, which are critical
factors in determining its effectiveness. A systematic evaluation methodology was
employed to measure response times, CPU utilization, memory utilization and
network troughput between the centralized and edge instance at different mes-
sage rates, enabling an analysis of the system’s performance and capacity to scale up.

The chosen approach of utilizing OpenWhisk actions and triggers proved to align
well with the scalability and real-time requirements of the system. With automatic
scaling based on the incoming workload, the OpenWhisk actions ensured that the
system could handle increasing data from sensors while maintaining real-time re-
sponse rates. This dynamic scalability eliminated the need for manual intervention
or infrastructure adjustments, enhancing the feasibility of the solution.

Regarding response times, simulations were conducted by varying the message rate
to mimic growing sensor counts. The measured response times provided insights
into how the system handled the increasing workload. Curve fitting was performed
to analyze the relationship between the message rate and response times. The
results revealed that the best fit for response times was logarithmic, indicating a di-
minishing growth pattern as the message rate increased. Additionally, the maximum
response time for the addReadingToDb action was consistently below 10 seconds,
even as the number of sensors increased. This indicates that the system was able
to process and store sensor readings within an acceptable time frame, ensuring ef-
ficient data handling and demonstrating the real-time properties of the architecture.

Similarly, CPU and memory utilization were monitored to understand the system’s
resource consumption patterns. Curve fitting was applied to analyze the relation-
ship between the message rate and resource utilization. The analysis showed that
CPU and memory utilization followed a linear growth pattern as the message rate
increased.

Additionally, the analysis of network throughput between the edge and centralized
instances was conducted. Similar to response times and resource utilization, curve
fitting was performed to determine the relationship between the message rate and
network throughput. The analysis indicated that the best fit for network through-
put was logarithmic, suggesting a diminishing growth pattern as the message rate
increased.

170

Demonstration of Feasibility

These findings demonstrate the scalability of the experimental architecture within
the practical limitations of the combined approach. The logarithmic fit for response
times and network throughput indicates efficient data processing and resource
utilization, while the linear fit for CPU and memory utilization suggests a propor-
tional scaling with the increasing message rate.

Prometheus and Grafana were utilized as monitoring and visualization tools to
gather and analyze the metrics. These tools played a crucial role in providing valu-
able insights into the system’s performance, facilitating effective data visualization
and interpretation.

In summary, the evaluation results showcase the scalability, and real-time ca-
pabilities of the experimental architecture for monitoring multiple data centers.
The system effectively handles increasing workloads while maintaining real-time
response rates. The metrics and tools employed offer compelling evidence of the
system’s performance, with the analysis highlighting trends and observations that
validate the feasibility of the proposed solution.

In conclusion, the evaluation of scalability and real-time properties provides a
comprehensive understanding of the system’s performance and its capacity to
handle growing workloads. The experimental architecture, based on OpenWhisk ac-
tions and triggers, demonstrates itself as a feasible solution for monitoring multiple
data centers in a Fog Computing environment.

171

Chapter 9

Conclusions

9.1 Research Objectives Overview
The main objectives of this research were to assess the scalability, real-time prop-
erties, and ease of management of the proposed serverless architecture, as well
as to evaluate the effective integration between different components, in order to
demonstrate the feasibility of the system. By achieving these objectives, valuable
insights have been provided into the potential benefits and challenges of imple-
menting such an architecture in real-world scenarios while ensuring a cohesive and
well-integrated system for edge device monitoring.

9.2 Methodology Overview
Through a systematic research approach, a comprehensive literature review was
conducted to establish a strong foundation and gain a deep understanding of
serverless computing, fog computing, edge computing, and their applications in
IoT environments. Based on the findings from the literature review, OpenWhisk
was carefully selected as the preferred serverless platform due to its compatibility
with the research objectives and functional requirements specific to edge device
monitoring in a fog computing environment.

The system design was developed to outline the architecture and components
of the proposed solution, emphasizing the utilization of computing capabilities,
confinement of computation to the edge clusters, and incorporation of a centralized
management component. The implementation phase involved deploying Open-
Whisk on both the edge clusters and the centralized management component. The
ESP-8266 sensor was utilized to collect temperature, gas percentage, and humidity
data from each data center, ensuring comprehensive monitoring of their "health"

172

Conclusions

status.

9.3 Feasibility Evaluation Overview

To evaluate the feasibility of the implemented system, experiments and measure-
ments were conducted. The primary focus was on assessing the system’s scalability
and real-time responsiveness as the number of sensors increased. Key metrics,
including average response time, average network throughput, average CPU utiliza-
tion, and average RAM utilization, were measured and analyzed.

The key findings from the evaluation demonstrate the scalability and real-time
capabilities of the experimental architecture for monitoring multiple data centers
in a Fog Computing environment. The chosen approach of utilizing OpenWhisk
actions and triggers proved to align well with the scalability and real-time require-
ments of the system. With automatic scaling based on the incoming workload, the
system effectively handled increasing data from sensors while maintaining real-time
response rates. The dynamic scalability eliminated the need for manual intervention
or infrastructure adjustments, enhancing the feasibility of the solution.

Furthermore, the analysis of response times, CPU utilization, memory utiliza-
tion, and network throughput revealed important insights. The response times
exhibited a logarithmic growth pattern as the message rate increased, indicating
efficient data processing. Additionally, the maximum response time remained
consistently below 10 seconds, demonstrating the system’s ability to meet real-time
requirements even as the number of sensors increased. Similarly, CPU and memory
utilization followed a linear growth pattern, suggesting proportional scaling with the
increasing message rate. The network throughput also showed a logarithmic growth
pattern, indicating efficient data transfer between the edge and centralized instances.

Prometheus and Grafana, utilized as monitoring and visualization tools, played
a crucial role in gathering and analyzing the metrics, providing valuable insights
into the system’s performance. These tools facilitated effective data visualization
and interpretation, enhancing the understanding of the system’s behavior under
different workloads.

In conclusion, the evaluation of scalability and real-time properties demonstrates
that the experimental architecture, based on OpenWhisk actions and triggers, is

173

Conclusions

a feasible solution for monitoring multiple data centers in a Fog Computing envi-
ronment. The system effectively handles increasing workloads while maintaining
real-time response rates. The metrics and tools employed offer compelling evidence
of the system’s performance, validating the feasibility of the proposed solution.

9.4 Proven Benefits
The implemented serverless architecture for edge device monitoring in a fog com-
puting environment has demonstrated several proven benefits. These are the key
advantages and positive outcomes of the proposed solution based on the evaluation
and analysis conducted throughout the research:

• Scalability and Real-Time Responsiveness: One of the primary benefits
of the implemented solution is its scalability and real-time responsiveness.
The architecture, built on OpenWhisk actions and triggers, effectively handles
increasing workloads by dynamically scaling resources based on the incoming
data from sensors. This automatic scaling mechanism eliminates the need
for manual intervention and ensures that the system can adapt to changing
demands. The evaluation results have shown that the system maintains real-
time response rates even with a growing number of sensors, making it highly
suitable for monitoring multiple data centers in a fog computing environment.

• Efficient Resource Utilization: The implemented solution also demon-
strates efficient resource utilization. The analysis of metrics, including CPU
utilization, memory utilization, and network throughput, has revealed that
the system scales proportionally with the increasing message rate. This effi-
cient resource utilization ensures that computational resources are effectively
allocated to handle the incoming workload, resulting in optimal performance
and reduced resource waste.

• Centralized Management and Monitoring: The incorporation of a cen-
tralized management component in the architecture brings several benefits. It
allows for centralized control and monitoring of the edge clusters, simplifying
the management and configuration of the system. Additionally, the use of
CouchDB, a centralized database, ensures that updating the action code is
efficient and seamless. When a change is made to the action code, all the
actions across the edge instances are automatically updated, eliminating the
need for manual updates on each edge instance. This centralized approach to
action code updates simplifies the maintenance and ensures consistency across
the system.

• Decentralized Communication: Another benefit of the architecture is the
fact that the centralized management instance does not make requests to the

174

Conclusions

edge instances. Instead, the edge instances make requests to the centralized
management component when necessary. This decentralized communication
approach improves system efficiency and reduces unnecessary overhead.

• Flexibility and Adaptability: The serverless architecture offers flexibility
and adaptability, making it suitable for dynamic and evolving environments.
The use of OpenWhisk actions and triggers allows for easy integration with
other components and services, enabling seamless communication and data
exchange. This flexibility enables the system to accommodate future en-
hancements and changes, making it a future-proof solution for edge device
monitoring in fog computing environments.

• Reproducibility and Extensibility: The organization and documentation
of the research materials in the GitHub repository facilitate reproducibility
and extensibility. This documentation, combined with the code and resources
shared in the repository, allows other researchers and practitioners to build
upon the implemented solution, further advancing the field of fog computing
and serverless edge device monitoring.

In summary, the implemented serverless architecture has demonstrated several
proven benefits, including scalability, real-time responsiveness, efficient resource
utilization, centralized management and monitoring, flexibility, and reproducibil-
ity. These benefits contribute to the viability and effectiveness of the proposed
solution for edge device monitoring in a fog computing environment, opening up
opportunities for its application in real-world scenarios.

9.5 Limitations and Future Studies
However, it is important to acknowledge the limitations of the experimental setup.
Due to physical constraints and resource limitations, challenges were faced in
deploying additional edge instances. Consequently, the focus was on demonstrating
scalability by increasing the workload through the addition of more sensors on a
single edge instance. While the ability to distribute the workload across multiple
edge instances was limited, this approach still allowed for the assessment of the
system’s capability to handle increasing demands and provided valuable insights
into its scalability within the constraints of the experimental setup.

It is also important to note that the limitation imposed by OpenWhisk’s re-
striction on triggering more than 60 actions per minute was encountered during the
evaluation. This constraint impacted the maximum number of sensors that could
effectively be monitored using the implemented architecture. While the developed
system demonstrated scalability and real-time capabilities within these constraints,

175

Conclusions

it is crucial to understand that the scalability performance may vary when the
number of sensors exceeds the limit dictated by the serverless platform.

To further enhance the research in this area, future studies should focus on testing
scalability by adding additional edge instances and sensors. This would enable a
more comprehensive evaluation of the system’s performance under different scenar-
ios. Additionally, it would be beneficial to revisit the research hypothesis or research
questions and assess how the findings align with the initial expectations. This
evaluation could involve reflecting on whether the research supports or contradicts
existing theories or hypotheses.

Future studies should also explore alternative serverless platforms or strategies to
overcome the limitation of 60 triggers per minute to enable a more comprehensive
evaluation of the system’s scalability.

It is important to mention that the focus in this study was on demonstrating
feasibility, so other studies should aim to make optimizations in resource consump-
tion and minimize latency. Exploring other Function-as-a-Service (FaaS) tools
would also be valuable to test the optimality of the system.

9.6 Final Statements
In closing, the research presented in this thesis has demonstrated the practical
feasibility of a serverless architecture for edge device monitoring in a fog computing
environment. The evaluation results highlight the scalability, real-time capabilities,
and effective integration of the proposed solution. The findings have significant
implications for the field of fog computing and IoT, offering insights into the
potential benefits and challenges of implementing serverless architectures in real-
world scenarios.

176

Appendix A

GitHub Repository

The GitHub repository for the thesis, located at https://github.com/s294547/
Exploring-FaaS-Solutions, provides organized and detailed content within its
various folders. Each folder within the repository includes a README.md file, which
serves as a guide and explanation of the folder’s contents and highlights the most
important aspects. The main materials related to the thesis can be found in the
/openwhisk folder.

The /openwhisk/deploy folder contains the final materials and code used for
the thesis. This folder represents the culmination of the research and includes the
deployment script, configuration files, and other relevant resources necessary for
replicating the solution presented in the thesis.

The /openwhisk/prototypes folder contains different intermediate materials, they
can’t be considered as definitive. These materials may include experimental proto-
types, code snippets, or early iterations of the implemented solution. They provide
insights into the development process and demonstrate the evolution of ideas and
concepts throughout the research.

The /openwhisk/metrics folder is dedicated to the materials related to the met-
rics harvest. Here, it is possible to find data collection tools, and analysis files
specifically focused on capturing and evaluating performance metrics of the solu-
tion. These materials contribute to a comprehensive understanding of the system’s
performance and effectiveness.

By exploring the repository’s folders and their respective README.md files, readers
can navigate through the different stages of the research, access the main thesis
materials, and delve into supporting resources and documentation. This organiza-
tion facilitates easy access to the relevant content and enhances the reproducibility

177

https://github.com/s294547/Exploring-FaaS-Solutions
https://github.com/s294547/Exploring-FaaS-Solutions

GitHub Repository

and comprehension of the thesis work.

178

Bibliography

[1] Karthik Kambatla, Giorgos Kollias, Vipin Kumar, and Ananth Grama.
«Trends in big data analytics». English (US). In: Journal of Parallel and
Distributed Computing 74.7 (July 2014). Funding Information: Ananth Grama
is the Director of the Computational Science and Engineering program and
Professor of Computer Science at Purdue University. He also serves as the
Associate Director of the Center for Science of Information. Ananth received
his B. Engg from Indian Institute of Technology, Roorkee (1989), his M.S.
from Wayne State University (1990), and Ph.D. from the University of Min-
nesota (1996). His research interests lie in parallel and distributed systems,
numerical methods, large-scale data analysis, and their applications. Ananth
is a recipient of the National Science Foundation CAREER award (1998),
University Faculty Scholar Award (2002–07), and is a Fellow of the American
Association for the Advancement of Sciences (2013)., pp. 2561–2573. issn:
0743-7315. doi: 10.1016/j.jpdc.2014.01.003 (cit. on p. 1).

[2] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. «Internet of Things (IoT): A vision, architectural elements,
and future directions». In: Future Generation Computer Systems 29.7 (2013),
pp. 1645–1660 (cit. on p. 1).

[3] Alessio Botta, Walter de Donato, Valeria Persico, and Antonio Pescapé.
«Integration of cloud computing and internet of things: a survey». In: Future
Generation Computer Systems 56 (2016), pp. 684–700 (cit. on p. 1).

[4] Alessandro Bocci, Stefano Forti, Gian-Luigi Ferrari, and Antonio Brogi. «Se-
cure FaaS orchestration in the fog: how far are we?» In: Computing 103.4
(2021), pp. 1025–1056. doi: 10.1007/s00607-021-00924-y (cit. on p. 2).

[5] Kevin Ashton. «That ’Internet of Things’ Thing». In: RFID Journal (2009)
(cit. on p. 7).

[6] Luigi Atzori, Antonio Iera, and Giacomo Morabito. «The Internet of Things:
A survey». In: Computer Networks 54.15 (2010), pp. 2787–2805 (cit. on p. 7).

179

https://doi.org/10.1016/j.jpdc.2014.01.003
https://doi.org/10.1007/s00607-021-00924-y

BIBLIOGRAPHY

[7] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. «Internet of Things (IoT): A vision, architectural elements,
and future directions». In: Future Generation Computer Systems 29.7 (2013),
pp. 1645–1660 (cit. on p. 7).

[8] Shancang Li, Lei Da Xu, and Shanshan Zhao. «The internet of things: A
survey». In: Information Systems Frontiers 17.2 (2015), pp. 243–259 (cit. on
p. 7).

[9] Shuo Wang, Jiafu Wan, Di Zhang, Daqiang Li, and Chunxiao Zhang. «Towards
smart factory for industry 4.0: A self-organized multi-agent system with big
data based feedback and coordination». In: Computer Networks 101 (2016),
pp. 158–168 (cit. on p. 7).

[10] Muhammad Imran, Muhammad Junaid, Irfan Aslam, Muhammad Rizwan,
and Imran Javaid. «Fog computing: A taxonomy, survey and future directions».
In: arXiv preprint arXiv:1611.05539 (2016), pp. 1–4 (cit. on p. 8).

[11] IBM. Function-as-a-Service (FaaS). Retrieved from IBM website. n.d. url:
https : / / www . ibm . com / topics / faas# : ~ : text = FaaS % 2C % 20or % 20F
unction % 2Das % 2D , building % 20and % 20launching % 20microservices %
20applications (cit. on pp. 10, 11).

[12] Vladimir Yussupov, Jacopo Soldani, Uwe Breitenbücher, Antonio Brogi, and
Frank Leymann. «FaaSten your decisions: A classification framework and
technology review of function-as-a-Service platforms». In: Journal of Systems
and Software 175 (2021), p. 110906. issn: 0164-1212. doi: https://doi.org/
10.1016/j.jss.2021.110906. url: https://www.sciencedirect.com/
science/article/pii/S0164121221000030 (cit. on pp. 13, 15, 20, 22).

[13] Andrew St. Laurent. Understanding Open Source and Free Software Licensing.
O’Reilly Media, 2004 (cit. on p. 13).

[14] Eric von Hippel and Georg von Krogh. «Open Source Software and the
"Private-Collective" Innovation Model: Issues for Organization Science». In:
Organization Science 14.2 (2003), pp. 209–223 (cit. on p. 14).

[15] Wen Li, Na Meng, Li Li, and Haipeng Cai. «Multi-Language Software Projects
on GitHub». In: 2021 IEEE/ACM 43rd International Conference on Soft-
ware Engineering: Companion Proceedings (ICSE-Companion). IEEE. 2021,
pp. 256–256. doi: 10.1109/ICSE-Companion52605.2021.00119 (cit. on
p. 14).

[16] Sean Mealin and Emerson Murphy-Hill. «An exploratory study of blind
software developers». In: 2012 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). IEEE. 2012, pp. 71–74 (cit. on p. 14).

180

https://www.ibm.com/topics/faas#:~:text=FaaS%2C%20or%20Function%2Das%2D,building%20and%20launching%20microservices%20applications
https://www.ibm.com/topics/faas#:~:text=FaaS%2C%20or%20Function%2Das%2D,building%20and%20launching%20microservices%20applications
https://www.ibm.com/topics/faas#:~:text=FaaS%2C%20or%20Function%2Das%2D,building%20and%20launching%20microservices%20applications
https://doi.org/https://doi.org/10.1016/j.jss.2021.110906
https://doi.org/https://doi.org/10.1016/j.jss.2021.110906
https://www.sciencedirect.com/science/article/pii/S0164121221000030
https://www.sciencedirect.com/science/article/pii/S0164121221000030
https://doi.org/10.1109/ICSE-Companion52605.2021.00119

BIBLIOGRAPHY

[17] Khaled Albusays and Stephanie Ludi. «Eliciting programming challenges faced
by developers with visual impairments: exploratory study». In: Proceedings
of the 9th International Workshop on Cooperative and Human Aspects of
Software Engineering. 2016, pp. 82–85 (cit. on p. 14).

[18] Kattiana Constantino, Shurui Zhou, Mauricio Souza, Eduardo Figueiredo,
and Christian Kästner. «Understanding Collaborative Software Development:
An Interview Study». In: Proceedings of the 15th International Conference on
Global Software Engineering. ICGSE ’20. Seoul, Republic of Korea: Association
for Computing Machinery, 2020, pp. 55–65. isbn: 9781450370936. doi: 10.
1145 / 3372787 . 3390442. url: https : / / doi . org / 10 . 1145 / 3372787 .
3390442 (cit. on p. 14).

[19] Noela Jemutai Kipyegen and William P K Korir. «Importance of Software Doc-
umentation». In: International Journal of Computer Science Issues (IJCSI)
10.5 (Sept. 2013), pp. 223–228 (cit. on p. 15).

[20] Minchen Yu, Tingjia Cao, Wei Wang, and Ruichuan Chen. Following the
Data, Not the Function: Rethinking Function Orchestration in Serverless
Computing. 2022. arXiv: 2109.13492 [cs.DC] (cit. on p. 15).

[21] Scott Rogers. Under the Microscope: Software Observability in a Distributed
Architecture. Blog post. Accessed on June 14, 2023. Nov. 2020. url: https://
tanzu.vmware.com/developer/blog/under-the-microscope-software-
observability-in-a-distributed-architecture/ (cit. on p. 15).

[22] OpenFaaS. OpenFaaS - Serverless Functions Made Simple. Retrieved from
https://www.openfaas.com/. n.d. (Cit. on p. 17).

[23] Apache OpenWhisk. Apache OpenWhisk – Open Source Serverless Cloud
Platform. Retrieved from https://openwhisk.apache.org/. n.d. (Cit. on
pp. 17, 34).

[24] Knative. Knative - Kubernetes-Based Platform to Build, Deploy, and Manage
Modern Serverless Workloads. Retrieved from https://knative.dev/. n.d.
(Cit. on p. 18).

[25] AWS Lambda. AWS Lambda. Retrieved from https://aws.amazon.com/
lambda/. n.d. (Cit. on p. 18).

[26] Google Cloud Functions. Google Cloud Functions. Retrieved from https:
//cloud.google.com/functions. n.d. (Cit. on p. 19).

[27] Azure Functions. Azure Functions. Retrieved from https://azure.microso
ft.com/en-us/services/functions/. n.d. (Cit. on p. 19).

181

https://doi.org/10.1145/3372787.3390442
https://doi.org/10.1145/3372787.3390442
https://doi.org/10.1145/3372787.3390442
https://doi.org/10.1145/3372787.3390442
https://arxiv.org/abs/2109.13492
https://tanzu.vmware.com/developer/blog/under-the-microscope-software-observability-in-a-distributed-architecture/
https://tanzu.vmware.com/developer/blog/under-the-microscope-software-observability-in-a-distributed-architecture/
https://tanzu.vmware.com/developer/blog/under-the-microscope-software-observability-in-a-distributed-architecture/
https://www.openfaas.com/
https://openwhisk.apache.org/
https://knative.dev/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://cloud.google.com/functions
https://cloud.google.com/functions
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/

BIBLIOGRAPHY

[28] Andrew Morin, Jennifer Urban, and Piotr Sliz. «A Quick Guide to Software
Licensing for the Scientist-Programmer». In: PLOS Computational Biology
8.7 (July 2012), pp. 1–7. doi: 10 . 1371 / journal . pcbi . 1002598. url:
https://doi.org/10.1371/journal.pcbi.1002598 (cit. on p. 26).

[29] Mishal Roomi. 6 Advantages and Disadvantages of Closed Source Software
| Drawbacks & Benefits of Closed Source Software. Website. Accessed on
June 14, 2023. May 2021. url: https://www.hitechwhizz.com/2021/05/
6- advantages- and- disadvantages- drawbacks- benefits- of- closed-
source-software.html (cit. on p. 26).

[30] Apache OpenWhisk. OpenWhisk – How the System Works. https://github.
com/apache/openwhisk/blob/master/docs/about.md#how-openWhisk-
works. Retrieved from Apache OpenWhisk GitHub repository. Accessed 2023
(cit. on pp. 34, 39).

[31] Apache OpenWhisk. OpenWhisk – OpenWhisk CLI. https : / / github .
com / apache / openwhisk / blob / master / docs / cli . md. Retrieved from:
https://github.com/apache/openwhisk/blob/master/docs/cli.md. Accessed
2023 (cit. on p. 36).

[32] Apache OpenWhisk. OpenWhisk – OpenWhisk Actions. https://githu
b.com/apache/openwhisk/blob/master/docs/actions.md. Retrieved
from: https://github.com/apache/openwhisk/blob/master/docs/actions.md.
Accessed 2023 (cit. on p. 37).

[33] Apache OpenWhisk. OpenWhisk – Creating triggers and rules. https://git
hub.com/apache/openwhisk/blob/master/docs/triggers_rules.md. Re-
trieved from: https://github.com/apache/openwhisk/blob/master/docs/triggersrules.md.
Accessed 2023 (cit. on p. 42).

[34] OpenWhisk. Using and creating OpenWhisk packages. GitHub. Retrieved from:
https://github.com/apache/openwhisk/blob/master/docs/packages.
md (cit. on p. 45).

[35] Building a Sample MQTT-based Application on OpenWhisk. https://b
log.zhaw.ch/splab/2019/03/15/building- a- sample- mqtt- based-
application-on-openwhisk/ (cit. on pp. 46, 65, 105).

[36] Advanced OpenWhisk Alarm Schedules. https://jamesthom.as/2017/10/
advanced-openwhisk-alarm-schedules/ (cit. on pp. 46, 67).

[37] Adobe. OpenWhisk – ShardingContainerPoolBalancer. https : / / github
. com / adobe - apiplatform / incubator - openwhisk / blob / master / co
re / controller / src / main / scala / org / apache / openwhisk / core / l
oadBalancer / ShardingContainerPoolBalancer . scala. Retrieved from:
https://github.com/adobe-apiplatform/incubator-openwhisk/blob/master/core/controller/src/main/scala/org/apache/openwhisk/core/loadBalancer/ShardingContainerPoolBalancer.scala.
Accessed 2023 (cit. on p. 46).

182

https://doi.org/10.1371/journal.pcbi.1002598
https://doi.org/10.1371/journal.pcbi.1002598
https://www.hitechwhizz.com/2021/05/6-advantages-and-disadvantages-drawbacks-benefits-of-closed-source-software.html
https://www.hitechwhizz.com/2021/05/6-advantages-and-disadvantages-drawbacks-benefits-of-closed-source-software.html
https://www.hitechwhizz.com/2021/05/6-advantages-and-disadvantages-drawbacks-benefits-of-closed-source-software.html
https://github.com/apache/openwhisk/blob/master/docs/about.md##how-openWhisk-works
https://github.com/apache/openwhisk/blob/master/docs/about.md##how-openWhisk-works
https://github.com/apache/openwhisk/blob/master/docs/about.md##how-openWhisk-works
https://github.com/apache/openwhisk/blob/master/docs/cli.md
https://github.com/apache/openwhisk/blob/master/docs/cli.md
https://github.com/apache/openwhisk/blob/master/docs/actions.md
https://github.com/apache/openwhisk/blob/master/docs/actions.md
https://github.com/apache/openwhisk/blob/master/docs/triggers_rules.md
https://github.com/apache/openwhisk/blob/master/docs/triggers_rules.md
https://github.com/apache/openwhisk/blob/master/docs/packages.md
https://github.com/apache/openwhisk/blob/master/docs/packages.md
https://blog.zhaw.ch/splab/2019/03/15/building-a-sample-mqtt-based-application-on-openwhisk/
https://blog.zhaw.ch/splab/2019/03/15/building-a-sample-mqtt-based-application-on-openwhisk/
https://blog.zhaw.ch/splab/2019/03/15/building-a-sample-mqtt-based-application-on-openwhisk/
https://jamesthom.as/2017/10/advanced-openwhisk-alarm-schedules/
https://jamesthom.as/2017/10/advanced-openwhisk-alarm-schedules/
https://github.com/adobe-apiplatform/incubator-openwhisk/blob/master/core/controller/src/main/scala/org/apache/openwhisk/core/loadBalancer/ShardingContainerPoolBalancer.scala
https://github.com/adobe-apiplatform/incubator-openwhisk/blob/master/core/controller/src/main/scala/org/apache/openwhisk/core/loadBalancer/ShardingContainerPoolBalancer.scala
https://github.com/adobe-apiplatform/incubator-openwhisk/blob/master/core/controller/src/main/scala/org/apache/openwhisk/core/loadBalancer/ShardingContainerPoolBalancer.scala
https://github.com/adobe-apiplatform/incubator-openwhisk/blob/master/core/controller/src/main/scala/org/apache/openwhisk/core/loadBalancer/ShardingContainerPoolBalancer.scala

BIBLIOGRAPHY

[38] C. Toma, A. Alexandru, M. Popa, and A. Zamfiroiu. «IoT Solution for Smart
Cities’ Pollution Monitoring and the Security Challenges». In: Sensors 19.8
(2019), pp. 1–20. doi: 10.3390/s19081913 (cit. on p. 49).

[39] L. Colizzi, D. Caivano, C. Ardito, G. Desolda, A. Castrignanò, M. Matera,
..., and H. Shi. «Agricultural Internet of Things and Decision Support for
Precision Smart Farming». In: Agricultural Internet of Things and Decision
Support for Precision Smart Farming. Springer, 2020, pp. 1–33. doi: 10.1007/
978-3-030-23605-7_1 (cit. on pp. 49, 50).

[40] Claudio Cicconetti, Marco Conti, and Andrea Passarella. «Architecture and
performance evaluation of distributed computation offloading in edge com-
puting». In: Simulation Modelling Practice and Theory 101 (2020). Mod-
eling and Simulation of Fog Computing, p. 102007. issn: 1569-190X. doi:
https://doi.org/10.1016/j.simpat.2019.102007. url: https://www.
sciencedirect.com/science/article/pii/S1569190X19301406 (cit. on
p. 54).

[41] Kartheek. «How to Deploy Highly Scalable MQTT Broker to AWS (HiveMQ)».
In: Geek Culture (Mar. 2021). url: https://medium.com/geekculture/how-
to-deploy-highly-scalable-mqtt-broker-to-aws-hivemq-2b88ce0c7f
43 (cit. on p. 54).

[42] Charles Mahler. «8 Real-World MQTT Use Cases». In: InfluxDB, Community,
Iot (Sept. 2022). url: https://www.influxdata.com/blog/mqtt-use-
cases/ (cit. on p. 54).

[43] InfluxData. A Guide to MQTT. https://www.influxdata.com/mqtt (cit.
on p. 54).

[44] Chiara Caiazza, Silvia Giordano, Valerio Luconi, and Alessio Vecchio. «Edge
computing vs centralized cloud: Impact of communication latency on the
energy consumption of LTE terminal nodes». In: Computer Communications
194 (2022), pp. 213–225. issn: 0140-3664. doi: https://doi.org/10.1016/j.
comcom.2022.07.026. url: https://www.sciencedirect.com/science/
article/pii/S0140366422002730 (cit. on p. 56).

[45] Microsoft Azure. What is edge computing? https://azure.microsoft.
com/en-us/resources/cloud-computing-dictionary/what-is-edge-
computing/ (cit. on p. 56).

[46] InfluxData. Why Time Series Matters for Metrics, Real-Time and Sensor
Data. https : / / www . influxdata . com / resources / why - time - series -
matters-for-metrics-real-time-and-sensor-data/ (cit. on pp. 56, 58).

183

https://doi.org/10.3390/s19081913
https://doi.org/10.1007/978-3-030-23605-7_1
https://doi.org/10.1007/978-3-030-23605-7_1
https://doi.org/https://doi.org/10.1016/j.simpat.2019.102007
https://www.sciencedirect.com/science/article/pii/S1569190X19301406
https://www.sciencedirect.com/science/article/pii/S1569190X19301406
https://medium.com/geekculture/how-to-deploy-highly-scalable-mqtt-broker-to-aws-hivemq-2b88ce0c7f43
https://medium.com/geekculture/how-to-deploy-highly-scalable-mqtt-broker-to-aws-hivemq-2b88ce0c7f43
https://medium.com/geekculture/how-to-deploy-highly-scalable-mqtt-broker-to-aws-hivemq-2b88ce0c7f43
https://www.influxdata.com/blog/mqtt-use-cases/
https://www.influxdata.com/blog/mqtt-use-cases/
https://www.influxdata.com/mqtt
https://doi.org/https://doi.org/10.1016/j.comcom.2022.07.026
https://doi.org/https://doi.org/10.1016/j.comcom.2022.07.026
https://www.sciencedirect.com/science/article/pii/S0140366422002730
https://www.sciencedirect.com/science/article/pii/S0140366422002730
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-edge-computing/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-edge-computing/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-edge-computing/
https://www.influxdata.com/resources/why-time-series-matters-for-metrics-real-time-and-sensor-data/
https://www.influxdata.com/resources/why-time-series-matters-for-metrics-real-time-and-sensor-data/

BIBLIOGRAPHY

[47] Luis Miguel Rodriguez Cortes, Edward Paul Guillen, and Wilson Rojas Reales.
«Serverless Architecture: Scalability, Implementations and Open Issues». In:
2022 6th International Conference on System Reliability and Safety (ICSRS).
2022, pp. 331–336. doi: 10.1109/ICSRS56243.2022.10067577 (cit. on p. 59).

[48] Grafana Labs. https://grafana.com/ (cit. on pp. 61, 69).
[49] Eclipse Mosquitto. https://mosquitto.org/ (cit. on p. 65).
[50] InfluxDB. https://www.influxdata.com/products/influxdb/ (cit. on

p. 68).
[51] Apache CouchDB. https://couchdb.apache.org/ (cit. on p. 68).
[52] Kubernetes. https://kubernetes.io/docs/home/ (cit. on p. 76).
[53] Docker. https://docs.docker.com/ (cit. on p. 77).
[54] Helm. https://helm.sh/docs/ (cit. on p. 78).
[55] Chartmuseum. https://github.com/helm/chartmuseum (cit. on p. 79).
[56] Traefik. https://traefik.io/ (cit. on p. 79).
[57] Arduino IDE. https://andprof.com/tools/what-is-arduino-software-

ide-and-how-use-it/ (cit. on p. 80).
[58] k3s. https://docs.k3s.io/ (cit. on p. 81).
[59] ESP8266 - Technical Reference. https://www.espressif.com/sites/

default/files/documentation/esp8266-technical_reference_en.pdf
(cit. on p. 82).

[60] CouchDB – Helm Chart. https://github.com/apache/couchdb- helm
(cit. on p. 99).

[61] OpenWhisk – Helm Chart. https : / / github . com / apache / openwhisk -
deploy-kube/tree/master/helm/openwhisk (cit. on p. 101).

[62] Mosquitto – Helm Chart. https://github.com/SINTEF/mosquitto-helm-
chart (cit. on p. 103).

[63] InfluxDB – Helm Chart. https://helm.influxdata.com/ (cit. on p. 104).
[64] Grafana Operator – Documentation. https://grafana-operator.github.

io/grafana-operator/docs/ (cit. on p. 108).
[65] What Are Kubernetes Custom Resource Definitions (CRDs)? https : / /

www.howtogeek.com/devops/what-are-kubernetes-custom-resource-
definitions-crds/ (cit. on p. 108).

[66] Gartner. Scalability. [Online]. Available:
urlhttps://www.gartner.com/en/information-technology/glossary/scalability.
Retrieved 2023 (cit. on p. 110).

184

https://doi.org/10.1109/ICSRS56243.2022.10067577
https://grafana.com/
https://mosquitto.org/
https://www.influxdata.com/products/influxdb/
https://couchdb.apache.org/
https://kubernetes.io/docs/home/
https://docs.docker.com/
https://helm.sh/docs/
https://github.com/helm/chartmuseum
https://traefik.io/
https://andprof.com/tools/what-is-arduino-software-ide-and-how-use-it/
https://andprof.com/tools/what-is-arduino-software-ide-and-how-use-it/
https://docs.k3s.io/
https://www.espressif.com/sites/default/files/documentation/esp8266-technical_reference_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp8266-technical_reference_en.pdf
https://github.com/apache/couchdb-helm
https://github.com/apache/openwhisk-deploy-kube/tree/master/helm/openwhisk
https://github.com/apache/openwhisk-deploy-kube/tree/master/helm/openwhisk
https://github.com/SINTEF/mosquitto-helm-chart
https://github.com/SINTEF/mosquitto-helm-chart
https://helm.influxdata.com/
https://grafana-operator.github.io/grafana-operator/docs/
https://grafana-operator.github.io/grafana-operator/docs/
https://www.howtogeek.com/devops/what-are-kubernetes-custom-resource-definitions-crds/
https://www.howtogeek.com/devops/what-are-kubernetes-custom-resource-definitions-crds/
https://www.howtogeek.com/devops/what-are-kubernetes-custom-resource-definitions-crds/

BIBLIOGRAPHY

[67] Forbes. How to use Real Time Data? [Online]. Available:
urlhttps://www.forbes.com/sites/bernardmarr/2022/03/14/how-to-use-real-time-
data-key-examples-and-use-cases/?sh=2d90d1667f4d. Retrieved 2023 (cit. on
p. 111).

[68] OpenWhisk – OpenWhisk System Details. https://github.com/apache/
openwhisk/blob/master/docs/reference.md (cit. on p. 115).

[69] Wikipedia – Curve Fitting. https://en.wikipedia.org/wiki/Curve_
fitting (cit. on p. 119).

[70] MathWorks – Matlab. https://it.mathworks.com/products/matlab.html
(cit. on p. 123).

[71] MathWorks – polyfit. https://it.mathworks.com/help/matlab/ref/
polyfit.html (cit. on p. 123).

[72] MathWorks – lsqcurvefit. https://it.mathworks.com/help/optim/ug/
lsqcurvefit.html (cit. on p. 123).

[73] Wikipedia. Coefficient of Determination. [Online]. Available:
urlhttps://en.wikipedia.org/wiki/Coefficientofdetermination. Retrieved 2023
(cit. on p. 125).

[74] Wikipedia. Root Mean Square Deviation. [Online]. Available:
urlhttps://en.wikipedia.org/wiki/Root-mean-squaredeviation. Retrieved 2023
(cit. on p. 126).

[75] Wikipedia. Akaike Information Criterion. [Online]. Available:
urlhttps://en.wikipedia.org/wiki/Akaikeinformationcriterion. Retrieved 2023
(cit. on p. 127).

[76] Wikipedia. Bayesian Information Criterion. [Online]. Available:
urlhttps://en.wikipedia.org/wiki/Bayesianinformationcriterion. Retrieved
2023 (cit. on p. 127).

[77] Prometheus – Overview. https://prometheus.io/docs/introduction/
overview/ (cit. on p. 131).

[78] OpenWhisk – OpenWhisk Metric Support. https://github.com/apache/
openwhisk/blob/master/docs/metrics.md (cit. on p. 132).

[79] Prometheus – Monitoring Linux host metrics with the Node Exporter. https:
//prometheus.io/docs/guides/node-exporter/ (cit. on p. 134).

[80] Kubernetes – kube-state-metrics. https://github.com/kubernetes/kube-
state-metrics (cit. on p. 134).

[81] Grafana Labs – Prometheus Data Source. https://grafana.com/docs/
grafana/latest/datasources/prometheus/ (cit. on p. 135).

185

https://github.com/apache/openwhisk/blob/master/docs/reference.md
https://github.com/apache/openwhisk/blob/master/docs/reference.md
https://en.wikipedia.org/wiki/Curve_fitting
https://en.wikipedia.org/wiki/Curve_fitting
https://it.mathworks.com/products/matlab.html
https://it.mathworks.com/help/matlab/ref/polyfit.html
https://it.mathworks.com/help/matlab/ref/polyfit.html
https://it.mathworks.com/help/optim/ug/lsqcurvefit.html
https://it.mathworks.com/help/optim/ug/lsqcurvefit.html
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://github.com/apache/openwhisk/blob/master/docs/metrics.md
https://github.com/apache/openwhisk/blob/master/docs/metrics.md
https://prometheus.io/docs/guides/node-exporter/
https://prometheus.io/docs/guides/node-exporter/
https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics
https://grafana.com/docs/grafana/latest/datasources/prometheus/
https://grafana.com/docs/grafana/latest/datasources/prometheus/

BIBLIOGRAPHY

[82] 10 application performance metrics and how to measure them. https://www.
techtarget.com/searchapparchitecture/tip/5-application-perform
ance-metrics-all-dev-teams-should-track (cit. on pp. 135–138).

186

https://www.techtarget.com/searchapparchitecture/tip/5-application-performance-metrics-all-dev-teams-should-track
https://www.techtarget.com/searchapparchitecture/tip/5-application-performance-metrics-all-dev-teams-should-track
https://www.techtarget.com/searchapparchitecture/tip/5-application-performance-metrics-all-dev-teams-should-track

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Objectives
	Methodology
	Thesis Organization

	Background
	Internet of Things
	Fog Computing
	Function-as-a-Service

	Analysis of Existing FaaS Tools
	Criteria for Tool Evaluation
	Tools
	OpenFaaS
	OpenWhisk
	Knative
	AWS Lambda
	Google Cloud Functions
	Microsoft Azure Functions

	Comparison Matrix
	Selection of OpenWhisk
	Exclusion Of Cloud Provider Tools
	Exclusion of OpenFaaS and Knative
	OpenWhisk: The Chosen Tool for Feasibility Assessment

	Deep Dive Into OpenWhisk
	Introduction to OpenWhisk Components
	Overview of OpenWhisk Architecture

	OpenWhisk CLI
	Overview of OpenWhisk CLI
	Working with the CLI: Installation and Configuration

	Actions in OpenWhisk
	Understanding Actions in OpenWhisk
	Creating and Managing Actions
	Supported Programming Languages
	Packaging and Deploying Actions
	Versioning and Managing Action Lifecycle
	Interaction Between Components To Invoke an Action

	Triggers and Rules in OpenWhisk
	Creating and Managing Triggers and Rules
	Triggering Actions with Triggers
	Supported Trigger Types
	Combining Trigger with Rules for Event-Driven Workflows

	OpenWhisk Packages
	Introduction to OpenWhisk Packages
	Action In OpenWhisk Packages
	Feeds in OpenWhisk Packages
	Packages Organization and Namespace
	Browsing and Utilizing Packages
	MQTT and Alarm Packages

	Load Balancer
	Introduction to Load Balancer
	ShardingContainerPoolBalancer Overview
	Algorithm Explanation
	Capacity Checking and User-Memory Configuration
	Invoker Health Checking

	Use Case Definition
	Use Case Scenario
	Use Case Scenario Adaptability

	Architecture and Implementation Details
	Use Case Architecture
	Architecture Overview
	Sensor Data Publication
	Data Storage for Sensor Readings
	Aggregates Storage
	OpenWhisk in Each Instance: Centralized CouchDB and Local Caches
	Enable Action Execution
	Aggregates Visualization
	Architecture Summary
	Components of the Architecture

	Implementation Details
	Main Action Mechanism
	Interaction Between Components

	Experimental Deployment
	Technologies and Tools
	Kubernetes
	Docker
	Helm
	ChartMuseum
	Traefik
	Arduino IDE

	Deployment Environment and Sensors Integration
	Deployment Environment
	ESP8266 Sensor Integration

	Deployment Process
	Edge Instance Deployment
	Centralized Instance Deployment

	Deployed Charts
	Centralized Chart
	Edge Chart
	Subcharts

	Demonstration of Feasibility
	Chosen Properties
	Scalability
	Real Time Capabilites
	Integration of System Components
	Ease of System Managment

	Evaluation Methodology
	Measurement of Response Times
	Measurement of CPU and Memory Utilization
	Measurement of Traffic Exchanged
	Evaluation of Fitted Models for Response Times, CPU, Memory Utilization and Traffic Exchanged
	Analysis and Interpretation

	Model Fitting
	Curve Fitting
	MATLAB and Fitting Functions
	Error Rates and Model Evaluation
	MATLAB Code Example

	Metrics and Tools
	Prometheus Overview
	Exporting Metrics from OpenWhisk
	Exporting Metrics with k3s Exporter Stack
	Prometheus as a Data Source for Grafana
	Average Response Time and Maximum Response Time Metric
	CPU Utilization Metric
	RAM Utilization Metric
	Network Troughput Metric

	Evaluation Results and Analysis
	Response Time Analysis
	CPU Utilization Analysis
	Network Throughput Analysis

	Final Considerations

	Conclusions
	Research Objectives Overview
	Methodology Overview
	Feasibility Evaluation Overview
	Proven Benefits
	Limitations and Future Studies
	Final Statements

	GitHub Repository
	Bibliography

