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Abstract

This thesis work is carried out within the context of financial time series forecasting,
a subject that has undergone innovations over the years from the point of view of
tools. Specifically, the task consists in predicting future values exploiting historical
and current stock prices. For years the most common method used by traders
and analysts have been technical indicators calculated from time series, but lately
Machine Learning is increasingly being exploited. However, these approaches,
despite being top performers, suffer from the problem of non-explainability. The
goal of this thesis is to make post hoc explainability of the constrastive models
to identify statistical features correlated with their predictions. In particular, we
generated deep representations of financial time series by exploiting Contrastive
Learning frameworks, we explained them by means of technical indicators (computed
with respect to the initial time series) and we compared performances of the two
approaches (contrastive vs technical indicators) on the same downstream task. In
order to obtain the aforementioned explainability, we used an ensemble model that
receives as input the time series having as features the technical indicators and the
results of a clustering algorithm, applied to contrastive representations, as labels.
Next, the most important features for label (cluster) prediction are filtered by a
threshold. The downstream task is the forecasting of future values of the time
series with 3-, 5-, 7-days horizons and is applied both to the latent representations
and to the filtered technical indicators. The goal is to verify the capability of
light-weighted models (i.e. simpler models) to achieve comparable results with
respect to the ones of contrastive models.
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Chapter 1

Introduction

Time series represent a fundamental typology of data in a multitude of fields,
ranging from medicine to industry. The advent of Big Data has made possible to
collect this information, sometimes with very fine granularity, and consequently
to use it for a wide variety of purposes. Among the many applications of time
series there are forecasting, anomaly detection, trend and pattern analysis over
time, signal processing, predictive maintenance and health monitoring, to name a
few. Thus, these are not only applications that were historically done manually by
domain experts but also complex operations that cannot be done in a reasonable
time by a human being.
One of the industries most interested in time series is finance. Before Machine
Learning existed, professional traders were only making forecasts based on technical
indicators calculated from time series. This method is actually still used today but
is risky and unsuccessful in many contexts where the trend is disrupted by external
agents. These are, in particular, events of a different nature, such as the outbreak
of a pandemic, the nefarious words of a CEO during an earnings call or a Tweet
from an exceedingly influential person.
This is why more advanced approaches have been sought over the years. An early
step in this direction was the introduction of sentiment, extracted mainly from
social media. Instead, in recent years, researchers have concentrated their efforts
in the intent to create representations of time series. These so-called embeddings
are the output of complex Deep Learning models, projections into a latent space of
a certain dimensionality. As mentioned before, in the field of Natural Language
Processing (NLP), this approach has already been shown to be definitely effective
for the representation of words, sentences, etc.
However, Deep learning models, despite being top performers, suffer from the
problem of non-explainability, i.e., the inability to understand how a given result is
produced. Therefore, in various contexts, the question arises whether it is worth
using this approach, since it also requires a considerable amount of training time.
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Introduction

In this thesis work, a comparison is presented between embeddings generated
through different Contrastive Learning approaches and features composed of tech-
nical indicators. The comparison is quantified using an error metric collected at
the end of the same downstream task, specifically, forecasting.
The ultimate goal of this thesis is to make post hoc explainability of the constrastive
models to identify statistical features correlated with their predictions.
The previously mentioned Contrastive Learning is a self-supervised learning method
that is designed to overcome the lack of large volumes of labeled data. Indeed,
there are many contexts in which the labeling phase would be too time consuming
or even be impossible. More specifically, the method does not require labels but it
is based on the construction of positive (similar) and negative (dissimilar) pairs
which should be placed, respectively, near and far apart in an embedding space, by
means of an appropriate loss. The various architectures differ in the criteria by
which positive and negative samples are created and in the objective function used
to incentivize their placement in the embedding space.

The work begins by training some state-of-the-art models: CoST, TNC, TS2Vec
and Time2State, architectures that have in common the presence of an encoder that
creates the latent representations intended for a downstream task. As mentioned
earlier, these are models based on Contrastive Learning, therefore, they do not
make use of manually generated labels. Rather, they rely on statistical assumptions
to distinguish different instances of the time series and thus create appropriate
representations.
The second step is to group the generated deep representations together with a
certain criterion. This is done by a clustering algorithm, therefore, once again, by
a non-supervised method. The experiments were conducted by choosing different
values of K, number of clusters, since there is no a priori method for determining
which number is appropriate. The resulting related clusters are used as labels
for the technical indicators directly computed on the initial time series. From
this, through a Boosting algorithm, the most relevant features are extracted and
filtered by means of a threshold. These are then used for the same downstream
task considered with the latent representations, namely the prediction of the same
future values of the time series, with respect to different horizons (3, 5 and 7 days).
In other words, the goal is to create light-weighted models trying to explain the
criterion by which the deep embeddings were created and to evaluate their ability
to obtain results comparable to those of contrastive models. The a posteriori gap
assessment allows us to determine whether, and if so in which contexts, complex
Deep Learning models can be replaced with simpler models.

The experiments were conducted on three datasets: first, a univariate dataset
comprising the Nasdaq index only; second, a multivariate dataset consisting of the
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prices of some stocks that compose the index itself; third, a multivariate dataset
including both the stocks and the index. The effectiveness of the method has
been tested with respect to three different markets conditions: bullish, bearish and
mixed, providing a comprehensive overview of all possible case scenarios that can
occur in the trading world.
There are many results obtained from our experiments; the most relevant ones are
reported below.
First, we observed that the convenience of contrastive models decreases as the
time horizon increases. In addition, horizon growth is also associated with smaller
differences in performance between datasets.
Second, Time2State was the best overall model on 3- and 5-day horizons, aligning
with the other models on 7 days.
Third, top performers also included models based on technical indicators, specifically
related to 7-day time horizons.
Finally, the real convenience in using contrastive methods was observed during
2020, a decidedly pathological (mixed) market due to the pandemic outbreak.

3



Chapter 2

Machine Learning
Fundamentals

2.1 Machine Learning vs Deep Learning
Since Machine Learning (ML) and Deep Learning (DL) are often used to refer
to the same concept, it is crucial to comprehend the distinctions between them.
Artificial intelligence includes the subfields of ML, DL, and Neural Networks (NN).
However, NNs are a subdivision of ML, and DL is a subset of NNs.

Deep Learning and Machine Learning differ in terms of their learning approaches.
Labeled datasets can be used to provide guidance to "deep" Machine Learning
algorithms, but they are not strictly necessary. DL can take unstructured data
in its original form (e.g., images) and autonomously identify the distinguishing
features that separate different data categories. This reduces the required human
involvement and allows for the utilization of bigger amounts of data. L. Fridman
defined it as "scalable machine learning", during an MIT lecture [1]. In classical ML,
human intervention is greater and human-generated features (usually by domain
experts) are relied on to discern instances that belong to different classes. Artificial
neural networks (ANNs) consist of several layers including an input, an output
and intermediate layers. Each node, or neuron, is connected to another and is
characterized by a weight and a threshold. If the latter is exceeded by the output
of the node, the neuron is activated and begins to transfer information to the next
layer, otherwise it is inhibited.

The "deep" in Deep Learning simply refers to the amount of intermediate layers
in the model. In particular, we can consider "deep" an architecture consisting of at
least three layers. A Neural Network with less than four layers, including the input
and output layer, is referred to as a simple NN.

The most related fields to DL and NNs are computer vision, speech recognition

4
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and natural language processing. [2]

2.2 How it works
According to [3] the learning process can be subdivided into three main steps:

• Decision: ML algorithms are typically used to predict or classify. The algorithm
will generate an estimate regarding a pattern within the data using certain
input, which can either have labels or not.

• Loss function: it evaluates the prediction of the algorithm. If there are known
examples, a loss function can compare them to gauge how well the model
performs.

• Optimization: if the algorithm fits the data points in the training set better,
the weights are adjusted to minimize the disparity between the known sample
and the output of the model. The algorithm iteratively repeats this process
until a level of performance, considered acceptable, is reached.

In addition, the concept of Machine Learning includes several categories. The
most important ones are described in the following sections.

2.3 Supervised learning
Supervised learning is the most common and intuitive approach: an algorithm
learns to make predictions or decisions by analyzing a labeled training dataset [4].
Specifically, the algorithm iteratively receives as input pairs (X,y), where X is the
data made of features and y is the expected result (the label), and learns a function
f such that y=f(X). In other words, it learns a function that maps the inputs to the
desired outputs. The algorithm produces a certain result based on the input data
and this outcome is compared with the correct expected result. In case they do
not match, the algorithm receives a penalty. When an acceptable performance is
achieved, the training ends and the model is likely able to generate a correct result
even when it receives new data as input. This type of learning is called supervised
learning because the training phase takes place in a supervised manner, the correct
answers are known, and the algorithm is corrected whenever it makes an error.
The ultimate goal is to obtain a model capable of satisfactory results even with
data never seen in the training phase. Some of the most common applications are
image recognition, fraud detection, financial forecasting, predictive maintenance,
and medical diagnosis. The most common methods used in supervised learning
include ANNs, logistic regression, linear regression, support vector machine (SVM)
and random forest [5].
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2.4 Unsupervised learning
Unsupervised learning contrasts with the approach described above since it does
not rely on labels. Specifically, the dataset consisting solely of features is provided.
In other words, there is no prior knowledge derived from labeling, often resulting
from the intervention of a domain expert. The algorithm is tasked with discovering
hidden patterns, relationships or structures present in the data itself.
Depending on the task, data can by organized by unsupervised models in several
ways [6]:

• Clustering: grouping points on the basis of their similarity, finding a pattern
or structure in unlabeled data. There exist both bottom up and top down
approaches [7].

• Association: identify hidden insights between different objects by exploiting
relationships often in the form of rules or frequent itemsets [8]. The most
common application is Market Basket Analysis used to fill an online shopping
cart with items frequently bought together.

• Anomaly detection: finding outliers, namely, observations that deviate signifi-
cantly from the normal patterns of a variable. An example of a task is fraud
or intrusion detection [9].

• Autoencoders: compress into a lower-dimensional space the representation in
an input using a NN and then reconstruct the output from these embeddings.
To accomplish this, the architecture exploits an encoder and a decoder [10].

Unsupervised learning is very useful because it allows us not to rely on a labeling
method that is often influenced by human experience.

2.5 Semi-supervised learning
Semi-supervised learning represents a middle ground between the previous two
approaches. In the training phase, a reduced labeled dataset is exploited to guide
the classification and feature extraction of a large, unlabeled dataset. This type of
algorithm allows for the discovery of latent patterns of unlabeled samples, mitigating
the problem of having large volumes of labeled data [11].
One application is the analysis of medical images, which are lacking in terms of
labeled datasets because it would require a not insignificant amount of effort from
a time perspective.
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2.6 Self-supervised learning
Self-supervised learning represents a hybrid approach between unsupervised and
supervised learning that stems from the need to address the limitations inherent in
supervised learning. In practice, it is not possible to label everything in the world.
In addition, artificial intelligence systems are not yet able to exploit common sense,
an ability that characterizes humans. In particular, humans during their childhood
learn to recognize things. Whether it is a dog standing or lying down, the human
brain is able to classify it correctly. This is done through prior knowledge about
how the world works. Artificial intelligence, to achieve such accuracy, must be
trained on a prohibitive amount of data, and this is often not possible [12]. Self-
supervised learning is one of the most useful paradigms to overcome these problems.
Specifically, the model creates its own labels in an unsupervised manner, exploiting
the information inherent in the data itself. These representations can then be used
for a downstream task. In other words, self-supervised learning algorithms are
composed of two phases: first, task-independent features are extracted from the
data, in a second phase, the knowledge gained in the first phase is transferred to
carry out the main task [13]. Some of the areas that have exploited this approach
the most are natural language processing (Word2Vec, GloVE, fastText, BERT etc.),
image processing and time series forecasting, as we will see later. Self-supervised
learning methods fall into three types:

• Generative methods

• Adversarial methods

• Contrastive methods

Methods exploiting the latter category were used within this thesis.

2.7 eXplainable AI
One of the major problems of DL is non-explainability. In other words, it is not
possible a posteriori to determine what the reasons behind a given output are. The
premise behind the use of AI is the fact that it will not completely replace the
human being. With this in mind, it is crucial that model outputs can provide
understandable feedback.
One of the most well-known cases where this issue has been raised is Amazon’s
recruitment system [14]. Specifically, in 2014, the use of their "black-box" models
did not allow for an understanding of the criteria by which certain individuals were
discarded. It emerged that the algorithm visibly favored men, and since there were
policies related to gender equity, it became critical that the systems were able to
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provide an explanation.
Another context is autonomous driving in which "black-box" models make decisions
but it is unclear what parameters influence those choices. From the end users’
point of view, being aware of these aspects would allow for a greater sense of safety
and confidence, as well as being able to manually foil dangerous situations.
This need, also generalized to other cases, gave rise to eXplainable AI (XAI), a
discipline that aims to build transparent artificial intelligence models to provide
insights and justification to human users [15].
In the specific case of finance, the area in which this thesis is developed, it is crucial
to understand what parameters influence trend or price prediction. Human beings,
understandably, prefer to invest their money in something understandable, despite
not having solid expertise in the subject [16].
An attempt in this direction will therefore be made in this thesis.
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Chapter 3

Contrastive Learning

3.1 Fundamentals

Contrastive Learning (CL) is a Machine Learning technique that allows learning
a representation from data without relying on human-generated labels. This is
accomplished with the idea of grouping similar entities together and separating
them from those that differ. It is a very versatile method because it can also be
used in contexts where the downstream task is supervised, such as a classification
problem. In particular, it can be used to learn a latent representation without a
label or within a two-step split approach in which, with respect to the first case,
fine-tuning occurs later in a supervised manner with respect to the problem that
one actually wants to solve.
More specifically, two objects representing the same thing in the world should lie
close together in the low dimensional feature space while different entities should be
pushed away from each other [17]. Taking a concrete example, features generated
by two images of cars should be close in the feature space, far apart from those of
a person. These pairs are called positive and negative, respectively, and can be
generated in different ways.
If operating in an entirely unsupervised context, the so-called augmentations can be
used. They consist of selecting a given item, such as an image, and then generating
two variations of it. Some common operations in the images domain are represented
in 3.1. These two variations of the anchor (the starting item) represent a positive
pair and will have to lie close together in the feature space. The same principle
applies to data with a temporal order: if two observations were recorded at close
instants then they are likely to be more similar than others collected much later.

9
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Figure 3.1: Examples of augmentations [18]

Training clearly goes through evaluation by a loss function.
The most common ones are the Contrastive loss and Triplet loss.

3.1.1 Contrastive Loss
Contrastive Loss is one of the first training objective functions in the CL context
[19].

Lcontrastive = 1
2N

NØ
i=1

1
y · d2 + (1 − y) · max(0, ϵ − d2)

2
where

• N represents the total amount of observations within a batch.

• d is the distance between the pairs of data points.

• y is the binary label indicating whether the pair of data points is similar (y=1)
or dissimilar (y=0).

• epsilon is the margin, a hyperparameter that determines the desired separation
margin between similar and dissimilar pairs.

In other words, this loss on the one hand penalizes, proportionally to the
(Euclidean) distance, similar samples for being separated, and on the other hand
penalizes negative samples for being at a shorter distance than the established
margin.

3.1.2 Triplet loss
Triplet loss was proposed in the FaceNet paper [20]. It was used to learn face
recognition of the same person at different poses and angles.

Ltriplet =
Ø
∀x

max
1
0, ∥θ(sa) − θ(s+)∥2

2 − ∥θ(sa) − θ(s−)∥2
2 + ϵ

2
10
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where:

• sa, s+, s− represent, respectively, an anchor, a positive data point and a
negative data point.

• θ(s) denotes the embedding (feature vector) of data point s.

• The L2 norm between two vectors is represented by the || || symbol. The
distance between the anchor and the positive is denoted by the expression
||θ(sa) − θ(s+)||, whereas the distance separating the anchor and the negative
is denoted by the term ||θ(sa) − θ(s−)||.

• In this case as well, a hyperparameter called ϵ, the margin, controls how far
apart the positive and negative pairs should be from one another.

The loss is null if the disparity between the anchor-positive and anchor-negative
distances is less than the margin. Otherwise, the loss becomes positive, encouraging
the network to learn embeddings that satisfy the desired separation.

3.2 Settings

Contrastive Learning can be used with different settings.

• Supervised: knowing that two items represent the same thing (by means of a
label) then they will have to be close together in space. In other words, pairs
are formed by relying on labels.

• Self-supervised: this is the most common case. As mentioned above, the
augmentations system is used to form the pairs. One can also use the method
as a way to initialize the weights of a network that will be trained for a
downstream task such as image classification, semantic segmentation etc. In
the latter case, the goal is to allow the network to be trained on a smaller
number of labeled data.

11
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Figure 3.2: Self-supervised vs Supervised Contrastive Learning [18]

As we can observe in Figure 3.2 the self-supervised approach suffers from the
problem of false negatives, namely, it may happen that the representations of two
dogs are spaced in the embedding space only because one is not derived from the
augmentation of the other.
Obviously, CL is applicable to different domains; in fact, in our thesis we exploited
methods designed for time series. Before describing these architectures, however, it
is necessary to introduce the concept of time series itself.
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Chapter 4

Financial Time Series
Analysis

Time Series data consist of a sequence of observations ordered over time. These
can include, for example, historical records of temperatures, financial data, sales,
medical diagnostic tests, sensor measurements, etc.
Time Series analysis aims at analyzing a real phenomenon observed over time
in order to forecast it, detecting anomalies or classifying it, by using the set of
information available up to a certain point in time t [21].

The frequency with which such observations are collected depends on the domain.
One can find data at the level of second, minute, hour, day, week, month etc. To
cite a few examples, there are sensors that take measurements at intervals on the
order of thousandths of a second. Alternatively, one can then find historical data
on companies’ earnings that occur quarterly (once every three months). In general,
time series can be divided into categories based on their characteristics [22]:

• Univariate time series: described by a single variable for each instant.
Some examples:

– Exchange Rates: hourly exchange rates of a currency pair, such as US-
D/EUR.

– Web Traffic: hourly or daily website visitors’ count over a time interval.

• Multivariate time series: characterized by multiple attributes. To name a
few:

– Climate data: temperature, humidity, air pressure, wind speed and pre-
cipitation.

– Sensor data: measurements from multiple sensors (IoT), including tem-
perature, motion, light intensity, sound levels etc.

13
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– Social Media data: number of followers, likes, shares, comments over time.

• Seasonal time series: data with a seasonal component that determines
certain characteristics. The aforementioned Climate data are an obvious
example.

• Cyclical time series: similar to the preceding category but with non-fixed
frequency, namely, they consist of a pattern that repeats at non-periodic
intervals. For example, financial data may show patterns of daily or weekly
fluctuations.

• Stationary time series: when the observations of a time series are not time
dependent, it is said to be stationary. These time series’ statistical features
will not vary over time, therefore they will have constant mean, variance, and
covariance.

• Non-stationary time series: a time series is non-stationary if its statistical
features, such as mean, variance, and auto-correlation, do not remain constant
across time. For instance, a non-stationary time series is one that has a
growing trend over time. As the sample size grows, so will the mean and
variance.

• Irregular time series: they present random fluctuations that cannot be
described with seasonal components. The most common example is audio
files.

4.1 Financial Time Series
The financial market is governed by the Law of Supply and Demand and it consists
of four basic components: stock, commodity, bond and exchange market [23]. What
they have in common is that they are based on the concept of price (price of share,
bond price, currency price, commodity price etc.). These prices are gathered with a
certain frequency, generating financial time series. Unlike a generic time series, this
type of data possesses characteristics that are the result of very complex dynamics.
From these factors, macro- and micro-economic, comes high price volatility or, in
other words, high uncertainty. By volatility, in the financial sphere, we mean a
measure of the price fluctuations of a stock, market or index over time [24]. To
get an idea of how uncertain the stock market is, just think that a Tweet by Elon
Musk in 2018 caused Tesla shareholders to lose $12 billion in a matter of a few
days. It is precisely because of this complexity that the study of financial time
series has evolved rapidly over the years, increasingly involving Machine Learning
techniques. However, especially in the world of trading, traditional methods are
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still relied on. Particularly, there are two types of analysis that have historically
been used for forecasting: technical analysis and fundamental analysis.
Technical analysis is conducted by means of various tools assuming that historical
data can help in the effort to predict future values. Specifically, indicators are
used to provide trend information and are calculated from past stock prices. These
statistical tools and charts are widely used in the context of trading.
Unlike technical analysis, which uses historical data to make predictions, fundamen-
tal analysis also relies on external factors such as information about the company,
the condition of the market in which it operates, company policies, the occurrence
of events etc. Thus, both qualitative and quantitative analysis is conducted. For
fundamental analysis, there are two approaches: top-down, which starts from the
macroeconomic framework and then delves into the particular case; bottom-up,
which analyzes the situation of the individual company and then investigates its
global effects [25]. In the following sections, only technical analysis will be explored
in depth, as it is the only one that was used in our work.

4.2 Technical Indicators

A trade signal, generated by technical indicators, is an analytical instrument that
tells a trader when to buy or sell to optimize profits. There are various types of
trading signals, each with its own set of goals and potential gains [26]. For a long
time, traders have used technical indicators to lower their trading risk. They are
mainly based on technical analysis but often include quantitative methods and
measures of sentiment as well. Technical analysis, in particular, is based on various
parameters such as price, volume etc. The actual signal is then generated through
thresholds or comparisons made against the values of these technical indicators.
Next we analyze those we have used within this thesis work.

4.2.1 Moving Average

The Moving average is a technical analysis tool that involves calculating average
values with respect to different subsets, ordered over time, of the starting dataset.
This is done by considering windows of arbitrary but fixed length that move
progressively over time as observations are added. In other words, for each new
time instant, the initial point in the window is excluded and the new observation
is added to the queue. This indicator has several variants that differ substantially
in the weight given to individual points when calculating the mean value.
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Simple Moving Average

The simple moving average is calculated by adding the closing prices of the last n
days and dividing them by the length n of the window [27].

SMAt(n) = Pt + . . . + Pt−n+1

n

In this case all elements have the same weight therefore, if we had a window of
4 elements, each point would have a 25% contribution. In addition, the frequency
of observations can be daily, weekly, yearly but also at the minute level, etc.,
depending on the context. The choice of window length depends on individual
preferences and trading strategies.

The SMA is frequently used to determine the trend of a market. Commonly,
signals are extracted by comparing "fast" and "slow" moving averages. By the
former we mean a type of MA calculated over a relatively short period, thus
very responsive to price change. With the latter, the exact opposite. Signals are
generated at crossover, or intersection, points as we can observe in Fig. 4.1.
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Figure 4.1: Crossover points for SMA [28]

Exponential Moving Average

SMAs are characterized by a problem called lag. It consists in the fact that changes
at the trend level are displayed with a certain delay. Specifically, this lag is
estimated to amount to n/2, where n is the length of the window. If, for example,
we use a dataset with daily frequency and employ a 25-day SMA, we are lagging by
about a dozen days, and this can be a problem within a dynamic context such as
financial markets. One method to mitigate the effect of lag is to give more weight
to more recent data. This variant, is called exponential moving average and is
defined as follows [29]:

EMAt(n, β) = βPt + β(1 − β)Pt−1 + β(1 − β)2Pt−2 + · · ·
= βPt + (1 − β)EMAt−1(n, β)

17



Financial Time Series Analysis

were β is the smoothing parameter, usually defined as:

β = 2
n + 1

On a practical level, the first MA is an simple moving average.

Moving Average Convergence Divergence

Moving averages are improved by the Moving Average Convergence Divergence,
which sheds light on market buying and selling pressure. In other words, the MACD
is a momentum indicator that can help indicate when a market is overbought (time
to sell) or oversold (time to buy) [30].

Moving Average Convergence Divergence is calculated using different EMAs with
respect to different periods. It consists of three components: the MACD Line, the
Signal Line and a value representing the Convergence/Divergence between them.

• MACD Line: it represents the difference between two EMAs, the former
having a longer lookback period than the latter. This is referred to as a "slow"
signal line. The standard lookback period values are 26 and 12 respectively.

• Signal Line: it constitutes the so-called "fast" line, the result of an EMA
having a shorter period among those characterizing the EMAs mentioned
above. The values mentioned above are usually associated with an EMA of 9.

• MACD Histogram: result of the difference between MACD line and Signal
Line, commonly represented by a histogram.

A positive signal suggests a bullish trend, whereas a negative signal indicates a
bearish one. In other words, the clue that it could be time to sell is given when the
MACD crosses below the Signal Line. The indicator, on the other hand, provides a
positive signal when MACD crosses above the Signal Line, meaning that the price
of the asset is likely to experience upward momentum, as shown in Fig. 4.2 [31].
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Figure 4.2: Crossover points for MACD [32]

4.2.2 Relative Strength Index
The Relative Strength Index is a momentum indicator that compares the current
price to the high and low averages over the course of a preceding trading period.
This indicator determines if a market is overbought or oversold and assists in
identifying trend changes, price declines, and the establishment of bullish or bearish
markets [33]. Mathematically, it is defined as:

RSIt(n) = 100 RSt(n)
1 + RSt(n)

where RSt(n), the Relative Strength, is the relative ratio of days with upward and
downward movement over the previous n days.

RS = upt(n)
downt(n)

The standard time period is 14 observations but some intraday (short-term)
traders prefer using values between 9 and 11. Instead, long-term traders prefer
values in the range of 20 to 30. Typically, an RSI reading of 70 or above suggests an
overbought condition, indicating a potentially high market sentiment. Conversely, a
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value of 30 or below suggests an oversold state, indicating a potentially low market
sentiment.

4.2.3 On Balance Volume

The On Balance Volume indicator measures buying and selling pressure assuming
there are buying flows, and thus incoming volumes, on bullish sessions, and selling
waves, and thus outgoing volumes, on bearish days [34].

The OBV basically adds the volumes of that day to the value of the OBV index
from the previous day, in case there was a price increase, to calculate the total
positive or negative volume of a trading session.

In contrast, if there was a negative session, the volumes of the observation day
are subtracted from the value of the OBV index from the previous day.
To recap:

OBVt = OBVt−1 +


V olumet, if Closet > Closet−1
−V olumet, if Closet < Closet−1
0, if Closet = Closet−1

As we can see in Fig. 4.3, between February and March the indicator experienced
a sharp upward trend, suggesting traders to get in before the rise.
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Figure 4.3: OBV upward trend [35]

4.2.4 Average Directional Index

The Average Directional Index is a directional movement index that measures the
strength of a trend. It is composed of three different values:

• ADX: It solely indicates the strength of the trend, regardless of its direction.
Commonly, values above 40 are indicative of strong trends, below 20, of great
stability.

• +DI: it indicates increasing values in case of bullish markets (increasing prices).

• -DI: indicates increasing values in case of bearish markets (decreasing prices)

At the signal level, it is often used in conjunction with the MACD. Specifically,
when +DI crosses upward -DI and at the same time MACD Main is above MACD
Signal, it is bought. Conversely, when +DI crosses downward -DI and at the same
time MACD Main is below MACD Signal, one sells [36].
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4.2.5 Bollinger Bands

Bollinger Bands are a useful indicator for determining whether an asset is oversold
or overbought. They are, as the name suggests, in the form of two bands that
cover a simple moving average on the top and bottom. These bands, in particular,
are usually defined as +/- 2 standard deviations from a 20-day SMA [37]. At the
signal level, if price continually touches the upper band, an overbought market is
evidenced. Similarly, if the same occurs with respect to the lower band, is is an
oversold state. Here is this Bollinger Band formula:

BOLU = MA(TP, n) + m × σ[TP, n]
BOLD = MA(TP, n) − m × σ[TP, n]

where BOLU and BOLD are the Upper and Lower Bollinger Bands, respectively.
MA is a Moving average, TP is the typical price, defined as (Close+Low+High)÷3.
Commonly, n, number of days in smoothing period, is set to 20, whereas m, the
number of standard deviations is typically 2. Finally, σ[TP,n] is the standard
deviation over last n periods of TP.

Figure 4.4: Bollinger Bands [38]
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4.3 Forecasting methods (baseline)
So far we have explored some technical indicators. In this section, we investigate
models that aim to predict the exact values of the time series in the future.
Within this thesis, these methods represent a baseline, as they are simpler models
than NN for making predictions. Besides being less complicated, they require
accurate setup, with very precise parameter setting, heavily influencing the results.
Nevertheless, they represent a benchmark for evaluating how much the use of
complex methods is worthwhile.

4.3.1 Autoregressive Models
Autoregressive models use data from previous periods as input for a linear regressor
with the intent of predicting the value at the next time step. By linear regressor
we mean a model that generates an output based on the linear combination of
the input data. Because the regression occurs at the level of the same variable
considered at different times, we use the term autoregressive (regression of the
variable against itself). Therefore, an AR model can be expressed as [39]:

yt = c + ϕ1yt−1 + ϕ2yt−2 + · · · + ϕpyt−p + εt, (4.1)

where p is the order of the model and εt is white noise. These models start from
the fundamental assumption that previous data are somehow useful in predicting
future data. This relationship is called correlation, in this case autocorrelation,
for the same reason as before. If the variables change in the same direction, the
correlation is positive, if in the opposite direction, negative, otherwise they are
uncorrelated. The greater the correlation with respect to a variable, the greater its
weight in determining output. Since autoregressive models are too simplistic, some
variations and extensions were invented. These include autoregressive integrated
moving average models (ARIMA) and Exponential Smoothing, that were employed
for the purpose of this thesis.

4.3.2 ARIMA
ARIMA stands for autoregressive integrated moving average. Analyzing the terms
from which the name is composed [40]:

• Autoregressive (AR): as mentioned in the previous paragraphs, means a
regression of the variable itself against its previous values.

• Integrated (I): refers to the differentiation operation, aimed at obtaining a
stationary time series.
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• Moving average (MA): represents the relationship between the present obser-
vation and a residual error term based on previous errors. To forecast future
values, it takes the average of recent forecast errors into account.

The model is characterized by three parameters: p, d and q.

• p = order of the AR part

• d = degree of differencing

• q = order of the MA (it specifies the number of lagged forecast errors).

The overall model can be expressed as [39]:

y′
t = c + ϕ1y

′
t−1 + · · · + ϕpy′

t−p + θ1εt−1 + · · · + θqεt−q + εt (4.2)

Parameters p, d and q are usually established through statistical tools such
as autocorrelation plots, whereas c, θ and θ are estimated through the maximum
likelihood estimation (MLE) method.

4.3.3 Exponential Smoothing
Exponential Smoothing is not strictly an autoregressive model in the sense that,
as we mentioned earlier, this family of models predicts future values by assuming
that they are a linear combination of past values. Exponential Smoothing, on the
other hand, assigns exponentially decreasing weights to past values [41]. There
is no linear relationship but emphasis is placed on the most recent observations
and a smoothing factor is applied. There are several versions of this model such as
Single, Double and Triple Exponential Smoothing. We briefly explore only the first
case as it is functional to the type of data we used during our analysis.

Single Exponential Smoothing

Single (or Simple) Exponential Smoothing is indeed a suitable model for forecasting
univariate data that do not exhibit a seasonal pattern. It is parameterized by a
smoothing factor α, that controls the frequency at which the importance of older
observations is damped. Typically, this parameter takes values between 0 and 1.
Mathematically [41]:

ŷT +1|T = αyT + α(1 − α)yT −1 + α(1 − α)2yT −2 + · · · , (4.3)

For each value of α, it results that the weights decrease exponentially going
backward in time. Specifically, if α takes a value close to 0, more weight is given
to observations far in the past than for "high" α values (close to 1).
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Chapter 5

Contrastive Learning
frameworks for Time Series

Lately, efforts are in the direction of creating representations of time series. The
ultimate goal is to use these embeddings for a downstream task that may be, for
example, classification or regression. Many other Deep Learning models exist in the
literature such as DMLP, RNN, LSTM, CNN etc. but in the next sections we will
only describe architectures based on Contrastive Learning. All the techniques that
we will consider learn embeddings by mapping similar occurrences (positive pairs)
to similar representations while pushing dissimilar observations (negative pairs)
far apart. CL, in this context, has proven to be an extremely successful approach,
due in part to the large availability of data belonging to different domains ranging
from finance to medicine. Particularly, these self-supervised learning approaches
have been demonstrated to perform better in time series forecasting tasks than
traditional supervised models [42, 43, 44].
In addition, the following architectures can be divided into two categories: those
designed for forecasting and those for time series segmentation. The difference
is that the former require an additional classification or regression layer, the
latter are designed for inferring latent states of time series in a non-supervised
manner. In particular, the only architecture designed for time series segmentation
is Time2State while TNC, CoST and TS2Vec are representation learning techniques
for forecasting.

5.1 TNC
TNC [45] is a self-supervised framework capable of creating nonstationary time
series representations. The acronym stands for Temporal Neighborhood Coding,
in fact it defines neighborhoods in time that possess stationary properties. Being
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a Contrastive Learning framework, it is ensured that representations within a
neighborhood are similar to each other and dissimilar to those of other signals
not belonging to it. The approach stems from the need to work with unlabeled
datasets. For example, it is very common in the medical case that it is not possible,
even for clinicians, to continuously attribute states, over long periods, to the health
conditions of individuals. TNC leverages the inherent local smoothness of the signal
generation process to generate representations of windows. These are denoted Wt,
where t is the time instant with respect to which they are centered. Instead, Nt

denotes the neighborhood relative to the window Wt t and is normally distributed
N (t, ηδ) where δ is the window size. η governs the range of the neighborhood and
it is dependent on the properties of the time series, in fact reasonably it is defined
by a domain expert. Since the neighborhood consists of similar instances, the range
should possess the property of stationarity, a check should be performed. It is
performed by Augmented Dickey-Fuller statistical test to determine this region for
each window. Samples outside the neighborhood are denoted by N̄t and are likely
to possess different characteristics, so negative samples are considered. However,
there is a risk of creating false negatives [46]. For example, it may happen that
a patient goes from a normal to a critical state and then returns to the former.
With the approach just described, potentially, the points belonging to the two
normal states can be considered negative samples only by virtue of their distance
in time, committing an error. To mitigate this effect, Positive-Unlabeled (PU)
learning is exploited, according to which a classifier is trained using data labeled by
the positive class (P) and unlabeled data (U), a mixture of positive and negative
samples [47, 48]. Among the different approaches there is one that gives less weight
to samples belonging to U [49, 50]. Specifically, positive samples are given unit
weight, while the others are treated as a combination of a positive and a negative
sample, with weights w and 1-w, respectively.
Concretely, a loss is drawn that incentivizes the distinction, in terms of representa-
tions, of samples belonging to different neighborhoods.
TNC consists of two components:

• Enc(Wt): an encoder that maps each window to a Zt representation within a
latent space.

• D(Zt, Z): a discriminator that computes the probability of two samples to
belong to the same neighborhood.

The loss is defined as follows:

L = − EWt∼X [EWl∼Nt [logD(Zt, Zl)]+
+ EWk∼N̄t

[(1 − w − t) × log(1 − D(Zt, Zk)) + wt × logD(Zt, Zk)]]
(5.1)
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Where Zt, Zl and Zk are the output of the encoder. Both the encoder and the
discriminator are trained, while in the inference phase only the former is used.

Figure 5.1: TNC architecture [45]

An overview of the components is shown in Fig. 5.1
Specifically, for each Wt window, the neighborhood distribution is first defined.
The encoder learns the distribution of sampled windows with respect to Nt and N̄t

in a latent space. The generated embeddings are then fed into the discriminator,
which predicts the likelihood of them belonging to the same neighborhood.

5.2 CoST
CoST [51] is a time series representation framework that exploits CL methods to
learn disentangled seasonal-trend embeddings. This requirement stems from the
fact that data is frequently complex and outcome of the interplay of several sources,
hence representations must be able to disentangle the various explanatory sources.
Losses consider both time-and frequency-domain representations. The model was
developed since the representations and prediction connections learned via the
end-to-end training strategy do not effectively transfer or apply to situations where
data is generated from a non-stationary environment, which is a prevalent scenario.
The starting point is the property of time series for which they can be decomposed
into trend, seasonal component and error [52, 53]. CoST can effectively learn trend
representations by coping with the problem of choosing an appropriate lookback
window. This is done by a mixture of autoregressive experts. It also succeeds
in obtaining effective seasonal representations by exploiting a Fourier layer that
allows interaction between different frequencies. Both components are trained with
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a Contrastive Learning method.
As stated before, the key prior is the fact that a time series X is considered to
be generated by an error variable E and X*. The latter is composed of T and S,
variables representing trend and seasonality, which do not influence each other [54,
55]. Therefore, the mechanisms that model the two components can be detached.
Furthermore, interventions on the error component do not affect the conditional
distribution P(X*|T,S). Consequently, invariant embeddings of T and S are learned
and augmentations on E are applied in a contrastive learning context. These
interventions are the typical ones: scale, jitter, and drift.
As can be seen from Fig. 5.2, the architecture is composed of several modules. The
first is a Backbone encoder that maps the input to a latent space. From these
intermediate representations, trend and seasonal embeddings are extracted, using
the respective modules. Specifically, the Seasonal feature disentengler extracts
representations via a tractable Fourier layer with a loss in the frequency domain
that includes an amplitude component and a phase component. In contrast, the
Trend feature disentengler extracts representations with a mixture of autoregressive
experts in the time domain. The overall loss is formulated as:

L = Ltime + α

2 (Lamp + Lphase) (5.2)

where α is a hyperparameter that balances the contribution of trend and seasonal
factors. The final outcome is the result of the concatenation of the output of Trend
and Seasonal Feature Disentanglers.

Figure 5.2: CoST architecture [51]
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The Time Domain Contrastive Loss is defined as:

Ltime =
NØ

i=1
−log

exp(qi · ki/τ)
exp(qi · ki/τ)qK

j=1 exp(qi · ki/τ)
(5.3)

where given a sample V T , final trend representation, in order to generate q and k,
to begin, we randomly choose a time step, denoted as t, for the loss function and use
a one-layer MLP as the projection head. K and q represent the augmented versions
of the relevant samples from the dynamic dictionary and momentum encoder,
respectively. Specifically V T is the result of L+1 regressive experts implemented as
1d causal convolution to which average pooling is applied.
Frequency Domain Contrastive Loss, as mentioned earlier is divided into two
components:

Lamp = 1
FN

FØ
i=1

NØ
j=1

−log
exp(|F (j)

i,: | · |(F (j)
i,: )′|)

exp(|F (j)
i,: | · |(F (j)

i,: )′|) +qN
k /=j exp(|F (j)

i,: | · |(F (k)
i,: )′|)

(5.4)

Lphase = 1
FN

FØ
i=1

NØ
j=1

−log
exp(ϕ(F (j)

i,: ) · ϕ((F (j)
i,: )′))

exp(ϕ(F (j)
i,: ) · ϕ((F (j)

i,: )′)) +qN
k /=j exp(ϕ(F (j)

i,: ) · ϕ((F (k)
i,: )′))

(5.5)
where F j

i,: is the sample j within a mini-batch, and (F j
i,:)′ its version result of an

augmentation. ϕ denotes the phase representation.
The loss is then evaluated in the frequency domain arrived at by a discrete Fourier
transform followed by a learnable Fourier layer. However, the seasonal representa-
tion is obtained by returning the features to the time domain via an inverse discrete
Fourier transform.

5.3 TS2Vec
TS2Vec [56] is a model that aims at overcoming three major limitations.
First, instance-level representations did not allow adequate granularities for tasks
such as time series forecasting or anomaly detection.
Furthermore, many of the existing methods, including TNC, are unable to obtain
features that are scale-invariant.
Third, most models for unsupervised time series representation have emulated
approaches peculiar to computer vision and natural language processing, but they
are inadequate for this context. For example, as mentioned in Fig. 3.1 the cropping
operation is widely used to create image augmentations. From the perspective of
time series, on the other hand, it would potentially mean losing too much relevant
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information. To solve these challenges, TS2Vec is presented as a model capable of
learning contextual embeddings for arbitrary segments at different semantic levels.
To this end, a hierarchical contrastive method was introduced at both the instance
and temporal levels to capture contextual information at different scales. Second,
a contextual consistency is proposed for choosing positive pairs, which is more
appropriate for time series than previous methods.
The overall architecture is described in Fig. 5.3, from which it can be seen that two
overlapping segments are randomly extracted. The goal is to obtain a contextual
representation of the common part.
The two segments are provided as input to the encoder fθ , which is made up of
three modules:

• Input projection layer: fc layer mapping the instances of the series at a time t
into the corresponding in a high-dimensional latent space.

• Timestamp masking module: generates augmented context views by mapping
the output of the previous module to random instants of time.

• Dilated CNN: used to obtain a contextual representation at each time instant
[42].

Figure 5.3: TS2Vec architecture [56]

A crucial step that differentiates TS2Vec from other models is the construction
of positive pairs. There are other approaches in the literature such as Subseries
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consistency [57], Temporal consistency [45], and Transformation consistency [58],
but these are based on assumptions too strong to be generalized to the time series
case. Instead, the authors of TS2Vec proposed a new method, contextual consis-
tency, which considers representations in two augmented contexts, at the same
time instant, as positive pairs. One context, in particular, is obtained applying
timestamp masking and random cropping on the input series. In this way, not
only magnitude is preserved, but also representations are more robust because
timestamp reconstruction is forced with respect to different contexts.
In other words, two segments of the time series that share a portion are randomly
sampled. Augmented versions of these two segments are created by masking and
random cropping, but preserving the source timestamps. By doing so, positive
samples can be created by pairing points relative to the same time which will obvi-
ously belong to the segment in common defined above. The method is represented
in Fig. 5.4.

Figure 5.4: TS2Vec positive pair construction [56]

To obtain the contextual representations, the model uses two losses: the Tem-
poral Contrastive Loss and the Instance-wise Contrastive Loss. Regarding the
former, positive pairs (associated with the same timestamp) and negative pairs
(pairing different instants) are considered to learn the over-time representations.
The Temporal Contrastive Loss is presented as follows:

L(i,t)
temp = −log

exp(ri,t · r′
i,t)q

ti∈Ω(exp(ri,t · r′
i,t) + ⊮[t /=t′]exp(ri,t · r′

i,t))
(5.6)

where Ω is the set of overlapping timestamps, t the timestamp, i the index of
the input timeseries, ri,t, r′

i,t are the two augmented representations, at a given
timestamp.
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Instead, Instance-wise Contrastive Loss is defined as:

L(i,t)
inst = −log

exp(ri,t · r′
i,t)qB

j=1(exp(ri,t · rj,t) + ⊮[i /=j]exp(ri,t · rj,t))
(5.7)

where B is the batch size. Negative samples are time series points associated with
the same index but in different batches.
The overall loss is formulated as:

Ldual = 1
NT

Ø
i

Ø
t

(L(i,t)
temp + L(i,t)

inst) (5.8)

5.4 Time2State

Time2State [59] is an unsupervised model, i.e., capable of coping with the need
to work with unlabeled data, avoiding a complex and time consuming operation.
This is accomplished through a new self-supervised loss function that uses a sliding
window to create embeddings from a time series. It is ductile as well, since by
non-parametric Bayesian methods it can effectively estimate the number of states,
which is not known a priori.
Time2State attempts to resolve some pitfalls of Triplet-Loss [20] and TNC [45],
baseline in the context of time series segmentation. By the latter expression we
mean the subdivision of a time series into portions that reflect a state of the objects.
Some examples of these states may be running, walking, jumping etc. The problem
with Triplet-Loss and TNC is that they only consider the pair-wise distance. In
contrast, LSE-Loss (i.e., the proposed objective function), considers both intra-state
and inter-state distance thus succeeding in creating a more effective representation.
Time2State consists of two phases: training and detection phase. During the
former, an encoder capable of creating time series representations is trained. This
is done by assuming that consecutive windows in time are characterized by the
same state with high probability, as can be seen in Figure 5.5. In other words, if
a window is associated with a state, then the N consecutive windows constitute
a series of N states that are likely to be the same. These N states are named
intra-state samples. The respective representations then should lie close together in
the embedding space. In contrast, non-consecutive windows with high probability
are not represented by the same state, so they should be separated in latent space.
The latter are called inter-state samples.
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Figure 5.5: Time2State training procedure [59]

In the training phase, non-consecutive M windows are placed, obtaining the
inter-state samples. From each of them, N consecutive windows are obtained (with
a unit step), constituting the intra-state samples. Based on this sample distinction,
the LSE-Loss was devised. This loss consists of two parts:

LLSE = Lintra + Linter (5.9)

where Lintra incentivizes the encoder to maximize the similarity of consecutive
windows, Linter on the other hand tries to minimize the similarity between intra-
state samples by separating them in the embedding space.
More specifically, these two losses are defined as follows:

Lintra = α1

MØ
k=1

NØ
i=1

NØ
j=1,j<i

− log(σ(fθ(ok
i )T fθ(ok

j )))) (5.10)

where α1 = 2
M∗M∗(N−1) averages the similarity, σ is a sigmoid function, f is the

encoder, θ is a parameter. ok
i is the i-th window in the k-th group. The product

between the output of the encoders is the well known dot product used to quantify
the similarity.

Linter = α2

MØ
k=1

MØ
l=1,l<k

− log(σ(−cT
k cl)) (5.11)

where α1 = 2
M∗(M−1) is used to average the similarity as above and ck =

1
N

qN
i=1(fθ(ok

i )), denoting the embedding center of the k-th group. The negative
sign is used to minimize the similarity between inter-state samples.

Finally, in the detection phase, the whole time series with a step equal to s is
analyzed by generating embeddings for a downstream task. In the specific case of
the paper, clustering is applied to identify to assign labels.
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Figure 5.6: Time2State inference procedure [59]
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5.5 Summary

Figure 5.7: Contrastive frameworks main characteristics

Figure 5.7 shows the main features that differentiate the four models.
In particular, the construction criterion of positive and negative pairs in the context
of CL, the domain in which the loss is evaluated, the number of components of the
total loss, and the types of data augmentations (if needed) are reported.
What is certainly most relevant is the criterion for creating pairs, which allows us
to divide these models into two groups: those that consider the neighborhood and
those that create augmented versions for creating positive pairs.
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Chapter 6

Methodology

6.1 Task
The task we considered is financial forecasting. The objective is to predict the future
movements of an asset. The problem can be divided into two categories: price
forecasting and movement prediction. In the first case, the aim is to predict the
exact price of an asset at a certain number of days in the future (regression). In the
second scenario, on the other hand, the objective is classifying the future trend into
categories such as increasing, decreasing, and, sometimes, neutral (classification).
There is a further categorization of the problem that considers the type of asset
under consideration [60]:

• Stock price forecasting: prediction of the price of a single stock.

• Index prediction: prediction of an index instead of a single stock.

• Forex price prediction: prediction of the exchange prices of currency pairs.

• Commodity price prediction: prediction of future prices of commodities such
as raw materials, primary products such as oil, gold, natural gas, wheat, coffee
etc.

• Bond price forecasting: prediction of changes in the prices of bonds, which
are debt instruments issued by governments and other entities to raise capital.
Such prices reflect are index of the state.

• Cryptocurrency price forecasting: prediction of cryptocurrency price.

In this thesis work, we opted for index price forecasting.
A stock index summarizes the value of a set of stocks and their movements over
time. The actual value is determined as a weighted average of the prices of the
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stocks that belong to it. There are three categories of indexes that differ in how
the weight is assigned:

• Equally weighted indices: the weights are equally distributed with respect to
all the stocks that make up the index (Dow Jones U.S. Select Equal Weight
Index, S&P 500 Equal Weight Index, Russell 2000 Equal Weight Index etc.)

• Price-weighted indices: the weights of individual stocks are proportional to
their prices over time (Dow Jones Industrial Average, Nikkei 225, Amex Gold
BUGS Index etc.).

• Value-weighted indexes: the weight of each stock is proportional to its market
capitalization (NASDAQ 100, S&P 500 Index, FTSE All-World Index etc.).

Many researchers have opted for index forecasting because of their lower volatility
than individual stocks as a composition of the latter’s performance. For this very
reason, indexes are more indicative of the actual state of the market and momentum.

6.2 Approach

To summarize this work in a nutshell, the objective is to make a comparison in
terms of performance between two stock price forecasting (regression) methods.
On the one hand, models that exploit contrastive representations, and on the other
hand, simpler models that rely on technical indicators. As we can observe in Fig.
6.1 there are two subsets. The blue one represents the direct method for which
time series representations are created by contrastive methods and then provided
as input to a regressor. The red one, on the other hand, represents our proposed
method. Thus, we start from the embeddings generated by the contrastive model
to provide them as input to a clustering method. The resulting clusters are used as
labels for the initial time series (not in the form of log-returns but as Close, High,
Low etc. prices), of which technical indicators are calculated. The newly generated
dataset is the input for an ensemble model from which the most important features
are extracted using a threshold. The "filtered" dataset is provided as input to a
regressor identical to the one that received the contrastive embeddings. The result
of the regressors, trained on the same task, is evaluated in terms of MSE and MAE,
and a comparison can be made.
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Figure 6.1: Overall methodology

The next paragraphs will describe in details the different steps, following the
order observable in Figure 6.1.

6.2.1 Contrastive Representations

The first stage of the process consists in training the four models: TNC, CoST,
TS2Vec, and Time2State. This phase is performed for 200 epochs for both univariate
and multivariate datasets, separately. Recall that both possess log-returns as
features, in the former case computed only with respect to NDX, in the latter,
instead, with respect to all the stocks composing it. In both cases, the labels are
the future values of the index with horizons of 3, 5 and 7 days. At the end of the
training, the respective encoders are ready to generate a contrastive representation
of a time series they receive as input.
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Figure 6.2: Time2State t-SNE embeddings in 2D, KMeans(k=3)

6.2.2 Clustering
The second step is functional to our attempt to make black-box models explain-
able. One of the major problems of Deep Learning is precisely the impossibility
of understanding how a certain output is generated, which features are most rel-
evant, and, in our case prominently, which feature of the time series is relevant.
Consequently, the encoder output is provided as input to a clustering algorithm,
in our case, KMeans. Since we could not determine a priori a reasonable number
of clusters, we experimented with the following values: 2, 3, 5, 7, 10, 30. At this
point, each temporal instant (day) corresponds to an embedding, and each of these
representations corresponds to a cluster.

6.2.3 Dataset Labeling
The next step is to label the dataset characterized by the common features (Open,
High, Low, Close, Adj Close, and Volume) and the technical indicators presented
in section 4.2 with the extracted clusters. This new dataset is then given as input
to XGBoost. This model (like Decision Tree, Random Forest, etc.) allows us to
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understand which features are most important. By "important" we mean those that
contribute most in improving the performance measure (e.g., the Gini index). The
feature importances are then averaged across all of the the decision trees within the
model. To actually filter out the most important ones, we set an arbitrary threshold.
The top n features that cumulatively constitute no more than the threshold in
terms of importance are selected. Since filtering is done by threshold, it is very
likely that the features extracted will differ in number from case to case. As we can
observe in Figure 6.3, there are cases where the importances are more concentrated
and others where they are more evenly distributed.

Figure 6.3: Example of Time2State and CoST embeddings feature importances
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6.2.4 Forecasting
At this point one has, for each model, a pair of representations. On one hand, the
contrastive representations, on the other, the features made by indicators, that
best represent the criterion by which the deep embeddings were created. One can
proceed to feed the same model the pairs. The model considered is Ridge but it
is not actually relevant, what matters is the comparison in terms of performance
between the two types of embeddings. If the gap is not large, then we were able to
create a "light-weighted" version, i.e., a model that requires neither heavy training
nor a complex architecture.
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Chapter 7

Experiments and Results

7.1 Implementation details
7.1.1 Dataset
We decided to use as input for all our models the NASDAQ 100, a representative
index of Nasdaq performance made up of 100 listed equities issued by highly-
capitalized non-financial companies. Its composition is modified weekly, and the
stock weights are revised based on an algorithm that ensures a balance among the
various economic sectors in which the 100 stocks are issued.

Figure 7.1: Top Nasdaq Companies By Weight, updated 2023 [61]
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The data were sourced through Yahoo Finance and consists of the common
features Date, Open, High, Low, Close, Adjusted Close, and Volume. From these
raw features, we generated four additional datasets:

• Univariate: daily historical NDX data.

• Multivariate (stocks only): historical data of stocks belonging to the Nasdaq.

• Multivariate (stocks with index): historical data of stocks belonging to the
Nasdaq, including the index itself.

• Multivariate (technical indicators): set of technical indicators calculated with
respect to the index. These indicators are the same as those stated in the 4.2
section, namely SMA, MACD, RSI, OBV, ADX and BB.

In the first two cases, by "historical data" we refer not to the entire set of features
listed above, but to the logarithmic returns calculated with respect to Close price.
Precisely, in the multivariate case, these features are calculated for each stock.
Logarithmic returns are defined as the logarithmic difference in prices at two
different instants:

logRett = log

A
pricet

pricet−1

B

Log-returns, through logarithm calculation, reveal the proportional change in
stock value rather than the absolute change. There are many reasons why they are
used, among the most significant [62]:

• Additivity and Linearity: they are additive, namely, with their sum we get the
total log-return with respect to the period under consideration. The same is
not true with simple returns.

• Symmetry: opposite values are equidistant from zero, making comparisons
and analysis easier.

• Time Aggregation: by virtue of point 1, higher granularities can be obtained
from a time perspective. In other words, one can easily switch from daily to
weekly log-returns by a simple sum.

• Interpretability: log-returns can be thought of as growth rates that are contin-
uously compounded. A log return of 0.03 (3%), for example, can be viewed
as a 3% compounded growth rate during the provided time period. This
interpretation is important for determining the relative change in an stock’s
value over time.
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• Normalization: the values are normally distributed, and this in many statistical
contexts is a great advantage because of the properties that characterize this
type of distribution.

All data collected cover the period between 2010 and 2022 with daily frequency.

7.1.2 Training and Testing

Training

As mentioned earlier, the training phase consists of two moments: encoder training
and regressor training. Regarding the former, the encoder receives as input the
dataset containing the log-returns (univariate and multivariate) from 2010 to 2018.
The training is carried out in all cases for 200 epochs. During the latter, one
regressor is trained on the embeddings output from the encoder, another on the
most important features extracted from XGBoost. In all cases Ridge receives an
80-20 split for train and validation tests. Figure 7.2 represents the training period
from the perspective of both the index and the respective logarithmic returns.
These will actually be given as input to the different contrastive models.
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Figure 7.2: Univariate Training set, 2010-2018

Testing

The testing phase is carried out on 2019, 2020, 2021, and 2022. The cardinality of
the test set varies slightly by year but is around 245 observations.
Equivalently to above, Figures 7.3, 7.4, 7.5 and 7.6, represent the time series of the
index and respective log-returns in different years. As can be observed, all possible
market conditions were chosen: bullish, bearish and mixed.
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Figure 7.3: Univariate Test set 1, 2019

Figure 7.4: Univariate Test set 2, 2020
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Figure 7.5: Univariate Test set 3, 2021

Figure 7.6: Univariate Test set 4, 2022
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7.1.3 Metrics
The metrics used to quantify the regression results are mean squared error and
mean absolute error. On the other hand, for gap assessment, percentage difference
was used.

MSE

The mean squared error (MSE) represents the average squared difference between
the predicted and true values. Mathematically it is defined as:

MSE =
q(yi − ŷi)2

n

where yi is the i-th observed value, ŷi is the corresponding predicted value and n
is the number of observations. Squaring increases the impact of larger errors. These
calculations disproportionately penalize larger errors more than smaller errors.

MAE

The mean squared error (MSE) represents the average absolute difference between
the predicted and true values. Mathematically it is defined as:

MAE =
q|(yi − ŷi)|

n

It is easily interpretable in fact it represents the average magnitude of errors in
the original units of the target variable. Unlike the MSE it treats all errors equally
with the risk of not capturing the effect of extreme errors.

Percentage Difference

This is not a metric for evaluating errors but a method for assessing the performance
gap between the outputs of two different models. It is defined as:

perc_diff = a − b
a+b

2

where a and b are the performances expressed both in terms of MSE or MAE.

7.1.4 Hardware and computation time
Processor: 2.6 GHz Intel Core i7 6 core
Memory: 16 GB 2400 MHz DDR4
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GPU: Intel UHD Graphics 630 1536 MB

Table 7.1: Execution times

Training time (min) Encoding time (sec)
TNC (uni) 14 1
TNC (multi) 61 1
CoST (uni) 280 300
CoST (multi) 280 480
TS2Vec (uni) 18 2
TS2Vec (multi) 21 3
Time2State (uni) 6 19
Time2State (multi) 9 19

Table 7.1 shows the execution times for each phase associated with the individual
models. Training time is expressed in minutes while encoding time is expressed in
seconds.
As we can observe, there are clearly differences, in terms of training, between
univariate and univariate models. In contrast, the time required for encoding
remains almost unchanged. The only model that requires prohibitive time for both
phases is CoST.
The light-weighted models creation module occurs following the execution of all
contrastive models. In particular, one script is executed for each year and modality,
taking 50 minutes. It includes all configurations of k clusters and thr threshold for
filtering relevant features.

7.2 Univariate Forecasting
This first analysis concerns the univariate case. We now compare the performance of
contrastive models with respect to technical indicators. These first analyses contain
a limited number of comments to avoid repetitiveness. Detailed considerations and
reasoning will be made in light of all the results, starting from section 7.5.
The results for the technical indicators represent the best scores from all clustering
obtained with a different k (i.e. number of clusters) and all configurations for the
threshold filtering most important features. The effect of these parameters will be
investigated in the following paragraphs.
Gap statistics will refer to the MSE, as this metric is more sensitive to large errors.
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In addition, a negative gap indicates that contrastive models perform better.
Since the results represent errors, it is worth mentioning that in all graphical
representations, the top performers are associated with the lowest height bars.

2019

As can be seen from Tables 7.2, 7.3, 7.4, 7.5, models that generate deep representa-
tions perform better, but often with a gap that is not too wide. In fact, in 83% of
cases, the gap is less than 5%; in 91% of cases, it is less than 10%. Overall, we
can observe that Time2state overperforms the other models with respect to the 3-
and 5-day horizons, aligning instead in the 7-day case. The other three models are
fairly aligned.

Table 7.2: Comparison between Time2State and Technical Indicators in 2019

Time2State TI % gap
MSE 3 1.39E-04 1.57E-04 -12.27%
MSE 5 1.43E-04 1.57E-04 -9.35%
MSE 7 1.56E-04 1.57E-04 -0.48%
MAE 3 8.41E-03 8.88E-03 -5.44%
MAE 5 8.72E-03 8.89E-03 -1.93%
MAE 7 8.87E-03 8.90E-03 -0.37%

Table 7.3: Comparison between TS2Vec and Technical Indicators in 2019

TS2Vec TI % gap
MSE 3 1.56E-04 1.58E-04 -1.35%
MSE 5 1.56E-04 1.57E-04 -0.70%
MSE 7 1.56E-04 1.58E-04 -1.46%
MAE 3 8.87E-03 8.96E-03 -1.02%
MAE 5 8.88E-03 8.92E-03 -0.41%
MAE 7 8.86E-03 8.99E-03 -1.54%
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Table 7.4: Comparison between CoST and Technical Indicators in 2019

CoST TI % gap
MSE 3 1.57E-04 1.57E-04 -0.25%
MSE 5 1.56E-04 1.58E-04 -1.19%
MSE 7 1.56E-04 1.58E-04 -1.27%
MAE 3 8.84E-03 8.92E-03 -0.91%
MAE 5 8.85E-03 8.98E-03 -1.43%
MAE 7 8.84E-03 9.01E-03 -1.84%

Table 7.5: Comparison between TNC and Technical Indicators in 2019

TNC TI % gap
MSE 3 1.56E-04 1.58E-04 -1.48%
MSE 5 1.56E-04 1.58E-04 -1.28%
MSE 7 1.55E-04 1.58E-04 -1.73%
MAE 3 8.87E-03 8.95E-03 -0.86%
MAE 5 8.87E-03 8.97E-03 -1.12%
MAE 7 8.84E-03 8.97E-03 -1.47%

2020

2020 was a definitely pathological year for any sector. In particular, as we can
clearly see in Figure 7.4, the trend has been noticeably irregular, with dips and
rises dictated by the evolution of restrictions imposed to counter the spread of
COVID-19. Consequently, as expected, the results reported in Tables 7.6, 7.7, 7.8,
7.9 are generally worse than in 2019. As in the previous case, deep representations
perform better, but with a larger gap. In other words, in this mixed market
condition, it is more convenient to use contrastive models. Specifically: in 50% of
cases the gap is less than 10%, in the other 50% of cases it is above 10% but below
16%.
The same pattern observed in 2019 is evident: Time2State performances are
equalized only with respect to the 7-day horizon.
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Table 7.6: Comparison between Time2State and Technical Indicators in 2020

Time2State TI % gap
MSE 3 5.12E-04 6.00E-04 -15.77%
MSE 5 5.04E-04 5.95E-04 -16.66%
MSE 7 5.36E-04 5.75E-04 -7.02%
MAE 3 1.51E-02 1.65E-02 -9.20%
MAE 5 1.53E-02 1.57E-02 -2.29%
MAE 7 1.53E-02 1.59E-02 -3.98%

Table 7.7: Comparison between TS2Vec and Technical Indicators in 2020

TS2Vec TI % gap
MSE 3 5.34E-04 6.00E-04 -11.58%
MSE 5 5.34E-04 5.89E-04 -9.75%
MSE 7 5.34E-04 5.85E-04 -9.10%
MAE 3 1.52E-02 1.66E-02 -8.73%
MAE 5 1.53E-02 1.58E-02 -3.46%
MAE 7 1.52E-02 1.56E-02 -2.53%

Table 7.8: Comparison between CoST and Technical Indicators in 2020

CoST TI % gap
MSE 3 5.26E-04 5.83E-04 -10.38%
MSE 5 5.35E-04 5.73E-04 -6.80%
MSE 7 5.29E-04 5.64E-04 -6.50%
MAE 3 1.51E-02 1.60E-02 -6.23%
MAE 5 1.52E-02 1.53E-02 -1.13%
MAE 7 1.51E-02 1.53E-02 -1.22%
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Table 7.9: Comparison between TNC and Technical Indicators in 2020

TNC TI % gap
MSE 3 5.27E-04 6.00E-04 -13.03%
MSE 5 5.26E-04 5.86E-04 -10.73%
MSE 7 5.26E-04 5.80E-04 -9.66%
MAE 3 1.51E-02 1.60E-02 -5.49%
MAE 5 1.51E-02 1.56E-02 -3.50%
MAE 7 1.51E-02 1.57E-02 -4.21%

2021

In terms of absolute performance, all models seem to perform much better than in
2020. As we can observe in Tables 7.10, 7.11, 7.12, 7.13, 2021 is rather difficult
to interpret. Only in 33% of cases is the MSE gap below 5%, in 91% it does not
exceed 9%, and in just 1 case the percentage difference is above 10%.
Once again the trend of Time2State is confirmed.
In addition, for the first time in some cases there is a convenience (not insignificant)
of using technical indicators. In particular, both CoST and TNC are outperformed
with a gap in MSE of at least 5%.

Table 7.10: Comparison between Time2State and Technical Indicators in 2021

Time2State TI % gap
MSE 3 1.20E-04 1.27E-04 -6.00%
MSE 5 1.23E-04 1.25E-04 -1.61%
MSE 7 1.36E-04 1.27E-04 6.84%
MAE 3 8.29E-03 8.57E-03 -3.26%
MAE 5 8.40E-03 8.44E-03 -0.52%
MAE 7 8.79E-03 8.79E-03 0.02%
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Table 7.11: Comparison between TS2Vec and Technical Indicators in 2021

TS2Vec TI % gap
MSE 3 1.36E-04 1.38E-04 -1.28%
MSE 5 1.36E-04 1.38E-04 -1.01%
MSE 7 1.34E-04 1.30E-04 2.76%
MAE 3 8.75E-03 9.18E-03 -4.82%
MAE 5 8.79E-03 9.21E-03 -4.69%
MAE 7 8.68E-03 8.73E-03 -0.63%

Table 7.12: Comparison between CoST and Technical Indicators in 2021

CoST TI % gap
MSE 3 1.37E-04 1.28E-04 6.64%
MSE 5 1.36E-04 1.25E-04 8.53%
MSE 7 1.36E-04 1.18E-04 14.04%
MAE 3 8.84E-03 8.55E-03 3.40%
MAE 5 8.82E-03 8.43E-03 4.48%
MAE 7 8.81E-03 8.22E-03 6.91%

Table 7.13: Comparison between TNC and Technical Indicators in 2021

TNC TI % gap
MSE 3 1.36E-04 1.28E-04 5.70%
MSE 5 1.35E-04 1.24E-04 8.10%
MSE 7 1.35E-04 1.27E-04 6.28%
MAE 3 8.79E-03 8.71E-03 0.90%
MAE 5 8.74E-03 8.47E-03 3.15%
MAE 7 8.74E-03 8.65E-03 0.97%

2022

As we can see from Tables 7.14, 7.15, 7.16, 7.17, the results for 2022 are worse in
terms of performance than for 2019 and 2021. In terms of MSE percentual gap, in

54



Experiments and Results

11 over 12 cases the gap is less than 5%, in 100% it is less than 10%.
As in all other cases, Time2State performs better than 3-day and 5-day. The
percentage gaps, in general, are quite low and, except in the case of Time2State
show a very slight convenience in using technical indicators.

Table 7.14: Comparison between Time2State and Technical Indicators in 2022

Time2State TI % gap
MSE 3 3.91E-04 4.28E-04 -9.00%
MSE 5 4.13E-04 4.25E-04 -2.85%
MSE 7 4.34E-04 4.32E-04 0.47%
MAE 3 1.58E-02 1.64E-02 -3.60%
MAE 5 1.65E-02 1.64E-02 0.51%
MAE 7 1.67E-02 1.65E-02 1.25%

Table 7.15: Comparison between TS2Vec and Technical Indicators in 2022

TS2Vec TI % gap
MSE 3 4.34E-04 4.29E-04 1.19%
MSE 5 4.32E-04 4.25E-04 1.81%
MSE 7 4.32E-04 4.31E-04 0.06%
MAE 3 1.68E-02 1.64E-02 2.06%
MAE 5 1.67E-02 1.64E-02 1.76%
MAE 7 1.67E-02 1.64E-02 1.55%

Table 7.16: Comparison between CoST and Technical Indicators in 2022

CoST TI % gap
MSE 3 4.24E-04 4.25E-04 -0.19%
MSE 5 4.30E-04 4.24E-04 1.49%
MSE 7 4.30E-04 4.24E-04 1.28%
MAE 3 1.65E-02 1.63E-02 1.06%
MAE 5 1.67E-02 1.63E-02 2.11%
MAE 7 1.67E-02 1.63E-02 2.22%
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Table 7.17: Comparison between TNC and Technical Indicators in 2022

TNC TI % gap
MSE 3 4.28E-04 4.27E-04 0.23%
MSE 5 4.29E-04 4.27E-04 0.42%
MSE 7 4.31E-04 4.31E-04 0.10%
MAE 3 1.66E-02 1.64E-02 1.22%
MAE 5 1.66E-02 1.64E-02 1.29%
MAE 7 1.67E-02 1.65E-02 1.52%

In Figures 7.7, 7.8, 7.9, one can clearly see the trend of Time2State, regardless
of the year, for which it dominates on the first two horizons and aligns on the 7-day.
Notably, it is not the other models that reach Time2State, but it is the latter that
is worse on the latter horizon.
It is also worth mentioning that CoST and TNC are often comparable and TS2Vec
is usually the worst in terms of performance.

Figure 7.7: MSE 3 Univariate contrastive
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Figure 7.8: MSE 5 Univariate contrastive

Figure 7.9: MSE 7 Univariate contrastive

Figures 7.10, 7.11, 7.12 depict the comparison of the best model associated
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with the univariate case, namely Time2State, versus the respective light-weighted
models.
Specifically, the boxplots represent all the results of the technical indicators asso-
ciated with Time2State, relatively to the dataset under consideration. The stars,
on the other hand, represent the results of Time2State itself. In this case we can
clearly observe that the greatest advantage in using the contrastive method occurs
in 2020, while in 2021 the technical indicators manage to prevail. Moreover, the
smallest gap between the different approaches is observed in the prediction of the
seventh day.

Figure 7.10: MSE 3 Univariate, Time2State vs technical indicators
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Figure 7.11: MSE 5 Univariate, Time2State vs technical indicators

Figure 7.12: MSE 7 Univariate, Time2State vs technical indicators
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7.3 Multivariate Forecasting

This section reports results for the multivariate case that comprises both a dataset
with only stocks and a dataset that also includes the index.

7.3.1 Stocks only dataset

2019

As can be observed from Tables 7.18, 7.19, 7.20, 7.21, Time2State is the model that
performs best and has the largest percentage gaps in absolute terms compared to
the corresponding results obtained with the technical indicators. The other models
are at about the same level. In all cases except one (CoST with respect to 3-day
horizon), there is a slight convenience of using contrastive methods.

Table 7.18: Comparison between Time2State and Technical Indicators in 2019

Time2State TI % gap
MSE 3 1.31E-04 1.57E-04 -17.97%
MSE 5 1.30E-04 1.58E-04 -19.37%
MSE 7 1.34E-04 1.58E-04 -16.35%
MAE 3 8.61E-03 8.91E-03 -3.43%
MAE 5 8.60E-03 8.96E-03 -4.03%
MAE 7 8.74E-03 8.98E-03 -2.66%

Table 7.19: Comparison between TS2Vec and Technical Indicators in 2019

TS2Vec TI % gap
MSE 3 1.57E-04 1.57E-04 -0.51%
MSE 5 1.56E-04 1.58E-04 -1.53%
MSE 7 1.56E-04 1.58E-04 -1.37%
MAE 3 8.90E-03 8.96E-03 -0.58%
MAE 5 8.86E-03 9.01E-03 -1.69%
MAE 7 8.90E-03 9.04E-03 -1.52%
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Table 7.20: Comparison between CoST and Technical Indicators in 2019

CoST TI % gap
MSE 3 1.58E-04 1.57E-04 0.82%
MSE 5 1.54E-04 1.57E-04 -1.46%
MSE 7 1.56E-04 1.57E-04 -0.51%
MAE 3 8.91E-03 8.90E-03 0.03%
MAE 5 8.84E-03 8.90E-03 -0.72%
MAE 7 8.89E-03 8.91E-03 -0.23%

Table 7.21: Comparison between TNC and Technical Indicators in 2019

TNC TI % gap
MSE 3 1.49E-04 1.57E-04 -5.20%
MSE 5 1.55E-04 1.57E-04 -1.13%
MSE 7 1.56E-04 1.57E-04 -0.29%
MAE 3 8.60E-03 8.88E-03 -3.15%
MAE 5 8.85E-03 8.92E-03 -0.80%
MAE 7 8.87E-03 8.90E-03 -0.30%

2020

In this case, Time2State’s tendency to perform better on the short periods (3 and 5
days) and then align with the other contrastive models is again confirmed (Tables
7.22, 7.23, 7.24, 7.25). In fact, it is even outperformed by both CoST and TNC. In
all cases there is a clear convenience in using contrastive models instead of technical
indicators.
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Table 7.22: Comparison between Time2State and Technical Indicators in 2020

Time2State TI % gap
MSE 3 5.36E-04 6.03E-04 -11.87%
MSE 5 5.27E-04 5.99E-04 -12.83%
MSE 7 5.41E-04 5.88E-04 -8.36%
MAE 3 1.53E-02 1.63E-02 -6.20%
MAE 5 1.52E-02 1.60E-02 -5.14%
MAE 7 1.53E-02 1.59E-02 -3.85%

Table 7.23: Comparison between TS2Vec and Technical Indicators in 2020

TS2Vec TI % gap
MSE 3 5.41E-04 6.03E-04 -10.78%
MSE 5 5.43E-04 5.99E-04 -9.80%
MSE 7 5.46E-04 5.87E-04 -7.27%
MAE 3 1.54E-02 1.63E-02 -5.63%
MAE 5 1.55E-02 1.60E-02 -3.09%
MAE 7 1.57E-02 1.59E-02 -1.41%

Table 7.24: Comparison between CoST and Technical Indicators in 2020

CoST TI % gap
MSE 3 5.41E-04 5.90E-04 -8.65%
MSE 5 5.47E-04 5.88E-04 -7.34%
MSE 7 5.39E-04 5.76E-04 -6.74%
MAE 3 1.53E-02 1.59E-02 -3.79%
MAE 5 1.55E-02 1.61E-02 -4.08%
MAE 7 1.55E-02 1.60E-02 -3.15%
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Table 7.25: Comparison between TNC and Technical Indicators in 2020

TNC TI % gap
MSE 3 5.52E-04 5.98E-04 -7.98%
MSE 5 5.34E-04 5.98E-04 -11.40%
MSE 7 5.37E-04 5.86E-04 -8.82%
MAE 3 1.53E-02 1.61E-02 -4.91%
MAE 5 1.54E-02 1.61E-02 -4.83%
MAE 7 1.54E-02 1.61E-02 -4.05%

2021

Similar to what occurred in 2019, Tables 7.26, 7.27, 7.28, 7.29 show that Time2State
prevails over all horizons. In addition, the respective model based on technical
indicators in turn prevails over the 5- and 7-day, with a not insignificant gap. In
the case of TNC and CoST, the technical indicators perform better in each case,
with gaps between 2% and 7%.

Table 7.26: Comparison between Time2State and Technical Indicators in 2021

Time2State TI % gap
MSE 3 1.31E-04 1.33E-04 -1.63%
MSE 5 1.30E-04 1.27E-04 2.16%
MSE 7 1.34E-04 1.23E-04 8.60%
MAE 3 8.61E-03 8.67E-03 -0.68%
MAE 5 8.60E-03 8.53E-03 -0.80%
MAE 7 8.74E-03 8.43E-03 3.64%
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Table 7.27: Comparison between TS2Vec and Technical Indicators in 2021

TS2Vec TI % gap
MSE 3 1.34E-04 1.42E-04 -5.60%
MSE 5 1.38E-04 1.47E-04 -6.21%
MSE 7 1.37E-04 1.29E-04 6.03%
MAE 3 8.74E-03 9.29E-03 -6.08%
MAE 5 8.82E-03 9.56E-03 -5.26%
MAE 7 8.81E-03 8.68E-03 1.46%

Table 7.28: Comparison between CoST and Technical Indicators in 2021

CoST TI % gap
MSE 3 1.40E-04 1.36E-04 2.82%
MSE 5 1.38E-04 1.30E-04 6.00%
MSE 7 1.36E-04 1.26E-04 7.53%
MAE 3 8.95E-03 8.76E-03 2.14%
MAE 5 8.87E-03 8.72E-03 1.69%
MAE 7 8.74E-03 8.61E-03 1.47%

Table 7.29: Comparison between TNC and Technical Indicators in 2021

TNC TI % gap
MSE 3 1.34E-04 1.32E-04 1.64%
MSE 5 1.37E-04 1.33E-04 3.15%
MSE 7 1.37E-04 1.29E-04 5.54%
MAE 3 8.76E-03 8.62E-03 1.52%
MAE 5 8.80E-03 8.88E-03 2.03%
MAE 7 8.79E-03 8.76E-03 0.37%

2022

Even in 2022, results from Tables 7.30, 7.31, 7.32, 7.33 prove that Time2State is
the top performer only in the second horizon, while being outperformed by all
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other models in the 7-day case and by TNC in the 3-day horizon. Gaps are very
small with a slight convenience to using technical indicators.

Table 7.30: Comparison between Time2State and Technical Indicators in 2022

Time2State TI % gap
MSE 3 4.14E-04 4.33E-04 -4.62%
MSE 5 4.12E-04 4.28E-04 -3.87%
MSE 7 4.36E-04 4.34E-04 0.27%
MAE 3 1.63E-02 1.66E-02 -1.49%
MAE 5 1.64E-02 1.65E-02 -0.14%
MAE 7 1.68E-02 1.66E-02 1.13%

Table 7.31: Comparison between TS2Vec and Technical Indicators in 2022

TS2Vec TI % gap
MSE 3 4.35E-04 4.32E-04 0.76%
MSE 5 4.33E-04 4.30E-04 0.77%
MSE 7 4.32E-04 4.31E-04 0.12%
MAE 3 1.67E-02 1.65E-02 1.05%
MAE 5 1.67E-02 1.64E-02 1.62%
MAE 7 1.67E-02 1.65E-02 1.08%

Table 7.32: Comparison between CoST and Technical Indicators in 2022

CoST TI % gap
MSE 3 4.27E-04 4.30E-04 -0.83%
MSE 5 4.34E-04 4.28E-04 1.29%
MSE 7 4.32E-04 4.30E-04 0.46%
MAE 3 1.65E-02 1.65E-02 0.25%
MAE 5 1.67E-02 1.64E-02 1.70%
MAE 7 1.67E-02 1.65E-02 1.35%
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Table 7.33: Comparison between TNC and Technical Indicators in 2022

TNC TI % gap
MSE 3 4.10E-04 4.33E-04 -5.47%
MSE 5 4.29E-04 4.32E-04 -0.69%
MSE 7 4.31E-04 4.31E-04 0.02%
MAE 3 1.62E-02 1.65E-02 -1.74%
MAE 5 1.66E-02 1.65E-02 0.85%
MAE 7 1.67E-02 1.65E-02 1.29%

As we can observe from Figures 7.13, 7.14, 7.15, even in this first multivariate
case, the tendency of Time2State is to dominate in the prediction of the next 3
and 5 days. The only exception is 2019 where the model is also dominant in the
longest horizon.

Figure 7.13: MSE 3 Multivariate contrastive
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Figure 7.14: MSE 5 Multivariate contrastive

Figure 7.15: MSE 7 Multivariate contrastive

In Figures 7.16, 7.17, 7.18, Time2State is analyzed individually since it is the
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overall top performer. Once again we observe how 2020 is visibly better handled
by the contrastive model, while in 2021, especially on long horizons, technical
indicators prevail.
The most noticeable difference with respect to the univariate case is the lower
variance relative to technical indicators in 2022, at all three horizons.

Figure 7.16: MSE 3 Multivariate, Time2State vs technical indicators
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Figure 7.17: MSE 5 Multivariate, Time2State vs technical indicators

Figure 7.18: MSE 7 Multivariate, Time2State vs technical indicators
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7.3.2 Stocks with index dataset

2019

Looking at the results in Tables 7.34, 7.35, 7.36, 7.37 we can observe that it is
always convenient to use contrastive methods even if, often, with not too large
gaps. In this case the top performer on the 3 days is TNC, on the 5 is Time2State
while on the 7 all models are aligned.

Table 7.34: Comparison between Time2State and Technical Indicators in 2019

Time2State TI % gap
MSE 3 1.40E-04 1.57E-04 -11.43%
MSE 5 1.42E-04 1.58E-04 -10.21%
MSE 7 1.56E-04 1.58E-04 -1.35%
MAE 3 8.45E-03 8.91E-03 -5.21%
MAE 5 8.64E-03 8.96E-03 -3.64%
MAE 7 8.87E-03 8.98E-03 -1.23%

Table 7.35: Comparison between TS2Vec and Technical Indicators in 2019

TS2Vec TI % gap
MSE 3 1.56E-04 1.57E-04 -1.00%
MSE 5 1.56E-04 1.58E-04 -1.68%
MSE 7 1.56E-04 1.58E-04 -1.34%
MAE 3 8.86E-03 8.96E-03 -1.13%
MAE 5 8.85E-03 9.02E-03 -1.81%
MAE 7 8.89E-03 9.04E-03 -1.60%
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Table 7.36: Comparison between CoST and Technical Indicators in 2019

CoST TI % gap
MSE 3 1.57E-04 1.57E-04 -0.06%
MSE 5 1.56E-04 1.57E-04 -0.69%
MSE 7 1.56E-04 1.57E-04 -0.51%
MAE 3 8.87E-03 8.90E-03 -0.38%
MAE 5 8.84E-03 8.90E-03 -0.70%
MAE 7 8.89E-03 8.91E-03 -0.27%

Table 7.37: Comparison between TNC and Technical Indicators in 2019

TNC TI % gap
MSE 3 1.35E-04 1.57E-04 -5.20%
MSE 5 1.56E-04 1.57E-04 -1.13%
MSE 7 1.56E-04 1.57E-04 -0.29%
MAE 3 8.25E-03 8.88E-03 -3.15%
MAE 5 8.85E-03 8.92E-03 -0.80%
MAE 7 8.87E-03 8.90E-03 -0.30%

2020

As we can observe from Tables 7.38, 7.39, 7.40, 7.41, in 2020 it is definitely
preferable to rely on contrastive methods, since gaps always exceed 7%. Again
TNC is confirmed as the top performer on 3 days, while on 5 and 7 days Time2State
and CoST prevail respectively.
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Table 7.38: Comparison between Time2State and Technical Indicators in 2020

Time2State TI % gap
MSE 3 5.25E-04 6.06E-04 -14.33%
MSE 5 5.13E-04 6.01E-04 -15.79%
MSE 7 5.44E-04 5.87E-04 -7.76%
MAE 3 1.52E-02 1.64E-02 -7.70%
MAE 5 1.51E-02 1.59E-02 -5.39%
MAE 7 1.54E-02 1.58E-02 -3.02%

Table 7.39: Comparison between TS2Vec and Technical Indicators in 2020

TS2Vec TI % gap
MSE 3 5.41E-04 6.05E-04 -11.29%
MSE 5 5.43E-04 6.02E-04 -10.29%
MSE 7 5.45E-04 5.91E-04 -8.06%
MAE 3 1.54E-02 1.62E-02 -4.80%
MAE 5 1.55E-02 1.61E-02 -4.12%
MAE 7 1.56E-02 1.60E-02 -2.27%

Table 7.40: Comparison between CoST and Technical Indicators in 2020

CoST TI % gap
MSE 3 5.32E-04 5.91E-04 -10.57%
MSE 5 5.46E-04 5.89E-04 -7.57%
MSE 7 5.35E-04 5.78E-04 -7.67%
MAE 3 1.52E-02 1.59E-02 -4.64%
MAE 5 1.55E-02 1.61E-02 -3.83%
MAE 7 1.54E-02 1.59E-02 -3.16%
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Table 7.41: Comparison between TNC and Technical Indicators in 2020

TNC TI % gap
MSE 3 5.19E-04 5.99E-04 -14.43%
MSE 5 5.32E-04 5.95E-04 -11.15%
MSE 7 5.36E-04 5.84E-04 -8.62%
MAE 3 1.48E-02 1.61E-02 -8.06%
MAE 5 1.53E-02 1.60E-02 -4.31%
MAE 7 1.54E-02 1.57E-02 -1.59%

2021

Regarding 2021, TNC remains the best in predicting the third day, Time2State in
predicting the fifth and seventh. In general, a preference in the use of technical
indicators is observed, particularly pronounced in the case of the 7-day. All these
results can be observed in Tables 7.42, 7.43, 7.44, 7.45

Table 7.42: Comparison between Time2State and Technical Indicators in 2021

Time2State TI % gap
MSE 3 1.39E-04 1.32E-04 4.64%
MSE 5 1.35E-04 1.27E-04 6.32%
MSE 7 1.34E-04 1.22E-04 9.16%
MAE 3 9.00E-03 8.71E-03 3.20%
MAE 5 8.86E-03 8.62E-03 2.76%
MAE 7 8.76E-03 8.49E-03 3.13%
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Table 7.43: Comparison between TS2Vec and Technical Indicators in 2021

TS2Vec TI % gap
MSE 3 1.34E-04 1.33E-04 0.97%
MSE 5 1.38E-04 1.37E-04 0.39%
MSE 7 1.38E-04 1.29E-04 6.46%
MAE 3 8.73E-03 8.71E-03 0.14%
MAE 5 8.81E-03 9.14E-03 -3.72%
MAE 7 8.79E-03 8.82E-03 -0.29%

Table 7.44: Comparison between CoST and Technical Indicators in 2021

CoST TI % gap
MSE 3 1.40E-04 1.36E-04 2.85%
MSE 5 1.37E-04 1.30E-04 4.82%
MSE 7 1.37E-04 1.26E-04 8.57%
MAE 3 8.91E-03 8.74E-03 1.90%
MAE 5 8.81E-03 8.62E-03 2.22%
MAE 7 8.81E-03 8.49E-03 3.91%

Table 7.45: Comparison between TNC and Technical Indicators in 2021

TNC TI % gap
MSE 3 1.23E-04 1.33E-04 0.97%
MSE 5 1.39E-04 1.37E-04 0.39%
MSE 7 1.37E-04 1.29E-04 6.46%
MAE 3 8.36E-03 8.71E-03 0.14%
MAE 5 8.86E-03 9.14E-03 -3.72%
MAE 7 8.81E-03 8.82E-03 -0.29%

2022

Looking at Tables 7.46, 7.47, 7.48, 7.49, we can observe that, in 2022, the top
performers are TNC on the 3-day and Time2State on the 5- and 7-day horizons.
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Gaps tend to be small (except for TNC over the 3-day), sometimes in favor of the
technical indicators.

Table 7.46: Comparison between Time2State and Technical Indicators in 2022

Time2State TI % gap
MSE 3 4.17E-04 4.32E-04 -3.51%
MSE 5 4.27E-04 4.27E-04 -0.05%
MSE 7 4.35E-04 4.34E-04 0.26%
MAE 3 1.64E-02 1.66E-02 -0.89%
MAE 5 1.67E-02 1.64E-02 1.68%
MAE 7 1.67E-02 1.65E-02 1.41%

Table 7.47: Comparison between TS2Vec and Technical Indicators in 2022

TS2Vec TI % gap
MSE 3 4.36E-04 4.30E-04 1.37%
MSE 5 4.34E-04 4.31E-04 0.77%
MSE 7 4.34E-04 4.37E-04 -0.86%
MAE 3 1.68E-02 1.66E-02 1.22%
MAE 5 1.67E-02 1.65E-02 1.28%
MAE 7 1.67E-02 1.66E-02 0.78%

Table 7.48: Comparison between CoST and Technical Indicators in 2022

CoST TI % gap
MSE 3 4.28E-04 4.30E-04 -0.40%
MSE 5 4.31E-04 4.28E-04 0.74%
MSE 7 4.30E-04 4.29E-04 0.44%
MAE 3 1.66E-02 1.65E-02 0.53%
MAE 5 1.66E-02 1.64E-02 1.31%
MAE 7 1.66E-02 1.65E-02 0.84%
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Table 7.49: Comparison between TNC and Technical Indicators in 2022

TNC TI % gap
MSE 3 3.63E-04 4.33E-04 -17.71%
MSE 5 4.30E-04 4.32E-04 -0.44%
MSE 7 4.32E-04 4.34E-04 -0.43%
MAE 3 1.51E-02 1.65E-02 -8.79%
MAE 5 1.66E-02 1.65E-02 0.80%
MAE 7 1.67E-02 1.65E-02 0.90%

In the case of the latter modality (Figures 7.19, 7.20, 7.21), TNC turns out to
be the best performer by far on the 3 days, Time2State on the 5, while on the 7
there is an alignment that we have already noticed with previous datasets.

Figure 7.19: MSE 3 Multivariate (with index) contrastive
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Figure 7.20: MSE 5 Multivariate (with index) contrastive

Figure 7.21: MSE 7 Multivariate (with index) contrastive

Once again we analyze through Figures 7.22, 7.23, 7.24 the behavior of Time2State.
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Again the considerations made earlier apply, such as that in 2020 there is more
convenience in using the contrastive method and that in 2021 the best results are
obtained with the technical indicators. Moreover, it is evident how as the horizon
increases the gap, and thus the convenience, decreases.

Figure 7.22: MSE 3 Multivariate with index, Time2State vs technical indicators
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Figure 7.23: MSE 5 Multivariate with index, Time2State vs technical indicators

Figure 7.24: MSE 7 Multivariate with index, Time2State vs technical indicators
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7.4 Differences between datasets

The most relevant differences for individual architectures will be reported below,
again distinguishing the results by year. The analysis is done by distinguishing by
model to better understand the peculiarities, associated with the individual case,
resulting from the choice of a particular set of features.

In most cases Time2State gets better results with the univariate dataset, for
each horizon. The only exception is 2019 where the multivariate dataset (without
index) overperforms (Figures 7.25, 7.26, 7.27).

Figure 7.25: MSE 3 Time2State, comparison per dataset
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Figure 7.26: MSE 5 Time2State, comparison per dataset

Figure 7.27: MSE 7 Time2State, comparison per dataset

As for TNC, in Figures 7.28, 7.29, 7.30 we observe a significant improvement
in the results by adding the index, limiting to the 3-day horizon. Instead, the
univariate dataset is often associated with the worst results.
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Figure 7.28: MSE 3 TNC, comparison per dataset

Figure 7.29: MSE 5 TNC, comparison per dataset
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Figure 7.30: MSE 7 TNC, comparison per dataset

In the case of both Time2State and TNC, the differences tend to flatten out
with the 7-day horizon.

7.5 Best performers and gaps
In light of the previous results, we can draw some general conclusions. As we have
already verified, Time2State turns out to be the best contrastive model in most
contexts. The primacy of this method, in particular, extends to the first two time
horizons, namely the 3- and 5-day horizons. With respect to the 7-day, however,
the models tend to align, in the sense that Time2State worsens its performance.
Moreover, as the horizon increases, the gaps with respect to technical indicators
decrease, highlighting how the convenience is limited to the short term. In addition,
we could observe that in some contexts technical indicators are more convenient
than their contrastive counterparts, justifying the usefulness of light-weighted
models.
However, it is also useful to make distinctions by year to gain further insights.
In 2019 Time2State was the best performer (multivariate) outperforming its com-
petitors on all horizons (Table 7.50). In general, it always pays to use contrastive
models at the expense of technical indicators, especially in the case of Time2State.

Referring to 2020, the gaps in general are wider (i.e. lower negative values),
as we can observe in Figures 7.31, 7.32, 7.33, denoting a greater ability of con-
trastive models to predict complicated situations such as the case of the crash due
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to the COVID-19 pandemic outbreak. Again, Time2State returns the best results
on the next 3 and 5 days, outperformed, however, by TNC on the 7 (univariate
dataset in all cases, Table 7.50).

As for 2021, we observe for the first time the victory of technical indicators
over their contrastive counterparts Table 7.51. Moreover, the convenience grows as
the horizon increases; in fact, the 7-day horizon has rather large gaps that fall below
5% in only one case (Figures 7.31, 7.32, 7.33). However, the best performer on 3
and 5 days is confirmed to be Time2State (univariate) while on 7 days technical
indicators (CoST univariate) prevail.

Finally, in 2022, rather small gaps are observed in Figures 7.31, 7.32, 7.33. One
cannot identify a clear pattern, but certainly to predict the next 7 days it often
pays, slightly, to use technical indicators. In general, however, the best performers
are TNC (multivariate with index), Time2State (multivariate), and technical in-
dicators (multivariate CoST) for 3-, 5-, and 7-day horizons, respectively (Table 7.51).

In addition, it is worth noting a pattern that occurs in 7 out of 12 cases: Time2State
turns out to be the best contrastive performer with respect to 3- and 5-day, aligning
with or even being outperformed on the 7-day. In all cases where this does not
hold, TNC performs better, but only on the 3-day.

Table 7.50: Best absolute contrastive performers for different years

Model Dataset Error
2019 MSE 3 Time2State Multivariate 1.31E-04

MSE 5 Time2State Multivariate 1.30E-04
MSE 7 Time2State Multivariate 1.34E-04

2020 MSE 3 Time2State Univariate 5.12E-04
MSE 5 Time2State Univariate 5.04E-04
MSE 7 TNC Univariate 5.26E-04

2021 MSE 3 Time2State Univariate 1.20E-04
MSE 5 Time2State Univariate 1.23E-04
MSE 7 TS2Vec Univariate 1.34E-04

2022 MSE 3 TNC Multivariate (with index) 3.63E-04
MSE 5 Time2State Multivariate 4.12E-04
MSE 7 CoST Univariate 4.30E-04
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As we can observe in Table 7.51 among the best overall performers there are two
light-weighted models, in both cases associated with CoST, related to the 7-day
horizon.

Table 7.51: Best overall performers for different years

Model Dataset Error
2019 MSE 3 Time2State Multivariate 1.31E-04

MSE 5 Time2State Multivariate 1.30E-04
MSE 7 Time2State Multivariate 1.34E-04

2020 MSE 3 Time2State Univariate 5.12E-04
MSE 5 Time2State Univariate 5.04E-04
MSE 7 TNC Univariate 5.26E-04

2021 MSE 3 Time2State Univariate 1.20E-04
MSE 5 Time2State Univariate 1.23E-04
MSE 7 TI (CoST) Univariate 1.18E-04

2022 MSE 3 TNC Multivariate (with index) 3.63E-04
MSE 5 Time2State Multivariate 4.12E-04
MSE 7 TI (CoST) Univariate 4.24E-04

Figures 7.31, 7.32, 7.33 represent the convenience of using contrastive methods
with respect to technical indicators. In general, as the horizon increases, two
patterns are observed.
First, the variance decreases, an aspect we already noted earlier. In other words,
models, regardless of dataset, tend to have more pronounced differences for short
time horizons and align with respect to 7 days.
Second, as the horizon increases, the convenience of contrastive models decreases.
Visually, the boxes tend to approach positive values.
Moreover, making a distinction by year, it is evident that regardless of the time
horizon, 2020 (mixed market) is the year in which contrastive methods perform
better than the corresponding technical indicators. By contrast, in 2021 (bullish
market) light-weighted models outperform deep models, sometimes by non-negligible
margins (between 5% and 10%).
All of this, overall, can be interpreted as the ability of contrastive models to predict
complex situations but to be outperformed when the trend is easier to predict.
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Figure 7.31: MSE 3 % gap between contrastive models and technical indicators

Figure 7.32: MSE 5 % gap between contrastive models and technical indicators
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Figure 7.33: MSE 7 % gap between contrastive models and technical indicators

7.6 Effect of threshold

As we mentioned earlier, we make use of a threshold to discriminate the most
important features and select them for light-weighted models. In this section we
investigate the effect of this parameter, again in terms of MSE.
Recall that the value of the parameter does not fall below 0.5 because it represents
a value below which no feature would be selected in certain cases.
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Figure 7.34: MSE 3, effect of Threshold

Figure 7.35: MSE 5, effect of Threshold
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Figure 7.36: MSE 7, effect of Threshold

In Figures 7.34, 7.35, 7.36 we can observe that the error grows as the threshold
increases in all three horizons. This may mean that keeping only the most relevant
features avoids overfitting resulting in a greater ability to generalize.

7.7 Performance comparison vs Autoregressive
models

In this section we analyze the difference in performance from a baseline, the autore-
gressive models mentioned earlier such as ARIMA and Exponential Smoothing.
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Table 7.52: Autoregressive vs contrastive models in 2019

Arima Exp Sm Best contrastive % gap Arima % gap Exp Sm
MSE 3 1.64E-04 1.68E-04 1.31E-04 -22.27% -24.94%
MSE 5 1.65E-04 1.69E-04 1.30E-04 -23.97% -26.01%
MSE 7 1.65E-04 1.69E-04 1.34E-04 -20.65% -23.05%
MAE 3 9.01E-03 9.26E-03 8.61E-03 -4.54% -7.29%
MAE 5 9.05E-03 9.27E-03 8.60E-03 -5.11% -7.55%
MAE 7 9.07E-03 9.29E-03 8.74E-03 -3.71% -6.12%

Table 7.53: Autoregressive vs contrastive models in 2020

Arima Exp Sm Best contrastive % gap Arima % gap Exp Sm
MSE 3 9.06E-04 5.56E-04 5.12E-04 -55.60% -8.16%
MSE 5 9.09E-04 5.60E-04 5.04E-04 -57.31% -10.44%
MSE 7 9.14E-04 5.62E-04 5.26E-04 -53.93% -6.57%
MAE 3 1.93E-02 1.54E-02 1.51E-02 -24.61% -2.26%
MAE 5 1.93E-02 1.55E-02 1.51E-02 -24.25% -2.77%
MAE 7 1.93E-02 1.55E-02 1.51E-02 -24.44% -2.63%

Table 7.54: Autoregressive vs contrastive models in 2021

Arima Exp Sm Best contrastive % gap Arima % gap Exp Sm
MSE 3 1.44E-04 1.42E-04 1.20E-04 -18.18% -16.58%
MSE 5 1.41E-04 1.43E-04 1.23E-04 -13.93% -14.98%
MSE 7 1.40E-04 1.42E-04 1.34E-04 -4.24% -5.67%
MAE 3 8.80E-03 8.93E-03 8.29E-03 -5.94% -7.47%
MAE 5 8.85E-03 8.97E-03 8.40E-03 -5.22% -6.55%
MAE 7 8.85E-03 8.85E-03 8.68E-03 -1.94% -1.99%
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Table 7.55: Autoregressive vs contrastive models in 2022

Arima Exp Sm Best contrastive % gap Arima % gap Exp Sm
MSE 3 4.51E-04 4.65E-04 3.63E-04 -21.54% -24.64%
MSE 5 4.53E-04 4.68E-04 4.12E-04 -9.57% -12.67%
MSE 7 4.64E-04 4.72E-04 4.30E-04 -7.59% -9.23%
MAE 3 1.67E-02 1.75E-02 1.51E-02 -9.95% -14.32%
MAE 5 1.66E-02 1.75E-02 1.65E-02 -0.70% -5.92%
MAE 7 1.69E-02 1.76E-02 1.67E-02 -1.24% -5.52%

We therefore observe from Tables 7.52, 7.53, 7.54, 7.55 that there is always a
large gap from these traditional models, especially in unpredictable situations such
as the 2020 crash.
It is worth noting that the gap is large especially in the short run, while in predicting
the seventh day the difference is smaller, but still significant.
In addition, cases in which the gap in terms of MAE is low, but high in terms of
MSE, should be interpreted as the inability of autoregressive models to avoid gross
errors, which in a trading context are certainly not negligible.

91



Chapter 8

Conclusion and future works

With this thesis work, we explored financial time series forecasting from different
perspectives. On one hand, we exploited tools that have been used for decades in
the trading world, namely technical indicators. On the other, we have leveraged
some of the latest models in the field of Deep Learning. In particular, the latter
architectures are united by the use of Contrastive Learning, a paradigm that allowed
us not to rely on labels to create the representations of the aforementioned time
series.
As extensively described in previous chapters, these two approaches are not unre-
lated. In fact, the technical indicators represent an attempt to explain the aspects
that concurred in the creation of the contrastive representations.
The purpose of the thesis is to evaluate the difference of both approaches with
respect to the common task of forecasting future values of the series, with respect to
three different time horizons. The performance evaluation was carried out through
the use of two common metrics, the MSE and the MAE, which, in pairs, allowed
us useful conclusions. Performance gap assessment, on the other hand, was done
through the percentage difference.
In order to provide a complete overview, tests were performed against all possible
market conditions (bullish, bearish, and mixed).
The results, obtained from the experiments conducted on three modalities of the
same dataset, are manifold. Below we summarize them by points:

• The convenience of using contrastive models decreases as the time horizon
increases.

• The market conditions that most benefit from using contrastive models are
mixed markets (2020), peculiar conditions that simple models cannot handle
effectively.

• The longer the time horizon, the smaller the differences between different
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contrastive models.

• The best performer on most occasions is Time2State. In particular, it often
prevails over 3- and 5-day horizons and then aligns with or is outperformed
by other models.

• The best performers in general are associated with univariate and multivariate
datasets without index.

• Top performers include light-weighted models

• The model that really benefits from the addition of the index in the multivariate
case is TNC, which is, limited to the context of that dataset, the best performer
on the 3-day horizon.

• Autoregressive models are always exceeded with considerable gaps.

• The error grows as the threshold for filtering out the most important features
increases.

There are several ways to extend this work.
First, one could test other regression models instead of Ridge or use other clustering
models as an alternative to K-Means. These configurations have not been explored
because of the obvious current complexity of the pipeline, but they could certainly
reveal additional patterns.
Second, one could test performance against other tasks, such as classification, in the
case of trying to predict trend (increasing, decreasing, stable). We did not pursue
this path since this would have introduced the problem of labeling, a complicated
task that requires indispensable domain knowledge to obtain meaningful results.
Alternatively, one could change the selection of contrastive models employed in
the comparison. Being the direction in which the research is currently heading,
it is perfectly likely that these the models, within a short time, could be greatly
improved. As mentioned earlier, the upgrades would consist of adopting more
reasonable criteria for the creation of the pairs, positive and negative, which
currently still generate many false negatives.
In any case, we can be satisfied that we have obtained significant results that have
reflected most of the initial expectations.
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Other material

The differences between modalities related to TS2Vec and CoST are reported
next in Figures A.1, A.2, A.3, A.4, A.5 and A.6. These results are presented in
the appendix because they do not show interesting patterns in fact they report
negligible differences. The only thing worth noting is that these disparities are
slightly accentuated during 2020, where the univariate dataset seems to prevail
slightly. All these considerations are valid regardless of time horizon and model.

Figure A.1: MSE 3 CoST, comparison per dataset
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Figure A.2: MSE 5 CoST, comparison per dataset

Figure A.3: MSE 7 CoST, comparison per dataset
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Figure A.4: MSE 3 TS2Vec, comparison per dataset

Figure A.5: MSE 5 TS2Vec, comparison per dataset
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Figure A.6: MSE 7 TS2Vec, comparison per dataset
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