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Summary

The automated and optimized configuration of secure communications inside net-
works is an indispensable necessity. The transmitted data must be protected to
guarantee confidentiality, integrity, and availability. From this point of view, VPNs
allow the configuration of secure channels between hosts, even over untrusted net-
works such as the Internet. However, the introduction of virtual systems based
on virtualization significantly changes networks, which have become more dynamic
and flexible, but also more complex to configure. Therefore, operations require spe-
cialized skills and knowledge of the network and the functions to be implemented,
which cannot be managed entirely by humans. One possible solution is to make
such operations automatic through a policy-based model.

This thesis contributes to the development of one of these automated approaches,
called VEREFOO (VErified REFinement and Optimized Orchestration). From
user-specified security requirements, this framework has the ability to automatically
generate an optimal network configuration. Full automation, formal correctness,
and optimization are the main principles that need to be fulfilled. Full automation is
achieved because the final network configuration, except for input specification, can
be obtained without human intervention. Formal correctness is ensured by solving
the MaxSMT problem, which generates a correct solution through hard constraints
without requiring a-posteriori verification. Optimization can be reached by solving
soft constraints. This thesis is based on this approach to evaluate the performance
of the framework for configuring secure communications using VPNs.

In particular, a generator is proposed that can create a complex and branched
network structure, in which different types of nodes can be inserted. This gener-
ator allows the evaluation of the framework’s performance in the optimal alloca-
tion and configuration of a minimum number of VPN gateways to enable secure
communications and traffic protection. Tests are conducted by increasing the size
and considering different scenarios to assess the impact of different parameters.
The results demonstrate the framework’s ability to correctly configure and allo-
cate security functions, even in the presence of a large number of input security
requirements. Performance is evaluated according to the execution time taken to
find the optimal and correct solution. To achieve the results, two different models,
Atomic Flows and Maximal Flows, are used to evaluate which one offered greater
advantages when subject to the same conditions.
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Chapter 1

Introduction

1.1 Thesis introduction

One of the major challenges in networks is to implement systems capable of con-
figuring secure communications between hosts, even on unreliable networks such as
the Internet. This means that any data transmitted needs to preserve the properties
of confidentiality, availability, and integrity. To create secure channels within un-
trusted networks, one available technology is the Virtual Private Network (VPN),
which applies security mechanisms such as encryption, MAC computation, and dig-
ital signature to make data unreadable to third parties and verify the authenticity
and integrity of received traffic.

Nowadays, for secure communications, the evolution of the modern network due
to virtualization should be considered. New paradigms such as Network Functions
Virtualization (NFV), Software-Defined Networking (SDN), and Service Function
Chaining (SFC) improve network implementation and management, moving away
from traditional system approaches. In particular, NFV transforms network func-
tions into software applications that can now be allocated and executed on generic
hardware. SDN separates the network control logic from the underlying devices,
enabling centralized and programmable network management of the network itself.
With SFC, virtual functions can be combined into a service chain to provide a
customizable end-to-end system.

However, while networks are more dynamic and flexible thanks to virtualiza-
tion, their complexity and size increase. This makes their configuration and security
functions a non-trivial problem, especially when performed by human beings. For
the protection of communication, specific virtual security functions need to be con-
figured. This configuration requires specific skills and is not a trivial task, especially
if done manually. The administrator in charge must have a high level of knowledge
about the network and the functions to be implemented, in order to avoid anoma-
lies or malfunctions. According to the Verizon report, in just the first months of
2023, 74% of breaches are due to the human element, including social engineering
attacks, errors, or improper use.

In light of these considerations, it becomes essential to implement tools capable
of automating operations within a network. Several studies have been conducted
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Introduction

with the aim of implementing automated models to reduce human intervention in
the configuration of security functions within virtualized networks. These models
introduce benefits in the implementation of security systems and are used in various
sectors, including SDN switches [2], and Smart Homes [3].

One of the frameworks that address these needs is VEREFOO (VErified RE-
Finement and Optimized Orchestration), which automatically allocates and con-
figures network functions with policy-based management. In this case, the user
has only the task to define security requirements to be applied to the network.
VEREFOO, with an input that includes the logical topology of the network and
the security requirements defined by the user, generates an optimized and correct
final solution using an approach based on a partial weighted Maximum Satisfiability
Modulo Theories (MaxSMT) resolution.

VEREFOO has already achieved excellent success in the literature. The works
[4][5][6] provide a general overview of the framework for the proper implementation
of policy-based security within virtual networks. Other studies analyze the model
with specific security functions, including packet filter [7][8][9], demonstrating its
effectiveness and paving the way for potential improvements in intermediate stages
[10] and policy conflicts [11][12].

Based on these studies, the aim of this thesis work is to evaluate VEREFOO
to enable secure communication between two nodes within the network, focusing
specifically on the use of Virtual Private Networks (VPNs). Some work has already
been developed in this direction [13], but in this case, the behavior and effectiveness
of the framework are evaluated concerning the variation of specific parameters
present in the structure.

1.2 Thesis description

The rest of the thesis is divided into the following chapters:

• Chapter 2: it provides an overview of the context in which the work is
situated. It describes the fundamental paradigms that emerge in virtualized
networks, such as NFV, SDN, and SFC, focusing in particular on virtual
network functions and their implementation in security. It also examines the
benefits of automating network functions over their manual configuration.

• Chapter 3: it focuses on the general functioning of the VEREFOO frame-
work. It analyzes the framework’s inputs and outputs, MaxSMT resolution,
and the process of VPN allocation and configuration. In addition, the two
models used for testing, Atomic Flows and Maximal Flows, are discussed.

• Chapter 4: it explains the objective of the thesis.

• Chapter 5: it provides a detailed description of the proposed network gen-
erator in the thesis, which has been implemented to create a complex and
realistic network. This chapter describes the different types of nodes that can
compose a network and how they are integrated within VEREFOO. The logic
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Introduction

used to connect these nodes is also outlined, along with a description of how
the generator is integrated with the framework.

• Chapter 6: it presents the tests conducted on the framework and the cor-
responding results achieved. For each test, the results obtained with the two
models, Atomic Flows and Maximal Flows, are shown in order to compare
which one is more advantageous given the same conditions.

• Chapter 7: conclusions.

• Appendix A: it shows how the generator is configured to conduct the tests.
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Chapter 2

Virtualized Networks

This chapter provides a general overview of the concept of virtualization, which is
an important solution to the problems of complexity and flexibility of traditional
networks. This technology uses software implementations to create virtual networks
that simulate the functionality of a physical network, simplifying management and
configuration and improving overall flexibility and efficiency. This means that each
network function is implemented as a software application instead of using dedicated
hardware devices. This concept has given origin to new networking paradigms such
as NFV (Network Functions Virtualisation), SDN (Software-Defined Networking),
and SFC (Service Function Chaining), which will be presented in the following sec-
tion. For each paradigm, the general concepts with their advantages and limitations
will be explained.

The second part of the chapter will analyze the structure of these software ap-
plications, called Virtual Network Functions (VNF). Special emphasis will be on
the virtual functions responsible for the security of systems, the Virtual Network
Security Functions (VNSF). Finally, the importance of configuring these network se-
curity functions automatically, rather than manually, will be explained. This helps
to ensure system stability and avoid possible human errors due to the complexity
of networks.

2.1 Virtualization Paradigms

2.1.1 Network Functions Virtualization (NFV)

Network Functions Virtualization (NFV)[14] [15] introduces an important change
in network implementation by separating network functions from dedicated hard-
ware and turning them into software applications, called Virtual Network Functions
(VNFs). In this way, a particular service can be broken down into a collection
of VNFs, which can be implemented using software running on one or multiple
industry-standard physical servers. This allows to perform multiple network func-
tions on a single physical device, without requiring the purchase and the installation
of dedicated hardware.
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Figure 2.1. Differences between traditional network appliances and the
NFV-based approach

NFV uses a software abstraction layer, called a hypervisor, to create multiple
virtual machines (VMs) on a single physical device[16]. These VMs host the dif-
ferent NFVs, which perform the same network functions as traditional hardware.
For example, routing, load balancing and security functions can be implemented
and executed on a single virtual machine without the need of additional hardware
devices.

The ETSI standards have defined a reference architecture for NFV composed
of three main components. The first is the Virtualized Network Function (VNF),
which represents the actual virtual network function. The second is the Network
Function Virtualization Infrastructure (NFVI)[17], where the specific VNFs are al-
located, executed and managed. This architecture includes all the elements required
to support the virtual environment. Finally, there is the NFV Management and Or-
chestration (NFV-MANO)[18], responsible for the administration of infrastructure
resources and virtualized functions.

The changes described above introduces many benefits, including:

1. Cost-effectiveness: virtual network functions run on a standard server con-
trolled by a hypervisor, which is more cost-effective than purchasing dedi-
cated and proprietary devices. In addition, using a single device for multiple
network functions further reduces hardware costs and lowers operating and
maintenance expenses.

2. Scalability: as needed, the number of VNFs can dynamically adapt to meet
requirements for CPU, memory, storage, and network. This maximizes avail-
able capacity and reduces energy consumption.

3. Reliability: in case of a hardware failure or network topology changes, VNFs
can be easily migrated from one server to another, maintaining constant ser-
vice availability. This ability to easily move a network function to another
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server increases flexibility as the provider can adapt the VNF to changing
demands, accelerating the deployment of services and applications.

4. On-demand service creation: thanks to virtualization, virtual devices can be
created only when they are needed, saving resources and reducing costs in
comparison to a physical device that would remain on, even if not in use.

5. Remote device update operations: if an update or replacement of a physical
system is needed, operations can be performed remotely in virtual environ-
ments without reaching the device itself where it is installed.

On one side, virtualization introduces several advantages that improve network
principles, while on the other side the potential risks of this technology have to be
evaluated. The main considerations concern security within virtual infrastructures.
Indeed, virtualization increases the complexity of the network and this can make
easier for attackers to discover vulnerabilities and new types of attacks. Moreover,
within a virtual function, it is more difficult to contain malware between virtual
components running on a virtual machine than between hardware devices which
may be isolated or physically separated. The hypervisor installed in the virtual
network is another point of weakness since an attacker could take control and have
full access to the system, running malicious programs without being detected by
the virtual machines. This type of attack is known as hyperjacking [19].

2.1.2 Software-Defined Networking (SDN)

Software-Defined Networking (SDN)[20] is a paradigm introduced to solve prob-
lems related to network configuration and management in traditional environments
and provides a software-based network architecture, which is fully programmable.
SDN breaks vertical integration by moving the network device control plane, which
handles traffic forwarding, from hardware to software, while the data plane, which
forwards traffic, remains in the dedicated hardware. With this separation of control
and data planes, network switches assume the role of simple forwarding entities,
while the centralized controller takes charge of executing the control logic, allowing
network administrators to manage and schedule the entire network from a cen-
tralized user interface without requiring additional hardware. This means that
decisions on data routing, network configuration, and security management are
taken by a centralized software control component that has a global view of the
structure.

SDN consists of three main components that may be located in different physical
locations or proximity (Figure 2.2).

• SDN controller (control layer): it is a central component that manages and
controls the entire network by receiving information from the switches and
sending them instructions on how to forward traffic.

• Networking devices (infrastructure layer): these are the physical devices that
forward traffic. They communicate with the SDN controller to get information
regarding how to route the packets.
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• Applications (application layer): they are programs that use the SDN con-
troller to manage the network. They can be used to implement features such
as security management, load balancing, and dynamic routing.

Figure 2.2. Simplified view of an SDN architecture

By separating the control logic from the physical infrastructure, administrators
can program and control the entire structure from one centralized point, the SDN
controller. This makes network configuration and management more flexible, and
scalable and allows an easier creation and introduction of new network abstractions.
Furthermore, as illustrated in Figure 2.2, well-defined interfaces are implemented
between the different layers to facilitate communication and control.

The adoption of SDN has significant advantages over traditional networking.
The SDN network provides higher control, increased speed, and greater flexibility.
Using a standard software-based controller, SDN allows administrators to control
the network, modify the configuration, allocate virtual resources, and increase ca-
pacity, thanks to a centralized user interface, without requiring additional hardware.
In terms of security[21], the greater global visibility and the ability to define se-
cure paths offered by SDN allows a more complete view of threats and intrusions.
However, centralizing network management in a single software-based controller
also presents risks to security and stability. If not adequately protected, the con-
troller can be a point of vulnerability. Furthermore, since SDN allows a fully
programmable network configuration, the number of bugs or vulnerabilities may
increase, compromising the stability of the system. For this reason, it is important
to implement robust security measures to maintain the system secure and reliable.
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The implementation of SDN is increasingly popular in various sectors due to
its automation, programmability, and flexibility capabilities, which also lead to effi-
ciency and cost benefits. A concrete example of a successful large-scale implementa-
tion of SDN is the B4 architecture, the Global Software Defined WAN (SD-WAN)
developed by Google[22]. By exploiting the advantages offered by SDN, B4 has
achieved levels of scalability, fault tolerance, cost efficiency, and control that would
not have been possible with traditional network architectures.

In conclusion, SDN shares some features with NFV, but they are not dependent
on each other. Both rely on virtualization and network abstraction, but they use
different ways to separate functions and abstract resources. Despite this, NFV and
SDN can be combined in a single solution to achieve the best performance. SDN
provides NFV with the benefits of a programmable connection between virtualized
network functions, while NFV gives SDN the ability to implement network functions
through the software on standard generic servers. It is this coexistence between the
two paradigms that allow exploiting SDN technology to determine the sequence
of functions to direct traffic, creating what are known as Service Function Chains
(SFCs).

2.1.3 Service Function Chaining (SFC)

Service Function Chaining (SFC)[23] is a technology for creating an end-to-end
network service where traffic is processed through a series of Service Functions (SF).
These functions are concatenated in a predefined order specified by the network
administrator that meets the designer’s needs or user requirements.

The concept of Service Function Chain (SFC) was formally introduced in RFC
7665[24], providing a comprehensive definition. In the context of network archi-
tecture, an SFC is an ordered collection of abstract service functions, with specific
ordering constraints. Its purpose is to specify the sequential application of these
service functions to packets, frames, or flows that have been selected based on clas-
sification. For instance, consider an abstract service function such as a firewall.
It’s important to note that the ordering of service functions may not necessarily
follow a linear progression. The SFC architecture allows for branching SFCs, where
multiple paths are supported, and it also allows flexibility in the order of applying
service functions. In addition, the article defines a Service Function (SF) as a func-
tion that carries out specific actions on received network packets. It operates at
various layers of the protocol stack, such as the network layer or other OSI layers.
Service Functions can be implemented either virtually or integrated into physical
network elements. Moreover, a single network element has the capability to accom-
modate multiple service functions, and it is possible for multiple instances of the
same service function to coexist within the same administrative domain.

The SFC works by routing network packets to the first element of interconnected
service functions. Once the packet has been processed by this function, it is sent
to the next one. This process continues until the packet has been processed by all
the service functions in the chain.
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Figure 2.3. SFC example

Figure 2.3 is an example of how a SFC could be implemented in a corporate
network that receives traffic from the Internet:

1. Traffic is initially directed to a firewall that manages access to the network’s
resources and services.

2. The traffic allowed by the firewall is forwarded to a load balancing function,
which distributes the traffic to prevent overloading any server and ensure that
users can access all services.

3. After the traffic has been processed by the load balancing function, it is routed
to a Network Address Translation (NAT) function, which translates public
IP addresses into private ones.

4. Then, the traffic passes through an Intrusion Detection System (IDS), which
monitors the traffic for any potential security risks such as malware and cyber-
attacks.

5. Finally, the traffic is forwarded to the corporate servers where it is processed
to provide the services and resources requested by users.

This represents one of the many possible scenarios for implementing an SFC
architecture. An important aspect is that the company can decide the order in
which network functions are applied, depending on its needs. For example, it could
be decided to place an IDS immediately after the firewall to increase security. This
allows greater flexibility, but at the same time can create complexity problems
in finding the correct design to avoid inconsistencies or conflicts when there are
several subnets. To avoid possible anomalies that could potentially lead to errors or
unexpected network behavior, some solutions allow the requirements to be verified
before their implementation [25]. This preliminary verification process helps to
ensure that the network configuration is correct and in line with the established
specifications, reducing the risk of possible malfunctions.

In addition to complexity, other problems need to be considered [26]. Among
them, the topological dependency of service functions introduces several difficulties
when implemented at the hardware level, such as the need to follow a precise order
in the sequence of service functions. Moreover, it increases the complexity when

20



Virtualized Networks

functions are added or removed, requiring in some cases the change of physical
network topology. This can lead to inefficient use of network resources and limited
and slow flexibility in service delivery.

However, one possible solution is to combine SFC with the new NFV and SDN
networking paradigms. Integrating SFC with NFV enables the provision of cus-
tomized and dynamic network services by implementing network functions through
software instead of dedicated hardware. In this way, network functions can be
quickly configured and updated to satisfy the specific needs of network services
without having to configure or replace specialized hardware. On the other hand,
SFCs can be integrated with the SDN to provide centralized management of traffic
passing through a set of service functions. This is achieved by combining an SDN
controller, responsible for managing the traffic flow, with middleboxes that perform
specific functions. Integration with SDN allows SFCs to apply complex network
policies such as security, performance optimization, and quality of service (QoS)
for data packets.

In conclusion, SFCs are an essential technology for optimizing the management
of network traffic, providing greater accuracy, control, and security. With SFCs,
organizations can offer reliable, secure, and scalable services at an affordable cost,
as well as simplify the monitoring and maintenance of service functions by orga-
nizing them in a sequential chain. This is why it is a widely adopted solution by
organizations.

2.2 Virtual Network Functions (VNF)

Virtual Network Functions (VNFs) are software components designed to provide
network functions in a virtualized environment. This means that traditional net-
work functions, performed by dedicated and proprietary hardware, can now be
managed more efficiently and flexibly by this software running on standard de-
vices. Different types of VNFs can exist, e.g. those for security, such as firewalls,
intrusion detection and prevention systems (IDS/IPS), and VPNs, which offer pro-
tection against threats and intrusions, or those that manage traffic, such as load
balancers and virtual routers. Given the wide availability of functions, it becomes
crucial to evaluate the needs of a network and service to select the correct VNF.
However, one of the most critical aspects is the proper placement and configuration
of VNFs within the virtual network in order to have a reliable system. This is
achieved through the use of existing models and tools, which allow to perform this
task in a fully automatic and optimized way.

The internal architecture of a VNF is presented in Figure 2.4, in accordance
with the ETSI Industry Specification Group (ISG) standard[27]. The figure shows
that a VNF consists of software modules, running inside containers provided by the
virtualization layer, and well-defined interfaces with the orchestration, the NFVI,
its EM (Element Management), and other VNFs. The VNF runs on an NFVI
and is managed by a Virtualized Network Orchestrator (NFVO) and a Virtualized
Network Functions Manager (VNF Manager).
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Figure 2.4. VNF internal achitecture

As for software modules, VNF vendors can choose to design their software mod-
ules monolithically or by breaking them down into simpler components known as
VNF Components (VNFC), each mapped 1:1 to an interface to the NFVI infras-
tructure. The choice of the structure depends on performance, scalability, service
reliability, and security requirements.

As for VNF interfaces, there are several types with different functionalities:

• SWA-1 is a well-defined interface that enables communication between
different VNFs within the same or different network services, either through
the transmission of data or network function control signals.

• SWA-2 refers to interfaces internal to the VNF, i.e., for communication
between VNFC components. These interfaces are defined by the network
function providers and are usually not visible to VNF users. SWA-2
interfaces exploit the underlying communication mechanisms implemented
on the NFV infrastructure; however, other technologies can be exploited to
improve latency performance, such as channel-based communications or
shared-memory mechanisms. In the latter case, there may be security
concerns and it should be used only in controlled contexts.

• SWA-3 represents the management and control interface for virtualized
network functions, which is used for communication between the VNF
Manager, the orchestrator, and the VNF.

• SWA-4 is an interface used by the management system (EM) to
communicate with a VNF and is dedicated to the runtime management of
the VNF.

• SWA-5 represents an abstraction of the set of interfaces for communication
between specific VNFs and the underlying infrastructure (NFVI). This
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interface may change depending on the type of VNF and the services
required at the computation, memory, and network levels.

After defining VNFs, it is important to understand how this technology can be
used in modern networks. These virtual functions are designed to be integrated
with new network paradigms such as SDN, NFV and SFC to provide more effi-
cient, flexible and scalable solutions. Integrating VNFs with NFV, the benefits of
virtualization make the network more flexible and dynamic, where functions are
implemented as software applications. Inside the SDN architecture, on the other
hand, a VNF can be managed in a centralized manner, enabling a more efficient
and customized configuration of individual virtualized functions. This optimizes
the utilization of resources and reduces downtime, improving the overall quality of
service. Finally, using SFC technology, individual VNFs can be concatenated to
create an end-to-end system with a dynamic and customizable service flow that can
be adapted to the needs of modern networks.

2.2.1 Virtual Network Security Functions (VNSF)

To ensure security in a virtual environment, there is a specific type of VNF called
Virtual Network Security Functions (VNSFs). VNSFs consist of a set of functions
used to implement security measures and protect virtual networks from internal and
external threats such as network attacks, intrusions, malware, and data theft. Since
they operate in a virtual environment, VNSFs, like all VNFs, enjoy the benefits
of virtualization and the network paradigms (SDN, SFC, and NFV) with which
they can be integrated. The ability to manage and configure network functions in
a centralized manner simplifies the security management of virtual networks. This
makes security management more efficient and convenient, as configurations can be
changed and updated in real-time from a single location.

According to [28], security functions can be divided into four categories: attack
detection, prevention, deception, and mitigation. The first type includes technolo-
gies that monitor network traffic to identify anomalies. The second type, in addition
to detecting anomalies, implements preventive measures to block attacks. The third
category, deception attack, as proposed in the article, differs from prevention as its
purpose is to deceive or disorient the attacker, rather than simply blocking the
attack. This allows defenders to gather valuable information about the attacker’s
behavior and waste his resources. On the contrary, the category of attack mitiga-
tion tries to limit the impact of attacks through a combination of various functions
(including those from other categories) when complete prevention is not possible.

The following presents and explains some of the possible types of VNSFs that
can be used within a virtual network, depending on the requirements, and they fall
into one of the categories described above. Traditionally, most of these functions
would have been implemented on dedicated hardware to process network traffic
along the data path. Today, these functions are deployed as VNFs, which offer the
same functionality as dedicated physical devices but are implemented as software.
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Virtual Intrusion Detection System (IDS)

Virtual IDS is a security function for attack detection designed to monitor the
network for anomalous or potentially malicious behavior. If suspicious traffic is
detected, it issues an alert that notifies security managers to take further action.

Virtual Firewall

The virtual firewall is a prevention solution for the protection of a virtual net-
work from external threats, preventing intrusions and attacks. It performs controls
of incoming and outgoing connections and blocks unauthorized requests. In this
way, only traffic that meets predefined rules or user-configured settings is allowed.
Virtual firewalls can be cheaper and easier to manage than traditional physical
firewalls, especially when there are multiple virtual machines and large network
infrastructures. In addition, virtual firewalls can be more easily updated to meet
network requirements.

Virtual Intrusion Prevention System (IPS)

The Intrusion Prevention System (IPS) is a security system designed to prevent
intrusions or attacks within a network or system. Its operation is similar to that of
the IDS but includes the ability to immediately activate security measures to block
any malicious traffic before it can reach the protected network or system.

Virtual VPN Gateway

The Virtual VPN Gateway is an attack prevention software solution used to imple-
ment a Virtual Private Network (VPN) that creates a private and secure connection
between two private networks over a public network, such as the Internet. By using
security protocols like IPsec or SSL/TLS, the VPN Gateway ensures data encryp-
tion and protection against potential threats. The VPN Gateway is a critical solu-
tion for secure communications, and therefore it needs to be properly allocated and
configured. This thesis proposes a solution for this purpose, using the VEREFOO
framework.

Honeypot

A virtual Honeypot is a simulated environment designed to attract and detect
potential attackers and malicious activities. It acts as a decoy by intentionally
placing vulnerabilities to make attackers believe they have found a real system to
attack. In reality, it allows monitoring their activities, analyzing their methods,
and gathering information about their tactics and tools. This helps organizations
better understand and respond to cyber threats and improve their overall security
measures.

24



Virtualized Networks

Figure 2.5 shows some available VNSFs. For each topology, a brief description
and the use of this technology in networking is given.

Figure 2.5. Taxonomy of Security VNFs. [1]

Choosing VNSFs to protect a company’s virtual networks is an important pro-
cess that requires careful evaluation of needs, market options, and technical aspects
of different solutions. Firstly, the security objectives of the company and the specific
requirements of the virtual networks that need protection must be defined. This
could involve securing networks and systems against external intrusions, manag-
ing remote access to business services, or monitoring network traffic for suspicious
activities.

Then, various VNSFs security solutions available in the market can be explored,
considering their strengths and weaknesses. Once a suitable VNSF security solu-
tion has been chosen, it becomes essential to configure it correctly to ensure optimal
efficiency and protection. This involves defining security policies and configuration
rules while regularly testing the solution to identify any potential issues or vulner-
abilities.

2.2.2 Limitations of Manual Configuration

The softwarization of networks, made possible by the SDN and NFV paradigms,
simplifies network management operations and replaces physical middleboxes with
virtual functions. This enables the creation of flexible and scalable networks that
can adapt to the needs of users and applications.

In the past, the configuration of networks and VNSF was manually performed
by administrators in order to meet the necessary security requirements for network
users. For example, if an administrator wanted to block all traffic to a certain
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website, they would add the corresponding filtering rule to a firewall. If an attack
occurred, the behavior would be changed to prevent a possible repetition. This
approach worked only with small or static networks, where network accesses could
be easily known.

However, the increase in the varieties of virtual technologies available, which
are more complex than the previous physical middleboxes, and the growing num-
ber of possible solutions have an impact on the complexity and size of networks.
This makes it more difficult to find the best solution in terms of correctness and
optimization. In addition, the dynamism introduced by virtualization requires con-
tinuous reconfiguration of the security system due to the frequent changing of IP
addresses and ports of virtual services by NFV controllers [29].

These difficulties introduced by virtualization come on top of the common prob-
lems of configuring a network. One of these concerns communication between the
network administrator and the security manager, who often operate separately. A
lack of communication between them can lead to making trivial mistakes that can
compromise network security. In addition, the security manager may not always be
up-to-date on the latest cyber threats or the best protection solutions, increasing
the network’s vulnerability to external attacks. Another problem is the trial-and-
error approach to configuration, which often leads to complexity in configuration
files. This can make network management more difficult and increase troubleshoot-
ing time [30].

Not only configuration but also security orchestration is afflicted by problems
related to manual operations. For example, when there is a transition from one
network security state to another, the changes must be applied to the network as
quickly as possible and must be orchestrated to minimize the number of interme-
diate states in which security can be compromised.

To solve the problems described, automated tools are used to allocate and con-
figure virtual functions correctly and efficiently. Automation simplifies network
management, improves security, and reduces troubleshooting time. The use of
these tools reduces human errors and improves the overall quality of the network.
An further benefit is the reduction in the level of expertise or experience required
in network security, as management operations are automated and users only have
to deal with monitoring the tools that perform the operations.

In addition, automation allows the large size and heterogeneity of modern com-
puter networks to be managed more efficiently because of the comprehensive view
of the entire structure that automated tools provide. The heterogeneity of different
implementations of the same security function can be abstracted so that the auto-
mated system treats them as the same functionality, adapting the result produced
to the correct vendor-dependent commands only later. Moreover, it not only allows
a correct solution to be found and configured but also the optimal one in terms of
resource consumption.

In conclusion, the proper implementation and configuration of network functions
is a key step in ensuring data security and network business continuity. Automatic
configuration of network functions, with its many benefits, is the ideal solution to
achieve these goals. This is the path taken by many companies so as to minimize
the number of operations performed manually by human users. With automatic
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configuration, systems require only a few specific inputs from humans or other
systems to operate autonomously, reducing downtime and increasing the security
of corporate data.

27



Chapter 3

The VEREFOO Approach

The previous chapter shows how the constant evolution of computer systems made
virtualization an essential element for organizations due to its numerous advantages.
Consequently, the search for tools capable of providing and configuring reliable ser-
vices in an efficient and secure manner, with limited use of resources, has increased.
To address this challenge, it has been decided to develop policy-based configuration
tools that support operators in creating and configuring trusted security services
(Policy-Based Management [31]). These tools can verify and fulfill a set of input-
specified security requirements to achieve the intended goals. Automation of this
process is essential to minimize human error, as already highlighted in the previous
chapter. In addition to automation, two other crucial aspects are considered in the
development of these tools. The first, concerns the possibility of obtaining a cor-
rect solution by construction through formal verification, guaranteeing maximum
reliability and security of the systems. The second aspect, on the other hand, is the
need to search for an optimal solution that can allocate and configure all security
functions without conflict, minimizing the use of resources. In this way, reliable,
efficient, and sustainable security services are achieved.

This chapter illustrates the framework called VEREFOO (VErified REfinement
and Optimized Orchestration), which represents an approach to automate the cre-
ation of reliable security services, guaranteeing their formal correctness and opti-
mization. The VEREFOO approach is designed to be a general method that can
be applied to any type of NSFs. However, in this thesis, it is used for the automatic
configuration of VPNs for secure communications.

VEREFOO represents the first innovative methodology combining automation,
formal verification, and optimization for the allocation and configuration of Network
Security Functions in virtual networks. This approach is based on the policy-
based management paradigm, which requires the specification of network security
policies to describe the required security behavior in the virtual network. In this
way, VEREFOO ensures that user-specified security policies are satisfied during
the allocation and configuration of NSFs in the virtual network.

The general functioning of VEREFOO is schematized in Figure 3.1. The user
provides as input the Service Graph (SG) and a set of Network Security Require-
ments (NSR). VEREFOO processes the input data and uses a solver to generate
an optimal solution. If at least one solution is found, the engine generates a new
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SG enriched by the allocated NSFs and their configuration rules, which satisfy the
security policies specified by the user. Otherwise, a not-enforceability report is
generated to help the user fix the input and obtain a correct solution in the next
execution.

Figure 3.1. The VEREFOO Approach

3.1 Inputs and Outputs of the framework

3.1.1 Input: Service Graph and Allocation Graph

A Service Graph (SG) represents the logical topology of a virtual network, i.e. the
interconnection of service functions and network nodes that provide a complete end-
to-end network service. The service designer can leverage Network Functions (NF)
to create an SG that provides a reliable and high-performance network service to
users, whose access points are represented by the SG endpoints (e.g. clients, servers,
subnets).

Once the SG is created, VEREFOO processes it and generates the Allocation
Graph (AG), which represents the optimal virtual network topology for the security
requirements specified by the user. The AG is composed of placeholder elements
called Allocation Place (AP), placed between any pair of nodes or functions in
the network. In this location, VEREFOO may decide to insert an NSF to achieve
the optimal allocation scheme. However, a security service designer can force the
allocation of an NSF in a specific AP or forbid the use of specific APs, increasing
the flexibility of the proposed methodology.

This manual customization of the AG also reduces computation time, as it
decreases the solution space that the algorithm must search for solving the problem.
On the other hand, the user’s interaction with the AG configuration may lead to a
non-optimized solution or the impossibility to find one, as some acceptable - and
potentially optimal - solutions may be discarded based on the user’s input.
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3.1.2 Input: Network Security Requirements

VEREFOO also requires a set of Network Security Requirements (NSR), which
define the security criteria to be implemented in the network. These requirements
are specified by users using an intermediate-level language, which abstracts from
the specific characteristics of Network Security Functions (NSF) implementations
provided by different vendors. This language allows users to define security re-
quirements without requiring in-depth knowledge of network security, making the
VEREFOO approach accessible even to a network administrator with limited skills.

There are different types of security requirements that a user can define for a
network. This thesis focuses on the Communication Protection Policies (CPP) that
enable the creation of VPNs to ensure confidentiality, integrity and availability of
an information flow from a source to a destination. With the automated VERE-
FOO framework, it is possible to verify the correctness of user-defined protection
requirements in an effective and reliable manner.

3.1.3 Expected outcome

After receiving the SG and the CPP, the VEREFOO solver generates a Security Ser-
vice Graph (SSG), enriching the original SG with the appropriate allocated NSFs
and configuration rules for each security function, to satisfy the security policies
specified by the user. For example, if the user has defined a security policy for
specific traffic, the allocated security function will contain a rule to guarantee the
security of that specific communication. The allocation process aims to minimize
the number of NSFs required to enforce all input policies, thus reducing resource
consumption. Furthermore, the configuration of each allocated NSF is optimized
to use the minimum number of configured rules, reducing memory usage and opti-
mizing NSF performance.

3.2 MaxSMT problem formulation

The formally correct and optimal solution to the automatic NSF allocation and con-
figuration problem is achieved through the formulation and resolution of a weighted
partial MaxSMT problem, which is a generalization of the traditional SMT prob-
lem. This optimized formulation of the SMT problem distinguishes between two
sets of input constraints: “hard” and “soft” clauses. The “hard clauses” represent
the constraints that must always be satisfied to obtain a solution to the problem,
while the “soft clauses” have an assigned weight and their satisfaction is not strictly
necessary, but is subject to the optimization objective, which is to maximize the
sum of the weights of the satisfied clauses.

This formulation allows for an optimized correctness-by-construction approach,
where no further verification of the correctness or optimality of the solution is
required. The partial and weighted formulation of MaxSMT is fundamental to
achieve the three main objectives of the VEREFOO approach: full automation, op-
timization, and formal correctness. Full automation is possible because a MaxSMT
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problem can be solved without human intervention, except for input specifications.
Optimization is achieved by expressing optimization goals as “soft clauses”, while
formal correctness is ensured by representing correctness requirements as “hard
clauses”. The formal correctness-by-construction approach is advantageous because
it not only increases assurance and confidence in the correctness of the computed
solution but also avoids the need for a-posteriori formal verification. In fact, the
solution can already be considered formally correct as far as all problem compo-
nents are correctly modeled. Such models must capture all information that may
influence the correctness of the solution, including the security requirements and
forwarding behavior of the network in which the NSFs are to be applied. At the
same time, the number and complexity of constraints in the MaxSMT problem
must be limited to ensure the scalability of the approach. However, the adoption
of this approach represents an important step forward in solving the problem of
automatic allocation and configuration of NSFs, offering an optimal, correct, and
fully automated solution.[8]

For solving SMT and MaxSMT problems, there are highly efficient automatic
solvers, such as z3 [32], developed at Microsoft Research. This solver can automat-
ically check if a set of logical formulae called a set of constraints, has a satisfiable
solution. This means that z3 can determine if there is a combination of values that
satisfies all given constraints, with very good performance.

3.3 Traffic Flow Models

After illustrating the general aspects of the VEREFOO framework, it is important
to go deeper into the different network modelling approaches used to perform the
tests described in the Chapter 6.

These approaches are based on the concept of Traffic Flow, which represents a
flow of packets through the network. The traffic flow model describes how a certain
class of packets is forwarded and transformed by the various network functions
between a source node and a destination node. Analysing a flow of packets instead
of individual packets offers several advantages, as it allows for a simpler modeling
of network security functions and reduces the number of packets to consider. In
particular, these approaches aim to solve the problem of automated configuration
and correctness verification of security mechanisms defined within a virtual network.

In this thesis, two different approaches are used for the identification and com-
putation of flows. The first approach, called Atomic Flows, simplifies a class of
packets as much as possible by managing their atomic flows. The second model,
known as Maximal Flows, reduces the overall number of flows by aggregating mul-
tiple flows together.

Before describing the functioning of these two models, it is necessary to define
two fundamental concepts: the Predicate and the Traffic Flow, whose definitions
can be found in Article [9].

Definition 3.3.1 Predicate: A class of packets, also called traffic, is modeled as
a predicate defined over variables that represent some packet fields. In this way,
packets that do not differ in these fields are represented by the same class.
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There are various ways of representing a predicate, but in this study the ap-
proach introduced in [12] is adopted. According to this approach, a predicate is
composed of sub-predicates, each of which corresponds to a specific field of the pack-
age. The conjunction of these sub-predicates forms the complete predicate, which
is represented by a tuple. In the context of this study, predicates are modelled
by the IP quintuple, which includes the following fields: IP source, IP destination,
source port, destination port and protocol type. In addition, each sub-predicate
can represent a single value, a range of values or the entire range, indicated by the
wildcard ”*”. For example, a predicate may be represented by the following tuple
(10.0.0.5, 20.0.0.*, 8080, *, tcp). In this case, the IP address 10.0.0.1 indicates the
source, the IP addresses of the subnet 20.0.0.0/24 are the destination, the source
port is 8080, the destination port can take any value, and the protocol type is TCP.

Related to the predicate concept there is the Traffic Flow. As reported in [9]
and [12], a Traffic Flow represents a flow of packets that can cross the network.
This term describes how a class of packets can be forwarded or transformed by the
various nodes in the network that are between the source and destination of this
traffic. The definition of traffic flow is as follows:

Definition 3.3.2 Traffic flows: A Traffic Flow f ∈ F is formally modeled as a
list of alternating nodes and predicates, [ns, tsa, na, tab, nb,...,nk, tkd, nd].

In this representation, n indicates a node along the path, while txy is the traffic
generated by source node nx with destination node ny.

3.3.1 Atomic Flows

The Atomic Flows model is based on the idea of simplifying a class of packets as
much as possible by handling only atomic flows. This Atomic Predicate concept,
first presented in [33], allows a set of network predicates that are disjoint and mini-
mal (atomic) to be handled instead of all predicates being created. Each predicate
of the main set can be expressed as a disjunction of predicates of the atomic set.
In this way, each complex predicate is decomposed into a set of simpler atomic
predicates.

The operation of the model involves the initial creation of atomic predicates
relating to the user-defined policies as input. Subsequently, the selected atomic
predicates are used to compute the relevant Atomic Flows. An Atomic Flow rep-
resents a flow of packets in which every traffic within it is an atomic predicate.

Definition 3.3.3 Atomic Flows: A flow f=[ns, tsa, na, tab, nb,...,nk, tkd, nd] is
defined as atomic if each traffic tij is an atomic predicate.

The important feature of atomic predicates is that they are disjoint and unique.
This offers an important advantage in that each atomic predicate is assigned an
integer value to identify it, replacing a more complex representation. The use of an
integer identifier makes it much easier for the solver to handle the atomic predicate
to solve the MaxSMT problem.
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3.3.2 Maximal Flows

A completely opposite approach to the previous one is the Maximal Flows model.
In this case, instead of dividing the flows into several atomic predicates, the number
of representative flows is reduced by considering a smaller but equally significant
subset. This subset is called Maximal Flows. In the Maximal Flows model, all flows
represented by the same Maximal Flow behave similarly when crossing the network,
so it is sufficient to consider only the Maximal Flow instead of each individual flow.

Definition 3.3.4 Called Fr the set of possible flows of the network, the correspond-
ing set of Maximal Flows Fr

M matches the following definition: Fr
M = {frM ∈ Fr |

/∃ f ∈ Fr.(f /= fr
M ∧ fr

M ⊆ f)}

The set Fr
M is defined as a subset of Fr (set of all possible flows in the network)

that contains only those flows that are not subsets of any other flow in Fr. In other
words, as many different flows as possible are aggregated into representative maxi-
mal flows that exhibit similar behaviour when passing through the network nodes.
This allows only the maximal flows to be considered instead of each individual
represented flow. Even in the case of Maximal Flows, flows are still modelled as a
list of alternating nodes and predicates, but the predicates within a Maximal Flow
are not necessarily atomic. They express the disjunction of multiple quintuples.
Therefore, they can no longer be identified by a simple integer value, but require
the use of more complex data structures for their representation.

Atomic Flows vs Maximal Flows

Comparing the two models, the most significant differences arise in the following
aspects.

In the Atomic Flows model, predicates are atomic and completely disjoint from
each other. This allows predicates to be identified by an integer value, offering an
advantage when solving the MaxSMT. Problem formulation is simpler when only
integer values are used instead of complex representations. However, in the case of
Maximal Flows, this feature is not present.

Another difference concerns the processing of atomic predicates and flows. In
the case of Atomic Flows, it is necessary to initially compute the atomic predicates
and flows before solving the overall problem. This can lead to an initial delay in
processing. In contrast, in Maximal Flows, this initial delay does not occur. A
partial solution to mitigate the initial delay in Atomic Flows model could be the
introduction of parallelization in the computation of Atomic Flows from Atomic
predicates. However, this is not necessary in the context of Maximal Flows.

3.4 VPN Implementation in VEREFOO

Virtual Private Networks (VPNs) are a technology for establishing a secure con-
nection through a public network, such as the Internet. To protect these com-
munications, VPNs create a secure tunnel through which data is encrypted and
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transmitted. This means that even if an insecure network is used, the data sent
through the VPN will be protected and inaccessible to third parties.

VPNs can be implemented using various technologies, including IPSec and TLS,
which use different protocols. VPNs with IPSec provide network-level protection
via the IPSec protocol, while VPNs with TLS offer transport-level protection using
the TLS (Transport Layer Security) protocol. Both technologies are widely used
and considered secure. However, this thesis focuses on analyzing the performance
of VPNs with IPSec within the VEREFOO framework.

The VEREFOO framework was developed to also support virtual security func-
tions that enable secure communications by combining three fundamental charac-
teristics: full automation, formal verification and optimization.

The operation of VEREFOO with VPNs follows a similar approach to other
virtual security functions. The user provides as input the Service Graph (SG) and a
set of Channel Protection Policies (CPP), which represent the security requirements
for channel protection. These inputs are processed and managed by the solver
which, through the formulation and resolution of the MaxSMT problem, finds an
optimal and correct solution that satisfies the requirements. If at least one solution
has been found, the solver generates a Security Service Graph (SSG), which is the
original SG with the allocated Channel Protection System (CPS), responsible for
channel protection, and the CPS Configuration (CC), which includes all device
configuration rules. In case no solution is found, a not-enforceability report is
generated. The operation of the solver is based on a constraint-based approach
since the search for a correct and optimal solution relies on compliance with some
hard and soft constraints.

The enforcement of the CPPs is expressed with hard constraints that must be
satisfied to achieve a correct solution. These hard constraints, as described in [13],
include the following:

• In the SG provided as user input, at least two CPSs must be allocated for
each flow that satisfies the CPP conditions. The first CPS must protect traffic
passing through a set of untrusted nodes, while the second, placed after these
untrusted nodes, removes the protection.

• When flows cross the untrusted middleboxes, they must respect the security
properties expressed by the CPP.

• When flows pass through inspector middleboxes, they must be unprotected
to allow traffic analysis.

• When traffic reaches the destination node, it must be unprotected.

• When traffic reaches one of the two nodes corresponding to the VPN end-
points, the traffic should not be tunneled. However, if a node does not cor-
respond to a VPN endpoint but is located between the two endpoints, the
traffic must be tunneled.

Other hard constraints are necessary to express the configuration and allocation
decisions of a CPS for each network node. Regarding CPS allocation, each AP node
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in the SG can be considered as a potential candidate position for the allocation of
a CPS. This is represented by the allocate predicate, which is a free variable whose
value will be determined by the solver. As for configuring a rule within a CPS,
the responsible predicate is configure, which takes the value of true if that rule is
actually configured, otherwise false. Additionally, if a node has at least one CPP
configured, it is necessary to allocate a CPS in that node. This behavior is ensured
by an additional hard constraint.

With the presence of these constraints, the solution space is reduced, allowing
a faster search for a correct solution, since the solver needs to analyze a smaller
set of valid solutions to identify the best one. However, the absence of a correct
solution to the problem may occur.

The hard constraints described so far are sufficient to guarantee a correct, but
not an optimal solution. Therefore, it is necessary to define soft constraints to
achieve an optimal solution. Each soft constraint is defined using the notation
Soft(c,w) where c represents the constraint and w the assigned weight.

The first optimization objective is to minimize the number of CPSs allocated
in the SG in order to reduce resource consumption. This is achieved by using soft
clauses that require, when possible and without violating hard constraints, not to
install a CPS. The solver will try to satisfy as many of these soft clauses as possible,
with positive assigned weights.

The second optimization objective is to minimize the number of rules configured
within CPSs to enforce all the CPPs. The purpose is to improve the efficiency of
security operations by avoiding redundant rules. A soft clause is defined for each
possible rule, and the best situation is to have no rules configured. The solver will
try to satisfy as many of these soft clauses as possible, taking into account the
assigned weights.

3.4.1 Communication Protection Model

The behaviour of each CPS allocated in the network depends on a set of rules
that specify the actions to be performed and the conditions that identify the traffic
subject to those actions. When a VPN is configured, the systems responsible for
creating secure communication are the VPN Gateways, which are network devices
capable of adding and removing traffic protection.

A VPN Gateway can operate in two different ways:

• ACCESS: indicates the start of secure communication, where incoming traffic
is protected.

• EXIT: indicates the end of secure communication, where protection is re-
moved from the traffic.

When a VPN Gateway is created, a Security Association is added defining the
configuration of that VPN Gateway and the actions to be taken when a packet is
received. When a packet reaches a VPN Gateway and its fields match the gateway’s
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Security Association, the actions configured for that VPN Gateway are applied.
This means, if the conditions of the packet match, protection is added or removed
based on the VPN Gateway’s behaviour (ACCESS or EXIT). If no rules match,
the packet is simply forwarded.

Each security association is represented by the following model:

[behavior - startChannel - endChannel - Conditions - authAlg - encAlg ]

• Behaviour: describes the VPN Gateway’s behaviour with packets that meet
the rule conditions. It can be ACCESS or EXIT.

• startChannel: indicates the starting point of the secure channel.

• endChannel: indicates the ending point of the secure channel.

• Conditions: are the conditions of the packet for which protection needs to
be added or removed. Conditions are specified in the format [IPSrc - IPDst
- portSrc - portDst - transportProto]:

– IPSrc: is the source IP address of the packet;

– IPDst : is the destination IP address of the packet;

– portSrc: is the source port of the transport layer;

– portDst : is the destination port of the transport layer;

– transportProto: is the transport layer protocol;

• authAlg: Indicates the authentication algorithm used to authenticate pack-
ets that meet the specified conditions.

• encAlg: Indicates the encryption algorithm used to encrypt packets that
meet the specified conditions.
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Example of VPN Implementation

Considering a simple network (Fig.3.2), a security requirement is defined to pro-
tect the traffic crossing the network from client (IP = 10.0.0.1) to server (IP =
20.0.0.1), knowing that UN (IP = 30.0.0.1) is an untrusted node. In addition, the
two endpoints, the client and the server, are configured in such a way that they
cannot support a VPN.

Figure 3.2. Network topology with untrusted node

The requirement, represented in XML format, is as follows:

Listing 3.1. CPP XML representation

<PropertyDefinition>

<Property name="ProtectionProperty" graph="0" src="10.0.0.1"

dst="20.0.0.1" lv4proto="ANY" src_port="null" dst_port="null"

isSat="true">

<protectionInfo>

<untrustedNode node="30.0.0.1"/>

</protectionInfo>

</Property>

</PropertyDefinition>

The solution is shown in Fig.3.3, where the solver has allocated two VPN gateways,
one in node AP1 to protect the traffic and one in node AP2 to remove the protection,
allowing node B to receive the traffic in clear.

Figure 3.3. Solution
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Regarding the configuration, the two VPN gateways are set up in the following
manner:

Listing 3.2. VPN GATEWAY 1 XML configuration

<node name="40.0.0.1" functional_type="VPNGateway">

<neighbour name="10.0.0.1"/>

<neighbour name="30.0.0.1"/>

<configuration name="AutoConf">

<vpnGateway>

<securityAssociation>

<behavior>ACCESS</behavior>

<startChannel>40.0.0.1</startChannel>

<endChannel>40.0.0.2</endChannel>

<source>10.0.0.1</source>

<destination>20.0.0.1</destination>

<protocol>ANY</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

</securityAssociation>

</vpnGateway>

</configuration>

</node>

Listing 3.3. VPN GATEWAY 2 XML configuration

<node name="40.0.0.2" functional_type="VPNGateway">

<neighbour name="30.0.0.1"/>

<neighbour name="20.0.0.1"/>

<configuration name="AutoConf">

<vpnGateway>

<securityAssociation>

<behavior>EXIT</behavior>

<startChannel>40.0.0.1</startChannel>

<endChannel>40.0.0.2</endChannel>

<source>10.0.0.1</source>

<destination>20.0.0.1</destination>

<protocol>ANY</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

</securityAssociation>

</vpnGateway>

</configuration>

</node>
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Chapter 4

Thesis Objective

As mentioned in the introduction, the advent of virtualization has changed the im-
plementation of traditional networks. Virtualization paradigms such as NFV, SDN,
and SFC have transformed hardware devices into software applications, offering
more dynamic and flexible management of networks. However, despite the numer-
ous advantages offered by these solutions, there are some limitations to consider.
As illustrated in Section 2.2.2, one of the main difficulties is the increased complex-
ity of configuring such systems, especially when done manually. This complexity
can have a negative impact, especially on security, since an incorrect configuration
of the network can make it vulnerable to attacks. Therefore, the main challenge is
to find models that can simplify configuration and perform these operations in an
automatic manner.

One tool that addresses these needs is VEREFOO, which has been discussed in
Chapter 3. This framework automatically allocates and configures specific security
functions to ensure adequate system protection. In its current implementation,
VEREFOO can correctly configure network functions such as packet filters to pro-
vide security functionality. However, its usage has been extended to configure secure
communications through VPNs, implemented using the IPSec protocol. The reason
for this new extension is due to the increasing priority of organizations to configure
secure communications between users within networks. To ensure secure commu-
nication, traffic must pass through channels capable of maintaining confidentiality,
integrity, and availability properties. Users who wish to set up secure communica-
tion between two points in the network only need to define security policies, called
Communication Protection Policies (CPP). For each security policy, the source and
destination for each communication to be protected are indicated. Based on these
policies, VEREFOO configures and allocates VPN gateways to introduce traffic
protection when necessary. For example, within a network, especially in a public
network like the Internet, some nodes or systems may be insecure, and in such
cases, traffic should be protected using VPNs. In addition, each VPN gateway
must be able to remove such protection allowing the destination node to receive
clear traffic.

In light of these considerations, the extension of VEREFOO in configuring se-
cure communications requires further evaluation. In addition to verifying its proper
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functioning, a main objective of this thesis is to evaluate the framework’s perfor-
mance in scenarios where networks are complex and the number of defined pro-
tection policies is high. To achieve this, a network generator will be proposed to
create realistic network scenarios characterized by complexity and the presence of
multiple traffic flows requiring protection. Its performance will be evaluated by
analyzing the execution time required by the framework to find the correct and
optimal solution based on input requirements. A series of specific tests will be
conducted to determine the impact of different parameters on the configuration
and overall performance of the system. The first two tests aim to evaluate the
framework’s performance as the network size and the number of security policies
defined increase. In particular, the second test will include an inspector node within
the generated network, whose task is to monitor traffic without protection. The
final test aims to evaluate which parameter has a greater impact on performance
by comparing the number of Allocation Places (APs) and the number of defined
protection policies under certain conditions. For each test, two different models
previously implemented in VEREFOO, Atomic Flows, and Maximal Flows, will be
used. Both models are based on different implementations but share a common idea
of analyzing flows instead of individual packets. The execution of these tests, along
with the implementation of the generator, will provide data describing the frame-
work’s performance and behavior, as well as evaluate which model offers greater
advantages. This will help identify possible areas that require future improvements.

In conclusion, this thesis aims to achieve the following objectives:

• Verify the correctness of the VEREFOO framework in supporting the con-
figuration of secure communications, with particular emphasis on VPNs with
IPSec.

• Develop a complex network generator to evaluate the effectiveness of VERE-
FOO in configuring secure communications in realistic scenarios.

• Evaluate the performance of the VEREFOO framework in correctly config-
uring and allocating IPSec VPNs, identifying the parameters that most sig-
nificantly influence performance.

• Evaluate which model, Atomic Flows or Maximal Flows, offers greater ad-
vantages under the same conditions.

• Provide a critical evaluation of the performance and capabilities of the ex-
tended framework in the context of secure communications and complex net-
works.

By achieving these objectives, the aim is to contribute to the development of
automated and reliable solutions for configuring secure communications within vir-
tualized networks, enabling more efficient and secure network management.
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Chapter 5

Proposed Network Generator

This chapter provides an analysis of the specific characteristics and functionalities
of each type of node within a network topology used in the tests described in the
next chapter. For each node, its placement within the network, the need to protect
the traffic it handles, and its implementation within the VEREFOO framework are
described. In addition, it explores the fundamental security requirements needed
to guarantee secure communication between nodes.

Then, the implementation of the proposed network generator is discussed in
more detail. This includes the process of generating the network topology, the
criteria used to establish connections between nodes, and the distribution of secu-
rity requirements. In the last section, it is examined how this generator interacts
with VEREFOO, providing an efficient and optimized model for the automatic
configuration of VPNs.

5.1 Network and security requirements model

When a secure communication is required, the first step is to analyze the nodes
present between source A and destination B, to identify those where traffic must
be protected. There are nodes that are considered trustworthy where traffic can
pass unencrypted, while others have possible vulnerabilities and the traffic needs
some protection. Each node is classified and managed differently, depending on the
function installed or its reliability.

5.1.1 Network Node Types

Before discussing the classification of nodes, it is important to understand how a
network node is defined within the VEREFOO framework.

In VEREFOO, the Node.java class is responsible for defining nodes with a set of
attributes and methods. Each node has a name attribute, which is its IP address.
This IP address is composed of 4 bytes separated by a dot but is represented as
a single string. When a node is created, each byte of its IP address is randomly
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generated, with a check to make sure that it is unique in the network. A Node ob-
ject also has a FunctionalType attribute, which specifies the role of the node within
the network. Possible values are WEBCLIENT, WEBSERVER, FORWARDER,
VPN GATEWAY, and others. An important feature that a node may have is the
ability to configure a VPN gateway, indicated by the Boolean attribute vpnCapa-
bilities. If this value is set to TRUE, it means that that node can configure a VPN
gateway, otherwise, it is set to FALSE.

In addition to these attributes, each node has a list of the neighbours to which
it is connected. This is implemented in Java via a list of Neighbour objects, which
contain attributes such as the name (IP address) and ID of the Node object.

For example, considering the client in the Figure 5.1, its attributes will include
the following values:

Figure 5.1. Node object

• Name = ”10.0.0.1”

• VpnCapabilities = FALSE

• FunctionalType = WEBCLIENT

• Neighbours = {N1, N2}

Endpoint Nodes

The endpoint represents the edge points of a network connection. In the proposed
network generator, an endpoint can be a client or a server and certain security
requirements must be defined to protect the data transmitted between them, which
can be the source and destination of the communication.

Assuming a network with two clients and one server, as in the Figure 5.2, if the
clients want to communicate with the server but the security of the network cannot
be guaranteed, it is necessary to protect the traffic from the clients to the server.
For this purpose, it is possible to configure the clients and the server with a VPN
gateway. One possible solution is:
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Figure 5.2. Allocation of VPN Gateways at endpoints

Endpoint Nodes in VEREFOO

Within VEREFOO, clients and servers are implemented similarly without signifi-
cant distinction. The main difference is the FunctionalType defined when the node
is created, where a value WEBCLIENT is set for the client and a WEBSERVER
is set for the server. In addition, each client and server has a vpnCapabilities prop-
erty which, if set to true, indicates that the node is capable of setting up a VPN
gateway. This node then can be the starting or end point of the VPN, enabling
secure traffic protection.

Listing 5.1. Client node creation in VEREFOO

for (int i = 1; i <= numberWebClients; i++) {

String IPClient = createRandomIP();

Node client = new Node();

client.setFunctionalType(FunctionalTypes.WEBCLIENT);

client.setName(IPClient);

Configuration confC = new Configuration();

confC.setName("confA");

Webclient wc = new Webclient();

confC.setWebclient(wc);

client.setConfiguration(confC);

allClients.add(client);

}

Listing 5.2. Server node creation in VEREFOO

for (int i = 1; i <= numberWebServers; i++) {

String IPServer = createRandomIP();

Node server = new Node();

server.setFunctionalType(FunctionalTypes.WEBSERVER);

server.setName(IPServer);

Configuration confS = new Configuration();

confS.setName("confB");

Webserver ws = new Webserver();

ws.setName(server.getName());

confS.setWebserver(ws);

server.setConfiguration(confS);

allServers.add(server);

}
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If the node supports VPN, these lines of code must be added during the def-
inition. With the first method, the value of the variable vpnCapabilities is set to
TRUE, while with the second one, it is defined which VPN technology is supported.
In this case, only IPSec is supported, but TLS can also be added.

Listing 5.3. Added VPN capability in VEREFOO

client.setVpnCapabilities(true);

client.getVpnTechnology().add(SecurityTechnologyType.IPSEC);

Untrusted Nodes

Untrusted nodes are devices or systems that cannot be considered trusted or secure
for the transmission of data. These nodes are a threat to network security as
they can intercept or manipulate data in transit. To protect data transmitted
through these nodes, specific security requirements must be set for each node that
is considered untrusted. An approach to ensure secure communication is to consider
all nodes between the source and destination as untrusted. This strategy, although
produces valid secure communication, is inflexible and can only be used only if
one does not know the network and its components. Instead, considering a set
of specific untrusted nodes increases the space of possible solutions and, in most
cases, optimizes the allocation of resources. However, if there are doubts about the
reliability of a node, it is safer to consider that node untrusted to guarantee the
security of communication.

Considering the network shown in Figure 5.3, the network administrator wants
to protect traffic from clients A and B to server C, knowing that along the path there
is N4, an untrusted node. The other nodes in the network, including endpoints,
can set up a VPN gateway.

Figure 5.3. Network topology

Without the possibility of specifying a set of untrusted nodes in the require-
ments, all intermediate nodes must be considered untrusted. Therefore, the only
configuration available to satisfy the requirements is the installation of three VPN
gateways: the first two in clients A and B to protect the traffic and the third in
server C to remove the protection and allow the reception of unencrypted traffic.
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Figure 5.4. Solution 1

However, thanks to VEREFOO’s functionality, which allows untrusted node
sets to be specified within the security requirements, it is possible to optimize the
network configuration and find alternative solutions. In the example of the network
described above 5.3, two other possible configurations can be considered.

Figure 5.5. Other possible configurations

In configuration 3, a VPN gateway is placed in N3, which protects the traffic,
and another VPN gateway in N5, which removes the protection. This provides a
correct and optimised solution with less use of allocated resources than the previous
configuration.
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Untrusted Nodes in VEREFOO

In the VEREFOO framework, the untrusted node is configured as a normal network
node, with a FunctionalType set to FORWARDER. The main difference from other
nodes is that, during the generation of security requirements, the set of untrusted
nodes in the network is stored. This information is used by the framework to search
for solutions with network security functions allocated to protect data transmitted
through untrusted nodes.

Listing 5.4. Untrusted node creation in VEREFOO

for (int i = 0; i < numberUntrustedNodes; i++) {

String ipUntrustedNode = createRandomIP();

Node untrustedNode = new Node();

untrustedNode.setName(ipUntrustedNode);

untrustedNode.setFunctionalType(FunctionalTypes.FORWARDER);

untrustedNodes.add(untrustedNode);

}

Inspector Nodes

Inspector nodes, within a network, perform the function of monitoring network
traffic for anomalies or suspicious activity. The presence of inspector nodes increases
network security, as they quickly identify and detect potential threats. However, to
enable analysis, the traffic in these nodes must be unprotected. This means that, if
the traffic is encrypted, it must be decrypted and this process may result in some
delay in communication.

Considering the network previously illustrated (Figure 5.3) with the addition of
inspector node N6, it is possible to identify a configuration that requires a minimum
number of VPN gateways configured to protect traffic from clients A and B to server
C. A possible solution could be the following:

Figure 5.6. Configuration with inspector node IN

In this case, there are no significant delays in communication since the solution
found is very similar to the one obtained previously with only the addition of an
inspector node before the server.
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Figure 5.7. Complex configuration with two inspector nodes (IN1, IN2)

However, in the case of a more complex network like the one in Figure 5.7, the
presence of an inspector node IN1 between untrusted nodes can cause significant
delays. In this case, traffic must be encrypted and decrypted several times during
communication. In the configuration shown, the traffic is initially encrypted by
VPN Gateway 1 to protect the traffic passing through the untrusted node N4, then
it is decrypted by VPN Gateway 2 to be analyzed by inspector node IN1. Next, the
traffic is encrypted again by VPN Gateway 3 due to the presence of the untrusted
node N7 and finally decrypted by VPN Gateway 4 before being sent to destination
C unprotected. This solution leads to a significant increase in allocated resources
and a considerable delay in communication.

Inspector Nodes in VEREFOO

In VEREFOO, an inspector node is configured in the same way as an untrusted
node, with a FunctionalType set to FORWARDER. However, the main difference is
in the security requirements. In this case, each requirement stores a set of untrusted
nodes where traffic must be protected and a set of inspector nodes where protec-
tion must be removed. This means that, when configuring a security requirement
in VEREFOO, it is possible to specify both sets of untrusted nodes and sets of
inspector nodes in that network, allowing optimization of the allocation of security
resources. In this way, traffic passing through an inspector node can be analyzed
without significant delays in communication, as protection is removed only at the
necessary points and only for the time strictly necessary to analyze the traffic.

Listing 5.5. Inspector node creation in VEREFOO

String ipInspectorNode = createRandomIP();

inspectorNode.setName(ipInspectorNode);

inspectorNode.setFunctionalType(FunctionalTypes.FORWARDER);

inspectorNodes.add(inspectorNode);

Trusted Nodes

In a network, it is possible to identify reliable and secure nodes where traffic pro-
tection is at the discretion of the solver. In VEREFOO, these nodes are configured
like any other node, with the FunctionalType set to FORWARDER. Furthermore,
when defining security requirements, it is not necessary to specify these nodes,
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since each requirement only stores untrusted and inspector nodes. Consequently,
all middleboxes that are not considered untrusted or inspectors will be considered
trusted by the solver.

Allocation Places

An Allocation Place (AP) is a network node where virtual network security func-
tions can be allocated. It is defined according to various factors, such as the avail-
ability of hardware resources, network latency, or required processing capacity.
Furthermore, the AP is closely related to network security requirements, as it can
be used to prevent a VNF from being allocated on an unprotected or compro-
mised node. This means that the AP ensures that VNFs are only allocated on
secure nodes and that traffic protection can be provided effectively, improving the
reliability and security of the network.

Figure 5.8. Solution 1

Considering a simple network topology such as the one in the figure 5.8, it can
be seen that there are three endpoints (A, B, C) and one untrusted node (N3),
while the remaining nodes (N1, N4) are APs because they are considered trusted
and able to support security functions. In this topology, the administrator defines a
security requirement for traffic between client A and destination server C. The only
possible solution to fulfill the security requirement is to install a VPN gateway in
N1 to protect the traffic and another VPN gateway in N4 to remove the protection.

If a new AP is added between N1 and the untrusted node N3 and client B is
connected to it, there is no longer only one possible solution, but two. The first
solution is similar to the previous one, with a VPN gateway in N1, while the second
is to install the same VPN gateway in the new node N2. In both cases, the solution
satisfies the security requirements imposed by the administrator. This example
demonstrates that the addition of a single AP node has an impact on the number
of potential solutions.
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Figure 5.9. Solution 2

Allocation Places in VEREFOO

Within the VEREFOO framework, an AP is configured like all other nodes and is
considered by the solver as a trusted node. Thus, during solution processing, the
solver will try to include a security function in each AP to obtain an optimal and
correct solution according to the security requirements specified by the user. If the
number of APs within a framework is increased, the space of possible solutions will
also increase.

Listing 5.6. Allocation Place creation in VEREFOO

for (int i = 1; i <= numberAllocationPlaces2; i++) {

String ipAllocationPlace = createRandomIP();

Node allocationPlace = new Node();

allocationPlace.setName(ipAllocationPlace);

allAPs.add(allocationPlace);

}

The VEREFOO framework also allows the definition of an endpoint with the
ability to configure a VPN Gateway. In this case, the client or the server is managed
by the framework like a normal AP. To do this, the user must set the endpoint to
support VPN and add the type of security technology, IPSec or TLS.

5.1.2 Security Requirements Model

Network security requirements are one of the two inputs of VEREFOO. These
requirements are necessary because the framework relies on a PBM approach to
automate network security, in which security managers do not have to manage each
network function manually, but can specify the desired behavior through policies
that are automatically refined to configure the functions correctly. Although this
makes configuring the system easier, it can also make it more vulnerable to errors
in policy definition, especially when made by inexperienced users. To solve this
problem, it is important to provide an easy-to-use policy definition language and
modules for translating rules and detecting conflicts or anomalies in the specified
policies.

To improve the usability and effectiveness of policies, two levels of abstraction
have been introduced, as explained in paper [34]. The difference between these
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levels is the end users to whom they are designated, based on their skills and
experience in programming security controls.

The first level is HSLP, which allows security requirements to be expressed in a
way similar to natural language, making it very easy to understand and use even
without in-depth knowledge of network configuration and security functions. HSLP
is designed to be simple, flexible enough to create any type of security policy, and
extensible to support different extensions. For example, policies such as ’Block
network traffic to and from known malicious IP addresses’ or ’Allow network access
only to devices that satisfy specified security requirements’ can be defined.

MSPL represents the second layer, designed to abstract configuration languages,
offering a vendor-independent format and security control. To do this, MSPL re-
quires more detail about the nodes and security functions in the network. MSPL
must fulfill the requirements of abstraction, diversity, flexibility, extensibility, and
continuity. Abstraction requires that the language contain abstract security con-
figurations that are independent of vendor- or product-specific representation and
storage. Diversity implies the capability to include configurations for a wide range
of safety functions, without being limited to a single product or vendor. Flexibility
and extensibility allow the introduction of new security controls, without the need
to change the entire security policy. Finally, continuity is essential to ensure the
consistency of the policy chain, from the initial definition in HSPL to the actual
implementation of security controls, allowing the policy actually applied and the
user associated with it to be tracked.

In this thesis, the focus is on protection policies oriented to define security
functions that protect network traffic between two points. The structure of these
policies will be presented in the next section.

Communication Protection Network Security Re-

quirements

Each protection policy is characterized by the following elements:

• Condition Set: this is the information used to identify the traffic to be
protected. Each condition is defined by means of a tuple with the following
fields:

– IPSrc is the source of the traffic flow to be protected;

– IPDst is the destination of the traffic flow to be protected;

– portSrc is the source port at the transport layer of the traffic flow to be
protected;

– portDst is the transport layer destination port of the traffic flow that
needs to be protected;

– transportProto is the transport layer protocol of the traffic flow that is
to be protected.
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To represent the source and destination IP addresses (IPSrc and IPDst), the
traditional dot-decimal notation is used:

IP1.IP2.IP3.IP4

where IPi, with i {1,2,3,4}, may be an integer between 0 and 255 (including
extremes), or the wildcard character *, representing the entire range [0,255].
If the wildcard is used for IPi, the other fields to its right must also represent
a range instead of a single number. This symbol simplifies the process by
combining the declaration of a network address and its corresponding netmask
into a single element, eliminating the need for separate declarations. For
example, the representation 192.6.10.* may be used to express the end nodes
in the 192.6.10.0/24 network, while the representation 30.6.*.* identifies the
network 30.6.0/16. When using this notation, VEREFOO does not implement
a single security requirement but splits it into several security policies. For
example, if the designer wants to protect traffic between sources 10.0.0.1 and
10.0.0.2, he may define a security requirement using the wildcard. From
this requirement, VEREFOO creates two separate security policies, one with
source 10.0.0.1 and the other with source 10.0.0.2.

The source and destination transport ports (portSrc and portDst) can be
expressed with a single number or a range of numbers, considering a range
from 0 to 65535. These fields provide greater flexibility. For example, if
you want to protect traffic from a source to a destination, but only through
a specific port, you can specify that port. Alternatively, you can use the
wildcard to protect traffic passing through any port.

Finally, the transportProto field represents the layer 4 protocol used over
the IP layer and can have TCP or UDP as possible values, or the wildcard
character *.

• Security properties: these are the security properties that must be applied
to the traffic to guarantee the security of communications. Each property
is specified with a security technology to fulfill the security requirement, an
authentication algorithm to guarantee integrity and authentication, and an
encryption algorithm for information confidentiality. In case these values are
not specified in the security requirement, VEREFOO uses the default values
AES 128 CBC for encryption and SHA 2 256 as the authentication algorithm.

• Set of middleboxes: represents the set of nodes in the network that are
considered untrusted or are inspector nodes. As described in the previous
section, in the case of untrusted nodes, protection must be applied to the
traffic, while for inspector nodes, the traffic must be unencrypted so that it
can be analyzed.

• Rule types: indicates the type of policy required to ensure secure com-
munication. For secure communication, protection policies are required to
guarantee the security of the information exchanged.
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Protection Requirements in VEREFOO

In VEREFOO, each security requirement is generated by the following function:

createPolicy(PName type, NFV nfv, Graph graph, String IPClient, String
IPServer)

• PName type: indicates the type of security requirement that will be defined.
In this case, to create a protection requirement, the value of the variable must
be PName.PROTECTION PROPERTY.

• NFV nfv: is an object that contains all information, including the generated
structure, connections between nodes, defined requirements, and so on.

• Graph graph: is the network structure generated with an ID and a list of
the nodes present.

• String IPClient: indicates the IP address of the source node.

• String IPServer: indicates the IP address of the destination node.

Listing 5.7. Network Protection Policies node definition in VEREFOO

private void createPolicy(PName type, NFV nfv, Graph graph, String IPClient,

String IPServer) {

Property property = new Property();

property.setName(type);

property.setGraph((long) 0);

property.setSrc(IPClient);

property.setDst(IPServer);

ProtectionInfoType protectionInfoType = new ProtectionInfoType();

for (Node un : untrustedNodes) {

NodeRefType nrt = new NodeRefType();

nrt.setNode(un.getName());

protectionInfoType.getUntrustedNode().add(nrt);

}

for (Node in : inspectorNodes) {

NodeRefType nrt = new NodeRefType();

nrt.setNode(in.getName());

protectionInfoType.getInspectorNode().add(nrt);

}

property.setProtectionInfo(protectionInfoType);

nfv.getPropertyDefinition().getProperty().add(property);

}
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5.2 Network Generator

Part of this thesis focused on the implementation of the network generator used
to evaluate the performance of VEREFOO. The reason behind this implementa-
tion is to create a network as realistic and complex as possible, able to represent
a common situation. In particular, the presence of several branches is considered
between nodes, where traffic flows overlap and have different lengths and directions.
The complexity of the generated network represents an important challenge for per-
formance evaluation and for testing VEREFOO’s ability to allocate and configure
the security functions in a fast and efficient way, which is necessary to satisfy the
security requirements of the input. Furthermore, the simulation of complex scenar-
ios, in which traffic flows overlap and extend over several ramifications, allows the
effectiveness and efficiency of VEREFOO to be tested under realistic conditions.

In the course of the chapter, it will be examined how the generator creates a
realistic and complex network, both with the presence of an inspector node and
without it. It will also be explained how security requirements are defined to
guarantee secure communication between the various points in the network. Finally,
concrete examples will be provided to clarify the concepts presented above and make
it easier to understand the network generator’s behavior.

5.2.1 Input parameters

The network generator is designed to create a network with various types of nodes,
including clients, servers, untrusted nodes that need traffic protection, allocation
places (APs) that are trusted nodes where security functions can be allocated, and
inspector nodes that monitor network traffic. In this generator, it is possible to
manually set the number of clients and the number of servers that must be present
within the network. The other parameters, such as the number of trusted and
untrusted nodes and the node disposition, are computed automatically according
to the design rules. In this way, the configuration process is simpler and better
adapted to the user’s needs. As far as inspector nodes are concerned, there are
two versions of network topology available. One version includes a single inspector
node, which is only placed in the topology if the number of servers defined as input
is greater than two.

After manually defining the number of clients and servers in the network topol-
ogy, three security policies are created for each client and server. These security
policies define the rules to protect the network traffic from each node. Each policy
has the client or server itself as the source and a different destination. This config-
uration makes it possible to handle traffic flows of various lengths and directions,
making the network topology as realistic as possible.

5.2.2 Network structure

The basic structure consists of three parts: the ”Basic structure - Client”, the
”Basic structure - Server” and a third element consisting of two clients connected
to a single AP, that is the central AP to which the two previous parts are connected.
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Basic structure - Client

This basic structure can have from 1 to 6 clients connected to APs, followed by a
single untrusted node (UN). Each client can be connected to a single AP and each
AP can be connected to a maximum of 2 clients. In addition, the untrusted node can
be connected to a maximum of 3 APs to where clients are connected. This layout
makes it possible to create a structure that can be described as complete. However,
if the specified parameters require more nodes than the complete structure, new
structures will be created until all input clients have been allocated. A complete
structure is shown on the left and an incomplete structure on the right.

Figure 5.10. ”Basic structure - Client” complete and not complete

Basic structure - Server

The ”Basic structure - Server” is similar to the previous one. In this case, there are
both client and server nodes. The structure consists of a single server connected
to an AP followed by an untrusted node. In this structure, the untrusted node is
connected to a maximum of 2 APs, while each AP can be connected to a server, a
client and an untrusted node. Once the servers are allocated, a client is connected
to one of the two APs in the structure. Again, when a complete structure is reached,
new structures will be created. In Figure 5.11, the complete structure is on the left
and the incomplete structure on the right.

Central AP

The third part is an AP to which only two clients are always connected. Once the
structures of the 3 parts have been defined, the single untrusted nodes in the ”Basic
structure - Client” and the ”Basic structure - Server” are connected to this central
AP. At the end of this process, the basic structure shown in the figure below is
generated. The parameters in this case are 7 clients and 2 servers set by the user.

54



Proposed Network Generator

Figure 5.11. ”Basic structure - Server” complete and not complete

Figure 5.12. Basic structures connected to ”Central AP”

In Figure 5.12, only a ”Basic structure - Client” and a ”Basic structure - Server”
are represented. However, by increasing the input parameters, the number of basic
structures will increase. In this case, not all structures can be connected to the
central AP, since with a large number of clients and servers, the final network
would consist of N structures all connected to a single AP. This could be critical
for two reasons: VEREFOO could allocate a single VPN gateway in that central
AP with all the rules configured and a single point of failure would be created, a
solution that is rarely adopted in real networks.

For this reason, when the network topology grows, the implemented generator
connects the various base structures using a different logic. If there are several
”Basic structure - Client”, the first structure is connected to the central AP as
seen in Figure 5.12. Then, the second ”Basic structure - Client” is connected to
the untrusted node in the first server structure, the third client base structure is
connected to the untrusted node in the second server structure, and so on. If there
are more ”Basic structure - Client” than the number of untrusted nodes in the
”Basic structure - Server”, the ”Basic structure - Client” begin to connect to the
APs of the ”Basic structure - Server”. In this case, connecting all structures to a
single node is avoided and a very branched network is generated.
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Once all ”Basic structure - Client” have been allocated, the same procedure
is followed for the ”Basic structure - Server”, but using the nodes of the ”Basic
structure - Client”. The first two server base structures are connected to the central
AP, while the others are first connected to the untrusted nodes and then to the
APs of the client structure.

Some examples will be presented at the end of this section.

5.2.3 Network structure with inspector node

If the user decides to add an inspector node to the network, the network generation
process follows a similar process to that described previously. However, there are
some differences when connecting the second ”Basic structure - Server”. Instead
of connecting the first two ”Basic structure - Server” to the central AP, the second
structure is connected to an AP, followed by an inspector node. After that, the
inspector node is connected to the central AP. The process then continues normally,
connecting the server base structures, if present, first to the untrusted nodes and
then to the APs of the ”Basic structure - Client”. In this way, compared to the
previous version, the resulting topology will have an additional inspector node and
an additional AP node.

An example of this configuration is shown in the figure below:

Figure 5.13. Generated structure with inspector node IN
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5.2.4 Generation of Security Requirements

After defining the network topology and connecting the nodes, the security policies
are defined. As mentioned earlier, three security policies are created for each client
and server. Each policy has the client or server itself as its source and a different
destination. The policies are generated according to the type of source node. For
clients in the ”Basic structure - Client”, the destination of the policy will be one
of the servers in the network topology. It is important to note that the destination
changes between different policies created for the same client. For the nodes in
the ”Basic structure - Server”, each node will have as its destination one of the
clients present in the ”Basic structure - Client” or one of the clients connected to
the central AP. This configuration allows traffic from the servers to be protected by
redirecting it to different clients. Finally, for clients connected to the central AP,
the policy will have as its destination one of the nodes of the base structures. This
configuration ensures that the policies defined are of various types, adapting to the
complexity of the network generated and allowing traffic flows of various lengths
and directions to be correctly protected.
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5.2.5 Illustrative Examples

A complete examples are now presented. The first two examples show how the net-
work topology grows as the input parameters increase, while the third one explains
how the security requirements are defined.

Use case 1: Network Structure

Input parameters specified in the generator:

• Number of Clients: 24

• Number of Servers: 4

• Number of Inspector Nodes: 0

Parameters automatically computed based on input:

• Number of APs: 15

• Number of Untrusted Nodes: 6
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Figure 5.14. Use case 1
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Use Case 2: Network Structure with Inspector node

Input parameters specified in the generator:

• Number of Clients: 36

• Number of Servers: 5

• Number of Inspector Nodes: 1

Parameters automatically computed based on input:

• Number of APs: 24

• Number of Untrusted Nodes: 9
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Figure 5.15. Use case 2
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Use Case 3: Policies Definition

Input parameters specified in the generator:

• Number of Clients: 6

• Number of Server: 3

• Number of Inspector Nodes: 0

Parameters automatically computed based on input:

• Number of APs: 6

• Number of Untrusted Nodes: 3

• Number of Policies: 27

Figure 5.16. Network topology generated
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Figure 5.16 illustrates the generated network topology composed of 9 endpoints.
Since each endpoint requires 3 different security requirements, the total number of
requirements that need to be defined is 27. The table below lists the source and
destination nodes that will be used as IP source and IP destination, respectively,
for each security requirement.

SOURCE NODE DESTINATION NODE

C1 S1

C1 S2

C1 S3

C2 S1

C2 S2

C2 S3

C3 C1

C3 S1

C3 C2

C4 S2

C4 C1

C4 S3

C5 C1

C5 C2

C5 C3

C6 C4

C6 C1

C6 C2

S1 C1

S1 C2

S1 C3

S2 C4

S2 C1

S2 C2

S3 C3

S3 C4

S3 C1
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5.3 Integration with VEREFOO

The network generator described previously has been designed to integrate with
the VEREFOO framework in order to provide a realistic and complex network for
performance evaluation tests. The integration of the generator with VEREFOO is
done as follows:

1. Definition of input parameters. Before using the network generator, input
parameters such as the number of clients and servers must be specified. These
parameters allow the user to personalize the network configuration. It is also
possible to manually set the version with or without an inspector node.

2. Calling the network generator. Once the input parameters have been defined,
the network generator is called within the VEREFOO framework. It performs
its function of generating the corresponding network topology with the various
types and branches between nodes.

3. Definition of protection requirements. After the network topology has been
generated, the generator defines the corresponding security policies for each
client and server.

4. Choice of security functions. Once the security policies have been defined,
the VEREFOO framework allocates and configures the security functions
required to comply with these policies. This operation is performed by the
solver, which computes the optimal solution by solving the MaxSMT problem.

5. Performing performance evaluation tests. With the network generated and
the security functions allocated, performance evaluation tests can be started.
These tests allow the effectiveness and efficiency of VEREFOO in managing
complex networks and providing secure communication to be evaluated.

Through the integration of the network generator in the framework, it is possible
to simulate realistic and complex scenarios, define suitable security policies, and
evaluate the overall performance of the system. This integration is a key step in
ensuring the effective implementation of VEREFOO and providing a reliable test
environment to evaluate its functionality.
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Implementation and Testing

After analyzing the network generator, this chapter presents the results of tests
performed to evaluate the performance of the VEREFOO framework under specific
conditions. In these cases, the framework was used to configure VPNs with IPSec
to satisfy the input requirements. For each test, the considered network structure
is described and the results obtained with the two different models presented in
the background are reported: Atomic Flows (section 3.3.1) and Maximal Flows
(section 3.3.2). In this way, based on the results, performance can be evaluated to
determine which model is most advantageous to use under the same conditions.

The aim is to provide an evaluation of VEREFOO’s ability to automatically
establish secure communications between nodes in a network, to find potential
future improvements to be applied to the framework.

6.1 Test Description

The experimental validation of the framework was conducted to analyze its scala-
bility and identify which parameters have the greatest impact on performance. All
tests were performed with a 4-core Intel i7-6700 3.40 GHz system with 32 GB of
RAM, and for each input, the test was repeated 50 times, to obtain an average per-
formance evaluation when specific parameters changed. Performance was evaluated
according to the computation time it takes VEREFOO to find the optimal solution
that satisfies the security requirements defined by the user input. This means the
final execution time includes the time it takes to generate the network topology
and security requirements according to the user input values, properly allocate and
configure the virtual network security functions, and finally, search for the optimal
solution.

The metrics of most interest for these tests are the following:

• the number of input security requirements, as the solution computed by the
framework must satisfy each defined requirement;

• the number of AP in the network, which has an impact on the possible solution
space, since each AP is a possible candidate for the allocation of the security
function.
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In addition to these metrics of major interest, the values of each parameter used
within the generator were also shown for each test. The parameters reported are:

• Number of Endpoints: indicates the total number of clients and servers in
the network, where each node has a random IP address and the attribute
VPNcapabilities set to FALSE. This means that the node cannot configure a
VPN gateway and is not considered an allocation place.

• VPNcap Endpoint: represents the value that the VPNcapabilities attribute
assumes in each client and server during definition, which refers to all end-
points present within the network. If it is set to FALSE, both client and server
nodes in the network are unable to support VPN and are not considered as
APs.

• Number of Network Security Policies: indicates the number of security re-
quirements defined within the network. For each endpoint, three different
security requirements are defined.

• Number of APs: represents the number of nodes in the network where a
security function can be allocated. In the value, clients and servers supporting
VPN are also counted when the VPNcapabilities attribute is set to TRUE.

• Number of Inspector Nodes: indicates the number of inspector nodes presents
in the network where traffic must be unencrypted, without protection. The set
of inspector nodes is stored within each security requirement that is defined,
which is why the value is marked as ”Number of Inspector Nodes per Policy”.

• Number of Untrusted Nodes: is the number of untrusted nodes in the network
where traffic requires protection. The set of untrusted nodes is stored within
each security requirement that is defined, which is why the value is marked
as ”Number of Untrusted Nodes per Policy”.

• Computation Time: this is the final average execution time computed as
the mean of 50 iterations with the same parameters. It includes the time
needed to generate the network topology and security requirements based on
user input values, allocate and properly configure the virtual network security
functions, and finally determine the optimal solution that satisfies the input
requirements. The value is expressed in seconds (sec).

The tests have all these characteristics in common. However, it should be noted
that specific modifications have been applied to each model, concerning certain
parameters and constraints. The differences are as follows.

Atomic Flows tests

Using the Atomic Flows model, not only the average computation time was recorded,
but also the times relating to:

• Atomic Predicates Time: is the total time required to compute all atomic
predicates related to the defined security requirements;
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• Atomic Flows Time: is the total time needed to compute the Atomic Flows
related to the predicates;

• MaxSMT Time: is the total time taken by the solver to find the correct and
optimal solution;

This made it possible to analyze in detail which part has the greatest impact
on the final computation time, which is the parameter of major interest.

Maximal Flows tests

The tests with Maximal Flows were performed without the soft constraints relat-
ing to the aggregation of the rule condition fields. Initially, there were four soft
constraints, each of which verified that the byte of the address was equal to the
wildcard. However, with these constraints, the performance of the framework sig-
nificantly decreased, making it impossible to obtain good results. Furthermore, the
aggregation of rules is also not supported by the algorithm based on Atomic Flows,
so the conditions under which the models were tested are also comparable in this
aspect, making it possible to remove these constraints.

6.2 Test 1: Basic Structure

The first test is based on analyzing the performance of VEREFOO when clients,
servers, untrusted nodes, and APs are present within the network topology. In
this configuration, therefore, no inspector nodes were considered. This means, that
each security requirement was defined by storing only the set of untrusted nodes
present in the network. In this way, the only requirement the framework has to
fulfill is to protect the traffic when it crosses within these untrusted nodes. For
the tests of both the Atomic Flows and Maximal Flows models, initial low values
were used for the parameters, and each time the number of clients and servers was
increased, so as all other related values. In this case, no parameters were left fixed,
except for the number of inspector nodes in the network, which was kept at zero.
The parameters were increased to a reasonable value for which it was interesting
to keep the record.

The structure considered is the one explained in section 5.2.2.

6.2.1 Atomic Flow Results

With the Atomic Flows model, the obtained results are presented in Figure 6.1,
which displays the values of all parameters for each execution. The last columns
show the average computation times for Atomic Predicates, Atomic Flows, solving
the MaxSMT problem and the overall average execution time for those inputs.
After gathering the data in a table, the trend of the average computation time
was represented in Graph 6.2. The Y-axis shows the computation time in seconds,
while the X-axis represents the number of defined security policies.
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Figure 6.1. Test 1: Table of Atomic Flows Results

Figure 6.2. Test 1: Graph of Atomic Flows Results

6.2.2 Maximal Flow Results

The Figure 6.3 shows the results with the Maximal Flows model. The trend in
execution time in relation to the number of defined security policies is depicted in
Graph 6.4.
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Figure 6.3. Test 1: Table of Maximal Flows Results

Figure 6.4. Test 1: Graph of Maximal Flows Results

6.2.3 Interpretation of Test Results

Based on the analysis of graphs 6.2 and 6.4, a similar behavior can be observed
between the two models, Atomic Flows and Maximal Flows, in terms of execution
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time in relation to the number of defined security policies.

Initially, both models show an almost quadratic increase in execution time, but
once a certain threshold is reached, performance begins to deteriorate exponentially.
For example, in the Atomic Flows model, the execution time doubles when the
number of security policies increases from 99 to 114, while it quintuples from 114
to 132. A similar trend is also observed in the Maximal Flows model.

The factor that has the greatest impact on performance is the time taken by the
solver for the MaxSMT problem. Whenever a security policy is added, additional
soft constraints are generated with a deterioration in overall performance. This can
be observed from Figure 6.1 of the Atomic Flows model, where it can be seen that
the final execution time is mainly influenced by the time spent by the MaxSMT,
which shows exponential growth, while the time needed to calculate the flows and
atomic predicates increases, but less markedly.

This impact of the time taken by the solver for the MaxSMT problem on the
execution time can also be seen from Graph 6.5 in which all the time trends in
the Atomic Flows model are shown. For better understanding, the Y-axis uses a
logarithmic scale.

Figure 6.5. Time trends in the Atomic Flows model

For comparing the performance of the two models, Atomic Flows and Maximal
Flows, Graph 6.6 was created to identify any differences. To provide a better
and more complete view, results obtained with less number of policies than in the
previous tests, not shown in Figure 6.1 and 6.3, were also included. Even in this
case, the Y-axis uses a logarithmic scale.
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Figure 6.6. Test 1: Comparison of the Atomic Flows and Maximal Flows model

From the analysis of Graph 6.6, it is possible to determine which model offers
better performance. With a limited number of policies defined in the network,
the Atomic Flows model is more advantageous. However, as the number of policies
increases, performance deteriorates and in the long term, the Maximal Flows model
becomes the more time-effective choice. These results can be explained by two main
factors: the number of constraints generated in the two models and their resource
management capability.

Concerning resource management, the Atomic Flows model has an advantage
when the number of resources is limited. This initial gain can be attributed to
the small number of initial Atomic Flows and the fact that these flows are iden-
tified with integer values, which are easier to handle by the solver in solving the
MaxSMT problem. With a limited number of resources, the time for computing
predicates and atomic flows is almost negligible. On the contrary, the Maximal
Flows model takes more time with limited resources because each maximal flow is
no longer identified by integer values, but rather by more complex representations
that reduce performance. However, when the number of security policies increases,
the comparison between the two models is no longer so favorable for the Atomic
Flows model. The Maximal Flows model shows better performance when more
resources are used, which is not the case for the Atomic Flows model. This dete-
rioration in performance can be attributed to the large number of Atomic Flows
that are generated by increasing the defined security policies. Although each flow
is identified by an integer value, which is easier for the solver to handle, a large
number of flows it has to manage cancels out the initial advantage, thus favoring
the Maximal Flows model in terms of performance.
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Figure 6.7. Test 1: Generation of constraints in the Atomic Flows and
Maximal Flows model

The other main factor is the number of constraints generated and passed to
the solver in the two models. An increase in the number of constraints affects the
resolution of the MaxSMT problem, which, as pointed out, has a strong impact
on the final execution time (approximately 90% in each run). For this reason, it
is important to consider the number of constraints generated in the two models.
This difference is evident in Graph 6.7, where it can be observed that the Atomic
Flows model generates a much larger number of constraints than the Maximal Flows
model. This inevitably leads to a deterioration in performance for the Atomic Flows
model when the resources increase, and consequently also the constraints that the
solver has to handle.

6.3 Test 2: Structure with Inspector Node

The second test is different from the first due to the presence of an inspector node
within the network topology. In this case, the test was performed to evaluate how
performance decreases when traffic must be encrypted and decrypted several times
during communication. The inspector node is placed between two untrusted nodes,
so protection must be removed so that the inspector node can analyze the traffic
and then re-established to protect this traffic in the untrusted node that is next.
As with the first test, parameter values were increased to evaluate the impact on
computation time. The structure considered is the one explained in section 5.2.3.
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6.3.1 Atomic Flow Results

Similar to the previous test, the last columns of Figure 6.8 show the average compu-
tation times, while Graph 6.9 illustrates the trend of the execution time in relation
to the number of defined policies.

Figure 6.8. Test 2: Table of Atomic Flows Results

Figure 6.9. Test 2: Graph of Atomic Flows Results
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6.3.2 Maximal Flow Results

Figure 6.10 shows the results, while the trend of computation time in relation to
the number of defined security policies is depicted in Graph 6.11.

Figure 6.10. Test 2: Table of Maximal Flows Results

Figure 6.11. Test 2: Graph of Maximal Flows Results
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6.3.3 Interpretation of Test Results

The results of this test showed a similar trend to that observed in Test 1 for both
Atomic Flows and Maximal Flows models. The Atomic Flows model maintains
an initial advantage with a limited number of resources, while the Maximal Flows
model proves to be more advantageous in the long run. The reasons for this be-
havior, therefore, remain the same.

However, in this test, an inspector node was introduced into the network struc-
ture, which influenced the overall performance of both models. The performance
deterioration is attributed to the inspector node, which is responsible for analyzing
the traffic passing through it without protection. This led to a deterioration caused
by two possible factors. Firstly, the number of constraints generated and passed to
the solver increases, since those relating to the inspector node must be added. Sec-
ondly, the number of allocated and configured VPN gateways within the network
also increases. This is due to the fact that the inspector node is located between
two untrusted nodes and therefore traffic protection must be added and removed
several times.

In Figure 6.12 and Figure 6.13, two graphs are presented. The first one shows
the trend of computation time with the Atomic Flows model when the network
structure does or does not have an inspector node. On the other hand, in the
second graph the same trend is displayed but with the Maximal Flows model. To
highlight the difference, the Y-axis uses a logarithmic scale.

Figure 6.12. Impact of the inspector node in the Atomic Flows model
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Figure 6.13. Impact of the inspector node in the Maximal Flows model

The following graphs show the total number of constraints generated in the two
models.

Figure 6.14. Test 2: Generation of constraints in the Atomic Flows model
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Figure 6.15. Test 2: Generation of constraints in the Maximal Flows model

In conclusion, the introduction of the inspector node in this test confirmed the
overall trend observed in Test 1 for both models but resulted in a performance
degradation. This deterioration can be attributed to the increased number of con-
straints generated and passed to the solver to define the behavior of the inspector
node, and to the higher number of VPN gateways in the network due to the need
for traffic to pass in clear.

6.4 Test 3: APs vs Policies Impact

This third test evaluates the impact of the number of APs and security policies
on the performance of the framework. In the first case, the number of APs within
the network remains constant while the number of endpoints and security policies
increase. In the second case, instead, the network topology increases while the
number of security policies is kept fixed.

The aim was to determine which parameter, between the number of APs and
security policies, has the greatest impact on overall performance. For this purpose,
only the Maximal Flows model was used, which proved to have better performance
than the Atomic Flows model. Furthermore, to avoid delays and factors that could
further affect overall performance, an inspector node was not included in the net-
work.

6.4.1 Fixed APs Results

The structure considered consists of 20 APs. For each test run, the number of
endpoints and security policies is increased, while the number of APs (20) and the
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number of untrusted nodes (7) remain fixed. In this case, the structure topology
does not grow as described in section A, but the added endpoints are connected
to the APs of the basic structure (client and server), without creating new APs or
untrusted nodes. This test was designed to evaluate the impact of security policies
independently of the number of APs.

The results are shown in Table 6.16 and illustrated in Graph 6.17 .

Figure 6.16. Test 3: Table of Fixed APs Results

Figure 6.17. Test 3: Graph of Fixed APs Results
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6.4.2 Fixed Policies Results

In this second case, the same network structure as described in Section A is used.
The logic for expanding the topology when the parameters change remains the
same. However, the difference is that the number of security policies is fixed at
100. These policies are defined in such a way as to require the protection of traffic
flows of different lengths and directions. This approach allows the performance of
the framework to be evaluated under conditions that are as realistic as possible.

Figure 6.18. Test 3: Table of Fixed APs Results

Figure 6.19. Test 3: Graph of Fixed APs Results
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6.4.3 Interpretation of Test Results

From the analysis of the results obtained and the computation time in relation
to the variable parameter in the specific case, it is possible to determine that the
number of network security policies is the factor that has the greatest impact on
the framework’s performance.

In case 2, where the policies were kept fixed, it can be observed that the time
does not change significantly with the increase in the size of the network structure
and consequently the number of APs. It was possible to create a complex net-
work topology, composed of 150 APs and 298 endpoints, with an execution time
of approximately 200 seconds. On the contrary, in the case with the fixed number
of APs, considering the same computation time, the network is much simpler and
smaller, with about 120 endpoints. From this, it can be deduced that the param-
eter with the greatest impact on execution time is the number of defined security
policies.

However, this observation can also be explained by analyzing the different num-
ber of constraints generated and passed to the solver. As shown by Figure 6.20 and
Figure 6.21, this difference is significant. By increasing the number of APs while
keeping the security policies constant, the number of generated constraints does not
increase significantly. On the other hand, if the number of APs is kept fixed but
the number of policies is increased, the opposite result is obtained. The number of
defined constraints is much higher than in the previous case. This can be a reason
why the number of policies has a greater impact on the overall performance.

Figure 6.20. Constraints Generated with Fixed APs
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Figure 6.21. Constraints Generated with Fixed Policies

In conclusion, increasing the number of security policies has a significant impact
on the framework’s execution time compared to the number of APs in the network.
Therefore, to optimize performance, it is important to carefully manage the number
and complexity of security policies, aiming to reduce the number of constraints
generated and passed to the solver.

6.5 Improving Framework Performance: Analy-

sis Work

This section describes the analysis work performed on the framework to identify
possible modifications for performance optimization. From the test results de-
scribed in the previous section, it emerged that, without aggregation constraints,
the Maximal Flows model is more advantageous than the Atomic Flows model, es-
pecially with a larger number of resources. Therefore, the analysis was conducted
on the Maximal Flows model.

The analysis process followed a well-defined approach, starting with an analysis
of the code to identify possible areas of intervention and ending with an evaluation
of the performance with the new modifications implemented. The principal aim
was to optimize the part that has the greatest influence on execution time, i.e. the
MaxSMT. The key factor in solving the MaxSMT problem is the number of soft
and hard constraints generated and passed to the solver. Therefore, an attempt was
made to optimize by reducing the number of constraints or their impact, avoiding
the generation of unnecessary constraints in certain situations. The changes made
were to improve performance without compromising the correctness and optimality
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of the solution provided by the solver. Then, tests were conducted to assess the
actual performance improvement achieved with the implemented changes.

This work has led to several potential solutions, which are now described along
with the results and improvements obtained.

6.5.1 Reducing Solver Constraints

The first intervention concerns the reduction of the constraints related to VPN
capabilities for each node. The modification was made within the Checker.java file,
where the protection constraints to be passed to z3 for each user-defined security
requirement are created.

During this process, an inconsistency was identified. For each node in the
requested flow to be protected by a security requirement, constraints related to the
node’s ability to support a VPN Gateway were generated. However, the possibility
that some types of nodes, such as endpoints, untrusted nodes, or inspector nodes,
cannot support a VPN Gateway had not been considered. A simple solution to
this problem was to add a check to ensure that constraints are only defined for
the appropriate nodes, before actually generating them. Thus, constraints are only
generated for endpoints that support VPN and for AP where a security function
can be allocated. The following box shows the construct introduced to perform this
check.

Listing 6.1. Reducing Solver Constraints

private void createProtectionConstraints(SecurityRequirement sr) {

...

if (node.getNode().isVpnCapabilities() || node.getTypeNF() ==

FunctionalTypes.VPN_GATEWAY) {

...

}

...

}

The application of this change has led to significant improvements in the num-
ber of constraints created and passed to the solver. Figure 6.22 and Figure 6.23
show a reduction of approximately 6.7% in the number of constraints, a significant
percentage of reduction.

In terms of performance, however, no significant improvement was observed.
Although a considerable reduction in the constraints created, the resulting per-
formance shows only a slight increase, which is not significant. Therefore, it can
be deduced that the constraints related to the VPN capabilities supported by the
nodes do not have a substantial impact on performance. Thus, the absence of these
constraints does not provide any advantage.
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Figure 6.22. Table with constraint reduction

Figure 6.23. Graph with constraint reduction

Other modifications are made with the aim of reducing the number of con-
straints, such as the elimination of possible duplicated constraints before they are
passed to the solver. However, these changes do not produce interesting results
either in terms of performance or in the total number of constraints.
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6.5.2 Redundancy Elimination for Improved Performance

Another change concerns the removal of ’low-level’ constraints implemented to im-
prove the readability of solver results and simplify translation into XML format.
It turns out that these constraints are redundant and could be removed. The final
solution remains the correct and optimal one.

Compared to the previous modification, significant performance improvements
are achieved in this case. As shown in Figure 6.24 and Figure 6.25, the computation
time improves considerably. Initially, with 744 network security policies, the search
for the solution requires around 1200 seconds, whereas with the modification made,
the solution is achieved in only 900 seconds, resulting in a saving of 300 seconds.

Figure 6.24. Table with redundancy elimination
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Figure 6.25. Graph with redundancy elimination
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Chapter 7

Conclusions

The main objective of this thesis was to analyze a model for the configuration of
secure communication within the network, extending the functionalities of VERE-
FOO. The model is based on the principles of full automation, optimization, and
formal verification to reduce errors deriving from human intervention and compute
a correct and optimal solution compared to the others available. This was achieved
by solving the MaxSMT problem, which allows obtaining a correct VPN gateway
configuration within the network that satisfies the user-defined input requirements.

A network generator capable of creating a complex topology with several branches
between nodes was proposed. The generated network was designed to simulate the
behavior of modern networks, allowing the definition of a set of protection policies
for each endpoint in the network that must be respected in the final solution. This
enables an evaluation of the network in a realistic situation, where several traffic
flows with different lengths and directions must be protected.

Subsequently, the generator was used to evaluate the performance of VEREFOO
to find a final network configuration that satisfies the input protection requirements.
During this process, complete automation and correctness of the final solution were
ensured. All tests were conducted using the two traffic flow models already imple-
mented within VEREFOO, Atomic Flows, and Maximal flows. This allowed the
two models to be compared under the same conditions, which one was more ad-
vantageous. The results showed that, despite a slightly lower initial performance,
the Maximal Flows model was preferable. This advantage was observed both in
the execution time required by the framework to compute the solution and in the
number of constraints passed to the solver for the MaxSMT problem. Despite these
differences, both models still demonstrated good performance even with increasing
network topology complexity and input requirements.

In conclusion, the thesis demonstrated the effectiveness of the framework in au-
tomatically configuring and allocating virtual functions to protect communication,
showing scalability even as the network topology becomes more complex. How-
ever, the work has some limitations. In particular, the focus was mainly on secure
configuration using VPN with IPSec, without considering the possibility of other
technologies and protocols. Furthermore, other types of nodes such as load bal-
ancers or NAT were not considered in the generated network structure.
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In the future, it would be interesting to explore how VEREFOO adapts to these
new changes, also attempting to evaluate the performance of end-to-end or side-to-
side VPNs. In addition, changes will need to be introduced to the models in order
to avoid an exponential deterioration of performance when the number of security
requirements and related constraints exceeds a certain threshold.
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Appendix A

Setting Up the Generator for
Testing

This section shows how the generator was set up for testing. For both models,
Atomic Flows and Maximal Flows, the files used are named differently, but the
content is the same.

Test 1-2

TestPerformanceScalabilityVPNwithAP1.java file

This file uses Atomic Flows model. For Maximal Flows tests, the file is the same
but is named ”TestPerformanceScalabilityVPNConfA.java”.

Listing A.1. Configuration of parameters for running tests

public class TestPerformanceScalabilityVPNwithAP1 {

public static void main(String[] args) {

int times = 100;

Random rand1 = new Random();

int upperbound = 9999;

for (int i = 0; i < times; i++) {

System.gc();

seed = rand1.nextInt(upperbound);

numberClients = 138;

numberClientsPerAP = 2;

numberServers = 4;

numberLB = 0;

numberInspectorNodes = (numberServers > 2) ? 1 : 0;

numberInspectorNodes = 0;

testScalabilityPerformance();

}

...

}

...

}
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Number of Executions

It indicates how many times the test is repeated with those inputs. After each
execution, a result is computed and at the end an average value is obtained from
these results.

int times = 100;

Number of Clients and Servers

These lines set the number of Clients and Servers there will be in the generated
network structure. The minimum value of Clients is 5.

numberClients = 30;

numberServers = 8;

Number of Inspector Nodes

As described, there are two versions: one without inspector nodes in the network
and another with the possibility of having an inspector node if the number of servers
is greater than 2. In the latter case, the second line must be removed.

numberInspectorNodes = (numberServers > 2) ? 1 : 0;

numberInspectorNodes = 0;

All other parameters, such as the number of untrusted nodes and the number
of APs, are calculated automatically.

TestCaseGeneratorVPNwithAP1.java file

Once all parameters have been set, the test can be executed. During the execution,
this file will be called, which contains the generator responsible for creating the
network structure and defining security policies.

Number of Network Security Policies

In the tests performed, the number of network security policies per endpoint was
always set to 3. There is also the possibility to change this parameter in the
generator

int numberPolicyEndpoint = 3;
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Test 3 - Fixed APs

A separate file was created for this case. The general parameters remain the same,
but the possibility of increasing client and server nodes while keeping the network
structure unchanged has been added. This allows increasing client and server nodes
without changing the number of AP and untrusted nodes. This is done by setting
the values of two specific variables.

TestPerformanceScalabilityVPNwithAP2.java file

All parameters for network creation remain the same, except for two variables.
Variable numberClientsToAdd allows for the addition of client nodes once the net-
work structure has been created based on the previous parameter values. The same
applies to variable numberServersToAdd, which adds server nodes. This file uses
Atomic Flows model. For Maximal Flows tests, the file is the same but is named
”TestPerformanceScalabilityVPNConfB.java”.

numberClientsToAdd = 30;

numberServersToAdd = 10;

TestCaseGeneratorVPNwithAP2.java file

The generator defines the network in two steps. First, it creates the network
structure based on the value of the user-defined variable numberClients and num-
berServers. In the second it only adds the number of clients (numberClientsToAdd)
and servers (numberServersToAdd) to the network already created. In conclusion,
the total number of clients will be numberClients+numberClientsToAdd, while num-
berServers+numberServersToAdd for servers.

Test 3 - Fixed Network Security Policies

To maintain the fixed number of network requirements, modifications were intro-
duced in the generator file used in Test 1.

TestCaseGeneratorVPNwithAP1.java file

The parameter numberPolicyFixed specifies the total number of policies that need
to be defined within the network.

int numberPolicyFixed = 100;
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