

Politecnico di Torino

Master Degree course in Computer Engineering
A.a. 2022/2023

Sessione di Laurea 07/2023

Study and functional
improvements development

for an Options Strategy
Builder Platform

Relatori: Candidati:
Alessandro Fiori

Ruben Rinaldi

Contents

List of Figures 3

1 Introduction 4
1.1 Relevant Studies and Implementations 5
1.2 Competitor . 7

2 Option Trading 11
2.1 Markets . 11
2.2 Exchanges . 13
2.3 Options . 14
2.4 Greeks . 18

3 Technologies 23
3.1 React . 23

3.1.1 Alternatives . 26
3.2 Django . 28

3.2.1 Alternatives . 30
3.2.2 Celery . 32

3.3 MongoDB . 33
3.3.1 Relational Databases vs NoSQL Databases 33
3.3.2 Alternatives . 35

3.4 Docker . 38

1

4 Architecture 41
4.1 Dockerization . 42
4.2 Nginx . 43
4.3 Client-server model . 44

4.3.1 HTTP Protocol 44
4.4 Architectural Pattern . 46
4.5 REST-API . 49
4.6 CORS . 49
4.7 Design Implementation 50

4.7.1 React Bootstrap 51
4.7.2 Graphic Libraries 51

5 Analytics 57
5.0.1 Contract price estimation with Monte-Carlo sim-

ulations . 57
5.0.2 Gamma and Vanna Exposure (GEX & VEX) . . 58
5.0.3 Implementations 61

6 Use Case 63

7 Conclusions 69

2

List of Figures

1.1 OptionVue Dashboard 8
1.2 Optionstrat Strategy Builder 9
1.3 Beetrader Dashboard . 10

2.1 Option basics strategy graphic representation [16] 17

3.1 React-Redux Flow . 26
3.2 Django Data Flows[5] . 30
3.3 Docker Main Structure [15] 39

4.1 Architecture Structure 42

6.1 Price by Volume Chart 65
6.2 Monte-Carlo Simulation Interface 66
6.3 GEX & VEX by Strike 68
6.4 GEX & VEX by Expiration 68
6.5 GEX & VEX Profile . 68

3

Chapter 1

Introduction

Nowadays, the accessibility of financial instruments is widespread. Banks
and online brokers provide a wide diversity of financial instruments.
Some of these instruments are particularly sophisticated not only in
terms of their use, but also in a conceptual aspect that requires the
end user to be familiar with their functioning and to have a general
understanding of the global market. The original project aimed to im-
plement a web app for evaluating investment strategies on both Amer-
ican and European financial options. Trading financial options is a
popular method of investing that allows individuals to buy or sell the
right to purchase or sell an underlying asset at a specific price and
time. However, the process of evaluating financial options is complex
and unintuitive, and sometimes the appropriate tools are not provided
to make an accurate assessment. This platform aims to provide the
tools necessary to describe the characteristics of an investment strategy
based on one or more options that relate to a specific underlying asset,
in order to bring the user to a deeper awareness.

The primary emphasis of this thesis is the design and implementation

4

1.1 – Relevant Studies and Implementations

of extra features for usage on the front end of a web platform dedicated
to the study of financial derivatives. Derivatives in the financial market
are complex financial products that call for a great deal of knowledge
and experience in the relevant industry. Financial options, in essence,
takes use of a kind of leverage that enables the investor to place a stake
on the price of a stock without having to purchase or sell it directly.
Instead, the investor merely incurs a small fee to the seller in order to
engage in the deal. The objective is to further enhance the functioning
of the application’s front-end by including advanced visualizations and
partially restructuring the server architecture by splitting the frontend
and backend into two different units in order to improve development
independence.

1.1 Relevant Studies and Implementations

The platform evaluates different indicators related to financial options,
the study of these instruments and associated strategies has been ex-
panding and evolving since the 1970s. The first significant contribution
to option pricing was conceptualized in 1973 by Fischer Black, Myron
Scholes and Robert Merton, known as the Black - Scholes model [3],
and is currently the model that is used to calculate the profitability of
call and put options on the platform. The model was created for the
calculation of European options, thus options are exercisable only at
the expiry of that contract.

However, the Black - Scholes model has some limitations in its va-
lidity assumptions such as the constant interest rate and the geometric

5

Introduction

Brownian motion of the share price and does not take into account cer-
tain factors such as dividend payments. For these reasons, subsequent
studies have extended the validity range of the previous model that
takes into account the possibility of early exercise of American options,
indeed, where the contract can be closed before expiry.

The topic of American option pricing is gaining wide acceptance in
the literature today. The Bjerksund-Stensland model [2], developed by
Per Bjerksund and Gard Stensland in 2002, is the model implemented
in the platform for calculating the price of American options. The latter
takes into account the early exercise feature and provides a closed-form
formula, a relatively simple and fast way to price options with a dis-
crete level of accuracy. Other studies suggest different approaches for
calculating options such as the Barone-Adesi and Whaley model [1],
developed by Giorgio Barone-Adesi and Robert Whaley in 1987. It is
an approximation method that uses the Black-Scholes model to price
American options. This model is relatively simple to implement, but
it is less accurate than other methods, especially for options that are
close to the expiration date.

Other models based on Monte Carlo simulations such as the ones
discussed in this book [12] are more accurate, however they are not are
not massively usable in a web platform as the calculation time would
be too long under some circumstances, making the platform unusable.

6

1.2 – Competitor

1.2 Competitor

Another significant factor for which the original project was launched
was the lack of a tool on the market that is easily accessible to all
players in the options market. The motivation behind the choice of
platform functionality is the possibility to provide a tool that includes
various functionalities to support traders in the choice and evaluation
of options strategy, which are not jointly present in other platforms
present in the market today.

Platforms that allow strategy analysis, especially through the use of
visual tools such as charts and indicators, are not widely available, very
often the platforms are sold at a high subscription price, which is not
affordable for new market entrants and often lacks useful elements for
evaluating strategy and assessing trends of the market with a global
vision but only offering a partial view.

Option Vue

OptionVue is a software developed specifically for the purpose of trad-
ing options. It includes a number of useful features, including a highly
customizable charting interface, an option matrix, and tools for deter-
mining which investment strategy offers the greatest potential return.

The program computes profits and losses, which are shown via some
sophisticated graphics, and it enables comparison with many alterna-
tive options strategies. The monthly membership fee is rather expen-
sive, and there are certain limits on the degree of type of Greeks that
may be used.

7

https://www.capitalallocation.io/products/optionvue/

Introduction

Figure 1.1: OptionVue Dashboard

OptionStrat

OptionStrat is a web-based platform that provides a range of tools and
resources for analysing and trading options. This intuitive platform
guarantees a good level of comprehensiveness in terms of the instru-
ments provided. Furthermore, it offers a range of educational resources,
including tutorials, webinars, and articles to help traders learn more
about options trading and improve their trading skills. It also includes
interesting features such as position flow and a profit chance indicator.
However, it has limitations in terms of the availability of European op-
tions.

8

https://optionstrat.com/

1.2 – Competitor

Figure 1.2: Optionstrat Strategy Builder

BeeTrader

Beetrader is a very complete installable software for analysing strate-
gies, offering charts and indicators for technical analysis, strategy com-
parators and scenario analysis. It provides a wide range of features and
tools to help traders analyse and trade financial markets. Moreover, It
also offers the possibility to connect the software to your broker and
rapidly interact directly with it. It is a versatile and powerful trad-
ing platform that can meet the needs of both novice and professional
traders, however, the product becomes very expensive for an individual
investor who wants to approach the world of options trading.

9

https://www.beetrader.eu/

Introduction

Figure 1.3: Beetrader Dashboard

10

Chapter 2

Option Trading

The purpose of this chapter is devoted to a general description of the
financial instruments used by the platform with a focus on financial
options.

2.1 Markets

There is a wide variety of financial instruments, and each kind has
its own specific market that facilitates the buying and selling of that
particular asset. The most important markets trade a wide variety of
financial assets, including stocks, bonds, foreign exchange, and deriva-
tives, among several others. This section gives a quick introduction to
the most important financial assets and types of markets.

Stocks: Shares of equity in the property of a publicly traded corpo-
ration are referred to as stocks. Investors may purchase and sell stocks
on the stock market, as well as earn dividends from the companies
whose stocks they own.

11

Option Trading

Indexes: An index is a collection of financial products that repre-
sents the market for investable assets in a certain country or area. They
are gathered in order to monitor the price performance of the market
they each represent. The index’s assets are typically weighted based
on their market capitalization. Some of the most noted are the SP500,
MSCI World, Dow Jones Industrial Average, DAX and others.

Bonds: Bonds are a portion of a business’s (or state’s) debt that is
represented by a security, and the buyer of the bond merely becomes a
creditor of the firm or state. The latter receives the amounts that were
subscribed to in addition to the interest that is defined in the contract
at a certain maturity date.

Derivatives: Because they draw their value from the fluctuation in
the value of an asset or the happening of a future event, derivatives are
so named. The asset or event, which may be of any sort or kind, serves
as the derivative product’s "underlying". There are several derivatives
in the financial sector, including: Options, futures, forwards, swaps

Commodities: The term "commodity" refers to basic resources,
more specifically, the category of products that are bought and sold on
the market despite the lack of any significant quality distinctions. To
be more specific, we are discussing so-called fungible goods, which are
representative of a very diverse group of goods, each of which has a
unique application, a unique set of characteristics and qualities, a dis-
tinctive capacity for storage, and a different level of intensity in terms
of its ability to regenerate.

Forex: Forex is the acronym for the foreign exchange market,

12

2.2 – Exchanges

which is a network within which buyers and sellers exchange a currency
at a fixed price. Forex is the way through which individual traders,
organizations, and central banks convert one currency into another.

2.2 Exchanges

An exchange is an open and organised market where different varieties
of assets are dealt using various financial instruments such as stocks,
commodities, and derivatives, among several others.
By centralising commercial activity, exchanges facilitate and guaran-
tee efficient and equitable trade. In this project, we will evaluate the
activity of the following exchanges: CBOE, CME, and EUREX.

CBOE

The Chicago Board Options Exchange is the most important market
for the sale and purchase of options throughout the entire world[9].
They provide trading solutions and products in a wide variety of asset
classes, such as stocks, derivatives, digital assets, and foreign exchange,
and they operate in North America, Europe, and Asia Pacific.

CME

It is a centralized marketplace for buying and selling futures and op-
tions. The Chicago Mercantile Exchange (CME) [4] was established in
1848, primarily for the purpose of exchanging manufactured commodi-
ties like corn and flour. Nowadays, it primarily operates in the futures
industry, with a significant emphasis on commodities goods such as

13

Option Trading

agribusiness and metals, in addition to stock indices, real estate, inter-
est rates, and energy.

EUREX

Eurex[11], stands for European Exchange, is one of the main deriva-
tives markets, controlled by the German stock exchange and SWX.
Eurex mainly trades derivatives, i.e. options and futures in the form of
contracts. It offers mainly interest rate derivatives, equity derivatives,
volatility index derivatives and energy derivatives.

2.3 Options

Options are categorized as derivative contracts due to the fact that their
value is determined by the price of an underlying asset. This is exactly
why options are considered complex financial instruments. The buyer
of an option, in contrast to the buyer of other derivative contracts, is
granted the right, but not the liability, at the conclusion of a certain
period of time to purchase or sell a predetermined quantity of the un-
derlying asset in exchange for a payment of some amount.

Options are mainly divided into two primary geographic groups,
namely American options and European options, depending on the sort
of exercise that is being performed. The most significant distinction is
that American options may be exercised at any moment up to the ex-
piry date, but European options cannot. Because European options
are riskier than American ones, their prices are lower. The only time
they may be exercised is on the option’s expiry date. The fundamental

14

2.3 – Options

difference between options, on the contrary side, is whether they are
Call or Put options, and this is determined by the kind of option.

Option Call

The buyer of a call option is granted the right to purchase the underly-
ing asset at a certain price, referred to as the strike price, providing a
payment f a premium to the seller of the option. The long call position
is held by the option buyer, while the short call position is held by the
option seller.

The long call (2.1) strategy for trading options is one of the fun-
damental trading methods. Being optimistic about potential price in-
creases for the underlying asset while holding a positive market stance.
This approach is buying a call option in a single position. our exposure
to risk is limited to the amount of the option’s premium that you paid,
regardless of what the price of the underlying asset is on the option’s
expiry date. In addition, the "trade" is considered profitable only when
the profit made by closing the option at a higher price of the underlying
asset is equal to or greater than the amount of the premium that was
paid.

In contrast to the long call (2.1), the short call is executed from
the seller’s current perspective; in essence, this approach entails selling
call options. Since a pessimistic outlook on the market, we anticipate
that the price of the underlying will decrease. In this scenario, the
benefits are restricted to the amount of premium that is collected, but
the threats are limitless and dependent on the market volatility of the
underlying asset.

15

Option Trading

As a result, in the case of the highest possible price, the value of the
underlying asset declines, and the option is not exercised. The amount
of the received premium is equivalent to the highest possible profit. The
most severe situation would occur in the event that the underlying in-
strument increased in value while the option was being exercised. This
suggests that there is no upper limit to the amount of loss.

Option Put

The buyer of a put option receives the right, in exchange for payment
of a premium to the seller of the option, to sell the underlying security
to the seller of the option at a price that has been specified in advance.
The person who purchased the option has a long position, also known
as a long put, while the person who sold it has a short position, also
known as a short put, as in the case of call options.(2.1)

The buyer has the ability to exercise the option by purchasing the
underlying asset on the stock market at the market price, which is lower
than the strike price, and then reselling it at the strike price. This oc-
curs when the price of the underlying asset is lower than the strike price
on the expiration date of the option, which indicates that the option
is "in the money." If, at the time of expiry, the price of the underlying
asset is higher than or equal to the strike price, the option is said to be
either out of the money or at the money, and the buyer of the option
will not exercise it.

16

2.3 – Options

Figure 2.1: Option basics strategy graphic representation [16]

17

Option Trading

2.4 Greeks

Greeks are indicators that make it feasible to quantify the risk that
is associated with holding a position in derivative instruments such as
options. They evaluate and forecast the movement of option prices in
response to the change in the principal risk variables that determine
the value of the derivative.

Greeks are exactly proven to be extremely meaningful by employing
them to minimize the risk in the position that is currently taken, obtain-
ing the appropriate degree of exposure to risk factors in the approach.
First-order Greeks such as delta, theta, rho, and vega are among the
most frequently employed, while second-order Greeks include vanna,
vomma, and gamma. The order of the Greeks denotes the degree of the
partial derivatives that are being considered.

Delta

The delta of an option denotes the option’s price sensitivity to its un-
derlying asset. Depending on the type of Option position, various delta
value ranges occur. The delta for a call option ranges from zero to 1,
whereas the delta for a put option spans from 0 to -1.

If V is the option’s value and S is the price of the underlying asset,
then delta is defined as follows :

∆ = ∂V

∂S
(2.1)

18

2.4 – Greeks

Creating a delta-neutral position is a typical approach, and as pre-
dicted, the delta in this position indicates the hedging ratio.

Theta

Theta is often referred as "time decay", which refers to the process
through which the value of an option decreases as more time passes.
Time sensitivity is another name for time decay. Theta is calculated as
follows, where V is the value of the option and τ is the time to maturity
for the option contract:

Θ = ∂V

∂τ
(2.2)

Long positions on call and put options commonly have negative theta,
while short positions on call and put options typically have positive
theta.

Vega

A measure of the rates at which the implied volatility of the underlying
asset and the value of the option fluctuate over time is denoted by the
symbol "Vega." Given V the value of the option and σ the volatility of
its underlying:

ν = ∂V

∂σ
(2.3)

In other terms, it refers to the degree to which the value of the option
is sensitive to changes in the volatility of the asset that it is based on,

19

Option Trading

and therefore, it is considered a risk factor.

In this case, the value of call options and put options both rise in
tandem with the increase in volatility. If the Vega is close to zero or
approaching that value, then the influence of volatility on the option’s
value is minimal. A portfolio’s Vega may be interpreted to be the de-
gree to which the value of the portfolio is sensitive to variations in the
portfolio’s level of volatility.

Rho

The rate of change in the price of an option relative to a one percent
change in the interest rate is measured by the Greek "rho". It determines
the degree to which the option is sensitive to changes in interest rates r.

ρ = ∂V

∂r
(2.4)

The value of an option is often less sensitive to shifts in the risk-free
interest rate than it is to shifts in the other parameters that decide
it. This is because the risk-free interest rate is one of the factors that
determine it. Because of this, the letter rho is not used as often as the
other Greek.

When interest rates go down, the price of put options goes up, and
this rise is greater for options that are now at the money and have a
lengthy period before maturity.

20

2.4 – Greeks

Gamma

Gamma is the pace at which an option’s delta changes in relation to
the value of the underlying asset. It is a measure of second-order price
sensitivity that quantifies the projected change in delta for every dollar
change in the price of the underlying asset. Gamma is regarded to be
a measure of second-order price sensitivity, computed as follows:

Γ = ∂2V

∂S2 (2.5)

If the value of gamma is low, then the delta is insensitive to changes
in the price of the underlying asset. On the other hand, if gamma is
significant, then the delta is likely to move drastically in response to
even relatively minor shifts in the price of the underlying asset.

It is possible to structure a portfolio such that it is delta gamma
neutral, which will protect it against risk regardless of the range of
volatility that the underlying asset may suffer.

21

22

Chapter 3

Technologies

In this chapter, we will discuss the technologies used in the realization
of the web-app, with reference to the components and frameworks used.
The Django framework takes care of server-side platform management;
the React JavaScript library is used for front-end development; and
MongoDB for database management. Moreover, Docker containers are
used to handle the entire system.

3.1 React

React is a free open-source library written in JavaScript for the devel-
opment of interfaces or UI components. The concept behind React is
the creation of reusable components that are rendered on demand. The
rendering of the component is then translated into calls to the React
API that act quickly and efficiently on the DOM of the page, gener-
ating the requested elements. In essence, React is just in charge of
the application’s view layer. Other frameworks may be used to create
single-page, mobile, or server-rendered apps utilizing React as its core.

23

Technologies

As data descends the component tree in React, interactions between the
components are made possible via the usage of props and callback func-
tions. In big React projects, this composition becomes deep, intricately
interwoven, less maintainable, and vulnerable to props-drilling. This
is one of the factors for the need for implementations like the Redux
pattern in sophisticated React projects. React has multiple advantages,
such as:

• Simplicity: It was founded on the principle of implementing just
the View layer instead of the complete MVC stack, which simplifies
its implementation;

• Reusability: The primary architectural element of dividing the
view into components promotes the code’s reusability and simplifies
the administration of massive projects;

• Efficiency: It has a remarkable execution speed in addition to
exceptional performance;

• Documentation: Since it is maintained by Facebook, there is a
considerable measure of documentation on the web, which is con-
stantly growing due to the very high number of developers in the
community;

• Flexibility: It integrates easily with other frameworks into an ex-
isting project, can be used both client-side and server-side and can
be used to construct both web and native applications using React.
React Native enables the development of native applications.

• Compatibility: In comparison to other frameworks, migrating
from one version to another is simpler;

24

3.1 – React

React Redux

React-Redux [14] is a library that allows for the integration of the Re-
dux library with React for writing React-based web applications. Its
purpose is to make the state change predictable by imposing certain re-
strictions on how and when this can occur. Redux is a state container,
represented by a mutable JSON object only after the invocation of a
specific pure function called reducer. These reside within a single data
structure called Store and are accessible by each individual component
of the application.

The store is in a read-only single source of truth for the entire state,
thus the library offers the Reducer function to alter it. It provides a
number of methods, including getState(), which retrieves the applica-
tion’s State object, and dispatch(action), which launches an Action.
However, only Reducer functions are permitted to modify the informa-
tion stored in the Store, the object meant to retain the state of the
whole program. As pure functions, reducer accept the current State
object as input and return a new, updated State object.

Actions are straightforward JavaScript objects used to deliver data
to the Store. This is the sole way to request an update to the infor-
mation stored in the Store, the object responsible for maintaining the
state of the whole application.

As is illustrated in 3.1 as soon as a user performs a specific inter-
action that falls within the functions defined in the developed actions,
Redux executes the implemented code and triggers the side effects mid-
dleware. In the end, it transfers the result to the reducer, which takes
care of receiving the current state of the application as input, updates

25

Technologies

it with the new data and returns it to React, which will display the
new information. Note that the Effect middleware of the React Redux
library was used outside a Reducer in every component and enables
asynchronous operations such as HTTP requests to external APIs.

Figure 3.1: React-Redux Flow

3.1.1 Alternatives

The use of React in our field of use allows us to develop and deploy
a web platform with good characteristics in terms of performance and
robustness. Clearly, there are other viable alternatives to web applica-
tion development that have been discarded in favour of React’s better
fit for our needs.

26

3.1 – React

Angular

Angular is a platform primarily used for the development of online,
mobile, and desktop applications maintained by Google LLC. By con-
vention, with Angular refers to framework versions beginning with ver-
sion 2, whereas AngularJS refers to version 1 had the characteristics of
being slower and less responsive for some capabilities, and was built on
JQuery. The name Angular 2+ denotes the most recent versions of the
new framework.

Angular is a component-based framework for building scalable web
applications developed in TypeScript. It is a full-fledged model-view-
controller (M.V.C.) framework and enables the implementation of re-
sponsive and fast web pages by exploiting dynamic HTML and data
binding. This framework is widely used in large data-heavy applica-
tions with large amounts of information to be rendered.

One of the common and widely known problems of Angular is its
difficult learning curve, and given its nature in providing multiple out-
of-the-box functionalities it usually produces heavy packages, resulting
in applications that are sometimes slower than those developed with
other frameworks.

VueJS

VueJS is an open-source JavaScript front-end Model-View-Model pack-
age, particularly famous for its ease of use and implementation. VueJS
can be included as a library within your project and is developed to fa-
cilitate the creation of responsive UIs. Moreover, Vue.js is a progressive

27

Technologies

framework that provides a core that is able to create apps by using its
logic and core engine.

However, in order to build extra functionality, it is required to make
use of external components. In terms of performance, VueJs, being par-
ticularly light, is obviously faster than the other frameworks mentioned,
but it must be taken into account that the integration of additional com-
ponents is not always linear and may cause slowdowns and bugs.

Having taken these three frameworks into consideration, it was de-
cided to continue development with React, particularly because the
application already featured existing code and components developed
in React, and so it was decided to continue the project with the existing
framework.

3.2 Django

Django is an open-source framework relying on the Python program-
ming language. [7] It is a great option because of its primary attributes,
which include speed, scalability, exceptional flexibility, and a wide range
of libraries that enable the avoidance of frequent security mistakes.
Versatility and scalability are two of the fundamental guiding concepts.
Modularity, which makes it responsive to the demands of the developer,
is another fundamental notion. The many integrated tools that direct
the programmer throughout the development process are intended to
make the design of applications, no matter how simple or complicated
they are, more agile.

The framework is also created and built to be incredibly secure,

28

3.2 – Django

giving the developer the ability to combat critical vulnerabilities like
cross-site scripting, clickjacking, SQL injection, and cross-site request
forgery. When using modular programming, the developer may simply
and transparently include code created by other parties in the project.
As a result, it is easy to do code maintenance or upgrading on only
one specific module without affecting how the system is configured as a
whole.Built-in authentication uses cookies and includes protection mea-
sures against cross-site request forgery by including a CSRF token for
authenticating API calls.

Django exploits a MVT (model-view-template 3.2) approach that
served as the foundation for the framework. It divides the represen-
tation of the data model (model), the user interface (view) and the
application logic (controller).[5]

• As soon as an HTTP request is processed, it is sent to the appro-
priate View. The URL mapper may also match certain patterns of
strings or numbers inside a URL and transfer the matched data to
a view function;

• Views handle all incoming requests by accessing requested compo-
nents and resources through models;

• Models are Python objects that define the data structure of the
application, providing an interface for accessing and modifying in-
formation residing in the database. They return the required data
to the views;

• Templates are used to define the structure or layout of a file, they
format the data and return the output to the views, which then

29

Technologies

send the response under HTTP;

Figure 3.2: Django Data Flows[5]

3.2.1 Alternatives

Alternatively to Django, other framework solutions exist in order to
implement the backend component, here are some of the main features:

Flask

Flask is an open-source backend framework written in Python for web
applications. Flask is based on the WSGI Werkzeug(server framework)
toolkit and the Jinja2 template engine. Flask is a fairly small and
rather lightweight microframework, ideal for developing and releasing
non-extensive applications from relatively small companies.

Although Flask has advantages in terms of speed of development,
simplicity and flexibility, it was discarded in favour of Django, since

30

3.2 – Django

the latter, although heavier and less flexible, has numerous advantages
in terms of stability and security.

Firstly, Flask does not have a default and robust ORM like Django,
although in this context it does not interface with an RDBMS and an
additional framework called Djongo has been introduced to work with
NoSQL databases.

In terms of security, Django and Flask are both considered secure
solutions for different reasons. Django boasts multiple security features
such as CSRF, SQL and XSS. In addition, many other security-relevant
features are added and executed automatically.

However, using Flask the security risks are lower due to the compact-
ness of the code, but security problems are more likely to arise when
adding third-party extensions.

As far as performance is concerned, Flask is considerably faster than
Django due to the compactness of the code. However, performance de-
teriorates significantly when adding additional plugins and handling big
amount, which makes Django a more complete and integrated solution
considering the project requirements and the possible future develop-
ments.

NestJS

The NestJS framework is a comprehensive framework for building server-
side (back-end) applications in a scalable and efficient manner, based on
Node.js and developed in JavaScript. NestJs includes a large number of

31

Technologies

libraries supporting Typescript and OOP (Object-Oriented Program-
ming). They include modules and middleware to organize the applica-
tion structure and manage request-response loops.

On the other hand, NestJs has performance disadvantages when it
has to handle heavy workloads. Furthermore, due to the intrinsic na-
ture of the JavaScript language, it can be complicated to manage the
task queue and keep the code up-to-date.

Django was selected over NestJs in developing the application, not
only because of the previously mentioned disadvantages but also in or-
der to exploit the potential of the Python language in terms of machine
learning and data analysis libraries for future implementations.

3.2.2 Celery

Celery is an open source distributed message forwarding-based asyn-
chronous task queue or work queue. Celery is written in Python and
can be efficiently integrated with Django. Although scheduling is possi-
ble, the focus is on real-time operations. Tasks may be performed syn-
chronously or asynchronously (in the background) (wait until ready)
Furthermore, tasks are processed concurrently on one or more work
nodes through multiprocessing execution units.

32

3.3 – MongoDB

3.3 MongoDB

MongoDB is a C++-based, open-source, document-oriented, scalable,
and very efficient database. It is designed to have excellent read-and-
write performance. In addition, searches are simpler and quicker, bigger
reads may be split among numerous replicated servers, and the docu-
ment method allows for the representation of intricate hierarchical in-
terconnections through the use of nested documents and arrays.

This database architecture adopts the doc-oriented paradigm’s stor-
age approach, which involves storing each record as a document with
certain properties. Contrary to the relational model, doc-oriented im-
plements a different methodology: merging as many objects as possible
to produce macro entities with the highest information richness. These
objects include all the information required for a certain semantics.

Therefore, MongoDB lacks a schema and each document is not orga-
nized; instead, it only has a necessary key that is used to identify each
document specifically; this key is similar in meaning to the main key of
relational databases.

3.3.1 Relational Databases vs NoSQL Databases

Interaction with the DBMS takes place via structured languages. Databases
are developed according to two main implementation approaches. The
first are called relational databases and are created and managed in
SQL (Structured Query Language). These tables are interconnected by
one or more relationships.

33

Technologies

Keys define the relationship between tables. The essential idea is
built on the key concept provided to a column that holds unique values
for each record. Then, each table will be joined to one another via
systems relying on the uniqueness of the main key.

In contrast, non-relational databases, referred as NoSQL, do not store
data in tables and records. However, in these types of databases, the
data storage structure is developed and optimized for technical speci-
fications, and a variety of data models are used to access and manage
the data.NoSQL databases employ object-relational mapping (ORM)
to allow communication with its data instead of SQL, which is used by
relational databases.

NoSQL databases nowadays are popular since data is constantly
evolving and developers must adapt in order to manage the massive
amount and diversity of data produced by mobile devices, cloud, social
media, and Big Data.

Time-Series Database

The adoption of time series has increased at an exponential rate over
the last decade, with a special emphasis on applications in the financial
and management sectors as well as, more generally, in the industrial
and information technology industries.

TSDB(Time-Series Databases) are optimized for time series, which
implies that they are optimal for applications that place a main focus on
scanning a large number of data points over an extended period of time
and then processing those data points.[10] The timestamp at which the

34

3.3 – MongoDB

data was collected serves as the primary key in these databases.

The primary objective of these databases is to optimize performance
for specific operations and well-defined data structures and is related to
its ability to aggregate, filter and process Time Series Data efficiently
and reliably. In fact, TSDB databases use compression algorithms to
ensure efficiency, even in scenarios where the frequency of data collec-
tion is very high.

3.3.2 Alternatives

Given the mentioned characteristics, it would be pertinent to discuss
some alternative Data Base Management System (DBMS) frameworks
that could potentially enhance the process of database administration:

Apache Cassandra

Cassandra is a distributed, fault-tolerant and elastic database, origi-
nally developed for Facebook and first released in 2008. Cassandra is
a DBMS suitable, therefore, for handling very large amounts of data
that common database systems do not offer sufficient capacity. In such
cases, it is necessary to resort to big data applications that are also
scalable, as the actual data volume often cannot be estimated from the
outset.

The most significant feature of this system is that the server is usu-
ally installed in a clustered configuration, in which several Cassandra
nodes cooperate to optimize and distribute the data. Cassandra is gen-
erally used by large organizations and social networking such as Netflix,

35

Technologies

Uber, Reddit, Red Hat and many others, which require extreme speed
in data management and prevent any malfunctions and data loss from
any given datacenter’s hardware failure.

Considering the context of application development and used data,
it was discarded as disproportionate for our needs.

InfluxDB

InfluxDB is a time series database well-suited for storing and retrieving
time-stamped data such as financial data, sensor measurements, appli-
cation metrics, and real-time analytics data. The database manage-
ment system is programmed in the Google Go programming language.
It offers a query language similar to SQL and allows batch inserts and
real-time querying.

InfluxDB is also able to handle heavy write and query loads. Its sup-
ports for SQL-like queries, sophisticated data modelling, and horizontal
scalability make it an excellent option for a broad variety of use cases.

However, in view of our context, InfluxDB and, generally, TSDBs
were discarded, as although the data to be processed within the appli-
cation is predominantly financial, other data cannot be represented as
a time series, but requires greater flexibility in terms of modelling the
structure.

36

3.3 – MongoDB

MySQL

MySQL is a popular open-source relational database management sys-
tem (RDBMS) that is widely used for managing and organizing data
in web and application development. It is known for its reliability, ease
of use, and high performance.

MySQL use of SQL (Structured Query Language) for accessing, man-
aging and manipulating data in a database. SQL is a standard language
for working with relational databases, and it allows users to easily add,
update, and retrieve data from a MySQL database. MySQL also sup-
ports a wide range of programming languages and frameworks, includ-
ing popular languages such as PHP, Python, and Java. This makes it
easy for developers to integrate MySQL into their web applications and
projects.

In addition to its core features, MySQL also provides a number of
tools and utilities for managing and administering databases. These in-
clude the MySQL Command Line Client, the MySQL Workbench, and
the MySQL Administrator. These tools provide a wide range of func-
tionality, including data modelling, database management, and perfor-
mance tuning.

However, it does have some limitations and disadvantages as well.
In particular, SQL databases might have performance problems, par-
ticularly when performing a significant number of read and write oper-
ations. This can be challenging for real-time applications that need low
latency. Due to SQL’s rigid schema foundation, it might be problem-
atic to adapt to new data formats or shifting needs. SQL’s ability to

37

Technologies

maintain data integrity may also result in decreased speed when work-
ing with massive amounts of data. Additionally, firms that depend on
SQL databases may incur significant maintenance expenses since SQL
databases need frequent maintenance and optimization.

3.4 Docker

Docker is an open-source containerization platform by which develop-
ers are able to bundle and deliver apps efficiently and portably. It is
based on a number of essential elements (Figure: 3.3), each of which
serves a particular function and plays a crucial role in the larger Docker
ecosystem.

The Docker platform’s main building block is the Docker daemon.
The lifespan of containers, involving their beginning, halting, and dele-
tion, must be managed and coordinated by it. Additionally, the dae-
mon interacts through REST API, with Docker users and other remote
Docker daemons and responds to requests for containers and image cre-
ation, management, and inspection.

Docker CLI: The command-line interface used to communicate
with the Docker daemon is known as the "Docker Client." It enables
programmers to provide the daemon commands, such as those for build-
ing, launching, and halting containers. The client also gives access to
the daemon and the containers it is controlling to analyse their states.

Docker Images: Docker Images: A Docker image is a small, self-
contained package that includes the code, runtime, system tools, and

38

3.4 – Docker

libraries necessary to execute a piece of software. Images may be cre-
ated by following a set of instructions in a Dockerfile and distributed
and saved via a registry like Docker Hub.

Docker Register: A Docker registry is an online service that hosts
and shares Docker images. Developers would download and utilize im-
ages made by others, as well as save and distribute their own images
using the registry. The platform’s default registry is named Docker
Hub, however, The Google Container Registry and the Amazon Elastic
Container Registry are two other registries that developers may utilize.

Docker Container: A running instance of a Docker image is re-
ferred to as a "Docker container". While running in a distinct names-
pace and using the host’s kernel and system libraries, containers are
isolated from the host system and other containers. This enables de-
velopers to install several programs on a single host without worrying
about conflicts.

Figure 3.3: Docker Main Structure [15]

39

40

Chapter 4

Architecture

As previously stated, the program is web-based and is managed using
a client-server architecture (Figure: 4.1). APIs allow for the trans-
mission of data between the client and the server. Since the program
is composed of data-handling microservices, the server side has been
containerized to facilitate the development process. Microservices are
an architectural approach to creating software applications. As an ar-
chitectural framework, microservices are distributed and loosely con-
nected in order to preserve the independence of one service without
compromising the development of the others. Due to the fact that
each microservice specializes in a certain duty and has a well-defined
function, this strategy encourages better outcomes when integrating
new features into a system. In addition, splitting concerns into sepa-
rate microservices improves scalability since each service may expand
separately. These microservices are packaged into containers that are
maintained by software in order to make development and usage sim-
pler and more efficient. In this chapter, we will discuss everything that
has been utilized for development, including a list of development tools
and frameworks along with their benefits.

41

Architecture

Figure 4.1: Architecture Structure

4.1 Dockerization

The entirety of the project is created and executed inside the Docker
environment. Docker is a system that enables applications to be con-
tainerized and exploits the virtualization capabilities offered by the op-
erating system to run containers, making it incredibly efficient since
containers share the operating system kernel and resources while pre-
serving isolation across containers. Specifically, a container is an envi-
ronment that is separated from the execution environment and includes
all the essential libraries, dependencies, and configuration files for a con-
tainerized programme to work.

Containers are produced from a file known as an image that describes
how a container should be built. Docker-compose is used in this sce-
nario since the design demands distinct containers to handle services.
Docker-compose enables the setup and execution of containers to be

42

4.2 – Nginx

orchestrated and managed. However, in contrast to the initial setup,
the react-developed application no longer resides in the original con-
tainer with the backend, but rather in a separate one. As previously
described, this enables more independent development of new features
and debugging.

4.2 Nginx

Nginx is a free and open-source strong and adaptable web server, gen-
erally used as a load balancer, reverse proxy and HTTP cache. It is
a popular option for web hosting and content delivery due to its fine
performance, reliability, and minimal resource usage. It has an event-
driven design, which enables it to process several requests concurrently
without the need of numerous threads or processes. NGINX’s capacity
to manage a high number of concurrent connections is one of its pri-
mary characteristics, becoming ideal for websites and online apps with
significant traffic that need quick and trustworthy performance.

Furthermore, NGINX has a load-balancing function that enables the
distribution of incoming traffic across other servers. Additionally, It
offers content caching, which lessens the amount of data that must be
transmitted over the network and speeds up the rendering of web pages
and other data. The support of a variety of protocols is another crucial
aspect of NGINX such as HTTP, HTTPS, TCP, and UDP.

43

Architecture

4.3 Client-server model

The client-server paradigm is a distributed application architecture that
divides responsibilities between servers and clients that sit on the same
system or interact across the Internet or a computer network. The
client-server architecture is the most prevalent and recommended ar-
chitecture for interacting with a web application. In order to use a
service made accessible by a server, the client must make a request to
another software. The server executes one or more programs which pool
resources with clients and distribute their tasks.

The client-server interaction uses a request-response message pattern
and must conform to a common communications protocol that specifies
the rules, terminology, and dialog patterns to be utilized. Typically,
client-server communication conforms to the TCP/IP protocol suite.
The communication between the client and server is governed by the
HTTP protocol, which handles all requests.

4.3.1 HTTP Protocol

The HTTP stands for Hypertext Transfer Protocol. This protocol is
the basis for data transmission on the World Wide Web and is built
on a request-response concept, in which a client submits a request to
a server, which therefore provides a response. This protocol has dif-
ferent components that enhance communication between the involved
machines.

• These are the verbs that specify the action to be taken on the
requested resource. In particular, methods as GET, POST, PUT,

44

4.3 – Client-server model

and DELETE are the most popular;

• URI (Uniform Resource Identifier) is a string that identifies the
resource on the server that was requested. Generally, URIs have
the form of URL (Uniform Resource Locator), but they could also
be developed following the URN (Uniform Resource Name) pattern;

• Request and Response Headers are used to provide the server with
extra information about the client or the request/response. In
addition to the basic ones, in our case it is interesting to men-
tion the ’X-CSRF-Token’ used to authenticate API calls by the
client and prevent man-in-the-middle attacks, and the ’Set-Cookie’
header used by the server to set the CSRF token within the client
current session;

• Request and Response Body are employed to transfer information
from the client to the server and vice versa. Usually, the informa-
tion within the body is encoded and represented in JSON.

HTTP is a stateless protocol, which means it does not maintain a
connection between consecutive requests. However, some header values
may be used to keep the connection alive. Moreover, the protocol also
implements control codes to quickly check the status of the response
from the server.

When a user accesses a website using a web browser, the complete
connection is made over HTTP. The protocol permits the reception of
data, including text, photos, video, style sheets and scripts, among oth-
ers.

45

Architecture

HTTPS

HTTPS (Hypertext Transfer Protocol Secure) is an extension of the
HTTP protocol used to encrypt data transferred between a web browser
and a web server. When a user accesses a website using HTTPS, its
browser creates a secure connection with the server using SSL (Secure
Sockets Layer) or TLS (Transport Layer Security). This secure connec-
tion encrypts the data exchanged between the browser and the server,
preventing third parties from intercepting or reading it.

4.4 Architectural Pattern

The design of the structure of a web application can be performed
according to different architectural patterns depending on the type of
rendering of the content of the pages, some main of these styles in detail.

Multi-Page Application

The client sends a request to the server whenever a page has to be
shown. The server then processes the request and sends back the re-
quested content along with any resources that were required for the
page. Therefore, navigation occurs between various HTML pages, and
each page has the capability of executing additional JavaScript in order
to tailor the content and make it dynamic.

To provide more context, the browser makes the request for the
HTML page, while the JavaScript code makes the request for the data
and the application logic is managed both on the server and on the
client. Since it is the server that is responsible for sending the client

46

4.4 – Architectural Pattern

the right page to show, server-side rendering is carried out in accor-
dance with this pattern. As a result, one is required to constantly wait
for the new page to load.

Single-Page Application(SPA)

This is a development of the classic paradigm, in which a single ap-
plication page with identical content for each URL sits on the server.
The page, originally an HTML file with no content, modifies the dis-
played content via the execution of JavaScript code in response to the
user’s activities while browsing. Therefore, the content of the DOM
structure changes dynamically, adding and rendering components only
when required by the user or the page structure, reducing page load-
ing time, which happens virtually immediately since the new HTML
resource does not need to be retrieved from the server.

In this situation, the frontend is solely responsible for displaying
the content, and contact with the server is limited to the exchange
of data to be presented. Thus, the server’s effort is decreased, while
the browser and front-end take on a far greater role in controlling the
service. Among the principal benefits are:

• Faster execution of the applications and a reduction in the amount
of time spent waiting while exploring;

• The whole of the application is implemented in a centralized point,
for this reason, it is also simpler to debug the application by in-
specting the Document Object Model (DOM) and monitoring the
data that is transmitted to and from the server over the network;

47

Architecture

• improvement of the user experience.

This implementation style, however, exposes the Web App to certain
disadvantages. Firstly, these SPAs may usually be exposed to certain se-
curity problems relating to Cross-Site Scripting and Cross-Site Forgery.
Secondly, since the content of the page is dynamically rendered, the ef-
fectiveness of the web history is lost, and since there is no HTML page
to inspect, some search engines and SEO (Search Engine Optimization)
may have difficulty in indexing the application.

However, given the advantages, not only in terms of performance,
but also in terms of development and release, a structural modification
of the application was to switch from a hybrid architectural pattern to
the one described in this subsection. Initially, the rendering of pages
was partially handled server-side, to which it was supplied with react
resources.

At the current moment, frontend and backend have both been com-
pletely separated from each other and are operating as two independent
entities from the other. React is used throughout the development of
the client in its completeness. Instead, Django is responsible for man-
aging the Backend exclusively, and it exposes itself to the SPA as a
REST API server in order to establish a connection between it and
the database, providing Database resources and authentication. In this
scenario, the two servers each take care of their own unique domain.
This structural choice was made with the intention of making the de-
velopment of the two different parts more independent and agile.

In fact, with this type of architecture, the evolution of the first does
not affect in any way the executive cycle of the other, which makes the

48

4.5 – REST-API

release of additional features and the correction of any problems more
straightforward.

4.5 REST-API

According to the previous explanation, the Representational State Trans-
fer (REST) Application Programming Interface (API) provides the ca-
pability for one application or service to access a resource located inside
another application or service. REST is an architectural constraint set
that is used in the API. These architectural constraints govern the char-
acteristics of the API’s implementation.

As soon as the server receives a request, it processes the instance and
sends the response, in which the requested information is encoded, back
to the client. The type of HTTP method used depends on the purpose
of the request. The most commonly used methods include GET, POST,
PUT, and DELETE. Typically, the data in the responses is formatted
as either JSON or XML.

4.6 CORS

The initial approach was to render the hybrid web app from the Back-
end. Subsequently, the Frontend was spun off and made a standalone
instance. Currently, the Client exclusively calls the API for Database
querying and session and user authentication, however for the current
configuration, the frontend and backend belong to two different do-
mains. Django restricts cross-domain connections, for this reason, has

49

Architecture

been needed to enable Django Rest Framework to receive calls external
to your domain by modifying the server configuration and allowing re-
source sharing.

A server may specify any origins besides its own from which a browser
should authorize database queries using the Cross-Origin Resource Shar-
ing (CORS) HTTP header method. In order to verify that the server
hosting the cross-origin resource would allow the actual request, CORS
additionally uses a method wherein browsers send a "preflight" request
to the server hosting the resource.

Additionally, due to ambient authority, a cross-domain request from
an attacker to your website will include the user’s authentication. This
is a Cross-Site Request Forgery attack.[6] For this reason, Django re-
quires a CSRF Token to be included with every request to the Backend.
However, coming from different domain origins, it was required to set
the necessary parameters for the correct use of the Token.

4.7 Design Implementation

Implementing an interface and dashboard that is functional and makes
data consultation quickly accessible and configurable is crucial to the
complete site experience. An effective dashboard needs to be intuitive
and consistent and clear with the proposed tools. In particular, some
application components were reengineered with the libraries applied be-
low.

50

4.7 – Design Implementation

4.7.1 React Bootstrap

Bootstrap is a collection of front-end development components that is
available under an open-source licence. By combining JavaScript, CSS,
and HTML, Bootstrap provides a framework that is well-suited for the
development of dynamic and responsive web pages. It guarantees that
the user interface of a website retains its ideal functionality regardless
of the screen size being used.

React Bootstrap is a framework that includes Bootstrap styles and
functionalities by releasing React components that can be quickly in-
corporated into web-based applications. This makes it much easier to
employ Bootstrap while designing the user interface of the website. As
a result, the developer is given access to a vast library of components
which are both ready to use and quickly customizable.

4.7.2 Graphic Libraries

It is of the utmost importance to have access to both the charts and the
various underlying indicators when it comes to examining and planning
investment strategies. This allows it to comprehend the interactions
that occur between the various assets, identify patterns and trends,
and reach at decisions which thus are more informed.

Whenever it comes to comprehending and analysing the complicated
data involved in trading techniques, graphical analysis is a crucial tool.
Since it can analyse large amounts of information in a way that is brief
and clear, it is a useful and important tool for experienced traders. It
is essential, through the creation of visual representations, to identify

51

Architecture

areas in which the strategy has performed satisfactorily and those areas
in which it is necessary to make adjustments.

React-Stockcharts

React-stockcharts [13] is a free and open-source tool for making dynamic
financial charts using React, a JavaScript language for constructing user
interfaces. It is based on the d3.js package and enables extensive func-
tionality and customization based on the user’s requirements.

React-stockcharts also provides a variety of pre-built chart compo-
nents, including candlestick, bar, and line charts, that may be effectively
included into a React application. In addition, it offers a wide range
of indicators and tools for technical analysis and other sorts of charts,
making it a flexible tool for a wide range of purposes.

However, the library has some disadvantages that are not entirely
negligible. Foremost, the original source code is poorly maintained. In
particular, the main repository is locked at React v16 and, following
the webapp’s upgrade to React v17, it has some compatibility prob-
lems, turning out to be obsolete. Secondly, the library requires more
development than other libraries to achieve satisfactory results. For
these reasons, it was decided to migrate to libraries that, although pro-
prietary, offer faster development and solid future code reliability.

Lightweight-Charts

Lightweight-Charts is a free and open-source library created by the
renowned software company Tradingview, whose charting platform and

52

4.7 – Design Implementation

social network is used by over 30 million traders and investors. Trad-
ingview provides three types of libraries: the one described above, which
is less exhaustive and very lightweight; a second, more advanced, but
closed source and fee-based library that integrates charts and more
advanced analysis tools; and a third, designed for complete technical
analysis and trading functionality.

Given the project’s current stage of development, which is still at an
early stage, let’s consider the first, thus Lightweight-Charts[17]. The
latter gives the best performance in terms of lightness and chart gen-
eration, however, its input data architecture is limited and it does not
support general-purpose chart formats. Indeed, makes it unsuitable for
several of our platform’s analytical charts

Hightchart

Highcharts is a JavaScript library for creating interactive charts and
web applications released by the company Highsoft AS. [8] The library
is proprietary and requires a commercial licence, but offers a free licence
to students, non-profit organizations, personal projects and throughout
product development.

One of the library’s main strengths is its flexibility for professional
customization and development. The library also has APIs that make
it easier to develop graphics in a lighter and more understandable man-
ner, minimizing coding.

Highcharts offers a wide range of chart types, divided into four dif-
ferent packages below:

53

Architecture

• HighchartsJS It is the core library, developed in pure JavaScript.
The library is SVG-based, includes all standard graphics and fa-
cilitates developers to create responsive, interactive and accessible
charts.

• Highcharts Maps This product fulfils very specific needs, espe-
cially data visualization on interactive maps. It offers an extensive
catalogue of thousands of maps, including heatmaps, POIs, map
areas and map lines. This library also offers built-in projections
and natively supports different coordinate system formats such as
TopoJSON and the more popular GeoJSON.

• Highcharts GanttThis library is required to create Gnatt charts,
and describes timelines and project tasks useful for organizing the
workflow.

• Highcharts Stock This is the Norwegian company’s reference so-
lution for financial or representative time series graphs. This stan-
dalone library requires no additional dependencies to operate, and
is optimized to handle large amounts of data quickly and efficiently.
Another fundamental and useful feature for traders includes the
pre-built technical indicators such as SMA, WMA, VbP and many
others, which can be easily added to the chart to provide a com-
prehensive analysis of the data.

All Highcharts libraries are actively maintained and updated, have
clear documentation, and are supported by a wide community, allowing

54

4.7 – Design Implementation

developers to easily find answers to common questions and solve prob-
lems. The pick of this library above the previously listed alternatives
is based on these considerations.

55

56

Chapter 5

Analytics

A section dedicated to the advanced analysis of derivative contracts was
introduced in the platform. The aim is to provide the trader with ad-
ditional advanced tools to identify possible opportunities. The purpose
of this section introduces new possibilities for developing and expand-
ing the platform. A first step was to integrate the basic and intuitive
frontend interface, focusing on data analysis and visualization. By in-
tegrating the analysis on the backend side and exposing the related
services via an API, the new functionalities introduced in the applica-
tion are listed below:

5.0.1 Contract price estimation with Monte-Carlo
simulations

Financial option valuation models indisputably play an integral role in
the field of modern finance theory. These models are pivotal in deter-
mining the fair market price of options, thus enabling investors, traders,
and financial institutions to make informed decisions.

57

Analytics

In essence, these models make use of the no-arbitrage condition,
which postulates that an equivalent expected return cannot lead to
differing prices for the same asset. This is founded on the belief that if
such a situation were to arise, arbitrageurs would take advantage of the
price discrepancy until equilibrium is restored. Moreover, these models
are premised on the assumption that operations are conducted within a
risk-neutral environment. This risk neutrality assumes that all market
participants are indifferent to risk, meaning they neither favour nor shy
away from it. Consequently, the value of the option can be derived as
the discounted mean of payoffs.

5.0.2 Gamma and Vanna Exposure (GEX & VEX)

The preliminary investigation is predicated upon the computation of
Gamma Exposure (GEX), a term that delineates the sensitivity of op-
tions to fluctuations in the price of the underlying asset. It is a metric
denominated in dollars, representing the coverage provided by market
makers for options, and consequently, is defined as the variation in dol-
lar exposure corresponding to a 1% change in the underlying asset.
Computed as follows:

The concept of gamma exposure is an intricate one, necessitating an
in-depth understanding of various trading strategies. In order to fully
appreciate the effectiveness of gamma in gauging market liquidity, it is
paramount to familiarize oneself with two fundamental notions.

Limit Order Book

An ’order book’ refers to a continually updated compilation of buy and
sell orders, pertinent to a specific security or market, systematically

58

Analytics

organized based on price tiers. This instrument is leveraged by mar-
ket operators for ascertaining the fluctuations of demand and supply
for a given security across various price thresholds. The ’limit order
book’ provides an in-depth perspective of the market for the respective
security and serves as a valuable asset in informing trading decisions.
However, over time, the limit order book has evolved to become in-
creasingly intricate, decentralized, and abstract.

The contemporary trading environment comprises numerous trading
platforms, an array of order types and their modifications, and infinite
algorithmic smart order routing systems. These were all designed with
the primary objective of achieving optimal fills at the lowest aggregate
costs. Despite the complexity and variety, there remains a single over-
arching limit order book outlining supply and demand.

Delta Neutral Positions

A delta-neutral stance implies that the portfolio, consisting of a specific
quantity of derivative contracts and an equivalent amount of underly-
ing assets, is arranged in such a way that the overall delta from the
derivative holdings perfectly counterbalances the total delta from the
positions in the underlying assets.

Essentially, any particular fluctuation in the value of the underlying
assets’ position is precisely neutralized by a change of equal magnitude,
but in the opposite direction, in the value of the derivative position.

From the viewpoint of a market dealer, any option transaction, whether
a purchase or a sale, invariably involves a counterparty who assumes
the opposite position. Given that the dealer typically aims to avoid

59

Analytics

the directional risk tied to the position, they mitigate this risk by dy-
namically adjusting their position in the underlying asset, thereby in-
fluencing the liquidity of the market. This suggests that we are capable
of constructing a particularly insightful "implied order book" merely
by understanding the hedging requirements of existing options. Con-
sequently, we will be able to identify areas where liquidity stemming
from options is plentiful and zones where it is limited. To conclude, the
value of gamma exposure is calculated as follows:

CallGEX = callOpenInterest×CallGamma×ContractSize×spotPrice2×0.01

PutGEX = −putOpenInterest×PutGamma×ContractSize×spotPrice2×0.01

TotalGEX = PutGEX + CallGEX

Through GEX analysis, an experienced trader can perceive the po-
sition market makers take on the market and their expected actions.

Vanna Exposure (VEX)

Adopting a rationale analogous to that used for Gamma, it is feasible to
delineate a concept known as Vanna Exposure (VEX). In this context,
however, VEX is characterized as the sensitivity of an option dealer’s
delta to alterations in the implied volatility of options. In other words,
Vanna Exposure is expressed in terms of the dollar value corresponding
to a 1% fluctuation in the underlying volatility.

60

Analytics

5.0.3 Implementations

The implementation process can be broadly bifurcated into two cat-
egories: frontend and backend. From the frontend perspective, users
interact with a straightforward dashboard, enabling them to choose
their preferred securities for analysis. An introductory interface per-
mits users to establish the parameters for Monte Carlo analysis and
transmit the request to the server via an Application Programming In-
terface (API). The server, in turn, will return the value derived from
the simulation.

A secondary interface facilitates the selection of the desired security
and initiates the request for the computation of Gamma and Vanna
Exposure. In this scenario, the data returned by the function popu-
lates three distinct graphical presentations. The initial graph depicts
the values of Call, Put, and Total options, segmented by Strike Price,
and calculated across all expiration dates. The subsequent graph rep-
resents the aggregate values computed for all strike prices, categorized
by maturity.

The final visualization showcases the exposure profile corresponding
to alterations in the spot price. When simulating the price of the un-
derlying asset, the value of the Greek changes, thereby necessitating the
recalculation of each value. By consolidating all the simulation values
for each maturity, it is feasible to derive a profile line corresponding to
the fluctuating value of the underlying asset. This aids in calculating
the zero level, the inflexion point where the sign transitions.

The following endpoints expose the services mentioned above:

61

Analytics

• /api/analytics/mcsimulation/

• /api/analytics/gex/

• /api/analytics/gex/exp/

• /api/analytics/gex/profile/

• /api/analytics/vex/

• /api/analytics/vex/exp/

• /api/analytics/vex/profile/

62

Chapter 6

Use Case

Use cases are descriptions of how a system can be used, essentially, de-
scribing how a user interacts with a system to achieve a certain goal.
The study of a use case involves the fundamental elements described
below. The actors are the type of user who interacts with the sys-
tem in question. The system and software in use-case analysis specify
the functional requirements that describe the system’s behaviour. Pre-
conditions are the necessary requirements for the development of the
use case, and post-conditions are the instances that occur at the end.
The steps describe the actions necessary to achieve the final result.

Underlying Price by Volume Chart Visualization

This use case describes the user’s opportunity to display the historical
chart of the underlying with the volume on the y-axis adjacent. This
chart is called the Volume Profile Indicator and draws a histogram on
the chart that can be used to reveal significant or predominant price
levels based on volume.

A logged-in user has access to the analysis platform. After the user

63

Use Case

has selected the preferred underlying from Stocks, Indices, Bonds, Com-
modities Future, the tab with the various trading tools is loaded. After
selecting the strategy of interest and selecting the Price by Volume
chart [6.1a], the historical chart of the underlying is loaded with the
volume chart distributed on the vertical profile.

If the user needs a larger view of the charts, he can select the expand
button [6.1b]. In this case the other elements are hidden and the chart
section is expanded to the whole parent container of the tab and, as a
result, the chart is reloaded adapting to the new dimensions [6.1].

Actors Involved User
Pre-condition The user is authenticated and is in the Market

page, he has selected an underlying and its tab
has loaded

Post-condition The user displays the extended Price by Volume
chart

Scenario The user selects clicks on the select button and
selects the graph from the catalogue of those
available The user clicks on the ”Exapand” but-
ton The user displays the extended chart in the
Market Tab

Alternative The user selected a graph with unavailable vol-
ume data, the graph is not displayed correctly

Table 6.1: Use Case Table

64

Use Case

(a) Chart Selection (b) Expand Button

Figure 6.1: Price by Volume Chart

Pricing by Monte-Carlo Simulation

This use case allows the user to perform a Monte Carlo simulation to
estimate the price of an option. Through the interface [6.2] in the an-
alytics section, the user selects an underlying asset, and its simulation
parameters. After the submit button is pressed, the server returns the
value of the option obtained as the discounted average of the payoffs.

• Ticket: Underlying Asset

• Expiration: Contract Expiration

• Price: Spot Price (already defined by the last available)

• Strike: Desired Strike Price

65

Use Case

• Path: Number of possible underlying price paths

• Option type: Call or Put

• Implied Volatility: Specifying the implied volatility

Actors Involved User
Pre-condition The user is authenticated and is in the Analytics

page, he has selected an underlying asset and the
relevant parameters

Post-condition The user displays the simulated option Price
Scenario The user selects an underlying and sets the de-

sired parameters for the simulation The user
clicks on the ”Submit” button The user displays
the simulated price

Alternative The user enters inconsistent parameters for the
simulation and receives an error.

Table 6.2: Use Case Table

Figure 6.2: Monte-Carlo Simulation Interface

66

Use Case

GEX & VEX Chart Visualization

This use case pertains to the user’s capability to access and observe
six graphs associated with the indicators Gamma Exposure (GEX) and
Vanna Exposure (VEX). Initially, the user selects the desired underly-
ing asset from a drop-down menu and proceeds by clicking the submit
button. The frontend then invokes the relevant endpoints, and upon
receiving the results, populates the corresponding graphs.

The graphs for both indicators encompass three distinct types. The
first type [6.3] depicts the corresponding value arranged according to
the strike price, calculated for each expiry date, and further categorized
into Call, Put, and the cumulative value. The second type[6.4] show-
cases the total value distributed across different maturities. Lastly, the
third graph [6.5] illustrates the profile in response to variations in the
underlying asset’s price.

Actors Involved User
Pre-condition The user is authenticated and is in the Analytics

page, he has selected an underlying asset.
Post-condition The user displays the relevant GEX and VEX

charts
Scenario The user selects the underlying asset from the

list of those available The user clicks on the
”Submit” button The user displays the extended
chart in the Analytics Page

Alternative The user selected the underlying asset with un-
available data, the charts are not displayed cor-
rectly

Table 6.3: Use Case Table

67

Use Case

Figure 6.3: GEX & VEX by Strike
[b]

Figure 6.4: GEX & VEX by Expiration
[b]

Figure 6.5: GEX & VEX Profile

68

Chapter 7

Conclusions

In recent years, trading in derivative instruments such as options has
become extremely complex. Financial derivatives such as options can
be difficult to understand for a user unfamiliar with these products.
In this regard, it is important to provide a visualization of the char-
acteristics of compound strategies that are as clear and immediately
understandable as possible. The implementation of more structured
charts and indicators helps the trader in consulting financial indicators
and analysing complex strategies in order to improve their performance
in terms of desired characteristics. The charts in question are displayed
correctly and data provided and calculated by the models described are
consistent. The platform is currently online and after a short registra-
tion, it is possible to view the tools supporting the investor, calculated
on the individual user’s portfolio.

69

Conclusions

Future Work

The platform offers several possible future developments and improve-
ments in certain aspects. Possible future implementations of the plat-
form lie in both functional and product coverage aspects. In fact, at
present, the data used within the platform, which describes the his-
tory of stocks, indexes, and bonds, is collected via a free API service
that has some limitations on both the number of options available and
the price frequency of updates. Future developments could involve a
move to more structured services, although for a charge, so as to have
greater range and flexibility in the choice of option contracts and their
underlying. Furthermore, an automatic option recommendation service
and an intelligent portfolio optimization system could be developed and
integrated to allow users to have a more efficient and balanced portfolio.

70

Bibliography

[1] Giovanni Barone-Adesi and Robert E Whaley. Efficient analytic
approximation of American option values. 1987.

[2] Petter Bjerksund and Gunnar Stensland. Closed form valuation of
American options. 2002.

[3] Fischer Black and Myron Scholes. The pricing of options and cor-
porate liabilities. 1973.

[4] James Chen. Chicago Mercantile Exchange: Definition, History,
and Regulation. url: https://www.sofi.com/learn/content/
what-is-cboe/.

[5] MDN Web Docs. Django Web Framework. url: https://developer.
mozilla . org / en - US / docs / Learn / Server - side / Django /
Introduction.

[6] Django Documentation. Cross Site Request Forgery protection.
url: https://docs.djangoproject.com/en/4.1/ref/csrf/
(visited on 05/10/2022).

[7] Django Documentation. Django Overview. url: https://docs.
djangoproject . com / en / 4 . 1 / intro / overview/ (visited on
03/10/2022).

[8] Highcharts. Highcharts Documentation. url: https://www.highcharts.
com/docs/index.

71

https://www.sofi.com/learn/content/what-is-cboe/
https://www.sofi.com/learn/content/what-is-cboe/
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Introduction
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Introduction
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Introduction
https://docs.djangoproject.com/en/4.1/ref/csrf/
https://docs.djangoproject.com/en/4.1/intro/overview/
https://docs.djangoproject.com/en/4.1/intro/overview/
https://www.highcharts.com/docs/index
https://www.highcharts.com/docs/index

BIBLIOGRAPHY

[9] Ashley Kilroy. What Is the CBOE? url: https://www.sofi.
com/learn/content/what-is-cboe/.

[10] Charles Mahler. Relational Databases vs Time Series Databases.
url: https://www.influxdata.com/blog/relational-databases-
vs-time-series-databases/.

[11] Brian O’Connell. What Is the Eurex? url: https://www.sofi.
com/learn/content/what-is-eurex/.

[12] Andrea Pascucci. PDE and martingale methods in option pricing.
Springer Science & Business Media, 2011.

[13] Ragu Ramaswamy. React stockcharts. url: http://rrag.github.
io/react-stockcharts/documentation.html.

[14] React Redux. React Redux Documentation. url: https://react-
redux.js.org/api/hooks/ (visited on 11/11/2022).

[15] Arvind Samantray. Docker Architecture: Why is it important?
url: https://www.edureka.co/blog/docker-architecture/
(visited on 01/12/2022).

[16] Sarah Springer. Options. url: https : / / www . fe . training /
free - resources / financial - markets / options/ (visited on
02/12/2022).

[17] Tradingview. Lightweight Charts API Documentation. url: https:
//tradingview.github.io/lightweight-charts/docs/api.

72

https://www.sofi.com/learn/content/what-is-cboe/
https://www.sofi.com/learn/content/what-is-cboe/
https://www.influxdata.com/blog/relational-databases-vs-time-series-databases/
https://www.influxdata.com/blog/relational-databases-vs-time-series-databases/
https://www.sofi.com/learn/content/what-is-eurex/
https://www.sofi.com/learn/content/what-is-eurex/
http://rrag.github.io/react-stockcharts/documentation.html
http://rrag.github.io/react-stockcharts/documentation.html
https://react-redux.js.org/api/hooks/
https://react-redux.js.org/api/hooks/
https://www.edureka.co/blog/docker-architecture/
https://www.fe.training/free-resources/financial-markets/options/
https://www.fe.training/free-resources/financial-markets/options/
https://tradingview.github.io/lightweight-charts/docs/api
https://tradingview.github.io/lightweight-charts/docs/api

	List of Figures
	Introduction
	Relevant Studies and Implementations
	Competitor

	Option Trading
	Markets
	Exchanges
	Options
	Greeks

	Technologies
	React
	Alternatives

	Django
	Alternatives
	Celery

	MongoDB
	Relational Databases vs NoSQL Databases
	Alternatives

	Docker

	Architecture
	Dockerization
	Nginx
	Client-server model
	HTTP Protocol

	Architectural Pattern
	REST-API
	CORS
	Design Implementation
	React Bootstrap
	Graphic Libraries

	Analytics
	Contract price estimation with Monte-Carlo simulations
	Gamma and Vanna Exposure (GEX & VEX)
	Implementations

	Use Case
	Conclusions

