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Summary

This thesis work was carried out for six months, as Test Division R&D intern of
Siemens Digital Industries Software, located in Leuven, Belgium.

The accurate measurement of wheel forces is a crucial problem in the field of
vehicle dynamics testing, as it directly impacts vehicle performance, handling and
safety evaluations. Traditional methods, such as Wheel Force Transducers (WFTs),
have limitations and require extensive modifications to the vehicle, making them
impractical for routine testing. To address this challenge, model-based virtual
sensing has emerged as a promising alternative solution.

Model-based virtual sensing involves two main steps: model development and
estimation. Mathematical models of the vehicle and its components are created
using techniques like multibody dynamics. These models incorporate the physical
properties of tyres, suspension systems, and other factors to simulate the vehicle
interaction with the road surface. Estimation algorithms, such as Kalman filters,
are then employed to estimate the wheel forces by combining the developed models
with available sensor measurements.

Past studies primarily relied on simplified models like the Single Track (Bycicle)
model to estimate tyre forces. However, these models have limitations in accurately
capturing tyre behavior due to assumptions of constant cornering stiffness and
neglecting the influence of vertical forces. These limitations are reflected mainly
in the large estimation errors during the build-up phase of the estimated lateral
force. To overcome these limitations, researchers have explored more complex
models, such as the 15 Degrees of Freedom (15DoFs) vehicle model, which enhances
accuracy.

The framework for model-based virtual sensing encompasses several key compo-
nents, including system modeling, estimation algorithms, testing/validation and
observability analysis. System modeling involves mathematically representing the
dynamics of the vehicle, considering subsystems like the powertrain, braking system,
and suspension. Estimation algorithms, such as the Extended Kalman Filter (EKF),
leverage the system model and available measurements to estimate unmeasured
variables in real-time. Testing and validation activities are conducted to evaluate
the performance of the framework by comparing estimated wheel forces against
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reference data. Observability analysis plays a vital role in determining the states
that can be accurately estimated based on available measurements, assisting in
designing estimation algorithms and selecting appropriate sensor configurations.

The model of the system serves as estimator model: it receives as inputs the
steering wheel angle and the longitudinal velocity and it provides the predicted
states and outputs of the model to the estimator algorithm. In the 15DoFs vehicle
model, the chassis model and tyre dynamics are key components. The chassis
model represents the core of the model, integrating subsystems like the powertrain,
suspension, braking and steering systems. It has been designed as an augmented
states system because, besides the natural states, the cornering stiffnesses are
added. Moreover other states (relative wheels angular displacements and steering
rack displacement and velocity) presenting non-relevant dynamics have been fixed;
it means excluding these states from the linearized matrices and then excluding
from the estimator algorithm. It allows to have a reduced size system, speeding-
up the algorithm, maintaining at the same time a robust framework. The tyre
model plays a crucial role in the specific application. It is a linear adaptive tyre
model, it means that the lateral load is linear with respect to the side-slip angle
through the cornering stiffness and, moreover, the cornering stiffness is allowed to
change, dynamically adapting in order to have the correct characteristic lateral
force versus side-slip. The self-aligning torque is modeled as well. It is the torque
generated (during streering) by the distribution of lateral force on the contact patch
of the tyre, leading to align the wheel to the direction of motion. Overall, this
model estimates lateral forces based on side-slip angles and dynamically adapts
the cornering stiffness. Observability analysis employs various techniques, such as
Popov-Belevitch-Hautus (PBH) analysis and Singular Value Decomposition (SVD),
to assess the system observability:

• The PBH is a method to analyse local observability, so the observability of the
system in a certain time instant. It is valid for linear systems, so in order to
use it, the system considered in this work has to be linearized. The Jacobian
matrices linearized around the true states of the system are considered.

• In order to extend to a global view, the SVD of a total observability matrix is
introduced. The total observability matrix is nothing more than a collection of
all the observability matrices for every time-step. Computing the SVD, if the
system is unobservable, there will be at least one singular value close to zero.
Doing that the matrix of right singular vectors can be split in an “observable
part” and “unobservable part”. The former can be used as a projection basis
to project and modify the EKF algorithm allowing it to be stable even if
the system is unobservable. The latter gives information on which states are
unobservable.

These analyses highlight the loss of observability when the vehicle travels straight,
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primarily due to unmeasurable cornering stiffnesses, but the EKF is stable in any
case. Other two analyses are implemented more related to the sensors evaluation:

• The Fisher Information Matrix (FIM) is a statistical tool. Evaluating and
comparing its metrics (Condition Number, Trace and Determinant) for different
sensors sets, it gives an idea of the observability, sensitivity and uncertainty of
each set. It can be proved that it corresponds to the inverse of state covariance
matrix and so it is computed as Information Filter propagation in absence of
process noise.

• The Sensitivity Indices (SI) give an image of how a certain measure is sensitive
whit respect to the states of the system. Analyzing the measurement Jacobian
matrix, it is possible to have a ranking of the relative importance, in state
estimation, of the measures considered.

These analyses are useful if implemented for a simple system. For the considered
system the FIM cannot be computed due to numerical errors and non-singular
matrices; the SI are not trustworthy because they strongly depend on scaling or
normalization matrices.

Sensors sets play a vital role in the framework, serving as inputs for the estimation
algorithm. A gradual process of removing measures from a large set is employed
to determine the optimal sensor set and the potential of the framework in having
an accurate estimation even with a small number of measures. Economic and
qualitative analysis, considering factors such as cost, instrumentation time, and
availability, aids in ranking the sensors and selecting the best performing set.

The Estimator Model and the EKF algorithm are packed into a Functional
Mock-up Unit in order to test the framework. To validate the framework, reference
models are developed to generate (from simulation) sensor data for testing and
validation. These models incorporate increased complexity, including the Dugoff
tyre model and elastokinematics, to simulate realistic scenarios. The robustness
of the framework is evaluated by considering expected modeling errors, such as
variations in vehicle mass, center of gravity height and tyre stiffness.

The estimation results for the front and rear axle loads demonstrate the frame-
work effectiveness. The errors over time are significantly reduced compared to the
bicycle model, indicating improved accuracy. However, accuracy for the rear axle
is slightly lower due to error propagation from the front axle. To address this, the
EKF is tuned by adjusting the uncertainty of the rear cornering stiffness, resulting
in enhanced estimation results. Increasing the uncertainty means let the cornering
stiffness changing more and adapting in order to have more accurate results. The
tuning phase results crucial because it allows to obtain promising estimation results
even using a poor sensor set, with common measures. This proves the potential of
the framework and the 15DoFs model.
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Future research directions can focus on investigating variations in tyre model
parameters, suspension characteristics and sensor calibration to improve the robust-
ness and reliability of the virtual sensing algorithms. Additionally, the development
of adaptive algorithms that can adjust model parameters based on online mea-
surements and feedback can enhance estimation accuracy under varying operating
conditions. Exploring advanced algorithms and sensor configurations for individual
wheel force estimation can provide valuable insights into tyre-specific issues and
contribute to targeted diagnostics and vehicle performance improvements. Exper-
imental validation studies, utilizing controlled test setups and real-world vehicle
testing, will further support and validate the proposed framework.

In conclusion, model-based virtual sensing presents a cost-effective, real-time
and accurate solution for estimating wheel forces in vehicle dynamics testing. By
eliminating the need for invasive modifications and providing real-time estimation
capabilities, it surpasses traditional methods like WFTs. By integrating complex
models, observability analysis and thoughtful sensor selection, it enables accurate
and reliable estimation of unmeasured variables in complex systems. The framework
potential lies in its ability to capture the intricate dynamics of the vehicle and its
components, leading to a better understanding of vehicle behavior and aiding in
vehicle development and testing processes.
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Chapter 1

Introduction

1.1 Problem Statement

In the field of vehicle dynamics testing, one crucial aspect is the measurement of
wheel forces. Wheel forces are of significant importance in the dynamical testing of
a vehicle as they provide essential data for evaluating performance, handling, and
safety characteristics: they play a crucial role in assessing a vehicle performance,
including acceleration, braking, and cornering capabilities. Monitoring wheel forces
helps analyze a vehicle’s handling and stability characteristics; they provide critical
insights for evaluating vehicle safety (e.g. suspension problems can be detected) [1].

Wheel Force Transducers (WFTs [2]) have been widely used for this purpose,
providing direct measurements of the forces exerted by each tire on the road
surface. However, WFTs present several limitations and challenges that hinder
their effectiveness in accurately capturing vehicle dynamics. The most relevant
drawback regards the installation of WFTs on the vehicle: it requires significant
modifications and alterations, often involving the removal of the tire and the
integration of specialized sensors. This process is time-consuming and can cause
additional costs, making it impractical for routine testing and evaluation scenarios.

Given the limitations of WFTs, there is a strong motivation to explore alternative
approaches for acquiring accurate and reliable wheel force information. Model-based
Virtual Sensing has emerged as a promising solution, aiming to estimate wheel
forces through mathematical models and advanced estimation techniques, without
the need for dedicated sensors. The motivation for adopting a virtual sensing
approach is multifaceted. Firstly, it eliminates the need for invasive modifications
to the vehicle, making it more convenient and cost-effective for both testing and
production vehicles. Virtual sensing also enables real-time estimation of wheel
forces, allowing for continuous monitoring and feedback during dynamic testing.
Additionally, virtual sensing can leverage existing sensor measurements, such as
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Introduction

wheel speeds and vehicle accelerations, thereby utilizing the data already available
in modern vehicle control systems.

1.2 Model-based Virtual Sensing
Model-based virtual sensing involves the development and utilization of mathemati-
cal models to estimate quantities that are difficult or expensive to measure directly.
In the context of vehicle dynamics, this approach aims to estimate wheel forces and
related parameters using a combination of vehicle models and measurement data [3].
By capturing the complex dynamics of the vehicle, these models provide insights
into tire behavior and contribute to improved vehicle testing and development.

The virtual sensing process typically involves two main steps: model development
and estimation [4]. In the model development phase, various techniques such as
multibody dynamics, finite element analysis and system identification are employed
to create accurate mathematical representations of the vehicle and its components.
These models incorporate the physical properties of the tires, suspension system
and other relevant factors to simulate the interaction between the vehicle and the
road surface [5]. In the estimation phase, the developed models are combined with
available sensor measurements, such as wheel speeds, accelerations and steering
angles, to estimate the wheel forces. Advanced estimation algorithms, such as
Kalman filters, particle filters or model predictive control, are employed to optimize
the accuracy and robustness of the virtual sensing process [6]. The estimated
wheel forces can then be used for various purposes, including vehicle development,
performance evaluation and safety assessment.

1.3 Past Studies
In the past, researchers extensively utilized the commonly called bicycle model
(Figure 1.1), a simplified representation of vehicle dynamics, to estimate tire forces
and identify cornering stiffnesses. The model assumes that the vehicle can be
represented as a single track with two wheels, neglecting the complexities of the
suspension system and tire dynamics. While this model provides a simplified
framework for analysis, it has limitations when it comes to accurately estimating
tire forces. One of the primary challenges with the bicycle model approach is the
assumption of constant cornering stiffnesses, which does not account for variations
due to tire characteristics, road conditions or the nonlinear behavior of tires during
dynamic maneuvers. This oversimplification can lead to inaccurate estimations
and compromise the reliability of virtual sensing results. Furthermore, the single
track model does not consider the influence of vertical forces on tire behavior.
Vertical loads, which vary with vehicle dynamics and road surface irregularities,
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Introduction

Figure 1.1: Single Track model

can significantly impact tire forces and cornering stiffnesses. Neglecting these
effects in the estimation process limits the accuracy and applicability of virtual
sensing techniques based on the bicycle model. More recent researches, tried to
push the potentials of the single track model, in the field of tire load estimation
and cornering stiffnesses identification, to the limit. An example is to combine
the simple model with a so-called adaptive linear tire model (See section 4.2),
enabling a better tracking of tire and vehicle dynamics across various operational
conditions [7]. Regrettably, despite utilizing the finest single track model, three
primary limitations are identified:

• The cornering stiffness estimation, thought the adaptive tire model, sometime
diverges and it cannot catch the real behaviour.

• The accuracy of the axle loads estimation, in the transient, is too poor
compared to the WFTs.

• Due to the simplicity of the model, it cannot catch particular dynamics in
the transient. For example, monitoring the estimated axle loads, suspension
parameters modifications are not captured.

These limitations prompt further exploration into utilizing more complex models.
Initial attempts have indicated that a 15 Degrees of Freedom vehicle model could
potentially enhance the accuracy and also pave the way for single wheel load
estimation. Due to confidentiality, these limitations and potentialities are not
documented in this work.

3



Chapter 2

Framework Presentation

2.1 Overview

As already said, a Model-based Virtual Sensing framework comprises several es-
sential steps, each contributing to the overall process. The first step is system
modeling, where the underlying dynamics of the system are captured and rep-
resented mathematically. This involves formulating equations that describe the
relationships between the system’s inputs, outputs and internal states.
The second step involves the estimation algorithm, which utilizes the system model
to estimate the unmeasured or inaccessible variables of interest. In this case, an
Extended Kalman Filter (EKF) was employed as the estimation algorithm. The
EKF combines the system model and available measurements to provide estimates
of the system states in real-time. By incorporating both system dynamics and
measurement information, the EKF can compensate for uncertainties and noise in
the sensor data, thereby improving the accuracy of the estimated states.
The third step is testing or validation, where the performance of the model-based
virtual sensing framework is assessed. This involves evaluating the accuracy and
reliability of the estimated wheel forces by comparing them against reference data.
It helps to ensure that the framework operates effectively and provides reliable
results under different operating conditions. Additionally, when dealing with
complex systems, an important consideration is observability. In the context of
state estimation, observability becomes crucial as it determines the feasibility and
accuracy of estimating the complete set of states and consequently of the virtual
sensors. By analyzing the observability of the system, one can identify which states
can be accurately estimated and which ones may remain unobservable or poorly
estimated. This analysis assists in designing effective estimation algorithms and
selecting appropriate sensor configurations.

In the specific case discussed, the vehicle model was constructed using Simcenter
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Amesim, a simulation software known for its capabilities in modeling complex
physical systems. The EKF algorithm was developed using C++ in the Visual
Studio environment, a popular integrated development environment (IDE) for
software development. This combination of modeling software and programming
tools allows for the creation of a reliable and efficient model-based virtual sensing
framework for the vehicle system. In addition, the vehicle model and estimation
algorithm are interfaced using the Functional Mock-up Interface (FMI) standard and
packaged into a Functional Mock-up Unit (FMU). By utilizing the FMI standard,
the FMU can be imported into simulation tools such as Testlab. Testlab provides a
controlled environment for testing and validating the model-based virtual sensing
framework. Within Testlab, the FMU can be connected to various input signals and
simulated scenarios to assess the performance of the system model and estimation
algorithm.

Overall, this framework integrates system modeling, estimation algorithms,
testing and observability analysis to enable accurate and reliable estimation of
unmeasured variables in complex systems.

2.2 Estimator Model

Figure 2.1: Vehicle Estimator Model Scheme

In model-based virtual sensing, an estimator model plays a crucial role in
estimating or predicting unmeasured or difficult-to-measure variables or parameters
based on available measurements. The estimator model utilizes mathematical

5



Framework Presentation

models and algorithms to infer the values of these variables by leveraging the
relationships between measured variables and the target variables. As illustrated in
Figure 2.1, the vehicle model consists of a Chassis model connected to various other
components such as the suspensions model, the braking system, the powertrain,
the steering system and the dynamics of the wheels and tires. This work focuses
on modeling the chassis and the dynamics of the tires (see Chapter 4). The block
labeled UserCosim enables co-simulation as stated by the FMU and in particular it
represents the inputs provided to the model (in the specific case, the steering angle
and the longitudinal velocity of the car).

2.3 EKF
This study utilizes an Extended Kalman Filter (EKF) as the central component of
the state estimation process. This approach offers a favorable balance in addressing
non-linear systems while facilitating a computationally efficient implementation [8].
Given a general non-linear system equations:

Model: ẋ = f(x,u, t) (2.1)
Measurements: y = h(x, t) (2.2)

Virtual Sensors: yvs = g(x, t) (2.3)

Let x denote the state vector, u the input vector and t represent the time. The
vector ẋ represents the rate of change of the states over time, while the vectors y
and yvs correspond to the measurements and quantities of interest (virtual sensors),
respectively. In order to evaluate the estimator, the linear and discrete Jacobian
matrices are acquired by linearizing and discretizing the non-linear equations. The
Jacobians are obtained through a linearization process centered around the a priori
estimation point (x̂k−1|k−1, tk) as follows:

Fc,k = ∂f(x, t)
∂x

-----
x̂k−1|k−1,tk

Hk = ∂h(x, t)
∂x

-----
x̂k|k−1,tk

(2.4)

Then the exponential discretization scheme is used:

Fk = eFc,k∆t (2.5)

Where Fk and Hk are the linearized and dicretized state transition Jacobian matrix
and measurement Jacobian matrix respectively, Fc,k is the linearized continuous
state transition Jacobian matrix and ∆t is the step size. By utilizing the linearized
Jacobians that were previously computed, we can establish the equations for the
general estimator in Algorithm 1.

6



Framework Presentation

Algorithm 1 Extended Kalman Filter (EKF) Algorithm
Require: Initial state estimate x̂0, state covariance matrix P0, process noise

covariance matrix Q, measurement noise covariance matrix R
1: for k = 1 to N do
2: Prediction Step:
3: State Prediction: x̂k|k−1 = f(x̂k−1|k−1,uk, tk)
4: Covariance Prediction: Pk|k−1 = FkPk−1|k−1FT

k + Q
5: Update Step:
6: Measurement Prediction: ŷk = h(x̂k|k−1)
7: Kalman Gain Calculation: Kk = Pk|k−1HT

k (HkPk|k−1HT
k + R)−1

8: State Update: x̂k|k = x̂k|k−1 + Kk(yk − ŷk)
9: Covariance Update: Pk|k = (I − KkHk)Pk|k−1

10: end for

The EKF-algorithm consists of two main steps:
1. Prediction Step:

• State Prediction: The EKF uses the system nonlinear dynamic model to
predict the state at the next time step x̂k|k−1, given the previous state
estimate x̂k−1|k−1 and any known control inputs ûk. This prediction is
represented by the state transition function f .

• Covariance Prediction: The EKF also predicts the covariance matrix
Pk|k−1, which represents the uncertainty in the state estimate. It accounts
for the process noise introduced by the system dynamics Q. The prediction
is performed by linearizing the system’s nonlinear equations using Jacobian
matrices (2.5).

2. Update Step:

• Measurement Prediction: In this step, the EKF uses the predicted state
to generate expected measurements ŷk using the nonlinear measurement
model. The measurement model describes how the state variables relate
to the sensor measurements.

• Kalman Gain Calculation: The Kalman Gain Kk determines the weight
given to the predicted state estimate and the actual measurements. It
is computed by combining the predicted covariance, the measurement
model, and the measurement noise covariance R.

• State Update: The predicted state estimate is updated by combining the
predicted state and the actual measurements yk using the Kalman Gain.
This step corrects the state estimate based on the new information from
the sensors.

7
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• Covariance Update: The covariance matrix is also updated based on the
Kalman Gain. The update accounts for the uncertainty in the measure-
ments and reduces the estimation error.

Considering the specific case of this framework, the State Prediction and the
Measuremet Prediction steps (3 and 6 of Algorithm 1) are the tasks of the Esti-
mator Model, that supplies the EKF-algorithm with these predicted quantities.
Furthermore, in this work, the quantities of interest yvs are governed by nonlinear
equations (2.3). To approximate these quantities, a first-order Taylor expansion
around a previously calculated state configuration (x̂k+1|k+1, tk) is employed to
derive their covariances. The approximation can be expressed as follow:

yvs ≈ g(xk|k, tk) +Gvs,k(x− xk|k) +Kvs,k(t− tk) (2.6)

where Gvs,k = ∂g(x,t)
∂x

---
x̂k|k

and Kvs,k = ∂g(x,t)
∂t

---
tk

are the Jacobians of the quantity of
interest. When evaluating Equation (2.6) around the current configuration point
(x̂k|k, tk) while assuming that the function g is approximately affine in this region,
it can be stated that, up to a first-order approximation of the Taylor series, the
quantities of interest will be a stochastic variable with the following mean and
covariance:

yvs,k = g(x̂k|k, tk) (2.7)
Pvs,k = Gvs,kPk|k(Gvs,k)T (2.8)

2.4 FMU
The FMU serves as a self-contained software component that encapsulates the model
and algorithm, allowing them to be easily exchanged and integrated into different
simulation environments [9]. This approach offers flexibility and interoperability, as
the FMU can be reused across different simulation platforms and environments that
support the FMI standard. It enables efficient testing and validation of the model-
based virtual sensing framework under various conditions, ensuring its robustness
and reliability before implementation in real-world applications. Therefore, the
use of the FMI standard and FMU packaging allows for seamless integration
and thorough testing of the vehicle model and estimation algorithm within the
Testlab environment, facilitating comprehensive evaluation and verification of the
framework’s performance. Figure 2.2 shows how the FMU is generated and tested
in this work. In particular the framework is composed by at least three Amesim
models, one for generating the sensors data, one used for the observability analysis
and the Estimator Model. Three main Matlab files are used to generate the FMU:
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Figure 2.2: Overview of the framework for generating the FMU

• Define AmeEKF: It defines all the variables involved in the Model. It is based
on the model for observability, that is a copy of the Estimator Model but
without the UserCosim block, the inputs are directly provided to the model,
it is a stand alone simulation model. the Matlab code obtains and stores all
the states, inputs, outputs number, names and units and the unique variable
identifire (a unique code for identifying a variable in a Amesim Model); it
identifies the integrated states and the unknown inputs; the user can choose
to analyze different cases, defining which are the sensors (observed variables)
considered for every case; it defines the matrices Q, R and the initialiations
for the EKF; finally it generate a number of .mat definition files equal to the
number of cases considered by the user.

• Observability Analysis: it does not interact directly with the FMU generation,
it gives some information about the observability and the stability of the
framework.

• Generate AmeEKF FMU: it generate effectively the FMU. it have as input
the definition files from Define AmeEKF and it checks if all the variables
are coherent with the Estimator Model; here the user defines which are the
Virtual Sensors variables. Finally it pack together three main objects: an
XML-file containing the definition of all variables of the FMU that are exposed
to the environment in which the FMU will be utilized, along with other model
information; a set of functions to set-up and properly run the model and the
EKF-algorithm; the Estimator Model itself, some documentation files, the
DLL (Dynamic-Link Library) that contains the C++ code in Visual studio
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with the EKF-algorithm.

To conclude, in order to figure out what testing an FMU means, Figure 2.3 shows
the scheme of the test process: the FMU receives some inputs, it runs internally
its model and estimation algorithm and it provides some outputs. Looking now at

Figure 2.3: FMU testing: from inputs to outputs

Figure 2.4, it shows better how the FMU works internally: it receives as inputs
the steering angle δ and the longitudinal velocity of the vehicle vx, the Estimator
Model acquires these data and gives as outputs the predicted states x̂ and observed
variables ŷ. These quantities are provided to the EKF algorithm with the sensors
measurements y (FMU input), the matrices Q and R and the initializations x0, P0.
The algorithm comes out with the updated states that are fed back to the estimator
model to set these new states and to estimate the updated virtual sensors ŷvs.

Figure 2.4: FMU internally work scheme
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Chapter 3

Observability Analysis

Observability analysis plays a crucial role in the field of state estimation, providing
insights into the ability to infer the complete internal state of a system based on
the available measurements. State estimation refers to the process of estimating
the unobservable or hidden variables within a system using measured data. These
hidden variables are often critical for understanding and controlling complex sys-
tems. Observability, in the context of state estimation, refers to the extent to
which the internal states of a system can be determined by its external outputs
or measurements. A system is considered observable if, given sufficient measure-
ments, it is possible to reconstruct the complete state accurately. Conversely, if
certain states cannot be inferred from the measurements, the system is said to
be unobservable. The concept of observability is closely related to controllability.
While controllability deals with the ability to drive a system from one state to
another using control inputs, observability focuses on the ability to determine the
internal states based on the available measurements. Both concepts are funda-
mental to system analysis and control, with observability serving as a prerequisite
for effective state estimation and control design. Observability analysis involves
evaluating the observability properties of a system by examining its dynamics
and measurement configurations. It aims to determine the set of states that can
be accurately estimated based on the available measurements and identify any
unobservable or poorly observable states. By analyzing observability, one can make
informed decisions regarding sensor placement, measurement selection and control
strategies to improve the accuracy and reliability of state estimation. Furthermore,
observability analysis extends beyond linear systems and is applicable to nonlinear,
time-varying, and stochastic systems. Nonlinear observability analysis deals with
understanding the observability properties of systems with nonlinear dynamics,
where traditional linear methods may not be directly applicable. Techniques such
as nonlinear observers (EKF) have been developed to address the challenges of
observability in nonlinear systems.
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In conclusion, observability analysis is a vital aspect of state estimation. By
evaluating the observability properties of a system, engineers can determine the
extent to which the internal states can be accurately estimated based on the
available measurements. This knowledge enables the design of effective state
estimation algorithms, sensor configurations and control strategies, ultimately
improving the performance and reliability of complex systems.

In this work, four different analyses have been implemented to examine observ-
ability:

• Popov–Belevitch–Hautus Analysis

• Singulat Value Decomposition of Total Observability Matrix

• Fisher Information Matrix

• Sensitivity Indices

The first two primarily address the quality and stability of the estimation, while
the latter two focus on the influence that external measurements have on state
estimation.

3.1 Popov-Belevitch-Hautus Analysis
The Popov-Belevitch-Hautus (PBH) analysis is a known method to get information
about observability for linear systems. Given a LTI system in state space form
(3.1)

ẋ = Ax + Bu
y = Cx + Du

(3.1)

a way to check the observability is checking the rank of a particular matrix:

rank

C
A − sI

C

D
∀s eig(A) (3.2)

If exists at least one eigenvalue for which the matrix is rank deficient, then the
system is non-observable, moreover the number of unobservable modes are equal
to the number of eigenvalues that make the matrix rank deficient [10].

In this work a complex and non-linear system is considered, all the aforemen-
tioned can be extended at this class of problem in different ways. In the specific case
a linearization of the system around the true states is considered. The observability
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analysis with this tool become a local observability analysis for a certain time
instant checking the condition (3.3).

rank

C
Φk − sI

Hk

D
∀s eig(Φk) (3.3)

Φk and Hk are the discretized Jacobians, linearized around the true state of the
simulated system.

To resume, in this work the PBH test is used to check a local condition of
observability for a certain time instant, using a linearized description of the system.

3.2 Singular Value Decomposition of Total Ob-
servability Matrix

Usually, the observability investigation starts with the standard observability
criterion. Because of the non-linearity of the problem, the observability matrix O
is the Kalman observability matrix [11] and it is based on the Jacobians Fk and
Hk computed in Equations (2.5) and (2.4):

O =



Hk

HkFk

HkF
2
k

...
HkF

n−1
k

 (3.4)

if the matrix is of full rank, meaning all its columns are linearly independent, then all
the states of the system can be observed or estimated. Furthermore, this condition
is sufficient for the estimator Riccati equation, a mathematical equation used in
control systems estimation, to converge to a stable solution. While the condition
mentioned above holds for local observability, which refers to observability within a
specific region or neighborhood of the system operating point, global observability
requires further analysis. Global observability considers observability across the
entire state space of the system. The proposed approach in [12] involves combining
observability matrices from different time steps into a single matrix. Each matrix
represents the observability of the system at a specific time step. By combining
these matrices, a comprehensive representation of the system observability across
multiple time steps can be obtained. The matrices are evaluated at evenly spaced
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time steps to ensure a representative coverage of the system dynamics:

Otot =



Ok=1
Ok=1+p

Ok=1+2p
...

Ok=N

 (3.5)

where k is the evaluation time step, N is the total number of time steps and p is an
integer, between 1 and N , that defines how many matrices are taken into account.

As for the local case, the rank of the Otot has to be computed in order to
say something about the global observability. It is known that a Singular Value
Decomposition (SVD) can be employed to determine the rank:

Otot = UΣVT (3.6)

where Σ is a square matrix having as the main diagonal the singular values while
matrices U and V contain the corresponding modes. If Otot is rank deficient, at
least one of the singular value is close to zero, the structure of Σ becomes:

Σ =



σ1 . . . 0 0 . . . 0
... . . . ... ... . . . ...
0 . . . σm 0 . . . 0
0 . . . 0 ≈ 0 . . . 0
... . . . ... ... . . . ...
0 . . . 0 0 . . . ≈ 0


=


Σo . . . 0
... . . . ...
0 . . . Σu

 ≈


Σo . . . 0
... . . . ...
0 . . . 0

 (3.7)

where m is the number of non zero singular values σi, so the rank of the total
observability matrix Otot. Having the relation stated in (3.7), the matrix of right
singular vectors V can be split:

VT =
C
Vo

Vu

D
(3.8)

where Vu is the matrix containing the modes that span the kernel of Otot, corre-
sponding to the zero singular values. Analyzing the components of these modes,
in particular looking at which component is zero or not, one can determine which
states are unobservable [13] and consequently cause the instability of the estimation.

3.2.1 Projection to an Observable Subspace
With estimation instability, it means practically that some elements of the covariance
matrix P become unbounded and they increase, introducing huge errors in the
estimation.
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The proposed approach in [12], suggests to consider Vo in relation (3.8), the
matrix containing the modes corresponding to an observable subspace of the system
(with the defined sensors set), as a projection basis to obtain a totally observable
system and a stable estimator. The new linearized Jacobians become:åFk = VoFkVT

o (3.9)æHk = HkVT
o (3.10)

As a consequence, using the SVD and (3.7), the new total observability matrix is:

OtotVT
o = UΣVT VT

o = U
C
Σo 0
0 0

D C
Vo

Vu

D
VT

o (3.11)

then, these relations can be proved:
VuVT

o = 0 (3.12)
VoVT

o = I (3.13)
Now, using (3.12) and (3.13) in (3.11), the following relation is obtained

OtotVT
o = U

C
Σo

0

D
(3.14)

(3.14) proves that the new observability matrix is of full rank.
The proposed approach leads to a modified version of Kalman Filter Algorithm,

with projected equations, showed in Algorithm 2

Algorithm 2 Projected Extended Kalman Filter (EKF) Algorithm
1: for k = 1 to N do
2: Prediction Step:
3: x̂k|k−1 = f(x̂k−1|k−1,uk, tk)
4: Pk|k−1 = (VoFkVT

o )Pk−1|k−1(VoFkVT
o )T + (VoQkVT

o )
5: Update Step:
6: ŷk = h(x̂k|k−1)
7: Kk = Pk|k−1(HT

k Vo)((HkVo)Pk|k−1(HkVo)T + R)−1

8: x̂k|k = x̂k|k−1 + VT
o Kk(yk − ŷk)

9: Pk|k = (I − Kk(HkVT
o ))Pk|k−1

10: Quantities of Interest:
11: yvs,k = g(x̂k|k, tk)
12: Pvs,k = (Gvs,kVT

o )Pk|k(Gvs,kVT
o )T

13: end for

Due to the projection, the covariance matrix Pk|k, computed at step 9, is not
anymore full size, but it is of size m, according to (3.7). As a result, the unobservable
states are excluded from the covariance equations, allowing them to remain stable.
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3.3 Fisher Information Matrix
The Fisher Information Matrix (FIM) is a fundamental concept in statistics and
estimation theory. It measures the amount of information that an observed data set
carries about unknown parameters in a statistical model. The FIM plays a crucial
role in understanding the observability of a system. In the context of observability,
the FIM is used to assess whether the parameters of a dynamic system can be
uniquely estimated or "observed" from the available measurements. It is defined, in
statistics, as the variance of the score function related to the estimation problem
[14].

The approach proposed in [14] consists in computing the FIM for different sets
of sensors and investigate three characteristics of this matrix:

1. The condition number (CN) is defined as the ratio of the largest singular value
to the smallest singular value (3.15). It is closely related to the rank of a
matrix and reflects the difficulty of performing matrix inversion. When the
number of rows (m) is smaller than the number of columns (n), the rank of the
FIM is at best equal to m, and minimizing the condition number helps achieve
this. By minimizing the condition number, redundancy among sensors can be
avoided, ensuring that no sensor provides redundant information compared to
another.

CN(FIM) = σmax

σmin

(3.15)

2. The trace (Tr) of the FIM is defined as the sum of the singular values (3.16).
In the case where m is smaller than n, the sum is limited to the first m singular
values. The trace represents the overall sensitivity of the sensors with respect
to the parameters and therefore should be maximized.

Tr(FIM) =
mØ

i=1
σi (3.16)

3. The determinant (Det) of the FIM is defined as the product of the singular
values (3.17). Similarly, the product is restricted to the first m singular values.
Since, as mentioned in point 1, at most m singular values are nonzero, this
quantity should be maximized. The inverse of the determinant serves as a
measure of the overall uncertainty in the estimated parameters.

Det(FIM) =
mÙ

i=1
σi (3.17)
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Furthermore, the following relation, called the Cramér-Rao inequality, states:

P ≥ P∗ ∆= I−1 (3.18)
where P is the covariance matrix defined in Algorithm 1, I is the FIM and P∗

is the "best can be done" in terms of performance of an EKF. More important is
that the inverse FIM can be computed following the same equations of covariance
matrix EKF propagation [15]. Thus, the following relation is defined:

Ik|k = (Φ−1
k|k−1)

T Ik|k−1Φ−1
k|k−1 + HT

k R−1Hk (3.19)
where Φ and H are the Jacobian matrices linearized around the true states of the
system (not around the estimated states as in the classical EKF). The relation (3.19)
equals the propagation of the inverse of the covariance matrix in the Information
Filter (a variant of EKF) [8] in absence of process noise (when Q is set to zero).

In conclusion, in this work, the FIM is computed as EKF propagation of
the inverse of covariance matrix considering different sensors sets, so different
measurements, and then, comparing the characteristic metrics (CN, Tr,Det) of
the different FIMs, the sets of measures can be evaluated.

3.4 Sensitivity Indices
Other tools to evaluate the importance of measures in the estimation are the so
called Sensitivity Indices SI. They give an image of how a certain measure is
sensitive whit respect to the states of the system [14]. The indications given by the
FIM are with respect to different sensors set, now this tool open the possibility to
rank a given measure (sensor) based on its contribution on the states estimation.
To analyze the relation between states and measure, considering that the system is
non-linear, the measurement Jacobian matrix H is considered, actually a scaled
version G = (

ñ
R)

−1
H is used. G takes into account the relative accuracy of each

sensor. Computing the SVD:
G = UΣVT (3.20)

Giving a practical interpretation of (3.20), G maps the space of states to the space
of measures, while looking at the SVD, it is a sort of change of reference frame
in the spaces of input and output. In the new representation, the columns of V
represent the frame of states, the columns of U represent the frame of measures
and Σ is the mapping. Having this new interpretation the SI can be computed as:

SIi = Ui

√
ΣΣT UT

i i = 1...ns (3.21)
where Ui are the columns of U form (3.20) and the number of SI is equal to the
number of measures (sensors) ns. Obviously this analysis is performed considering
the system with the largest sensor set, considering all possible measures available.
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3.5 Simple 3DoF System Example
In this section an example of the observability analysis will be performed on a simple
system composed by three masses linked by two nonlinear springs, as depicted
in Figure 3.1. In the system considered m1 = m2 = m3, k1 = k2, the inputs are

Figure 3.1: 3DoF system composed by masses and non-linear springs

symmetrical sinusoidal excitation Fl = Fr, the states of the system are clearly all
the positions and velocities of the masses [ẋ1 x1 ẋ2 x2 ẋ3 x3]. Three sensors sets
are considered: one that measures only the position of the inner mass, the second
measures all the positions, the last measures all the accelerations (Table 3.1).

Table 3.1: Sensors Sets building for 3DoF system

Sensors Set
1 x2
2 x1 x2 x3
3 ẍ1 ẍ2 ẍ3

Firstly the PBH test can be performed, instead of computing the rank, the
maximum condition number for the initial and final time of simulation of the
PBH matrices is considered (Figure 3.2). The results are clear for the sensor set
configurations 1 and 2 (x2 and xall), that is the system is observable considering
measuring all the positions, while is non-observable measuring only the position of
the inner mass. The results are not clear for the sensor set configuration 3, when all
the accelerations are measured. This ambiguity can be solved computing the SVD
of the total observability matrix. Looking at the singular values (Figure 3.3), it is
now clear that the cases 2 and 3 lead to an observable system, while considering
the set 1, two singular values are close to zero, so two unobservable modes are
present.

It is important spending a couple of words on the system when the sensors set 1
is used. If the system have as input a symmetric excitation, the inner mass is not
moving, while the outer masses move in an opposite way. Thus, measuring only the
position of the inner mass do not give information about the other two masses, then
it is for definition an unobservable system. This unobservability has been confirmed
by the two analysis aforementioned, but it is important to show the effect on the
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Figure 3.2: PBH analysis. Condition numbers plotted for the three cases
(x2, xall, aall) at time t = 0s and t = 10s

estimation stability and the potentiality of the projection approach proposed in
section 3.2.1. In Figure 3.4 the variance of the states (diagonal terms of P matrix)
is plotted, without the projection and with the projection. If the projection is not
applied, the variances relative to the states of the outer masses are unbounded and
they increase, leading the EKF algorithm to instability and affecting the estimation.
When the projection to the observable subspace is applied, the effect on variances
is clearly visible in Figure 3.5, in which the curves relative to the projection are
zoomed in, they are stable and lower in magnitude. The variances associated to
x2 and ẋ2 do not change with the projection, the states associated to the inner
mass, in this configuration are observable. In order to go into more details on this
aspect, the components of the right singular vectors (related to the unobservable
modes) are investigated. Table 3.2 shows that the components of last two singular
vectors, different from zero, are the once referring to the states of outer masses, so
the unobservable ones.

Table 3.2: Singular vector components related to unobservable modes considering
Set 1

Singular Vectors - Set 1
v5 −0.002 −0.707 0 0 0.002 0.707
v6 −0.707 0.002 0 0 0.707 −0.002

State x1 ẋ1 x2 ẋ2 x3 ẋ3
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Figure 3.3: SVD(Otot). Singular values for the three sensors sets considered

Until now, the observability of the system has been investigated. Involving
the FIM and SI, the sensor side analysis related to quality of estimation can be
accomplished as well, having a complete idea of what is the best configuration
in terms of observability, sensors involved and quality of estimation. In Figure
3.6 the parameters of the FIM (CN, Tr,Det) are compared with respect to the
three sensors sets used. If for the condition number there are no differences, the
third sensor set (all the accelerations) have better performance concerning the
trace and determinant because these metrics have to be maximized, as explained
in section 3.3. In order to have an idea of which sensor is more sensitive to the
state estimation with respect to others, the sensitivity indices can be computed. In
Table 3.3 are listed the indices, ranked from the highest to the lowest, conferring a
relative importance to the acceleration measures.

In order to resume, given the system depicted in Figure 3.1, built the three
sensors sets in Table 3.1, the observability analysis is conducted using all the
tools introduced in chapter 3. It came out that the best configuration of the
system in view of state estimation is measuring all the accelerations: the system is
observable (the ambiguity from the PBH analysis is solved by considering the total
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Figure 3.4: Variances associated to the states for the 3DoF system with and
without the projection approach

Figure 3.5: Zoom of variances associated to the states for the 3DoF system whit
projection approach

observability matrix) and measuring acceleration is the best set of sensors in terms
of sensitivity to the states and uncertainty.
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Figure 3.6: FIM condition number, trace and determinant for the three sensors
sets considered

Table 3.3: Sensitivity Indices for 3DoF system

Sensor SI
ẍ2 853.57
ẍ1 426.78
ẍ3 426.78
x1 1.07
x3 1.07
x2 1.06
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Chapter 4

15 DoFs Model

Figure 4.1: 15 DOFs model developed in Simcenter Amesim
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The 15 degrees of freedom model is the so called Estimator Model or digital twin.
It is a numerical model developed in Simcenter Amesim that takes into account the
kinematics and the dynamics of a simplified vehicle model in order to predict the
states, the outputs and the virtual sensors quantities. The model (Figure 4.1) is
composed by a multibody 15 DoFs chassis to which all the subsystems are linked:
the powertrain system, the braking system, the mechanical power steering system,
the suspension systems rear and front axle, the kinematic and dynamic tyre models,
sensors if needed. This work focuses its attention on the chassis, defining the states
of the system, and on the tire model, fundamental in order to estimate the forces
in the tyre-road contact.

4.1 Chassis

Figure 4.2: Multibody 15 DoFs chassis block on Amesim

The chassis is the core of the model, it takes as inputs all the kinematic quantities
by the subsystems (Figure 4.2). In this work the chassis is a 15 DoFs model. The
degrees of freedom are depicted in Figure 4.3 and they are: xG, yG, zG position
of center of gravity; ϕ, θ, ψ roll, pitch and yaw angles; θrel11, θrel12, θrel21, θrel22 the
relative angles of the front-left, front-right, rear-left, rear-right wheel respectively;
zrel11, zrel12, zrel21, zrel22 the relative displacements of the spindles; ycrav the steering
rack displacement. Normally in the state space representation, the states are
the degrees of freedom plus their derivatives, resulting in this case thirty states.
Actually the real size of the system considered is twenty-four for two reasons:

• Two augmented states are added, the cornering stiffnesses front and rear (CyF ,
CyR); they are fundamental in order to precisely estimate the axle lateral
forces. Identifying these two quantities in the state estimation, the dynamics
of the tyres are better captured.

• xG, yG, θrel11, θrel12, θrel21, θrel22, ycrav, ẏcrav are selected as fixed states. Fixing
some states in Amesim means excluding these states from the linearization; it
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allows to exclude (possible unobservable) non-relevant dynamics. As a result
the system size is reduced, the EKF algorithm is sped up and it permits
to exclude some measurements, such as the steering rack displacement and
velocity that are difficult and expensive to measure.

Figure 4.3: 15 DoFs Vehicle Model

The system inputs (steering angle δ and longitudinal velocity vx), and states
are summarized in the Table 4.1

Table 4.1: Inputs and states of the 15DoFs model

Inputs States
δ ẋG ẏG żG zG ϕ̇ θ̇ ψ̇ ϕ θ ψ żrel11 zrel11 θ̇rel11 żrel12, zrel12
vx θ̇rel12 żrel21, zrel21 θ̇rel21 żrel22 zrel22 θ̇rel22 CyF CyR

4.2 Linear Adaptive Tyre Model
The linear adaptive tyre method bases its model on the relation between the lateral
force Fy, acting on the tyre, and the wheel side-slip angle β. The general expressions
for this kind of model are:

Fy = Cyβ (4.1)
dCy

dt
= 0 (4.2)
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where Cy is the cornering stiffness, it represents the tyre resistance to lateral
force during cornering maneuvers. The side-slip angle β represents the sideways
deformation of the tyre from its intended direction of motion as depicted in Figure
4.4 The relation (4.1) states for the linear part of the model, because the lateral

Figure 4.4: Deformation of a tyre and Side-slip angle

load is linearly dependent to the side-slip angle; the relation (4.2) consider the
adaptive part, it defines a random walk model that in practice allows the cornering
stiffness to change (Figure 4.5) . Using the EKF framework, the cornering stiffness
is adapted dynamically based on the measured data. It allows the model to better
track the dynamics [7].

In this work, the model in Figure 4.6 is considered, but the focus is not on
the individual forces, but on the lateral axle loads front and rear, so the following
relation states for the tyre models:

β̄1 = β11 + β12

2 β̄2 = β21 + β22

2 (4.3)

Fy11 = Fy12 = Cy1β̄1 Fy21 = Fy22 = Cy2β̄2 (4.4)
Mz11 = Mz12 = Cy1β̄1ϵ Mz21 = Mz22 = Cy2β̄2ϵ (4.5)

In (4.3) β̄1 and β̄2 are the mean values of the individual side-slip angles front an
rear respectively. Since the interest is on the total lateral load, in the relation (4.4),
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Figure 4.5: Characteristic Lateral Force vs Side-slip [7]. The cornering stiffness
Cα is the slope of the linear part considering a linear tyre model, if the model is
linear adaptive, it can vary.

Figure 4.6: Scheme of the vehicle model with forces and angles

the individual wheel lateral loads are considered equal in right and left side and
proportional to the mean side-slip angles. In this model the self-aligning moments
Mzii are modeled as well. They are the torques, developed by the tyres while
cornering, that tend to align the wheel plane with the vehicle direction of motion.
Mz is computed basically multiplying the lateral force by the pneumatic trail ϵ
(relation (4.5)) that is caused by the force build-up: the distribution of lateral force
in the contact patch have as a resultant a force shifted by ϵ from the center of the
wheel (Figure 4.7). The relations (4.3), (4.4), (4.5) are implemented in the Amesim
model as showed in Figure 4.8.
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Figure 4.7: The distribution of lateral force in the contact path shifts the resultant
lateral force by the pneumatic trail.

Figure 4.8: Amesim implementation of tyre model.
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Chapter 5

Reference Models

The reference models are numerical models, developed in Simcenter Amesim,
whose purpose is to generate sensors data (and reference signals to compare with
estimated as well). As explained in Chapters 1 and 2, the inputs of the frameworks
are the sensors measures, normally they come from a test campaign in which
an instrumented vehicle is drove through different maneuvers. This work is an
early analysis about the potentiality of the 15DoFs model in tire load estimation
with respect to the widely used "Bicycle Model"; for that reason, data from a test
campaign were not available. Different models had been built, with increasing
complexity, in order to validate the framework. To obtain higher complexity, three
solutions are adopted:

• A more complex tyre model is used, like the Dugoff model.

• The Elastokinematics is added to the wheel model.

• Some expected modelling errors are included.

5.1 Dugoff Tyre Model
The Figure 5.1 shows an overview of the reference model. Comparing with the
estimator model in Figure 4.1, it is visible that, overall, the model is the same,
but two elements are different: there is not the FMI block, because this is a
stand-alone model that has to simulate the system response; more important is
that the model of tyres is changed (at the bottom of the Figure 5.1). In this case
the model implemented is the Dugoff tyre model, that generates the tire contact
force at the tyre-road interface. This force modeling is based on a macroscopic
and phenomenological theory developed by Howard Dugoff [16]. The Dugoff tire
model builds upon the original Coulomb’s friction theory and introduces a more
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Figure 5.1: Reference model with Dugoff tyre

realistic concept called elliptical adherence. This concept is visualized through
curves representing iso-side slip and iso-longitudinal slip at a specific vertical load
5.2. In these curves, the module of the tangential lateral force component decreases
while the longitudinal force component increases. The Dugoff tire model expands
upon Coulomb’s friction theory by providing a characterization of tire traction and
lateral shear forces as functions of the tire/road friction coefficient (µ) and the
vertical load applied to the contact patch (Fz). In Figure 5.3 the characteristics
of lateral (longitudinal) force versus side (longitudinal) slip angle are shown. It is
visible that for a certain range of slip angles, the relation is linear and the slope is
the cornering stiffness, then increasing the slip angle there is a saturation and the
relation becomes non-linear. The curves of different colors shows that increasing
the vertical load obviously, the longitudinal and lateral forces increase in magnitude
as well.
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Figure 5.2: Lateral load vs longitudinal force for a given vertical load, curves
iso-longitudinal slip angle (left graph) and iso-side-slip angle (right graph)

Figure 5.3: Characteristics of Dugoff tyre model: longitudinal force vs longitudinal
slip angle (left) and lateral force vs side-slip angle (right)

5.2 Elatokinematics

Figure 5.4 shows the reference model, developed in Amesim, in which Dugoff
tyre model and elastokinematics are modeled in order to take into account more
complexity. The elastokinematic model is a computational framework used to
determine the elastic displacement of a wheel in response to the constraint forces
exerted by the axle system. This displacement includes both the elastic displacement
of the wheel center and the elastic angular displacement of the rim plane. When a
load is applied, the axle system exhibits flexibility, leading to elastic deformations in
the wheel. These deformations are quantified using an analytical linear formulation,
which takes into account the properties of the axle system, such as its stiffness and
compliance. The elatokinematic model is seen as a flexibility component, providing
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Figure 5.4: Reference model with Dugoff tyre and Elastokinematics

displacement from an effort:

dx =


dxelas

dyelas

dϵelas

dηelas

dδelas

 = [S]



Fx

Fy

Mϵ

Mη

Mδ

Fdamp


= F (5.1)

with dxelas, dyelas, dϵelas, dηelas, dδelas being respectively the longitudinal displace-
ment, the lateral displacement, camber angle, self rotating angle and steering
angle due to elastic effects. The elastic induced displacements depend on five
constraint efforts: two forces on x and y axis (Fx, Fy), three moments around x, y
and z axis (Mϵ,Mη,Mδ) and force in damper elements (Fdamp). [S] is the flexibility
matrix. Furthermore, the elastokinematic effects formulation introduces an implicit
formulation of the elastic deformation under load:

dx = [S]F(x) (5.2)
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This implicit formulation (5.2) leads to algebraic loops on each component of
induced displacement vector dx; the model used provides the dynamic of elastic
deformation employing a second order lag formulation as follow;

ẍ = 2πωn(2πωn(xin − x) − 2ζẋ) (5.3)

with: x is the elastic displacement part of elatokinematic effect, with respect to
derivatives ẋ and ẍ; xin is the elastic displacement part of elatokinematic effect
computed with flexibility matrix, considered input of the second order lag; ωn and
ζ are the natural frequency and damping ratio of the second order lag respectively.
All the information about elastokinematics are taken from a Simcenter Amesim
guide for the specific component.

5.3 Expected Modelling Errors
In order to validate the framework, some expected modelling errors are considered
in the reference models. The aim is to test if the framework is robust with respect
to this common expected errors.

When constructing a vehicle model, it is important to recognize that there may
be certain modeling errors associated with various parameters. Three significant
parameters that can introduce modeling errors in a vehicle model are:

• Mass of the Vehicle (Mvehicle): The accurate determination of the vehicle
mass is crucial for dynamic analysis and simulation. Modeling errors in the
mass estimation can arise due to uncertainties in the weight distribution, the
inclusion of additional equipment or modifications or incomplete knowledge
of the vehicle components. These errors can affect the vehicle acceleration,
braking, and handling characteristics.

• Height of the Center of Gravity (zCoG): The vertical position of the center of
mass has a substantial impact on a vehicle stability and handling. Inaccuracies
in estimating the height of the center of mass can arise from assumptions
about the distribution of mass within the vehicle or errors in measuring the
position of heavy components. Incorrect estimation of the center of mass
height can lead to inaccurate predictions of vehicle roll, pitch and stability
during maneuvers.

• Vertical Tire Stiffness (Ktyre): The stiffness of the tires is a critical parameter
in vehicle modeling, affecting the vehicle ride comfort, handling and tire-road
interactions. Modeling errors in tire stiffness can occur due to variations in
manufacturing tolerances, changes in tire pressure or inaccurate characteriza-
tion of the tire material properties. These errors can affect the accuracy of
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simulations related to tire forces, vehicle response to steering inputs and the
prediction of tire slip behavior.

From the experience, the errors are quantified in Table 5.1. They are applied
individually, one by one, on the reference model with only the Dugoff tyres (Figure
5.1).

Table 5.1: Expected modelling errors

Parameter Percentage Error (%)
Mvehicle ±5
zCoG ±5
Ktyre ±20
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Chapter 6

Sensors Sets Building

Building the sensors sets is a fundamental phase of the work in a model-based
virtual sensing approach. Their signals are the inputs of the framework and they are
compared with the predicted outputs (coming from the estimator model) in order
to properly update the states in the EKF algorithm. These measures normally are
acquired with a test campaign, in this work synthetic data, generated by simulation
of reference models, are used.

Having a performing sensors set lead the estimation to accurate values of states
and virtual sensors, so it is important to have all the measures that help the EKF
algorithm to have good performances; at the same time it is worth considering
sensors that are cheap in terms of time of instrumentation and money. For this
reason a simple economical and qualitative analysis has been developed: a large
number of sensors are listed and ranked basing on the economical cost of the
sensors, the cost and time of instrumentation and the availability in a hypothetical
common costumer. In Table 6.1 all the sensors considered are listed and they are
ranked in three categories; from standard to advance the cost of the sensors and
the instrumentation cost and time increase, while the availability in a costumer
decreases. The approach used to build the sensors sets consists in going from a
large set to a small set, gradually removing measures. Five sensors sets are built,
starting from considering all the measures and then removing measures in order to
obtain reduced sets. The aim is to test the framework with all the sets in order to
see the potentiality: how far can we push cutting out measures while still getting
reliable results? In Table 6.2 all the information about the measures considered
and the composition of the sets are summarized. In particular the table shows: the
economic/qualitative category associated to measures; the measures are grouped
with respect to the physical sensor employed (IMU, GPS,...); there is a column
containing the standard deviation values associated to each measure, the values are
computed plotting all the simulated reference signals and taking the 0.05% of the
maximum range. These uncertainties correspond to the values (squared) present
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Table 6.1: Sensors list ranked by three categories: standard (S), medium (M),
advance (A)

Category Sensor Measures Symbols

S

Absolute Velocity of CoG ẋGẏGżG

Absolute Vertical Position of CoG zG

Carbody Roll, Pitch, Yaw rate ϕ̇θ̇ψ̇
Carbody Roll, Pitch, Yaw angle ϕθψ
Carbody Longitudinal Acceleration ax

Carbody Lateral Acceleration ay

Carbody Front Axle Slip Angle β1
Carbody Rear Axle Slip Angle β2
Steering Torque Tδ

M

Toe, Camber, Self-rotating Angle front-left wheel δ11ϵ11η11
Toe, Camber, Self-rotating Angle front-right wheel δ12ϵ12η12
Toe, Camber, Self-rotating Angle rear-left wheel δ21ϵ21η21
Toe, Camber, Self-rotating Angle rear-right wheel δ22ϵ22η22
Vertical Relative Displacement of front-left Suspension zrel11
Relative Rotary Velocity of front-left wheel θ̇rel11
Vertical Relative Displacement of front-right Suspension zrel12
Relative Rotary Velocity of front-right wheel θ̇rel12
Vertical Relative Displacement of rear-left Suspension zrel21
Relative Rotary Velocity of rear-left wheel θ̇rel21
Vertical Relative Displacement of rear-right Suspension zrel22
Relative Rotary Velocity of rear-right wheel θ̇rel22

A

Side-slip Angle front-left wheel β11
Side-slip Angle front-right wheel β12
Side-slip Angle rear-left wheel β21
Side-slip Angle rear-right wheel β22

on the diagonal matrix R of EKF. The last columns represent the composition
of each sensors set: the first is the largest with all measures considered, then the
wheels speeds are removed because of their high uncertainty and their not relevant
information; after that other measures are gradually removed until getting the last
set, that is the smaller and it includes only standard sensors. It is important to
remark that even with the largest sensor set, the approach is worth with respect to
employ the WFTs.
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Chapter 7

Results

In this chapter, the estimation results of the lateral loads of front and rear axles
are reported. For this purpose, the inputs and initialization of the framework have
to be defined. As already mentioned, the inputs of the system (estimator model)
are the steering wheel angle (δ) and the longitudinal velocity (vx) (Figure 7.1).
The former represents the steering maneuver done by the vehicle, in this case a
step-steer maneuver and a sine-steer maneuver are considered; the latter is the
velocity imposed to the vehicle in the longitudinal direction and it is considered
more or less constant. The two signals considered are not perfect signals, but they
are real signals acquired by driving tests, so affected by noise and not with exactly
constant amplitude.

(a) (b)

Figure 7.1: Steering maneuver (7.1a sine-steer, 7.1b step-steer) and longitudinal
velocity input

Other important quantities to be mentioned are the initialization and matrices
of the EKF. In particular the initial state estimate vector x̂0, the process noise
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covariance matrix Q, the initial state covariance matrix P0 and the measurement
noise covariance matrix R. The components of x̂0 are taken from simulation models,
Q is a diagonal matrix and all the uncertainty is on the cornering stiffnesses that
due to the linear adaptive tyre model are the most critical parameters and finally
P0 is matrix of zeros because the initial state vector is not affected by uncertainty.
All the above specified quantities are present in Table 7.1. R is a diagonal matrix
as well and the diagonal elements are the values of standard deviation present in
Table 6.2 squared.

Before showing the estimation results it is important to consider the observability
analysis conducted on the system, having an overview of the methods used and
some mentions on the projection approach for this system.

Table 7.1: Initialization state vector, square root of diagonal elements of state
covariance matrix and process noise covariance matrix

State x0
√

Qii

ñ
P0ii

Unit
ẋG 17 0 0 m/s
ẏG 0 0 0 m/s
żG 0 0 0 m/s
zG 0.38 0 0 m

ϕ̇ 0 0 0 °/s
θ̇ 0 0 0 °/s
ψ̇ 0 0 0 °/s
ϕ 0 0 0 °
θ 0 0 0 °
ψ 0 0 0 °

żrel11 0 0 0 m/s
zrel11 0 0 0 m

θ̇rel11 3264.76 0 0 °/s
żrel12 0 0 0 m/s
zrel12 0 0 0 m

θ̇rel12 3264.76 0 0 °/s
żrel21 0 0 0 m/s
zrel21 0 0 0 m

θ̇rel21 3264.76 0 0 °/s
żrel22 0 0 0 m/s
zrel22 0 0 0 m

θ̇rel22 3264.76 0 0 °/s
CyF 660 0.1 0 N/°
CyR 910 0.1 0 N/°
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7.1 Observability Results

(a) (b)

Figure 7.2: PBH analysis: 7.2a is the sine-steer input meneuver with the markers
in the specific times in which PBHs are computed, 7.2b shows the condition numbers
of PBH matrices for all the sets and for different times

(a) (b)

Figure 7.3: PBH analysis: 7.3a is the step-steer input meneuver with the markers
in the specific times in which PBHs are computed, 7.3b shows the condition numbers
of PBH matrices for all the sets and for different times

The first is the PBH test. It is conducted considering two inputs: the sine-steer
(Figure 7.2) and the step-steer (7.3) maneuvers. It is important to remark then
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that every observability analysis does not depend from the type of input, but it
can be useful to show some results. Plotting the condition numbers, shows how
much a system is observable (or not) in a specific time instant and considering a
specific sensor set. It is clear that the observability decreases (condition numbers
increase) from sensor set 1 to sensor set 5 because the system looses information.
Another important aspect is that the system has a lack of observability when
the vehicle goes straight, while during the maneuver the system is observable.
Intuitively the unobservable states could be the cornering stiffnesses because, when
the car drives in a straight line, the wheels slip angles and the lateral forces are
equal to zero and looking at the relations (4.1) and (4.4), it is clear that the
cornering stiffnesses cannot be determined. Moving to the analysis of the total
observability matrix through SVD, in Figures from 7.4 to 7.8, the singular values
of every total observability matrix, computed considering different sensors sets and
the components of the singular vectors that belong to the unobservable subspace.
Looking at Figure 7.4, it is visible a little gap before the last two singular values and
the corresponding singular vectors present the components related to the cornering
stiffnesses different from zero. Considering the other sensors sets it seems that
the size of the unobservable space is six and the states affected by unobservability
are the cornering stiffnesses and the relative wheels speeds as well. The other
two analysis tools, The FIM and sensitivity indices, are not available for this
system. The former is not possible to compute because of some numerical issues in
propagating the FIM and also due to the initialization of FIM that is defined as the
inverse of P0 that in this case, for a matter of stability of EKF algorithm, is a matrix
of zeros; the latter is a tool that is strongly depending on normalization. Due to
complexity and difference between quantities involved in states and measurements,
the normalization or scaling matrices change the results and the ranking of the
sensors, so the sensitivity indices result as not trustworthy indicators.
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Figure 7.4: Singular Values (σi) of total obsevability matrix Otot and components
of singular vectors belonging to the unobservable subspace, considering sensors set
1 (on the x-axis of singular vectors plot the referring states are reported)

Figure 7.5: Singular Values (σi) of total obsevability matrix Otot and components
of singular vectors belonging to the unobservable subspace, considering sensors set
2 (on the x-axis of singular vectors plot the referring states are reported)
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Figure 7.6: Singular Values (σi) of total obsevability matrix Otot and components
of singular vectors belonging to the unobservable subspace, considering sensors set
3 (on the x-axis of singular vectors plot the referring states are reported)

Figure 7.7: Singular Values (σi) of total obsevability matrix Otot and components
of singular vectors belonging to the unobservable subspace, considering sensors set
4 (on the x-axis of singular vectors plot the referring states are reported)
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Figure 7.8: Singular Values (σi) of total obsevability matrix Otot and components
of singular vectors belonging to the unobservable subspace, considering sensors set
5 (on the x-axis of singular vectors plot the referring states are reported)

Taking the Figure 7.4, the gap between singular values is not so clear, so it
cannot be proved a priori the advantage in using the projection approach. In order
to go into details, a local analysis is performed. The singular values evolution in
time is plotted for a sine-steer (Figure 7.9a) and step-steer (Figure 7.9a) input.
They have been computed considering the SVD of the observability matrices of all
the time instants. It is clear that there is a gap, more marked at the beginning (the
vehicle goes straight). The idea is to consider a local projection basis: every time
instant (or every some time instant) the local observability matrix is computed and,
according to number of the singular values that are lower than a certain threshold,
the EKF is projected into the observable subspace. The problem is in choosing
the threshold: considering the Threshold 1, it means basically apply the entire
projection approach, but in this case, since all the uncertainty is on the cornering
stiffnesses, it basically means doing a pure simulation of the system; considering
the Threshold 2 allows in principle to overcome the unobservability of the first
part, but actually the crossing points introduce in the estimation algorithm lots of
shocks. In Figure 7.10 the variance propagation of cornering stiffnesses (without
any projection) is depicted and it is clear that the algorithm is stable in any case
because after rising, the variances become stable during the maneuver.
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(a) (b)

Figure 7.9: Local singular values evolution in time

(a) (b)

Figure 7.10: Local singular values evolution in time

7.2 Estimation Results

In this chapter the estimation results regarding the lateral loads of front and rear
axles are presented. The lateral loads are computed as sum of individual load as
follows:

F1 = F11 + F12 F2 = F21 + F22 (7.1)
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There is is no need to project and sum the longitudinal force contribution because
the lateral and longitudinal forces can be considered decoupled due to the small
steering and side-sleep angles.

In the work only the estimation results considering a step-steer maneuver are
reported because the transient and build-up section of the force is more visible.
The main focus of this work is the accuracy of the lateral loads during the build-up
phase because, due to the dynamics, it is the most difficult part in which obtaining
a good estimation and, moreover, it is the discriminant part to decide if the virtual
sensing approach with 15DoFs model can lead to effective advantage with respect
to WFTs. The same approach with the single track model led to errors in time,
during the build-up phase, up to 30 ms that is too much.

7.2.1 Front Axle Load

The estimated front axle loads are plotted comparing the reference forces, coming
from the simulated reference models, with the estimation results obtained con-
sidering the different sensors sets (Figures from 7.11 to 7.15). It is important to
note that, during the transient, the errors over time, even in the worst case, are
less than 10-15 ms, so this approach results in having more than halved the errors
compared to the bicycle model. The framework results to be quite robust with
respect to the presence of modelling errors (Figures 7.12, 7.13, 7.14). As expected
there is a loss of accuracy considering the reference model with elastokinematics
(Figure 7.15), because it introduces difficult dynamics. For all the estimations, the
last three sensors sets (set 3,4,5) give quite the same results, so there is not a great
advantage in using a more complex set (such as set 3) with respect to a smaller
one (set 5). It is important to notice that before t ≃ 3.52s, the estimated loads are
indistinguishable, after that for sensors sets 1 and 2, the signals top the reference,
while for the other sets, the estimated loads are lower.

7.2.2 Rear Axle Load

The estimated rear axle loads are plotted comparing the reference forces, coming
from the simulated reference models, with the estimation results obtained consider-
ing the different sensors sets (Figures from 7.16 to 7.20). In this case, the results
are less accurate with respect to the front axle. It happens because commonly the
errors propagates from the front axle, where there is the steering action, to the rear
one, accumulating and affecting the estimation quality. It is also clear from the
fact that the estimated signals, for every sensors sets, over-estimate the reference.
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7.2.3 Tuning Effect
In order to overcome the errors accumulation in rear axle, a solution could be trying
to tune the EKF. Tuning the EKF means making action on Q and R matrices in
order to obtain better results. In this case it is clear that the main parameter to
change is the uncertainty of the rear cornering stiffness (in Q matrix). Increasing
this uncertainty, it allows the the rear cornering stiffness to better adapt to the
system dynamics, mitigating the errors propagation. Taking into account two
sensors sets, the tuning effect on estimation results is shown in Figures from 7.21 to
7.30. The set 2 is one of the most complete, giving a large quantity of information,
thus there is no need to tune the front axle cornering stiffness uncertainty, because
the estimation is already accurate, while increasing the rear cornering stiffness
uncertainty lead to a surprising better results in rear forces estimation. It is
interesting looking at the effect that tuning has on the estimation with sensor
set 5. It is the simplest set, which contains only standard measures. Tuning
both front and rear cornering stiffness uncertainties, the results in estimation are
promising, considering in fact the simplicity of the set used. The most significant
result is depicted in Figure 7.30, where the loads estimated with tuning can catch
the complex dynamics introduced by elatokinematics with no great differences (in
transient) between the two sensors sets used.
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(a)

(b) Build-up zoom

Figure 7.11: Front Axle Load Estimation. Dugoff tyre reference model
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Results

(a)

(b) Build-up zoom

Figure 7.12: Front Axle Load Estimation. Dugoff tyre reference model + error
on car mass
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Results

(a)

(b) Build-up zoom

Figure 7.13: Front Axle Load Estimation. Dugoff tyre reference model + error
on CoG heigh
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(a)

(b) Build-up zoom

Figure 7.14: Front Axle Load Estimation. Dugoff tyre reference model + error
on tyre stiffness

51



Results

(a)

(b) Build-up zoom

Figure 7.15: Front Axle Load Estimation. Dugoff tyre reference model + elas-
tokinematics
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(a)

(b) Build-up zoom

Figure 7.16: Rear Axle Load Estimation. Dugoff tyre reference model
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Results

(a)

(b) Build-up zoom

Figure 7.17: Rear Axle Load Estimation. Dugoff tyre reference model + error on
car mass
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(a)

(b) Build-up zoom

Figure 7.18: Rear Axle Load Estimation. Dugoff tyre reference model + error on
CoG heigh
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(a)

(b) Build-up zoom

Figure 7.19: Rear Axle Load Estimation. Dugoff tyre reference model + error on
tyre stiffness
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(a)

(b) Build-up zoom

Figure 7.20: Rear Axle Load Estimation. Dugoff tyre reference model + elas-
tokinematics
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(a)

(b) Build-up zoom

Figure 7.21: Front Axle Load Estimation Tuned. Dugoff tyre reference model
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(a)

(b) Build-up zoom

Figure 7.22: Front Axle Load Estimation Tuned. Dugoff tyre reference model +
error on car mass
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(a)

(b) Build-up zoom

Figure 7.23: Front Axle Load Estimation Tuned. Dugoff tyre reference model +
error on CoG heigh
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(a)

(b) Build-up zoom

Figure 7.24: Front Axle Load Estimation Tuned. Dugoff tyre reference model +
error on tyre stiffness
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(a)

(b) Build-up zoom

Figure 7.25: Front Axle Load Estimation Tuned. Dugoff tyre reference model +
elastokinematics
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Results

(a)

(b) Build-up zoom

Figure 7.26: Rear Axle Load Estimation Tuned. Dugoff tyre reference model
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Results

(a)

(b) Build-up zoom

Figure 7.27: Rear Axle Load Estimation Tuned. Dugoff tyre reference model +
error on car mass
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Results

(a)

(b) Build-up zoom

Figure 7.28: Rear Axle Load Estimation Tuned. Dugoff tyre reference model +
error on CoG heigh
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Results

(a)

(b) Build-up zoom

Figure 7.29: Rear Axle Load Estimation Tuned. Dugoff tyre reference model +
error on tyre stiffness
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(a)

(b) Build-up zoom

Figure 7.30: Rear Axle Load Estimation Tuned. Dugoff tyre reference model +
elastokinematics
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Chapter 8

Conclusions and Future
Works

Model-based virtual sensing presents a promising and innovative approach for the
accurate estimation of wheel forces in vehicle dynamics testing. This methodology
brings several advantages over traditional Wheel Force Transducers (WFTs) by
eliminating the need for invasive modifications to the vehicle, thereby reducing costs
and making it more convenient for routine testing and evaluation scenarios. The
development and utilization of mathematical models in the model-based virtual
sensing process provide insights into tire behavior and contribute to improved
vehicle testing and development.

Previous studies have utilized simplified models like the bicycle model to estimate
tire forces, but these models have limitations in accurately capturing tire behavior
and cornering stiffness variations. More recent research has explored more complex
models, such as a 15 Degrees of Freedom vehicle model, to enhance accuracy and
enable single wheel load estimation. This work went in the direction, providing
some proofs of the effective improvements in using a 15DoFs model, mainly in
accuracy of the estimation in transient behaviour.

To ensure accurate and reliable estimation, the use of complex models incor-
porating the physical properties of the vehicle and tyres is crucial. Additionally,
observability analysis plays a pivotal role in identifying the states that can be
accurately estimated based on the available measurements, allowing for effective
estimation algorithms and appropriate sensor configurations. Careful selection of
sensor sets is also vital in model-based virtual sensing. By considering factors
such as cost, instrumentation time and availability, a well-designed sensor set can
provide optimal performance while minimizing resource requirements.

Future works can involve studying the impact of variations in tire model pa-
rameters, suspension characteristics, and sensor calibration on load estimation
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performance. This analysis can help to develop guidelines for selecting appro-
priate parameter values and calibration procedures to improve the robustness
and reliability of virtual sensing algorithms. Furthermore, research efforts can be
directed towards developing adaptive algorithms that can automatically adjust
model parameters based on online measurements and feedback. This adaptive
approach can enhance the adaptability and accuracy of load estimation under
varying operating conditions and dynamic scenarios. Other insights could come
investigating advanced algorithms and sensor configurations that enable the estima-
tion of individual wheel forces (the 15DoFs model has the potential to do it). This
can provide valuable insights into the behavior of each tire and its contribution to
overall vehicle dynamics. Individual force estimation can help identify tire-specific
issues such as imbalanced forces or suspension problems, leading to more targeted
diagnostics and improvements in vehicle performance and safety. To support these
future research directions, experimental validation studies using controlled test
setups and real-world vehicle testing can be conducted.

Overall, model-based virtual sensing represents a significant advancement in the
field of vehicle dynamics testing, offering a cost-effective, real-time and accurate
solution for estimating wheel forces. With the integration of complex models,
observability analysis and thoughtful sensor selection, virtual sensing techniques
can greatly enhance the understanding of vehicle behavior, leading to improved
performance evaluation and safety assessment.

69



Bibliography

[1] H. Pacejka. Tire and Vehicle Dynamics. Butterworth-Heinemann, 2012 (cit.
on p. 1).

[2] Kistler. Vehicle dynamics, durability and tire testing. 2018. url: https :
//www.kistler.com/IT/en/vehicle-durability-testing/C00000076
(cit. on p. 1).

[3] M. Viehweger et al. «Vehicle state and tyre force estimation: demonstrations
and guidelines». In: Vehicle System Dynamics 59.5 (2021), pp. 675–702 (cit.
on p. 2).

[4] B. Forrier, W. Desmet, and F. Naets. Virtual Torque Sensing: A Model-
based Approach for Indirect Measurement of Dynamic Operational Loads on
Mechatronic Powertrains. 2018-04-26 (cit. on p. 2).

[5] M. Acosta Reche, S. Kanarachos, and M. Blundell. «Virtual Tyre Force Sen-
sors: An Overview of Tyre Model-based and Tyre Model-less State Estimation
Techniques». In: Proceedings of the Institution of Mechanical Engineers Part
D Journal of Automobile Engineering In press. (Sept. 2017) (cit. on p. 2).

[6] M. Acosta and S. Kanarachos. «Optimized Vehicle Dynamics Virtual Sensing
Using Metaheuristic Optimization and Unscented Kalman Filter». In: Evo-
lutionary and Deterministic Methods for Design Optimization and Control
With Applications to Industrial and Societal Problems. Springer International
Publishing, 2019, pp. 275–290 (cit. on p. 2).

[7] L. Ruga, E. Risaliti, S. Ottaiano, and T. Geluk. «A virtual sensing approach
for vehicle dynamic performance analysis». In: (2021) (cit. on pp. 3, 26, 27).

[8] D. Simon. «Nonlinear Kalman filtering». In: Optimal State Estimation. John
Wiley & Sons, Ltd, 2006. Chap. 13, pp. 393–431. isbn: 9780470045343 (cit. on
pp. 6, 17).

[9] T. Blochwitz et al. «Functional Mockup Interface 2.0: The Standard for Tool
independent Exchange of Simulation Models». In: Sept. 2012 (cit. on p. 8).

[10] Y. Kawano and T. Ohtsuka. «PBH tests for nonlinear systems». In: Auto-
matica 80 (2017), pp. 135–142. issn: 0005-1098 (cit. on p. 12).

70

https://www.kistler.com/IT/en/vehicle-durability-testing/C00000076
https://www.kistler.com/IT/en/vehicle-durability-testing/C00000076


BIBLIOGRAPHY

[11] R. Hermann and A. Krener. «Nonlinear controllability and observability». In:
IEEE Transactions on Automatic Control 22.5 (1977), pp. 728–740 (cit. on
p. 13).

[12] T. Devos, M. Kirchner, J. Croes, W. Desmet, and F. Naets. «Sensor Selection
and State Estimation for Unobservable and Non-Linear System Models». In:
Sensors 21.22 (2021). issn: 1424-8220. url: https://www.mdpi.com/1424-
8220/21/22/7492 (cit. on pp. 13, 15).

[13] P. Huang, H. Meyr, M. Dörpinghaus, and G. Fettweis. «Observability Analysis
of Flight State Estimation for UAVs and Experimental Validation». In: 2020
IEEE International Conference on Robotics and Automation (ICRA). 2020,
pp. 4659–4665 (cit. on p. 14).

[14] S. Borguet and O. Leonard. «The Fisher Information Matrix as a Relevant
Tool for Sensor Selection in Engine Health Monitoring». In: Int. J. Rotat.
Machine. 2008 (Jan. 2008) (cit. on pp. 16, 17).

[15] James H. Taylor. «The Cramer-Rao estimation error lower bound computation
for deterministic nonlinear systems». In: 1978 IEEE Conference on Decision
and Control including the 17th Symposium on Adaptive Processes. 1978,
pp. 1178–1181 (cit. on p. 17).

[16] H. Dugoff, P. S. Fancher, and L. Segel. «An Analysis of Tire Traction Proper-
ties and Their Influence on Vehicle Dynamic Performance». In: International
Automobile Safety Conference. SAE International, Feb. 1970 (cit. on p. 29).

71

https://www.mdpi.com/1424-8220/21/22/7492
https://www.mdpi.com/1424-8220/21/22/7492

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Problem Statement
	Model-based Virtual Sensing
	Past Studies

	Framework Presentation
	Overview
	Estimator Model
	EKF
	FMU

	Observability Analysis
	Popov-Belevitch-Hautus Analysis
	Singular Value Decomposition of Total Observability Matrix
	Projection to an Observable Subspace

	Fisher Information Matrix
	Sensitivity Indices
	Simple 3DoF System Example

	15 DoFs Model
	Chassis
	Linear Adaptive Tyre Model

	Reference Models
	Dugoff Tyre Model
	Elatokinematics
	Expected Modelling Errors

	Sensors Sets Building
	Results
	Observability Results
	Estimation Results
	Front Axle Load
	Rear Axle Load
	Tuning Effect


	Conclusions and Future Works

