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Summary

In today’s world, automating Cybersecurity has become a crucial aspect of compa-
nies strategy defense to ensure security and reliability against constantly evolving
network security threats. Through the exploitation of Network Function Virtual-
ization (NFV) and Software defined Networks (SDN) it is possible to express a
series of Network Security Requirements (NSRs) for any given network with the
aim to use the paradigm of network virtualization to automate and optimize the
allocation and the configuration of Network Security Functions (NSFs), such as
packet filters and channel protection systems. Since a pure manual configuration
is prone to human errors, it’s been addressed an approach which allow network
administrators to specify NSRs in a high-level language with a software capable to
automatically translate them, establishing a graph of the network without policy
conflicts and with NSFs allocated and configured automatically. These solutions
are called Refinement Tools and are provided with correctness-by-construction ver-
ification approach.

When it comes to configure communication protected channels, it is mandatory
to take into consideration not only the risks connected to a manual configura-
tion, but also all the various variables present in the configuration of them. This
is advised in order not to occur in low security configuration and/or data losses.
To define these problems there have been studied taxonomies which classify these
inconsistencies (i.e. Insecure communications, Unfeasible communication, Subop-
timal walks, etc.).

The objective of this work is to create a middleware, capable of taking in input
a correct and optimal VPN configuration and translate it to a real configuration
for a IPSEC-based VPN software solution: Strongswan. This Translator is itself
part of a bigger framework, VEREFOO, capable of translating NSR given in a
high-level language by human to an automatic allocation and configuration of NSF
in an optimized, verified and correct manner.

In VEREFOO, to model how traffic flows are forwarded and/or translated cross-
ing the different nodes (Firewalls, NAT, VPN gateways) in the network have been
proposed two approaches. The first takes into consideration the use of Atomic
Predicates, each one identified by the IP quintuple, through which it is possible to
calculate the set of minimal and totally disjunct set of predicates (atomic). The
second one is dependent on the splitting of the traffic in the opposite way, which
means creating fewer flows but combining them, having just one representative for
all. There is no winner in these two approaches, but a series of pros and cons are
discussed later in this document.
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In this thesis, the focus was on the recognition of VPN tunnels in the virtualized
network and the automatic generation of the respecting configuration files in the
low-level language of Strongswan. To accomplish this goal, some tools have been
used, like the OpenSSH project and the SCP protocol exploited through the Java
Library com.jcraft.jsch. The network topology was analyzed, and its configuration
has been sanitized and translated to be compatible with Strongswan and the new
configuration files were sent to Virtual Machines, used as test environment.

Due to the non-readyness of the network configuration coming in output from
VEREFOO for a real configuration implementation, some assumptions have been
necessary, and some limitations were pointed out, but overall the tests have showed
promising results, easily improvable in the future, confirming this way is respectable
to follow.
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Chapter 1

Introduction

1.1 Introduction and Motivation

In today’s world, automating Cybersecurity has become a crucial aspect of compa-
nies strategy defense to ensure security and reliability against constantly evolving
network security threats. It is possible to express a series of Network Security Re-
quirements (NSRs) for any given network with the aim to use the paradigm of
network virtualization to automate and optimize the allocation and the configura-
tion of Network Security Functions (NSFs), such as packet filters. The goal is to
allow network administrators to specify NSRs in a high-level language and automat-
ically translate them, establishing a graph of the network without policy conflicts
and with NSFs allocated and configured automatically. These solutions are called
Refinement Tools and are provided with correctness-by-construction verification
approach.

Some Internet Service Providers (ISPs) have tried to create services to include
security in their offers, with the end-user being just a client who would not worry
about the safety of its infrastructure, but it is not an easy task, given that each
ISP could have potentially hundreds of thousands of clients. Some studies led to
the elaboration of a framework to enable the ISPs to provide Security as a Service
(SECaaS) [1] to their clients, using Network Function Virtualization (NFV) and
Software defined Networks (SDN).

The NFV allows using virtual machines and software processes instead of hard-
ware and physical machines, controlled by an hypervisor, providing flexibility in
terms of network function implementation;

The SDN allows centralizing the control power inside the single components of
the network itself, securing the detachment of the data plane and the control plane,
with the latter being fine-grained programmable.

But even SDN can be vulnerable if configurations are manually calculated.
In fact, some studies in IoT [2] and Smart Homes [3], where this paradigm is
heavily exploited, have been conducted on how to automatically verify and allocate
the SDN configurations based on security policies given by network and security
administrators and proved some limitations are still present.
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As a matter of fact, virtualized networks are rising in presence nowadays and
more ways of configuring Virtual Network Functions (VNFs) and its specification
are in development. For this in Europe it was founded the ETSI (European Telecom-
munications Standards Institute) which aims to standardize the architecture. De-
spite that, there are a numerous different implementation of VNF and this led to the
developing of some tool to help developers and administrators to use an high-level
language to specify network policy and requirements [4].

However, current literature lacks solutions for packet transformers and models
to forecast the network’s behavior, which is necessary to optimize security functions
allocation and configuration. It is challenging to model modern networks due to
their stateful and diverse transformations.

Therefore, this thesis aims to propose and compare network modelling ap-
proaches to automatically allocate and configure security mechanisms in virtualized
networks, considering high-level user requirements and perform an automatic de-
ployment in a real virtualization environment.

1.2 Thesis description

In this section is briefly illustrated the remainder of this thesis:

• Chapter 2: describes Virtual Private Networks, how are they defined and
which types of private connections exists, the technology behind them and
the anomalies that a manual configuration can introduce;

• Chapter 3: provide a description of the framework used as main base and for
which the work of this thesis aims to add new functionality, its model base,
and the two main approach used to create the input for the SMT solver, the
Atomic Flows and the Maximal Flows;

• Chapter 4: represent the introduction to the framework used to fulfill the
thesis objective. It describes the background work that has already been done
in traffic modelling and traffic description and the actual state-of-the-art in
refinement of some NSF, like firewall and CPS;

• Chapter 5: contains the description of the thesis objectives;

• Chapter 6: describes the core contribution to this thesis, which goal is
to deploy in a real virtualized environment the configuration of a Channel
Protection System through the use of an Open Source software, Strongswan
and an algorithm to translate and create a configuration file for it;

• Chapter 7: address the validation and testing of the algorithm of translation
defined in the previous chapter, using a Virtualization software;

• Chapter 8: contains the conclusions, summarizing the overall approach to
the translation algorithm and presents the improvements proposed for a future
work;
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• Appendix A: contains all the configuration steps to reproduce the environ-
ment and the tests, as it was a big part of this work;

• Appendix B: collection of XML schemas of test cases;
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Chapter 2

Virtual Private Network

When it comes to secure online communication, Virtual Private Networks (VPNs)
offer a powerful solution to safeguard information and traffic enciphering and au-
thenticating. VPNs allow users on a host to connect to other hosts through a
virtual tunnel, which aims at securing the communications. This technology pro-
vides Layer 3 end to end protection for homogeneous networks, like IP networks,
regardless of the underlying network infrastructure.

2.1 Type of VPN

The VPN can be classified by deployment scenarios. Understanding the distinction
between these VPN types is essential in determining the most suitable solution for
specific requirements.

2.1.1 Site-to-Site

A site-to-site VPN enables secure communication between two or more geographi-
cally separate locations, such as in a corporate infrastructure, where there could be
more branches of the company dislocated in several cities and/or countries. This
scenario emulates the interconnection of them as they would be in one big Local
Area Network, communicating each other using IP secure communication protocols
like IPsec and TLS as they were physically interconnected.

INTERNET
(Untrusted Network)

NET A NET B
VPN GW BVPN GW A

Host A Host B

TUNNELTUNNEL

Figure 2.1. VPN model: Site-to-Site
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As we can see in figure 2.1 the Host A in Network A can communicate securely
with Host B in Network B through the use of a tunnel, instantiated by the two
border gateways VPN GW A and VPN GW B, exchanging information through an
insecure means like internet.

2.1.2 End-to-End

The end-to-end VPN focuses on securing communication between individual hosts
or devices. The end hosts themselves have VPN capabilities, it means they act as
a VPN gateway of their own and instantiate a tunnel regardless of their physical
locations.

TUNNELTUNNEL

Host A Host BINTERNET
(Untrusted Network)

Figure 2.2. VPN model: End-to-End

As showed in figure 2.2, Host A and Host B are interconnected using a tunnel
over an insecure means. This type of VPN is mostly used and suggested in case the
data protection is crucial such as remote collaboration, accessing sensitive resources
from external networks and so on. The encrypted and authenticated data at the
source can only be read at the destination.

2.1.3 Remote-Connection

Also called Access VPN, it allows the secure connection of an individual user to
a private network from a remote location. This kind of scenario is widely used
nowadays by remote workers, which must connect to the corporate network to be
able to securely access data, hosts, files and other kind of resources.

Corp NET
VPN GW

Host A Remote Host

TUNNEL

Figure 2.3. VPN model: Remote-connection
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The figure 2.3 describe the scenario, with the tunnel instantiated between the
Remote Host and the border VPN Gateway. This type of VPN ensures a remote
user a secure gateway to connect to, in order to access the internal resources while
maintaining the security of the organization’s network.

2.2 VPN Technologies

VPN tunnels can be established at layer 2 as well as at lever 3 of the ISO/OSI stack.
Here follows an introduction to both technologies, even though this work focuses
only on the layer 3 VPN, since it is the only one technology that can be addressed by
Software Defined Network paradigm. Among the popular VPN technologies, IPsec
and TLS stand out as widely adopted protocols for establishing secure connections.

2.2.1 IPsec

The Internet Protocol SECurity is an integrated network protocol suite which
allows having secure communications between networks and/or hosts by means of
encryption, authentication, encapsulation as well as protection against replay attack
over an untrusted network.

It provides several tools to establish mutual authentication and for the creation
of cryptographic keys to authenticate the packets.

It is the technology used to achieve the goal of this thesis.

IPsec Security Architecture

The security architecture is given by some protocols included in the IPsec suite:

• Authentication Header (AH): provide the possibility to authenticate the
whole packet and to guarantee the integrity of it, in order to remove the
possibility to tamper with the content of the packet (replay attacks). It is im-
portant to remind that there is no encryption, so the packet can be sniffed
and read without keys, authorization or whatsoever. The integrity property
is reached by using an hash function and a shared secret key.

• Encapsulating Security Payload (ESP): this header provides authenticity,
data integrity and confidentiality. While AH authenticates the whole packet,
ESP authenticate and encrypt the payload of the packet, for data privacy.
If used in tunnel mode, by the way, a new packet header is added and the
ESP protection is extended to the whole inner packet.

• Security Association (SA): is where the negotiated algorithm and keys to
be shared for the AH or the ESP protocols are established. There are many
different ways to build security associations like pre-shared keys, IKE and
IKEv2 (Internet key Exchange), Kerberos, etc.

17
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IPsec Modes

Finally, IPsec protocols can be used in two different modes:

• Transport Mode: in transport mode only the payload (actual data) of the IP
packet is encrypted and/or authenticated while leaving the header untouched.
This does not affect the routing, which is based on the non-modified header
of the packet.

• Tunnel Mode: in this case, the all IP packet is secured by authentication and
encryption. The secured packet is encapsulated in a larger IP packet with a
new header used for the routing, adding an extra layer of security. This mode
is mainly used for creating VPN tunnels.

2.2.2 TLS

The Secure Socket Layer, called today Transport Layer Security, allows using a
tunnel for the entire traffic of a network communication or to secure an individual
communication. It is used mainly when IPsec has some difficulties, for example in
traversing NAT, firewalls and routers, since its original header encapsulation. TLS
services can be accessed by web browsers through HTTPS protocol.

TLS VPNs leverage cryptographic protocols and certificates to establish secure
connections between clients and servers. This technology ensures that data trans-
mitted between the client and the VPN server remains confidential and protected
from eavesdropping and tampering. TLS VPNs are often used for remote-access
scenarios, allowing users to securely connect to corporate networks or access sensi-
tive resources over the internet.

It acts at presentation layer, while IPsec acts at network layer (the 6th of the
ISO/OSI stack), which means it is critical in case of a Denial of Service kind of
attacks because the traffic has to be processed till the transport layer (4th), instead
of being dropped at network layer (3rd).

2.3 VPN anomalies

Enforcing computer system security is a complex task requiring specific skills. Se-
curity administrators often lack on tool support to validate enforced policy compli-
ance. Communication Protection Policies (CPPs), used to define communication
protected channels, are difficult to manage and often sensitive, as mistakes can
lead to data loss or security breaches. In [5] a set of nineteen policy anomalies have
been addressed and analyzed. A model was introduced and, through First Order
Logic formulas, has been possible the detection of the anomalies and the resulting
strategies to avoid them.

Two taxonomies were instituted, classifying the nineteen anomalies. One based
on the side effects and one, more technical and information-centered, based on
where the anomalies arise.

18



Virtual Private Network

The first one of the two taxonomy presented is being reported here, called effect-
based taxonomy :

• Insecure communications: inadequacy, monitorability, skewed channels,
asymmetric channels;

• Unfeasible communications: non-enforceability, out of place, filtered, L2;

• Potential errors: shadowing, exception, correlation, affinity, contradiction;

• Suboptimal implementation: redundancy, inclusion, superfluous, internal
loop;

• Suboptimal walks: alternative path, cyclic path;

After the classification and after having built and tested the model, the re-
searchers pose their attention to answering two main questions:

1. If the anomalies classified in the paper were really introduced in CPPs by
network administrators;

2. If a more expert network administrator will be less keen to introduce anoma-
lies compared to a less expert one;

To answer the two questions, they ran an experiment with 30 participants.

The results were very interesting: in fact, 93% of network administrator did
introduce at least one anomaly and all nineteen anomalies were introduced by at
least one administrator. This answers the first question, the purpose of the paper
to model and search for anomalies on the network is indeed useful.

Moreover, from the experiment data they deduced that expert administrators
introduce fewer anomalies, except for the sub-optimal implementation macro cat-
egory: they tend to add more redundancy and superfluous anomalies in order to
create a deeper defense strategy.

The evidence of the presence of the anomalies is not to think only in a manual
configuration case scenario, but also in the automatic one. In fact, the VEREFOO
framework, as described in the next chapter (3) allows the automatic configuration
and allocation of Security Functions but after having executed an analysis of the
configuration provided.

Finally, the work of this paper allows detecting incompatibilities, redundancies
and errors introduced in communication policies based on human errors. This
is also the purpose of this thesis work, introducing the translator algorithm to
create secure communication tunnels and automatically deploy them, as described
in chapter 6.
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Chapter 3

VEREFOO framework

In the context of security automation, there have been recent proposals for imple-
menting an automated approach to policy-based network security management sys-
tems. This includes leveraging technologies like Network Functions Virtualization
(NFV) and Software-Defined Networking (SDN) to enhance network management
and increase networking flexibility. Manual configuration of security functions is
prone to errors and can be time-consuming, especially as networks become more
complex. It is evident that producing a correct and optimized configuration man-
ually is challenging. Automated approaches offer the potential to compute config-
urations more efficiently and eliminate human errors. Many of these approaches
rely on formal methods to ensure solution correctness. Some tools even provide
optimization features to minimize resource usage in addition to correctness. This
chapter introduces the VEREFOO approach, which is based on formal methods
and utilizes a partial weighted Maximum Satisfiability Module Theories (maxSMT)
problem. By solving this problem, VEREFOO generates a formally correct config-
uration for the given Network Security Requirements while minimizing the number
of firewalls and configured firewall rules. The chapter provides an overview of the
tool’s general structure and modules and presents theoretical concepts such as the
distinction between Service Graph and Allocation Graph, along with the relevant
constraints defined for the MaxSMT problem.

3.1 Introduction

To fulfill this goal, a novel approach has been developed and studied by means of
Network Function Virtualization and the Software Defined Network paradigm. The
result of some studies like [6] and [7] lies in helping not to introduce any errors in
manual configuration and, moreover, to optimize and to verify them and finally,
help the administrator to choose from a pool of security functions and propose
candidate technology based on the network project.

VEREFOO (VErified Refinement and Optimization Orchestrator) [8] is a frame-
work capable of translating Network Security Requirements (NSR) given in a high-
level language by human being to an automatic allocation and configuration of
Network Security Functions (NSFs) on a Service Graph, being them optimized,
verified and correct.
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To perform this role, the framework is based on the resolution of a Maximum
Satisfiability Modulo Theories (MaxSMT) problem through the use of open-source
Microsoft’s z3Opt engine.

Based on its three pillars Optimation, Optimality and Formal Correctness, it
has a dual objective:

• The optimal Allocation Scheme for NSFs;

• The optimal Configuration of the NSFs;

3.2 Model description

The model of VEREFOO, depicted in figure 3.1, is based on two kinds of graph,
which can be given as input and from which the framework can generate the optimal
solutions, and other components as follows:

• NSRs set: a group of Network Security Requirements needed to match with
and satisfy the Security Constraints. They can be expressed by means of an
High-Level or a Medium-Level language, depending on the level of expertise
of the network administrator creating them;

• Service Graph: it is a logical topology created by network functions put
together to form a complete end-to-end service, in which are allowed loops
and multiple paths to reach destinations. It does not contain any security
requirements, hence there will not be any firewalls, VPN gateways or antispam
filters, etc. which will be added later in the Allocation Graph. An example
of Service Graph is depicted in figure 3.2;
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Figure 3.2. Service Graph
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Figure 3.1. VEREFOO flow diagram

• Allocation Graph: it is a logical topology of network functions to form a
complete end-to-end service, but, this time, between each node there will be
another additional node called Allocation Place in which Network Security
Functions could be allocated. The framework allocates security functions in
the APs in an optimal way, using the remaining ones to allocate forwarders.
The Allocation Graph (AG) is a logical topology that can be generated either
from scratch or automatically generated based on the Service Graph. If an
Atomic Predicate (AP) remains unused but is part of the path of at least one
input requirement, a forwarder would take its place, forwarding each received
packet.

In VEREFOO, the process of automatically generating an Allocation Graph
(AG) from a Service Graph (SG) involves adding a new AP on every link
between two nodes. However, the service designer can impose constraints
on the generation process. This includes forcing the allocation of a Network
Security Function (NSF) on a specific AP or prohibiting the placement of a
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new AP in a particular location where no network function can be placed.
An example of Allocation Graph is depicted in figure 3.3;
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Figure 3.3. Allocation Graph

• PAN module: the Policy ANalysis module is responsible to perform a con-
flict’s analysis between the Network Security Requirements given in input
and detecting errors. A non-enforceability report is generated if conflicts can-
not be resolved, otherwise it will determine the minimum set of requirements
that need to be satisfied.

• H2M module: this module has the purpose to translate the Security Re-
quirements given in input by the network administrator in high-level language
to medium-level language security requirements for the framework, contain-
ing all the useful information to create the Network Security Function and
automatically allocate them on the allocation graph;

• SE module: the Network Function SElection is in charge of respecting and
satisfy the Network Security Requirements by choosing the right Network
Security Functions from a pool of predefined ones (NF pool);

• ADP module: the core function is carried out by the Allocation, Distribu-
tion and Placement module. Its inputs consist of a group of network security
requirements expressed in medium-level language, a list of conflict-free Net-
work Security Functions, and either a Service Graph or an Allocation Graph.
The ADP module then produces a new Service Graph that includes any newly
allocated network security functions, in addition to those already present in
the input graph, or a physical graph. Additionally, the module generates
configuration for each allocated network security function thanks to a M2L
module, which translates configurations from medium to low level; to do so it
uses the z3 problem solver. The NSRs are introduced as hard constraints that
must always be satisfied by the solver. On the other hand, other specifications
and optimizations are introduced as weighted and optional soft constraints.
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• M2L module: the last module is the Medium-to-Low (M2L) module, which
takes the list of medium-level policy rules produced by the solver as input and
translates them into a low-level language based on the actual implementation
of the network functions.

3.2.1 Network Model

The description of the network model is achieved by the use of graphs. The repre-
sentations of all possible network functions (i.e. firewalls, routers, VPN Gateways,
etc.) is left to the nodes of the aforementioned graphs while the network functions
connections are represented by the edges. In VEREFOO, the graph used is of the
type directed which means each edge represent an unidirectional communication
and, to have it both ways, we would need two edges.

In the model of a network, each node possesses specific properties that define
the element allocated to that position. These properties include a set of input and
output ports, which determine whether a packet with a specific header can traverse
through that port. This is useful when it is needed to understand if packets are al-
lowed to pass through that node or the passing is denied. Additionally, an essential
characteristic is the Transformation function, denoted as τ. Within a node, pack-
ets may undergo various transformations, such as header rewriting, encapsulation,
de-encapsulation and label switching. Upon entering a node, a packet is examined
against the input domains of the transformation function τ, and the corresponding
function is then applied to the packet.

Since this thesis focuses on Channel Protection Systems, it is important to
categorize nodes based on the feature they could have in relation to the channels.
There are 3 different node’s category:

• Untrusted Nodes: refers to those nodes that must adhere to security re-
quirements. Often the need for these kinds of nodes are overlooked by a net-
work administrator that, by default, assumes that all nodes between a source
and a destination are trusted. This latest approach is recommended to be
avoided, except for the case in which the administrator has no knowledge at
all of the topology of the network. Conversely, considering a set of untrusted
nodes expands the solution space and often leads to resource savings. If not
differently specified, it is safer to consider any nodes as untrusted;

• Inspector Nodes: refers to those nodes that must pass without any pro-
tection for the purpose of analyzing the content. Network security functions,
such as Intrusion Detection Systems (IDS), typically require access to un-
encrypted network traffic for analysis and detection of malicious content. If
this kind of nodes would not be present in the network, some conflicts may
arise because the IDS can not read the payload of the packets, triggering un-
necessary alarms or dropping useful traffic. However, even if enhancing the
interoperability between security functions, employing inspector nodes may
introduce additional delays due to the potential need for multiple encryp-
tion/decryption processes.
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• Trusted Nodes: refers to those nodes where the decision to enforce security
requirements is at the discretion of the solver. To illustrate this, we can
denote A as the set of all nodes, U as the set of untrusted nodes, and I as
the set of inspector nodes. The set of trusted nodes, denoted as T, can be
obtained by subtracting the sets of untrusted and inspector nodes from the
set of all nodes:

T = A− U − I

In other words, any nodes that do not belong to the sets of untrusted or in-
spector nodes will be automatically categorized as trusted by the solver. This
implies that the network administrator is not required to explicitly specify
the nodes falling into this category.

3.3 Atomic Flows vs Maximal Flows

To formally define the traffic originated at a node and forwarded in the network is
a delicate task, composed by modeling packets, paths, transformation and, more in
general, traffic flows between each node. Let us remember that this models must
guarantee the formally corrected representation of the traffic and, at the same time,
an efficient computational algorithm. In [9] two model approaches are introduced,
called Atomic Flows and Maximal Flows, to overcome the drawbacks the already
existent tools carry, challenging efficiency and scalability. The two approaches,
needed to represent optimized traffic flows, have been then implemented in the
VEREFOO framework, to solve the reachability and refinement problem performing
an optimal allocation and configuration of NSFs.

3.3.1 Background

A packet is represented by a predicate that is computed based on specific fields,
primarily the header. Packets sharing the same values in these fields belong to the
same class and are associated with the same predicate. Consequently, all nodes
encountered in the network treat these packets consistently. It is important to
note that a predicate represents the network traffic of a packet. To determine the
forwarding domains and the transformation behavior for a packet, the predicate it
belongs to is exclusively considered. Therefore, it is essential to represent the rules
in the nodes’ ACL, the rules defined in the forwarding tables, and the domains of
the transformation function using predicates. This ensures that the same model
used for network traffic is applied. By doing so, the predicate describing incoming
packets can be compared with the predicates characterizing each encountered node.
This facilitates decision-making regarding forwarding and transformation behavior
based on matches with the node’s rules or domains.

The ability to compare two predicates is a crucial aspect to consider when select-
ing a model for their representation. Specifically, the chosen predicate model should
support various comparison operations such as intersection, union and negation.
The ultimate objective is to fully represent the entire network, including all its com-
ponents, as distinct sets of predicates that comprehensively describe its forwarding
and transformation behavior.
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For clarity, it is possible to address a predicate as an IP packet and the sub-
predicates are its fields (IP source, IP destination, port source, port destination,
protocol). The real predicate representing the IP packets is the conjunction of all
the sub-predicates which can represent a single value, several values in a range or,
with the wildcard symbol ”*” a full range of values.

Traffic Flows are utilized to describe the collection of predicates and nodes
(a flow) crossing a network, denoted with F. Each traffic flow represents the be-
havior of a particular packet class along a path, encompassing the packet’s exit
from the source node, its forwarding through intermediate nodes, and any trans-
formations it undergoes while traversing from source to destination. The purpose
of utilizing traffic flows is to comprehensively describe the behavior of an entire
network solely through the set of traffic flows (F ). Specifically, when aiming to
model network traffic for refining security properties, the focus is on a subset of
possible flows known as interesting flows. These flows are selected based on spe-
cific sources and destinations defined by security policies. The interesting flows
are determined by processing the given Network Security Requirements and the
configuration of encountered nodes. Selecting an appropriate flow model is crucial
to efficiently describe network behavior, particularly in computing how an entering
packet is forwarded and transformed while traversing various nodes (e.g., NAT,
load balancers, VPN gateways, firewalls).

Two distinct and alternative models for describing traffic flows have been stud-
ied, implemented, and compared in a previous work [9] and it follows a presentation
and comparison of them.

3.3.2 Atomic Flows

Based on the idea presented in [10] on the Network Reachability Problem, an atomic
predicate is a set of simple and minimal predicates coming from the partition of
complex predicates (i.e. representative of NAT input or source classes, etc.).

From having a collection of network predicates, the set of completely disjoint,
minimal and fully representative predicates (referred as Atomic) can be calculated
in such way that each predicate from the initial set can be expressed as a combi-
nation of a subset of the predicates from the second set.

Definition 3.3.1. Given the set P of predicates, the derived set of Atomic Predi-
cates {p1, ...,pk} is such if satisfies five properties:

1. pi /= false, ∀i ∈ {1, ..., k}.

2.
⋁︁k

i=1 pi = true

3. pi ∧ pj = false, if i /= j

4. each predicate P ∈ P , P /= false, is equal to the disjunction of a subset of
atomic predicates P =

⋃︁
i∈S(P ) pi, where S(P ) ⊆ {p1, ..., pk}

5. k is the minimum number such that the set {p1, ..., pk} satisfies the above
four properties
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From a specific predicate, it is feasible to compute the set of corresponding
Atomic Predicates as follows:

A({P}) =
{︃
{true} : P = false or true
{P,¬P} : otherwise

(3.1)

Given two sets of Atomic Predicates P 1 = {b1, ..., bl} and P 2 = {d1, ..., dm},
the set of Atomic Predicates corresponding to their union P 3 = A(P 1 ∪ P 2) =
{a1, ..., bk} is equal to:

ai = bi1 ∧ di2|ai /= false, i1 ∈ {1, ..., l}, i2 ∈ {1, ...,m} (3.2)

From this set of atomic predicates, it is possible to derive the set of the corre-
spondent Atomic Flows.

Algorithm 1 Computing Atomic Predicates

Input: {P1, P2, ..., PN}
Output: A({P1, P2, ..., PN})
1: for i← 1, n do
2: compute A({Pi}) using 3.1
3: end for
4: for i← 2, n do
5: compute A({P1, ..., Pi}) from A({P1, ..., Pi−1}) and A({Pi}) using 3.2
6: end for

The Atomic Flow approach employs APs to describe the traffic traversing the
network and configure firewalls and other network functions with rules expressed
solely using atomic predicates. In general, it describes the network and its be-
havior using predicates from the AP set. The approach begins by identifying the
interesting predicates and then computing the corresponding set of Atomic Predi-
cates as previously described. The interesting predicates are those associated with
nodes related to the given Network Security Requirements (NSR). This includes
predicates representing the traffic generated from the source node (source traffic),
traffic reaching the destination node (destination traffic), input traffic classes and
transformation behavior for encountered transformers along the paths.

Once the set of Atomic Predicates for all the interesting predicates in the net-
work is computed, the next step involves generating all possible Atomic Flows
for each user requirements. These Atomic Flows are then used as input for the
MaxSMT solver to allocate and configure the necessary Network Security Func-
tions.

Definition 3.3.2. A flow f = [ns, tsa, na, ..., nh, thi, ni, ..., nk, tkd, nd] is defined
atomic if each traffic tij ∈ B, where B is the set of Atomic Predicates computed
from the set of interesting predicates.

One significant advantage of this approach is that the predicates are inherently
unique, allowing each predicate to be associated with a distinct integer identifier.
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Consequently, the solver can operate using simple integers to represent the traffic,
eliminating the need for more complex representations like the previously mentioned
Predicate class. This streamlined approach significantly improves the solver’s res-
olution performance, as it enables a more efficient problem model. Additionally,
since many operations involve intersections and unions, working with sets of inte-
gers is less complex compared to sets of more intricate predicate representations.

It is important to note that while the Atomic Flows approach may not produce
the smallest possible number of configured rules in an absolute sense, it achieves
the smallest number of disjointed rules, which is not necessarily the absolute op-
timal solution. Another drawback of this approach is the initial computational
time required to generate the set of Atomic Predicates from the set of interesting
predicates. This step is computationally intensive as it involves processing one in-
teresting predicate at a time and computing its intersection with all other APs in
the set before adding it, ensuring that the set only contains disjointed traffics.

3.3.3 Maximal Flows

This approach is based on achieving the maximum integration of the flows, going
in the exact opposite direction as with the atomic flows. In fact, rather than with
the atomic approach where the aim was to maximize the number of simple flows,
here the aim is to minimize the number of flows, but equally representative of the
network flows, aggregating them in maximal flows.

A Maximal Flow [11] is a subset of all flows, which only contains flows that
are not in other subset of flows and behave consistently when crossing the various
nodes of the network. Basically, the goal is to aggregate all the flows with the same
behavior under a specific subset, reducing the number of representative flows in the
network. In this case, the traffic flows are modeled as a list of alternating nodes and
predicates. However, instead of using atomic predicates, the employed predicates
express the disjunction of multiple IP quintuples.

Definition 3.3.3. Called Fr the set of all possible flows of the network, the corre-
sponding set of Maximal Flows FM

r matches the following definition:

FM
r = {fMr ∈ Fr | ∄f ∈ Fr.(f /= fMr ∧ fMr ⊆ f)}

The flows that behave in the same way are aggregated into the same Maximal
Flow, ensuring consistent treatment by the network. The design and resolution
of the MaxSMT problem are then modeled using the set FM

r , which has the same
expressiveness as Fr but a smaller size. One major advantage of this approach is the
significantly faster computation of the set FM

r compared to the set of Atomic Flows.
Unlike the previous approach, the algorithm for FM

r computation does not require
initial computation time for traffic flows. However, a drawback is that the traffics
exchanged between nodes within all Maximal Flows are not disjoint and unique.
Therefore, they cannot be associated with integer identifiers like Atomic Predicates,
but complex data structure must be used (i.e. BDDs, Wildcard Expressions). The
solver used by VEREFOO, specifically works with 13 fields: 4 integers for the source
IP address, 4 integers for the destination IP address, 2 integers for the source port
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range, 2 integers for the destination port range and a string for the protocol type.
The increased number of variables provided to the solver has a significant impact
on the overall resolution performance.

3.3.4 Comparison

Atomic Flows and Maximal Flows are two contrasting approaches used to model
network traffic behavior. As per the results obtained in [9], it is feasible to say that
the Atomic Flows approach focuses on maximizing the number of simple flows by
employing Atomic Predicates. These predicates are unique and can be associated
with integer identifiers, resulting in a streamlined problem representation. This
approach offers improved resolution performance, as operations involving intersec-
tions and unions are less complex when performed on sets of integers. However,
generating the set of Atomic Predicates from the interesting predicates requires
significant initial computational time.

On the other hand, Maximal Flows aim to minimize the number of flows while
maintaining representativeness. Flows with similar behavior are aggregated into
Maximal Flows, reducing the overall number of representative flows. The com-
putation of Maximal Flows is faster compared to Atomic Flows, as it doesn’t re-
quire initial computation time. However, the traffics within Maximal Flows are
not disjoint and unique, necessitating the use of complex data structures for their
representation. The increased number of variables used in Maximal Flows can im-
pact the resolution performance. Both approaches offer distinct trade-offs in terms
of flow representation, computation time, and resolution performance, catering to
different requirements in modeling network behavior.

Here follows a recap about advantages and disadvantages of both the approaches,
as depicted in table /refFlowComparison:

Atomic flows:

+ : simpler identifier (i.e. one Integer)

− : number of flows is greater than Maximal flow approach

− : time needed for the initial computation of the flows.

Maximal flows:

+ : number of flows is considerably less than atomic flows.

+ : time needed for the initial computation of the flows is less, plus it is a
recursive, parallelizable algorithm.

− : Complex identifier; i.e 4 Integer for IPv4 source, 4 for IPv4 destination, 2
for source port, 2 for destination port, 1 String for protocol type;

The approaches have been tested for the resolution of two of the major secu-
rity problem presented in this thesis: the refinement problem and the verification
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Table 3.1. Atomic Flow and Maximal Flow comparison

Type Identifier #flows Initial computation time
Atomic + − −
Maximal − + +

problem of requirements and policies, on which are based the allocation of secu-
rity functions. The refinement problem addresses the translation from High-level
language to a Low-level language policies to transform them to system configura-
tions. The verification problem instead aims to guarantee that a security function
is correctly enforced in a system, using an SMT solver (MaxSMT).

Based on the tests that have been conducted in [9], to solve the first problem
regarding verification and reachability, the Maximal Flow approach proves to reach
better performances, mostly due to the initial computation time for the Atomic
flows approach, other than the fact that the latter generates much more flows.

On the contrary, in solving the problem of refinement it is the Atomic Flow
approach which performs better, since the SMT problem calculation phase weights
much more in respect to initial calculation phase, and it is faster with simpler
Atomic Flow’s identifier with respect to the Maximal Flow complex one’s.
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Chapter 4

Network Security Functions in
VEREFOO

4.1 Introduction

NFV paradigm exploits the representation in software of network and security func-
tions, the Virtual Network Functions (VNFs). These can be deployed in virtual
environments like Virtual Machines or Containers hosted in high computing pow-
ered servers. Network Security Functions are a subset of VNFs, which exploit SDN
to create software instances.

4.2 Network Security Requirements

As seen in chapter 3.2, one of the input of the VEREFOO framework is expressed
by Network Security Requirements, which formalize the conditions for the configu-
ration of the Virtual Network Functions.

At the time of writing this thesis, VEREFOO contains different possible re-
quirements:

• Reachability Requirements: gives VEREFOO information about source
nodes being able to contact and connect to destination nodes. The framework
has to make sure NO packets will be dropped in the path by the use of packet
filters (firewall, see 4.3.1), configuring them in whitelist (all communication
blocked, except the specified one) or blacklist (all communication allowed,
except the specified one);

• Isolation Requirements: gives VEREFOO information about source nodes
NOT being able to contact and connect to destination nodes. The framework
has to make sure all the packets will be dropped in the path by the use of
packet filters (firewall, see 4.3.1), configuring them in whitelist (all commu-
nication blocked, except the specified one) or blacklist (all communication
allowed, except the specified one);
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• Communication Protection Requirements: gives VEREFOO informa-
tion about the establishment of communication protection between two nodes,
based on a set of policies (CPS, see 4.3.2). Since this work is mainly focused
on this, it is further elaborated in the next section;

4.2.1 Communication Protection Requirement

The Communication Protection Requirements are used and provided if the objective
is to ensure a protected communication channel between two end-nodes, which can
have different feature as authentication, secrecy, etc. These kinds of requirements
are defined by means of properties and protection information:

• RuleType: represents the security requirement that should be satisfied, in
the context of Secure Communications requirements it assumes the value
”ProtectionProperty”.

• FilteringCondition: define the criteria for selecting the traffic that needs
to be protected. These conditions include:

– IPSrc: the source IP address of the traffic flow that requires protection.

– IPDst : the destination IP address of the traffic flow that requires pro-
tection.

– portSrc: the source port at the transport level of the traffic flow that
requires protection.

– portDst : the destination port at the transport level of the traffic flow
that requires protection.

– transportProto: the transport-level protocol of the traffic flow that re-
quires protection.

To represent the IP addresses (IPSrc and IPDst), the conventional dot-
decimal notation is used, which represents the IP address as a series of four
numbers separated by dots.

ip1.ip2.ip3.ip4

where ipi, ∀i ∈ {1,2,3,4} can be represented as integers in the range from
[0-255] (inclusive) or as wildcard elements denoted by ”*”. The wildcard
symbol allows for a unified representation of both network addresses and
their corresponding netmasks. For example, the representation 10.0.0.* can
be used to express the endpoint present in the network 10.0.0.0/24 while
192.168.*.* characterizes the network 192.168.0.0/24.

The source and destination transport-level ports, portSrc and portDst, can
be specified as single numbers or as intervals of numbers within the range of
[0 - 65535]. For example, if it is required to block traffic flow between the
source 10.0.0.2 and the destination 20.0.0.5 when the source port num-
bers fall within the interval [1, 4460], the packets characterized by a source
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port number within this interval would be blocked to satisfy the isolation
requirement.

Lastly, he transportProto element in the Network Security Requirements rep-
resents the layer-4 protocol used above the IP layer. It can take values such
as [TCP, UDP, ICMP], or the wildcard ”*”. When the wildcard is used, it
indicates that the property must be satisfied while considering the possibility
that the source can send packets using TCP, UDP or ICMP protocols.

• ProtectionInfo: contains information about the topology and the technol-
ogy used:

– Security Technology : specifies the technology to be adopted in order to
enforce the security requirement. TLS/IPsec, ref 2.2;

– Authentication Algorithm: Algorithms employed for packet authentica-
tion and integrity and all the cryptographic algorithm;

– Encryption Algorithm: Algorithms used for the encryption (if necessary)
of the packets, ref 2.2

• TopologyInfo:

– Untrusted/Inspector Nodes : nodes in which the packets must flow en-
crypted (untrusted) or unencrypted (inspector, i.e. IDS). Each node of
the path is considered an untrusted node by default;

– Untrusted Links : links in which the packets must flow encrypted, which
is the default configuration. If a link should be considered as trusted, it
must be defined as such.

Being N the set of all network nodes and F the set of all network flows, two
predicates are required for the formulation of security protection requirements:

PROTECT (n, f)⇒ Boolean with n ∈ N , f ∈ F (4.1)

UNPROTECT (n, f)⇒ Boolean with n ∈ N , f ∈ F (4.2)

To effectively fulfill the creation of the Channel Protection Requirements, the
following conditions must be met:

1. For each traffic flow within the requirement, when encountering an Untrusted
Node, the number of predecessor nodes responsible for adding a protection
layer (PROTECT) must exceed the number of nodes involved in removing it
(UNPROTECT). This condition is vital to ensure the security of the traffic
passing through the untrusted node.

2. For each traffic flow falling under the requirement, when encountering an
Inspector Node or the destination node, the number of predecessor nodes
responsible for adding a protection layer (PROTECT) must match the num-
ber of nodes removing it (UNPROTECT). This condition is vital to ensure
that traffic remains unsecured while passing through the Inspector Node or
arriving at the destination node.
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3. For each traffic flow falling under the requirement, if there exists an Untrusted
Link, the number of predecessor nodes responsible for adding a protection
layer (PROTECT) must exceed the number of nodes removing it (UNPRO-
TECT). This condition is vital in safeguarding the security of traffic when
traversing the untrusted link.

Listing 4.1 is an example of how the Protection Requirement can be transposed
in the XML input file.

Listing 4.1. XML Schema of a Protection Requirements

<PropertyDefinition>

<Property graph="0" name="ProtectionProperty" src="10.0.0.1"

dst="30.0.5.2" dst_port="80">

<protectionInfo encryptionAlgorithm="AES_128_CBC"

authenticationAlgorithm="SHA2_256">

<untrustedNode node="20.0.0.3"/>

<securityTechnology>TLS</securityTechnology>

<securityTechnology>IPSEC</securityTechnology>

</protectionInfo>

</Property>

</PropertyDefinition>

4.3 Network Security Functions

This chapter introduces two of the most discussed network technology in the context
of the framework contemplated in this thesis. The firewall, as packet filters, and
its configuration and the Channel Protection System.

4.3.1 Firewall

A Firewall is a Network Function which monitors and manages incoming and out-
going packet traffic based on Security Policy defined manually or automatically.
The establishment of policies based on the type of network and the implementation
of security rules to permit or restrict access, are key factors in preventing potential
hacker or malware attacks.To ensure maximum protection against cyber attacks, it
is crucial to correctly configure the firewalls using a Filtering Policy. Manual con-
figuration of the firewall settings can be time-consuming, prone to human errors,
and may result in conflicts or anomalies.

To overcome the limitations associated with manual configuration, the con-
cept of Security Automation is utilized. Security Automation employs automated
control processes to define security feature policies, effectively minimizing the oc-
currence of human errors and enhancing overall security.

Related work

In the context of VEREFOO, firewalls and packet filters have been the Security
Function most developed and tested. There are a numerous amount of papers
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about this subject, like [11, 12]. Furthermore, it has been studied the reaction
of the aforementioned Firewalls in relation to network structure modification and
update [13], pursuing a correctness-by-construction approach, limiting the number
of operations and achieve the optimality by use of a MaxSMT solver. Different
virtualization environment has been tested, like Virtual Machines and Kubernetes
[14].

Conflict Analysis

The use of the SDN paradigm introduces some edge cases, considered as anomalies,
which must be addressed and managed. For example, preventing forwarding errors
or the non-reachability of sections of a network.

In order to avoid human distractions in configuration and the consequential
trial and errors stages, which brings to a non-complete vision of the real network
behavior, automated software tools based on Formal Verification approaches has
been developed, able to model the network and preventing the creation of anomalies
(or minimizing it [15]), improving the creation of verified and optimal policies,
solving a MaxSMT problem with wide coverage of NSF and with high performance
[16].

The manual configuration of the Filtering Policy is associated with certain chal-
lenges and risks, including:

• High probability of configuration errors: Without an automatic validation
mechanism, the likelihood of introducing errors or redundancies in the rules
is significant. There is no built-in check to ensure the correctness of the rules
or to identify conflicts with existing rules on the devices.

• Complexity and potential for failure with multiple Firewalls: Managing mul-
tiple Firewalls within a network increases complexity and the probability of
failures. Each Firewall requires its own set of filtering policies, resulting in a
fragmented rule repository that is harder to maintain and coordinate.

• Impact on internal network security: Incorrect configurations can have detri-
mental effects on the internal security of the network. Misconfigurations may
inadvertently allow unauthorized access or compromise the integrity of the
network, posing risks to sensitive data and resources.

To mitigate these challenges and risks, the adoption of Security Automation ap-
proaches can help streamline the configuration process, ensure rule consistency, and
enhance the overall security of the network.

The conflicts can occur when rules are misconfigured within a single policy,
resulting in intrapolicy conflicts, or they can arise between policies on differ-
ent devices, leading to interpolicy conflicts. These misconfigurations, whether
within a policy or between policies, can undermine the effectiveness of the security
measures implemented in the system.

The first type of conflicts, the Intrapolicy Conflict happens when rules present
in a single security devices makes frictions and can be categorized as follows:
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• Intrapolicy Shadowing: when a rule is preceded by another rule with a
different action, it becomes obscured and will never be applied;

• Intrapolicy Correlation: correlation conflicts arise when two rules are re-
lated to each other but have different types of actions. This dependency can
lead to ambiguity in defining the security policy;

• Intrapolicy Exception: a rule acts as an exception to the following rule if
it has different actions and the subsequent rule matches a superset of the rule
itself;

• Intrapolicy Redundancy: redundancy occurs when a rule is overshadowed
by another rule, rendering it unused as packets will never match it.

The second type of conflicts, the Interpolicy Conflict, happens between rules
on different devices. Conflicts occur when a downstream device permits traffic that
is blocked by one of the upstream devices, or when an upstream device permits
traffic that is blocked by one of the downstream devices. Conversely, all intermediate
devices should allow or exclude any traffic that is allowed or protected by both the
upstream and downstream devices, enabling the flow to reach its destination.

They can be categorized as follows:

• Interpolicy Shadowing: unlike intrapolicy shadowing, this conflict occurs
between two rules of different devices. It arises when an upstream policy
blocks a portion of the traffic that is allowed by a downstream policy;

• Interpolicy Spuriousness: traffic is considered spurious when the upstream
device allows certain traffic that is actually blocked by the downstream de-
vice. This situation has significant implications for network security, since it
permits unwanted traffic to pass through the network.

4.3.2 Channel Protection System

Channel Protection Systems refer to security measures and technologies imple-
mented to safeguard communication channels and ensure the confidentiality, in-
tegrity, and availability of data transmitted over those channels. These systems
aim to protect the channels through which information is exchanged between two
or more entities, such as individuals, organizations, or devices.

Data transmission is one of the most critical feature of network security and can
be achieved by means of Secure Channels. It is possible to think of a channel like a
tunnel, starting at the source node - which may or may not add a protection layer
- and ending at the destination node - which may o may not remove the protection
layer. This kind of communication technology is able to enforce secure communica-
tions between network entities, satisfy the security requirements given by a network
administrator and assure data integrity, data confidentiality and authentication.

The manual configuration of secure channels is prone to human error which can,
potentially, causes a big breach in the security texture of the systems itself. Also,
the networks are becoming more and more complex and taking everything in mind
while manually configure security is an hard challenge as shown in 2.3.
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Related Work

Many studies have been conducted on the automatic generation of security policies
and on the verification of the security requirements manually written [17], on op-
timizing the number of tunnels looking at the global correctness [18] and avoiding
conflicts among policies [19, 20].

Moreover, given the fact that cryptographic tunnels has to be implemented in
at least two nodes of the network (start and end points), it is not simple as seen
with firewalls to implement, especially if large number of nodes are present [21, 22].

Another very important criteria to take into consideration discussing CPSs is the
fact that not only automatic configuration of the CPSs must be achieved, but also
the automatic allocation of them. In this, none of the above has succeeded, mostly
because they are based on physical topology and not on a virtualized environment.

Channel Protection System model

Channel Protection System can be modeled as Virtual Private Network tunnels, as
seen in chapter 2. This security property is applied and removed on the packets at
the start node and at the end node of a tunnel. Since the manual configuration of
this kind of secure channel is trivial, some automatic configuration tool has been
engineered, as proposed in [23].

Each VPN Gateway is configured with a Security Policy, which expresses the
configuration about protection adding and removing, cryptographic algorithms, etc.
The policy can be manually configured or can be automatically computed by the
ADP Module of VEREFOO.

A policy is marked by:

• the action Ω;

• the policy rules Ψ.

In the context of VEREFOO, the schema of the policy rules is modeled as
follows:

• Behavior: describe the action taken for each packet. It can assume the
following values:

– ACCESS : a VPN Gateway adds an external header to the traffic re-
ceived if it needs to be protected from this stage and if it matches the
security policies of the Gateway. The external header has the VPN Gate-
way IP address as source and the terminal VPN Gateway IP address as
destination;

– EXIT : a VPN Gateway removes an external header from the traffic
received if it needs to be without protection from this stage and if the
packet matches the security policies of the Gateway;
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– FORWARD : a VPN Gateway simply dispatches the traffic received to
the next node without adding or removing headers;

• Start Channel: it is the starting node of the tunnel;

• End Channel: it is the ending node of the tunnel;

• Conditions:

– source: IP address of the source node of the traffic;

– destination: IP address of the destination node of the traffic;

– source port : port of the source node of the traffic;

– destination port : port of the destination node of the traffic;

– protocol : protocol used to generate the traffic;

• Authentication Algorithm: set of algorithm to guarantee the authentication
and the integrity of the packets flowing through the tunnel;

• Encryption algorithm: set of algorithm to guarantee the encryption of the
packets flowing through the tunnel;

In order to better understand the Behavior of a VPN Gateway, it is possible to
use the concepts of PROTECT and UNPROTECT seen in chapter 4.2.1.

If exist g a node with VPN Gateway functionality and f a flow traversing the
Gateway g :

• The ACCESS behavior can be expressed by:

PROTECT (g, f) ∧ ¬( UNPROTECT (g, f) ) (4.3)

• The EXIT behavior can be expressed by:

¬( PROTECT (g, f) ) ∧ UNPROTECT (g, f) (4.4)

• The FORWARD behavior can be expressed by:

¬( PROTECT (g, f) ) ∧ ¬( UNPROTECT (g, f) ) (4.5)

It is worth noting that a VPN Gateway is capable of selecting only one of the
three available behaviors for a given pair (node, flow):

(ACCESS) ∧ (EXIT ) ∧ (FORWARD) (4.6)

Thanks to nowadays hardware and computational power, even the end nodes
can act as a VPN Gateway themselves, creating an end-to-end tunnel with another
node. This approach is sometimes preferred thanks to the resource consumption
decrease on the VPN Gateway central nodes.
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Conflict Analysis

Channel Protection Systems implementation is based on a list of Security Require-
ments to fulfill, which express the required protection. This process, called refine-
ment, dwell in selecting the right security technology and enforce the protection
policy at the network nodes, optimizing if possible (like aggregate individual chan-
nels in a single tunnel). Unfortunately, it can introduce anomalies like incorrect
path, poor security, and so on, leading to a cost raise for the infrastructure.

In [23] is presented an approach to address the problem of anomalies correctness,
conflict detection and resolution based on penalties and backtracking algorithms.

In [24] is presented an innovative classification of Protection Policy irregularities
and a formal model capable of identifying anomalies in implementations at various
network level, using FOL (First Order Logic) axioms to guarantee accuracy and
performances.

Another approach based on efficient algorithms is presented in [25], exploiting
Binary Decision Diagrams (BDD’s).
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Chapter 5

Thesis Objectives

The past chapters have showed the VPN technology and its peculiarity followed
by an introduction to the state of the art of virtual networking, introducing the
VEREFOO framework.

Based on this and what has been said in the introduction about the vulnerability
and disruption any human error can introduce when configuring large networks, this
work aims at improving and enhance the automation of network management tools,
in order to always make it safer and limiting human mistakes.

The paragraphs that follow use the aforementioned technologies, together with
the relative related works, to bring the automation of creating security configuration
in VPN scenarios to the next level, covering what is now done manually by network
administrators.

In particular, the VEREFOO framework, as already discussed, is able to elabo-
rate and produce a graph representative of the network, with all the nodes config-
ured for their functions.

In the context of VPN Gateways, this work focuses on bringing the configu-
ration contained in this graph to an actual configuration of a software capable to
instantiate a real VPN tunnel. Not only there will be the translation from the
middle level language of VEREFOO to a low level one, used by the final software,
but also it will be done in an automatic approach.

The software that is going to be used for this work is Strongswan, chosen for
its full IPsec support and for its license. It features a robust and highly regarded
open-source VPN solution that provides secure communication across networks.
It provides advanced features and support for various encryption protocols and
extensive configuration options, making it suitable for a wide range of deployment
scenarios, ensuring secure and encrypted connectivity for both organizations and
individuals.

The main objectives of this work can be summarized as follows:

1. The first objective of the work is to create a new approach, developed in
the form of an algorithm, that can effectively recognize the network topology
and, based on the number and on the types of nodes to be able to call the
right procedure to begin the process of translation. The translation process
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is specifically tailored to handle various VPN scenarios, including site-to-site,
end-to-end and remote-access. The detail of this process is detailed in chapter
6, providing a comprehensive understanding of the methodology employed.

2. Another important objective of this thesis was to focus on automating the
entire process of generating new configuration files and seamlessly deploy-
ing them into Virtual Machines in order to automatically establish new
secure tunnels between the machines. The Strongswan’s configuration file
swanctl.conf was first studied in depth in its documentations in order to
understand its details, followed by a theoretical validation of test cases as de-
tailed in chapter 7, providing valuable insights into the efficacy and reliability
of the implemented solution.

3. The last objective of this thesis was to write a comprehensive appendix that
serves as a guide for future developers and students. This appendix offers
step-by-step instructions on navigating the software solution introduced in
this work, providing a detailed walkthrough of the virtual environment’s con-
struction, which is based on Linux Virtual Machines. By documenting the
configuration and setup procedures, this appendix aims to empower indi-
viduals to replicate and extend the software solution with ease, fostering a
collaborative and knowledge-sharing environment.

Lastly, a series of rigorous tests were conducted to validate the efficacy and per-
formance of the newly developed algorithms. These tests served as a means to assess
the extent to which the set goals were accomplished through the utilization of the
innovative Translator Java class and the integration of Virtual Machines. The out-
comes of these tests provided compelling evidence of the successful implementation
and functionality of the proposed solution. Detailed analysis and results of these
tests are presented in the subsequent chapters, shedding light on the effectiveness
and reliability of the developed system.
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Chapter 6

Approach for the StrongSwan
Configurations Translation

6.1 Background

In this chapter, the use of the upon earlier introduced VPN (4) is exploited to
automate the deployment of this technology on real case scenario VNFs.

As seen in 3, the VEREFOO framework receives in input some NSR and a Log-
ical Topology and return in output a complete topology graph with configurations
in XML format, i.e. Virtual Private Network tunnels configurations.

Here it is described the Translation Algorithm developed to perform the trans-
lation of a VPN configuration from the XML format to a configuration for a software,
StrongSwan.

6.2 Strongswan Introduction

Strongswan [26] is an Open-source, modular and portable IPsec-based VPN solution,
implementing the Internet Key Exchange (IKE) protocol that allows securing IP
traffic in policy and route-based IPsec scenarios from simple to very complex.

Server side, it supports Linux, Android, FreeBSD, macOS, iOS and Windows.
Most devices and Operating Systems today natively support the IKEv2 protocol,
and this is the reason why StrongSwan was chosen.

StrongSwan is distributed under the GPLv2 license, which means it is open
source and allows us to use all the features for free. Besides, we can also participate
on the developing of the software itself and further improve it.

Since the work in [27], where the tool was used for the first time in the context
of this framework, Strongswan was updated to a new version which made the old
TranslatorStrongSwan class of VEREFOO deprecated.
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6.3 Translation Algorithm

The Translation Algorithm is a crucial component in the process of converting VPN
Gateway configuration to Strongswan’s configuration. This algorithm takes the
allocation graph (described in chapter 3.2) as its input and generates the necessary
configuration files as output. By using the information provided by the allocation
graph, the Translation Algorithm ensures a seamless transition between the two
different VPN gateway configurations.

The primary objective of the Translation Algorithm is to accurately map the
network functions and their corresponding configurations from VPN Gateway to
Strongswan. This includes translating security policies, authentication algorithms,
encryption algorithms, and other relevant parameters. By executing the Translation
Algorithm, the required configuration files are generated, enabling the successful
migration of VPN Gateway configuration to Strongswan’s configuration.

The Translation Algorithm plays a vital role in simplifying the migration pro-
cess and reducing manual efforts. It ensures that the converted configuration aligns
with Strongswan’s requirements and guarantees a secure and efficient VPN infras-
tructure.

Unfortunately, this comes with some limitations, because the starting schema
contains an high-level abstraction of the network and contains too few information
about the real topology. This and other limitation will be discussed later in chapter
7.5.

6.3.1 Network Topology

In order to develop the translation algorithm, a comprehensive understanding of
the data extractable from the XML file is essential. The analysis of the XML file, as
depicted in Listing 6.1, reveals a notable limitation: the inability to define subnet
masks for the networks. Consequently, all examples and tests have been conducted
using a default /24 subnet mask. This limitation is acknowledged and discussed in
Chapter 7.5, along with potential areas for future improvement.

An important assumption that has been made is to ignore the EXIT behavior
in the VPN schema and make it symmetrical, identical to the ACCESS one. In
fact, it is very common that a tunnel is symmetric, if the traffic need protection
going out from the gateway (ACCESS behavior), then also the one coming in input
(EXIT behavior) for that destination will be protected.

By considering these factors and incorporating relevant data from the XML
file, the translation algorithm can be designed and implemented effectively. This
algorithm will play a crucial role in facilitating the conversion process of VPN
configurations, ensuring consistency and preserving the intended security measures.

6.3.2 The Translator

Here is portrayed the algorithm used to delineate what kind of connection exists
between the nodes of the virtual network generated.
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Listing 6.1. VPN Gateway declaration in Allocation Schema XML file

<node functional_type="VPNGATEWAY" name="192.168.57.3">

<neighbour name="10.0.0.4"/>

<neighbour name="192.168.57.4"/>

<configuration description="vpn_gw">

<vpngateway>

<vpnName>moon</vpnName>

<securityAssociation>

<behavior>ACCESS</behavior>

<startChannel>192.168.57.3</startChannel>

<endChannel>192.168.57.4</endChannel>

<source>10.0.0.-1</source>

<destination>10.0.1.-1</destination>

<protocol>TCP</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

<authenticationAlgorithm>SHA2_256</authenticationAlgorithm>

<encryptionAlgorithm>AES_128_CBC</encryptionAlgorithm>

</securityAssociation>

<securityAssociation>

<behavior>EXIT</behavior>

<startChannel>192.168.57.4</startChannel>

<endChannel>192.168.57.3</endChannel>

<source>10.0.1.-1</source>

<destination>10.0.0.-1</destination>

<protocol>TCP</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

<authenticationAlgorithm>SHA2_256</authenticationAlgorithm>

<encryptionAlgorithm>AES_128_CBC</encryptionAlgorithm>

</securityAssociation>

</vpngateway>

</configuration>

</node>
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The pseudo-code of the algorithm is represented in Algorithm 2.

Here follows a description of the variable expressing the algorithm:

• nVpnGW : the number of VPN Gateways present in the output graph. For
the algorithm to start, this value must be greater than 0 which means the
presence at least of one gateway;

• siteToSiteNodes : nodes involved in site to site tunnels. It contains all the
nodes which have at least one security association in which the source network
of the traffic is different from the startChannel AND the destination network
is different from the endChannel ;

• endToEndNodes : nodes involved in end to end tunnel. It contains all the
nodes which have at least one security association in which the source network
of the traffic is equal to the startChannel AND the destination network is equal
to the endChannel ;

• remoteAccessNodes : nodes involved in remote access tunnel. It contains all
the nodes which have at least one security association in which the source
network of the traffic is not defined OR the destination network is not defined;

Algorithm 2 Translator algorithm

Input: nV pnGw > 0 ▷ Number of VPNGateway
1: list siteToSiteNodes ▷ Nodes involved in site to site tunnel
2: list endToEndNodes ▷ Nodes involved in end to end tunnel
3: list remoteAccessNodes ▷ Nodes involved in remote access tunnel
4: for all node in nodes do
5: if source /= startChannel AND destination /= endChannel then
6: siteToSiteNodes← node
7: end if
8: if source == startChannel AND destination == endChannel then
9: endToEndNodes← node

10: end if
11: if source == any OR destination == any then
12: remoteAccessNodes← node
13: end if
14: end for
15: if siteToSiteNodes.size ≥ 2 then
16: siteToSite(siteToSiteNodes)
17: end if
18: if endToEndNodes.size ≥ 2 then
19: endToEnd(endToEndNodes)
20: end if
21: if remoteAccessNodes.size ≥ 1 then
22: remoteAccess(remoteAccessNodes)
23: end if

The algorithm aims to analyze the operation of a VPN Gateway for different
types of tunnels (as seen in 2). It takes various inputs, including the number of
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VPN Gateways, and lists of nodes involved in site-to-site, end-to-end, and remote
access tunnels.

• It initializes empty lists for site-to-site, end-to-end, and remote access nodes.

• For each node in the list of nodes:

– If the node is not the start or end channel, it is considered as part of the
site-to-site tunnel and added to the site-to-site nodes list.

– If the node represents both the start and end channels, it is included in
the end-to-end tunnel and added to the end-to-end nodes list.

– If the node has ”any” as the source or destination, it is identified as part
of the remote access tunnel and added to the remote access nodes list.

• After processing all nodes, the algorithm evaluates the number of nodes in
each category:

– If there are at least two nodes in the site-to-site nodes list, the siteToSite
function is executed. This function handles the configuration and man-
agement of the site-to-site tunnel.

– Similarly, if there are at least two nodes in the end-to-end nodes list, the
endToEnd function is executed. This function deals with the setup and
maintenance of the end-to-end tunnel.

– Lastly, if there is at least one node in the remote access nodes list,
the remoteAccess function is executed. This function focuses on the
configuration and handling of the remote access tunnel.

The procedures have the job to link the configuration of the security associations
of the nodes to a Strongswan configuration.

The pseudo-code of the procedures is shown in Algorithms 3, 4 and 5.

These procedures are part of the implementation to handle the specific network
configurations. The three algorithms act as follows:

• For first it is needed to sanitize all the inputs like source port, destination
port, protocol and algorithms used for security enforcement;

• Then a file is created using the node’s local name (i.e. its IP address);

• Now it is possible to write all the sanitized fields to the file;

• Iterate for each node in the list;

All the algorithms works in a similar way except for the data they refer to. In
particular, algorithm 3 iterates over each node in the siteToSiteNodes list, algorithm
4 handles the nodes involved in EndToEndNodes list and algorithm 5 deals with
the nodes in remoteAccessNodes list. This last one acts a bit differently, in fact it
also creates two separate files, one for the local gateway (writeGW) and one for the
remote host (writeH), because they contain different information.
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Algorithm 3 SiteToSite procedure

1: procedure SiteToSite(siteToSiteNodes)
2: for all node ∈ siteToSiteNodes do
3: srcPort← sanitizePort(node.getSrcPort)
4: dstPort← sanitizePort(node.getDstPort)
5: proto← sanitizeProto(node.getProtocol)
6: encAlgs← sanitizeAlgs(node.getEncryptionAlgs)
7: authAlgs← sanitizeAlgs(node.getAuthenticationAlgs)
8: file← createF ile(node.getLocalName)
9: writeFile(localAddr, src, dst, srcPort, dstPort, authAlgs,

encAlgs, remoteName)
10: end for
11: end procedure

Algorithm 4 EndToEnd procedure

1: procedure EndToEnd(endToEndNodes)
2: for all node ∈ endToEndNodes do
3: srcPort← sanitizePort(node.getSrcPort)
4: dstPort← sanitizePort(node.getDstPort)
5: proto← sanitizeProto(node.getProtocol)
6: encAlgs← sanitizeAlgs(node.getEncryptionAlgs)
7: authAlgs← sanitizeAlgs(node.getAuthenticationAlgs)
8: file← createF ile(node.getLocalName)
9: writeFile(localAddr, src, dst, srcPort, dstPort, authAlgs, encAlgs,

remoteName)
10: end for
11: end procedure

Algorithm 5 RemoteAccess procedure

1: procedure RemoteAccess(remoteAccessNodes)
2: for all node ∈ remoteAccessNodes do
3: srcPort← sanitizePort(node.getSrcPort)
4: dstPort← sanitizePort(node.getDstPort)
5: proto← sanitizeProto(node.getProtocol)
6: encAlgs← sanitizeAlgs(node.getEncryptionAlgs)
7: authAlgs← sanitizeAlgs(node.getAuthenticationAlgs)
8: file← createF ile(node.getLocalName)
9: writeGW(localAddr, src, srcPort, protocol, authAlgs, encAlgs,

localName)
10: writeH(localAddr, dst, dstPort, protocol, authAlgs, encAlgs,

remoteName)
11: end for
12: end procedure
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6.3.3 Naming the Nodes

Here is described the Constructor of the Java class TranslatorStrongSwan. To
fulfill the interest of this work, each node configuration must contain a node name,
which will be unique and representative.

Some ”name” field already existed in the VEREFOO structure, in the node
description and in the configuration description. Neither of them could be used
due to some conflicts with past developments of the framework.

For this reason, a new field was introduced in the XML schema, called vpnName,
which indicate the name of the node related to it. It is mandatory to fill this field,
because the configuration file (see chapter 7.2) will contain values based on these
names.

In listing 6.1 is showed an example of a host with ”moon” as name, which is
defined by the tag <vpnName>.

6.4 Input Sanitation and Translation

The authentication algorithm and the encryption algorithm must be translated,
based on the corresponding wording for the algorithms declared in the Strongswan
documentation.

In listing 6.2 is shown the translation of the Encryption Algorithms, while in
listing 6.3 is shown the translation of the Authentication Algorithms.

Listing 6.2. Translation for Encryption algorithms

1 private String sanitizeEncryptionAlgorithm(String encAlg) {

2 switch(encAlg) {

3 case "TriploDES":

4 return "3des";

5 case "AES_128_CBC":

6 return "aes128";

7 case "AES_192_CBC":

8 return "aes192";

9 case "AES_256_CBC":

10 return "aes256";

11 case "AES_128_CTR":

12 return "aes128ctr";

13 case "AES_192_CTR":

14 return "aes192ctr";

15 case "AES_256_CTR":

16 return "aes256ctr";

17 case "CAMELIA_128_CBC":

18 return "camellia128";

19 case "CAMELIA_192_CBC":

20 return "camellia192";

21 case "CAMELIA_256_CBC":
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22 return "camellia256";

23 case "CAMELIA_128_CTR":

24 return "camellia128ctr";

25 case "CAMELIA_192_CTR":

26 return "camellia192ctr";

27 case "CAMELIA_256_CTR":

28 return "camellia256ctr";

29 default:

30 throw new IllegalArgumentException("Invalid cipher suite

value: " + encAlg);

31 }

32 }

Listing 6.3. Translation for Authentication algorithms

1 private String sanitizeAuthAlgorithm(String auth) {

2 switch(auth) {

3 case "MD_5":

4 return "md5";

5 case "MD_5_128":

6 return "md5_128";

7 case "SHA_1":

8 return "sha1";

9 case "SHA_1_160":

10 return "sha1_160";

11 case "SHA_2_256":

12 return "sha2_256";

13 case "SHA_2_384":

14 return "sha2_384";

15 case "SHA_2_512":

16 return "sha2_512";

17 default:

18 throw new IllegalArgumentException("Invalid cipher

suite value: " + auth);

19 }

20 }
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Chapter 7

Validation and Testing

This chapter describes the software solution used to achieve the main goal of this
thesis, to automatically configure VPN tunnels in Virtualized Network by use of
Strongswan, earlier introduced in 6.

In the previous chapter, all the input were translated and made ready to be
written in the Strongswan’s configuration files, which is what this chapter is ana-
lyzing.

7.1 Introduction

This part of the thesis is focused on how has been possible to translate from the
Allocation Graph VEREFOO gives in output to StrongSwan configuration files.

The allocation graph is written in medium-level language and describes network
nodes and its configurations (as seen in 3) while the swanctl.conf file is written in
low-level, proprietary language, which consist of hierarchical sections and a list of
key/value pairs in each section. The structure of the file is better illustrated in
7.2.

As in the documentation of the tool [28], it is recommended to use the new style
of configuration via the vici control interface and the swanctl command line
tools. The swanctl.conf file, together with the certificates and private keys are
stored in the swanctl directory.

The work of this thesis is to generate the configuration file, which is written
in a proprietary low-level language, from the output of the VEREFOO framework.
Therefore, the java class TranslatorStrongSwan has been completely rewritten,
based on the new vici plugin and the swanctl tool.

This class examines the XML file given in input and extract the Security Associ-
ation configurations, if any is present.

There are three main cases, already presented in chapter 2:

• Site-to-Site: this configuration enables the secure connection of two different
networks. It makes possible to expands a network across geographically far
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away offices and branches of a company or an institution connected using an
insecure medium such as public internet.

• End-to-End: this configuration enables the secure connection among two
host in a network.

• Remote-Connection: this configuration enables the secure connection from
a host on the internet and a LAN, and vice versa. This kind of VPN provides
access to the company network, which nowadays is very useful for all the
remote workers.

7.2 The swanctl.conf file

The swanctl.conf file is a fundamental configuration file used by the Strongswan
VPN solution. It serves as a central configuration file that governs the behavior
and settings of the Strongswan’s swanctl command-line tool. swanctl is responsi-
ble for managing the strongSwan IKE and IPsec configurations, allowing users to
establish secure virtual private network (VPN) connections.

The swanctl.conf file plays a crucial role in defining the various aspects of the
VPN configuration, including authentication methods, encryption algorithms, key
exchange protocols, and network policies. It serves as a comprehensive and flexible
configuration framework that enables users to tailor their VPN setup to meet
their specific security and networking requirements. One of the notable advantages
of using the swanctl.conf file is its ability to support both simple and advanced
VPN configurations. It caters to a wide range of scenarios, from basic site-to-
site or remote access VPNs to intricate setups involving multiple tunnels, diverse
authentication methods, and fine-grained access control policies.

In this context, the swanctl.conf file acts as a bridge between the defined VPN
configuration from VEREFOO and the Strongswan’s underlying implementation.
It provides a clear and structured format for specifying the necessary parameters
and options, allowing users to define complex VPN setups with ease.

Understanding the structure and syntax of the swanctl.conf file is essential for
effectively configuring and managing Strongswan VPN deployments. It requires
careful consideration of the available options and parameters to ensure optimal
security, performance and compatibility. In fact, this was one of the most important
part of the study for this work.

The file is located in the /etc/swanctl folder of each machine where the soft-
ware is loaded on. Examples of configurations of this file can be found in [29], while
a more related one is listed in 7.1.

The parameters in the configuration file describe:

• connections : is the container holding the VPN connection;

• local addrs : the address of the local gateway which is one end of the tunnel;
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Listing 7.1. Moon swanctl.conf — Site-to-Site

1

2 connections{

3 site-site {

4 local_addrs = 93.10.168.1

5 remote_addrs = 93.10.168.2

6 local {

7 auth = pubkey

8 certs = moonCert.pem

9 id = moon.strongswan.org

10 }

11 remote {

12 auth = pubkey

13 id = sun.strongswan.org

14 }

15 children {

16 net-net {

17 local_ts = 10.0.0.0/24[tcp/22]

18 remote_ts = 10.0.1.0/24

19 start_action = trap|start

20 esp_proposals = aes128-sha2_256-modp2048

21 }

22 }

23 }

24 }
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• remote addrs : the address of the remote gateway which is the other end of
the tunnel

• local section: information about the authentication method and certificates
of the local gateway.

• remote section: information about the authentication method and certificates
of the remote gateway.

• children section: where the child Security Associations parameter for the
VPN connection are defined;

– local ts : list of local subnet to include in the SA. It must be a CIDR
subnet definition. If none is defined, it takes the default value dynamic

which match all the traffic. Moreover, it is possible to specify proto-
col and ports in the form [protocol/port]. They can be numeric or
getservent(3) names;

– remote ts : list of subnet to include in the SA, as local ts ;

– start action: operation to carry out after the configuration loading, de-
fault=none; It is possible to trigger the tunnels as soon as traffic match-
ing the rules is detected by the trap value, while start will initiate the
connectivity as the service is started; They can be used simultaneously.

– esp proposal : algorithms proposals for the Security Association. It is a
set of algorithms, they can be combined and presented in the form:

encriptionAlgs_integrityAlgs_DHGroups[optional]

7.3 Validation

This section describes how the work was brought from theory to practice, showing
how the algorithms defined above perform in some use cases.

7.3.1 Site-to-Site

In figure 7.1 is depicted the first case scenario which aims at securely interconnecting
two VPN gateways. The authentication is based on X.509 certificates.

In this case, a host in the subnet MOON-NET can ping a host in the subnet
SUN-NET. The connection will be enciphered and authenticated from the VPN
Gateway Moon to Sun and vice versa.

The swanctl.conf file of the Moon gateway can be found in listing 7.1, while
the respective file for the Sun gateway is showed in listing 7.2.

53



Validation and Testing

Listing 7.2. Sun swanctl.conf — Site-to-Site

1

2 connections{

3 site-site {

4 local_addrs = 93.10.168.2

5 remote_addrs = 93.10.168.1

6 local {

7 auth = pubkey

8 certs = SunCert.pem

9 id = sun.strongswan.org

10 }

11 remote {

12 auth = pubkey

13 id = moon.strongswan.org

14 }

15 children {

16 net-net {

17 local_ts = 10.0.1.0/24

18 remote_ts = 10.0.0.0/24

19 start_action = trap|start

20 esp_proposals = aes128-sha2_256-modp2048

21 }

22 }

23 }

24 }

INTERNET

TUNNELTUNNEL

MOON-NET
10.0.0.0/24

SUN-NET
10.0.1.0/24

eth0
93.10.168.2

eth1
10.0.1.1

eth0
93.10.168.1

eth1
10.0.0.1

SUNMOON

ALICE
eth0

10.0.0.4

BOB
eth0

10.0.1.5

Security Association
Behavior: ACCESS|EXIT
StartChannel: 93.10.168.1
EndChannel: 93.10.168.2
Source: 10.0.0.1
Destination: 10.0.1.5
Protocol: ANY
src_port: *
dst_port: *
AuthAlg: SHA2_256
EncAlg: AES_128_CBC

Security Association
Behavior: ACCESS|EXIT
StartChannel: 93.10.168.2
EndChannel: 93.10.168.1
Source: 10.0.1.5
Destination: 10.0.0.1
Protocol: ANY
src_port: *
dst_port: *
AuthAlg: SHA2_256
EncAlg: AES_128_CBC

Figure 7.1. Site-to-Site scenario
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7.3.2 End-to-End

In figure 7.2 is depicted the second case scenario which aims at describing the
connection between two host with VPN capability. The authentication is based on
X.509 certificates.

As can be seen, the StartChannel and the Source addresses for the secu-
rity association are the same. Simultaneously, the EndChannel is the same as the
Destination. This happens because there is a VPN Gateway in each one of both
nodes that handles the traffic sent and received by the node itself.

The swanctl.conf file of the Alice host can be found in listing 7.3, while the
respective file for the Bob host is showed in listing 7.4.

TUNNELTUNNEL

ALICE
eth0

10.0.0.4

BOB
eth0

10.0.0.5

10.0.0.0/24

Security Association
Behavior: ACCESS|EXIT
StartChannel: 10.0.0.4
EndChannel: 10.0.0.5
Source: 10.0.0.4
Destination: 10.0.0.5
Protocol: ANY
src_port: *
dst_port: *
AuthAlg: SHA2_256
EncAlg: AES_128_CBC

Security Association
Behavior: ACCESS|EXIT
StartChannel: 10.0.0.5
EndChannel: 10.0.0.4
Source: 10.0.0.5
Destination: 10.0.0.4
Protocol: ANY
src_port: *
dst_port: *
AuthAlg: SHA2_256
EncAlg: AES_128_CBC

Figure 7.2. End-to-End scenario
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Listing 7.3. Alice swanctl.conf — end-to-end

1 connections {

2 end-end {

3 remote_addrs = 10.0.0.5

4 local {

5 auth = pubkey

6 certs = aliceCert.pem

7 }

8 remote {

9 auth = pubkey

10 id = C=CH, O=strongSwan, CN=bob.strongswan.org

11 }

12 children {

13 end-end {

14 start_action = trap|start

15 esp_proposals = aes128-sha2_256-modp2048

16 }

17 }

18 }

19 }

Listing 7.4. Bob swanctl.conf — end-to-end

1 connections {

2 end-end {

3 remote_addrs = 10.0.0.4

4 local {

5 auth = pubkey

6 certs = bobCert.pem

7 }

8 remote {

9 auth = pubkey

10 id = C=CH, O=strongSwan, CN=alice.strongswan.org

11 }

12 children {

13 end-end {

14 start_action = trap|start

15 esp_proposals = aes128-sha2_256-modp2048

16 }

17 }

18 }

19 }
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7.3.3 Remote-Connection

In figure 7.3 is depicted the third case scenario which aims at connecting a host
with VPN capability to a remote VPN gateway. The authentication is based on
X.509 certificates.

In this case scenario, all the Security Association has been made explicit in
order to fully show the configurations. As expected, for each node, the Security
Associations are specular and in particular, it is always present the value ANY in at
least one among Source and Destination fields.

MOON-NET
10.0.0.0/24

eth0
93.10.168.1

eth1
10.0.0.1

MOON

ALICE
eth0

10.0.0.4

Bob
eth0

93.10.168.2

TUNNEL

Security Association
Behavior: ACCESS
StartChannel: 93.10.168.1
EndChannel: 93.10.168.2
Source: 10.0.0.-1
Destination: ANY
Protocol: ANY
src_port: *
dst_port: *
AuthAlg: SHA2_256
EncAlg: AES_128_CBC

Security Association
Behavior: ACCESS
StartChannel: 93.10.168.2
EndChannel: 93.10.168.1
Source: ANY
Destination: 10.0.0.-1
Protocol: ANY
src_port: *
dst_port: *
AuthAlg: SHA2_256
EncAlg: AES_128_CBC

Security Association
Behavior: EXIT
StartChannel: 93.10.168.2
EndChannel: 93.10.168.1
Source: ANY
Destination: 10.0.0.-1
Protocol: ANY
src_port: *
dst_port: *
AuthAlg: SHA2_256
EncAlg: AES_128_CBC

Security Association
Behavior: EXIT
StartChannel: 93.10.168.1
EndChannel: 93.10.168.2
Source: 10.0.0.-1
Destination: ANY
Protocol: ANY
src_port: *
dst_port: *
AuthAlg: SHA2_256
EncAlg: AES_128_CBC

Figure 7.3. Remote-Connection scenario

The swanctl.conf file of the Bob host can be found in listing 7.6, while the
respective file for the Moon gateway is showed in listing 7.5.
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Listing 7.5. Moon swanctl.conf — Remote-Connection

1 connections {

2 rc {

3 local_addrs = 93.10.168.1

4 local {

5 auth = pubkey

6 certs = moonCert.pem

7 id = moon.strongswan.org

8 }

9 remote {

10 auth = pubkey

11 }

12 children {

13 net {

14 local_ts = 10.0.0.0/24

15 start_action = start|trap

16 esp_proposals = aes128-sha2_256-modp2048

17 }

18 }

19 }

20 }

Listing 7.6. Bob swanctl.conf — Remote-Connection

1 connections {

2 home {

3 local_addrs = 93.10.168.2

4 remote_addrs = 93.10.168.1

5 local {

6 auth = pubkey

7 certs = bobCert.pem

8 id = bob.strongswan.org

9 }

10 remote {

11 auth = pubkey

12 id = moon.strongswan.org

13 }

14 children {

15 home {

16 remote_ts = 10.0.0.0/24

17 start_action = start|trap

18 esp_proposals = aes128-sha2_256-modp2048

19 }

20 }

21 }

22 }
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7.4 Testing

In this section is shown some test carried out to validate the algorithm of the
translator.

For each host in the use case scenarios, a Virtual Machine has been created using
VirtualBox. The creation and the configuration of all the machines is documented
in Appendix A.

For the Translator to push the configuration files directly to the hosts, the Java
Library com.jcraft.jsch has been used exploiting the OpenSSH project, the SCP

protocol.

The code is listed in 7.7. For the purpose of the tests, username and password

are simply deduced from the name of the hosts.

Others precautions taken, like write permissions for the remote /etc/ folder,
are specified in the Appendix A.

If the Strongswan service is running in the remote machine, with the execution
of the function listed in 7.7, the swanctl.conf file is pushed to the right VPN Gate-
ways and StronsgSwan is triggered to load the new configurations. Furthermore,
thanks to the start_action policy specified in the swanctl.conf file (as seen in 7.2),
if the tunnel failed to establish (but correctly configured), it will be started as soon
as matching traffic will be detected.

Here follows a subsection illustrating the testing on some use case. Please, note
that only the ACCESS type Security Association is listed. As in chapter 7.5,
given the tunnels are always symmetrical, we do not need to consider the EXIT
one. Despite that, the framework needs the definition of an EXIT SA, at this stage,
for legacy compatibility. Here it has been omitted for the sake of simplicity and
lengthiness.
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Listing 7.7. Push configuration file to host Java code

1 private void fileUpload(String username, String remoteHost,

String password) throws JSchException, SftpException,

IOException {

2 String remoteHostName = username; ChannelExec channel = null;

3 try {

4 jschSession = jsch.getSession(username, remoteHost);

5 jschSession.setPassword(password);

6 jschSession.setConfig("StrictHostKeyChecking", "no");

7 jschSession.connect(1000);

8 channelSftp = (ChannelSftp) jschSession.openChannel("sftp");

9 if(channelSftp == null) {

10 System.out.println("Push configuration file aborted!");

11 return;

12 }

13 channelSftp.setOutputStream(System.err);

14 channelSftp.connect();

15 channelSftp.cd("/etc/swanctl/");

16 String localFile = "./StrongSwanConf/" + remoteHostName +

"/swanctl.conf";

17 String remoteDir = "/etc/swanctl/";

18 channelSftp.put(localFile, remoteDir + "swanctl.conf",

ChannelSftp.OVERWRITE);

19 channelSftp.exit();

20

21 channel = (ChannelExec) jschSession.openChannel("exec");

22 channel.setCommand("swanctl --load-all");

23 ByteArrayOutputStream responseStream = new

ByteArrayOutputStream();

24 channel.setErrStream(System.err);

25 channel.setOutputStream(responseStream);

26 channel.connect(100);

27 while(channel.isConnected()) {

28 try {

29 Thread.sleep(1000);

30 } catch (InterruptedException e) {

31 e.printStackTrace();

32 } }

33 String responseString = new

String(responseStream.toByteArray());

34 } finally {

35 if(jschSession != null)

36 jschSession.disconnect();

37 if(channel != null)

38 channel.disconnect();

39 }

40 }
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7.4.1 Testing Site-to-Site

Referring to the configuration depicted in figure 7.4 and listing B.1 they describe the
tunnel that will be established among the two VPN Gateway, using the interfaces
with IPs 192.168.57.3 and 192.168.57.7 to connect the two private networks
10.0.0.0/24 and 10.0.1.0/24. Strongswan will encapsulate the packets match-
ing this parameter and use the ICMP protocol. Here, the port 22 is specified in
MOON policies, while all the port range is specified in SUN. Anyway, since ICMP
does not use ports, they will be ignored by the Translator.

INTERNET

TUNNELTUNNEL

MOON-NET
10.0.0.0/24

SUN-NET
10.0.1.0/24

enp0s3
192.168.57.7

enp0s8
10.0.1.1

enp0s3
192.168.57.3

enp0s8
10.0.0.1

SUNMOON

ALICE
enp0s3
10.0.0.4

BOB
enp0s3
10.0.1.5

Security Association
Behavior: ACCESS|EXIT
StartChannel: 192.168.57.3
EndChannel: 192.168.57.7
Source: 10.0.0.*
Destination: 10.0.1.*
Protocol: ICMP
src_port: 22
dst_port: 22
AuthAlg: SHA2_256
EncAlg: AES_128_CBC

Security Association
Behavior: ACCESS|EXIT
StartChannel: 192.168.57.7
EndChannel: 192.168.57.3
Source: 10.0.1.*
Destination: 10.0.0.*
Protocol: ICMP
src_port: *
dst_port: *
AuthAlg: SHA2_256
EncAlg: AES_128_CBC

Figure 7.4. Testing Site-to-Site

Let us suppose the host Alice pings host Bob. They are in different subnets and
are interconnected by a tunnel established between the VPN Gateway Moon and
the VPN Gateway Sun. The analyzer is positioned in the interface enp0s3 of Sun.
The command executed is:

alice@Alice:# ping 10.0.1.5

The packet’s traffic is shown in listing 7.8.
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Listing 7.8. Packet capture ping command from Alice to Bob Site-to-Site

1 sun@sun:~$ sudo tcpdump -n -l --immediate-mode -i enp0s3 not

port ssh and not port domain

2 tcpdump: verbose output suppressed, use -v[v]... for full

protocol decode

3 listening on enp0s3, link-type EN10MB (Ethernet), snapshot

length 262144 bytes

4 21:24:19.679565 IP 192.168.57.3 > 192.168.57.7:

ESP(spi=0xca9d716b,seq=0xf), length 136

5 21:24:19.679565 IP 10.0.0.4 > 10.0.1.5: ICMP echo request, id

16, seq 1, length 64

6 21:24:19.680249 IP 192.168.57.7 > 192.168.57.3:

ESP(spi=0xc00e2448,seq=0xf), length 136

7 21:24:20.681706 IP 192.168.57.3 > 192.168.57.7:

ESP(spi=0xca9d716b,seq=0x10), length 136

8 21:24:20.681706 IP 10.0.0.4 > 10.0.1.5: ICMP echo request, id

16, seq 2, length 64

9 21:24:20.682450 IP 192.168.57.7 > 192.168.57.3:

ESP(spi=0xc00e2448,seq=0x10), length 136

10 21:24:21.683109 IP 192.168.57.3 > 192.168.57.7:

ESP(spi=0xca9d716b,seq=0x11), length 136

11 21:24:21.683109 IP 10.0.0.4 > 10.0.1.5: ICMP echo request, id

16, seq 3, length 64

12 21:24:21.683796 IP 192.168.57.7 > 192.168.57.3:

ESP(spi=0xc00e2448,seq=0x11), length 136

13 ^C
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7.4.2 Testing End-to-End

Referring to the configuration depicted in figure 7.5 and listing B.2 they show
that the tunnel will be established between the two end hosts 192.168.57.3 and
192.168.57.7. Strongswan will be triggered when traffic matching the policies
will be sent between them. Here all the port in range [0-65535] and all kind of
protocols are specified.

TUNNELTUNNEL

MOON
enp0s3

192.168.57.3

SUN
enp0s3

192.168.57.7

10.0.0.0/24

Security Association
Behavior: ACCESS|EXIT
StartChannel: 192.168.57.3
EndChannel: 192.168.57.7
Source: 192.168.57.3
Destination: 192.168.57.7
Protocol: ANY
src_port: *
dst_port: *
AuthAlg: SHA2_256
EncAlg: AES_128_CBC

Security Association
Behavior: ACCESS|EXIT
StartChannel: 192.168.57.7
EndChannel: 192.168.57.3
Source: 192.168.57.7
Destination: 192.168.57.3
Protocol: ANY
src_port: *
dst_port: *
AuthAlg: SHA2_256
EncAlg: AES_128_CBC

Figure 7.5. Testing end-to-end

Let us suppose the End host Moon pings the End host Sun. The analyzer is
positioned in the interface enp0s3 of Moon. The command executed is:

sun@Sun:# ping 192.168.57.3

The packet’s traffic is shown in listing 7.9.

63



Validation and Testing

Listing 7.9. Packet capture ping command from Moon to Sun End-to-End

1 moon@moon:~$ sudo tcpdump -l --immediate-mode -i enp0s3 not port

ssh and not port domain

2 tcpdump: verbose output suppressed, use -v[v]... for full

protocol decode

3 listening on enp0s3, link-type EN10MB (Ethernet), snapshot

length 262144 bytes

4 23:54:32.295799 IP 192.168.57.7 > 192.168.57.3:

ESP(spi=0xcd5d5890,seq=0x5), length 136

5 23:54:32.295799 IP 192.168.57.7 > 192.168.57.3: ICMP echo

request, id 13, seq 1, length 64

6 23:54:32.295919 IP 192.168.57.3 > 192.168.57.7:

ESP(spi=0xc8da48fc,seq=0x5), length 136

7 23:54:33.297321 IP 192.168.57.7 > 192.168.57.3:

ESP(spi=0xcd5d5890,seq=0x6), length 136

8 23:54:33.297321 IP 192.168.57.7 > 192.168.57.3: ICMP echo

request, id 13, seq 2, length 64

9 23:54:33.297478 IP 192.168.57.3 > 192.168.57.7:

ESP(spi=0xc8da48fc,seq=0x6), length 136

10 ^C

7.4.3 Testing Remote Connection

Referring to the configuration depicted in figure 7.6 and listing B.3 one can see the
MOON-NET 10.0.0./24 can be accessed by the MOON VPN Gateway, which can
serves numerous VPN clients. In this case the client BOB 192.168.57.7, outside
the MOON-NET wants to access it and establish a tunnel with the VPN Gateway.

Let us suppose the host Bob pings host Alice. They are in different networks
and are interconnected by a tunnel established between the VPN Gateway Moon
and the end node BOB. The analyzer is positioned in the interface enp0s3 of the
VPN Gateway MOON. The command executed is:

bob@Bob:# ping 10.0.0.4

The packet’s traffic is shown in listing 7.10.
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Listing 7.10. Packet capture of ping command from Bob to Alice Remote-Connection

1 moon@moon:~$ sudo tcpdump -n -l --immediate-mode -i enp0s3 not

port ssh and not port domain

2 tcpdump: verbose output suppressed, use -v[v]... for full

protocol decode

3 listening on enp0s3, link-type EN10MB (Ethernet), snapshot

length 262144 bytes

4 02:42:28.530092 IP 192.168.57.7 > 192.168.57.3:

ESP(spi=0xcefef0e3,seq=0x12), length 136

5 02:42:28.530092 IP 192.168.57.7 > 10.0.0.4: ICMP echo request,

id 19, seq 1, length 64

6 02:42:28.530912 IP 192.168.57.3 > 192.168.57.7:

ESP(spi=0xcc8512be,seq=0x12), length 136

7 02:42:29.531445 IP 192.168.57.7 > 192.168.57.3:

ESP(spi=0xcefef0e3,seq=0x13), length 136

8 02:42:29.531445 IP 192.168.57.7 > 10.0.0.4: ICMP echo request,

id 19, seq 2, length 64

9 02:42:29.532172 IP 192.168.57.3 > 192.168.57.7:

ESP(spi=0xcc8512be,seq=0x13), length 136

10 ^C

MOON-NET
10.0.0.0/24

enp0s3
192.168.57.3

enp0s8
10.0.0.1

MOON

ALICE
enp0s3
10.0.0.4

BOB
enp0s3

192.168.57.7

TUNNEL

Security Association
Behavior: ACCESS
StartChannel: 192.168.57.3
EndChannel: 192.168.57.7
Source: 10.0.0.-1
Destination: ANY
Protocol: ICMP
src_port: *
dst_port: *
AuthAlg: SHA2_256
EncAlg: AES_128_CBC

Security Association
Behavior: ACCESS
StartChannel: 192.168.57.7
EndChannel: 192.168.57.3
Source: ANY
Destination: 10.0.0.-1
Protocol: ICMP
src_port: *
dst_port: *
AuthAlg: SHA2_256
EncAlg: AES_128_CBC

Security Association
Behavior: EXIT
StartChannel: 192.168.57.7
EndChannel: 192.168.57.3
Source: ANY
Destination: 10.0.0.-1
Protocol:ICMP
src_port: *
dst_port: *
AuthAlg: SHA2_256
EncAlg: AES_128_CBC

Security Association
Behavior: EXIT
StartChannel: 192.168.57.3
EndChannel: 192.168.57.7
Source: 10.0.0.-1
Destination: ANY
Protocol:ICMP
src_port: *
dst_port: *
AuthAlg: SHA2_256
EncAlg: AES_128_CBC

Figure 7.6. Testing Remote-Connection

From listing 7.8, 7.9 and 7.10, respectively for Site-to-Site, End-to-End and
Remote-Connection, it is possible to see the traffic between the two VPN Gateways.
Two kind of packets can be noticed:
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• ESP packets: these are the packets exchanged through the tunnel. They
are bigger than standard ICMP packets because of the extra ESP header.

• ICMP packets: these are the regular ICMP packets generated by the ping
command; at first sight, one can think that the tunnel is not working as
expected. In practice, it is working, but the packets are captured by the
analyzer which is the node itself and, for these reasons, it will capture also
the unencrypted packets.

7.5 Advantages and Limitations

In this section the analysis of pros and cons of this approach it is examined, in order
to highlight all the useful feature added and focus on limitation that will inspire
the future work.

It is straightforward to notice that with this approach to automatically configure
the hosts in the network, there is the possibility to save time and resources with few
computations, making it very useful. Moreover, it is integrated into the VEREFOO
framework, and not shipped as a plug-in; this means all the configuration will be
verified and correct by construction.

Unfortunately, this comes with some limitations, most of them coming from the
schema of the network that VEREFOO uses as input (and gives in output).

It contains an high-level abstraction of the network and contains too few in-
formation about the real topology, like the one physically used for this work. For
example, it was not possible to define subnet masks for the IP Addresses, For these
reasons, all the examples and tests have been conducted with /24 subnet mask as
default.

Also, the double specification of Security Association in the XML schema of a
VPN Gateway divided in ACCESS and EXIT is superfluous in this case, because
as seen in 6.3.1 the tunnel will always be symmetrical and specular.

However, these limits are not unbridgeable, and a few fields of the schema can
be easily added in the future.

66



Chapter 8

Conclusions and Future Work

During this thesis work, some additional feature of the VEREFOO framework has
been developed and tested, with the purpose to extend the actual functionalities of
the framework itself. This has been done with the purpose to exploit the already
present modules to improve the effectiveness in a real NFV case scenario.

Firstly, a complete study of the framework and the field where it operates has
been carried out, including the past work on how Virtual Private Network were in-
troduced into the framework using the Atomic Flow and Maximal Flow approaches.

The focus of this work moved finally to the implementation of a Translator
which is in charge of create configuration file for the VPN Gateways present in the
network and push them on, using scp and Strongswan.

After the identification of the correct technologies to use, the Translator model
was developed, together with some test to validate Strongswan new configuration
files and automatic tunnel establishment from remote machines.

Finally, everything was put together and some test has been carried out, to
validate the possibility to use the new tool extensively.

The improving of the representation of the nodes on the XML schema of VERE-
FOO, to meet the new requirements for this kind of side-developed tools is for sure
one of the main future work that can be carried out.

In fact, it is needed a more in depth description of algorithm to use, IP addresses
and netmasks to configure the nodes with.

Another big possible improvement is represented by the Strongswan API, that
could not be used in this work based on Java. In fact, create a Python script
to exploit the API could be very useful for the sake of security and simplicity to
interact with the software.

The IPSec VPN software solution used in this work, Strongswan 5.9.9, from
version 6.0.0 will use OpenSSL as new default Cryptographical Plugin making
the pki tool used to create certificates and key pair (as described in appendix A)
deprecated. One of the future work will be to use the recommended OpenSSL for
the generation of the certificates.
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AppendixA - Configuration

In the Appendix this work aims at giving the opportunity to replicate the configu-
rations used and the tests performed during this work.

A.1 Virtual Environment

The software used for virtualization is VirtualBox [30] (available for Linux, Win-
dows and MacOs) while the software used for the establishment of Security Chan-
nels and Certificates is Strongswan [26] (available for Linux, Windows, MacOs and
mobile platform like Android and iOS).

All the tests have been executed on a Linux machine with an Ubuntu based
distribution. While it is true that Strongswan is cross-platform, it is strongly
advised to use a Linux Machine to replicate the test due to its more fine granular
possibility to set configurations and execute troubleshooting.

Two groups of Virtual Machine have been created:

1. TheCertificate Authority: this VM has been created with the sole purpose
of generating self-signed certificates and act as a Certificate Authority for all
the machines used for the tests. The use of this VM is not mandatory, in
fact you can create self-signed certificates for each of the VMs involved on the
machine itself or have a third party, external, CA. In this case it was preferred
to keep thing detached, The VM is based on Ubuntu Server 22.04;

2. The Hosts/VPN Gateways: the image used is Ubuntu Server 22.04, be-
cause it does not come with a GUI and, from this point of view, is lighter
than an Ubuntu Client. Moreover, it comes with some tool already installed,
which will be useful later on.

For the first group, one VM is enough, while it is possible to create as many
VMs as needed of the second group. Screenshot A.1 shows the VMs used for this
work.
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Figure A.1. VirtualBox Groups Configuration

A.2 Installation of Strongswan

At this stage, it is useful to have a NAT network configuration for the VM you are
installing Strongswan on, in order for the VM to access the internet. Later on, in
A.4 it is explained how the network will be configured in the final configuration.

After the VM creation, in order to install the Strongswan software, it is needed
to install some dependencies, because it is going to be built from the source code.
In the case of an Ubuntu based distribution, an example of command can be:
sudo apt-get install -y <dependency>

Complete command:

sudo apt-get install -y build-essential net-tools libgmp-dev

pkg-config libsystemd-dev libssl-dev automake

1. Download the Strongswan binaries, replacing x.y.z with the version you want
to download. At the time of this thesis work, the last stable version is 5.9.9:

wget https://download.strongswan.org/strongswan-x.y.z.tar.bz2

2. Extract the archive and move into the new extracted folder;

tar xjf strongswan-x.y.z.tar.bz2; cd strongswan-x.y.z
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3. Configure the binaries with this specific options:

foo@bar:~$ ./configure --prefix=/usr --sysconfdir=/etc

--enable-systemd --enable-swanctl --enable-x509

--with-systemdsystemunitdir=/lib/systemd/system

--enable-charon --disable-stroke --disable-scepclient

--enable-openssl --enable-updown

--with-capabilities=native

4. Make: actual compilation of the source code

foo@bar:~\$ make && sudo make install

5. Permissions : in order for the remote machine, where VEREFOO is executed,
to push the configuration files, it is mandatory that the folder containing all
the strongswan configuration files is accessible.

foo@bar:~$ sudo chmod 647 /etc/swanctl/

foo@bar:~$ cd /etc/swanctl

foo@bar:~$ sudo chmod 755 bliss ecdsa pkcs* private rsa

foo@bar:~$ sudo rm /etc/swanctl/swanctl.conf

6. Reduced Privileges : to remotely reload the StrongSwan settings and acti-
vate tunnels each time a new swanctl.conf file is pushed, it is needed
to drop capabilities and run the daemon as non-root user. To do so, edit
/etc/strongswan.conf file as:

1 charon {

2 load_modular = yes

3 user = $your_user_here
4 plugins {

5 include strongswan.d/charon/*.conf

6 }

7 }

8 include strongswan.d/*.conf

7. Enable and start the service:

foo@bar:~\$ sudo systemctl enable strongswan

foo@bar:~\$ sudo systemctl start strongswan

This must be replicated on all the VMs which needs Strongswan installed.

A.3 Certification Authority

The Certification Authority is the VM in charge of issuing all the certificates for
the end hosts and the VPN Gateway. The CA Virtual Machine needs Strongswan
installed because its plugin pki tool is used to generate certificates. As in 8,
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this plugin will be deprecated in the near future and OpenSSL will be replacing it
instead. For Strongswan installation, see A.2.

Here follows a brief example of how to generate all the required Certificates, all
the references can be found in the Strongswan documentation [31].

In order to follow the steps illustrated below, it is suggested to configure all
the VMs network card in internal mode, using a single internal network. For more
details, refer to A.4.

As per the following commands, each file is created in a specific directory of the
root /etc/swanctl. In A.1 the directories used in this work are listed, while for
the rest of them the reference is in [32].

A.3.1 Generating CA Certificate

The first thing to do is to create a Self-Signed CA Certificate for the Certification
Authority itself, in order to be able to create Certificates for all the entities involved
in the tests.

1. The command

foo@bar:~$ pki --gen --type ed25519 --outform pem >

/etc/swanctl/x509/private/strongswanKey.pem

is used to generate an elliptic Edwards-Curve cryptographic private key.

2. The complementary public key is issued on the form of self-signed CA Cer-
tificate with 10 years lifetime:

foo@bar:~$ pki --self --ca --lifetime 3652 --in

strongswanKey.pem --dn "C=CH, O=strongSwan,

CN=strongSwan Root CA" --outform pem >

/etc/swanctl/x509ca/strongswanCert.pem

A.3.2 Generating End Entity Certificates

Now that the Certificate Authority is set, it can issue certificates for the hosts.
Here are described the steps to follow, with particular focus on what command is
executed in CA and in the End Host or VPN Gateway, which it is called host from
now on in this subsection.

1. In the host VM (i.e. Moon), execute this command to generate a new Ed25519
private key:

moon@Moon:~$ pki --gen --type ed25519 --outform pem >

/etc/swanctl/private/moonKey.pem
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2. Now it is possible to use the private key to create a Certificate Request to
the CA:

moon@Moon:~$ pki --req --type priv --in

/etc/swanctl/private/moonKey.pem --dn "C=CH,

O=strongswan, CN=moon.strongswan.org" --san

moon.strongswan.org --outform pem >

/etc/swanctl/moonReq.pem

The above command allows creating a PKCS#10 request to be sent and signed
by the CA.

3. It is possible to send the request file through the use of the SCP Protocol:

moon@Moon:~$ scp /etc/swanctl/moonReq.pem ca@CAIp:/home/ca/

4. On the Certificate Authority VM, it is now possible to issue the certificate:

ca@CA:~$ pki --issue --cacert

/etc/swanctl/x509ca/strongswanCert.pem --cakey

/etc/swanctl/private/strongswanKey.pem --type pkcs10

--in /home/ca/moonReq.pem --serial 01 --lifetime 1826

--outform pem > /etc/swanctl/x509/moonCert.pem

5. The just created certificate in CA VM must be sent back to the end entity
who made the request:

ca@CA:~$ scp /etc/swanctl/x509/moonCert.pem

moon@moonIp:/home/moon/

6. The last thing to do is to put the certificate in the right folder, which is
/etc/swanctl/x509 of moon End Host.

Table A.1. Strongswan’s swanctl Directory

Directory Contents
x509 x509 certificates
x509ca CA trusted certificates
private Private keys
pubkey Raw public keys

A.4 Network Configuration

Now it is possible to finally edit the network configuration of the VMs, choosing
among the ones Virtualbox offers, as in table A.2. The goal is to replicate the
configurations seen in 7.4.

In each VM which acts as VPN Gateway, two network card must be activated:
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Table A.2. Comparison between VirtualBox’s networks

Mode VM → Host VM ← Host VM1 ↔ VM2
Host-Only + + +
Internal − − +

• Internal network: this creates an internal network where just the VMs can
see each other. It is useful to define the subnet behind the VPN Gateways.

• Host-Only network: to put in communication the Host machine and the
VPN Gateways. Will be used to copy the configuration file from the Host to
the Strongswan folder on the VM itself with ssh and it is the network where
the tunnel will be created.

To create an Host-Only network, the Host Network Manager of Virtualbox
is needed and must be configured as in figure A.2

Internal network, instead, has no DHCP, so it is mandatory to assign to each
network interface card the right IP configuration as in listing A.1.

Through the command ip a it is possible to see the network interface’s name.
The subnet used in the test is the 10.0.0.0/24.

Listing A.1. Set IP address

vm@vm1:~$ sudo ip addr add x.x.x.x/y dev enp0xx

vm@vm1:~$ sudo ip link set enp0xx up

In each VM which acts as a EndHost, just one network card must be activated,
with internal network capabilities.

A.4.1 Forwarding

Each VPN Gateway must be able to forward packets between its network interfaces.
On Linux gateways:

sysctl net.ipv4.ip_forward=1

sysctl net.ipv6.conf.all.forwarding=1

This can be made permanent by writing the two commands in the
/etc/sysctl.conf file.

For example, in Site-to-Site case depicted in 7.4 it must be enabled a forwarding
rule on the two VPN Gateways, otherwise they would not know how to route
packets.

In that specific case, an ip route must be specified:

MOON: sudo ip route add 10.0.1.0/24 via 192.168.57.4

SUN: sudo ip route add 10.0.0.0/24 via 192.168.57.3

Forwarding rules must be enabled sometimes also on clients.
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Figure A.2. Host Network Manager

Referring again to case 7.4, below the commands for Alice and Bob clients.

Alice: sudo ip route add default via 10.0.0.1

Bob: sudo ip route add default via 10.0.1.1

Now that network configuration and directory permissions are managed, the
translator can be executed.

For an example of execution, refer to chapter 7.4.
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AppendixB - XML schemas of
test cases

B.1 Site-to-Site

Listing B.1. XML Allocation Schema of a Site-to-Site case scenario

<NFV xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="../../xsd/nfvSchema.xsd">

<graphs>

<graph id="0">

<node functional_type="WEBCLIENT" name="10.0.0.4">

<neighbour name="192.168.57.3"/>

<configuration description="A␣simple␣description" name="alice">

<webclient nameWebServer="10.0.1.5"/>

</configuration>

</node>

<node functional_type="WEBSERVER" name="10.0.1.5">

<neighbour name="192.168.57.7"/>

<configuration description="A␣simple␣description" name="bob">

<webserver>

<name>10.0.1.5</name>

</webserver>

</configuration>

</node>

<node functional_type="VPNGATEWAY" name="192.168.57.3">

<neighbour name="10.0.0.4"/>

<neighbour name="192.168.57.7"/>

<configuration description="vpn␣gw␣access">

<vpngateway>

<vpnName>moon</vpnName>

<securityAssociation>

<behavior>ACCESS</behavior>

<startChannel>192.168.57.3</startChannel>

<endChannel>192.168.57.7</endChannel>

<source>10.0.0.-1</source>

<destination>10.0.1.-1</destination>

<protocol>ICMP</protocol>

<src_port>22</src_port>
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<dst_port>22</dst_port>

<authenticationAlgorithm>SHA2_256</authenticationAlgorithm>

<encryptionAlgorithm>AES_128_CBC</encryptionAlgorithm

</securityAssociation>

</vpngateway>

</configuration>

</node>

<node functional_type="VPNGATEWAY" name="192.168.57.7">

<neighbour name="10.0.1.5"/>

<neighbour name="192.168.57.3"/>

<configuration description="vpn␣gw␣exit">

<vpngateway>

<vpnName>sun</vpnName>

<securityAssociation>

<behavior>ACCESS</behavior>

<startChannel>192.168.57.7</startChannel>

<endChannel>192.168.57.3</endChannel>

<source>10.0.1.-1</source>

<destination>10.0.0.-1</destination>

<protocol>ICMP</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

<authenticationAlgorithm>SHA2_256</authenticationAlgorithm>

<encryptionAlgorithm>AES_128_CBC</encryptionAlgorithm>

</securityAssociation>

</vpngateway>

</configuration>

</node>

</graph>

</graphs>

<Constraints>

<NodeConstraints/>

<LinkConstraints/>

</Constraints>

<PropertyDefinition>

<Property graph="0" name="ProtectionProperty" src="10.0.0.4" dst="10.0.1.5"

dst_port="80">

<protectionInfo encryptionAlgorithm="AES_128_CBC"

authenticationAlgorithm="SHA2_256">

<untrustedNode node="20.0.0.3"/>

<securityTechnology>TLS</securityTechnology>

<securityTechnology>IPSEC</securityTechnology>

</protectionInfo>

</Property>

</PropertyDefinition>

</NFV>
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B.2 End-to-End

Listing B.2. XML Allocation Schema of a End-to-End case scenario

<NFV xsi:noNamespaceSchemaLocation="./xsd/nfvSchema.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<graphs>

<graph id="0">

<node name="192.168.57.3" functional_type="VPNGATEWAY"

vpnCapabilities="true">

<neighbour name="192.168.57.7" />

<configuration name="AutoConf">

<vpngateway>

<vpnName>moon</vpnName>

<securityAssociation>

<behavior>ACCESS</behavior>

<startChannel>192.168.57.3</startChannel>

<endChannel>192.168.57.7</endChannel>

<source>192.168.57.3</source>

<destination>192.168.57.7</destination>

<protocol>ANY</protocol>

<src_port>0-65535</src_port>

<dst_port>0-65535</dst_port>

<authenticationAlgorithm>SHA2_256</authenticationAlgorithm>

<encryptionAlgorithm>AES_128_CBC</encryptionAlgorithm>

</securityAssociation>

<securityAssociation>

<behavior>EXIT</behavior>

<startChannel>192.168.57.7</startChannel>

<endChannel>192.168.57.3</endChannel>

<source>192.168.57.7</source>

<destination>192.168.57.3</destination>

<protocol>ANY</protocol>

<src_port>0-65535</src_port>

<dst_port>0-65535</dst_port>

<authenticationAlgorithm>SHA2_256</authenticationAlgorithm>

<encryptionAlgorithm>AES_128_CBC</encryptionAlgorithm>

</securityAssociation>

</vpngateway>

</configuration>

</node>

<node name="192.168.57.7" functional_type="VPNGATEWAY"

vpnCapabilities="true">

<neighbour name="192.168.57.3" />

<configuration name="AutoConf">

<vpngateway>

<vpnName>sun</vpnName>

<securityAssociation>

<behavior>ACCESS</behavior>

<startChannel>192.168.57.7</startChannel>

<endChannel>192.168.57.3</endChannel>

<source>192.168.57.7</source>

<destination>192.168.57.3</destination>

<protocol>ANY</protocol>

<src_port>0-65535</src_port>

<dst_port>0-65535</dst_port>

<authenticationAlgorithm>SHA2_256</authenticationAlgorithm>
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<encryptionAlgorithm>AES_128_CBC</encryptionAlgorithm>

</securityAssociation>

<securityAssociation>

<behavior>EXIT</behavior>

<startChannel>192.168.57.3</startChannel>

<endChannel>192.168.57.71</endChannel>

<source>192.168.57.3</source>

<destination>192.168.57.7</destination>

<protocol>ANY</protocol>

<src_port>0-65535</src_port>

<dst_port>0-65535</dst_port>

<authenticationAlgorithm>SHA2_256</authenticationAlgorithm>

<encryptionAlgorithm>AES_128_CBC</encryptionAlgorithm>

</securityAssociation>

</vpngateway>

</configuration>

</node>

</graph>

</graphs>

<Constraints>

<NodeConstraints />

<LinkConstraints />

</Constraints>

<PropertyDefinition>

<Property name="ProtectionProperty" graph="0" src="192.168.57.3"

dst="192.168.57.7" isSat="true">

</Property>

</PropertyDefinition>

<ParsingString></ParsingString>

</NFV>

B.3 Remote-Connection

Listing B.3. XML Allocation Schema of a Remote-Connection case scenario

<NFV xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="../../xsd/nfvSchema.xsd">

<graphs>

<graph id="0">

<node functional_type="WEBCLIENT" name="10.0.0.4"

vpnCapabilities="false">

<neighbour name="192.168.57.3" />

<configuration description="simple_description" name="alice">

<webclient nameWebServer="10.0.0.1" />

</configuration>

</node>

<node functional_type="VPNGATEWAY" name="192.168.57.3">

<neighbour name="10.0.0.4" />

<neighbour name="192.168.57.7" />

<configuration description="vpn␣gw␣access" name="AutoConf">

<vpngateway>

<vpnName>moon</vpnName>

<securityAssociation>
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<behavior>ACCESS</behavior>

<startChannel>192.168.57.3</startChannel>

<endChannel>192.168.57.7</endChannel>

<source>10.0.0.-1</source>

<destination>*</destination>

<protocol>ICMP</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

<authenticationAlgorithm>SHA2_256</authenticationAlgorithm>

<encryptionAlgorithm>AES_128_CBC</encryptionAlgorithm>

</securityAssociation>

<securityAssociation>

<behavior>EXIT</behavior>

<startChannel>192.168.57.7</startChannel>

<endChannel>192.168.57.3</endChannel>

<source>*</source>

<destination>10.0.0.-1</destination>

<protocol>ICMP</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

<authenticationAlgorithm>SHA2_256</authenticationAlgorithm>

<encryptionAlgorithm>AES_128_CBC</encryptionAlgorithm>

</securityAssociation>

</vpngateway>

</configuration>

</node>

<node name="192.168.57.7" functional_type="VPNGATEWAY"

vpnCapabilities="true">

<neighbour name="192.168.57.3" />

<configuration name="AutoConf">

<vpngateway>

<vpnName>bob</vpnName>

<securityAssociation>

<behavior>ACCESS</behavior>

<startChannel>192.168.57.7</startChannel>

<endChannel>192.168.57.3</endChannel>

<source>*</source>

<destination>10.0.0.-1</destination>

<protocol>ICMP</protocol>

<src_port>0-65535</src_port>

<dst_port>0-65535</dst_port>

<authenticationAlgorithm>SHA2_256</authenticationAlgorithm>

<encryptionAlgorithm>AES_128_CBC</encryptionAlgorithm>

</securityAssociation>

<securityAssociation>

<behavior>EXIT</behavior>

<startChannel>192.168.57.3</startChannel>

<endChannel>192.168.57.7</endChannel>

<source>10.0.0.-1</source>

<destination>*</destination>

<protocol>ICMP</protocol>

<src_port>0-65535</src_port>

<dst_port>0-65535</dst_port>
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<authenticationAlgorithm>SHA2_256</authenticationAlgorithm>

<encryptionAlgorithm>AES_128_CBC</encryptionAlgorithm>

</securityAssociation>

</vpngateway>

</configuration>

</node>

</graph>

</graphs>

<Constraints>

<NodeConstraints />

<LinkConstraints />

</Constraints>

<PropertyDefinition>

<Property graph="0" name="ProtectionProperty" src="192.168.57.7"

dst="10.0.0.4" dst_port="80">

<protectionInfo encryptionAlgorithm="AES_128_CBC"

authenticationAlgorithm="SHA2_256">

<securityTechnology>TLS</securityTechnology>

<securityTechnology>IPSEC</securityTechnology>

</protectionInfo>

</Property>

</PropertyDefinition>

</NFV>
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