
Politecnico di Torino

Master ’s Degree in Mechatronic Engineering

Corso di Laurea

A.a. 2022/2023

Sessione di Laurea Luglio 2023

Development of a semi-autonomous

terrestrial robot for forest management

Relatore: Candidato:

Prof. Marcello Chiaberge Francesco Di Giorgio

Tutor:

Prof. Carlos Xavier Pais Viegas

Abstract

Nowadays, the frequency of fires is increasing due to climate change.

Effective forest management is vital in mitigating the intensity and
spread of this natural disaster. Currently, the task of forest cleaning is

carried out by tractors equipped with forestry mulchers, which are

operated remotely using joysticks.

This thesis is part of a project to automate the cleaning process using
a fully sensor-equipped electronic box. Specifically, it addresses the

crucial aspect of precise line following, which is essential for efficient

cleaning operations.

The unmanned ground vehicle (UGV) under study consists of two main

components. The vehicle part comprises the tractor LV 600 Pro, which
is responsible for the vehicle's movement. The second component is

the sophisticated electronic box called Sentry, developed by Bold

Robotics Lda, which allows the tractor to move autonomously.

This thesis aims to develop software for the component mentioned
above. Various algorithms will be presented to handle and filter raw

sensor data, also employing fusion methods to achieve higher
measurement precision. Special attention will be given to navigation

aspects, including the presentation of different motion planning

strategies.

Extensive testing will be conducted in simulated environments using
Gazebo to validate the proposed approaches. Subsequently, field tests

will be carried out to provide real-world comparisons and assess the

effectiveness of the developed solutions.

Keywords: ROS, UGV, line following, obstacle avoidance, sensor

acquisition, control.

Acknowledgements

I want to thank Professor Marcello Chiaberge and Professor Carlos

Xavier Pais Viegas for the opportunity they gave me. It was a fantastic
project working strictly with my near collaborators Tiago Pereira and

Tiago Gameiro; I would like to thank all the Bold Robotic Lda employers

for their technical and moral support.

To conclude, I thank my parents for their sacrifice to support me
economically and emotionally and all the fantastic people I met on my

journey.

Table of Contents

Chapter 1 Introduction .. 1

Section 1.1 Background ... 1

Section 1.2 Motivation ... 1

Section 1.3 Objectives and Scope of the Study 3

Section 1.4 Methodology ... 4

Section 1.5 Thesis Structure .. 4

Chapter 2 Literature Review ... 5

Section 2.1 UGV ... 5

Subsection 2.1.1 TurtleBot3 .. 5

Subsection 2.1.2 Husky UGV ... 6

Subsection 2.1.3 Roboteam's PROBOT ... 7

Section 2.2 Line-following problem .. 8

Subsection 2.2.1 Path planning ... 9

2.2.1.1 Dijkstra algorithm .. 9

2.2.1.2 A* algorithm ... 11

2.2.1.3 D* algorithm... 12

2.2.1.4 BUG algorithm .. 14

Subsection 2.2.2 Path tracking ... 15

2.2.2.1 Non-linear controller .. 15

2.2.2.2 Vector Field .. 16

Chapter 3 ROS ... 17

Section 3.1 Introduction to ROS .. 17

Section 3.2 ROS Ecosystem ... 17

Subsection 3.2.1 Plumbing .. 17

Subsection 3.2.2 Tools .. 18

Subsection 3.2.3 Capabilities ... 18

Subsection 3.2.4 Community ... 18

Section 3.3 ROS Architecture / Main Concepts 18

Subsection 3.3.1 ROS Filesystem Level ... 18

Subsection 3.3.2 ROS Computation Graph Level ... 19

Subsection 3.3.3 ROS Community Level .. 21

Section 3.4 Robot functions.. 22

Subsection 3.4.1 Standardised Robot Messages ... 22

Subsection 3.4.2 Transforms Library ... 22

Subsection 3.4.3 Robot Description .. 22

Subsection 3.4.4 Diagnostics ... 22

Subsection 3.4.5 Pose Estimation, Localization, and Navigation 22

Section 3.5 Control and Motion Planning .. 23

Subsection 3.5.1 Navigation Stack .. 23

Section 3.6 Tools .. 24

Subsection 3.6.1 Command-Line .. 24

Subsection 3.6.2 rviz .. 24

Subsection 3.6.3 rqt ... 25

Subsection 3.6.4 rqt_graph ... 25

Chapter 4 System Design and Architecture 26

Section 4.1 Sentry’s components .. 26

Subsection 4.1.1 Arduino Mega 2560 Rev3 .. 26

Subsection 4.1.2 Nvidia Jetson Xavier Nx .. 29

Subsection 4.1.3 Duro... 30

4.1.3.1 Complementary filter ... 31

4.1.3.2 Magnetometer calibration ... 31

4.1.3.3 Magnetometer filter ... 32

4.1.3.4 Extended Kalman Filter ... 35

Subsection 4.1.4 Lidar Velodyne VLP16 ... 38

Subsection 4.1.5 Intel® RealSense™ Depth Camera D435 38

Subsection 4.1.6 FLIR ADK .. 41

Chapter 5 Motion Planning and Control .. 42

Section 5.1 Navigation Part .. 42

Subsection 5.1.1 Bang-bang controller .. 43

Subsection 5.1.2 PID controller .. 46

5.1.2.1 Heading PID .. 47

5.1.2.2 CTE PID .. 49

Subsection 5.1.3 Non-linear controller .. 51

Subsection 5.1.4 Vector field ... 53

Section 5.2 Obstacle Avoidance .. 55

Subsection 5.2.1 Bug algorithm .. 55

Subsection 5.2.2 Occupancy Grid Map ... 56

5.2.2.1 A* application ... 57

5.2.2.2 Vector field application ... 62

Chapter 6 Simulation in Gazebo and URDF 64

Section 6.1 Introduction to simulation tools 64

Subsection 6.1.1 Gazebo ... 67

Section 6.2 Creation and Configuration of the URDF file 69

Subsection 6.2.1 URDF file .. 69

Subsection 6.2.2 XACRO file .. 70

Subsection 6.2.3 Tractor URDF ... 71

Section 6.3 Simulation result .. 73

Subsection 6.3.1 Three Obstacles in the Path (right way) 74

6.3.1.1 A* algorithm with non-linear controller (right way) 74

6.3.1.2 Vector Field Algorithm (right way) .. 75

Subsection 6.3.2 Three obstacles in the path (left way) 77

6.3.2.1 A* algorithm with non-linear controller (left way) 77

6.3.2.2 Vector Field Algorithm (left way) .. 79

Subsection 6.3.3 Complex environment... 80

6.3.3.1 A* algorithm with non-linear controller (complex test) 80

6.3.2.2 Vector Field Algorithm (complex environment) .. 82

Chapter 7 Results and Analysis .. 83

Section 7.1 GUI ... 83

Section 7.2 Square navigation .. 84

Section 7.3 Multipath .. 85

Section 7.4 Obstacle Avoidance .. 87

Chapter 8 Conclusion and Future Directions 90

List of Tables

Table 1 - Dijkstra algorithm’s version

Table 2 - A* algorithm’s version

Table 3 - D* algorithm’s version

Table 4 - Arduino values

Table 5 - Filters parameters chosen

Table 6 - Simulation tools comparison [42]

Table 7 - Complex environment simulation path

Table 8 - First test path

List of Figures

Figure 1 - Command joystick

Figure 2 - Forest fire danger

Figure 3 - Climate Feedback Loop

Figure 4 - TurtleBot3 Burger Specification

Figure 5 - TurtleBot3 Waffle Pi Specification

Figure 6 - Different Husky configuration. From the left: Starter- Pro explorer- Mapping- Manipulator

Figure 7- Roboteam's PROBOT

Figure 8 - lv-600-pro

Figure 9 - lv-600-pro specification

Figure 10 - Inizialization

Figure 11 - Neighbour visiting

Figure 12 - Next node selection

Figure 13 - Goal reached

Figure 14 - Starting from A, F and B are analysed

Figure 15 - F is selected since F has the lowest cost. Therefore, G and H are considered while B is not more considered

Figure 16 - G is selected.

Figure 17 - I is selected, its neighbour is J therefore the goal is reached

Figure 18 - D* algorithm representation

Figure 19 - Different Bugs algorithms [12]

Figure 20 - Com [12]

Figure 21 - Bug 2 [12]

Figure 22 - Tangent Bug [12]

Figure 23 - Non-linear controller [13]

Figure 24 - Angles representation [13]

Figure 25 - Vector field representation [14]

Figure 26 - Obstacle vector field [15]

Figure 27 - UAV trajectory given by the vector field [15]

Figure 28 - ROS Filesystem Level

Figure 29 - ROS Computation Graph Level

Figure 30 - Topics in ROS

Figure 31 - Services in ROS

Figure 32 - Actions in ROS

Figure 33 - Example of various Reference Frames connected by ‘tf’ library

Figure 34 - Example of AMC

Figure 35 - Example of TurtleBot3 SLAM application

Figure 36 - DWA example

Figure 37 -Global cost map example

Figure 38 - rviz example

Figure 39 - rqt example

Figure 40 - Sentry

Figure 41 - Arduino Mega 2560 Rev3

Figure 42 - Arduino’s values

Figure 43 - Pure rotation (V1)

Figure 44 - Combined motion (V2 and V3)

Figure 45 - Version 3 Arduino non-linear function

Figure 46 - Nvidia Jetson Xavier Nx

Figure 47 - Duro starter kit

Figure 48 - Complementary filter

Figure 49 - Calibration comparison

Figure 50 - EMAF deque

Figure 51 - Example of analysis for LP order 2 stationary(left) transition (right)

Figure 52 - Error analysis for LP

Figure 53 - Comparison LP / EMAF

Figure 54 - Localisation comparison [30]

Figure 55 - Velodyne VLP16

Figure 56 - Example of clustering

Figure 57 - Camera

Figure 58 - YOLO structure

Figure 59 - Person detection node

Figure 60 - FLIR ADK

Figure 61 - Motion development

Figure 62 - Example of UTM transformation

Figure 63 - Bang-Bang algorithm

Figure 64 - Velocities profiles

Figure 65 - PID scheme

Figure 66 - Heading PID

Figure 67 - CTE

Figure 68 - Non-linear controller

Figure 69 - Path vector field

Figure 70 - BUG algorithm

Figure 71 - A* star path computed

Figure 72 - A* Time-Path length

Figure 73 - A* Reference – real length

Figure 74 - A* Time – number obstacles

Figure 75 - A* Time analysis

Figure 76 - Vector Field Obstacles

Figure 77 - V-REP

Figure 78 - Gazebo

Figure 79 - MORSE

Figure 80 - Webots

Figure 81 - USARSim

Figure 82 - STDR/Stage

Figure 83 - Unity

Figure 84 - Gazebo Empty World

Figure 85 - Gazebo complex scenario [43]

Figure 86 - General URDF tree

Figure 87 - Link representation

Figure 88 - Joint representation

Figure 89 - Robot first version

Figure 90 - Robot second version

Figure 91 - Robot final version

Figure 92 - Vector Field Simulation (Goal radius 0.01m)

Figure 93 - Three obstacles in the path, right way optimal path

Figure 94 - Reference path, A* algorithm (right way)

Figure 95 - Occupancy Grid Map, A* algorithm (right way)

Figure 96 - Path done, A* algorithm (right way)

Figure 97 - Simulation instant, A* algorithm (right way)Figure 98 – Path done, Vector Field algorithm (right way)

Figure 98 - Occupancy Grid Map, Vector Field algorithm (right way)

Figure 99 - Figure 99 – Path done, Vector Field algorithm (right way)

Figure 100 - Simulation instant, Vector Field algorithm (right way)

Figure 101 - Three obstacles in the path, left way optimal path

Figure 102 - Reference path, A* algorithm (left way)

Figure 103 - Occupancy Grid Map, A* algorithm (left way)

Figure 104 - Path done, A* algorithm (left way)

Figure 105 - Simulation instant, A* algorithm (left way)

Figure 106 - Occupancy Grid Map, Vector Field algorithm (left way)

Figure 107 - Path done, Vector Field algorithm (left way)

Figure 108 – Simulation instant, Vector Field algorithm (left way)

Figure 109 - Complex environment test

Figure 110 - Occupancy Grid Map, A* algorithm (complex test)

Figure 111 - Path done, A* algorithm (complex environment)

Figure 112 - Simulation instant, A* algorithm (complex environment)

Figure 113 - Occupancy Grid Map, Vector Field algorithm (complex test)

Figure 114 - Path done, Vector Field algorithm (complex environment)

Figure 115 - Simulation instant, Vector Field algorithm (complex environment)

Figure 116 - GUI

Figure 117 - Trajectory of each algorithm

Figure 118 - Performance indices

Figure 119 - Vector Field Multipath

Figure 120 - Non-linear controller Multipath

Figure 121 - Multipath result

Figure 122 - Vector Field Real test

Figure 123 - Vector Field Real test Occupancy grid map

Figure 124 - A* algorithm Real test

Figure 125 - A* algorithm Real test reference path

Figure 126 - A* algorithm Real test Occupancy grid map

Figure 127 - Obstacle avoidance instants

Acronyms

UGV : Unmanned Ground Vehicle

ROS : Robot Operating System

COM : Common Sense Algorithm

LTG : Local Tangent Graph

SDK : Software Development Kit

SLAM : Simultaneous Localisation Mapping

AMCL : Adaptive Monte Carlo Localization

DWA : Dynamic Window Approach

SOM : System-on-module

DOF : Degrees Of Freedom

IMU : Inertial Measurement Unit

RTK : Real-Time Kinematic

LERP : Linear IntERPolation

SLERP : Spherical Linear intERPolation

EMAF : Moving Exponential Average Filter

EKF : Extended Kalman Filter

LIDAR : Light Detection and Ranging

YOLO : You Only Look Once

UTM : Universal Transverse Mercator

CTE : Cross-track Error

URDF : Unified Robotics Description Format

V-REP : Virtual Robot Experimentation Platform

MORSE : Modular Open Robotics Simulation Engine

ODE : Open Dynamics Engine

OGRE : Open-source Graphics Rendering Engines

LRF : Laser Range Finder

GNSS : Global Navigation Satellite System

GUI : Graphical User Interface

1

Chapter 1 Introduction

This chapter aims to present the main aspects of the thesis.

A first description of the general use of mobile robots in our society is
done. Then the main reason for developing this particular project is

given, going then to the objectives of this work, its structure, and its

methodologies.

Section 1.1 Background

'Agriculture businesses, warehouses, military operations, healthcare

institutions, and logical companies are all searching for novel and
contemporary ways to improve operations efficiency, increase safety,

ensure precision, and improve speed. Hence, all require autonomous

vehicle support in the future' [1].

It is possible to see that this phrase represents how autonomous

systems will change and are changing the world in which we live; its
impact is due to these technologies' advantage: they can complete

tasks that are hazardous or challenging for people to carry out, like in
hazardous environments where humans would be at risk; the precision

and accuracy that they can achieve, for example, to perform a surgery;
furthermore they can operate without needing breaks or rest, making

them highly efficient and effective in performing tasks that require
continuous operation, such as monitoring a production line or

continuous maintenance. All these aspects increase interest in study
and research, making them fundamental and impactful in the

development of society.

Section 1.2 Motivation

This thesis aims to develop the software part

of a multi-component box equipped with
several sensors and computers able to make a

semi-autonomous available tractor. This
machine is operated by a remote joystick,

primarily designed to manage and care for the
forests and green spaces. Its functionality

includes the removal of branches, shrubs,
bushes, and pruning trees, ensuring that these

areas are kept clean and well-maintained at all

times.

This cleaning action is fundamental to
decreasing the possibility of fire and reducing

Figure 1 - Command joystick

its devastating effects. This is a crucial aspect in the country where this

thesis is developed (Portugal), but it is also taking more and more
importance worldwide since the worsening of the condition of this

problem.

For example, the European Environment Agency reports as forest fire

risk has increased across Europe due to climate change. Despite this,
the Mediterranean region has seen a slight decrease in burnt areas

since 1980, indicating successful fire control efforts. However, in recent

years, regions in central and northern Europe, which are not
traditionally prone to fires, have experienced forest fires during record

droughts and heatwaves.

Fire-prone areas are projected to expand, and fire seasons will

lengthen in most European regions, particularly under high emissions
scenarios. Therefore, additional adaptation measures are necessary,

and Europe has experienced severe wildfire outbreaks and devastating

fire seasons lately, mainly due to extreme weather conditions.

For example, there were record droughts and heatwaves during the
spring and summer of 2017 and 2018 [2]. In Figure 2 is a reported

representation of the overall weather-driven forest fire danger in the
present and under two climate change scenarios in the same article

[2].

Figure 2 - Forest fire danger

It is possible to notice as climate

change is likely a significant driver
in increasing fire activity. According

to [3], there has been a five-fold
rise in the frequency of intense heat

waves compared to 150 years ago.
Unfortunately, this trend will

continue as a result of the planet's

ongoing warming; the drier
landscapes brought on by the rise in

temperatures have increased the
number of forest fires, which in turn

have increased emissions and
aggravated climate change,

creating a feedback loop that leads

to even more fires.

In this case, it is simple to see how the entire project's eventual

objective will aid in putting out fires by lowering their impacts; in the
meantime, various steps must be taken to lessen global warming's

consequences.

Section 1.3 Objectives and Scope of the Study

As previously mentioned, this work focuses on the software

development of the Sentry, that is, the brain able to make autonomous

a general tractor.

Going deeper, the objective of this thesis is primarily the ability to
follow a line with a mean distance of less than 1 meter. This value is

evaluated based on the tractor's dimensions (1 meter is less than the
width of the tractor's tool) and the project's maturity. Indeed the goal

will be to show that this can be realised while many improvements will

be made in the following years.

As regards the speed, it is not required to have a high one to be able
to cut the vegetation efficiently, and this must be low, even if the

cutting option will not be analysed in this thesis since it needs further
analysis, such as how to understand if the vegetation is cut, how to

control the speed as a function of the cutting process other than all the

noise reduction need for the dust and vegetation raised by the tool.

Then during its navigation, the machine must avoid possible obstacles

while going as much as possible on the path defined.

A key development point will ensure safety during the robot's

functioning; it must stop if a person is detected inside a specific range

or if the user requires an emergency stop action.

Figure 3 - Climate Feedback Loop

These aspects will be presented and supported by a further analysis of

the sensors and algorithms used to achieve the requirements.

Resuming what will be made autonomous is the ability of the tractor to

follow a predefined trajectory performing the cleaning action; in
particular, the user will give some GPS coordinate about the area to be

cleaned, and an API developed by the Bold Robotic company will
generate a set of points to be achieved following a straight line between

them; since the path generation is aspect outside of the robot

development the problem it is defined as semi-autonomous.

Section 1.4 Methodology

The approach used in developing the UGV for line following can be
resumed as a trial and error process. Indeed during the project, several

presentations of the work were done, requiring to show something new
and better than the last presentation each time. For this reason,

different versions of the path-following algorithm will be presented with

growing complexity and precision.

The work is based on studying the state of the art and solutions
founded in the ROS community but also developed under the strict time

requirement.

Section 1.5 Thesis Structure

In conclusion, the study will start from the analysis of state of the art

on UGV and path-following; the other theoretical aspects like sensor
technology, procedures and algorithms will be analysed directly before

their discussion to avoid a too long and dispersive debate of state of
the art since the widely of the topics studied and the will to focus on

the navigation problem.

After this, an entire chapter will be dedicated to ROS (Robot Operating

System) due to its importance in the process. Then the aspects of the
sensors used are covered; how and why they are needed for the

navigation, focusing on algorithm and methodology to reduce noise

and increase performance.

Finally, the different algorithms used for navigation will be presented.
To conclude, simulation aspects will be described, and the experimental

test result will be shown.

Chapter 2 Literature Review

This chapter provides an overview of the two main aspects covered in

the thesis.

In particular, the first part will define and present some examples of

UGV in the market; then, some examples of this problem in other fields

are shown.

Finally, some available algorithms for navigation, line path applications

and obstacle are presented.

Section 2.1 UGV

A UGV is a vehicle that can operate on the ground without needing a

human onboard [4].

Thanks to their versatility, it is easy to see that these machines can be
used in several different situations, changing their properties in the

function of the task and the environment.

To get the idea as a general UGV is done and in which field is used,

some examples of machines available on the market are proposed.

Subsection 2.1.1 TurtleBot3

TurtleBot3 is a popular and widely used open-source UGV developed

by the Open Robotics and ROBOTIS collaboration. It is designed as an
affordable and accessible educational, research, and hobbyist platform.

The TurtleBot3’s core technologies are SLAM, Navigation and

Manipulation in indoor environments.

It is presented in two versions: Burger and

Waffle Pi. They will be described below

based on [5].

TurtleBot 3 Burger is the cheapest version.
It features a round-shaped base with two

wheels and a 2D 360-degree lidar sensor
mounted on top. The Burger version is

compact,

lightweight, and highly

manoeuvrable. The main computing

unit is a Raspberry Pi.

The TurtleBot 3 Waffle Pi is the

upgraded variant of the TurtleBot 3
platform. It has better actuators

Figure 4 - TurtleBot3 Burger Specification

Figure 5 - TurtleBot3 Waffle Pi Specification

from XL430-W250 to XM430-W210 and a Raspberry Pi Camera Module

v2.1. The Waffle Pi version is often used for research and development

purposes requiring higher processing capabilities.

Subsection 2.1.2 Husky UGV

The Husky UGV is a popular and versatile platform developed by

Clearpath Robotics.

It is designed for outdoor operations, but indoor configurations are

available. It is widely used in research, exploration, and industrial

applications.

As TurtleBot3, it is completely integrated into the ROS ecosystem; for
some applications, it is used as a benchmark or to establish new robot

research and development efforts. It is supplied with different
preconfigured packages containing various sensors and hardware

specific to the purpose of their application [6].

Figure 6 - Different Husky configuration.
From the left: Starter- Pro explorer- Mapping- Manipulator

Subsection 2.1.3 Roboteam's PROBOT

Roboteam's PROBOT is a UGV designed for

military and security applications. Developed by
Roboteam, it offers advanced capabilities and

features to support logistics, intelligent gathering

and casualty evac missions [7].

As it is possible to see, all of these machines were

built to be autonomous, while the vehicle used in
the thesis is a general tractor that will be made

autonomous by the Sentry. This will lead to a
more complex scenario due to the necessity of handling aspect as the

not optimised position of the sensors or the imperfect knowledge of the

correlation between input command and tangible effect on the vehicle.

In particular, the machine used in
this thesis is a remote-controlled

tractor produced by MDB SRL [8].
The main characteristic of this

machine is the ability to handle
slopes until 60° in all directions

(pitch and roll), a very robust

chassis and thanks to the tool, it
can cut vegetation; furthermore, the tool is able also to cut rocks

during the working process, so that the presence of stone will not be a

problem during the cleaning operation.

The main disadvantages of using this machine instead of a specific UGV

are:

• The nonlinearity between command input and actuators’ effort;

this is due to several reasons; firstly, the goal of the project is
to build a ’box’ able to make an autonomous general machine

without the need for a precise model of its kinematic and
dynamic; this means for example that the control of the speed

will be possible only using as feedback the position of the robot
and not the level imposed; secondly as proved by test the

Figure 7 - Roboteam's PROBOT

Figure 8 - lv-600-pro

Figure 9 - lv-600-pro specification

velocity of the machine at the same input change as a function

of the type of field and the presence/absence of slope.

• Straight motion is not precise; even on a car road, the machine

tends to go away from the path, as proved by the test.

• All sensors are placed in the same spot; this initially requires

particular attention for noise generation, while during a routine
mission does now allow to have measurements from different

parts of the vehicle that could be useful for the big size of the

machine.

• Required calibration; strictly connected with the first point, a

first calibration part is needed before the first mission to get the
minimum and maximum level of input for the forward and

angular motion, depending on the terrain and the slopes

present.

Section 2.2 Line-following problem

The problem of following a line or, more generally, a path is one of the

most common in mobile robot applications. Indeed it is related to how
a robot goes from one point to another, a generally valuable task for

several applications such as industrial or agricultural.

Looking from an industrial perspective, vehicles were initially guided

through optical or inductive guidelines. However, guidelines have their

drawbacks, such as inflexibility regarding modifying or changing the
routing and requiring installations on or in the ground [9]; it is easy to

understand how this approach cannot be applied to the unconstrained

environment other than being very restrictive.

Therefore a new type of navigation was proposed based on more
complex sensors and algorithms, making the robot available to

navigate without guidance.

Before entering in detail is important to define the two parts that

constitute the problem: trajectory planning and motion control.

The first part is related to creating the reference points that will be

used as input for the motion controller. In particular, the term trajectory
indicates a path (locus of points in the operational space) combined

with time.

It is possible to define it in two different spaces, operational and joint;

the first is recommended for mobile robots because it is more efficient

to deal with problems such as obstacle avoidance, while the second
space is recommended for manipulators because it is easier to deal

with singular configurations.

Since this study is about motion planning without time constraints,

path generation in the operational space will be analysed.

The second part is related to the controller, which is how the reference

error is transformed into the input. It is defined as path tracking: once
a path or trajectory has been planned, path tracking algorithms are

responsible for executing that path by controlling the robot’s motion.
Its goal is to ensure that the robot accurately follows the desired route

and maintains its position and orientation along the path while
accounting for factors like disturbances, uncertainties, and sensor

noise. It can present different constraints, from the minimal

requirement of reaching the final goal to more complex aspects such

as smoothness, time needed, etc.

Subsection 2.2.1 Path planning

An overview of algorithms for path planning is presented based on

[10].

Firstly is essential to distinguish between global path planning and local

path planning.

The first one is related to the construction of the path in a static way

based on a previous complete/semi-complete knowledge of the
environment. It can be run before the start of the mission saving

computational power.

Local path planning instead answers to the need to compute the path

dynamically according to the acquisition of the sensor; it is needed for

unknown environments and generates new ways in response to new

data.

It is easy to understand how some algorithms are better for one or
another problem in the function of the computational time and the

optimal solution.

2.2.1.1 Dijkstra algorithm

Dijkstra's Algorithm is a widely used algorithm in computer science to
find the shortest path between two nodes in a weighted graph. The

algorithm is efficient and guarantees the optimal solution for finding

the shortest route.

The functioning can be resumed in these steps:

• Initialise the algorithm by

setting the starting node as the

current node and assigning a
value of 0 to it while assigning a

value of infinity to all other
nodes in the graph. So mark all

nodes as unvisited.
Figure 10 - Inizialization

• For the current node, visit all of

its neighbouring nodes (nodes
connected to it by an edge) that

have not been seen. Calculate
the weighted distance from the

starting node to that node for

each adjacent node.

• If the calculated distance for a

neighbouring node is less than
that node's current assigned

distance value, update the
distance value to the newly

computed value.

• After visiting the current node’s

neighbours, mark it as visited. A visited node will not be

processed again.

• Choose the new node with the
lowest distance value as the

current node, and repeat until all
nodes are visited, or the

destination is reached.

Once the destination node has been visited, the algorithm terminates.
To find the quickest route from the beginning point to the endpoint,

trace back from the endpoint to the starting point by utilising the

assigned distances and the graph’s structure.

As reported in the paper, many versions of the Improved Dijkstra
algorithm are present in the lecture, adapted for the precise purpose

of the task. Some versions are reported in the table below, Table

1,taken by the article cited before [10].

Figure 11 - Neighbour visiting

Figure 12 - Next node selection

Figure 13 - Goal reached

Table 1 - Dijkstra algorithm’s version

As it is possible to see, due to the high computation required, this

algorithm is efficient and used only for static constraints, then in a layer
of global planning. At the same time, it is unsuitable for handling

dynamic environments.

2.2.1.2 A* algorithm

This algorithm is commonly used in computer science and artificial

intelligence to locate the shortest path between two nodes in a graph.
It combines the benefits of Dijkstra's algorithm and a heuristic

evaluation function to efficiently search for the optimal way. In

particular, for each node, it computes a function f(n):

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)

Where g(n) is the actual cost from
node n to the initial node, h(n) is the

cost of the optimal path from the

target node to n computed by the

heuristic function.

The most common heuristic functions

are:

• Euclidean distance
𝑥1−𝑥2

2
+

𝑦1−𝑦2

2

• Manhattan distance |𝑥1 − 𝑥2| +
 |𝑦1 − 𝑦2|

• Octile distance 𝑚𝑎𝑥(|𝑥1 − 𝑥2| + |𝑦1 − 𝑦2|)

An example taken from [11] is shown:

Imagining a path from A to J, weighted costs are shown in blue, while
heuristic costs are in red. F(n) is then computed, summing the two

costs.

As for the Dijkstra algorithm, all the neighbours are visited, and the

one with the lowest cost is visited, iterating until the goal is reached.
Is it possible to see from the picture

that only its neighbours are analysed

Figure 14 - Starting from A, F and B are analysed

Figure 15 - F is selected since F has the lowest
cost. Therefore, G and H are considered while B is
not more considered

once the node is selected, not considering the previously visited nodes,

as in the Dijkstra algorithm. This makes the algorithm much faster.

Furthermore, it guides its search towards the most promising states

using the heuristic function, potentially saving a significant amount of
computation time. For this reason, it is widely used in static

environments, but there are also instances where this algorithm is used

in dynamic environments.

As for Dijkstra's algorithm, different variants are presented in the

literature, designing and improving the performance for that specific

purpose. The are reported in Table 2, taken from [10].

2.2.1.3 D* algorithm

The D* algorithm, or Dynamic A* algorithm, is a path-planning

algorithm used in robotics and artificial intelligence.

It is an extension of the A* algorithm. It is designed to handle dynamic

environments where the cost of moving between nodes or the presence

of obstacles can change over time. It updates the path as the
environment changes, allowing the robot or agent to adapt and find an

optimal path despite new obstacles or changed costs.

Figure 16 - G is selected. Figure 17 - I is selected, its neighbour is J therefore
the goal is reached

Table 2 - A* algorithm’s version

A simplified explanation is reported:

• The robot has a path from the starting
position to the goal position based on

the A* algorithm.

• Obstacle detected: The obstacle

blocks a portion of the previously

computed path.

• Update cost estimates: The D*

algorithm updates the cost estimates
for the affected nodes. The nodes

directly affected by the obstacle

receive a high cost.

• Recalculate path: Starting from the
goal position, the D* algorithm

performs a backward search,
considering the updated cost

estimates. It propagates the changes
through the affected nodes until it

reaches the starting position.

• New path: The D* algorithm computes

a new way to avoid obstacles.

The D* algorithm allows the robot to dynamically adapt to

environmental changes and find an optimal path in real-time by

continuously updating the path based on new information.

As for the other algorithms, different versions are presented inTable 3

taken from [10].

Rapidly-Exploring Random Trees, Genetic Algorithm, Ant Colony
Algorithm, and Firefly Algorithm are other possible ways to solve the

problem presented in the article.

Figure 18 - D* algorithm representation

Table 3 - D* algorithm’s version

2.2.1.4 BUG algorithm

This subsection discusses another
method specific for avoiding

obstacles, based on [12]. The
algorithms presented are in the

family of Bug Algorithms BAs; as

reported in the article, they are a
path-planning technique that

evolved from maze-solving
algorithms. Different versions

include the Basic Bug Algorithm,
Tangent Bug Algorithm, Bug2

Algorithm, and Bug Trap
Algorithm. General concepts will be

resumed, starting from their first
advantages requiring less potential

memory and processing

requirements.

Their general idea is based on the
exact start and end position

knowledge. Then as the obstacle is detected, its contour is used to

avoid it, using it in different ways.

The first version is called Com (common sense

algorithm), and its main functioning principle is based
on a wall following procedure. Indeed the robot always

points to the goal, and as an obstacle is founded, it
follows its contour until a free direction straight towards

the goal is not reached. This algorithm has a problem

with situation similar to Figure 20.

Different versions were evolved to
solve this problem as BUG 1 and Bug 2. The second

one, for example, used an M-line approach, in which
M-line connects the start point and the goal. The robot

follows the wall from the hit-point (the first point of
intersection between the trajectory and the boundary

of the obstacle) until it reaches the intersection with

the M-line on the other side.

From the ones described in the article, the Tangent Bug

has a particle interest. This algorithm utilises a local tangent graph
(LTG) within the range of the robot's sensors to navigate around

obstacles and reach the target.

Figure 19 - Different Bugs algorithms [12]

Figure 20 - Com [12]

Figure 21 - Bug 2 [12]

The construction of the LTG involves identifying the boundaries and

discontinuities of the detectable
obstacle field surrounding the

robot. It represents the obstacles'
edges in relation to the robot's

current position.

Initially, the robot starts by moving

towards the target while traversing

the LTG edge that offers the
quickest path to reach the target

from its current position. However,
if the length of path D on that edge

increases, the algorithm saves the
current range to the target as a

local minimum. The robot then
continues following the remaining

boundary of the obstacle.

If, during the boundary traversal, the robot senses a node on the

obstacle's boundary with a distance smaller than the previously saved
local minimum, it triggers a leave condition. If feasible, the robot

moves directly towards the target, Figure 22.

Also, the InsertBig can be of particular interest since it can be seen as

a Tangent Bug that adds a safety margin to each obstacle detected.

Subsection 2.2.2 Path tracking

Once the plan is computed, the reference points are given to the

controller to make the robot follows the path; several algorithms can

be used some of them are presented.

2.2.2.1 Non-linear controller

A non-linear controller is presented in [13].

As it is possible to see, the non-linear controller is composed of two

parts.

Figure 23 - Non-linear controller [13]

Figure 22 - Tangent Bug [12]

Firstly, a reference angle theta is

given by the path manager. The
outer loop takes the robot’s

position as feedback and compares
it with the current path provided

by the path manager to compute
the distance from the reference

line; this value is converted to an

angle by using a proportional
controller with gain Kct, obtaining a correction term φ. This correction

is subtracted to θ to obtain the θ desired; this is used as input for an
inner loop that takes the actual heading as feedback to compute the

actuation effect needed using another proportional controller Khead, as
it is written in the article PI or PID controller can be used instead of the

easy P.

2.2.2.2 Vector Field

This method is proposed in [14]. The control
proposal is based on the construction of a

vector field; as regarding the straight line
case, a reference vector (going from the

original position to the goal) is created,

making the robot point to the destination.
After that, the space is divided into two

parts. An internal part near the reference
path, the transition region, is dedicated to

gradually moving the actual heading to the reference one; instead, the
other region aims to push the robot back to the path. This is shown in

Figure 25 taken from the previously cited article.

As discussed in [15], this method can be updated to avoid possible

obstacles in the path. Indeed a vector field can be associated with the
obstruction, making the robot deviate from the reference path to avoid

it.

Figure 24 - Angles representation [13]

Figure 25 - Vector field representation
[14]

Figure 26 - Obstacle vector field [15] Figure 27 - UAV trajectory given by the vector field [15]

Chapter 3 ROS

The reason for an entire chapter about this aspect is its importance in

the developing process as it allows the user to easily integrate
hardware and software, other than making available a whole variety of

packages that can be used to speed up the project’s progress. All the
following sections are taken from the very detailed ROS documentation

[16].

Section 3.1 Introduction to ROS

The Robot Operating System (ROS) is a flexible framework for

developing and controlling robots. It provides a comprehensive
collection of software libraries and tools specifically designed for

building diverse robotic applications. By offering a distributed
computing framework, ROS enables seamless communication between

multiple processes or nodes by exchanging messages. These features
foster modular development, simplifying the creation of complex robot

systems by integrating independent packages.

One key aspect that differentiates ROS is its classification as a Meta-

Operating System. This distinction arises from its capability to handle
critical functions like scheduling tasks, managing resources, monitoring

system activities, and handling errors.

ROS has a significant impact on the development process. It provides

a comprehensive suite of functionalities that facilitate the integration
of hardware and software components, greatly expediting project

progress.

Additionally, ROS offers an extensive range of pre-existing packages

that can be readily utilised, minimising development time and effort.

Section 3.2 ROS Ecosystem

ROS can be described as a comprehensive software development kit

(SDK). It can be summarised into four main blocks, each crucial in the

development process.

Subsection 3.2.1 Plumbing

Communication lies at the heart of robot development, and ROS excels.
Its message-passing system forms the backbone of communication

between distributed nodes, employing an anonymous

publish/subscribe pattern. This standardised approach enables
seamless interaction with components like LIDAR, cameras, localisation

algorithms, and user interfaces. As mentioned before, ROS encourages

the modular system by adopting this communication model.

Subsection 3.2.2 Tools

Asynchronous interaction with the physical world through sensors and

actuators is crucial when developing software. ROS provides a suite of
developer tools that greatly assist in this aspect. These tools include

launch configuration, introspection capabilities, debugging utilities,

visualisation aids, plotting tools, logging mechanisms, and playback

functionality.

Subsection 3.2.3 Capabilities

The ROS ecosystem encompasses many device drivers, algorithms,
and user interfaces that are application building blocks. Developers can

use these previously available capabilities to better focus on the
applications’ specific requirements, accelerate development, and

support innovation.

Subsection 3.2.4 Community

A strong and cooperative community forms the core of the ROS project.
The point is straightforward: anyone interested in robotics applications

should be able to make his idea real without understanding hardware
and software complexities. The ROS community fosters knowledge

sharing and encourages the realisation of robotic ideas.

Section 3.3 ROS Architecture / Main Concepts

ROS has three levels of concepts: the Filesystem, the Computation
Graph and the Community levels. Each level is explained in detail in

the following subsections.

Subsection 3.3.1 ROS Filesystem Level

The filesystem-level concepts in ROS
encompass various resources

encountered on disk. These

resources include:

• Packages: They serve as the
fundamental unit for

organising software in ROS.
They encapsulate ROS

runtime processes (nodes),
ROS-dependent libraries,

datasets, configuration files,
and other components.

Packages are considered the elementary block in ROS.

Figure 28 - ROS Filesystem Level

• Metapackages: Metapackages are specialised packages designed

to represent a group of related packages.

• Package Manifests: Package manifests, represented by the

package.xml file, provide metadata about a package. The
relevant metadata for a package consists of its name, version,

description, license, dependencies, and other essential details.
The package.xml format follows the specifications outlined in

REP-0127.

• Repositories: Repositories comprise packages with a standard
version control system. Packages within a repository share the

same version and can be released using the Catkin release

automation tool.

• Message Types: they describe the data structures for messages
exchanged in ROS. These message descriptions outline the

format and content of data sent and received between nodes.

• Service Types: Service types specify the request and response

data structures for ROS services. Service descriptions define the

format of data exchanged during service calls.

Subsection 3.3.2 ROS Computation Graph Level

The Computation Graph in ROS

refers to the network of
interconnected ROS processes

collaborating to process data. It
relies on several fundamental

concepts that contribute to its
functionality. The concepts

mentioned can be found in the

ros_comm repository.

• Nodes: Nodes are individual
processes responsible for

computation within the ROS system. They are designed to
operate modularly, allowing a robot control system to comprise

multiple nodes. ROS nodes are developed using ROS client

libraries such as roscpp (C++) or rospy (Python).

• Master: The ROS Master is the central hub that provides the

Computation Graph name registration and lookup services. It
enables nodes to discover each other, exchange messages, and

invoke services by facilitating communication.

• Parameter Server: The Parameter Server acts as a central

storage location for data, allowing key-value pairs to be stored

and accessed.

Figure 29 - ROS Computation Graph Level

• Messages: In a network of nodes, communication happens

through message passing. A message is a data type that has
structured, typed fields. Typically, it includes standard primitive

types like integers, floating-point numbers, Booleans, and arrays

of primitive types.

• Topics: Messages are routed through a publish/subscribe-based
transport system. A node publishes a message to a specific topic,

which serves as an identifier for the content of the message.

Other nodes interested in that data type can subscribe to the

related topic.

• Services: Services provide a request/reply communication
pattern compared to the publish/subscribe model. Two message

structures are required to define services: one for the request
and another for the response. A node offering a service

represents a name and waits for requests, while a client sends a
request message and awaits the corresponding response.

Services enable synchronous communication between nodes.

• Bags: are a file format for storing and replaying ROS message

data. They serve as a valuable tool for recording and analysing
sensor data, facilitating the development and testing of

algorithms.

Before concluding this subsection, it is important to remark on the

different concepts between topic, service and action.

• Topics: Topics in ROS are designed for handling continuous data
streams such as

sensor data or
robot state.

They support a
many-to-many

connection
model, where

data can be
published and

subscribed at
any time

independently of specific senders or receivers. Callback functions
are used to receive data as soon as it becomes available. The

publisher controls when data is sent, making topics suitable for

scenarios requiring continuous data flow.

Figure 30 - Topics in ROS

• Services: Services in ROS are

intended for remote
procedure calls that involve

quick termination, such as
querying the state of a node

or performing rapid
calculations like inverse

kinematics. They are

unsuitable for long-running
processes. Indeed, services

use a blocking call

mechanism.

• Actions: Actions in ROS
are suitable for discrete

behaviours involving
moving a robot or

running tasks that take
longer to complete.

Actions provide feedback
during execution that

suits tasks requiring
longer execution times,

such as slow perception

routines or initiating
lower-level control

modes. Actions are designed to be non-blocking and commonly

used to execute complex real-world scenarios.

Subsection 3.3.3 ROS Community Level

The ROS Community Level introduces resources that promote the

exchange of software and knowledge among different communities.

• Distributions: ROS Distributions are like a collection of software
stacks, similar to Linux distributions. They simplify the

installation process by bundling together a set of software

components.

• Repositories: ROS thrives on a federated network of code

repositories, where diverse institutions and organisations

contribute their robot software components.

• The ROS Wiki: At the heart of the ROS community lies the ROS
Wiki, a dynamic platform for sharing and documenting ROS-

related information. This Wiki is a central hub where individuals
can register, share their expertise, and contribute to collective

knowledge.

Figure 31 - Services in ROS

Figure 32 - Actions in ROS

Section 3.4 Robot functions

In addition to its core middleware components, ROS offers a range of
robot-specific tools and frameworks that accelerate the development

process quickly. Some examples are reported below.

Subsection 3.4.1 Standardised Robot Messages

ROS provides a set of community-selected messages that cover a wide
range of standard robot functionalities. These standardised messages

include geometries, kinematics and dynamics, and sensors. These pre-
defined messages allow us to focus on developing parts instead of

building messages from scratch, enhancing interoperability with

existing tools within the ROS ecosystem.

Subsection 3.4.2 Transforms Library

Managing a robot's static and dynamic
geometry is a common challenge in robotics

projects. The tf library in ROS helps address

this challenge by providing tools for managing
transformations between different frames of

reference. Whether it is needed to transform
sensor data to a global reference frame or

determine the location of a robot's end
effector in its local frame, tf can assist. It

supports defining static and dynamic
transforms, accommodating scenarios with

multiple degrees of freedom.

Subsection 3.4.3 Robot Description

The description format used in ROS is URDF, which uses an XML

document to define static and dynamic transforms and the robot's

visual and collision geometries. XACRO format can be used to simplify

the code reducing the lines of code.

Subsection 3.4.4 Diagnostics

ROS provides a standardised approach for producing, collecting, and
aggregating diagnostics about the robot. This feature allows us to

quickly assess the robot’s state and address any issues that may arise.

Subsection 3.4.5 Pose Estimation, Localization, and Navigation

ROS offers pre-existing packages that provide fundamental functions

such as pose estimation, localisation, simultaneous localisation

mapping (SLAM), and mobile navigation. More details are given in

Section 3.5.

Figure 33 - Example of various
Reference Frames connected by ‘tf’
library

Section 3.5 Control and Motion Planning

This section wants to give a more profound description of the packages

available in ROS regarding navigation problems.

Subsection 3.5.1 Navigation Stack

Navigation Stack in ROS is a comprehensive framework that enables

robots to navigate their environments autonomously. It combines
various components and algorithms to provide robust and reliable

navigation capabilities. The more important aspects are described

below.

• Localization: Localization is crucial
for a robot to determine its position

and orientation within the
environment. ROS offers several

localisation methods, including AMCL
(Adaptive Monte Carlo Localization),

which utilises particle filters to
estimate the robot's pose based on

sensor measurements. AMCL uses

sensor data, such as laser scans or camera images, to match
against the existing map and accurately estimate the robot’s

location.

• Mapping: Mapping is creating a

representation of the robot's
environment. ROS provides mapping

packages like GMapping and
Cartographer, which implement SLAM

algorithms. GMapping utilises laser
scans to build 2D occupancy grid

maps, while Cartographer can create
2D or 3D maps using laser scans or

point clouds. These mapping
algorithms integrate sensor data over

time to construct a map of obstacles

and free space in the environment.

• Path Planning: Path planning involves

computing a collision-free path from the
robot's current position to a desired goal

location. ROS offers path-planning
algorithms such as A* and Dijkstra, which

can generate global ways based on the
robot's map representation. The Dynamic

Window Approach (DWA) algorithm also

Figure 34 - Example of AMC

Figure 35 - Example of TurtleBot3 SLAM
application

Figure 36 - DWA example

considers the robot's kinematics and dynamic constraints to

generate real-time local paths, ensuring safe and efficient

navigation.

• Obstacle Avoidance: Obstacle avoidance
is essential for robots to navigate safely

in their environment. ROS provides
obstacle detection and avoidance

techniques using sensors such as laser

range finders or depth cameras. These
sensors provide real-time data about the

surrounding obstacles, which the planner
uses to generate collision-free

trajectories. Techniques like local cost
maps and global cost maps are used to represent and update

obstacle information in the robot's environment.

Section 3.6 Tools

ROS provides a range of tools to help to manage the complexity of

robot systems and understand the state of the robot. Here are some

essential tools provided by ROS:

Subsection 3.6.1 Command-Line

ROS offers over 45 command-line commands that allow access to all

core functionality and introspection tools. These tools enable to launch

nodes, introspect topics, services, and actions, record data, and

perform various other operations.

Subsection 3.6.2 rviz

rviz is a widely known and powerful tool in ROS

for the three-dimensional visualisation of
standard sensor data types, and robots

described using URDF. It supports visualising
common message types like laser scans, point

clouds, and camera images.

Figure 37 - Global cost map
example

Figure 38 - rviz example

Subsection 3.6.3 rqt

ROS provides rqt, a Qt-based framework for

developing custom dashboards. With rqt,
personalised dashboards can be created by

organising built-in rqt plugins and your own

Qt/ROS plugins into tabs and split-screen
layouts. This flexibility allows user interfaces

tailored for the specific robot system

requirements.

Subsection 3.6.4 rqt_graph

rqt_graph is a tool that provides
introspection and visualisation of the live ROS computational graph.

Thanks to a comprehensive overview of your robot's running ROS

nodes and connections, it allows debugging.

Figure 39 - rqt example

Chapter 4 System Design and Architecture

This chapter will be

focused on the sensor
part; as previously

mentioned, all of
these components are

mounted inside and on
the metallic box,

building the so-called
Sentry, shown in

Figure 40. The

devolving of the
sensor part is crucial

for the autonomous
machine since its

precision determines
the reliability of the

localisation and
detection of the

environment.

Choosing the

components is
separate from this

work since it was
already done, and

only a short

description of the materials is done. This chapter will focus instead on
software development as calibration and noise reduction, other than a

presentation of the packages utilised.

Section 4.1 Sentry’s components

This section will present the electronic components’ main features and

the software used or developed.

Subsection 4.1.1 Arduino Mega 2560 Rev3

The Arduino Mega 2560 is a microcontroller
board that uses the ATmega2560 chip. It

has 54 pins that can be used for digital

input/output (15 of which can be used for
PWM outputs), 16 inputs for analogue

signals, four hardware serial ports for
communication, a 16 MHz crystal oscillator,

Figure 40 - Sentry

Figure 41 - Arduino Mega 2560 Rev3

a USB port, a power jack, an ICSP header, and a reset button [17].

This component interfaces the ROS environment and the machine’s

actuator, transforming the ROS message in voltage.

The connection between the host and the device is established by
utilising the rosserial meta-package, which is part of the ROS libraries.

rosserial is designed as a protocol that encapsulates standard ROS
serialised messages, allowing multiple topics and services to be

multiplexed over a character device, such as a serial port or network

socket.

The package rosserial_python establishes a connection between the

host and a rosserial-enabled device using Python. It encompasses a
Python implementation that simplifies the setup, publishing, and

subscribing process, enabling seamless communication with the

connected device [18].

Once the connection is established, the code built in Arduino transforms
the message from ROS into voltage for the machine's actuator. It turns

on/off the pin connected to the machine; here, only the management

of the pin levels associated with the motion is analysed.

Firstly pure rotation and pure straight motion maximum and minimum
levels are defined using teleoperation since, as mentioned in Chapter

2, these values must be tuned as a function of the field and of the
computation speed of the sensors (taking care that the maximum level

of voltage allows by the robot is 255). The values in Table 4 are the

ones chosen in the test field :

 Linear Angular

Minimum 70 85

Maximum 100 100
Table 4 - Arduino values

Defined these values, the correlation between the ROS message and
level is done by linear interpolation, imposing as minimum and

maximum values of the ROS message value 0.1 and 1.

Three versions of code are presented; the first is related to a more

straightforward solution in which the two types of motion are divided,
while the second also allows a combination of the two. The last one

used a non-linear function to improve the control of the wheels.

• Version 1: it is a solution easy to implement and allows

discontinuous motion (linear or angular). It is used for the first
motion algorithm (Bang-Bang controller) defined in the Chapter

5. Going into the details, the straight motion is defined as simply

making both wheels go front, rotating proportionally with the
command received; the rotation state is a reproduction of the

actual behaviour of the machine (the one obtained using a
remote control to move the robot); in particular the rotation state

is implemented making the two wheels rotating with the same
speed but in the opposite direction (using a different sign for the

voltage produced).

• Version 2: It is based on the previous version, but it adds the

possibility to combine the linear and angular motions; it is done

Figure 42 - Arduino’s values

Figure 43 - Pure rotation (V1) Figure 44 - Combined motion (V2 and V3)

by imposing on the two wheels different voltages but with the

same sign.

The equation that regulates the transformation is shown below:

 𝑥 =
𝑀𝑎𝑥𝑙𝑖𝑛𝑙𝑒𝑣𝑒𝑙

−𝑚𝑖𝑛𝑙𝑖𝑛𝑙𝑒𝑣𝑒𝑙

0.9
∙ 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑖𝑛𝑐𝑜𝑚𝑚𝑎𝑛𝑑

+ 𝑀𝑎𝑥𝑙𝑖𝑛𝑙𝑒𝑣𝑒𝑙
−

𝑀𝑎𝑥𝑙𝑖𝑛𝑙𝑒𝑣𝑒𝑙
−𝑚𝑖𝑛𝑙𝑖𝑛𝑙𝑒𝑣𝑒𝑙

0.9

• Version 3: It improves the previous version thanks to

implementing a non-linear function.

The functions shown below are for the forward-left motion:

Vel_right_wheel=int[x ∙(1+ 𝑎𝑐𝑡𝑢𝑎𝑙𝑎𝑛𝑔𝑙𝑒𝑐𝑜𝑚𝑚𝑎𝑛𝑑
)]

Vel_left_wheel=int(x)

Subsection 4.1.2 Nvidia Jetson Xavier Nx

The NVIDIA® Jetson Xavier™ NX is a

compact system-on-module (SOM) with
high-performance computing capabilities

at the edge. With the accelerated

computing power of up to 21 TOPS, it
enables the execution of contemporary

neural networks in parallel and facilitates
data processing from numerous high-

resolution sensors. This capability is
essential for the operation of

comprehensive AI systems. The Jetson
Xavier NX is particularly well-suited for

Figure 46 - Nvidia Jetson Xavier Nx

Figure 45 - Version 3 Arduino non-linear function

demanding AI applications, including commercial robots, medical

instruments, smart cameras, high-resolution sensors, automated
optical inspection, smart factories, and other embedded systems within

the IoT domain [19].

Subsection 4.1.3 Duro

Duro is an enclosed version of the Piksi® Multi dual-frequency RTK
GNSS receiver designed for outdoor use. It combines exact positioning

accurate to the centimetre level with robust military-grade durability.

It features a comprehensive sensor suite with 9 degrees of freedom

(DOF). Six DOF are given by the IMU (Inertial Measurement Unit),
which consists of an accelerometer and gyroscope, enabling precise

motion sensing and tracking. Then a magnetometer is included; it
further enhances Duro's capabilities by allowing it to measure the

Earth's magnetic field, facilitating navigation and accurate heading

estimation.

Furthermore, Duro incorporates a GNSS antenna, enabling it to receive
signals from multiple global navigation satellite systems. With the

integration of an RTK (Real-Time Kinematic) system, Duro has the
potential to achieve high-precision positioning by utilising carrier-phase

measurements and correction data.

Overall, Duro offers a comprehensive outdoor positioning and
navigation solution, combining centimetre-level accuracy, rugged

construction, and advanced sensor capabilities [20].

Since it comprises several sensors, each part will be analysed

individually and how it relates to the other.

The first aspect is how it is connected to the ROS environment; this is

done thanks to the ROS package duro_ros [21], which publishes ROS

topics related to the raw data the component sends.

This data represents a measurement of the angular velocity
(gyroscope) and linear acceleration (accelerometer) other than the

magnetic field measurement in the three axes.

The first two data

types (from the
gyroscope and

accelerometer)

are sent to a
complementary

filter to get
orientation as

rotation in the x and y axes (pitch and roll).

Figure 47 - Duro starter kit

4.1.3.1 Complementary filter

This algorithm is in a ROS meta-package imu_tools [22] as a ROS

package called imu_complementary_filter. It is built on the work done

by [23].

Resuming the paper, the choice of using the complementary filter

instead of another filter, such as the Kalman Filter (4.1.3.4), is due to
its simplicity and effectiveness. It uses analysis in the frequency

domain to filter the signals and combine them to obtain an orientation

estimation without any statistical description.

Its working principle can be resumed by the scheme below:

As it is possible to see, a first orientation is taken by the gyroscope

measurement; this is used to rotate the measure from the

accelerometer obtaining a correction term. This term is filtered by a
Linear intERPolation (LERP) if the correction term is below a decided

threshold; if it is higher, a Spherical Linear intERPolation (SLERP) is

used.

This filter allows the addition of another term of correction from the
magnetometer orientation. Still, the choice done in this work is to

handle it in a different node, to calibrate and filter it correctly, using
the roll and pitch angle (from the complementary filter) to compensate

for the tilt.

4.1.3.2 Magnetometer calibration

Continuing with the analysis of the magnetometer, special attention

was given to this component due to its susceptibility to noise. As

presented in [24], the magnetometer data can be affected by various
sources of disturbances, including wide-band measurement noise,

stochastic biases, installation errors, and magnetic interferences in the

vicinity of the sensors.

These magnetic interferences can be categorised into two groups.

Figure 48 - Complementary filter

The first group, hard iron interference, refers to the presence of a fixed

or slightly time-varying magnetic field generated by ferromagnetic

materials.

The second group, soft iron interference, pertains to the magnetic field

generated within the device.

Calibration is crucial for this component to get the 12 matrix
parameters to compensate for the abovementioned effect. In this work,

two different ways of calibration are presented:

The first is based on [25], while the second is based on [24].

A test is done to show the best approach between them; the result is

shown in Figure 49.

As it is possible to see, the Least Square Calibration performs better;

furthermore, it is worth noting that this calibration required complete
rotations around the three axes. Since this is impossible in the field, a

symmetry of the points collected is done to complete the dataset on

which the calibration procedure is applied.

4.1.3.3 Magnetometer filter

After the calibration, the magnetometer measurements are submitted

to a filter action before getting the final heading value.

This work proposes a Lowpass filter and a Moving Average Filter.

Going deeper into why a filter action is needed and which type of noise
is present, it is said that the magnetometer presents pink or 1/f noise

at low frequencies and white noise at high frequencies [26].

Figure 49 - Calibration comparison

For this reason, the first and more standard approach of using a

Lowpass filter is insufficient, while a Moving Average Filter can better

suit the work expected.

Even if it has a straightforward implementation, this filer has an
excellent response in the time domain, suiting for the application. At

the same time, it cannot be applied to frequency domain applications

[27].

Given the general characterisation of the noise found in state of the art

and to use a more practical approach, both filters are implemented and

compared to find the best method for our goal.

The implementation of the two filters is summarised below:

Firstly, the data collection object

is created; for both filters, a
deque is used to collect the data

in chronological order fixing its

dimension.

For the EMAF (Moving Exponential Average Filter) in each position, an
exponential weight proportionally to its position is associated with the

data collected, obtaining for each iteration the exponentially weighted
average of the element inside; the choice to not use a simple average

is made to give more priority to recent data then to dynamics instead

of noise reduction as reported in [27].

For the Low pass, the measurements stored are used in the equation

of a digital Low Pass filter:

𝑎0 𝑦[𝑛] = 𝑏0 𝑥[𝑛] + 𝑏1𝑥[𝑛 − 1] + 𝑏2𝑥[𝑛 − 2] − 𝑎1𝑦[𝑛 − 1] − 𝑎2𝑦[𝑛 − 2]

In which y[n] is the output, x[n-k] is the past inputs and y[n-k] is the

past output [28].

Where the a and b coefficients are computed by the function
scipy.signal.iirfilter of the library Scipy given as input the order of the

filter, the cut-off frequency, the sampling frequency, the type of filter
(bandpass, lowpass, highpass or bandstop, and Butterworth,

Chebyshev I or II, elliptic or Bessel).

A Butterworth type is chosen since it has a frequency response as flat

as possible in the pass band region with a sampling frequency of 20

given by the sensor one.

A first analysis was done for both sensors to tune the parameter that
satisfies stationary and dynamic requirements; an analysis example is

shown below in Figure 51 and Figure 52.

Figure 50 - EMAF deque

The final values chosen for the two filters are reported in Table 5:

Low Pass EMAF

ωc=4 Hz Size =10

Order=2 -

Table 5 - Filters parameters chosen

Figure 52 - Error analysis for LP

Figure 51 - Example of analysis for LP order 2 stationary(left) transition (right)

A further comparison was made between the two, showing that EMAF

presents better results for the application.

4.1.3.4 Extended Kalman Filter

To gain an accurate state estimation, the fusion of data from multiple
sensors is required. To address this need, the package

robot_localization is used [29]. As described in [30], this package
contains a generalised extended Kalman filter (EKF) implementation.

The package has several advantages, including supporting unlimited
inputs from various sensor types, customising which sensor data fields

are fused with the current state estimate, supporting 3D state

estimation, and handling multiple ROS message types.

The central node of the package is the ekf_localization_node, which
implements an extended Kalman filter algorithm. The implementation

allows prediction and correction steps, projecting the state estimate
and error covariance forward in time and updating them based on

sensor measurements. The implementation supports partial updates of
the state vector, enabling the fusion of sensor data that measure only

a subset of the variables. Users can customise the process noise

covariance for optimal performance.

To better understand how it works, the article continues to describe

two experiments to evaluate the performance of the

ekf_localization_node.

 One was interested in the distance between the robot’s start and end
positions, and another was interested in the behaviour with infrequent

GPS; for both, different configurations were utilised: dead reckoning
via the platform’s odometry, fused odometry with a single IMU, fused

odometry with two IMUs; fused odometry with two IMUs and a single

GPS, and fused odometry with two IMUs and two GPS units.

Figure 53 - Comparison LP / EMAF

The result of the first experiment is shown in Figure 54 taken by the

article.

In contrast, the second experiment shows as being between the

current state and measurement despite the significant difference

between state estimate and measurement due to the infrequency of

the GPS; the filter’s covariance matrix retains its stability.

Other than describing the potentiality of this package, this article has
much interest since it shows how the configuration of a redundant

sensor helps to reduce the error.

Figure 54 - Localisation comparison [30]

In the thesis configuration, Imu and a GPS+RTK are used. Relying on

an odometry measurement using encoders or visual odometry by the
camera or the LiDAR can also increase the precision in the condition of

low GPS reception.

Subsection 4.1.4 Lidar Velodyne VLP16

The Velodyne Puck is a sensor that uses 3D lidar

technology. It is known for its reliability, power
efficiency, and ability to provide a surround view. This

makes it an excellent choice for affordable low-speed

autonomy and driver assistance applications [31].

Lidar stands for Light Detection and Ranging. It uses

laser beams to measure distances and create a
detailed 3D map of the environment. In this work, it

will be crucial to detect obstacles thanks to an

adaptative clustering algorithm.

In particular, this sensor is connected to the ROS environment thanks
to the ROS package velodyne [32]. It publishes

a point cloud that is the input for an algorithm
of clustering. This algorithm is also available in

the ROS community in [33], based on the work

in [34].

Thanks to this algorithm, boxes surrounding
the element are published once the minimum

and maximum height from the Velodyne, the minimum and maximum

size, and the distance are tuned.

Subsection 4.1.5 Intel® RealSense™ Depth Camera D435

The stereo Intel RealSenseTM depth camera D435 provides high-

quality depth for various applications. In
fields such as robotics or augmented and

virtual reality, having a broad view of the
scene is essential. Therefore, this

technology’s wide field of view is perfect for

such applications.

This small form factor camera can be easily integrated into any solution
and has a range of up to 10 metres. It also includes Intel RealSense

SDK 2.0 and cross-platform support [35].

In the thesis application, it is used for people detection during

navigation.

The visual cameras are connected to the ROS environment through a
node (a code written in Python language). This node uses an algorithm

called YOLO (You Only Look Once) to identify the feature in the space

around it.

As reported in [36], YOLOv5 is one of the most recent and frequently
used iterations of a well-known deep learning neural network; it is

Figure 55 - Velodyne VLP16

Figure 56 - Example of clustering

Figure 57 - Camera

utilised for various machine learning applications, mainly in computer

vision. Due to the YOLO algorithm's excellent performance in
complicated and noisy data contexts, availability, and simplicity of

usage in conjunction with popular programming languages like Python,

it has rapidly gained favour in the data science community.

The network
architecture of Yolov5

consists of three parts:

CSPDarknet
(Backbone), PANet

(Neck) and Yolo Layer

(Head).

The data are first input
to CSPDarknet for

feature extraction and
then fed to PANet for

feature fusion. Finally,
the Yolo Layer outputs

detection results
(class, score, location,

size) [37].

This system uses a convolutional neural network as its backbone to

collect and organise image features at various levels. The neck network

then merges these features and prepares them for prediction. Finally,

the head network predicts targets on the feature maps [37].

Given a brief definition of what YOLO is, the libraries/modules used are

presented:

• Torch is a well-liked machine learning library that is open-source
and mainly used for deep learning tasks. To create and train

neural networks, it offers a high-level interface. The PyTorch
library's utility module torch.hub, which offers a practical method

to load previously trained models, is used. To expedite the

process, the model has already been downloaded locally.

• OpenCV, also known as CV2, is a widely-used open-source library
that offers a variety of image processing and computer vision

features.

• Pyrealsense2 is a tool that allows developers to use Intel

RealSense depth cameras in Python applications. It provides a

straightforward and user-friendly interface for operating
RealSense cameras, including taking colour and depth frames,

getting sensor information, and carrying out various processing

operations.

Figure 58 - YOLO structure

• utils.dataloaders is a module of a library download by [38] to

manage the loading and handling of different data types.

• The other libraries rospy, numpy, and std_msgs are commonly

used for this type of work.

Finally, a schematic presentation of the node is done:

Figure 59 - Person detection node

Subsection 4.1.6 FLIR ADK

Thermal infrared cameras are

the best sensor technology for
detecting people and animals,

day or night. It measures the

amount of infrared radiation
emitted or reflected by objects

[39].

This sensor is not yet used but

will be necessary for
subsequent developments

thanks to the possibility of
integration with an optical

camera and lidar, achieving better results and reducing noise for low

light or dust.

Figure 60 - FLIR ADK

Chapter 5 Motion Planning and Control

This chapter is divided into two parts; the first will discuss the different

solutions implemented to achieve outdoor navigation between GPS
points. The second part will instead add the obstacle avoidance

problem, increasing the problem’s complexity. Before entering the

details, a global scheme for the development is shown in Figure 61:

Section 5.1 Navigation Part

All the algorithms that are proposed
have the goal of making the robot reach

a specific point (sent by the user
through the company’s API),

minimising the distance from the line
that joins the start to the goal; they

also share the ability to stop if a person
is detected and to close the program

other than control the robot if an

emergency message is sent.

Before starting the navigation, several

nodes must be run, in particular:

• duro_node is run to get raw data

from the IMU, the GPS and the

magnetometer.

• imu_complementary_filter is run
to get orientation for the

imu_tools package.

Figure 61 - Motion development

Figure 62 - Example of UTM transformation

• utm_odometry_node converts latitude-longitude readings into

UTM odometry (available in the gps_common package). The UTM
(Universal Transverse Mercator) coordinate node system is a

positioning system which divides the world into sixty north-south
zones, each 6 degrees of longitude wide, making in the plane and

then adding the possibility to configure a xy Reference frame.

• robot_pose_ekf from the package robot_pose_ekf receives the

UTM coordinate and fuse them to obtain the robot’s odometry.

Finally, the coordinate in the XY frame is received by the

algorithm that performs the navigation.

• Other than that, the node based on the YOLO5 algorithm must
be run to perform people detection, as the node related to the

filtering of the magnetic field to obtain the heading of the robot
and the node adaptative_clustering from the package

adaptative_clusterig to get the position of the obstacle.

Subsection 5.1.1 Bang-bang controller

A bang-bang controller is a feedback controller in control theory that

rapidly switches between two states [40].

The two states are the forward motion state and the rotation state.

This controller is allowed by the first version of Arduino code, getting a

first knowledge of ROS commands and Arduino’s programming.

The base concept of the motion algorithm is that, given a starting point
and a goal, firstly is performed a rotation to be aligned to the goal, and

then the forward motion is made. To correct motion and sensor noise,
two imaginary boundaries are drawn, and as soon as the robot

overcomes one of them, the rotation is performed again, realigning to

the goal. The functioning is schematised below:

This algorithm guarantees the reach of the goal as the tolerance used
for the boundaries is less or equal to the tolerance used to check if the

robot reaches the destination. By reducing the boundaries’ tolerance,
higher precision can be acquired at the cost of a more discontinuous

path.

Once the path creation is explained, the motions' speed must be

analysed since both angular and linear are not constant. Indeed, the
angular velocity is proportional to the angular rotation that must be

done. Still, the growth is limited by a function that imposes a max

increment (0.2) and a maximum value (1 by default).

For the linear, a trapezoidal profile is proportional to the distance

between the starting point and the goal.

In this way, velocities present a smoother profile avoiding step

variation.

Figure 63 - Bang-Bang algorithm

Finally, a resume of the code is provided below:

Initialisation:

• Imports the necessary modules and packages.

• Defines the Calc_Trajetory class, which represents the task

structure.

• Initializes the ROS node and sets up the necessary publishers

and subscribers.

• Implements callback functions for receiving data from subscribed

topics, such as heading information, actual coordinates,

emergency stop signal, and stop command (people detection).

• Implements a mover method that inputs a goal position, a
logging object, and a file object and controls the movement of

the robot to reach the goal position; in the meantime, it provides
the possibility to gain a log file for debugging and a txt file to get

in a matrix shape way information to make analyses and graphs.

For each goal, the mover is called:

• It starts by initialising some variables and publishing zero

velocities to stop the robot as safe.

• It enters a loop until the goal position is reached.

• Within the loop, it checks for emergency and people detection

stops. If it can continue, two states are possible: rotation and

straight-line movement.

• In the rotation state, the robot adjusts its heading to align with

the desired angle.

• If the alignment is not achieved within a specified time, it

transitions to the forward motion. In this way, the robot does not

get stuck.

Figure 64 - Velocities profiles

• In the straight-line movement state, the robot moves towards

the goal position.

• The calculated velocities are published to the /cmd_vel topic to

control the robot's motion.

In the __main__ block:

• Initializes a logging object and opens a file to write the trajectory

information.

• Retrieves the goal points from a file.

• Creates an instance of the Calc_Trajetory class.

• Executes the mover method for each goal point, controlling the

robot's movement.

• Handles exceptions and gracefully exits the program.

Subsection 5.1.2 PID controller

This section will present
two different versions of

the PID controller. In
particular, both versions

share the same path
planner and the linear PID

controller, while they differ

for the angular PID.

Starting from the general concept, a proportional–integral–derivative

controller (PID controller) is a control loop mechanism employing
feedback, widely used in the scientific field. The PID controller regularly

computes the difference between a desired setpoint and a measured
value, called the error value e(t). It then uses proportional, integral,

and derivative terms to make necessary corrections [41].

It is then essential to the way this error is computed. Instead, different

quantities can be utilised; here are the three primary measurements

used in this scenario:

• Distance to the goal is the Euclidean distance between the

desired goal and the actual position.

• Heading error is the difference between the actual heading of the

robot and the heading needed to reach it.

• Cross-track error (CTE) is the orthogonal distance between the

line of desired travel and the robot’s location.

It is possible to see as the first one doesn’t give information about the

orientation, while the last two provide only the orientation term. For

Figure 65 - PID scheme

this reason, the first error will be used as a reference for the linear

motion PID while the others will be used for the angular one.

As regards the path planning part, in both cases, the track is divided

into the equidistant point that changes as the tractor gets near to them,
working as a reference for the linear PID; that is done to obtain an

almost constant value during the travelling reducing it just when it is

arriving.

5.1.2.1 Heading PID

As written before, this algorithm

uses two PIDs to control the
linear and the angular speed

separately; at the same time, it
continues to use the central

concept of the Bang-Bang
controller; indeed, as it receives

the actual goal, it aligns the robot
to the destination, reducing the

angular error of some degrees

(around 4°); in this way the
angular PID has to compensate

for the small angular error,

obtaining a smoother behaviour.

So as the robot starts the forward
motion, the angular error is

continuously computed and given
to the PID, which has a 0 has a

set point, to transform it in the velocity command component

(/cmd_vel.angular.z).

Furthermore, since for external disturbance like the loss of the RTK,
the robot can go too further from the goal, starting a circular motion

around it (the linear velocity is proportional to the distance), a linear
limiter is added to regulate the final speed inversely proportional with

the angular one. This limiter is also used in the other controllers to

avoid going for several meters without the correct heading.

Also in this case, a resume of the code developer is provided:

Initialisation:

• The necessary libraries and modules are imported.

• PID controllers class are defined for linear and angular motion.

• The necessary publishers and subscribers are set up.

• Callback functions are defined to receive and process data from

various topics, such as heading, coordinates, and stop signals.

Figure 66 - Heading PID

Movement Execution:

• It receives the goal coordinates, a log object for debugging

information, and a file object to store navigation data.

• The function starts by initialising variables and setting the initial

velocities to zero (safety measurement).

• It enters a loop until the goal is reached.

• During each loop iteration, the function checks for stop signals

and handles them accordingly.

• If the robot can move, it checks if it needs to perform an initial

rotation to align with the desired heading.

• To align the robot with the desired heading, it may require an
initial rotation that adjusts its angular velocity. If the alignment

is not achieved within a set time, the robot will move on to the

next step to prevent it from getting stuck.·

• Once aligned, the function computes the reference point for the
robot to follow using the path_creator function. This function

creates a trajectory path based on the current position and the
desired final goal. The function returns the new reference point

for the robot.

• So, it computes the error between the current and desired

heading and uses the PID controllers to calculate the angular and

linear velocities based on the error values.

• The linear velocity is limited using the

velocity_acceleration_limiter function. In this way, if a strong
rotation is needed, the line velocities are reduced to avoid a

considerable radius trajectory.

• The calculated velocities are published to the /cmd_vel topic to

control the robot's motion.

• Once the goal is reached, the function stops the robot, sets the

initial rotation flag, and prepares for the next goal.

In the __main__ block:

• Initializes a logging object and opens a file to write the trajectory

information.

• Retrieves the goal points from a file.

• Creates an instance of the Calc_Trajetory class.

• Executes the mover method for each goal point, controlling the

robot's movement.

• Handles exceptions and gracefully exits the program.

5.1.2.2 CTE PID

This control scheme is similar

to the previous one, but the

angular speed is based on the
distance from the path. The

controller will apply angular
rotation to keep the space

from the line as small as

possible.

In this way, the angular
controller is able only to keep

the robot on the line, but if
the goal is passed outside the

tolerance, it will not turn the
robot to the back; to solve

this problem, an imaginary
rectangle is drawn

surrounding all paths; in this

way, if the robot touches this
boundary a realignment is

performed, creating a new route straight forward to the goal.

As shown in the Chapter 7 , this controller has better results concerning

the Heading PID thanks to the higher precision of the localisation
concerning the heading computation. Anyway, this controller is not

suitable for obstacle avoidance application since in a not straight path
(like in the case of the presence of an obstacle), the distance requires

time to get bigger, differently from the heading that pointing to the

following reference will show instantly the needed of a strong rotation.

Finally, a resume of the code developed is provided:

Initialisation:

• The necessary libraries and modules are imported.

• PID controllers class are defined for linear and angular motion.

• The necessary publishers and subscribers are set up.

• Callback functions are defined to receive and process data from

various topics, such as heading, coordinates, and stop signals.

Movement Execution:

• It receives the goal coordinates, a log object for debugging

information, and a file object for stored data.

• The function starts by initialising variables and setting the initial

velocities to zero.

Figure 67 - CTE

• It enters a loop until the goal is reached.

• During each loop iteration, the function checks for stop signals

and handles them accordingly.

• If the robot can move, it checks if it needs to perform an initial

rotation to align with the desired heading.

• If an initial rotation is required, it adjusts the angular velocity of
the robot to align it with the desired heading. As for the others,

if the alignment is not achieved within a specified time, it

transitions to the next step to avoid the robot getting stuck.

• Once aligned, the function computes the reference point for the

robot to follow using the path_creator function. This function
creates a trajectory path based on the current position and the

desired final goal. The function returns the new reference point

for the robot.

• Therefore, the error is computed between the current position
and its projection, and it uses the PID controllers to calculate the

angular and linear velocities based on the error values.

• The linear velocity is limited using the

velocity_acceleration_limiter function. In this way, if a strong
rotation is needed, the line velocities are reduced to avoid a

considerable radius trajectory.

• The calculated velocities are published to the /cmd_vel topic to

control the robot's motion.

• Once the goal is reached, the function stops the robot, sets the

initial rotation flag, and prepares for the next goal.

In the __main__ block:

• Initializes a logging object and opens a file to write the trajectory

information.

• Retrieves the goal points from a file.

• Creates an instance of the Calc_Trajetory class.

• Executes the mover method for each goal point, controlling the

robot's movement.

• Handles exceptions and gracefully exits the program.

Subsection 5.1.3 Non-linear controller

This control strategy is based on the research presented in the article

[13], which is already
discussed in the State of the

Art (Chapter 2). In addition to

being appropriate for obstacle
avoidance paths, it uses

heading and cross-track
errors to ensure higher

precision.

As shown in the proposed

scheme, the controller uses
the error given by the cross-

track to correct the heading
error. Unlike the original plan,

PIDs are used instead of just proportional controllers to obtain a fast
response avoiding the oscillation given by the only use of the

proportional term.

So, firstly, the correction term is computed based on the distance to

the reference segment. After that, the correction angle is subtracted

from the reference inclination of the path to obtain the input for the
heading computation. The scheme of the angular velocities is shown in

Figure 68.

A schematic representation of the code is proposed:

Initialisation:

• The necessary libraries and modules are imported.

• PID controllers class are defined for CTE and heading error.

• The necessary publishers and subscribers are set up.

• Callback functions are defined to receive and process data from

various topics, such as heading, coordinates, and stop signals.

Movement Execution:

• The method mover initialises various variables and parameters

for the movement control.

• It enters a while loop until the goal position is reached.

• During each loop iteration, the function checks for stop signals

and handles them accordingly.

• If no stop signal is detected, the method checks if the robot is in

the rotation state.

Figure 68 - Non-linear controller

• If the robot is in the rotation state, it checks if the alignment with

the goal position needs to be adjusted. If alignment is required
and the time since the rotation start is less than or equal to a

predefined interval, the method enters the rotation state (in this

way, stuck conditions are checked).

• If alignment is not required or the time exceeds the specified
threshold, the method ends the rotation state. So, the

path_creator function creates the path for the robot to follow

after rotation.

• If the goal hasn't been achieved, the method activates the

PID_motion function, which utilises PID controllers to manage

the robot's angular and linear velocities.

• The method first checks if the reference point needs to be
updated. If the actual reference point is nearer than a tuned

distance, it updates the pid_reference attribute and stores the
previous reference as last_reference available, which will be used

to get the reference segment.

• Indeed, the distance of the current position from the line formed

by the last and current reference points is calculated.

• Depending on the orientation of the path and the robot's heading,

the method determines the angular value to be used as a
correction for the robot to go back on the path. The computation

is done using a PID.

• The calculated angular value is then used to update the desired
orientation by subtracting it from the absolute orientation of the

path.

• To determine the input value for the PID controller, the method

calculates the difference between the desired orientation and the
robot's current heading. This results in the computation of the

angular velocity component.

• For the linear one, the robot’s progress along the path is used as

input of a trapezoidal profile.

In the __main__ block:

• Initializes a logging object and opens a file to write the trajectory

information.

• Retrieves the goal points from a file.

• Creates an instance of the Calc_Trajetory class.

• Executes the mover method for each goal point, controlling the

robot's movement.

• Handles exceptions and gracefully exits the program.

Subsection 5.1.4 Vector field

This method has a different

implementation from the
previous ones; indeed, a vector

field is created instead of

computing a series of points to be
used as a reference, according to

[14]. So firstly, a constant vector
is created and fixed to the object;

this will constantly push the
vector through the direction of

the path. Then, a vector field is
built along the way to make the

vector remain in the way.
Accordingly, with the article, this

field is divided into two parts, the
nearer to the path is smooth

behaviour, while the outsider has a step force as shown in the picture,

Figure 69.

A schematic representation of the code is proposed:

Initialisation:

• The necessary libraries and modules are imported.

• PID controllers class are defined for the heading error.

• The necessary publishers and subscribers are set up.

• Callback functions are defined to receive and process data from

various topics, such as heading, coordinates, and stop signals.

Movement Execution:

• The method mover initialises various variables and parameters

for the movement control.

• It enters a while loop that continues until the goal position is

reached.

• During each loop iteration, the function checks for stop signals

and handles them accordingly.

• If no stop signal is detected, the method checks if the robot is in

the rotation state.

• If the robot is in the rotation state, it checks if the alignment with
the goal position needs to be adjusted. If alignment is required

and the time since the rotation start is less than or equal to a
predefined value, the method enters the rotation state (in this

way, stuck conditions are checked).

Figure 69 - Path vector field

• If alignment is not required or the time exceeds the specified

threshold, the method ends the rotation state.

• If the goal still needs to be achieved, the PID_motion function is

executed. This function uses PID control to manage the robot's

angular and linear velocities.

• The PID_motion method is a part of the Calc_Trajetory class that
controls the robot’s motion. The main characteristic different

from the previous implementation is the function lineMission.

• Firstly, it first calculates the differences between the goal and
original positions in the x and y axes and the Euclidean distance

between the current and goal positions.

• If the distance to the goal is less than a tunable value, the

function calculates the attractive force towards the goal position.

Therefore the desired heading is computed.

• If not, the function continues computing the perpendicular
distance from the current position to the line connecting the

original and goal positions.

• If it is more significant than a threshold value, a strong vector is

applied to point to the line.

• If not, the distance is used to compute the vector the point to

the goal while maintaining the robot on the line

• Finally, it computes the error between the desired and actual

heading and returns the error (input for the angular PID) and the

progression.

• For the linear one, the robot’s progress along the path is used as

input of a trapezoidal profile.

In the __main__ block:

• Initializes a logging object and opens a file to write the trajectory

information.

• Retrieves the goal points from a file.

• Creates an instance of the Calc_Trajetory class.

• Executes the mover method for each goal point, controlling the

robot's movement.

• Handles exceptions and gracefully exits the program.

Section 5.2 Obstacle Avoidance

This section is related to the ability of the robot to avoid possible
obstacles on the road. Three different methods were exploited: the first

one was the simplest and had less computational requirement since it
did not require a dynamic map. Indeed it performs a BUG logic

algorithm, discussed in Chapter 2. The other two instead require the

construction of a map where navigate.

Subsection 5.2.1 Bug algorithm

As previously mentioned, this algorithm does not require a map; some

memory is used to localise the obstacle but is deleted as the goal is
reached. As the adaptive clustering algorithm detects an obstacle, it is

located in the space, and the actual path is checked; if it intersects the
safe contour of the obstacle (using a safe distance), a new one is

computed, as shown in Figure 70.

The code is based on the non-linear controller with the difference of
the path change to account for the obstacles. This aspect is resumed

below, explained by the new path_creator:

• It initialises an empty list called pid_path to store the path’s

points.

Figure 70 - BUG algorithm

• The method calls the check_goal function. It creates a Point

object by the coordinates of the goal position. Therefore it checks
if it lies within the obstacle area. If the goal is within it, it

indicates it is not reachable. Therefore a new goal is computed
using the nearest intersection (between the reference line and

the obstacle) to the goal.

• After the check, the step size is defined, indicating the distance

between the reference points on the path.

• It starts computing the point by the type of line (vertical, if the
tractor's current position is aligned vertically with the goal

position within tolerance or an oblique line). If an obstacle is
encountered during the path creation, the method

obstacle_avoidance_path is called to add a path that avoids the
obstacle, using the obstacle’s contour to add a distance of a

tunable way, as in the logic of BUGs.

• Finally, the goal position is added to the path.

Subsection 5.2.2 Occupancy Grid Map

An occupancy grid map is a map that for each cell shows the probability
that the obstacle occupies it. Different versions can be implemented,

from a binary map [0, 1] to complex solutions. In this work, each cell

can go from 0 to 100 using integer numbers to reduce memory

allocation.

Therefore each time the LiDAR clusters an object, its coordinate is used
to add a pre-defined value to the cell inside the contour until a

maximum of 100.

To solve the problem of the ‘ghost’ obstacle given by the machine’s

vibration, each T (a period defined) all the matrix is diminished by a

tuned value until a minimum value of 0.

The code is built with two functions.

One is called each time the adaptative_clustering algorithm sends an

obstacle.

• The function iterates over each marker (obstacle box) in the

message.

• It extracts the marker points' maximum and minimum x and y

coordinates. They are used since the box is computed in the

velodyne reference frame, always perpendicular to it.

• The function defines two transformation functions to convert the

coordinates from the marker's frame of reference to the map's
frame of reference, considering the robot's heading, position and

the map translation vector.

• The function utilises transformation functions to calculate the

box's transformed coordinates of the box's four vertices (A, B, C,

D) in the absolute reference frame.

• Afterwards, it determines the polygon's bounding box in the
absolute reference frame by identifying the minimum and

maximum x and y values among the transformed vertices. To
ensure a safe margin from the obstacle, the polygon's vertices

are adjusted by adding or subtracting a value from the x and y

coordinates based on their position relative to the bounding box’s

average x and y values.

• Finally, the function iterates over the cells within the polygon’s
bounding box. For each cell, the function checks if it is inside the

polygon using a ray-casting algorithm. If the cell is inside the
polygon, the function updates the corresponding cell value in the

map.

• If the current cell value in the map is greater than or equal to the

100-increase value, it is set to 100. Otherwise, it is incremented

by the increasing value.

The second part is a function with a predefined interval to update the

map, deleting false obstacle detection.

• The method takes an optional parameter fixed_quantity which

defaults to 1.

• It uses the NumPy subtract function to subtract the

fixed_quantity from each cell in the map. The out parameter

stores the result in place, modifying the map directly.

• Then is ensured that any cell value in the map that becomes

negative after the subtraction is set to zero.

5.2.2.1 A* application

The first algorithm to move the robot avoiding obstacles is the A*.

Each time an obstacle is founded, the map is updated; meanwhile,

the A* computes the accessible path. If one of the inputs is near one

obstacle cell (probability higher than a threshold), the robot is

stopped for safety reasons and the A* is called computing a new free

path.

The heuristic function must be trained to obtain the desired path and

a short computation time.

The final one is shown below:

ℎ(𝑛) = 𝑊𝑒 ∙ 𝑑𝑒(𝑛) + 𝑊𝑜 ∙ 𝑑𝑜(𝑛) + 𝑊𝑙 ∙ 𝑑𝑙(𝑛)

with We = 0.5, Wo = 8, Wl = 0.5.

In the equation above, the We, Wo, and Wl are tuneable weights of the

corresponding functions. In particular, de (n) is the Euclidean distance
from the goal, do (n) is the inverse of the distance from the obstacle

and dl (n)is the distance from the line.

Regarding do (n), this value is computed by looking for the nearest

obstacle cell in a pre-defined range; this range is imposed to reduce

the computational time required.

Since this parameter is essential for the good dynamics of the robot,

further research is done on that.

Regarding the code, the main difference with the non-linear controller

is the occupancy grid map (the part before) and the new function for

path planning. This last one is presented below:

• The method initialises an empty list called pid_path to store the

computed path.

• The ax, bx, cx, and dx variables are computed by transforming
the actual position and goal coordinates from the absolute

reference frame to the matrix frame based on the translation

vector and cell size.

• From ax, bx, cx and dx a function is used to find the row and

column numbers in the grid correspondent.

• The A* algorithm is called with the map, start position, and goal
position to compute the possible path. The result is stored in the

path variable.

• If no path is found, an error message is printed, and the

callback_emergency_stop method is called.

• If a path is found, the method proceeds to process the path.

• The first two points are removed from the path (assuming they

are very close to the current position), and the remaining path is
stored in the path_memory list. The round_edges function is

called to filter the path.

• It checks if the length of the path is less than 3. In that case, it

returns the original path as there are low points for edge

rounding.

• The start and end points of the path are extracted.

• The function initialises variables to track the maximum distance

and the index of the point with the maximum distance.

• The function iterates over the points in the path (excluding the

start and end points) and calculates the distance of each point

from the line formed by the start and end points.

• If the calculated distance exceeds the current maximum

distance, the maximum distance and its corresponding index are

updated.

• After iterating through all the points, the function checks if the
maximum distance is within the specified tolerance (input of the

function). If so, it returns a new path consisting of only the start

and end points, effectively removing the points in between.

• If the maximum distance exceeds the tolerance, the function

repeatedly calls to round the edges of the two segments divided
by the maximum distance point. It gives the recursive calls to

the left segment (from the beginning to the maximum point) and

the right segment (from the maximum point to the end).

• The left and right paths returned from the recursive calls are
concatenated, excluding the last point of the left path, and

returned as the rounded path. In this way, the discontinuous
effect due to the discrete value of the map is smoother, allowing

the robot to follow the trajectory without a continuous change of

orientation.

• Achieved a smoother path; two versions of the path's storage are
constructed, one with and one without the round_edges effect.

If a path is found, the first point is removed from the path list
(as it corresponds to the current position), and the remaining

points are translated back to the map frame. The first path is

used for navigation, while the other is to check for new obstacles.

Finally, some tests are done to

compute the time needed to
complete the algorithm in

different situations like Figure 71,
200 random scenarios are tested.

The results are shown in the

following figures:

Figure 71 - A* star path computed

Figure 72 - A* Time-Path length

Figure 73 - A* Reference – real length

Figure 74 - A* Time – number obstacles

Figure 75 - A* Time analysis

5.2.2.2 Vector field application

This is the last algorithm proposed. It improves the code done, from

the article [15], imposing a vector field around the obstacle, making it

able to avoid it.

Also in this case, further analysis is needed to choose the right angle

of rotation of the repulsive field of the obstacle to make the robot not

just pushed away and, in the meantime, not captured in his orbit.

The result is shown in the figures below, Figure 76.

Regarding the code, the main difference with the first version of the

vector field is using the occupancy grid map (already explained in

Subsection 5.2.2) and the new lineMission.

This last one is presented below:

• The function takes several parameters as inputs: the current,

starting and goal positions, the current heading, the grid map,

the size of each cell in the map and the repulsion gain.

• The function computes the differences in x and y coordinates

between the goal and original positions.

• It calculates the distance from the actual to the goal position

using the Euclidean distance formula.

• If the distance to the goal is less than 2, it directly computes the

steering commands based on the attractive force. In this way,

the goal’s field strongly pulls the robot.

• If the distance to the goal is greater than or equal to 2, the
function proceeds to compute the epsilon value, which represents

the perpendicular distance between the current position and the

line connecting the original and goal positions.

• Based on the value of epsilon, the function determines the entity
of the force that pushes the robot to the line, as explained in

Subsection 5.1.4. Therefore, the steering command is computed.

Figure 76 - Vector Field Obstacles

• Next, the function iterates over a range of cells within a tuned

range and computes the repulsion forces given by the probability
of the cell being an obstacle. The repulsion force is added to the

vector force components.

• The final steering command is computed by taking the

arctangent of the vector force components.

• The steering error is computed using the desired and actual

heading angles. It will be used as input for the angular PID.

Chapter 6 Simulation in Gazebo and URDF

In this chapter, the general aspect of simulation will be treated: firstly,

a presentation of the most common simulation environment in ROS
and robotic applications with particular attention on Gazebo; then the

creation of the URDF (Unified Robotics Description Format) of the
tractor is described; finally, some results of the algorithm in the

simulation environment are shown.

Section 6.1 Introduction to simulation tools

Using simulation tools in ROS offers a valuable means to study and

evaluate the capabilities of robotic systems. There are several notable

simulation platforms available, including:

• V-REP (Virtual Robot
Experimentation Platform): it

provides a comprehensive
3D simulation environment

compatible with ROS,
enabling the realistic

simulation of robots and their

interactions with sensors.

• Gazebo is renowned as
one of the leading

simulation

environments for ROS;
it facilitates the physics-

based 3D simulation of
robots and their

dynamic engagement

with the environment.

• MORSE (Modular Open Robotics
Simulation Engine): it is an open-

source robotics simulator designed to
integrate with ROS seamlessly. It

focuses on delivering a high-fidelity
simulation environment that

accurately emulates robotic systems

and complex environments.

Figure 77 - V-REP

Figure 78 - Gazebo

Figure 79 - MORSE

• Webots: it is a commercial robot

simulator that supports ROS
integration and provides a feature-

rich 3D simulation environment.

• USARSim: it is highly regarded for its emphasis on high-fidelity

simulation. USARSim offers accurate physics simulation and
sensor models that closely resemble

real-world scenarios. Its versatility in
simulating diverse robot models and

sensors makes it suitable for
complex and varied robotic systems.

Additionally, it supports multiple
programming languages, enhancing

its flexibility for simulation.

• STDR/Stage: it is a 2D robot
simulator in the ROS package.

It provides a simplified and
effective simulation

environment primarily focused
on 2D navigation and sensor

simulation. This lightweight
solution is beneficial for the

quick prototyping and testing of
simple robotic systems within

the ROS framework. Although it
may lack the same level of realism and complexity as other

simulation tools, it is an efficient option for basic robotic

simulations.

Figure 80 - Webots

Figure 81 - USARSim

Figure 82 - STDR/Stage

• Unity: it, primarily a game development engine, also offers

capabilities for robot simulation.
Its robust 3D simulation

environment leverages realistic
physics and graphics. Unity's user-

friendly interface and support for
scripting in languages like C#

enable users to customise and

extend the platform to suit their
simulation requirements. With a

vast library of plugins and assets,

Unity facilitates the creation of visually engaging simulations.

After the first general presentation, the main characteristics of the

different simulations environment are shown in Table 6, taken from

[42].

 V-REP Gazebo MORSE Webots USARSim STDR/Stage Unity

Main
Program.
Language

C++ C++ Python C++ C++ C++ C++

Operating
System

Mac,
Linux

Mac,
Linux

BSD,
Mac,
Linux

Mac,
Linux

Linux Linux Linux

Simulation
Type

3D 3D 3D 3D 3D 2D 3D

Physics
Engine

ODE,
Bullet,
Vortex,
Newton

ODE,
Bullet,
Dart

Bullet ODE Unreal OpenGL

Unity
3D

3D Rendering
Engine

Internal,
External

OGRE
Blender

game
OGRE Karma - OGRE

Portability Yes Yes Yes Yes Yes Yes Yes

Support **** ***** **** **** *** **** **

ROS
Compatibility

**** ***** **** *** ** **** *

Table 6 - Simulation tools comparison [42]

Finally, in the article, it is also shown as between the two popular

simulation environments, MORSE and Gazebo, MORSE performed
better than Gazebo in the tests conducted’, despite that in this work,

Gazebo is preferred for its better performance in terms of Support and
ROS Compatibility, as shown in the table. It is analysed in detail in the

following Subsection 6.1.1.

Figure 83 - Unity

Subsection 6.1.1 Gazebo

As described before, Gazebo allows to build of a virtual environment

and offers realistic simulation with its physics engine [43].

It has been selected as the official simulator of the DARPA Robotics

Challenge7 in the US. It is a very popular simulator in robotics because

of its high performance, even though it is open source.

Moreover, Gazebo is developed and distributed by Open Robotics,

which controls ROS and its community, so it is very compatible with

ROS. The following are the characteristics of the Gazebo.

• Dynamics Simulation: Only ODE(Open Dynamics Engine) was
supported in the early development days. However, since version

3.0, various physical engines such as Bullet, Simbody, and DART

have been used to meet the needs of multiple users.

• 3D Graphics: Gazebo uses OGRE(Open-source Graphics
Rendering Engines), which is often used in games; not only the

robot model but also the light, shadow, and texture can be

realistically drawn on the screen.

• Sensors and Noise Simulation: Laser range finder (LRF), 2D/3D
camera, depth camera, contact sensor, force-torque sensor and

much more are supported, and noise can be applied to the sensor

data like the actual environment.

• Plug-ins: APIs enable users to create robots, sensors, and

environment control as a plug-in.

• Robot Model: PR2, Pioneer2 DX, iRobot Create, and TurtleBot are

already supported in the form of SDF, a Gazebo model file, and

users can add their robots with an SDF file.

• TCP/IP Data Transmission: The simulation can be run on a
remote server, and Google’s Protobufs, a socket-based message

passing, is used.

• Cloud Simulation: Gazebo provides cloud simulation CloudSim

environment for use in cloud environments such as Amazon,

Softlayer, and OpenStack.

• Command Line Tool: GUI and CUI tools are supported to verify

and control the simulation status.

The word created with Gazebo

in simulation in this work is
based on the already defined

space, empty_word, where
then obstacles are placed

randomly, as shown in Figure
84. It is not needed in a

complex environment

because the robot’s goal is to
navigate from goal to goal

avoiding obstacles if present in outdoor environments. More complex
scenarios can be used in future work, like the scenarios available in

[43]. An example is reported in Figure 85.

Other than that, Gazebo has a relevant part in the development of the

URDF file of the robot; indeed, thanks to the several plugins available

simulated sensors and actuators can be added to simulate the actual
behaviour (including the noise present), making available also the

message exchanged.

Going deeper, the actuator and sensor used are presented:

• Differential Drive: it simulates the actuator of the wheels, making

them rotate proportionally with the ROS message published.

• IMU sensor (GazeboRosImuSensor): simulates an Inertial Motion

Unit sensor.

• GazeboRosMagnetic: This plugin simulates a 3-axis

magnetometer

Figure 84 - Gazebo Empty World

Figure 85 - Gazebo complex scenario [43]

• GazeboRosGps: GazeboRosGps simulates a GNSS (Global

Navigation Satellite System) receiver which is attached to a
robot. It publishes sensor_msgs/NavSatFix messages with the

robot's position and altitude in WGS84 coordinates, together with
the IMU sensor and the magnetometer, to simulate the presence

of the DURO in the real robot.

• VLP16: is the digital twin of the LiDAR present on the robot. It is

available in the package velodyne in the ROS Community [32]

together with different types of LiDAR; a difference from the
previous component is that this one is presented as a xacro file

that can be added to the robot.

Section 6.2 Creation and Configuration of the URDF file

In this section, there will be a presentation on how a URDF file and the

central concept are related, while the model of the tractor with be

shown. The book [44] is used as a reference for the first part.

Subsection 6.2.1 URDF file

The Unified Robot Description Format
(URDF) is an XML specification used in the

Robot Operating System (ROS) to describe
the properties of a robot, including its

kinematics, dynamics, visual

representation, and collision model. This
standardised format provides a way to

represent a robot's geometry, joints,

sensors, and other attributes.

A URDF file consists of a set of link elements
and joint elements that define the robot’s

structure.

The link element describes a rigid body with

mass, visual features, and collision
properties; specified as <inertial>,

<visual>, and <collision>.

Figure 86 - General URDF tree

The <inertial> element provides information about the mass, centre of

mass and moments of inertia of the link. It includes sub-elements like
<origin> to define the position and orientation of the link's centre of

mass frame relative to its frame. The <visual> element describes the
visual representation of the link

using shapes such as boxes,
cylinders, spheres, or meshes. It

also allows for specifying

materials and textures for
visualisation. The <collision>

element defines the collision
properties of the link, which may

differ from its visual
representation for efficiency

purposes.

The joint element describes the kinematics and dynamics of the joint

connecting two links. It includes features such as <origin> to specify
the transform from the parent link to the

child link, <axis> to define the axis of
rotation or translation for the joint, and

<limit> to set the joint limits for position,
velocity, and effort. The type of joint can be

revolute, prismatic, fixed, floating, or planar,

each with its specific characteristics.

Additional elements such as <calibration>,

<dynamics>, <mimic>, and
<safety_controller> can be used to provide

further details about joint properties, such as
calibration reference positions, physical

dynamics parameters, mimic relationships with other joints, and safety

limits.

Subsection 6.2.2 XACRO file

For the tractor URDF model, a XACRO file is used. XACRO is an

extension of the URDF used in ROS for describing the properties of a
robot. It provides a more flexible and modular way to define robot

models using macros and parameters and includes them within the XML

structure.

XACRO files are typically pre-processed to generate valid URDF files

before being used. The XACRO format enhances the reusability and

maintainability of robot descriptions by introducing several features:

Figure 87 - Link representation

Figure 88 - Joint representation

• Macros: XACRO allows the definition of macros, which are

reusable XML snippets used to generate repetitive structures or
components within the robot model. Macros enable code

modularity and reduce duplication by encapsulating commonly

used elements.

• Parameters: XACRO supports using parameters, which can be
assigned values and utilised within the XACRO file. Parameters

provide flexibility to define robot properties dynamically, making

it easier to customise and configure robot models for different

scenarios.

• Includes: XACRO allows the inclusion of other XACRO or URDF
files, enabling the composition of complex robot models from

multiple modular components. Includes facilitates code
organisation and promotes code reuse by splitting the robot

description into smaller, manageable files.

Resuming XACRO simplifies creating and maintaining robot

descriptions. It enhances the readability, flexibility, and modularity of
the URDF files, making it easier to manage large and complex robot

models.

Subsection 6.2.3 Tractor URDF

Since the need to use a model with a similar size to the real tractor is

crucial above all for the simulation part, a URDF file is built.

During the construction, different choices were taken to obtain a
collision element similar to the real one and simultaneously respect all

the physical laws in Gazebo. In particular, the robot’s size and weight
required specific attention to the vehicle’s inertia; in this case,

homogeneous components were supposed.

Then since the robot is a two differential robot, two motion wheels are

imposed, visualising them in the back but placing really in the middle

to be congruent with the inertia chosen.

In the above part, the evolution of the robot URDF file is shown:

Figure 89 - Robot first version

Figure 90 - Robot second version

Figure 91 - Robot final version

As it is possible to see, firstly, the actual dimensions were applied, and

then the mesh component was used to make the visual part more

similar.

Section 6.3 Simulation result

In robotic applications, the

simulation part is essential since

it allows fast debugging and
speeds up the developing

process; in the thesis
applications, it takes greater

importance due to the danger
given by the size and the

strength of the machine tested
in undesired behaviours. For

this reason, all the field tests
are preceded by a simulation

part.

The simulation also allows us to

test critical situations that are
challenging to reproduce in the

field.

For this reason, two experiments are done: the first with more than
one obstacle in a single path; this is done two times with different

configurations to see the algorithm’s efficiency. The second one,
instead, will analyse the performance of doing a triangular path with

different obstacles in the path.

The navigation simulation without obstacles is not shown because since

we choose to put minimal values for the sensor’s noise, all the results
have excellent results, making it difficult to compare. An example is

Figure 92, in which the Vector Field algorithm achieves a precision of

0.01 m to reach the goal.

The reason not to have noise was because the aim was to check the
correctness of the algorithm. As regards the noise problem is analysed

directly on the field test.

Figure 92 - Vector Field Simulation (Goal radius 0.01m)

Subsection 6.3.1 Three Obstacles in the Path (right way)

As presented in the

chapter's introduction, the
first experiment is to use

the two algorithms in a

single path with more than
one obstacle. In both

cases, the robot could
reach the goal safely;

further details are provided

nextly.

6.3.1.1 A* algorithm with non-linear controller (right way)

The results of the first simulation are reported in this part.

First, the path computed

by the A* algorithm is

shown in Figure 94. As it
is possible to notice, this

path is filtered by the
round_edges described

in Chapter 5, which
allows removing the

‘stairs’ aspect given by
the discretisation of the

map.

Secondly, the map obtained at the

end of the simulation is reported in
Figure 95. As it is possible to see, the

two obstacles on the right are fused
in just one due to their nearness.

Despite that, the final path makes a

good trajectory for the robot.

Finally, the real trajectory done by

the robot during the simulation is

shown in Figure 96.

The simulation is good overall since

no problems are present.

Figure 93 - Three obstacles in the path, right way optimal path

Figure 94 - Reference path, A* algorithm (right way)

Figure 95 - Occupancy Grid Map, A* algorithm (right
way)

6.3.1.2 Vector Field Algorithm (right way)

The results of the second
simulation are reported in this

part.

A reference path is not shown in

this case since it is not

computed.

So the map obtained at the end
of the simulation is reported in

Figure 98.

Figure 96 - Path done, A* algorithm (right way)

Figure 98 - Occupancy Grid Map, Vector Field algorithm
(right way)

Figure 97 - Simulation instant, A* algorithm (right way)

Finally, the

path done
by the

robot in the
simulation

is shown in

Figure 99;
the only

observation that can be done in this case is the explanation of the
oscillation behaviour; this is due to the angle of rotation used for the

obstacle, as explained in Chapter 5. Despite that, the field test does

not show this behaviour thanks to the absolute precision (worse).

Figure 99 - Path done, Vector Field algorithm (right way)

Figure 100 - Simulation instant, Vector Field algorithm (right way)

Subsection 6.3.2 Three obstacles in the path (left way)

This is the second part of

the first test, in which the
optimal path is in the

opposite direction of the

first one.

Also, in this case, both

solutions were successful.
Indeed the robot reached

the goal safely; further details are provided next.

6.3.2.1 A* algorithm with non-linear controller (left way)

The results of the A*

algorithm are reported in

this part.

To begin, Figure 102 shows

the path computed from

the A* algorithm.

Also in this case, it is
filtered by the round_edges

described in Chapter 5.

The figure shows the map gained at the end of the simulation, while

the real path is shown in

Figure 103.

Also in this case, the
results of the simulation

are positive.

Figure 101 - Three obstacles in the path, left way optimal path

Figure 102 - Reference path, A* algorithm (left way)

Figure 103 - Occupancy Grid Map, A* algorithm (left way)

Figure 104 - Path done, A* algorithm (left way)

Figure 105 - Simulation instant, A* algorithm (left way)

6.3.2.2 Vector Field Algorithm (left way)

As for the Vector Field test, no

reference paths are computed, but

it is essential to notice that since
the vector field of the obstacle is

constantly rotating counter-
clockwise, the robot takes a longer

path to avoid the obstacle (going to
the right side), as shown in Figure

107.

Figure 106 - Occupancy Grid Map, Vector Field
algorithm (left way)

Figure 107 - Path done, Vector Field algorithm (left way)

Figure 108 - Simulation instant, Vector Field algorithm (left way)

Subsection 6.3.3 Complex environment

The second experiment aims to

simulate the robot’s behaviour
in a complex scenario where

more than one obstacle (four in

the simulation) are placed on
the map. The environment is

shown in Figure 109.

The goals to be reached are

shown in Table 7.

Point X Y

A 15.0 -15.0

B 15.0 15.0

C 0.0 0.0

Table 7 - Complex environment simulation path

6.3.3.1 A* algorithm with non-linear controller (complex test)

The first result shown is about the path done

by the robot using the A* algorithm. As
shown in Figure 111, the robot can reach all

the goals by avoiding obstacles in the path.

No particular observation must be done.

Finally, the map at the end of the simulation

is shown in Figure. In this case, it is possible
to see that the adaptative_clustering

algorithm detects obstacles in
the wrong position during

navigation. The A* does not suffer from this problem, but a better

Figure 109 - Complex environment test

Figure 110 - Occupancy Grid Map, A* algorithm (complex test)

tuning of the map’s parameters can be done to ensure that false

detections are deleted in a shorter time.

Figure 111 - Path done, A* algorithm (complex environment)

Figure 112 - Simulation instant, A* algorithm (complex environment)

6.3.2.2 Vector Field Algorithm (complex environment)

This simulation shows some problems

with its algorithm. Indeed the wrong

localisation of the obstacle in the map
creates a particular vector field that

makes the robot go back, starting a
cycle trajectory as shown in Figure

114. Thanks to the map dynamic, as
soon as these false detections are

deleted, the robot avoids them and

reaches the goal.

Figure 113 - Occupancy Grid Map, Vector Field algorithm (complex test)

Figure 114 - Path done, Vector Field algorithm (complex environment)

Figure 115 - Simulation instant, Vector Field algorithm (complex environment)

Chapter 7 Results and Analysis

In this chapter, the results of the navigation are shown. The first test

is related to the ability to make a square. The second test wants to
observe the navigation of the two more updated algorithms during a

longer path; the third is instead related to avoiding an obstacle in the

path.

Section 7.1 GUI

To begin, Figure 116 shows the GUI (Graphical User Interface) created

to have real-time information during the test. Figure 116 shows the

use of it in a simulation environment, but its application was crucial
during the test to have a precise idea of where the robot was on the

map and which were the actual values of velocity; it also shows if a

person is detected using colouring by red the fourth bar.

Figure 116 - GUI

Section 7.2 Square navigation

The first test proposed is about the precision of performing a squares

path; for this purpose, the coordinates sent to the robot were:

Point X Y

A 8.0 0.0

B 8.0 8.0

C 0.0 8.0

D 0.0 0.0

Table 8 - First test path

To obtain a good comparison, all the tests are done by aligning initially

to the east (x-axis) the robot and imposing its actual position as zero
(in the map, the initial position will be around 1 meter above since

there is a transformation between the GPS position and the centre of
the robot); in this way, they all will start without the alignment step.

Furthermore, the same filters are used for all (Average for the

magnetometer, EKF for the position), and all are done with a full signal

of GPS+RTK. The final result a shown in Figure 117.

So for each test, the distance from the reference line is computed to

get performance indices like the mean error, the maximum error and

the variance. The result is shown below, Figure 118.

Figure 117 - Trajectory of each algorithm

As it is possible to see, the algorithm with the highest performance is
the Vector Field controller, but all the controllers have a precision of

around 20 cm.

It is worth noting that only the two most minor proposals can be utilised

in a condition of the path with obstacles.

Section 7.3 Multipath

For the last two codes, the ones able to avoid possible obstacles,

another test about navigation is performed. In this case, the robot
must follow a more complex path similar to a working one. Also in this

case indices of performance are computed.

The Vector Field trajectory is shown below, Figure 119:

Figure 119 - Vector Field Multipath

Figure 118 - Performance indices

The same is done for the non-linear controller, Figure 120:

Finally, the conclusive indices are shown in Figure 121:

It is worth noting that the performance collected must be used just as
indicators since better results can be achieved through a more precise

calibration of the value of the PIDs, only partially done for time reasons.

Figure 121 - Multipath result

Figure 120 - Non-linear controller Multipath

Section 7.4 Obstacle Avoidance

The last section relates to obstacle avoidance performance; as for the
previous ones, all the algorithms are tested in the same condition.

However, differently from before, no parameters are computed as

indicators. Instead, the graphs are used for this scope.

In both cases, the algorithms could make the robot avoid the obstacle

in reaching the goal. Both the trajectory computed will match the map

of the field obtained at the end of the test.

Furthermore, unlike the simulation, only one obstacle was on the path
for two reasons: the difficulty of building obstacles for the machine in

the exam and the relatively small space to do the tests.

The result of the vector field is shown below in Figure 122.

Figure 122 - Vector Field Real test

Figure 123 - Vector Field Real test Occupancy grid map

The same is done for the non-linear controller in which the path is

computed thanks to the A* algorithm, Figure 124.

The results show that both complete the task successfully, even though
better results can be achieved by improving the parameters chosen. In

particular, as regards the A* algorithm, the weights in the eucharistic
function can be tuned better to achieve a faster return to the reference

path; despite that, it maintains an advantage concerning the vector
field since it computes the optimised path while the Vector Field always

creates a counter-clockwise vector field, making the path longer in

some situations.

Figure 124 - A* algorithm Real test

Figure 125 - A* algorithm Real test reference path
Figure 126 - A* algorithm Real test Occupancy
grid map

To conclude, images from the obstacles avoidance test are reported in

Figure 127:

Figure 127 - Obstacle avoidance instants

Chapter 8 Conclusion and Future Directions

This work wants to show an overview of all the aspects related to the

development of a UGV, going deeper into the motion aspects. Indeed
after the first part, needed to have a base knowledge about how

navigation is done and what ROS is, an analysis of the sensors and the

methodology used is done.

Then the work moves to the motion part showing different algorithms
for motion control and finally proposing two solutions to make the robot

navigate autonomously, avoiding obstacles.

All the different solutions are followed by data collected during the test,

making available comparisons.

As regards future development, different aspects can be highlighted.

Firstly work can be done to increase the performance of the other
sensors, fusing them to increase the precision and reliability of the

system. In this process, a first start should be using the FLIR during
navigation to use LIDAR and the cameras better to perceive the world

and the robot's localisation.

Regarding the navigation, improving the A* algorithm to a Lite version

will make the computational process faster, increasing the velocity of

computation of the new path.

Finally, a study about the tool must be done to detect its position,
remove the sensor noise produced by its activation and understand

how and when the vegetation is cut.

Bibliography

[1] Raj, R., & Kos, A. (2022). A Comprehensive Study of Mobile Robot:

History, Developments, Applications, and Future Research
Perspectives. Applied Sciences, 12(14), 6951.

https://doi.org/10.3390/app12146951

[2] https://www.eea.europa.eu/ims/forest-fires-in-europe

[3] https://www.wri.org/insights/global-trends-forest-fires

[4] https://en.wikipedia.org/wiki/Unmanned_ground_vehicle

[5]
https://emanual.robotis.com/docs/en/platform/turtlebot3/features/#s

pecifications

[6] https://clearpathrobotics.com/husky-unmanned-ground-vehicle-

robot/

[7] https://robo-team.com/products/probot/#s-1

[8] https://www.mdbsrl.com/prodotto/lv-600-pro/8/#home

[9] L. Schulze and A. Wullner, "The Approach of Automated Guided
Vehicle Systems," 2006 IEEE International Conference on Service

Operations and Logistics, and Informatics, Shanghai, China, 2006, pp.

522-527, doi: 10.1109/SOLI.2006.328941.

[10] Karur, K., Sharma, N., Dharmatti, C., & Siegel, J. E. (2021). A
Survey of Path Planning Algorithms for Mobile Robots. Vehicles, 3(3),

448-468. https://doi.org/10.3390/vehicles3030027

[11] https://www.geeksforgeeks.org/videos/a-search-algorithm/

[12] McGuire, K., de Croon, G., & Tuyls, K. (2019). A comparative study
of bug algorithms for robot navigation. Robotics and Autonomous

Systems, 121, 103261. https://doi.org/10.1016/j.robot.2019.103261

[13] Kitts, C., Mahacek, P., Adamek, T., Rasal, K., Howard, V., Li, S.,
Badaoui, A., Kirkwood, W., Wheat, G., & Hulme, S. (2012). Field

operation of a robotic small waterplane area twin hull boat for shallow-
water bathymetric characterization. Journal of Field Robotics, 29(6),

924-938. https://doi.org/10.1002/rob.21427

[14] D. R. Nelson, D. B. Barber, T. W. McLain and R. W. Beard, "Vector

field path following for small unmanned air vehicles," 2006 American
Control Conference, Minneapolis, MN, USA, 2006, pp. 7 pp.-, doi:

10.1109/ACC.2006.1657648.

[15] Vector Field UAV Guidance for Path Following and Obstacle

Avoidance with Minimal Deviation, Jay P. Wilhelm and Garrett Clem,

Journal of Guidance, Control, and Dynamics 2019 42:8, 1848-1856

[16] http://wiki.ros.org/ROS/Introduction

[17] https://store.arduino.cc/products/arduino-mega-2560-rev3

[18] http://wiki.ros.org/rosserial

[19] https://www.nvidia.com/en-us/autonomous-

machines/embedded-systems/jetson-xavier-nx/

[20]
https://www.swiftnav.com/sites/default/files/duro_product_summary.

pdf

[21] https://github.com/szenergy/duro_gps_driver

[22] https://github.com/CCNYRoboticsLab/imu_tools

[23] Valenti, R. G., Dryanovski, I., & Xiao, J. (2015). Keeping a Good
Attitude: A Quaternion-Based Orientation Filter for IMUs and MARGs.

Sensors, 15(8), 19302-19330. https://doi.org/10.3390/s150819302

[24] Kuncar, A., Sysel, M., Urbanek, T. (2016). Calibration of Triaxial

Accelerometer and Triaxial Magnetometer for Tilt Compensated
Electronic Compass. In: Silhavy, R., Senkerik, R., Oplatkova, Z.,

Silhavy, P., Prokopova, Z. (eds) Automation Control Theory
Perspectives in Intelligent Systems. CSOC 2016. Advances in

Intelligent Systems and Computing, vol 466. Springer, Cham.

[25] Pang, H., Li, J., Chen, D., Pan, M., Luo, S., Zhang, Q., & Luo, F.

(2013). Calibration of three-axis fluxgate magnetometers with
nonlinear least square method. Measurement, 46(4), 1600-1606.

https://doi.org/10.1016/j.measurement.2012.11.001

[26] Mateos, I., Ramos-Castro, J., & Lobo, A. (2015). Low-frequency
noise characterization of a magnetic field monitoring system using an

anisotropic magnetoresistance. Sensors and Actuators A: Physical,

235, 57-63. https://doi.org/10.1016/j.sna.2015.09.021

[27] https://codemonk.in/blog/moving-average-filter/

[28] https://www.samproell.io/posts/yarppg/yarppg-live-digital-filter/

[29] http://wiki.ros.org/robot_pose_ekf

[30] Moore, T., Stouch, D. (2016). A Generalized Extended Kalman

Filter Implementation for the Robot Operating System. In: Menegatti,
E., Michael, N., Berns, K., Yamaguchi, H. (eds) Intelligent Autonomous

Systems 13. Advances in Intelligent Systems and Computing, vol 302.

Springer, Cham. https://doi.org/10.1007/978-3-319-08338-4_25

[31] https://velodynelidar.com/products/puck/#downloads

[32] http://wiki.ros.org/velodyne

[33] https://github.com/yzrobot/adaptive_clustering

[34] Yan, Z., Duckett, T. & Bellotto, N. Online learning for 3D LiDAR-

based human detection: experimental analysis of point cloud clustering
and classification methods. Auton Robot 44, 147–164 (2020).

https://doi.org/10.1007/s10514-019-09883-y

[35] https://www.intelrealsense.com/depth-camera-d435/

[36] Horvat, Marko & Jelečević, Ljudevit & Gledec, Gordan. (2022). A
comparative study of YOLOv5 models performance for image

localization and classification.

[37] Xu, Renjie & Lin, Haifeng & Lu, Kangjie & Cao, Lin & Liu, Yunfei.
(2021). A Forest Fire Detection System Based on Ensemble Learning.

Forests. 12. 217. 10.3390/f12020217.

[38] https://github.com/ultralytics/yolov5

[39] https://www.flir.com/products/adk/

[40] https://en.wikipedia.org/wiki/Bang%E2%80%93bang_control#

[41] https://en.wikipedia.org/wiki/PID_controller

[42] F. M. Noori, D. Portugal, R. P. Rocha and M. S. Couceiro, "On 3D

simulators for multi-robot systems in ROS: MORSE or Gazebo?," 2017
IEEE International Symposium on Safety, Security and Rescue Robotics

(SSRR), Shanghai, China, 2017, pp. 19-24, doi:

10.1109/SSRR.2017.8088134.

[43]
https://github.com/leonhartyao/gazebo_models_worlds_collection/blo

b/master

[44] http://wiki.ros.org/Books/ROS_Robot_Programming_English

