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Abstract 

Nowadays, the frequency of fires is increasing due to climate change. 

Effective forest management is vital in mitigating the intensity and 
spread of this natural disaster. Currently, the task of forest cleaning is 

carried out by tractors equipped with forestry mulchers, which are 

operated remotely using joysticks. 

This thesis is part of a project to automate the cleaning process using 
a fully sensor-equipped electronic box. Specifically, it addresses the 

crucial aspect of precise line following, which is essential for efficient 

cleaning operations. 

The unmanned ground vehicle (UGV) under study consists of two main 

components. The vehicle part comprises the tractor LV 600 Pro, which 
is responsible for the vehicle's movement. The second component is 

the sophisticated electronic box called Sentry, developed by Bold 

Robotics Lda, which allows the tractor to move autonomously. 

This thesis aims to develop software for the component mentioned 
above. Various algorithms will be presented to handle and filter raw 

sensor data, also employing fusion methods to achieve higher 
measurement precision. Special attention will be given to navigation 

aspects, including the presentation of different motion planning 

strategies. 

Extensive testing will be conducted in simulated environments using 
Gazebo to validate the proposed approaches. Subsequently, field tests 

will be carried out to provide real-world comparisons and assess the 

effectiveness of the developed solutions. 

Keywords: ROS, UGV,  line following, obstacle avoidance, sensor 

acquisition, control. 
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Chapter 1 Introduction 

This chapter aims to present the main aspects of the thesis.  

A first description of the general use of mobile robots in our society is 
done. Then the main reason for developing this particular project is 

given, going then to the objectives of this work, its structure, and its 

methodologies. 

Section 1.1 Background 

'Agriculture businesses, warehouses, military operations, healthcare 

institutions, and logical companies are all searching for novel and 
contemporary ways to improve operations efficiency, increase safety, 

ensure precision, and improve speed. Hence, all require autonomous 

vehicle support in the future' [1]. 

It is possible to see that this phrase represents how autonomous 

systems will change and are changing the world in which we live; its 
impact is due to these technologies' advantage: they can complete 

tasks that are hazardous or challenging for people to carry out, like in 
hazardous environments where humans would be at risk; the precision 

and accuracy that they can achieve, for example, to perform a surgery; 
furthermore they can operate without needing breaks or rest, making 

them highly efficient and effective in performing tasks that require 
continuous operation, such as monitoring a production line or 

continuous maintenance. All these aspects increase interest in study 
and research, making them fundamental and impactful in the 

development of society. 

Section 1.2 Motivation 

This thesis aims to develop the software part 

of a multi-component box equipped with 
several sensors and computers able to make a 

semi-autonomous available tractor. This 
machine is operated by a remote joystick, 

primarily designed to manage and care for the 
forests and green spaces. Its functionality 

includes the removal of branches, shrubs, 
bushes, and pruning trees, ensuring that these 

areas are kept clean and well-maintained at all 

times. 

This cleaning action is fundamental to 
decreasing the possibility of fire and reducing 

Figure 1 - Command joystick 



its devastating effects. This is a crucial aspect in the country where this 

thesis is developed (Portugal), but it is also taking more and more 
importance worldwide since the worsening of the condition of this 

problem. 

For example, the European Environment Agency reports as forest fire 

risk has increased across Europe due to climate change. Despite this, 
the Mediterranean region has seen a slight decrease in burnt areas 

since 1980, indicating successful fire control efforts. However, in recent 

years, regions in central and northern Europe, which are not 
traditionally prone to fires, have experienced forest fires during record 

droughts and heatwaves. 

Fire-prone areas are projected to expand, and fire seasons will 

lengthen in most European regions, particularly under high emissions 
scenarios. Therefore, additional adaptation measures are necessary, 

and Europe has experienced severe wildfire outbreaks and devastating 

fire seasons lately, mainly due to extreme weather conditions. 

For example, there were record droughts and heatwaves during the 
spring and summer of 2017 and 2018 [2]. In Figure 2 is a reported 

representation of the overall weather-driven forest fire danger in the 
present and under two climate change scenarios in the same article 

[2]. 

 

Figure 2 - Forest fire danger 



It is possible to notice as climate 

change is likely a significant driver 
in increasing fire activity. According 

to [3], there has been a five-fold 
rise in the frequency of intense heat 

waves compared to 150 years ago. 
Unfortunately, this trend will 

continue as a result of the planet's 

ongoing warming; the drier 
landscapes brought on by the rise in 

temperatures have increased the 
number of forest fires, which in turn 

have increased emissions and 
aggravated climate change, 

creating a feedback loop that leads 

to even more fires.   

 

In this case, it is simple to see how the entire project's eventual 

objective will aid in putting out fires by lowering their impacts; in the 
meantime, various steps must be taken to lessen global warming's 

consequences. 

Section 1.3 Objectives and Scope of the Study   

As previously mentioned, this work focuses on the software 

development of the Sentry, that is, the brain able to make autonomous 

a general tractor. 

Going deeper, the objective of this thesis is primarily the ability to 
follow a line with a mean distance of less than 1 meter. This value is 

evaluated based on the tractor's dimensions (1 meter is less than the 
width of the tractor's tool) and the project's maturity. Indeed the goal 

will be to show that this can be realised while many improvements will 

be made in the following years. 

As regards the speed, it is not required to have a high one to be able 
to cut the vegetation efficiently, and this must be low, even if the 

cutting option will not be analysed in this thesis since it needs further 
analysis, such as how to understand if the vegetation is cut, how to 

control the speed as a function of the cutting process other than all the 

noise reduction need for the dust and vegetation raised by the tool. 

Then during its navigation, the machine must avoid possible obstacles 

while going as much as possible on the path defined. 

A key development point will ensure safety during the robot's 

functioning; it must stop if a person is detected inside a specific range 

or if the user requires an emergency stop action. 

Figure 3 - Climate Feedback Loop 



These aspects will be presented and supported by a further analysis of 

the sensors and algorithms used to achieve the requirements. 

Resuming what will be made autonomous is the ability of the tractor to 

follow a predefined trajectory performing the cleaning action; in 
particular, the user will give some GPS coordinate about the area to be 

cleaned, and an API developed by the Bold Robotic company will 
generate a set of points to be achieved following a straight line between 

them; since the path generation is aspect outside of the robot 

development the problem it is defined as semi-autonomous. 

Section 1.4 Methodology 

The approach used in developing the UGV for line following can be 
resumed as a trial and error process. Indeed during the project, several 

presentations of the work were done, requiring to show something new 
and better than the last presentation each time. For this reason, 

different versions of the path-following algorithm will be presented with 

growing complexity and precision. 

The work is based on studying the state of the art and solutions 
founded in the ROS community but also developed under the strict time 

requirement.   

Section 1.5 Thesis Structure 

In conclusion, the study will start from the analysis of state of the art 

on UGV and path-following; the other theoretical aspects like sensor 
technology, procedures and algorithms will be analysed directly before 

their discussion to avoid a too long and dispersive debate of state of 
the art since the widely of the topics studied and the will to focus on 

the navigation problem.  

After this, an entire chapter will be dedicated to ROS (Robot Operating 

System) due to its importance in the process. Then the aspects of the 
sensors used are covered; how and why they are needed for the 

navigation, focusing on algorithm and methodology to reduce noise 

and increase performance.  

Finally, the different algorithms used for navigation will be presented. 
To conclude, simulation aspects will be described, and the experimental 

test result will be shown.  



Chapter 2 Literature Review 

This chapter provides an overview of the two main aspects covered in 

the thesis. 

In particular, the first part will define and present some examples of 

UGV in the market; then, some examples of this problem in other fields 

are shown. 

Finally, some available algorithms for navigation, line path applications 

and obstacle are presented. 

Section 2.1 UGV 

A UGV is a vehicle that can operate on the ground without needing a 

human onboard [4]. 

Thanks to their versatility, it is easy to see that these machines can be 
used in several different situations, changing their properties in the 

function of the task and the environment.   

To get the idea as a general UGV is done and in which field is used, 

some examples of machines available on the market are proposed. 

Subsection 2.1.1 TurtleBot3 

TurtleBot3 is a popular and widely used open-source UGV developed 

by the Open Robotics and ROBOTIS collaboration. It is designed as an 
affordable and accessible educational, research, and hobbyist platform. 

The TurtleBot3’s core technologies are SLAM, Navigation and 

Manipulation in indoor environments. 

It is presented in two versions: Burger and 

Waffle Pi. They will be described below 

based on [5]. 

TurtleBot 3 Burger is the cheapest version. 
It features a round-shaped base with two 

wheels and a 2D 360-degree lidar sensor 
mounted on top. The Burger version is 

compact, 

lightweight, and highly 

manoeuvrable. The main computing 

unit is a Raspberry Pi. 

The TurtleBot 3 Waffle Pi is the 

upgraded variant of the TurtleBot 3 
platform. It has better actuators 

Figure 4 - TurtleBot3 Burger Specification 

Figure 5 - TurtleBot3 Waffle Pi Specification 



from XL430-W250 to XM430-W210 and a Raspberry Pi Camera Module 

v2.1. The Waffle Pi version is often used for research and development 

purposes requiring higher processing capabilities. 

Subsection 2.1.2 Husky UGV 

The Husky UGV is a popular and versatile platform developed by 

Clearpath Robotics.  

It is designed for outdoor operations, but indoor configurations are 

available. It is widely used in research, exploration, and industrial 

applications.  

As TurtleBot3, it is completely integrated into the ROS ecosystem; for 
some applications, it is used as a benchmark or to establish new robot 

research and development efforts. It is supplied with different 
preconfigured packages containing various sensors and hardware 

specific to the purpose of their application [6]. 

  

Figure 6 - Different Husky configuration.                                             
From the left: Starter- Pro explorer- Mapping- Manipulator 



Subsection 2.1.3 Roboteam's PROBOT  

Roboteam's PROBOT is a UGV designed for 

military and security applications. Developed by 
Roboteam, it offers advanced capabilities and 

features to support logistics, intelligent gathering 

and casualty evac missions [7].  

As it is possible to see, all of these machines were 

built to be autonomous, while the vehicle used in 
the thesis is a general tractor that will be made 

autonomous by the Sentry. This will lead to a 
more complex scenario due to the necessity of handling aspect as the 

not optimised position of the sensors or the imperfect knowledge of the 

correlation between input command and tangible effect on the vehicle. 

In particular, the machine used in 
this thesis is a remote-controlled 

tractor produced by MDB SRL [8]. 
The main characteristic of this 

machine is the ability to handle 
slopes until 60° in all directions 

(pitch and roll), a very robust 

chassis and thanks to the tool, it 
can cut vegetation; furthermore, the tool is able also to cut rocks 

during the working process, so that the presence of stone will not be a 

problem during the cleaning operation. 

The main disadvantages of using this machine instead of a specific UGV 

are: 

• The nonlinearity between command input and actuators’ effort; 

this is due to several reasons; firstly, the goal of the project is 
to build a ’box’ able to make an autonomous general machine 

without the need for a precise model of its kinematic and 
dynamic; this means for example that the control of the speed 

will be possible only using as feedback the position of the robot 
and not the level imposed; secondly as proved by test the 

Figure 7 - Roboteam's PROBOT 

Figure 8 - lv-600-pro 

Figure 9 - lv-600-pro specification 



velocity of the machine at the same input change as a function 

of the type of field and the presence/absence of slope.   

• Straight motion is not precise; even on a car road, the machine 

tends to go away from the path, as proved by the test. 

• All sensors are placed in the same spot; this initially requires 

particular attention for noise generation, while during a routine 
mission does now allow to have measurements from different 

parts of the vehicle that could be useful for the big size of the 

machine. 

• Required calibration; strictly connected with the first point, a 

first calibration part is needed before the first mission to get the 
minimum and maximum level of input for the forward and 

angular motion, depending on the terrain and the slopes 

present. 

Section 2.2 Line-following problem 

The problem of following a line or, more generally, a path is one of the 

most common in mobile robot applications. Indeed it is related to how 
a robot goes from one point to another, a generally valuable task for 

several applications such as industrial or agricultural.  

Looking from an industrial perspective, vehicles were initially guided 

through optical or inductive guidelines. However, guidelines have their 

drawbacks, such as inflexibility regarding modifying or changing the 
routing and requiring installations on or in the ground [9]; it is easy to 

understand how this approach cannot be applied to the unconstrained 

environment other than being very restrictive.  

Therefore a new type of navigation was proposed based on more 
complex sensors and algorithms, making the robot available to 

navigate without guidance. 

Before entering in detail is important to define the two parts that 

constitute the problem: trajectory planning and motion control.  

The first part is related to creating the reference points that will be 

used as input for the motion controller. In particular, the term trajectory 
indicates a path (locus of points in the operational space) combined 

with time. 

It is possible to define it in two different spaces, operational and joint; 

the first is recommended for mobile robots because it is more efficient 

to deal with problems such as obstacle avoidance, while the second 
space is recommended for manipulators because it is easier to deal 

with singular configurations. 

Since this study is about motion planning without time constraints, 

path generation in the operational space will be analysed. 



The second part is related to the controller, which is how the reference 

error is transformed into the input. It is defined as path tracking: once 
a path or trajectory has been planned, path tracking algorithms are 

responsible for executing that path by controlling the robot’s motion. 
Its goal is to ensure that the robot accurately follows the desired route 

and maintains its position and orientation along the path while 
accounting for factors like disturbances, uncertainties, and sensor 

noise. It can present different constraints, from the minimal 

requirement of reaching the final goal to more complex aspects such 

as smoothness, time needed, etc. 

Subsection 2.2.1 Path planning 

An overview of algorithms for path planning is presented based on 

[10]. 

Firstly is essential to distinguish between global path planning and local 

path planning. 

The first one is related to the construction of the path in a static way 

based on a previous complete/semi-complete knowledge of the 
environment. It can be run before the start of the mission saving 

computational power.  

Local path planning instead answers to the need to compute the path 

dynamically according to the acquisition of the sensor; it is needed for 

unknown environments and generates new ways in response to new 

data. 

It is easy to understand how some algorithms are better for one or 
another problem in the function of the computational time and the 

optimal solution. 

2.2.1.1 Dijkstra algorithm 

Dijkstra's Algorithm is a widely used algorithm in computer science to 
find the shortest path between two nodes in a weighted graph. The 

algorithm is efficient and guarantees the optimal solution for finding 

the shortest route. 

The functioning can be resumed in these steps:  

• Initialise the algorithm by 

setting the starting node as the 

current node and assigning a 
value of 0 to it while assigning a 

value of infinity to all other 
nodes in the graph. So mark all 

nodes as unvisited. 
Figure 10 - Inizialization 



• For the current node, visit all of 

its neighbouring nodes (nodes 
connected to it by an edge) that 

have not been seen. Calculate 
the weighted distance from the 

starting node to that node for 

each adjacent node. 

• If the calculated distance for a 

neighbouring node is less than 
that node's current assigned 

distance value, update the 
distance value to the newly 

computed value.  

• After visiting the current node’s 

neighbours, mark it as visited. A visited node will not be 

processed again. 

• Choose the new node with the 
lowest distance value as the 

current node, and repeat until all 
nodes are visited, or the 

destination is reached. 

 

 

Once the destination node has been visited, the algorithm terminates. 
To find the quickest route from the beginning point to the endpoint, 

trace back from the endpoint to the starting point by utilising the 

assigned distances and the graph’s structure.  

 

 

As reported in the paper, many versions of the Improved Dijkstra 
algorithm are present in the lecture, adapted for the precise purpose 

of the task. Some versions are reported in the table below, Table 

1,taken by the article cited before [10]. 

 

 

Figure 11 -   Neighbour visiting 

Figure 12 - Next node selection 

Figure 13 - Goal reached 

Table 1 - Dijkstra algorithm’s version 



As it is possible to see, due to the high computation required, this 

algorithm is efficient and used only for static constraints, then in a layer 
of global planning. At the same time, it is unsuitable for handling 

dynamic environments. 

2.2.1.2 A* algorithm 

This algorithm is commonly used in computer science and artificial 

intelligence to locate the shortest path between two nodes in a graph. 
It combines the benefits of Dijkstra's algorithm and a heuristic 

evaluation function to efficiently search for the optimal way. In 

particular, for each node, it computes a function f(n): 

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) 

Where g(n) is the actual cost from 
node n to the initial node, h(n) is the 

cost of the optimal path from the 

target node to n computed by the 

heuristic function.  

The most common heuristic functions 

are: 

• Euclidean distance   
𝑥1−𝑥2

2
+  

𝑦1−𝑦2

2
 

• Manhattan distance  |𝑥1 − 𝑥2| +
 |𝑦1 − 𝑦2| 

• Octile distance 𝑚𝑎𝑥(|𝑥1 − 𝑥2| +  |𝑦1 − 𝑦2|) 

An example taken from [11] is shown: 

Imagining a path from A to J, weighted costs are shown in blue, while 
heuristic costs are in red. F(n) is then computed, summing the two 

costs.  

As for the Dijkstra algorithm, all the neighbours are visited, and the 

one with the lowest cost is visited, iterating until the goal is reached. 
Is it possible to see from the picture 

that only its neighbours are analysed 

Figure 14 - Starting from A, F and B are analysed 

Figure 15  - F is selected since F has the lowest 
cost. Therefore, G and H are considered while B is 
not more considered  



once the node is selected, not considering the previously visited nodes, 

as in the Dijkstra algorithm. This makes the algorithm much faster. 

Furthermore, it guides its search towards the most promising states 

using the heuristic function, potentially saving a significant amount of 
computation time. For this reason, it is widely used in static 

environments, but there are also instances where this algorithm is used 

in dynamic environments.  

As for Dijkstra's algorithm, different variants are presented in the 

literature, designing and improving the performance for that specific 

purpose. The are reported in Table 2, taken from [10]. 

 

2.2.1.3 D* algorithm 

The D* algorithm, or Dynamic A* algorithm, is a path-planning 

algorithm used in robotics and artificial intelligence. 

It is an extension of the A* algorithm. It is designed to handle dynamic 

environments where the cost of moving between nodes or the presence 

of obstacles can change over time. It updates the path as the 
environment changes, allowing the robot or agent to adapt and find an 

optimal path despite new obstacles or changed costs. 

 

Figure 16 - G is selected. Figure 17 - I is selected, its neighbour is J therefore 
the goal is reached  

Table 2 - A* algorithm’s version 



A simplified explanation is reported: 

• The robot has a path from the starting 
position to the goal position based on 

the A* algorithm. 

• Obstacle detected: The obstacle 

blocks a portion of the previously 

computed path. 

• Update cost estimates: The D* 

algorithm updates the cost estimates 
for the affected nodes. The nodes 

directly affected by the obstacle 

receive a high cost. 

• Recalculate path: Starting from the 
goal position, the D* algorithm 

performs a backward search, 
considering the updated cost 

estimates. It propagates the changes 
through the affected nodes until it 

reaches the starting position. 

• New path: The D* algorithm computes 

a new way to avoid obstacles. 

 

The D* algorithm allows the robot to dynamically adapt to 

environmental changes and find an optimal path in real-time by 

continuously updating the path based on new information.  

 

As for the other algorithms, different versions are presented inTable 3 

taken from [10]. 

 

Rapidly-Exploring Random Trees,  Genetic Algorithm, Ant Colony 
Algorithm, and Firefly Algorithm are other possible ways to solve the 

problem presented in the article. 

Figure 18 - D* algorithm representation 

Table 3 - D* algorithm’s version 



2.2.1.4 BUG algorithm 

This subsection discusses another 
method specific for avoiding 

obstacles, based on [12]. The 
algorithms presented are in the 

family of Bug Algorithms BAs; as 

reported in the article, they are a 
path-planning technique that 

evolved from maze-solving 
algorithms. Different versions 

include the Basic Bug Algorithm, 
Tangent Bug Algorithm, Bug2 

Algorithm, and Bug Trap 
Algorithm. General concepts will be 

resumed, starting from their first 
advantages requiring less potential 

memory and processing 

requirements. 

Their general idea is based on the 
exact start and end position 

knowledge. Then as the obstacle is detected, its contour is used to 

avoid it, using it in different ways. 

The first version is called Com (common sense 

algorithm), and its main functioning principle is based 
on a wall following procedure. Indeed the robot always 

points to the goal, and as an obstacle is founded, it 
follows its contour until a free direction straight towards 

the goal is not reached. This algorithm has a problem 

with situation similar to Figure 20.   

Different versions were evolved to 
solve this problem as BUG 1 and Bug 2. The second 

one, for example, used an M-line approach, in which 
M-line connects the start point and the goal. The robot 

follows the wall from the hit-point (the first point of 
intersection between the trajectory and the boundary 

of the obstacle) until it reaches the intersection with 

the M-line on the other side.  

From the ones described in the article, the Tangent Bug 

has a particle interest. This algorithm utilises a local tangent graph 
(LTG) within the range of the robot's sensors to navigate around 

obstacles and reach the target. 

Figure 19 - Different Bugs algorithms [12] 

Figure 20 - Com [12] 

Figure 21 - Bug 2 [12] 



The construction of the LTG involves identifying the boundaries and 

discontinuities of the detectable 
obstacle field surrounding the 

robot. It represents the obstacles' 
edges in relation to the robot's 

current position. 

Initially, the robot starts by moving 

towards the target while traversing 

the LTG edge that offers the 
quickest path to reach the target  

from its current position. However, 
if the length of path D on that edge 

increases, the algorithm saves the 
current range to the target as a 

local minimum. The robot then 
continues following the remaining 

boundary of the obstacle. 

If, during the boundary traversal, the robot senses a node on the 

obstacle's boundary with a distance smaller than the previously saved 
local minimum, it triggers a leave condition. If feasible, the robot 

moves directly towards the target, Figure 22. 

Also, the InsertBig can be of particular interest since it can be seen as 

a Tangent Bug that adds a safety margin to each obstacle detected. 

Subsection 2.2.2 Path tracking 

Once the plan is computed, the reference points are given to the 

controller to make the robot follows the path; several algorithms can 

be used some of them are presented. 

2.2.2.1 Non-linear controller 

A non-linear controller is presented in [13]. 

As it is possible to see, the non-linear controller is composed of two 

parts. 

Figure 23 - Non-linear controller [13] 

Figure 22 - Tangent Bug [12] 



Firstly, a reference angle theta is 

given by the path manager. The 
outer loop takes the robot’s 

position as feedback and compares 
it with the current path provided 

by the path manager to compute 
the distance from the reference 

line; this value is converted to an 

angle by using a proportional 
controller with gain Kct, obtaining a correction term φ. This correction 

is subtracted to θ to obtain the θ desired; this is used as input for an 
inner loop that takes the actual heading as feedback to compute the 

actuation effect needed using another proportional controller Khead, as 
it is written in the article PI or PID controller can be used instead of the 

easy P. 

2.2.2.2 Vector Field 

This method is proposed in [14]. The control 
proposal is based on the construction of a 

vector field; as regarding the straight line 
case, a reference vector (going from the 

original position to the goal) is created, 

making the robot point to the destination. 
After that, the space is divided into two 

parts. An internal part near the reference 
path, the transition region, is dedicated to 

gradually moving the actual heading to the reference one; instead, the 
other region aims to push the robot back to the path. This is shown in 

Figure 25 taken from the previously cited article. 

As discussed in [15], this method can be updated to avoid possible 

obstacles in the path. Indeed a vector field can be associated with the 
obstruction, making the robot deviate from the reference path to avoid 

it.  

Figure 24 - Angles representation [13] 

Figure 25 - Vector field representation 
[14] 

Figure 26 - Obstacle vector field [15] Figure 27 - UAV trajectory given by the vector field [15] 



Chapter 3 ROS 

The reason for an entire chapter about this aspect is its importance in 

the developing process as it allows the user to easily integrate 
hardware and software, other than making available a whole variety of 

packages that can be used to speed up the project’s progress. All the 
following sections are taken from the very detailed ROS documentation 

[16]. 

Section 3.1 Introduction to ROS 

The Robot Operating System (ROS) is a flexible framework for 

developing and controlling robots. It provides a comprehensive 
collection of software libraries and tools specifically designed for 

building diverse robotic applications. By offering a distributed 
computing framework, ROS enables seamless communication between 

multiple processes or nodes by exchanging messages. These features 
foster modular development, simplifying the creation of complex robot 

systems by integrating independent packages. 

One key aspect that differentiates ROS is its classification as a Meta-

Operating System. This distinction arises from its capability to handle 
critical functions like scheduling tasks, managing resources, monitoring 

system activities, and handling errors. 

ROS has a significant impact on the development process. It provides 

a comprehensive suite of functionalities that facilitate the integration 
of hardware and software components, greatly expediting project 

progress. 

Additionally, ROS offers an extensive range of pre-existing packages 

that can be readily utilised, minimising development time and effort. 

Section 3.2 ROS Ecosystem 

ROS can be described as a comprehensive software development kit 

(SDK). It can be summarised into four main blocks, each crucial in the 

development process. 

Subsection 3.2.1 Plumbing 

Communication lies at the heart of robot development, and ROS excels. 
Its message-passing system forms the backbone of communication 

between distributed nodes, employing an anonymous 

publish/subscribe pattern. This standardised approach enables 
seamless interaction with components like LIDAR, cameras, localisation 

algorithms, and user interfaces. As mentioned before, ROS encourages 

the modular system by adopting this communication model. 



Subsection 3.2.2 Tools 

Asynchronous interaction with the physical world through sensors and 

actuators is crucial when developing software. ROS provides a suite of 
developer tools that greatly assist in this aspect. These tools include 

launch configuration, introspection capabilities, debugging utilities, 

visualisation aids, plotting tools, logging mechanisms, and playback 

functionality.  

Subsection 3.2.3 Capabilities 

The ROS ecosystem encompasses many device drivers, algorithms, 
and user interfaces that are application building blocks. Developers can 

use these previously available capabilities to better focus on the 
applications’ specific requirements, accelerate development, and 

support innovation. 

Subsection 3.2.4 Community 

A strong and cooperative community forms the core of the ROS project. 
The point is straightforward: anyone interested in robotics applications 

should be able to make his idea real without understanding hardware 
and software complexities. The ROS community fosters knowledge 

sharing and encourages the realisation of robotic ideas. 

Section 3.3 ROS Architecture / Main Concepts 

ROS has three levels of concepts: the Filesystem, the Computation 
Graph and the Community levels. Each level is explained in detail in 

the following subsections. 

Subsection 3.3.1 ROS Filesystem Level 

The filesystem-level concepts in ROS 
encompass various resources 

encountered on disk. These 

resources include: 

• Packages: They serve as the 
fundamental unit for 

organising software in ROS. 
They encapsulate ROS 

runtime processes (nodes), 
ROS-dependent libraries, 

datasets, configuration files, 
and other components. 

Packages are considered the elementary block in ROS. 

Figure 28 - ROS Filesystem Level 



• Metapackages: Metapackages are specialised packages designed 

to represent a group of related packages. 

• Package Manifests: Package manifests, represented by the 

package.xml file, provide metadata about a package. The 
relevant metadata for a package consists of its name, version, 

description, license, dependencies, and other essential details. 
The package.xml format follows the specifications outlined in 

REP-0127. 

• Repositories: Repositories comprise packages with a standard 
version control system. Packages within a repository share the 

same version and can be released using the Catkin release 

automation tool. 

• Message Types: they describe the data structures for messages 
exchanged in ROS. These message descriptions outline the 

format and content of data sent and received between nodes. 

• Service Types: Service types specify the request and response 

data structures for ROS services. Service descriptions define the 

format of data exchanged during service calls. 

Subsection 3.3.2 ROS Computation Graph Level 

The Computation Graph in ROS 

refers to the network of 
interconnected ROS processes 

collaborating to process data. It 
relies on several fundamental 

concepts that contribute to its 
functionality. The concepts 

mentioned can be found in the 

ros_comm repository. 

• Nodes: Nodes are individual 
processes responsible for 

computation within the ROS system. They are designed to 
operate modularly, allowing a robot control system to comprise 

multiple nodes. ROS nodes are developed using ROS client 

libraries such as roscpp (C++) or rospy (Python). 

• Master: The ROS Master is the central hub that provides the 

Computation Graph name registration and lookup services. It 
enables nodes to discover each other, exchange messages, and 

invoke services by facilitating communication. 

• Parameter Server: The Parameter Server acts as a central 

storage location for data, allowing key-value pairs to be stored 

and accessed.  

Figure 29 - ROS Computation Graph Level 



• Messages: In a network of nodes, communication happens 

through message passing. A message is a data type that has 
structured, typed fields. Typically, it includes standard primitive 

types like integers, floating-point numbers, Booleans, and arrays 

of primitive types. 

• Topics: Messages are routed through a publish/subscribe-based 
transport system. A node publishes a message to a specific topic, 

which serves as an identifier for the content of the message. 

Other nodes interested in that data type can subscribe to the 

related topic. 

• Services: Services provide a request/reply communication 
pattern compared to the publish/subscribe model. Two message 

structures are required to define services: one for the request 
and another for the response. A node offering a service 

represents a name and waits for requests, while a client sends a 
request message and awaits the corresponding response. 

Services enable synchronous communication between nodes. 

• Bags: are a file format for storing and replaying ROS message 

data. They serve as a valuable tool for recording and analysing 
sensor data, facilitating the development and testing of 

algorithms. 

Before concluding this subsection, it is important to remark on the 

different concepts between topic, service and action. 

• Topics: Topics in ROS are designed for handling continuous data 
streams such as 

sensor data or 
robot state. 

They support a 
many-to-many 

connection 
model, where 

data can be 
published and 

subscribed at 
any time 

independently of specific senders or receivers. Callback functions 
are used to receive data as soon as it becomes available. The 

publisher controls when data is sent, making topics suitable for 

scenarios requiring continuous data flow. 

Figure 30 - Topics in ROS 



• Services: Services in ROS are 

intended for remote 
procedure calls that involve 

quick termination, such as 
querying the state of a node 

or performing rapid 
calculations like inverse 

kinematics. They are 

unsuitable for long-running 
processes. Indeed, services 

use a blocking call 

mechanism. 

• Actions: Actions in ROS 
are suitable for discrete 

behaviours involving 
moving a robot or 

running tasks that take 
longer to complete. 

Actions provide feedback 
during execution that 

suits tasks requiring 
longer execution times, 

such as slow perception 

routines or initiating 
lower-level control 

modes. Actions are designed to be non-blocking and commonly 

used to execute complex real-world scenarios. 

Subsection 3.3.3 ROS Community Level 

The ROS Community Level introduces resources that promote the 

exchange of software and knowledge among different communities.  

• Distributions: ROS Distributions are like a collection of software 
stacks, similar to Linux distributions. They simplify the 

installation process by bundling together a set of software 

components. 

• Repositories: ROS thrives on a federated network of code 

repositories, where diverse institutions and organisations 

contribute their robot software components. 

• The ROS Wiki: At the heart of the ROS community lies the ROS 
Wiki, a dynamic platform for sharing and documenting ROS-

related information. This Wiki is a central hub where individuals 
can register, share their expertise, and contribute to collective 

knowledge. 

Figure 31 - Services in ROS 

Figure 32  - Actions in ROS 



Section 3.4 Robot functions 

In addition to its core middleware components, ROS offers a range of 
robot-specific tools and frameworks that accelerate the development 

process quickly. Some examples are reported below. 

Subsection 3.4.1 Standardised Robot Messages 

ROS provides a set of community-selected messages that cover a wide 
range of standard robot functionalities. These standardised messages 

include geometries, kinematics and dynamics, and sensors. These pre-
defined messages allow us to focus on developing parts instead of 

building messages from scratch, enhancing interoperability with 

existing tools within the ROS ecosystem. 

Subsection 3.4.2 Transforms Library 

Managing a robot's static and dynamic 
geometry is a common challenge in robotics 

projects. The tf library in ROS helps address 

this challenge by providing tools for managing 
transformations between different frames of 

reference. Whether it is needed to transform 
sensor data to a global reference frame or 

determine the location of a robot's end 
effector in its local frame, tf can assist. It 

supports defining static and dynamic 
transforms, accommodating scenarios with 

multiple degrees of freedom.  

Subsection 3.4.3 Robot Description 

The description format used in ROS is URDF, which uses an XML 

document to define static and dynamic transforms and the robot's 

visual and collision geometries.  XACRO format can be used to simplify 

the code reducing the lines of code. 

Subsection 3.4.4 Diagnostics 

ROS provides a standardised approach for producing, collecting, and 
aggregating diagnostics about the robot. This feature allows us to 

quickly assess the robot’s state and address any issues that may arise. 

Subsection 3.4.5 Pose Estimation, Localization, and Navigation 

ROS offers pre-existing packages that provide fundamental functions 

such as pose estimation, localisation, simultaneous localisation 

mapping (SLAM), and mobile navigation. More details are given in 

Section 3.5. 

Figure 33 - Example of various 
Reference Frames connected by ‘tf’ 
library 



Section 3.5 Control and Motion Planning  

This section wants to give a more profound description of the packages 

available in ROS regarding navigation problems. 

Subsection 3.5.1 Navigation Stack 

Navigation Stack in ROS is a comprehensive framework that enables 

robots to navigate their environments autonomously. It combines 
various components and algorithms to provide robust and reliable 

navigation capabilities. The more important aspects are described 

below. 

• Localization: Localization is crucial 
for a robot to determine its position 

and orientation within the 
environment. ROS offers several 

localisation methods, including AMCL 
(Adaptive Monte Carlo Localization), 

which utilises particle filters to 
estimate the robot's pose based on 

sensor measurements. AMCL uses 

sensor data, such as laser scans or camera images, to match 
against the existing map and accurately estimate the robot’s 

location. 

• Mapping: Mapping is creating a 

representation of the robot's 
environment. ROS provides mapping 

packages like GMapping and 
Cartographer, which implement SLAM 

algorithms. GMapping utilises laser 
scans to build 2D occupancy grid 

maps, while Cartographer can create 
2D or 3D maps using laser scans or 

point clouds. These mapping 
algorithms integrate sensor data over 

time to construct a map of obstacles 

and free space in the environment.  

• Path Planning: Path planning involves 

computing a collision-free path from the 
robot's current position to a desired goal 

location. ROS offers path-planning 
algorithms such as A* and Dijkstra, which 

can generate global ways based on the 
robot's map representation. The Dynamic 

Window Approach (DWA) algorithm also 

Figure 34  - Example of AMC 

Figure 35 - Example of TurtleBot3 SLAM 
application 

Figure 36 - DWA example 



considers the robot's kinematics and dynamic constraints to 

generate real-time local paths, ensuring safe and efficient 

navigation. 

• Obstacle Avoidance: Obstacle avoidance 
is essential for robots to navigate safely 

in their environment. ROS provides 
obstacle detection and avoidance 

techniques using sensors such as laser 

range finders or depth cameras. These 
sensors provide real-time data about the 

surrounding obstacles, which the planner 
uses to generate collision-free 

trajectories. Techniques like local cost 
maps and global cost maps are used to represent and update 

obstacle information in the robot's environment. 

 

Section 3.6 Tools 

ROS provides a range of tools to help to manage the complexity of 

robot systems and understand the state of the robot. Here are some 

essential tools provided by ROS: 

 

 

Subsection 3.6.1 Command-Line 

ROS offers over 45 command-line commands that allow access to all 

core functionality and introspection tools. These tools enable to launch 

nodes, introspect topics, services, and actions, record data, and 

perform various other operations.  

 

 

Subsection 3.6.2 rviz 

rviz is a widely known and powerful tool in ROS 

for the three-dimensional visualisation of 
standard sensor data types, and robots 

described using URDF. It supports visualising 
common message types like laser scans, point 

clouds, and camera images. 

Figure 37 - Global cost map 
example 

Figure 38 - rviz example 



Subsection 3.6.3 rqt 

ROS provides rqt, a Qt-based framework for 

developing custom dashboards. With rqt, 
personalised dashboards can be created by 

organising built-in rqt plugins and your own 

Qt/ROS plugins into tabs and split-screen 
layouts. This flexibility allows user interfaces 

tailored for the specific robot system 

requirements. 

Subsection 3.6.4 rqt_graph 

rqt_graph is a tool that provides 
introspection and visualisation of the live ROS computational graph. 

Thanks to a comprehensive overview of your robot's running ROS 

nodes and connections, it allows debugging. 

  

Figure 39 - rqt example 



Chapter 4 System Design and Architecture   

This chapter will be 

focused on the sensor 
part; as previously 

mentioned, all of 
these components are 

mounted inside and on 
the metallic box, 

building the so-called 
Sentry, shown in 

Figure 40. The 

devolving of the 
sensor part is crucial 

for the autonomous 
machine since its 

precision determines 
the reliability of the 

localisation and 
detection of the 

environment.  

Choosing the 

components is 
separate from this 

work since it was 
already done, and 

only a short 

description of the materials is done. This chapter will focus instead on 
software development as calibration and noise reduction, other than a 

presentation of the packages utilised. 

Section 4.1 Sentry’s components 

This section will present the electronic components’ main features and 

the software used or developed. 

Subsection 4.1.1 Arduino Mega 2560 Rev3 

The Arduino Mega 2560 is a microcontroller 
board that uses the ATmega2560 chip. It 

has 54 pins that can be used for digital 

input/output (15 of which can be used for 
PWM outputs), 16 inputs for analogue 

signals, four hardware serial ports for 
communication, a 16 MHz crystal oscillator, 

Figure 40 - Sentry 

Figure 41 - Arduino Mega 2560 Rev3 



a USB port, a power jack, an ICSP header, and a reset button [17].  

This component interfaces the ROS environment and the machine’s 

actuator, transforming the ROS message in voltage. 

The connection between the host and the device is established by 
utilising the rosserial meta-package, which is part of the ROS libraries. 

rosserial is designed as a protocol that encapsulates standard ROS 
serialised messages, allowing multiple topics and services to be 

multiplexed over a character device, such as a serial port or network 

socket. 

The package rosserial_python establishes a connection between the 

host and a rosserial-enabled device using Python. It encompasses a 
Python implementation that simplifies the setup, publishing, and 

subscribing process, enabling seamless communication with the 

connected device [18]. 

Once the connection is established, the code built in Arduino transforms 
the message from ROS into voltage for the machine's actuator. It turns 

on/off the pin connected to the machine; here, only the management 

of the pin levels associated with the motion is analysed. 

Firstly pure rotation and pure straight motion maximum and minimum 
levels are defined using teleoperation since, as mentioned in Chapter 

2, these values must be tuned as a function of the field and of the 
computation speed of the sensors (taking care that the maximum level 

of voltage allows by the robot is 255). The values in Table 4 are the 

ones chosen in the test field : 

 

 

 Linear Angular 

Minimum 70 85 

Maximum 100 100 
Table 4 - Arduino values 

 

 

 

Defined these values, the correlation between the ROS message and 
level is done by linear interpolation, imposing as minimum and 

maximum values of the ROS message value 0.1 and 1. 

 

 

 



Three versions of code are presented; the first is related to a more 

straightforward solution in which the two types of motion are divided, 
while the second also allows a combination of the two. The last one 

used a non-linear function to improve the control of the wheels. 

• Version 1: it is a solution easy to implement and allows 

discontinuous motion (linear or angular). It is used for the first 
motion algorithm (Bang-Bang controller) defined in the Chapter 

5. Going into the details, the straight motion is defined as simply 

making both wheels go front, rotating proportionally with the 
command received; the rotation state is a reproduction of the 

actual behaviour of the machine (the one obtained using a 
remote control to move the robot); in particular the rotation state 

is implemented making the two wheels rotating with the same 
speed but in the opposite direction (using a different sign for the 

voltage produced). 

• Version 2: It is based on the previous version, but it adds the 

possibility to combine the linear and angular motions; it is done 

Figure 42 - Arduino’s values 

Figure 43 - Pure rotation (V1) Figure 44 - Combined motion (V2 and V3) 



by imposing on the two wheels different voltages but with the 

same sign.     

The equation that regulates the transformation is shown below: 

       𝑥 =
𝑀𝑎𝑥𝑙𝑖𝑛𝑙𝑒𝑣𝑒𝑙

−𝑚𝑖𝑛𝑙𝑖𝑛𝑙𝑒𝑣𝑒𝑙

0.9
∙ 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑖𝑛𝑐𝑜𝑚𝑚𝑎𝑛𝑑

+ 𝑀𝑎𝑥𝑙𝑖𝑛𝑙𝑒𝑣𝑒𝑙
−

𝑀𝑎𝑥𝑙𝑖𝑛𝑙𝑒𝑣𝑒𝑙
−𝑚𝑖𝑛𝑙𝑖𝑛𝑙𝑒𝑣𝑒𝑙

0.9
 

• Version 3: It improves the previous version thanks to 

implementing a non-linear function.  

The functions shown below are for the forward-left motion: 

Vel_right_wheel=int[x ∙(1+ 𝑎𝑐𝑡𝑢𝑎𝑙𝑎𝑛𝑔𝑙𝑒𝑐𝑜𝑚𝑚𝑎𝑛𝑑
)] 

Vel_left_wheel=int(x) 

Subsection 4.1.2 Nvidia Jetson Xavier Nx 

The NVIDIA® Jetson Xavier™ NX is a 

compact system-on-module (SOM) with 
high-performance computing capabilities 

at the edge. With the accelerated 

computing power of up to 21 TOPS, it 
enables the execution of contemporary 

neural networks in parallel and facilitates 
data processing from numerous high-

resolution sensors. This capability is 
essential for the operation of 

comprehensive AI systems. The Jetson 
Xavier NX is particularly well-suited for 

Figure 46 - Nvidia Jetson Xavier Nx 

Figure 45 - Version 3 Arduino non-linear function 



demanding AI applications, including commercial robots, medical 

instruments, smart cameras, high-resolution sensors, automated 
optical inspection, smart factories, and other embedded systems within 

the IoT domain [19]. 

Subsection 4.1.3 Duro  

Duro is an enclosed version of the Piksi® Multi dual-frequency RTK 
GNSS receiver designed for outdoor use. It combines exact positioning 

accurate to the centimetre level with robust military-grade durability.  

It features a comprehensive sensor suite with 9 degrees of freedom 

(DOF). Six DOF are given by the IMU (Inertial Measurement Unit), 
which consists of an accelerometer and gyroscope, enabling precise 

motion sensing and tracking. Then a magnetometer is included; it 
further enhances Duro's capabilities by allowing it to measure the 

Earth's magnetic field, facilitating navigation and accurate heading 

estimation. 

Furthermore, Duro incorporates a GNSS antenna, enabling it to receive 
signals from multiple global navigation satellite systems. With the 

integration of an RTK (Real-Time Kinematic) system, Duro has the 
potential to achieve high-precision positioning by utilising carrier-phase 

measurements and correction data. 

Overall, Duro offers a comprehensive outdoor positioning and 
navigation solution, combining centimetre-level accuracy, rugged 

construction, and advanced sensor capabilities [20]. 

Since it comprises several sensors, each part will be analysed 

individually and how it relates to the other. 

The first aspect is how it is connected to the ROS environment; this is 

done thanks to the ROS package duro_ros [21], which publishes ROS 

topics related to the raw data the component sends. 

This data represents a measurement of the angular velocity 
(gyroscope) and linear acceleration (accelerometer) other than the 

magnetic field measurement in the three axes. 

The first two data 

types (from the 
gyroscope and 

accelerometer) 

are sent to a 
complementary 

filter to get 
orientation as 

rotation in the x and y axes (pitch and roll). 

Figure 47 - Duro starter kit 



4.1.3.1 Complementary filter 

This algorithm is in a ROS meta-package imu_tools [22] as a ROS 

package called imu_complementary_filter. It is built on the work done 

by [23]. 

Resuming the paper, the choice of using the complementary filter 

instead of another filter, such as the Kalman Filter (4.1.3.4), is due to 
its simplicity and effectiveness. It uses analysis in the frequency 

domain to filter the signals and combine them to obtain an orientation 

estimation without any statistical description.   

Its working principle can be resumed by the scheme below: 

As it is possible to see, a first orientation is taken by the gyroscope 

measurement; this is used to rotate the measure from the 

accelerometer obtaining a correction term. This term is filtered by a 
Linear intERPolation (LERP) if the correction term is below a decided 

threshold; if it is higher, a Spherical Linear intERPolation (SLERP) is 

used. 

This filter allows the addition of another term of correction from the 
magnetometer orientation. Still, the choice done in this work is to 

handle it in a different node, to calibrate and filter it correctly, using 
the roll and pitch angle (from the complementary filter) to compensate 

for the tilt. 

4.1.3.2 Magnetometer calibration 

Continuing with the analysis of the magnetometer, special attention 

was given to this component due to its susceptibility to noise. As 

presented in [24], the magnetometer data can be affected by various 
sources of disturbances, including wide-band measurement noise, 

stochastic biases, installation errors, and magnetic interferences in the 

vicinity of the sensors. 

These magnetic interferences can be categorised into two groups.  

Figure 48 - Complementary filter 



The first group, hard iron interference, refers to the presence of a fixed 

or slightly time-varying magnetic field generated by ferromagnetic 

materials.  

The second group, soft iron interference, pertains to the magnetic field 

generated within the device. 

Calibration is crucial for this component to get the 12 matrix 
parameters to compensate for the abovementioned effect. In this work, 

two different ways of calibration are presented: 

The first is based on [25], while the second is based on [24]. 

A test is done to show the best approach between them; the result is 

shown in Figure 49. 

As it is possible to see, the Least Square Calibration performs better; 

furthermore, it is worth noting that this calibration required complete 
rotations around the three axes. Since this is impossible in the field, a 

symmetry of the points collected is done to complete the dataset on 

which the calibration procedure is applied. 

4.1.3.3 Magnetometer filter 

After the calibration, the magnetometer measurements are submitted 

to a filter action before getting the final heading value. 

This work proposes a Lowpass filter and a Moving Average Filter. 

Going deeper into why a filter action is needed and which type of noise 
is present, it is said that the magnetometer presents pink or 1/f noise 

at low frequencies and white noise at high frequencies [26]. 

Figure 49 - Calibration comparison 



For this reason, the first and more standard approach of using a 

Lowpass filter is insufficient, while a Moving Average Filter can better 

suit the work expected. 

Even if it has a straightforward implementation, this filer has an 
excellent response in the time domain, suiting for the application. At 

the same time, it cannot be applied to frequency domain applications 

[27]. 

Given the general characterisation of the noise found in state of the art 

and to use a more practical approach, both filters are implemented and 

compared to find the best method for our goal. 

The implementation of the two filters is summarised below: 

Firstly, the data collection object 

is created; for both filters, a 
deque is used to collect the data 

in chronological order fixing its 

dimension. 

For the EMAF (Moving Exponential Average Filter) in each position, an 
exponential weight proportionally to its position is associated with the 

data collected, obtaining for each iteration the exponentially weighted 
average of the element inside; the choice to not use a simple average 

is made to give more priority to recent data then to dynamics instead 

of noise reduction as reported in [27]. 

For the Low pass, the measurements stored are used in the equation 

of a digital Low Pass filter: 

𝑎0 𝑦[𝑛] = 𝑏0 𝑥[𝑛] + 𝑏1𝑥[𝑛 − 1] + 𝑏2𝑥[𝑛 − 2] − 𝑎1𝑦[𝑛 − 1] − 𝑎2𝑦[𝑛 − 2] 

In which y[n] is the output, x[n-k] is the past inputs and y[n-k] is the 

past output [28].  

Where the a and b coefficients are computed by the function 
scipy.signal.iirfilter of the library Scipy given as input the order of the 

filter, the cut-off frequency, the sampling frequency, the type of filter 
(bandpass, lowpass, highpass or bandstop, and Butterworth, 

Chebyshev I or II, elliptic or Bessel).  

A Butterworth type is chosen since it has a frequency response as flat 

as possible in the pass band region with a sampling frequency of 20 

given by the sensor one. 

A first analysis was done for both sensors to tune the parameter that 
satisfies stationary and dynamic requirements; an analysis example is 

shown below in Figure 51 and Figure 52. 

Figure 50 - EMAF deque 

 



 

The final values chosen for the two filters are reported in Table 5: 

Low Pass EMAF 

ωc=4 Hz Size =10 

Order=2 - 

Table 5 - Filters parameters chosen 

Figure 52 - Error analysis for LP 

Figure 51 - Example of analysis for LP order 2 stationary(left) transition (right) 



A further comparison was made between the two, showing that EMAF 

presents better results for the application.  

4.1.3.4 Extended Kalman Filter 

To gain an accurate state estimation, the fusion of data from multiple 
sensors is required. To address this need, the package 

robot_localization is used [29]. As described in [30], this package 
contains a generalised extended Kalman filter (EKF) implementation. 

The package has several advantages, including supporting unlimited 
inputs from various sensor types, customising which sensor data fields 

are fused with the current state estimate, supporting 3D state 

estimation, and handling multiple ROS message types. 

The central node of the package is the ekf_localization_node, which 
implements an extended Kalman filter algorithm. The implementation 

allows prediction and correction steps, projecting the state estimate 
and error covariance forward in time and updating them based on 

sensor measurements. The implementation supports partial updates of 
the state vector, enabling the fusion of sensor data that measure only 

a subset of the variables. Users can customise the process noise 

covariance for optimal performance. 

To better understand how it works, the article continues to describe 

two experiments to evaluate the performance of the 

ekf_localization_node. 

 One was interested in the distance between the robot’s start and end 
positions, and another was interested in the behaviour with infrequent 

GPS; for both, different configurations were utilised: dead reckoning 
via the platform’s odometry, fused odometry with a single IMU, fused 

odometry with two IMUs; fused odometry with two IMUs and a single 

GPS, and fused odometry with two IMUs and two GPS units.  

Figure 53 - Comparison LP / EMAF 



The result of the first experiment is shown in Figure 54 taken by the 

article.  

In contrast, the second experiment shows as being between the 

current state and measurement despite the significant difference 

between state estimate and measurement due to the infrequency of 

the GPS; the filter’s covariance matrix retains its stability. 

Other than describing the potentiality of this package, this article has 
much interest since it shows how the configuration of a redundant 

sensor helps to reduce the error.  

Figure 54 - Localisation comparison [30] 



In the thesis configuration, Imu and a GPS+RTK are used. Relying on 

an odometry measurement using encoders or visual odometry by the 
camera or the LiDAR can also increase the precision in the condition of 

low GPS reception. 

  



Subsection 4.1.4 Lidar Velodyne VLP16 

The Velodyne Puck is a sensor that uses 3D lidar 

technology. It is known for its reliability, power 
efficiency, and ability to provide a surround view. This 

makes it an excellent choice for affordable low-speed 

autonomy and driver assistance applications [31]. 

Lidar stands for Light Detection and Ranging. It uses 

laser beams to measure distances and create a 
detailed 3D map of the environment. In this work, it 

will be crucial to detect obstacles thanks to an 

adaptative clustering algorithm. 

In particular, this sensor is connected to the ROS environment thanks 
to the ROS package velodyne [32]. It publishes 

a point cloud that is the input for an algorithm 
of clustering. This algorithm is also available in 

the ROS community in [33], based on the work 

in [34].  

Thanks to this algorithm, boxes surrounding 
the element are published once the minimum 

and maximum height from the Velodyne, the minimum and maximum 

size, and the distance are tuned. 

Subsection 4.1.5 Intel® RealSense™ Depth Camera D435 

The stereo Intel RealSenseTM depth camera D435 provides high-

quality depth for various applications. In 
fields such as robotics or augmented and 

virtual reality, having a broad view of the 
scene is essential. Therefore, this 

technology’s wide field of view is perfect for 

such applications. 

This small form factor camera can be easily integrated into any solution 
and has a range of up to 10 metres. It also includes Intel RealSense 

SDK 2.0 and cross-platform support [35]. 

In the thesis application, it is used for people detection during 

navigation. 

The visual cameras are connected to the ROS environment through a 
node (a code written in Python language). This node uses an algorithm 

called YOLO (You Only Look Once) to identify the feature in the space 

around it. 

As reported in [36], YOLOv5 is one of the most recent and frequently 
used iterations of a well-known deep learning neural network; it is 

Figure 55 - Velodyne VLP16 

Figure 56 - Example of clustering 

Figure 57 - Camera 



utilised for various machine learning applications, mainly in computer 

vision. Due to the YOLO algorithm's excellent performance in 
complicated and noisy data contexts, availability, and simplicity of 

usage in conjunction with popular programming languages like Python, 

it has rapidly gained favour in the data science community. 

The network 
architecture of Yolov5 

consists of three parts: 

CSPDarknet 
(Backbone), PANet 

(Neck) and Yolo Layer 

(Head).  

The data are first input 
to CSPDarknet for 

feature extraction and 
then fed to PANet for 

feature fusion. Finally, 
the Yolo Layer outputs 

detection results 
(class, score, location, 

size) [37]. 

This system uses a convolutional neural network as its backbone to 

collect and organise image features at various levels. The neck network 

then merges these features and prepares them for prediction. Finally, 

the head network predicts targets on the feature maps [37]. 

Given a brief definition of what YOLO is, the libraries/modules used are 

presented: 

• Torch is a well-liked machine learning library that is open-source 
and mainly used for deep learning tasks. To create and train 

neural networks, it offers a high-level interface. The PyTorch 
library's utility module torch.hub, which offers a practical method 

to load previously trained models, is used. To expedite the 

process, the model has already been downloaded locally. 

• OpenCV, also known as CV2, is a widely-used open-source library 
that offers a variety of image processing and computer vision 

features. 

• Pyrealsense2 is a tool that allows developers to use Intel 

RealSense depth cameras in Python applications. It provides a 

straightforward and user-friendly interface for operating 
RealSense cameras, including taking colour and depth frames, 

getting sensor information, and carrying out various processing 

operations. 

Figure 58 - YOLO structure 



• utils.dataloaders is a module of a library download by [38] to 

manage the loading and handling of different data types. 

• The other libraries rospy, numpy, and std_msgs are commonly 

used for this type of work. 

Finally, a schematic presentation of the node is done: 

 

  

Figure 59 - Person detection node 



Subsection 4.1.6 FLIR ADK  

Thermal infrared cameras are 

the best sensor technology for 
detecting people and animals, 

day or night. It measures the 

amount of infrared radiation 
emitted or reflected by objects 

[39]. 

This sensor is not yet used but 

will be necessary for 
subsequent developments 

thanks to the possibility of 
integration with an optical 

camera and lidar, achieving better results and reducing noise for low 

light or dust.  

  

Figure 60 - FLIR ADK 



Chapter 5 Motion Planning and Control 

This chapter is divided into two parts; the first will discuss the different 

solutions implemented to achieve outdoor navigation between GPS 
points. The second part will instead add the obstacle avoidance 

problem, increasing the problem’s complexity. Before entering the 

details, a global scheme for the development is shown in Figure 61: 

 

Section 5.1 Navigation Part 

All the algorithms that are proposed 
have the goal of making the robot reach 

a specific point (sent by the user 
through the company’s API), 

minimising the distance from the line 
that joins the start to the goal; they 

also share the ability to stop if a person 
is detected and to close the program 

other than control the robot if an 

emergency message is sent.  

Before starting the navigation, several 

nodes must be run, in particular: 

• duro_node is run to get raw data 

from the IMU, the GPS and the 

magnetometer.  

• imu_complementary_filter  is run 
to get orientation for the 

imu_tools package. 

Figure 61 - Motion development 

           

             

           

             

           

             

           

             

           

             

           

             

           

             

           

             

           

             

           

             

           

             

           

             

          

             

           

             

           

             

                      

            

   

    

    

    

    

    

    

    

    

Figure 62 - Example of UTM transformation 



• utm_odometry_node converts latitude-longitude readings into 

UTM odometry (available in the gps_common package). The UTM 
(Universal Transverse Mercator) coordinate node system is a 

positioning system which divides the world into sixty north-south 
zones, each 6 degrees of longitude wide, making in the plane and 

then adding the possibility to configure a xy Reference frame. 

• robot_pose_ekf  from the package robot_pose_ekf receives the 

UTM coordinate and fuse them to obtain the robot’s odometry. 

Finally, the coordinate in the XY frame is received by the 

algorithm that performs the navigation.  

• Other than that, the node based on the YOLO5 algorithm must 
be run to perform people detection, as the node related to the 

filtering of the magnetic field to obtain the heading of the robot 
and the node adaptative_clustering from the package 

adaptative_clusterig to get the position of the obstacle. 

 

Subsection 5.1.1 Bang-bang controller 

A bang-bang controller is a feedback controller in control theory that 

rapidly switches between two states [40]. 

The two states are the forward motion state and the rotation state. 

This controller is allowed by the first version of Arduino code, getting a 

first knowledge of ROS commands and Arduino’s programming. 

The base concept of the motion algorithm is that, given a starting point 
and a goal, firstly is performed a rotation to be aligned to the goal, and 

then the forward motion is made. To correct motion and sensor noise, 
two imaginary boundaries are drawn, and as soon as the robot 

overcomes one of them, the rotation is performed again, realigning to 

the goal. The functioning is schematised below: 

 

 

 

 



This algorithm guarantees the reach of the goal as the tolerance used 
for the boundaries is less or equal to the tolerance used to check if the 

robot reaches the destination. By reducing the boundaries’ tolerance, 
higher precision can be acquired at the cost of a more discontinuous 

path. 

Once the path creation is explained, the motions' speed must be 

analysed since both angular and linear are not constant. Indeed, the 
angular velocity is proportional to the angular rotation that must be 

done. Still, the growth is limited by a function that imposes a max 

increment (0.2) and a maximum value (1 by default). 

For the linear, a trapezoidal profile is proportional to the distance 

between the starting point and the goal. 

In this way, velocities present a smoother profile avoiding step 

variation. 

Figure 63 - Bang-Bang algorithm 



 

Finally, a resume of the code is provided below: 

Initialisation: 

• Imports the necessary modules and packages. 

• Defines the Calc_Trajetory class, which represents the task 

structure. 

• Initializes the ROS node and sets up the necessary publishers 

and subscribers. 

• Implements callback functions for receiving data from subscribed 

topics, such as heading information, actual coordinates, 

emergency stop signal, and stop command (people detection). 

• Implements a mover method that inputs a goal position, a 
logging object, and a file object and controls the movement of 

the robot to reach the goal position; in the meantime, it provides 
the possibility to gain a log file for debugging and a txt file to get 

in a matrix shape way information to make analyses and graphs. 

For each goal, the mover is called: 

• It starts by initialising some variables and publishing zero 

velocities to stop the robot as safe. 

• It enters a loop until the goal position is reached. 

• Within the loop, it checks for emergency and people detection 

stops. If it can continue, two states are possible: rotation and 

straight-line movement. 

• In the rotation state, the robot adjusts its heading to align with 

the desired angle. 

• If the alignment is not achieved within a specified time, it 

transitions to the forward motion. In this way, the robot does not 

get stuck. 

Figure 64 - Velocities profiles 



• In the straight-line movement state, the robot moves towards 

the goal position. 

• The calculated velocities are published to the /cmd_vel topic to 

control the robot's motion. 

In the __main__ block: 

• Initializes a logging object and opens a file to write the trajectory 

information. 

• Retrieves the goal points from a file. 

• Creates an instance of the Calc_Trajetory class. 

• Executes the mover method for each goal point, controlling the 

robot's movement. 

• Handles exceptions and gracefully exits the program. 

Subsection 5.1.2 PID controller 

This section will present 
two different versions of 

the PID controller. In 
particular, both versions 

share the same path 
planner and the linear PID 

controller, while they differ 

for the angular PID. 

Starting from the general concept, a proportional–integral–derivative 

controller (PID controller) is a control loop mechanism employing 
feedback, widely used in the scientific field. The PID controller regularly 

computes the difference between a desired setpoint and a measured 
value, called the error value e(t). It then uses proportional, integral, 

and derivative terms to make necessary corrections [41]. 

It is then essential to the way this error is computed. Instead, different 

quantities can be utilised; here are the three primary measurements 

used in this scenario: 

• Distance to the goal is the Euclidean distance between the 

desired goal and the actual position. 

• Heading error is the difference between the actual heading of the 

robot and the heading needed to reach it. 

• Cross-track error (CTE) is the orthogonal distance between the 

line of desired travel and the robot’s location. 

It is possible to see as the first one doesn’t give information about the 

orientation, while the last two provide only the orientation term. For 

Figure 65 - PID scheme 



this reason, the first error will be used as a reference for the linear 

motion PID while the others will be used for the angular one. 

As regards the path planning part, in both cases, the track is divided 

into the equidistant point that changes as the tractor gets near to them, 
working as a reference for the linear PID; that is done to obtain an 

almost constant value during the travelling reducing it just when it is 

arriving. 

5.1.2.1 Heading PID 

As written before, this algorithm 

uses two PIDs to control the 
linear and the angular speed 

separately; at the same time, it 
continues to use the central 

concept of the Bang-Bang 
controller; indeed, as it receives 

the actual goal, it aligns the robot 
to the destination, reducing the 

angular error of some degrees 

(around 4°); in this way the 
angular PID has to compensate 

for the small angular error, 

obtaining a smoother behaviour. 

So as the robot starts the forward 
motion, the angular error is 

continuously computed and given 
to the PID, which has a 0 has a 

set point, to transform it in the velocity command component 

(/cmd_vel.angular.z). 

Furthermore, since for external disturbance like the loss of the RTK, 
the robot can go too further from the goal, starting a circular motion 

around it (the linear velocity is proportional to the distance), a linear 
limiter is added to regulate the final speed inversely proportional with 

the angular one. This limiter is also used in the other controllers to 

avoid going for several meters without the correct heading. 

Also in this case, a resume of the code developer is provided: 

Initialisation: 

• The necessary libraries and modules are imported. 

• PID controllers class are defined for linear and angular motion. 

• The necessary publishers and subscribers are set up. 

• Callback functions are defined to receive and process data from 

various topics, such as heading, coordinates, and stop signals. 

Figure 66 - Heading PID 



Movement Execution: 

• It receives the goal coordinates, a log object for debugging 

information, and a file object to store navigation data. 

• The function starts by initialising variables and setting the initial 

velocities to zero (safety measurement). 

• It enters a loop until the goal is reached. 

• During each loop iteration, the function checks for stop signals 

and handles them accordingly. 

• If the robot can move, it checks if it needs to perform an initial 

rotation to align with the desired heading. 

• To align the robot with the desired heading, it may require an 
initial rotation that adjusts its angular velocity. If the alignment 

is not achieved within a set time, the robot will move on to the 

next step to prevent it from getting stuck.·       

• Once aligned, the function computes the reference point for the 
robot to follow using the path_creator function. This function 

creates a trajectory path based on the current position and the 
desired final goal. The function returns the new reference point 

for the robot. 

• So, it computes the error between the current and desired 

heading and uses the PID controllers to calculate the angular and 

linear velocities based on the error values. 

• The linear velocity is limited using the 

velocity_acceleration_limiter function. In this way, if a strong 
rotation is needed, the line velocities are reduced to avoid a 

considerable radius trajectory. 

• The calculated velocities are published to the /cmd_vel topic to 

control the robot's motion. 

• Once the goal is reached, the function stops the robot, sets the 

initial rotation flag, and prepares for the next goal. 

In the __main__ block: 

• Initializes a logging object and opens a file to write the trajectory 

information. 

• Retrieves the goal points from a file. 

• Creates an instance of the Calc_Trajetory class. 

• Executes the mover method for each goal point, controlling the 

robot's movement. 

• Handles exceptions and gracefully exits the program. 



5.1.2.2 CTE PID 

This control scheme is similar 

to the previous one, but the 

angular speed is based on the 
distance from the path. The 

controller will apply angular 
rotation to keep the space 

from the line as small as 

possible. 

In this way, the angular 
controller is able only to keep 

the robot on the line, but if 
the goal is passed outside the 

tolerance, it will not turn the 
robot to the back; to solve 

this problem, an imaginary 
rectangle is drawn 

surrounding all paths; in this 

way, if the robot touches this 
boundary a realignment is 

performed, creating a new route straight forward to the goal. 

As shown in the Chapter 7 , this controller has better results concerning 

the Heading PID thanks to the higher precision of the localisation 
concerning the heading computation. Anyway, this controller is not 

suitable for obstacle avoidance application since in a not straight path 
(like in the case of the presence of an obstacle), the distance requires 

time to get bigger, differently from the heading that pointing to the 

following reference will show instantly the needed of a strong rotation. 

Finally, a resume of the code developed is provided: 

Initialisation: 

• The necessary libraries and modules are imported. 

• PID controllers class are defined for linear and angular motion. 

• The necessary publishers and subscribers are set up. 

• Callback functions are defined to receive and process data from 

various topics, such as heading, coordinates, and stop signals. 

Movement Execution: 

• It receives the goal coordinates, a log object for debugging 

information, and a file object for stored data. 

• The function starts by initialising variables and setting the initial 

velocities to zero. 

Figure 67 - CTE 



• It enters a loop until the goal is reached. 

• During each loop iteration, the function checks for stop signals 

and handles them accordingly. 

• If the robot can move, it checks if it needs to perform an initial 

rotation to align with the desired heading. 

• If an initial rotation is required, it adjusts the angular velocity of 
the robot to align it with the desired heading. As for the others, 

if the alignment is not achieved within a specified time, it 

transitions to the next step to avoid the robot getting stuck. 

• Once aligned, the function computes the reference point for the 

robot to follow using the path_creator function. This function 
creates a trajectory path based on the current position and the 

desired final goal. The function returns the new reference point 

for the robot. 

• Therefore, the error is computed between the current position 
and its projection, and it uses the PID controllers to calculate the 

angular and linear velocities based on the error values. 

• The linear velocity is limited using the 

velocity_acceleration_limiter function. In this way, if a strong 
rotation is needed, the line velocities are reduced to avoid a 

considerable radius trajectory. 

• The calculated velocities are published to the /cmd_vel topic to 

control the robot's motion. 

• Once the goal is reached, the function stops the robot, sets the 

initial rotation flag, and prepares for the next goal. 

In the __main__ block: 

• Initializes a logging object and opens a file to write the trajectory 

information. 

• Retrieves the goal points from a file. 

• Creates an instance of the Calc_Trajetory class. 

• Executes the mover method for each goal point, controlling the 

robot's movement. 

• Handles exceptions and gracefully exits the program. 

 

  



Subsection 5.1.3 Non-linear controller 

This control strategy is based on the research presented in the article 

[13], which is already 
discussed in the State of the 

Art (Chapter 2). In addition to 

being appropriate for obstacle 
avoidance paths, it uses 

heading and cross-track 
errors to ensure higher 

precision. 

As shown in the proposed 

scheme, the controller uses 
the error given by the cross-

track to correct the heading 
error. Unlike the original plan, 

PIDs are used instead of just proportional controllers to obtain a fast 
response avoiding the oscillation given by the only use of the 

proportional term. 

So, firstly, the correction term is computed based on the distance to 

the reference segment. After that, the correction angle is subtracted 

from the reference inclination of the path to obtain the input for the 
heading computation. The scheme of the angular velocities is shown in 

Figure 68. 

A schematic representation of the code is proposed: 

Initialisation: 

• The necessary libraries and modules are imported. 

• PID controllers class are defined for CTE and heading error. 

• The necessary publishers and subscribers are set up. 

• Callback functions are defined to receive and process data from 

various topics, such as heading, coordinates, and stop signals. 

Movement Execution: 

• The method mover initialises various variables and parameters 

for the movement control. 

• It enters a while loop until the goal position is reached. 

• During each loop iteration, the function checks for stop signals 

and handles them accordingly. 

• If no stop signal is detected, the method checks if the robot is in 

the rotation state. 

Figure 68 -  Non-linear controller 



• If the robot is in the rotation state, it checks if the alignment with 

the goal position needs to be adjusted. If alignment is required 
and the time since the rotation start is less than or equal to a 

predefined interval, the method enters the rotation state (in this 

way, stuck conditions are checked). 

• If alignment is not required or the time exceeds the specified 
threshold, the method ends the rotation state. So, the 

path_creator function creates the path for the robot to follow 

after rotation. 

• If the goal hasn't been achieved, the method activates the 

PID_motion function, which utilises PID controllers to manage 

the robot's angular and linear velocities. 

• The method first checks if the reference point needs to be 
updated. If the actual reference point is nearer than a tuned 

distance, it updates the pid_reference attribute and stores the 
previous reference as last_reference available, which will be used 

to get the reference segment. 

• Indeed, the distance of the current position from the line formed 

by the last and current reference points is calculated. 

• Depending on the orientation of the path and the robot's heading, 

the method determines the angular value to be used as a 
correction for the robot to go back on the path. The computation 

is done using a PID. 

• The calculated angular value is then used to update the desired 
orientation by subtracting it from the absolute orientation of the 

path. 

• To determine the input value for the PID controller, the method 

calculates the difference between the desired orientation and the 
robot's current heading. This results in the computation of the 

angular velocity component. 

• For the linear one, the robot’s progress along the path is used as 

input of a trapezoidal profile. 

In the __main__ block: 

• Initializes a logging object and opens a file to write the trajectory 

information. 

• Retrieves the goal points from a file. 

• Creates an instance of the Calc_Trajetory class. 

• Executes the mover method for each goal point, controlling the 

robot's movement. 

• Handles exceptions and gracefully exits the program. 



Subsection 5.1.4 Vector field 

This method has a different 

implementation from the 
previous ones; indeed, a vector 

field is created instead of 

computing a series of points to be 
used as a reference, according to 

[14]. So firstly, a constant vector 
is created and fixed to the object; 

this will constantly push the 
vector through the direction of 

the path. Then, a vector field is 
built along the way to make the 

vector remain in the way. 
Accordingly, with the article, this 

field is divided into two parts, the 
nearer to the path is smooth 

behaviour, while the outsider has a step force as shown in the picture, 

Figure 69. 

A schematic representation of the code is proposed: 

Initialisation: 

• The necessary libraries and modules are imported. 

• PID controllers class are defined for the heading error. 

• The necessary publishers and subscribers are set up. 

• Callback functions are defined to receive and process data from 

various topics, such as heading, coordinates, and stop signals. 

Movement Execution: 

• The method mover initialises various variables and parameters 

for the movement control. 

• It enters a while loop that continues until the goal position is 

reached. 

• During each loop iteration, the function checks for stop signals 

and handles them accordingly. 

• If no stop signal is detected, the method checks if the robot is in 

the rotation state. 

• If the robot is in the rotation state, it checks if the alignment with 
the goal position needs to be adjusted. If alignment is required 

and the time since the rotation start is less than or equal to a 
predefined value, the method enters the rotation state (in this 

way, stuck conditions are checked). 

Figure 69 - Path vector field 



• If alignment is not required or the time exceeds the specified 

threshold, the method ends the rotation state. 

• If the goal still needs to be achieved, the PID_motion function is 

executed. This function uses PID control to manage the robot's 

angular and linear velocities. 

• The PID_motion method is a part of the Calc_Trajetory class that 
controls the robot’s motion. The main characteristic different 

from the previous implementation is the function lineMission. 

• Firstly, it first calculates the differences between the goal and 
original positions in the x and y axes and the Euclidean distance 

between the current and goal positions. 

• If the distance to the goal is less than a tunable value, the 

function calculates the attractive force towards the goal position. 

Therefore the desired heading is computed. 

• If not, the function continues computing the perpendicular 
distance from the current position to the line connecting the 

original and goal positions. 

• If it is more significant than a threshold value, a strong vector is 

applied to point to the line. 

• If not, the distance is used to compute the vector the point to 

the goal while maintaining the robot on the line 

• Finally, it computes the error between the desired and actual 

heading and returns the error (input for the angular PID) and the 

progression. 

• For the linear one, the robot’s progress along the path is used as 

input of a trapezoidal profile. 

In the __main__ block: 

• Initializes a logging object and opens a file to write the trajectory 

information. 

• Retrieves the goal points from a file. 

• Creates an instance of the Calc_Trajetory class. 

• Executes the mover method for each goal point, controlling the 

robot's movement. 

• Handles exceptions and gracefully exits the program. 

 

 

  



Section 5.2 Obstacle Avoidance 

This section is related to the ability of the robot to avoid possible 
obstacles on the road. Three different methods were exploited: the first 

one was the simplest and had less computational requirement since it 
did not require a dynamic map. Indeed it performs a BUG logic 

algorithm, discussed in Chapter 2. The other two instead require the 

construction of a map where navigate. 

Subsection 5.2.1 Bug algorithm 

As previously mentioned, this algorithm does not require a map; some 

memory is used to localise the obstacle but is deleted as the goal is 
reached. As the adaptive clustering algorithm detects an obstacle, it is 

located in the space, and the actual path is checked; if it intersects the 
safe contour of the obstacle (using a safe distance), a new one is 

computed, as shown in Figure 70. 

 

The code is based on the non-linear controller with the difference of 
the path change to account for the obstacles. This aspect is resumed 

below, explained by the new path_creator: 

• It initialises an empty list called pid_path to store the path’s 

points. 

Figure 70 - BUG algorithm 



• The method calls the check_goal function. It creates a Point 

object by the coordinates of the goal position. Therefore it checks 
if it lies within the obstacle area. If the goal is within it, it 

indicates it is not reachable. Therefore a new goal is computed 
using the nearest intersection (between the reference line and 

the obstacle) to the goal. 

• After the check, the step size is defined, indicating the distance 

between the reference points on the path. 

• It starts computing the point by the type of line (vertical, if the 
tractor's current position is aligned vertically with the goal 

position within tolerance or an oblique line). If an obstacle is 
encountered during the path creation, the method 

obstacle_avoidance_path is called to add a path that avoids the 
obstacle, using the obstacle’s contour to add a distance of a 

tunable way, as in the logic of BUGs. 

• Finally, the goal position is added to the path. 

Subsection 5.2.2 Occupancy Grid Map 

An occupancy grid map is a map that for each cell shows the probability 
that the obstacle occupies it. Different versions can be implemented, 

from a binary map [0, 1] to complex solutions. In this work, each cell 

can go from 0 to 100 using integer numbers to reduce memory 

allocation. 

Therefore each time the LiDAR clusters an object, its coordinate is used 
to add a pre-defined value to the cell inside the contour until a 

maximum of 100.   

To solve the problem of the ‘ghost’ obstacle given by the machine’s 

vibration, each T (a period defined) all the matrix is diminished by a 

tuned value until a minimum value of 0. 

The code is built with two functions. 

One is called each time the adaptative_clustering algorithm sends an 

obstacle. 

• The function iterates over each marker (obstacle box) in the 

message. 

• It extracts the marker points' maximum and minimum x and y 

coordinates. They are used since the box is computed in the 

velodyne reference frame, always perpendicular to it. 

• The function defines two transformation functions to convert the 

coordinates from the marker's frame of reference to the map's 
frame of reference, considering the robot's heading, position and 

the map translation vector. 



• The function utilises transformation functions to calculate the 

box's transformed coordinates of the box's four vertices (A, B, C, 

D) in the absolute reference frame.  

• Afterwards, it determines the polygon's bounding box in the 
absolute reference frame by identifying the minimum and 

maximum x and y values among the transformed vertices. To 
ensure a safe margin from the obstacle, the polygon's vertices 

are adjusted by adding or subtracting a value from the x and y 

coordinates based on their position relative to the bounding box’s 

average x and y values.  

• Finally, the function iterates over the cells within the polygon’s 
bounding box. For each cell, the function checks if it is inside the 

polygon using a ray-casting algorithm. If the cell is inside the 
polygon, the function updates the corresponding cell value in the 

map. 

• If the current cell value in the map is greater than or equal to the 

100-increase value, it is set to 100. Otherwise, it is incremented 

by the increasing value. 

The second part is a function with a predefined interval to update the 

map, deleting false obstacle detection. 

• The method takes an optional parameter fixed_quantity which 

defaults to 1. 

• It uses the NumPy subtract function to subtract the 

fixed_quantity from each cell in the map. The out parameter 

stores the result in place, modifying the map directly. 

• Then is ensured that any cell value in the map that becomes 

negative after the subtraction is set to zero. 

5.2.2.1 A* application 

The first algorithm to move the robot avoiding obstacles is the A*. 

Each time an obstacle is founded, the map is updated; meanwhile, 

the A* computes the accessible path. If one of the inputs is near one 

obstacle cell (probability higher than a threshold), the robot is 

stopped for safety reasons and the A* is called computing a new free 

path. 

The heuristic function must be trained to obtain the desired path and 

a short computation time. 

The final one is shown below: 

ℎ(𝑛) = 𝑊𝑒 ∙ 𝑑𝑒(𝑛) + 𝑊𝑜 ∙ 𝑑𝑜(𝑛) + 𝑊𝑙 ∙ 𝑑𝑙(𝑛) 

with We = 0.5, Wo = 8, Wl = 0.5. 



In the equation above, the We, Wo, and Wl are tuneable weights of the 

corresponding functions. In particular, de (n) is the Euclidean distance 
from the goal, do (n) is the inverse of the distance from the obstacle 

and dl (n)is the distance from the line.  

Regarding do (n), this value is computed by looking for the nearest 

obstacle cell in a pre-defined range; this range is imposed to reduce 

the computational time required. 

Since this parameter is essential for the good dynamics of the robot, 

further research is done on that.  

Regarding the code, the main difference with the non-linear controller 

is the occupancy grid map (the part before) and the new function for 

path planning. This last one is presented below: 

• The method initialises an empty list called pid_path to store the 

computed path. 

• The ax, bx, cx, and dx variables are computed by transforming 
the actual position and goal coordinates from the absolute 

reference frame to the matrix frame based on the translation 

vector and cell size. 

• From ax, bx, cx and dx a function is used to find the row and 

column numbers in the grid correspondent. 

• The A* algorithm is called with the map, start position, and goal 
position to compute the possible path. The result is stored in the 

path variable. 

• If no path is found, an error message is printed, and the 

callback_emergency_stop method is called. 

• If a path is found, the method proceeds to process the path. 

• The first two points are removed from the path (assuming they 

are very close to the current position), and the remaining path is 
stored in the path_memory list. The round_edges function is 

called to filter the path. 

• It checks if the length of the path is less than 3. In that case, it 

returns the original path as there are low points for edge 

rounding. 

• The start and end points of the path are extracted. 

• The function initialises variables to track the maximum distance 

and the index of the point with the maximum distance. 

• The function iterates over the points in the path (excluding the 

start and end points) and calculates the distance of each point 

from the line formed by the start and end points. 



• If the calculated distance exceeds the current maximum 

distance, the maximum distance and its corresponding index are 

updated. 

• After iterating through all the points, the function checks if the 
maximum distance is within the specified tolerance (input of the 

function). If so, it returns a new path consisting of only the start 

and end points, effectively removing the points in between. 

• If the maximum distance exceeds the tolerance, the function 

repeatedly calls to round the edges of the two segments divided 
by the maximum distance point. It gives the recursive calls to 

the left segment (from the beginning to the maximum point) and 

the right segment (from the maximum point to the end). 

• The left and right paths returned from the recursive calls are 
concatenated, excluding the last point of the left path, and 

returned as the rounded path. In this way, the discontinuous 
effect due to the discrete value of the map is smoother, allowing 

the robot to follow the trajectory without a continuous change of 

orientation.  

• Achieved a smoother path; two versions of the path's storage are 
constructed, one with and one without the round_edges effect. 

If a path is found, the first point is removed from the path list 
(as it corresponds to the current position), and the remaining 

points are translated back to the map frame. The first path is 

used for navigation, while the other is to check for new obstacles. 

 

 

Finally, some tests are done to 

compute the time needed to 
complete the algorithm in 

different situations like Figure 71, 
200 random scenarios are tested. 

The results are shown in the 

following figures: 

 

 

Figure 71 - A* star path computed 



  

Figure 72 - A* Time-Path length 

Figure 73 - A* Reference – real length 



  

Figure 74 - A* Time – number obstacles 

Figure 75 - A* Time analysis 



5.2.2.2 Vector field application  

This is the last algorithm proposed. It improves the code done, from 

the article [15], imposing a vector field around the obstacle, making it 

able to avoid it. 

Also in this case, further analysis is needed to choose the right angle 

of rotation of the repulsive field of the obstacle to make the robot not 

just pushed away and, in the meantime, not captured in his orbit. 

The result is shown in the figures below, Figure 76.  

Regarding the code, the main difference with the first version of the 

vector field is using the occupancy grid map (already explained in 

Subsection 5.2.2) and the new lineMission.  

This last one is presented below: 

• The function takes several parameters as inputs: the current, 

starting and goal positions, the current heading, the grid map, 

the size of each cell in the map and the repulsion gain. 

• The function computes the differences in x and y coordinates 

between the goal and original positions. 

• It calculates the distance from the actual to the goal position 

using the Euclidean distance formula. 

• If the distance to the goal is less than 2, it directly computes the 

steering commands based on the attractive force. In this way, 

the goal’s field strongly pulls the robot. 

• If the distance to the goal is greater than or equal to 2, the 
function proceeds to compute the epsilon value, which represents 

the perpendicular distance between the current position and the 

line connecting the original and goal positions. 

• Based on the value of epsilon, the function determines the entity 
of the force that pushes the robot to the line, as explained in 

Subsection 5.1.4. Therefore, the steering command is computed. 

Figure 76 - Vector Field Obstacles 



• Next, the function iterates over a range of cells within a tuned 

range and computes the repulsion forces given by the probability 
of the cell being an obstacle. The repulsion force is added to the 

vector force components. 

• The final steering command is computed by taking the 

arctangent of the vector force components. 

• The steering error is computed using the desired and actual 

heading angles. It will be used as input for the angular PID. 

  



Chapter 6 Simulation in Gazebo and URDF  

In this chapter, the general aspect of simulation will be treated: firstly, 

a presentation of the most common simulation environment in ROS 
and robotic applications with particular attention on Gazebo; then the 

creation of the URDF (Unified Robotics Description Format ) of the 
tractor is described; finally, some results of the algorithm in the 

simulation environment are shown. 

Section 6.1 Introduction to simulation tools 

Using simulation tools in ROS offers a valuable means to study and 

evaluate the capabilities of robotic systems. There are several notable 

simulation platforms available, including: 

• V-REP (Virtual Robot 
Experimentation Platform): it 

provides a comprehensive 
3D simulation environment 

compatible with ROS, 
enabling the realistic 

simulation of robots and their 

interactions with sensors.  

 

 

• Gazebo is renowned as 
one of the leading 

simulation 

environments for ROS; 
it facilitates the physics-

based 3D simulation of 
robots and their 

dynamic engagement 

with the environment.  

• MORSE (Modular Open Robotics 
Simulation Engine): it is an open-

source robotics simulator designed to 
integrate with ROS seamlessly. It 

focuses on delivering a high-fidelity 
simulation environment that 

accurately emulates robotic systems 

and complex environments.  

Figure 77 - V-REP 

Figure 78 - Gazebo 

Figure 79 - MORSE 



• Webots: it is a commercial robot 

simulator that supports ROS 
integration and provides a feature-

rich 3D simulation environment.  

 

 

 

 

 

 

 

• USARSim: it is highly regarded for its emphasis on high-fidelity 

simulation. USARSim offers accurate physics simulation and 
sensor models that closely resemble 

real-world scenarios. Its versatility in 
simulating diverse robot models and 

sensors makes it suitable for 
complex and varied robotic systems. 

Additionally, it supports multiple 
programming languages, enhancing 

its flexibility for simulation.  

 

 

• STDR/Stage: it is a 2D robot 
simulator in the ROS package. 

It provides a simplified and 
effective simulation 

environment primarily focused 
on 2D navigation and sensor 

simulation. This lightweight 
solution is beneficial for the 

quick prototyping and testing of 
simple robotic systems within 

the ROS framework. Although it 
may lack the same level of realism and complexity as other 

simulation tools, it is an efficient option for basic robotic 

simulations.  

Figure 80 - Webots 

Figure 81 - USARSim 

Figure 82 - STDR/Stage 



• Unity: it, primarily a game development engine, also offers 

capabilities for robot simulation. 
Its robust 3D simulation 

environment leverages realistic 
physics and graphics. Unity's user-

friendly interface and support for 
scripting in languages like C# 

enable users to customise and 

extend the platform to suit their 
simulation requirements. With a 

vast library of plugins and assets, 

Unity facilitates the creation of visually engaging simulations.  

 

After the first general presentation, the main characteristics of the 

different simulations environment are shown in Table 6, taken from 

[42]. 

 V-REP Gazebo MORSE Webots USARSim STDR/Stage Unity 

Main 
Program. 
Language 

C++ C++ Python C++ C++ C++ C++ 

Operating 
System 

Mac, 
Linux 

Mac, 
Linux 

BSD, 
Mac, 
Linux 

Mac, 
Linux 

Linux Linux Linux 

Simulation 
Type 

3D 3D 3D 3D 3D 2D 3D 

Physics 
Engine 

ODE, 
Bullet, 
Vortex, 
Newton 

ODE, 
Bullet, 
Dart 

Bullet ODE Unreal OpenGL 
 

Unity 
3D 

3D Rendering 
Engine 

Internal, 
External 

OGRE 
Blender 

game 
OGRE Karma - OGRE 

Portability Yes Yes Yes Yes Yes Yes Yes 

Support **** ***** **** **** *** **** ** 

ROS 
Compatibility 

**** ***** **** *** ** **** * 

Table 6 - Simulation tools comparison [42] 

Finally, in the article, it is also shown as between the two popular 

simulation environments, MORSE and Gazebo, MORSE performed 
better than Gazebo in the tests conducted’, despite that in this work, 

Gazebo is preferred for its better performance in terms of Support and 
ROS Compatibility, as shown in the table. It is analysed in detail in the 

following Subsection 6.1.1. 

Figure 83 - Unity 



Subsection 6.1.1 Gazebo 

As described before, Gazebo allows to build of a virtual environment 

and offers realistic simulation with its physics engine [43]. 

It has been selected as the official simulator of the DARPA Robotics 

Challenge7 in the US. It is a very popular simulator in robotics because 

of its high performance, even though it is open source. 

Moreover, Gazebo is developed and distributed by Open Robotics, 

which controls ROS and its community, so it is very compatible with 

ROS. The following are the characteristics of the Gazebo.   

• Dynamics Simulation: Only ODE(Open Dynamics Engine) was 
supported in the early development days. However, since version 

3.0, various physical engines such as Bullet, Simbody, and DART 

have been used to meet the needs of multiple users. 

• 3D Graphics: Gazebo uses OGRE(Open-source Graphics 
Rendering Engines), which is often used in games; not only the 

robot model but also the light, shadow, and texture can be 

realistically drawn on the screen. 

• Sensors and Noise Simulation: Laser range finder (LRF), 2D/3D 
camera, depth camera, contact sensor, force-torque sensor and 

much more are supported, and noise can be applied to the sensor 

data like the actual environment. 

• Plug-ins: APIs enable users to create robots, sensors, and 

environment control as a plug-in. 

• Robot Model: PR2, Pioneer2 DX, iRobot Create, and TurtleBot are 

already supported in the form of SDF, a Gazebo model file, and 

users can add their robots with an SDF file. 

• TCP/IP Data Transmission: The simulation can be run on a 
remote server, and Google’s Protobufs, a socket-based message 

passing, is used. 

• Cloud Simulation: Gazebo provides cloud simulation CloudSim 

environment for use in cloud environments such as Amazon, 

Softlayer, and OpenStack. 

• Command Line Tool: GUI and CUI tools are supported to verify 

and control the simulation status. 

 



The word created with Gazebo 

in simulation in this work is 
based on the already defined 

space, empty_word, where 
then obstacles are placed 

randomly, as shown in Figure 
84. It is not needed in a 

complex environment 

because the robot’s goal is to 
navigate from goal to goal 

avoiding obstacles if present in outdoor environments. More complex 
scenarios can be used in future work, like the scenarios available in 

[43]. An example is reported in Figure 85. 

Other than that, Gazebo has a relevant part in the development of the 

URDF file of the robot; indeed, thanks to the several plugins available 

simulated sensors and actuators can be added to simulate the actual 
behaviour (including the noise present), making available also the 

message exchanged.  

Going deeper, the actuator and sensor used are presented: 

• Differential Drive: it simulates the actuator of the wheels, making 

them rotate proportionally with the ROS message published. 

• IMU sensor (GazeboRosImuSensor): simulates an Inertial Motion 

Unit sensor. 

• GazeboRosMagnetic: This plugin simulates a 3-axis 

magnetometer 

Figure 84 - Gazebo Empty World 

Figure 85 - Gazebo complex scenario [43] 



• GazeboRosGps: GazeboRosGps simulates a GNSS (Global 

Navigation Satellite System) receiver which is attached to a 
robot. It publishes sensor_msgs/NavSatFix messages with the 

robot's position and altitude in WGS84 coordinates, together with 
the IMU sensor and the magnetometer, to simulate the presence 

of the DURO in the real robot. 

• VLP16: is the digital twin of the LiDAR present on the robot. It is 

available in the package velodyne in the ROS Community [32] 

together with different types of LiDAR; a difference from the 
previous component is that this one is presented as a xacro file 

that can be added to the robot. 

 

Section 6.2 Creation and Configuration of the URDF file 

In this section, there will be a presentation on how a URDF file and the 

central concept are related, while the model of the tractor with be 

shown. The book [44] is used as a reference for the first part. 

Subsection 6.2.1 URDF file 

The Unified Robot Description Format 
(URDF) is an XML specification used in the 

Robot Operating System (ROS) to describe 
the properties of a robot, including its 

kinematics, dynamics, visual 

representation, and collision model. This 
standardised format provides a way to 

represent a robot's geometry, joints, 

sensors, and other attributes. 

A URDF file consists of a set of link elements 
and joint elements that define the robot’s 

structure. 

The link element describes a rigid body with 

mass, visual features, and collision 
properties; specified as <inertial>, 

<visual>, and <collision>. 

Figure 86 - General URDF tree 



The <inertial> element provides information about the mass, centre of 

mass and moments of inertia of the link. It includes sub-elements like 
<origin> to define the position and orientation of the link's centre of 

mass frame relative to its frame. The <visual> element describes the 
visual representation of the link 

using shapes such as boxes, 
cylinders, spheres, or meshes. It 

also allows for specifying 

materials and textures for 
visualisation. The <collision> 

element defines the collision 
properties of the link, which may 

differ from its visual 
representation for efficiency 

purposes. 

The joint element describes the kinematics and dynamics of the joint 

connecting two links. It includes features such as <origin> to specify 
the transform from the parent link to the 

child link, <axis> to define the axis of 
rotation or translation for the joint, and 

<limit> to set the joint limits for position, 
velocity, and effort. The type of joint can be 

revolute, prismatic, fixed, floating, or planar, 

each with its specific characteristics. 

Additional elements such as <calibration>, 

<dynamics>, <mimic>, and 
<safety_controller> can be used to provide 

further details about joint properties, such as 
calibration reference positions, physical 

dynamics parameters, mimic relationships with other joints, and safety 

limits. 

 

Subsection 6.2.2 XACRO file 

For the tractor URDF model, a XACRO file is used. XACRO is an 

extension of the URDF used in ROS for describing the properties of a 
robot. It provides a more flexible and modular way to define robot 

models using macros and parameters and includes them within the XML 

structure. 

 

XACRO files are typically pre-processed to generate valid URDF files 

before being used. The XACRO format enhances the reusability and 

maintainability of robot descriptions by introducing several features: 

Figure 87 - Link representation 

Figure 88 - Joint representation 



• Macros: XACRO allows the definition of macros, which are 

reusable XML snippets used to generate repetitive structures or 
components within the robot model. Macros enable code 

modularity and reduce duplication by encapsulating commonly 

used elements. 

• Parameters: XACRO supports using parameters, which can be 
assigned values and utilised within the XACRO file. Parameters 

provide flexibility to define robot properties dynamically, making 

it easier to customise and configure robot models for different 

scenarios. 

• Includes: XACRO allows the inclusion of other XACRO or URDF 
files, enabling the composition of complex robot models from 

multiple modular components. Includes facilitates code 
organisation and promotes code reuse by splitting the robot 

description into smaller, manageable files. 

Resuming XACRO simplifies creating and maintaining robot 

descriptions. It enhances the readability, flexibility, and modularity of 
the URDF files, making it easier to manage large and complex robot 

models. 

Subsection 6.2.3 Tractor URDF 

Since the need to use a model with a similar size to the real tractor is 

crucial above all for the simulation part, a URDF file is built. 

During the construction, different choices were taken to obtain a 
collision element similar to the real one and simultaneously respect all 

the physical laws in Gazebo. In particular, the robot’s size and weight 
required specific attention to the vehicle’s inertia; in this case, 

homogeneous components were supposed.  

Then since the robot is a two differential robot, two motion wheels are 

imposed, visualising them in the back but placing really in the middle 

to be congruent with the inertia chosen.  



In the above part, the evolution of the robot URDF file is shown: 

 

 

Figure 89 - Robot first version 

Figure 90 - Robot second version 

Figure 91 - Robot final version 



As it is possible to see, firstly, the actual dimensions were applied, and 

then the mesh component was used to make the visual part more 

similar. 

Section 6.3 Simulation result 

In robotic applications, the 

simulation part is essential since 

it allows fast debugging and 
speeds up the developing 

process; in the thesis 
applications, it takes greater 

importance due to the danger 
given by the size and the 

strength of the machine tested 
in undesired behaviours. For 

this reason, all the field tests 
are preceded by a simulation 

part.  

The simulation also allows us to 

test critical situations that are 
challenging to reproduce in the 

field.  

For this reason, two experiments are done: the first with more than 
one obstacle in a single path; this is done two times with different 

configurations to see the algorithm’s efficiency. The second one, 
instead, will analyse the performance of doing a triangular path with 

different obstacles in the path.  

The navigation simulation without obstacles is not shown because since 

we choose to put minimal values for the sensor’s noise, all the results 
have excellent results, making it difficult to compare. An example is 

Figure 92, in which the Vector Field algorithm achieves a precision of 

0.01 m to reach the goal.  

The reason not to have noise was because the aim was to check the 
correctness of the algorithm. As regards the noise problem is analysed 

directly on the field test.   

Figure 92 - Vector Field Simulation (Goal radius 0.01m) 



Subsection 6.3.1 Three Obstacles in the Path (right way) 

As presented in the 

chapter's introduction, the 
first experiment is to use 

the two algorithms in a 

single path with more than 
one obstacle. In both 

cases, the robot could 
reach the goal safely; 

further details are provided 

nextly. 

6.3.1.1 A* algorithm with non-linear controller (right way) 

The results of the first simulation are reported in this part.  

First, the path computed 

by the A* algorithm is 

shown in Figure 94. As it 
is possible to notice, this 

path is filtered by the 
round_edges described 

in Chapter 5, which 
allows removing the 

‘stairs’ aspect given by 
the discretisation of the 

map.  

Secondly, the map obtained at the 

end of the simulation is reported in 
Figure 95. As it is possible to see, the 

two obstacles on the right are fused 
in just one due to their nearness. 

Despite that, the final path makes a 

good trajectory for the robot. 

Finally, the real trajectory done by 

the robot during the simulation is 

shown in Figure 96. 

The simulation is good overall since 

no problems are present. 

Figure 93 - Three obstacles in the path, right way optimal path 

Figure 94 - Reference path, A* algorithm (right way) 

Figure 95 - Occupancy Grid Map, A* algorithm (right 
way) 



6.3.1.2 Vector Field Algorithm (right way) 

The results of the second 
simulation are reported in this 

part.  

A reference path is not shown in 

this case since it is not 

computed.  

So the map obtained at the end 
of the simulation is reported in 

Figure 98. 

 

 

 

 

Figure 96 - Path done, A* algorithm (right way) 

Figure 98 - Occupancy Grid Map, Vector Field algorithm 
(right way) 

Figure 97 - Simulation instant, A* algorithm (right way) 



  

 

Finally, the 

path done 
by the 

robot in the 
simulation 

is shown in 

Figure 99; 
the only 

observation that can be done in this case is the explanation of the 
oscillation behaviour; this is due to the angle of rotation used for the 

obstacle, as explained in Chapter 5. Despite that, the field test does 

not show this behaviour thanks to the absolute precision (worse). 

  

Figure 99 - Path done, Vector Field algorithm (right way) 

Figure 100 - Simulation instant, Vector Field algorithm (right way) 



Subsection 6.3.2 Three obstacles in the path (left way) 

This is the second part of 

the first test, in which the 
optimal path is in the 

opposite direction of the 

first one. 

Also, in this case, both 

solutions were successful. 
Indeed the robot reached 

the goal safely; further details are provided next. 

6.3.2.1 A* algorithm with non-linear controller (left way) 

The results of the A* 

algorithm are reported in 

this part.  

To begin, Figure 102 shows 

the path computed from 

the A* algorithm. 

Also in this case, it is 
filtered by the round_edges 

described in Chapter 5. 

The figure shows the map gained at the end of the simulation, while 

the real path is shown in 

Figure 103. 

Also in this case, the 
results of the simulation 

are positive. 

 

 

 

 

 

 

Figure 101 - Three obstacles in the path, left way optimal path 

Figure 102 - Reference path, A* algorithm (left way) 

Figure 103 - Occupancy Grid Map, A* algorithm (left way) 



 

 

 

 

  

Figure 104 - Path done, A* algorithm (left way) 

Figure 105 - Simulation instant, A* algorithm (left way) 



6.3.2.2 Vector Field Algorithm (left way) 

As for the Vector Field test, no 

reference paths are computed, but 

it is essential to notice that since 
the vector field of the obstacle is 

constantly rotating counter-
clockwise, the robot takes a longer 

path to avoid the obstacle (going to 
the right side), as shown in Figure 

107. 

 

 

  

Figure 106 - Occupancy Grid Map, Vector Field 
algorithm (left way) 

Figure 107 - Path done, Vector Field algorithm (left way) 

Figure 108 - Simulation instant, Vector Field algorithm (left way) 



Subsection 6.3.3 Complex environment 

The second experiment aims to 

simulate the robot’s behaviour 
in a complex scenario where 

more than one obstacle (four in 

the simulation) are placed on 
the map. The environment is 

shown in Figure 109.  

The goals to be reached are 

shown in Table 7. 

 

 

Point X Y 

A 15.0 -15.0 

B 15.0 15.0 

C 0.0 0.0 

 

Table 7 - Complex environment simulation path 

 

 

6.3.3.1 A* algorithm with non-linear controller (complex test) 

The first result shown is about the path done 

by the robot using the A* algorithm. As 
shown in Figure 111, the robot can reach all 

the goals by avoiding obstacles in the path. 

No particular observation must be done.  

Finally, the map at the end of the simulation 

is shown in Figure. In this case, it is possible 
to see that the adaptative_clustering 

algorithm detects obstacles in 
the wrong position during 

navigation. The A* does not suffer from this problem, but a better 

Figure 109 - Complex environment test 

Figure 110 - Occupancy Grid Map, A* algorithm (complex test) 



tuning of the map’s parameters can be done to ensure that false 

detections are deleted in a shorter time. 

 

 

  

Figure 111 - Path done, A* algorithm (complex environment) 

Figure 112 - Simulation instant, A* algorithm (complex environment) 



6.3.2.2 Vector Field Algorithm (complex environment) 

This simulation shows some problems 

with its algorithm. Indeed the wrong 

localisation of the obstacle in the map 
creates a particular vector field that 

makes the robot go back, starting a 
cycle trajectory as shown in Figure 

114. Thanks to the map dynamic, as 
soon as these false detections are 

deleted, the robot avoids them and 

reaches the goal.  

 
Figure 113 - Occupancy Grid Map, Vector Field algorithm (complex test) 

Figure 114 - Path done, Vector Field algorithm (complex environment) 

Figure 115 - Simulation instant, Vector Field algorithm (complex environment) 



Chapter 7 Results and Analysis 

In this chapter, the results of the navigation are shown. The first test 

is related to the ability to make a square. The second test wants to 
observe the navigation of the two more updated algorithms during a 

longer path; the third is instead related to avoiding an obstacle in the 

path. 

Section 7.1 GUI 

To begin, Figure 116 shows the GUI (Graphical User Interface)  created 

to have real-time information during the test. Figure 116 shows the 

use of it in a simulation environment, but its application was crucial 
during the test to have a precise idea of where the robot was on the 

map and which were the actual values of velocity; it also shows if a 

person is detected using colouring by red the fourth bar.  

 

 

  

Figure 116 - GUI 



Section 7.2 Square navigation 

The first test proposed is about the precision of performing a squares 

path; for this purpose, the coordinates sent to the robot were: 

Point X Y 

A 8.0 0.0 

B 8.0 8.0 

C 0.0 8.0 

D 0.0 0.0 

Table 8 - First test path 

To obtain a good comparison, all the tests are done by aligning initially 

to the east (x-axis) the robot and imposing its actual position as zero 
(in the map, the initial position will be around 1 meter above since 

there is a transformation between the GPS position and the centre of 
the robot); in this way, they all will start without the alignment step. 

Furthermore, the same filters are used for all (Average for the 

magnetometer, EKF for the position), and all are done with a full signal 

of GPS+RTK. The final result a shown in Figure 117. 

So for each test, the distance from the reference line is computed to 

get performance indices like the mean error, the maximum error and 

the variance. The result is shown below, Figure 118. 

 

 

Figure 117 - Trajectory of each algorithm 



 

As it is possible to see, the algorithm with the highest performance is 
the Vector Field controller, but all the controllers have a precision of 

around 20 cm.  

It is worth noting that only the two most minor proposals can be utilised 

in a condition of the path with obstacles. 

Section 7.3 Multipath 

For the last two codes, the ones able to avoid possible obstacles, 

another test about navigation is performed. In this case, the robot 
must follow a more complex path similar to a working one. Also in this 

case indices of performance are computed. 

The Vector Field trajectory is shown below, Figure 119: 

Figure 119 - Vector Field Multipath 

Figure 118 - Performance indices 



The same is done for the non-linear controller, Figure 120: 

Finally, the conclusive indices are shown in Figure 121: 

 

It is worth noting that the performance collected must be used just as 
indicators since better results can be achieved through a more precise 

calibration of the value of the PIDs, only partially done for time reasons. 

  

Figure 121 - Multipath result 

Figure 120 - Non-linear controller Multipath 



Section 7.4 Obstacle Avoidance 

The last section relates to obstacle avoidance performance; as for the 
previous ones, all the algorithms are tested in the same condition. 

However, differently from before, no parameters are computed as 

indicators. Instead, the graphs are used for this scope. 

In both cases, the algorithms could make the robot avoid the obstacle 

in reaching the goal. Both the trajectory computed will match the map 

of the field obtained at the end of the test.  

Furthermore, unlike the simulation, only one obstacle was on the path 
for two reasons: the difficulty of building obstacles for the machine in 

the exam and the relatively small space to do the tests. 

The result of the vector field is shown below in Figure 122. 

Figure 122 - Vector Field Real test 

Figure 123 - Vector Field Real test Occupancy grid map 



The same is done for the non-linear controller in which the path is 

computed thanks to the A* algorithm, Figure 124. 

 

The results show that both complete the task successfully, even though 
better results can be achieved by improving the parameters chosen. In 

particular, as regards the A* algorithm, the weights in the eucharistic 
function can be tuned better to achieve a faster return to the reference 

path; despite that, it maintains an advantage concerning the vector 
field since it computes the optimised path while the Vector Field always 

creates a counter-clockwise vector field, making the path longer in 

some situations. 

  

Figure 124 - A* algorithm Real test 

Figure 125 - A* algorithm Real test reference path 
Figure 126 - A* algorithm Real test Occupancy 
grid map 



To conclude, images from the obstacles avoidance test are reported in 

Figure 127: 

  

Figure 127 - Obstacle avoidance instants 



Chapter 8 Conclusion and Future Directions 

This work wants to show an overview of all the aspects related to the 

development of a UGV, going deeper into the motion aspects. Indeed 
after the first part, needed to have a base knowledge about how 

navigation is done and what ROS is, an analysis of the sensors and the 

methodology used is done.  

Then the work moves to the motion part showing different algorithms 
for motion control and finally proposing two solutions to make the robot 

navigate autonomously, avoiding obstacles.  

All the different solutions are followed by data collected during the test, 

making available comparisons. 

 

As regards future development, different aspects can be highlighted. 

Firstly work can be done to increase the performance of the other 
sensors, fusing them to increase the precision and reliability of the 

system. In this process, a first start should be using the FLIR during 
navigation to use LIDAR and the cameras better to perceive the world 

and the robot's localisation. 

Regarding the navigation, improving the A* algorithm to a Lite version 

will make the computational process faster, increasing the velocity of 

computation of the new path. 

Finally, a study about the tool must be done to detect its position, 
remove the sensor noise produced by its activation and understand 

how and when the vegetation is cut. 
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