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Summary

The advancements in networking technologies, namely Network Functions Virtu-
alization (NFV) and Software-Defined Networking (SDN), have significantly en-
hanced the flexibility and efficiency of building Service Function Chains. NFV
enables the implementation of specific network functions, such as NAT or proxy
servers, on standard servers, eliminating the need for dedicated hardware devices.
This utilization of standard servers allows for the consolidation of multiple network
functions, optimizing resource utilization and enabling the addition of new func-
tions without the need for additional physical devices.

SDN, on the other hand, provides the ability to create tailored routes for dif-
ferent types of traffic or users, adding greater flexibility to Service Function Chain
construction. Through controller programming, the path taken by a packet can be
dynamically modified and customized as it traverses various network devices.

However, the manual configuration of network devices in the creation of Service
Function Chains presents challenges. Incorrect configurations can lead to serious
security breaches or unwanted traffic acceptance. Additionally, manual configura-
tion can result in significant latency during updates or maintenance of the security
system. Network Automation offers a solution by automating the configuration of
network security devices, reducing human errors and minimizing latency associated
with configuration changes.

An example of a Network Automation framework is VEREFOO (VErified REFine-
ment and Optimized Orchestration). By inputting a Service Graph and Network
Security Requirements, VEREFOO generates an optimized Service Graph solution
that identifies a physical network with automatically allocated and configured net-
work security functions. This ensures the best alignment with the provided Network
Security Requirements.

The primary focus of this thesis work was on selecting the most suitable VPN
technology. The key contribution of this research was the enhancement and ex-
pansion of the VEREFOO framework, which was originally designed to address
network security requirements by managing the allocation and configuration of
Firewalls and Channel Protection Systems. However, the framework lacked the ca-
pability to choose between different VPN technologies. The thesis work addressed
this limitation and after an extensive work of research and modelization, introduced
the ability to select the optimal VPN technology within the VEREFOO framework.
Furthermore, aspects of the previous version of the framework were improved, with
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a specific focus on scalability and performance enhancements.

To validate the effectiveness of the framework and highlight the factors that signif-
icantly impact its scalability, performance tests were conducted. These tests were
carried out by varying numerous input values, such as the Allocation Points and
Network Security Requirements, both in number and in requested property. The
performance tests aimed to verify the accuracy, scalability, and overall improve-
ments achieved by the framework.
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Chapter 1

Introduction

1.1 Thesis objective

Over the past few years, two new technologies in networking have emerged, namely
Network Functions Virtualization (NFV) and Software-Defined Networks (SDN).
NFV refers to the capability of running network functions on standard hardware,
with the help of computing virtualization to optimize resource utilization, allowing
for the flexible deployment of network functions to form a Service Function Chain.
On the other hand, SDN allows the creation of packet paths inside the physical
network using software processes. Prior to these technologies, service graphs were
typically composed of specific hardware devices designed for implementing specific
services like NAT or proxy servers. Nowadays, virtualizing the network functions
composing the graph is more prevalent, as it allows for efficient use of hardware
resources, sharing physical resources by installing more than one service function
on the same server. Adding new functions is also simpler, and it no longer requires
buying expensive, dedicated hardware. Instead, it can be installed on already avail-
able general purpose servers. These concepts can be applied not only to network
service functions, but also to Network Security Functions (NSFs) such as packet
filter firewalls and VPN Gateways.

One challenge that arises when creating a Service Graph and configuring the vir-
tual network functions is that these tasks are typically performed manually. This is
particularly critical when allocating and configuring security functions, which are
intended to provide security services such as communication protection or the abil-
ity to deny/allow certain network traffic. Misconfigurations of such functions can
easily result in severe and dangerous incidents such as security breaches. Addition-
ally, performing these operations manually is slow, which can lead to delays in up-
dating security defences according to changing or additional security requirements.
For this reason, Network Automation is a valuable alternative as it enables the au-
tomation of Network and Security Management, managing configuration changes
automatically with lower latency and without the risk of human errors.

The thesis objective is to contribute to the design and implementation of VERE-
FOO, which stands for VErified REFinement and Optimized Orchestration. The
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framework is designed to automate the allocation and configuration of Network
Security Functions on a Service Graph, in order to fulfil a set of network security
requirements expressed by the security administrator using a high-level security
language through a refinement process. This thesis focuses on extending the func-
tionality of VEREFOO to ensure the optimal choice of VPN technology between
IPsec and TLS based technologies.

1.2 Thesis description

The rest of the thesis is organized in the following way:

• Chapter 2 is about the different VPN technology. It starts with the presenta-
tion of three different way to implement TLS based VPN, highlighting com-
monalities and differences. Then a brief introduction to IPsec is performed
so that is possible to perform a comparison between these two different tech-
nologies. The last part of the chapter is focused on the comparison of the
security properties provided by both IPsec and TLS.

• Chapter 3 opens by introducing the concept of a Service Function Chain
(SFC), which is a chain of multiple network functions designed to provide
services for a specific communication. The chapter then proceeds to intro-
duce two important advancements in computer networks: Software Defined
Networking (SDN) and Network Function Virtualization (NFV). These ad-
vancements are discussed in relation to their benefits for SFCs. The final
section of the chapter focuses on the concept of automating network and se-
curity management using the aforementioned advancements and an enhanced
SFC. It highlights the advantages of implementing automatic configurations
and management through the utilization of these innovations. this section
also presents the framework on which part of the thesis work was carried out.

• Chapter 4 focuses on presenting the main objective of the thesis work and how
it was accomplished. The chapter begins by discussing how the main objective
was divided into smaller, essential objectives that needed to be achieved to
fulfil the overall objective. The four objectives are then described in detail,
along with the potential approaches that were pursued to attain them.

• Chapter 5 is entirely dedicated to the presentation of the approach used to
carry out the thesis work. The first section addresses the study of the VPN
technologies, in the specific IPsec and TLS. Then is presented the approach
taken for the modelization work, both the introduction of new function and
the modification of already present one, like Communication Protection Poli-
cies. In the last section, the focus is on the approach used in the implemen-
tation part of the thesis work, which is based on a partial weighted MaxSMT
(Maximum Satisfiability) problem. The section describes the underlying prin-
ciples of this approach, highlighting the distinction between hard and soft
constraints.
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• Chapter 6 open with the reformulation of Communication Protection Policies
and Rule, necessary to implement the new functionality necessary to achieve
the goal of this thesis. In the following sections are presented the model for the
function: USED TECHNOLOGY, MODE, ARCHITECTURE. In each one
of this section in addition are presented a series of hard and soft constraints
needed for the selection of the correct VPN technology given the requested
security requirements.

• Chapter 7 begins with the presentation of five different use cases to show the
newly introduced functionality. For each example are presented the relative
section of input and output of the framework and the explanation of the
reason a certain solution has been selected.

• Chapter 8 is dedicated to the conclusion of the thesis work, the achieved
objectives are summarized and are presented some possible work to further
improve the framework.

13



Chapter 2

VPN Technology

This chapter performs an in-depth analysis of the TLS protocol when used to create
VPN tunnels. Since unlike IPsec there is no standard for implementing TLS-based
VPNs in the first section of the chapter we will compare three different protocols:
OpenVPN, TINC, SSTP.

The second section, after a brief introduction to IPsec, will focus on the differ-
ences and similarities between TLS-based VPNs and IPsec.

The third section will look in detail at the differences between the security re-
quirements offered by these security technologies.

2.1 TLS protocols comparison

Transport Layer Security (TLS) is a cryptographic protocol that ensures commu-
nication security over a computer network. It is commonly used in email, instant
messaging, and voice over IP applications, but is most well-known for securing
HTTPS. The main objective of TLS is to provide security by ensuring confiden-
tiality, integrity, and authenticity through the use of cryptography between two or
more communicating computer applications.

Confidentiality and integrity are enforced on the header of the original packet,
while the integrity on the header of the encapsulating packet is not possible. The
TLS protocol consists of two layers: the TLS record and the TLS handshake pro-
tocols.

TLS can also be used for creating a Virtual Private Network (VPN) by tunnelling
an entire network stack. Compared to traditional IPsec VPN technologies, TLS has
inherent advantages in firewall and NAT traversal, making it easier to administer
for large remote-access populations.
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In this work we have specifically analysed three different protocols: OpenVPN,
TINC, SSTP.

2.1.1 OpenVPN

is a widely used open-source virtual private network (VPN) technology that offers
a secure and flexible solution for establishing encrypted connections over the inter-
net. Its robust set of properties makes it an excellent choice for both individuals
and organizations seeking to protect their online privacy, secure their data, and
establish remote access capabilities.

Another important property of OpenVPN is its versatility. It is compatible with
various operating systems, including Windows, macOS, Linux, Android, and iOS,
making it accessible to a wide range of users. Additionally, OpenVPN supports
multiple connection types, such as TCP and UDP, and can utilize various net-
work protocols, including Internet Protocol version 4 (IPv4) and Internet Protocol
version 6 (IPv6). This flexibility allows OpenVPN to adapt to different network
environments and provide reliable connectivity across diverse platforms.

The structure of the VPN packets is described in OpenVPN documentation [22] as
follows:

• packet length (16 bits, unsigned) [TCP-mode only]: always sent as plain text.
Since TCP is a stream protocol, this packet length defines the packetization
of the stream.

• packet opcode and key id (8 bits) [TLS-mode only]:

– package message type (high 5 bits): there are numerous type available
divided in Control channel messages and Data channel messages.

– key id (low 3 bits): the key id refers to an already negotiated TLS ses-
sion. OpenVPN seamlessly renegotiates the TLS session by using a new
key id for the new session. Overlap (controlled by user definable param-
eters) between old and new TLS sessions is allowed, providing a seamless
transition during tunnel operation.

• payload (n bytes)

OpenVPN also boasts excellent scalability and configurability. It can handle large-
scale deployments and accommodate numerous clients and servers, making it suit-
able for organizations with extensive network infrastructure and multiple users.
Furthermore, OpenVPN offers a comprehensive set of configuration options, allow-
ing users to fine-tune settings to meet their specific requirements. This level of
customization empowers users to optimize performance, prioritize traffic, and im-
plement advanced security features based on their individual needs.

Moreover, OpenVPN is an open-source technology, which means its source code
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is freely available to the public. This fosters transparency and encourages com-
munity involvement in its development and improvement. The open nature of
OpenVPN enables security audits, peer reviews, and contributions from a global
network of experts, reducing the risk of known vulnerabilities remaining unpatched
for significant periods or backdoors being allowed to exist, enhancing its overall
reliability and security.

OpenVPN utilizes the OpenSSL library to implement a combination of symmetric
encryption algorithms like AES (Advanced Encryption Standard) and asymmet-
ric encryption techniques such as RSA (Rivest-Shamir-Adleman), including widely
adopted and recommended algorithms like AES 256. This approach ensures the
confidentiality, integrity, and authenticity of the transmitted data.

OpenVPN supports bidirectional authentication based on certificates, meaning that
the client must authenticate the server certificate, and the server must authenticate
the client certificate before mutual trust is established.

As OpenVPN uses the TLS channel over TCP port 443, the traffic is indistin-
guishable from regular HTTPS traffic. It cannot be identified by Internet Service
Providers (ISPs) or firewalls looking to block VPN traffic.

In summary, OpenVPN is a powerful VPN solution that combines robust security
measures, versatility, scalability, configurability, and open-source benefits. With its
wide compatibility and customization options, OpenVPN offers a flexible solution
for various network environments and user requirements. Its open-source nature en-
sures continuous improvement and fosters a strong community-driven development
process.

2.1.2 Tinc

is a lightweight, open-source VPN software that provides secure and efficient con-
nectivity solutions for creating virtual private networks. With its unique set of
properties, Tinc offers a versatile and reliable platform for establishing encrypted
connections across different network topologies.

One of the key properties of Tinc is its peer-to-peer (P2P) nature. Unlike tra-
ditional VPN solutions that rely on a centralized server, Tinc employs a mesh
routing architecture. This means that each node in the network can act as both
a client and a server, allowing for a distributed and resilient infrastructure. The
decentralized design enhances fault tolerance, as the network can automatically
reroute traffic in case of node failures, ensuring uninterrupted connectivity.

Another notable property of Tinc is its support for various operating systems. It
is compatible with a wide range of platforms, including Windows, macOS, Linux,
FreeBSD, and even embedded systems like routers and IoT devices. This cross-
platform compatibility enables seamless integration into diverse network environ-
ments, making Tinc a versatile choice for different deployment scenarios.

16



VPN Technology

Tinc also excels in terms of performance and scalability. It utilizes efficient en-
cryption algorithms and compression techniques to minimize latency and maximize
throughput. Additionally, Tinc can scale to accommodate large networks with
hundreds or even thousands of nodes, making it suitable for both small-scale de-
ployments and enterprise-level infrastructures.

Tinc shares some similarities with OpenVPN. For instance, they both operate opti-
mally over UDP, but TCP capability is provided. To ensure the confidentiality and
integrity of transmitted data, Tinc also uses the OpenSSL library, complemented
by the LibreSSL library. This means that Tinc employs strong cryptographic pro-
tocols, such as RSA and AES. Additionally, Tinc supports bidirectional authenti-
cation, where both the client and server must authenticate.

One difference with the other protocol analyzed in this section is that Tinc, by
default, uses UDP port 655 (for both IPv4 and IPv6) to exchange routing and con-
nectivity information between nodes in the network. However, this can be changed
in the configuration file to use a different port or protocol if necessary.

The topic of network packet encryption is addressed in the documentation [24]
as follows:
A data packet can only be sent if the encryption key is known to both parties, and
the connection is activated. If the encryption key is not known, a request is sent
to the destination to retrieve it. The packet is stored in a queue while waiting for
the key to arrive. The UDP packet containing the network packet from the VPN
has the following layout:

Figure 2.1: Tinc data packet structure

So, the entire VPN packet is encrypted using a symmetric cipher, including a
32 bits sequence number that is added in front of the actual VPN packet, to act as
a unique IV for each packet and to prevent replay attacks. A message authentica-
tion code is added to the UDP packet to prevent alteration of packets. By default
the first 4 bytes of the digest are used for this, but this can be changed using the
MACLength configuration variable.

An additional advantage of Tinc is its simplicity and ease of use. It features a
straightforward configuration process, allowing users to set up VPN connections
with minimal effort. Tinc also supports dynamic routing, enabling automatic dis-
covery and establishment of connections between nodes, further simplifying network
management and reducing administrative overhead.
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In summary, Tinc is a lightweight, decentralized VPN software that offers secure
and efficient connectivity solutions. Its properties include a decentralized mesh
routing architecture, cross-platform compatibility, excellent performance and scal-
ability, robust security features, and ease of use. With Tinc, users can establish
encrypted connections across different network topologies, ensuring reliable and
private communication. Whether for small-scale deployments or large-scale infras-
tructures, Tinc provides a versatile and reliable platform for creating virtual private
networks.

2.1.3 Secure Socket Tunnelling Protocol (SSTP)

is a VPN protocol developed by Microsoft that offers a secure and reliable solution
for establishing encrypted connections over the internet. SSTP possesses several
properties that make it a valuable choice for individuals and organizations seeking
a secure VPN solution.

One of the key properties of SSTP is its strong security measures. It utilizes the
TLS protocol to encrypt the data transmitted between the client and the server,
ensuring the confidentiality and integrity of the communication. By leveraging
the same encryption standards used in secure websites, SSTP effectively protects
against eavesdropping and data manipulation by malicious entities, providing ro-
bust security for sensitive information during transit.

The following diagram shows the format of the SSTP packet when is sent on
the HTTPS connection as shown by the Microsoft provided documentation [23].

Figure 2.2: SSTP Packet Structure

• Version (1 byte): An 8-bit field utilized for communicating and negotiating
the SSTP version in use.

• Reserved (7 bits): This 7-bit field is currently reserved for future purposes.
It must be set to zero during transmission and disregarded upon receipt.

• C (1 bit): A 1-bit field indicating whether the packet is an SSTP control
packet (set to 1) or an SSTP data packet (set to 0).

• LengthPacket (2 bytes): A 16-bit unsigned integer, represented in network
byte order, that combines data for two fields. The first field, R, is a 4-bit
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reserved area set to zero during transmission and ignored upon receipt. The
second field, Length, is a 12-bit unsigned integer, represented in network byte
order, which MUST specify the length of the entire packet (including the
4-byte SSTP header) in bytes.

• Data (variable): This field has a variable length equal to the value of the
Length field minus 4. It contains either the SSTP control message (when C
is set to 1) or the payload from a higher-layer protocol (when C is set to 0).

Another important property of SSTP is its wide compatibility. It is natively sup-
ported by Windows operating systems, making it an ideal choice for users within
the Microsoft ecosystem. Additionally, SSTP can be configured on other platforms,
including Linux and macOS, using third-party software. This compatibility allows
for seamless integration into existing network environments, enabling users to es-
tablish VPN connections across different devices and operating systems.

SSTP, similar to OpenVPN, uses port 443 as the standard port, allowing it to
traverse firewalls and network address translation (NAT) devices. This capability
makes SSTP suitable for establishing secure connections even in restrictive network
environments.

Moreover, SSTP is known for its high stability and robustness. Operating ex-
clusively over TCP, SSTP ensures that packets are delivered in the correct order
and without loss, providing reliable and uninterrupted connectivity for applications
that require consistent performance.

SSTP is more flexible in the bidirectional authentication, in fact while the servers
must be authenticated, the client authentication is optional.

Furthermore, SSTP is easy to configure and use. As a native protocol in Win-
dows, it can be set up with a few simple steps, eliminating the need for additional
software or complex configurations. This user-friendly nature makes SSTP acces-
sible to both novice and experienced users, reducing the barrier to implementing
secure VPN connections.

Additionally, SSTP supports a wide range of authentication methods, including
username/password, smart card, and certificate-based authentication. This flexi-
bility allows users to choose the most suitable authentication mechanism based on
their specific security requirements and infrastructure.

In summary, SSTP is a secure and reliable VPN protocol with properties that
make it a valuable choice for users seeking encrypted connections. Its strong secu-
rity measures, wide compatibility, excellent performance and reliability, stability,
and ease of use contribute to its effectiveness as a VPN solution. Whether for
individual users or organizations, SSTP provides a secure and accessible means of
establishing encrypted connections over the internet, safeguarding sensitive infor-
mation, and ensuring privacy. In conclusion, considering the variety and spread
of the protocols analysed, it is possible to highlight the similarities of the different
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VPN implementations based on TLS. Therefore, below we are summarizing the
characteristics of greater interest for our work:

• All the protocols studied provide the same security property, using the most
modern cipher. Like shown in the picture, confidentiality and integrity are
enforced on the header of the original packet, while the integrity on the header
of the encapsulating packet is not possible.

Figure 2.3: TLS security properties

• TLS has inherent advantages in firewall and NAT traversal.

• By default, there is peer authentication between client and server (SSTP is
more flexible, so optionally the client may not be authenticated by the server)

• All the protocol have a great versatility, being compatible with various oper-
ating systems.

2.2 TLS and IPsec comparison

Before moving on to a comparison between TLS and IPsec, for the sake of com-
pleteness let us proceed with a brief summary of IPsec’s properties.

Internet Protocol Security (IPsec) is a widely used protocol suite that provides
a secure and encrypted communication framework for IP networks. Known for its
robust security features, IPsec offers a range of properties that make it a popular
choice for establishing virtual private networks and ensuring, data origin authenti-
cation, data integrity, data confidentiality through encryption, and protection from
replay attack.

One of the key properties of IPsec is its strong encryption capabilities. To en-
crypt data packets at the IP layer IPsec employs various encryption algorithms,
such as AES (Advanced Encryption Standard), 3DES (Triple-DES). This ensures
that all data transmitted over an IPsec-secured connection is protected from unau-
thorized access and eavesdropping. By encrypting the data, IPsec provides a high
level of confidentiality, safeguarding sensitive information from interception.

Another important property of IPsec is its flexibility in terms of authentication
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and key management. IPsec supports multiple authentication methods, including
pre-shared keys, digital certificates, and public key infrastructure (PKI). These
authentication mechanisms verify the identity of communicating parties, ensuring
that data is exchanged between trusted endpoints. IPsec also provides secure key
exchange protocols, such as Internet Key Exchange (IKE), for establishing and
managing cryptographic keys used for encryption and decryption. This flexibility
and robustness in authentication and key management make IPsec a reliable and
secure protocol suite.

IPsec is also known for its compatibility with various network topologies and pro-
tocols. It can be implemented in host-to-host, site-to-site, and remote access VPN
configurations. Furthermore, IPsec operates at the IP layer, making it transpar-
ent to higher-level protocols and applications. This means that IPsec can secure
all types of IP traffic, including TCP, UDP, and ICMP, without requiring modifi-
cations to existing applications or network infrastructure. The compatibility and
transparency of IPsec enable seamless integration into diverse network environ-
ments, making it a versatile choice for VPN deployments.

Moreover, IPsec provides strong data integrity through the use of integrity al-
gorithms, such as HMAC (Hash-based Message Authentication Code). These al-
gorithms generate hash values that ensure the integrity of transmitted data by
detecting any tampering or modification during transit. This property ensures
that data remains unaltered and authenticates the source of the information.

Additionally, IPsec is highly scalable and can support large-scale deployments.
It can handle high volumes of traffic and accommodate many VPN connections
simultaneously. IPsec’s scalability makes it suitable for enterprises and organiza-
tions with extensive network infrastructure and a large number of users.

IPsec uses the following protocols to perform various functions:

• Authentication Headers (AH) provides data integrity and data origin authen-
tication for IP datagrams and protects against replay attacks.

• Encapsulating Security Payloads (ESP) offers confidentiality, connectionless
data integrity, data origin authentication, a form of partial sequence integrity
called anti-replay service, and limited traffic-flow confidentiality.

• Internet Security Association and Key Management Protocol (ISAKMP) es-
tablish a framework for authentication and key exchange.

The AH and ESP protocols of IPsec can be applied either in a host-to-host trans-
port mode or in a network tunnelling mode.

In transport mode, only the IP packet’s payload is usually encrypted or authenti-
cated, and the routing is preserved since the IP header is not altered or encrypted.
However, using the authentication header hinders network address translation since
it invalidates the hash value when IP addresses are modified. The hash secures the
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transport and application layers, preventing any modifications, such as port num-
ber translations. To enable NAT traversal, RFC documents have defined a way to
encapsulate IPsec messages, known as the NAT-T mechanism.

In tunnel mode, the complete IP packet is encrypted and authenticated, and then
enclosed within a new IP packet with a fresh IP header.

The figures also depict these security properties:

Figure 2.4: Ipsec Transport Mode security properties.jpg

22



VPN Technology

Figure 2.5: Ipsec Tunnel Mode security properties.jpg

In summary, IPsec is a powerful protocol suite that offers strong encryption,
authentication, and key management capabilities. Its properties include robust se-
curity measures, flexibility in authentication and key management, compatibility
with various network topologies and protocols, data integrity, and scalability.

The major distinction between an IPsec VPN and an TLS VPN is primarily related
to the network layers where encryption and authentication are carried out. IPsec
works at the network layer and can encrypt data exchanged between any systems
that can be identified by IP addresses. On the other hand, TLS VPNs operate at
the transport layer and can encrypt data sent between any two processes recognized
by port numbers on network-connected hosts. For this reason, TLS VPNs have an
inherent advantage in firewall and NAT traversal.

Both IPsec and TLS VPNs support various user authentication methods. IPsec
employs Internet Key Exchange (IKE) version 1 or 2 and can use digital certifi-
cates or preshared secrets for two-way authentication. In contrast, TLS VPNs
always use digital certificates for authentication.

Access control differs between these technologies. IPsec VPNs allow users to re-
motely connect to an entire network and all its applications, whereas TLS VPNs
give users remote tunnelling access to a specific system or application on the net-
work. If attackers gain access to the IPsec secured tunnel, they could potentially
access anything on the private network. Is also possible to implement different
access level using IPsec, but this requires organizations to set up multiple VPNs,
increasing considerably the configuration difficulty.
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TLS VPNs can use a web browser or a dedicated client software for accessing to
secure systems, while IPsec VPNs require a dedicated client software. TLS VPNs
can be considered more user-friendly than IPsec VPNs since they do not require
the installation of any client software.

2.3 Security requirements

Having analysed the security properties offered by TLS-based VPNs and IPsec-
based VPNs, in this section we summarise all the properties that an administrator
may wish to implement when establishing a VPN.These security properties are also
summarised in the following table:

Figure 2.6: Security Properties Table

For each requirement, is indicated whether it is implemented or not for each
VPN technology and whether the implementation is mandatory or configurable by
the end user.

• Confidentiality of the internal header is a user choice for the TLS VPNs, is also
configurable for IPsec ESP and ESP+AH in tunnel mode, is not supported
in all the other cases.

• Integrity of the internal header is mandatory for the TLS VPNs, likewise for
IPsec AH/ESP+AH both in transport and tunnel mode. Is a user choice
for IPsec ESP in tunnel mode. Is not supported for IPsec ESP in transport
mode.
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• Integrity of the internal payload is mandatory for the TLS VPNs, likewise for
IPsec AH/ESP+AH both in transport and tunnel mode. Is a user choice for
IPsec ESP in both tunnel and transport mode.

• Integrity of the additional header is implementable and mandatory only for
IPsec AH or ESP+AH on tunnel mode.

• Peer authentication, as we have seen in the previous sections is possible to
implement using only TLS based VPNs. Client authentication is not manda-
tory.
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Network Automation

This chapter begins by introducing the concept of Service Function Chain (SFC),
which is a series of network functions designed to provide communication services.
However, the limitations of this concept are highlighted, particularly its lack of
flexibility and agility due to the underlying network architecture principles.

To overcome these limitations, two important innovations in computer networks
are introduced: Software-Defined Network (SDN) and Network Function Virtual-
ization (NFV). SDN allows for dynamic decision-making in the packet forwarding
process using software, resulting in a more agile and simpler to manage SFC. NFV,
on the other hand, utilizes standard hardware to run network function images,
making the SFC more flexible.

The final section focuses on automating network and security management us-
ing the aforementioned innovations and an improved SFC. This approach provides
several benefits, especially in the security field where rapid response to cyberat-
tacks is critical. An example of a framework that implements this approach is also
presented, along with its workflow.

3.1 Service Function Chain

To implement an end-to-end service, the service designer must carefully select a
suitable set of functions and ensure that traffic flows through them in a predeter-
mined order to fulfil user requests.

The formal definitions of Service Function and Service Function Chain have been
outlined in RFC 7665 [1]:

Service Function is responsible for the specific processing of received pack-
ets. It can operate at different layers of a protocol stack, such as the network
layer or other OSI layers. The service function can be implemented as a vir-
tual component or integrated into a physical network element. It is possible
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to embed one or more service functions within a single network element. Ad-
ditionally, multiple instances of the service function can coexist within the
same administrative domain.

Service Function Chain establishes a predefined sequence of abstract ser-
vice functions along with ordering constraints. These functions and con-
straints are applied to packets, frames, and flows that have been selected
based on classification.

The correct working of the end-to-end service depends on the fixed positioning of
network functions in the chain, so packets flow through them in a specific and pre-
determined order.

Figure 3.1: Example of Service Function Chain

Historically, network functions were physical devices dedicated to specific pur-
poses. These devices were designed and built to fulfill their respective functions.
Consequently, network function chains composed of such devices faced significant
limitations:

- Suboptimal utilization of hardware resources: Physical appliances often expe-
rienced imbalanced resource usage. Some devices may handle heavy workloads
while others remain underutilized. Since each function was implemented on
a separate physical box with dedicated hardware, it was not feasible to share
hardware resources among different services.

- Service disruption during modification: Making changes to a service chain,
such as adding or removing a function, resulted in service disruption. This was
because physical cables needed to be unplugged, functions added or removed,
and cables reconnected. This process caused interruptions in service delivery.

- Cost and time-consuming installation: When new functions needed to be
added to a service function chain, dedicated hardware had to be purchased
for each function. Additionally, the installation process was often time-
consuming and complex.

- Difficulty in differentiating services for users: Users typically require different
services, but traditional service function chains lacked the necessary flexibility
to accommodate this. Managing user-specific configurations and privileges,
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such as per-application configuration, within a service function chain was
challenging and not always achievable.

However, new paradigms have emerged in recent years to overcome these issues and
implement more flexible and performant solutions.

3.2 Software Defined Network and Network Func-

tion Virtualization

Software-defined networking (SDN) technology provides a new approach to network
architectures in cloud computing, which enables improved performance by simpli-
fying their configuration and administration.
SDNs are networks consisting of network devices, both physical and virtual, where
packet forwarding is determined by software. This software has the ability to influ-
ence network paths, making it a dynamic process that can change packet forwarding
based on certain events. SDNs are built on three key concepts:

- Decoupling of the data plane and control plane: The control plane encom-
passes all the functions and processes responsible for determining the path
to be used for packet or frame transmission. On the other hand, the data
plane includes all the functions and processes that forward packets from one
interface to another based on the logic defined in the control plane.

- Centralized control plane: This is where the intelligence of SDN technology
resides. The control plane can be logically centralized or physically central-
ized. It is preferable to have a logically centralized control plane to avoid
single points of failure and scalability issues.

- Southbound and northbound interfaces: The southbound interface enables
communication between the SDN controller and the forwarding infrastruc-
ture. It allows the controller to manage and control the network devices. The
northbound interface, on the other hand, facilitates interaction between the
SDN controller and user-level applications or higher-level controllers. It pro-
vides a means for the controller to receive instructions or information from
applications or other controllers.
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Figure 3.2: SDN Architecture

The picture shows how the SDN controller communicates with the forwarding in-
frastructure through the southbound interface and interacts with the application at
the user level or a higher-level controller through the northbound interface.Is im-
portant to remark that while centralizing network intelligence can address most of
the limitations of traditional network architectures, this approach has some disad-
vantages related to security, scalability, and elasticity, which are the major concerns
of SDN technology.

By utilizing SDN technology, the limitations of service function chains as previ-
ously described can be addressed. The service functions comprising an SFC are
akin to hardware appliances and can be interconnected via an SDN switch man-
aged entirely by the controller. Consequently, the controller would be capable of
directing packet flow and controlling the sequence of middlebox traversal.
Despite the many benefits of this SFC implementation, such as enhanced agility in
delivering new services, greater reliability, maintenance, and the capacity to differ-
entiate service chains for each user, remains the challenge of partitioning physical
appliances. Since these devices remain hardware-based, it is still impractical to
share resources between them, and the installation of new functions remains a slow
process.

An improvement to the architecture of a service function chain, assuming that
each service function corresponds to a hardware appliance, could be achieved by
linking them using an SDN approach. This would enable the forwarding behaviour
of each hardware appliance to be controlled entirely by the SDN controller.
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Figure 3.3: Example of SFC using SDN

The Figure illustrates how the service function chain depicted in Figure 2.1
can be modeled within an SDN architecture. In this setup, the SDN controller
determines the path that the network functions, connected to the SDN switch,
should follow.
Implementing a service function chain using this approach offers several advantages:

- Agility in provisioning new services: With software-based routing instead of
physical wiring, new services can be provisioned quickly after installing the
box.

- Maintenance and reliability: Cabling is only required once, simplifying main-
tenance and improving reliability.

- Differentiated service chains for users: Software-based routing allows for dy-
namic decision-making based on various parameters, such as application layer
content. This enables the creation of different service chains for different users.

However, there are still some challenges to address. Partitioning physical appliances
among different tenants remains difficult, and computational resources cannot be
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shared among hardware-based appliances. Additionally, installing a new function
in this setup is a slow operation.

In order to overcome the limitations of SFC, the next step involves virtualizing
the network and devices. Network Function Virtualization (NFV) leverages virtu-
alization to create virtual structures for network functions, allowing software to be
separated from hardware. there are several literature article about this topic, such
as: [2]

From the above literature we can identify four main components that define NFVs:

- Fast standard hardware: NFV utilizes off-the-shelf hardware that meets in-
dustry standards. This hardware is capable of efficiently running network
functions.

- Software-based network function: Network functions are implemented as soft-
ware images running on standard servers, enabling them to be added and
removed quickly in response to user requests.

- Computing virtualization: Computing virtualization enables a single server to
host multiple network functions concurrently. By virtualizing the resources
of the server, multiple instances of network functions can be deployed and
managed independently.

- Standard API: NFV relies on standardized Application Programming Inter-
faces (APIs) to enable interoperability and facilitate communication between
different network functions. These APIs define the interfaces and protocols
for interaction and integration between various network functions in the NFV
environment.

An important feature of NFV is the capability of auto-scaling Virtualized Network
Functions (VNFs) when additional resources are required. Two different strategies
can be adopted for auto-scaling:

Scale Up: This strategy involves allocating more resources to a VNF when it
needs them, such as increasing CPU, memory, or disk space. However, there
are two important considerations when implementing this scaling approach.
Firstly, it may not always be feasible if the physical server hosting the VNF
has reached its resource limits. Secondly, simply assigning more resources
may not necessarily improve the situation. For example, if the software is not
designed to utilize multiple threads, adding more CPUs will not necessarily
solve performance issues.

Scale Out: In this strategy, the VNF is duplicated multiple times to create
additional instances of the same function. This approach offers paralleliza-
tion and flexibility. The workload of each instance is often monitored and
balanced by a load balancer, ensuring efficient distribution of traffic among
the instances.
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In summury NFV offers several advantages, including increased flexibility, scalabil-
ity, and cost savings:

• Flexibility: By separating software from hardware, different activities can be
performed on the same hardware device. Providers can select devices from
various vendors, giving them more flexibility in choosing the best hardware
for their network architecture.

• Scalability: The network can scale to meet current demands by allocating
more CPU, memory, or bandwidth to devices, reducing service implementa-
tion times.

• Cost: Running functions on standard hardware devices reduces network costs,
making it easier for network administrators to create hardware devices as
efficiently as possible to meet network needs.

3.3 Automatizing Network and Security Manage-

ment

The new paradigms introduced so far have placed significant emphasis on the prin-
ciple of Network Automation, which is often used in conjunction with network
function virtualization and software-defined network principles.

Network Automation is the process of using software to automate network and se-
curity provisioning and management to continuously maximize network efficiency
and functionality. The decision system is capable of reacting to new requirements
introduced into the system and network events, taking into account the current
state and behaviour of the underlying physical level.

Traditionally, IT security has been largely hardware-based and required manual
provisioning and management, limiting its ability to cope with cyber attacks. The
speed of reaction to cyber security incidents is critical to mitigate a growing range
of unpredictable attacks.

Manually reconfiguring a set of security devices in a timely manner is almost im-
possible without errors. Automating network and security management allows for
automatic configuration changes with lower latency.

The goal is to increase network resiliency by avoiding manual interruption caused
by human reconfiguration in the event of an incident.
The software can close the loop of reactions on its own, retrieve information from
the network, and promptly use it to allow the network to converge on normal be-
haviour. To have a properly working automatic system that can reconfigure the
network upon the occurrence of different scenarios, it is crucial that the system has
a comprehensive overview of the entire infrastructure.
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3.3.1 VEREFOO

The VEREFOO framework, which proposes an approach to overcome the limita-
tions of a traditional Service Function Chain, is an example of a framework that
implements this approach. The framework is designed with the primary objectives
of achieving optimal automatic allocation and configuration of Network Security
Functions on a Service Graph. Its purpose is to fulfill a set of network security
requirements specified by the security administrator using a high-level security
language. This is accomplished through a refinement process. Additionally, the
framework facilitates the placement of the necessary network security functions
onto the servers of a physical underlying network to ensure compliance with the
security constraints.

Figure 3.4: VEREFOO Workflow

The main components of the VEREFOO framework are presented in the figure
to describe the complete workflow of the framework. To use VEREFOO, a user
must provide two inputs: a set of Network Security Requirements and a Service
Graph or an Allocation Graph.

The Policy ANalysis (PAN) module performs a conflict analysis of the Network
Security Requirements to detect conflicts among requirements and create the mini-
mal set of constraints that must be respected in the network. If an error is detected,
a report is generated.

The High-to-Medium (H2M) module refines the high-level Network Security Re-
quirements into a set of medium-level requirements containing all the necessary
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information for the creation of the policies of the Network Security Functions auto-
matically allocated on the graph and the low-level configuration of the VNFs placed
on the underlying network.

The NF Selection module selects the appropriate Network Security Functions to
satisfy the input Security Requirements.

At the heart of the VEREFOO architecture lies the Allocation, Distribution, and
Placement (ADP) module. This module serves as the central component responsible
for various tasks. It takes a collection of medium-level network security require-
ments, the chosen Network Security Functions, and either a Service Graph or an
Allocation Graph as input. Subsequently, it generates a fresh Service Graph that
incorporates the newly allocated network security functions, in addition to those
already existing in the original input graph.

Before the changes introduced by this thesis work, as shown in the following ar-
ticles: [3], [4], [5], [6], [7], VEREFOO already had the capability to ensure the
fulfillment of properties like isolation, reachability, and protection.

• reachability property: a specified end point must be allowed to reach
another end point through a path;

• isolation property: a specified end point must not be allowed to reach
another end point through all available paths;

• protection property: a specified end point must be allowed to communicate
securely with another end point.

The framework was also able to perform conflict analysis between the requested
properties, as shown in the following articles: [8], [9], [10].
This thesis work focused on expanding the protection properties that an adminis-
trator could require, extending the range of potential security properties that can
be requested, with a particular focus of the packet security. As a result of this
thesis work, the framework is now capable of not only selecting the appropriate
allocation place for the VPN gateway but also choosing the best VPN technology
to implement.
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Thesis Objective

As discussed in the preceding sections, ensuring network security in computer sys-
tems is a critical yet highly complex task that demands careful management. Nu-
merous articles, such as: [11],[12],[13] highlight the challenges faced by network
administrators when it comes to manually configuring network security features
like firewalls and channel protection systems. These tasks demand specific ex-
pertise and a high level of competency from administrators. Moreover, often are
encountered issues arising from manual configuration or conflicts between policies
of the same or different devices. To overcome these challenges, innovations such
as Software Defined Network and Network Function Virtualization can be used
to automate processes and enhance flexibility, agility, and network resilience. By
adopting this approach, administrators can streamline network security manage-
ment and mitigate potential issues.
Hence, the aim of this thesis is to model and implement a solution capable of ful-
filling a set of Network Security Requirements that ensure secure communications
through the establishment of Virtual Private Networks (VPNs) between end-to-
end, site-to-site, and secure gateways. Specifically, the focus has been on extending
the functionality of the ADP module of VEREFOO developing a new algorithm
capable of selecting the best VPN technology between TLS and IPsec.
To achieve the aim of the thesis the preliminarty work performed in this article [14]
was fundamental.

The ultimate goal of this thesis work can be seen as a subset of steps that were
crucial for achieving the overall aim:

• First, a detailed study of different TLS-based VPN implementations was con-
ducted, including OpenVPN, Tinc, and SSTP. This research was particularly
important because unlike IPsec, there is no standardized protocol for imple-
menting VPNs using TLS. Therefore, identifying the similarity and differences
of each protocol was essential to develop a comprehensive solution.

• Exploring the differences between TLS-based and IPsec-based VPNs in detail
was the next step. This was done with a focus on identifying the different
types of security that each approach could provide.
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• After this initial study phase, we moved on to a modelling and implementation
phase. Based on the results of the previous research, we reformulated the
Communication Protection Policies and Rule models by introducing new fields
to represent various security properties that network administrators could
use to safeguard the traffic or indicate a particular technology to be used.
We defined a series of hard and soft constraints to enable the framework to
indicate the best VPN solution based on factors such as security level, network
speed, and user preferences.

• The previous phase involved a substantial amount of coding and testing to
ensure that the model was robust and accurate. To evaluate the model’s
performance, we developed a code that generated a series of diverse tests,
each with a different number and type of requested protection properties. A
work of code analysis was performed along the all framework to try different
approach to improve the performance and scalability of the program.
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Approach

In the previous chapter, we described the objective of the thesis. In this chapter, we
will outline the approach taken to achieve this objective. Firstly, we will describe
how we selected and compared various TLS-based VPN implementations and the
following confrontation with IPsec-based VPNs.

In the second part we will describe how the problem of remodelling Communi-
cation Protection Policies was addressed.

The final section discusses how the approach utilizes a formulation of the method-
ology using a partial weighted MaxSMT problem. It describes the underlying prin-
ciples and highlights the distinction between hard and soft constraints.

5.1 VPN Technology study

A crucial first step in this research was conducting a thorough analysis of vari-
ous protocols for implementing VPNs based on TLS technology. The aim was to
identify similarities and differences between them, especially regarding the security
properties they provide. This was necessary because unlike IPsec, there is no stan-
dardized protocol for implementing VPNs using TLS.

The following protocols were selected for analysis: OpenVPN, Tinc, and Microsoft
SSTP. These were chosen because they are widely used and provide a representative
sample to generalize the characteristics of a TLS-based VPN. Moreover, OpenVPN
and Tinc are open source, while Microsoft SSTP has detailed documentation, en-
abling an in-depth investigation of their characteristics.

After identifying the most interesting properties of each protocol, a general model
was extracted. The results were compared with IPsec-based VPNs. Information on
IPsec was readily available from existing literature that standardized the protocol
implementation, including RFC 4301 [15], 4302 [16], and 4303 [17].

The comparison of these technologies was a crucial step before we could proceed
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with the modelling work as it provided us with all the knowledge we needed to ex-
tend the capabilities of the VEREFOO framework to ensure that an administrator
has a wide and meaningful selection of choices regarding the security properties
required of a VPN.

5.2 Modelling Phase

After completing the study phase, the results obtained were utilized to modify ex-
isting models within the framework, effectively expanding the range of protection
options available to administrators. The most significant additions were made to
the Communication Protection Policies Model, which enables the definition of se-
curity requirements for communication protection, including the establishment of
secure communication between two endpoints and the creation of one or more se-
cure channels, depending on the location of untrusted nodes and inspector nodes
within the network.

The Communication Protection Policies (CPP) model to be remodelled is the fol-
lowing:

Let P be the set of the CPPs. Each p ∈ P is modelled as a tuple p = (C,Ac, Ai, S,W ).

• C is the condition set, which identifies the communications for which the
policy must be enforced. It is formalized as a conjunction of five predicates
on the fields of the IP 5-tuple, written as C = (IPSrc, IPDst, pSrc, pDst,
tProto).

• Ac and Ai represent the cipher algorithms that, among all the possible algo-
rithms represented by the Ac and Ai sets, may be used to respectively enforce
confidentiality and integrity on the traffic.

• S represents the information about how the security properties must be ap-
plied on the traffic. It is modeled as a tuple S = sci, sii, sia, where each
component can be a ternary value: true, false, or d.c. (i.e., “don’t care”). For
traffic t, sci states if confidentiality must be enforced on the original internal
header t.hi , sii states if integrity must be enforced on t.hi and sia states if
integrity must be enforced on the additional header t.ha , if present.

• W represents the information about the trustworthiness of network nodes
and links.

In this thesis work, the previous model has been expanded in such a way that each
component of S can also take on the values prefTrue and prefFalse, to indicate
a preference that does not necessarily have to be satisfied for the solution to be
considered valid. This gives to the user a greater flexibility in the definition of the
requirements. In addition, new components have been added to S so that it is pos-
sible to require or deny integrity on the internal payload, server peer authentication
and client peer authentication.
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The model used for the configuration decision has also been updated. The rules
of each possible Communication Protection System, along with their associated
details, are represented by a set of free variables that need to be determined by
the MaxSMT solver to find their actual values. More precisely each rule r ∈ R is
modelled as the following tuple:

Let R be the set of the Rules. Each r ∈ R is modelled as a tuple r = (C,Ac, Ai, S,m, act).

• C = (IPSrc, IPDst, pSrc, pDst, tProto) expresses the conditions that identify
the traffic that rule r refers to.

• Ac and Ai respectively specify the confidentiality and integrity algorithms that
are allowed to use to enforce protection properties on the traffic identified by
C.

• S specifies how the security properties must be enforced by the CPS on the
same traffic, and it is modelled as the S element of a policy p ∈ P .

• m is a Boolean value that expresses if the traffic satisfying C must be encapsu-
lated through a tunnel-based VPN (i.e., when m = true) or if communication
protection is enforced without adding an additional header (i.e., when m =
false).

• act, finally, specifies if the security properties expressed by p must be applied
to t (i.e., when act = protect), or must be removed from it because not
necessary anymore (i.e., when act = unprotect).

Furthermore, the introduction of completely new models was necessary to incorpo-
rate the additional functionality in this thesis work. These models were designed
specifically to manage the selection of the appropriate VPN technology, including
its architecture and mode. The inclusion of new functions and the addition of soft
and hard constraints were integral to this process.

5.3 Required protection implementation

For the main part of the thesis work, various constraints for the correct configu-
ration of the CPP were identified and implemented. This approach is based on
formulating the methodology using the Maximum Satisfiability Modulo Theories
problem (MaxSMT), which extends the SMT problem to an optimization context.
In MaxSMT, a set of predicate clauses with predicate variables is given, and the
goal is to find optimal values for these variables that maximize the satisfiability of
the clauses.

Similar to the SMT problem, MaxSMT is NP-complete in terms of worst-case com-
putational complexity. However, the main difference is that each clause is assigned
a weight, which is unitary in the standard version. Therefore, it is not enough to
find a solution that satisfies the predicate clauses, but the chosen solution must
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also maximize the number of satisfied clauses among all possible solutions.

There are several variants of MaxSMT, including weighted MaxSMT, partial MaxSMT,
and weighted partial MaxSMT. In this thesis, the weighted partial MaxSMT variant
is adopted, which involves defining two categories of constraints:

• Hard Constraints: These are non-relaxable constraints that must be fulfilled
to obtain a satisfiable solution. Hard constraints are used to implement the
behaviour of the components of the ADP module, ensuring the proper func-
tioning of the entire module. For example, statements such as ”the end-host
can protect only its own traffic” must be implemented as hard constraints
because they must always be guaranteed.

• Soft Constraints: These are relaxable constraints, and their fulfilment is not
mandatory for obtaining a satisfiable solution. Since a weighted MaxSMT
problem is adopted, each soft constraint is assigned a specific weight that
represents its priority. The solver then selects the solution with the highest
sum of all satisfied soft constraints, considering their weights. Soft constraints
are used to handle preferences in reaching an optimal solution. For example,
the statement ”use TLS-based VPN to enforce secure communications if a
NAT is present between the source and the destination” implemented as a
soft constraint means that if a NAT is present in the flow, the solver tries
to find a solution using TLS for secure communication, but if no solution is
found, it will try to find a satisfiable solution that use another VPN technology
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Model

The first part of this chapter will show all the necessary changes that have been
apported to VEREFOO’s model, so that the framework will be capable of selecting
the most appropriate VPN technology based on the preferences expressed by the
administrator.
The second part will instead focus on the presentation of the model of the constraint
that was necessary to add to the framework to achieve the thesis goals.

6.1 Reformulation of Communication Protection

Policies and Rule

After the research work seen in the previous chapter, the first step of this work is
the updating of the existing model, so that the capability of VEREFOO can be
extended. In the specific the model of Communication Protection Policies and the
model of the Rule has been modified respect the one already present.

The following was the original Communication Protection Policies model:

Let P be the set of the CPPs. Each p ∈ P is modelled as a tuple p = (C,Ac, Ai, S,W ).

• C is the condition set, which identifies the communications for which the
policy must be enforced. It is formalized as a conjunction of five predicates
on the fields of the IP 5-tuple, written as C = (IPSrc, IPDst, pSrc, pDst,
tProto).

• Ac and Ai represent the cipher algorithms that, among all the possible algo-
rithms represented by the Ac and Ai sets, may be used to respectively enforce
confidentiality and integrity on the traffic.

• S represents the information about how the security properties must be ap-
plied on the traffic. It is modeled as a tuple S = (sci, sii, sia), where each
component can be a ternary value: true, false, or d.c. (i.e., “don’t care”). For
traffic t, sci states if confidentiality must be enforced on the original internal
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header t.hi, , sii states if integrity must be enforced on t.hi and sia states if
integrity must be enforced on the additional header t.ha, if present.

• W represents the information about the trustworthiness of network nodes
and links. Specifically, W is a tuple W = (NU,NT,LU), where:

– NU ⊆ N is the set of untrustworthy nodes.

– NU ⊆ N is the set of inspector nodes.

– NU ⊆ N is the set of untrustworthy links.

Based on the result of the previous phase, to extend the capability of the framework,
was necessary the introduction of new fields in the tuple p and the modification of
the field S.

The updated model for Communication Protection Policies model is the follow-
ing:

Let P be the set of the CPPs.
Each p ∈ P is modelled as a tuple p = (C,Ac, Ai, S, , ST,M,Ar,W ).

The new optional fields are:

• ST that represents the security technology, in the case an administrator wants
to implement a specific VPN technology. This field can be either TLS or IPsec.

• M represents the mode of the VPN, can assume these values: transport,
tunnel, null or dontCare.

• Ar represents the architecture of the VPN and can be one of these values:
esp, ah, esp+ah, null or dontCare.

S still represents the information about how the security properties must be ap-
plied on the traffic. It is modelled as a tuple S = (sci, sii, sia, siip, ssa, sca), where
each component can be one of the following values: true, false, d.c. (i.e., “don’t
care”), prefTrue, prefFalse. The first three component are still the same, the new
components are:

• siip that states if integrity must be enforced on the internal payload t.hi.

• ssa states if server authentication must be enforced.

• sca states if client authentication must be enforced.

This is the new model for the Rules: each rule r ∈ Rn is modelled as a tuple
r = (C,Ac, Ai, S,m, act), on the basis of the most common secure VPN solutions.
In particular:
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• C = (IPSrc, IPDst, pSrc, pDst, tProto) expresses the conditions that identify
the traffic that rule r refers to.

• Ac and Ai respectively specify the confidentiality and integrity algorithms that
are allowed to use to enforce protection properties on the traffic identified by
C.

• S specifies how the security properties must be enforced by the CPS on the
same traffic, and it is modelled as the S element of a policy p ∈ P .

• m is a Boolean value that expresses if the traffic satisfying C must be encapsu-
lated through a tunnel-based VPN (i.e., when m = true) or if communication
protection is enforced without adding an additional header (i.e., when m =
false).

• vProto specifies the VPN technology.

• arch specifies the VPN architecture.

• mode specifies the VPN mode.

• act, finally, specifies if the security properties expressed by p must be applied
to t (i.e., when act = protect), or must be removed from it because not
necessary anymore (i.e., when act = unprotect).

To extend the capability of the framework was necessary the addition of the field
vProto to the tuple r, to represent the chosen VPN protocol, the addition of the
field arch and mode to represent the chosen architecture and mode of the VPN
protocol.

6.2 VPN technology Constraints Model

In the following sections are presented a series of models of function definition,
hard and soft constraints that have been implemented to extend the capabilities of
VEREFOO, to achieve the thesis goal.

This section in the specific will first show the function usedTechnology, which for-
mulation is needed to select the VPN technology. After that a series of constraints
that are needed to assure that the correct choice is taken are presented.

USED TECHNOLOGY (n, f, t) ⇒ Boolean with n ∈ N, f ∈ F, t ∈ T

where:

- N is the set of all network nodes.

- F is the set of all network flows.

- T is the set of all virtual private network technologies
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The first example of constraint that has been introduced is the following, which as-
sures that the chosen algorithms for confidentiality and integrity are both available
in the cipher suite of the selected VPN protocol.

CSi and CSt respectively indicate the cipher suite of the IPsec and TLS VPN
protocol.

ac ∈ CSi ∧ ai ∈ CSi ∨ ac ∈ CSt ∧ ai ∈ CSt (6.1)

The next constraint states that if the current node VpnCapIsUsed is equal to true,
vProto must be equal to securityTechnology set by the user except if securityTech-
nology is equal to d.c.

securityTechnology /= d.c ∧ V pnCapIsUsed = true
⇒ vProto = securityTechnology

(6.2)

where VpnCapIsUsed is a Boolean Expression that is used extensively in the fol-
lowing constraints. When is true indicates that the current node VPN capabilities
are actually used, on the contrary assume the value false.

The following constraint express the necessity for vProto to be equal to IPSEC
or TLS in case VpnCapIsUsed is true.

V pnCapIsUsed = true ⇒ vProto = IPSEC ∨ vProto = TLS (6.3)

The following constraints will focus particularly on the implementation of the se-
curity requirements highlighted in the last section of the previous chapter.
The first one is the following: if the current node VpnCapIsUsed is equal to true
and IntegrityAdditionalHeader is equal to true then vProto must be IPSEC.

V pnCapIsUsed = true ∧ IntegrityAdditionalHeader = true
⇒ vProto = IPSEC

(6.4)

In case IntegrityAdditionalHeader is equal to prefTrue the previous constraint will
be a soft constraints instead of a hard one.

The next constraint states that if the current node VpnCapIsUsed is equal to true
and ServerAuthentication is equal to false then vProto cannot be TLS. Like in the
previous case there is a soft constraint similar to the hard one if ServerAuthentica-
tion is equal to prefFalse

V pnCapIsUsed = true ∧ ServerAuthentication = false
⇒ vProto /= TLS

(6.5)

The following constraints make so that if the current node VpnCapIsUsed is equal
to true and IntegrityInternalHeader is equal to false then vProto cannot be TLS.
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Also, for this constraint there is a soft one in case IntegrityInternalHeader is equal
to prefFalse.

V pnCapIsUsed = true ∧ IntegrityInternalHeader = false
⇒ vProto /= TLS

(6.6)

Another constraints assert that if the current node VpnCapIsUsed is equal to true
and IntegrityInternalPayload is equal to false then vProto cannot be TLS. Like the
previous one there is a similar soft constraint in case IntegrityInternalPayload is
equal to prefFalse.

V pnCapIsUsed = true ∧ IntegrityInternalPayload = false
⇒ vProto /= TLS

(6.7)

In summary, in this section, we have defined a set of hard and soft constraints for se-
lecting the appropriate VPN technology. These constraints ensure that the selected
technology supports the required encryption and authentication algorithms, allow
the administrator to request a specific technology, mandate the use of a technology,
and guarantee that the chosen technology satisfies the user’s security requirements.

6.3 Mode Constraints Model

In this section we will continue to showcase the modelization work focusing on the
constraint needed to select the correct mode based on the security properties re-
quested. We begin presenting the function mode, which formulation is needed to
select the VPN mode.

MODE(n, f,m) ⇒ Boolean with n ∈ N, f ∈ F,m ∈ M
where:

- N is the set of all network nodes.

- F is the set of all network flows.

- M is the set of all the possible mode a VPN can be set. In the case of this
work transport, tunnel, null.

The first constraint asserts that if the current node VpnCapIsUsed is equal to
true and IntegrityAdditionalHeader is equal to true then mode cannot be TRANS-
PORT. In case IntegrityAdditionalHeader is equal to prefTrue the constraint will
be a soft constraints instead

V pnCapIsUsed = true ∧ IntegrityAdditionalHeader = true
⇒ mode /= TRANSPORT

(6.8)

The succeeding constraint states that if the current node VpnCapIsUsed is equal
to true and ConfidentialityInternalHeader is equal to true then mode cannot be
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TRANSPORT. Also in this case there is a corresponding soft constraint in case
ConfidentialityInternalHeader is equal to prefTrue.

V pnCapIsUsed = true ∧ ConfidentialityInternalHeader = true
⇒ mode /= TRANSPORT

(6.9)

The following constraints affirms that if the current node VpnCapIsUsed is equal
to true and requestedMode is equal to d.c. and or ConfidentialityInternalHeader
is equal to true or integrityAdditionalHeader is true or securityTechnology is equal
to TLS then mode cannot be TRANSPORT.

V pnCapIsUsed = true ∧ requestedMode = d.c ∧
(ConfidentialityInternalHeader = true ∨

integrityAdditionalHeader = true ∨
securityTechnology = TLS)
⇒ mode /= TRANSPORT

(6.10)

This constraint instead indicates that if the current node VpnCapIsUsed is equal
to true and requestedMode is not equal to d.c and requestedMode is not equal to
TRANSPORT then mode cannot be TRANSPORT.

V pnCapIsUsed = true ∧ requestedMode = d.c ∧ requestedMode /= TRANSPORT
⇒ mode /= TRANSPORT

(6.11)

The succeeding constraint asserts that if the current node VpnCapIsUsed is equal
to true and requestedMode is equal d.c. and securityTechnology is equal to TLS
then mode cannot be TUNNEL.

V pnCapIsUsed = true ∧ requestedMode = d.c ∧ securityTechnology = TLS
⇒ mode /= TUNNEL

(6.12)

The following constraints states that if the current node VpnCapIsUsed is equal
to true and requestedMode is not equal to d.c. and requestedMode is not equal to
TUNNEL then mode cannot be TUNNEL.

V pnCapIsUsed = true ∧ requestedMode = d.c ∧ requestedMode /= TUNNEL
⇒ mode /= TUNNEL

(6.13)

This constraint instead affirms that if the current node VpnCapIsUsed is equal to
true and requestedMode is equal to d.c. and securityTechnology is equal to IPSEC
then mode cannot be NULL.

V pnCapIsUsed = true ∧ requestedMode = d.c ∧ securityTechnology = IPSEC
⇒ mode /= NULL

(6.14)

The next constraints asserts that if the current node VpnCapIsUsed is equal to true
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and requestedMode is not to d.c. and requestedMode is not equal to NULL then
mode cannot be NULL.

V pnCapIsUsed = true ∧ requestedMode = d.c ∧ requestedMode /= NULL
⇒ mode /= NULL

(6.15)

The constraint that comes after states that if the current node VpnCapIsUsed
is equal to true and securityTechnology is equal to TLS then mode cannot be
TRANSPORT and mode cannot be TUNNEL.

V pnCapIsUsed = true ∧ securityTechnology = TLS
⇒ mode /= TRANSPORT ∧mode /= TUNNEL

(6.16)

The following constraints affirms if the current node VpnCapIsUsed is equal to true
and securityTechnology is equal to IPSEC then mode cannot be NULL.

V pnCapIsUsed = true ∧ securityTechnology = IPSEC
⇒ mode /= NULL

(6.17)

This constraint instead indicates that If the current node VpnCapIsUsed is equal
to true then mode must be TRANSPORT or mode must be TUNNEL or mode
must be NULL.

V pnCapIsUsed = true
⇒ mode = TRANSPORT ∨mode = TUNNEL ∨mode = NULL

(6.18)

In summary, in this section, we have defined a set of hard and soft constraints
for selecting the appropriate mode for implementing the VPN. These constraints
ensure that the chosen mode is compatible with the selected VPN technology, allow
the administrator to request a specific mode, require the selection of a mode, and
guarantee that the chosen mode meets the user’s security requirements.

6.4 Architecture Constraints Model

In this section, our focus remains on showcasing the modelization work, specifically
highlighting the constraint required for selecting the appropriate architecture based
on the requested security properties. We commence by introducing the architec-
ture function, which plays a pivotal role in determining the VPN architecture to
be selected.

ARCHITETECTURE(n, f, a) ⇒ Boolean with n ∈ N, f ∈ F, a ∈ A

where:

- N is the set of all network nodes.

- F is the set of all network flows.
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- A is the set of all the possible architecture a VPN can be set. In the case of
this work esp, ah,esp+ah, null.

The first constraint asserts that if the current node VpnCapIsUsed is equal to
true and IntegrityAdditionalHeader is equal to true then architecture cannot be
ESP. In case IntegrityAdditionalHeader is equal to prefTrue the constraint will be
a soft constraint instead.

V pnCapIsUsed = true ∧ IntegrityAdditionalHeader = true
⇒ arch /= ESP

(6.19)

The succeeding constraint states that if the current node VpnCapIsUsed is equal
to true and IntegrityInternalHeader is equal to false then architecture cannot be
AH and cannot be ESP+AH. Also for this constraint exist a similar soft constraint
in case IntegrityInternalHeader is equal to prefFalse.

V pnCapIsUsed = true ∧ IntegrityInternalHeader = false
⇒ arch /= AH ∧ arch /= ESP + AH

(6.20)

The following constraints affirms that if the current node VpnCapIsUsed is equal
to true and IntegrityInternalPayload is equal to false then architecture cannot be
AH and cannot be ESP+AH. Like in the previous cases there is a soft constraint
if IntegrityInternalPayload is equal to prefFalse.

V pnCapIsUsed = true ∧ IntegrityInternalPayload = false
⇒ arch /= AH ∧ arch /= ESP + AH

(6.21)

This constraint instead indicates that if the current node VpnCapIsUsed is equal
to true and ConfidentialityInternalHeader is equal to true then architecture cannot
be AH. In a similar way there is a corresponding soft constraint in case Confiden-
tialityInternalHeader is equal to prefTrue.

V pnCapIsUsed = true ∧ ConfidentialityInternalHeader = true
⇒ arch /= AH

(6.22)

The succeeding constraint asserts that if the current node VpnCapIsUsed is equal
to true and requestedArchitecture is equal d.c. and or IntegrityAdditionalHeader
is equal to true or securityTechnology is equal to TLS then architecture cannot be
ESP.

V pnCapIsUsed = true ∧ requestedArchitecture = d.c ∧
(IntegrityAdditionalHeader = true ∨ securityTechnology = TLS)

⇒ architecture /= ESP
(6.23)

The following constraints states that if the current node VpnCapIsUsed is equal
to true and requestedArchitecture is not equal to d.c and requestedArchitecture is
not equal to ESP then architecture cannot be .

V pnCapIsUsed = true ∧ requestedArchitecture = d.c ∧
requestedArchitecture /= ESP

⇒ architecture /= ESP
(6.24)
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This constraint instead affirms that if the current node VpnCapIsUsed is equal
to true and requestedArchitecture is equal to d.c. and or ConfidentialityInternal-
Header is equal to true or IntegrityInternalHeader is equal to false or IntegrityInter-
nalPayload is equal to false or securityTechnology is equal to TLS then architecture
cannot be AH.

V pnCapIsUsed = true ∧ requestedArchitecture = d.c ∧
(ConfidentialityInternalHeader = true ∨

IntegrityInternalHeader = false ∨ IntegrityInternalPayload = false ∨
securityTechnology = TLS)

⇒ architecture /= AH
(6.25)

The next constraints asserts that if the current node VpnCapIsUsed is equal to
true and requestedArchitecture is not equal to d.c. and requestedArchitecture is
not equal to AH then architecture cannot be AH.

V pnCapIsUsed = true ∧ requestedArchitecture = d.c ∧
requestedArchitecture /= AH

⇒ architecture /= AH
(6.26)

The constraint that comes after states that if the current node VpnCapIsUsed is
equal to true and requestedArchitecture is equal d.c. and or IntegrityInternalHeader
is equal to false or IntegrityInternalPayload is equal to false or securityTechnology
is equal to TLS then architecture cannot be ESP+AH.

V pnCapIsUsed = true ∧ requestedArchitecture = d.c ∧
(IntegrityInternalHeader = false ∨ IntegrityInternalPayload = false ∨

securityTechnology = TLS) ⇒ architecture /= ESP + AH
(6.27)

The following constraints affirms if the current node VpnCapIsUsed is equal to
true and requestedArchitecture is not equal to d.c. and requestedArchitecture is
not equal to ESP+AH then architecture cannot be ESP+AH.

V pnCapIsUsed = true ∧ requestedArchitecture = d.c ∧
requestedArchitecture /= ESP + AH

⇒ architecture /= ESP + AH
(6.28)

The succeeding constraint states that if the current node VpnCapIsUsed is equal
to true and requestedArchitecture is equal d.c. and or IntegrityInternalHeader is
equal to false or IntegrityInternalPayload is equal to false or securityTechnology is
equal to IPSEC then architecture cannot be NULL.

V pnCapIsUsed = true ∧ requestedArchitecture = d.c ∧
(IntegrityInternalHeader = false ∨ IntegrityInternalPayload = false ∨

securityTechnology = IPSEC)
⇒ architecture /= NULL

(6.29)
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This constraint instead affirms that if the current node VpnCapIsUsed is equal to
true and requestedArchitecture is not equal to d.c. and requestedArchitecture is
not equal to NULL then architecture cannot be NULL.

V pnCapIsUsed = true ∧ requestedArchitecture = d.c ∧
requestedArchitecture /= NULL

⇒ architecture /= NULL
(6.30)

The next constraints asserts that if the current node VpnCapIsUsed is equal to
true and securityTechnology is equal to TLS then architecture cannot be ESP and
architecture cannot be AH and architecture cannot be ESP+AH.

V pnCapIsUsed = true ∧ securityTechnology = TLS
⇒ architecture /= ESP ∧ architecture /= AH ∧ architecture /= ESP + AH

(6.31)

The constraint that comes after states If the current node VpnCapIsUsed is equal to
true and securityTechnology is equal to IPSEC then architecture cannot be NULL.

V pnCapIsUsed = true ∧ securityTechnology = IPSEC
⇒ architecture /= NULL

(6.32)

The following constraints affirms if the current node VpnCapIsUsed is equal to true
then architecture must be ESP or architecture must be AH or architecture must
be ESP+AH or architecture must be NULL.

V pnCapIsUsed = true
⇒ architecture = ESP ∨ architecture = AH ∨

architecture = ESP + AH ∨ architecture = NULL
(6.33)

The rest of constraints presented in this section are always about the correct choice
of VPN technology mode and architecture, but they affect more than one of those
fields at the time.

The first constraint asserts that if the current node VpnCapIsUsed is equal to
true and IntegrityAdditionalHeader is equal to false then or mode is not TUNNEL
or architecture is not AH. In case IntegrityAdditionalHeader is equal to prefFalse
the constraint will be a soft constraint instead.

V pnCapIsUsed = true ∧ (IntegrityAdditionalHeader = false
⇒ mode /= TUNNEL ∨ (architecture /= AH ∧ architecture /= ESP + AH)

(6.34)

The constraint that comes after states that if the current node VpnCapIsUsed is
equal to true and IntegrityInternalHeader is equal to true then or mode is not
TRANSPORT or architecture is not ESP. Also, for this constraint exist a similar
soft constraint in case IntegrityInternalHeader is equal to prefTrue.

V pnCapIsUsed = true ∧ IntegrityInternalHeader = true
⇒ mode /= TRANSPOSRT ∨ architecture /= ESP

(6.35)
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The last constraint states that both end of the VPN must have the same value for
vProto, for mode and for architecture. Using i and j to indicate the start and end
node properties:

vProtoi = vProtoj ∧modei = modej ∧ architecturei = architecturej (6.36)

In conclusion, this section has introduced a range of hard and soft constraints for
the selection of the appropriate architecture in implementing the VPN. These con-
straints ensure compatibility between the chosen architecture and the VPN tech-
nology, provide flexibility for the administrator to specify a preferred architecture,
enforce the selection of an architecture, and ensure that the chosen architecture
satisfies the required security standards. Furthermore, constraints have been de-
fined to maintain consistency across the entire VPN, ensuring that the identified
technology, mode, and architecture remain uniform at both ends of the network.
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Chapter 7

Implementation, Validation and
Performance Analysis

This chapter examines the functionality of the framework and assesses its compu-
tational performance under varying conditions of Allocation Places and Network
Security Requirements. The initial segment focuses on the implementation of the
new functionalities, the second section focuses on testing the accuracy of the imple-
mentation through specific tests that verify the outputs obtained given the inputs
provided. These tests are illustrated using five distinct Use Case examples.

Subsequently, the last part of the chapter evaluates the computational performance
of the framework, taking into account the modifications made as part of this thesis
work. It identifies the parameters that have the greatest impact on the system’s
scalability. The results of these tests are described and depicted through graphs
that consider the total execution time of the framework.

7.1 Implementation

The entire development of this project utilized Java as the programming language,
the Z3 Java library for implementing the partial weighted MaxSMT problem, and
the XML markup language for structuring the communication protection require-
ments and CPSs configurations.

7.1.1 XML schema

The XML schema includes a section called ”propertyDefinition” that is dedicated
to network security requirements. This section can accommodate anywhere from
one to ”n” Property elements. Each Property element corresponds to a distinct
security requirement specified by the security administrator. The structure of the
property element has been expanded and modified to allow the implementation of
the new functionality; the final structure is the following:

• name is the kind of requirement (i.e. protection);
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• src is the identifier of the source node of the requirement;

• dst is the identifier of the destination node of the requirement;

• src port is the number or interval of numbers for the source port;

• dst port is the number or interval of numbers for the destination port;

• l4 proto is the type of layer 4 protocol

• protectionInfo contains additional information about the requested protec-
tion properties. Is composed by the following field:

– authenticationAlgorithm is the authentication algorithm;

– encryptionAlgorithm is the encryption algorithm;

– untrustedNode contains all the untrusted nodes of the requirement;

– inspectorNode contains all the inspector nodes of the requirement;

– untrustedLink contains all the untrusted link of the requirement;

– securityTechnology contains the security technologies which can be
used (i.e. IPsec or TLS).

– securityTechnologyInfo contains additional information about the used
security technology. is composed of the field mode (i.e. Tunnel, Trans-
port, Null) and the field architecture (i.e. ESP, AH, ecc.);

– requiredProtection contains all the protection on the packet that the
admin can request (i.e. Confidentiality Internal Header, Integrity Inter-
nal Header, ecc.);

A series of example of this schema are presented in the following section where five
different use cases are presented.

7.1.2 MaxSMT Problem

Z3, developed by Microsoft Research, is an open-source Satisfiability Modulo Theo-
ries (SMT) solver. It is designed to address problems that arise in software verifica-
tion and software analysis. Z3 is available under the MIT license and is compatible
with Windows, OSX, Linux, and FreeBSD operating systems. It provides a variety
of APIs, including C, C++, Java, .Net, OCaml, and Python, allowing users to
invoke Z3 programmatically.

The Z3 java library has been exploited to set up the MaxSMT problem and imple-
ment the long series of constraints that have been presented in the previous chapter.
In the java class NetContext the functions usedTechnology, vpnModeFinal, vpnAr-
chFinal have been defined as presented in the following listing.
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usedTechnology = ctx.mkFuncDecl(”usedTechnology”, new Sort[]{ nodeType,
ctx.mkIntSort(), ctx.mkStringSort()},ctx.mkBoolSort());

vpnArchFinal = ctx.mkFuncDecl(”vpnArchFinal”, new Sort[]{nodeType, ctx.mkIntSort(),
ctx.mkStringSort()},ctx.mkBoolSort());

vpnModeFinal = ctx.mkFuncDecl(”vpnModeFinal”, new Sort[]{nodeType, ctx.mkIntSort(),
ctx.mkStringSort()},ctx.mkBoolSort());

Listing 7.1: usedTechnology, vpnModeFinal, vpnArchFinal Function Definition

Considering the first function, the code specifies that a predicate named usedTech-
nology is declared and can assume a different boolean value for each tuple [node-
Type, Int, String], where the nodeType represents a node in the considered topol-
ogy, the int type represents the FlowId of the considered flow, and the String type
represent the value of the VPN technology considered.

The constraints where instead implemented in the Checker class inside the func-
tion createProtectionConstraints. As an example is presented the implementation
of the hard constraints that link the architecture of the VPN to the correct VPN
technology.

In the previous chapter, the constraint model for this scenario was presented, and
it was established that only the IPsec technology can have ESP, AH, or ESP+AH
as architecture options. Therefore, the code above ensures that if the current node
utilizes its VPN capacity and the VPN technology is TLS, the architecture cannot
assume any of the mentioned values.

//hard constraint to link arch type to the correct vpn technology
constraintList.add(ctx.mkImplies( ctx.mkAnd(node.getPlacedNF().getVpnCapIsUsed(),

usedTecIPSECTrue), ctx.mkEq(nctx.vpnArchFinal.apply(node.getZ3Name(),
ctx.mkInt(flow.getIdFlow()), ctx.mkString(”NULL”)), ctx.mkFalse()))));

constraintList.add(ctx.mkImplies( ctx.mkAnd( node.getPlacedNF().getVpnCapIsUsed(),
usedTecTLSTrue), ctx.mkAnd(ctx.mkEq(nctx.vpnArchFinal.apply(node.getZ3Name(),
ctx.mkInt(flow.getIdFlow()), ctx.mkString(”ESP”)), ctx.mkFalse()),
ctx.mkEq(nctx.vpnArchFinal.apply(node.getZ3Name(), ctx.mkInt(flow.getIdFlow()),
ctx.mkString(”AH”)), ctx.mkFalse()),
ctx.mkEq(nctx.vpnArchFinal.apply(node.getZ3Name(),
ctx.mkInt(flow.getIdFlow()),ctx.mkString(”ESP AH”)), ctx.mkFalse())))));

Listing 7.2: Hard Constraint Example

7.2 Validation

Numerous JUnit tests were defined to verify the correct implementation of the code
added in this thesis work. Numerous network topology and all the various possible
combinations of security properties that an admin may require were considered.
In this section five use cases are presented to showcase all the explained features
and provide a practical understanding of how the framework operates. These use
cases encompass all the features discussed earlier, providing a comprehensive un-
derstanding of how the ADP module operates.
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Since the main focus of this thesis work is the selection of the optimal VPN tech-
nology and its associated characteristics, the presented use cases utilize a simplified
allocation graph as input. The graph, as depicted in the accompanying picture, con-
sists of a client and a server situated at the network endpoints, an untrusted node
in between, and two allocation places where the VPN gateway will be allocated.

Figure 7.1: Input Service Graph

7.2.1 Use Case 1

In the first use case, we require the confidentiality of the internal header, without
specifying any other constraints, to do so we use the communication protection
requirement defined as follows:

<Property graph="0" name="ProtectionProperty" src="10.0.0.1"
dst="20.0.0.1">
<protectionInfo encryptionAlgorithm="AES_256_CBC"

authenticationAlgorithm="SHA2_256">
<untrustedNode node="30.0.0.1"></untrustedNode>
<SecurityTechnologyInfo>

<mode>dontCare</mode>
<architecture>dontCare</architecture>

</SecurityTechnologyInfo>
<requiredProtection>

<confidentialityInternalHeader>true</confidentialityInternalHeader>
<integrityInternalHeader></integrityInternalHeader>
<integrityAdditionalHeader></integrityAdditionalHeader>
<integrityInternalPayload></integrityInternalPayload>
<serverAuthentication></serverAuthentication>
<clientAuthentication></clientAuthentication>

</requiredProtection>
</protectionInfo>

</Property>

Listing 7.3: Input Security Requirements Use Case 1

The following listing show the section of the output relative to the client node, the
server one is analogous.

<securityAssociation>
<behavior>ACCESS</behavior>
<startChannel></startChannel>
<endChannel></endChannel>
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<source>10.0.0.1</source>
<destination>20.0.0.1</destination>
<protocol>ANY</protocol>
<src_port>*</src_port>
<dst_port>*</dst_port>
<authenticationAlgorithm>SHA2_256</authenticationAlgorithm>
<encryptionAlgorithm>AES_256_CBC</encryptionAlgorithm>
<SecurityTechnology>IPSEC</SecurityTechnology>
<SecurityTechnologyInfo>

<mode>TUNNEL</mode>
<architecture>ESP</architecture>

</SecurityTechnologyInfo>
</securityAssociation>

Listing 7.4: Output Example Use Case 1

We can see that Verefoo suggests using IPsec ESP in Tunnel mode, because it is
the fastest alternative among those that satisfy the required constraints.

7.2.2 Use Case 2

In the second use case several preferences are requested, we would like to have in-
tegrity of the internal header and server authentication, but we prefer to not have
confidentiality of the internal header and we would like to avoid integrity for the
internal payload. However, it is not possible to satisfy all these preferences that
are shown the communication protection requirement defined as follows:

<Property graph="0" name="ProtectionProperty" src="10.0.0.1"
dst="20.0.0.1">
<protectionInfo encryptionAlgorithm="AES_256_CBC"

authenticationAlgorithm="SHA2_256">
<untrustedNode node="30.0.0.1"></untrustedNode>
<SecurityTechnologyInfo>

<mode>dontCare</mode>
<architecture>dontCare</architecture>

</SecurityTechnologyInfo>
<requiredProtection>

<confidentialityInternalHeader>prefFalse</confidentialityInternalHeader>
<integrityInternalHeader>prefTrue</integrityInternalHeader>
<integrityAdditionalHeader></integrityAdditionalHeader>

<integrityInternalPayload>prefFalse</integrityInternalPayload>
<serverAuthentication>prefTrue</serverAuthentication>
<clientAuthentication></clientAuthentication>

</requiredProtection>
</protectionInfo>

</Property>

Listing 7.5: Input Security Requirements Use Case 2

In fact, VEREFOO shows as the solution that satisfies the greatest number of re-
quests. In this case the solution proposed by the framework is the use of IPsec
ESP in Tunnel mode. This solution, satisfy all the previously expressed preferences
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with the exception of the server authentication. The output relative to the VPN is
shown in this extract:

<securityAssociation>
<behavior>ACCESS</behavior>
<startChannel></startChannel>
<endChannel></endChannel>
<source>10.0.0.1</source>
<destination>20.0.0.1</destination>
<protocol>ANY</protocol>
<src_port>*</src_port>
<dst_port>*</dst_port>
<authenticationAlgorithm>SHA2_256</authenticationAlgorithm>
<encryptionAlgorithm>AES_256_CBC</encryptionAlgorithm>
<SecurityTechnology>IPSEC</SecurityTechnology>
<SecurityTechnologyInfo>

<mode>TUNNEL</mode>
<architecture>ESP</architecture>

</SecurityTechnologyInfo>
</securityAssociation>

Listing 7.6: Output Example Use Case 2

7.2.3 Use Case 3

The third use case is similar to the second one, in fact we request the same prop-
erties, but this time we require the implementation of server authentication. So, in
this case the communication protection requirement is defined as follows:

<Property graph="0" name="ProtectionProperty" src="10.0.0.1"
dst="20.0.0.1">
<protectionInfo encryptionAlgorithm="AES_256_CBC"

authenticationAlgorithm="SHA2_256">
<untrustedNode node="30.0.0.1"></untrustedNode>
<SecurityTechnologyInfo>

<mode>dontCare</mode>
<architecture>dontCare</architecture>

</SecurityTechnologyInfo>
<requiredProtection>

<confidentialityInternalHeader>prefFalse</confidentialityInternalHeader>
<integrityInternalHeader>prefTrue</integrityInternalHeader>
<integrityAdditionalHeader></integrityAdditionalHeader>

<integrityInternalPayload>prefFalse</integrityInternalPayload>
<serverAuthentication>true</serverAuthentication>
<clientAuthentication></clientAuthentication>

</requiredProtection>
</protectionInfo>

</Property>

Listing 7.7: Input Security Requirements Use Case 3
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Since we asked the framework to guarantee server authentication, in the solution we
can notice that this time VEREFOO identifies a TLS based VPN as the solution,
like shown in this extract:

<securityAssociation>
<behavior>ACCESS</behavior>
<startChannel></startChannel>
<endChannel></endChannel>
<source>10.0.0.1</source>
<destination>20.0.0.1</destination>
<protocol>ANY</protocol>
<src_port>*</src_port>
<dst_port>*</dst_port>
<authenticationAlgorithm>SHA2_256</authenticationAlgorithm>
<encryptionAlgorithm>AES_256_CBC</encryptionAlgorithm>
<SecurityTechnology>TLS</SecurityTechnology>
<SecurityTechnologyInfo>

<mode>NULL</mode>
<architecture>NULL</architecture>

</SecurityTechnologyInfo>
</securityAssociation>

Listing 7.8: Output Example Use Case 3

7.2.4 Use Case 4

The following example requires the ESP+AH architecture to be used and the in-
tegrity of the additional header to be guaranteed, the communication protection
requirement is defined as follows:

<Property graph="0" name="ProtectionProperty" src="10.0.0.1"
dst="20.0.0.1">
<protectionInfo encryptionAlgorithm="AES_256_CBC"

authenticationAlgorithm="SHA2_256">
<untrustedNode node="30.0.0.1"></untrustedNode>
<SecurityTechnologyInfo>

<mode>dontCare</mode>
<architecture>ESP+AH</architecture>

</SecurityTechnologyInfo>
<requiredProtection>

<confidentialityInternalHeader></confidentialityInternalHeader>
<integrityInternalHeader></integrityInternalHeader>
<integrityAdditionalHeader>true</integrityAdditionalHeader>
<integrityInternalPayload></integrityInternalPayload>
<serverAuthentication></serverAuthentication>
<clientAuthentication></clientAuthentication>

</requiredProtection>
</protectionInfo>

</Property>

Listing 7.9: Input Security Requirements Use Case 4
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As expected, to meet the specified demand, the solution is IPsec ESP+AH in Tun-
nel mode. We can notice that the fastest solution is IPsec AH, but since we have
requested a specific mode the output is the following:

<securityAssociation>
<behavior>ACCESS</behavior>
<startChannel></startChannel>
<endChannel></endChannel>
<source>10.0.0.1</source>
<destination>20.0.0.1</destination>
<protocol>ANY</protocol>
<src_port>*</src_port>
<dst_port>*</dst_port>
<authenticationAlgorithm>SHA2_256</authenticationAlgorithm>
<encryptionAlgorithm>AES_256_CBC</encryptionAlgorithm>
<SecurityTechnology>IPSEC</SecurityTechnology>
<SecurityTechnologyInfo>

<mode>TUNNEL</mode>
<architecture>ESP+AH</architecture>

</SecurityTechnologyInfo>
</securityAssociation>

Listing 7.10: Output Example Use Case 4

7.2.5 Use Case 5

For the last use case we use a different network, the one shown in the picture below,
because we want to analyse the behaviour of the framework in the presence of a
NAT.

59



Implementation, Validation and Performance Analysis

Figure 7.2: Input Service Graph with NAT

After inserting the NAT in the network, we define the communication protec-
tion requirement as follows:

<Property graph="0" name="ProtectionProperty" src="10.0.0.1"
dst="20.0.0.1">
<protectionInfo encryptionAlgorithm="AES_256_CBC"

authenticationAlgorithm="SHA2_256">
<untrustedNode node="30.0.0.1"></untrustedNode>
<SecurityTechnologyInfo>

<mode>dontCare</mode>
<architecture>dontCare</architecture>

</SecurityTechnologyInfo>
<requiredProtection>

<confidentialityInternalHeader>true</confidentialityInternalHeader>
<integrityInternalHeader></integrityInternalHeader>
<integrityAdditionalHeader></integrityAdditionalHeader>
<integrityInternalPayload></integrityInternalPayload>
<serverAuthentication></serverAuthentication>
<clientAuthentication></clientAuthentication>

</requiredProtection>
</protectionInfo>

</Property>

Listing 7.11: Input Security Requirements Use Case 5
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As expected, given the presence of a NAT along the route, the solution suggests
the use of a TLS-based VPN, as shown in the picture.

<securityAssociation>
<behavior>ACCESS</behavior>
<startChannel></startChannel>
<endChannel></endChannel>
<source>10.0.0.1</source>
<destination>20.0.0.1</destination>
<protocol>ANY</protocol>
<src_port>*</src_port>
<dst_port>*</dst_port>
<authenticationAlgorithm>SHA2_256</authenticationAlgorithm>
<encryptionAlgorithm>AES_256_CBC</encryptionAlgorithm>
<SecurityTechnology>TLS</SecurityTechnology>
<SecurityTechnologyInfo>

<mode>NULL</mode>
<architecture>NULL</architecture>

</SecurityTechnologyInfo>
</securityAssociation>

Listing 7.12: Output Example Use Case 5

7.3 Performance Analysis

The final part of the thesis work focused on evaluating and improving the perfor-
mance of the framework. The first part of this section analyses attempts to enhance
the system’s performance. Subsequently, the results obtained are presented using
graphs.

From the very first preliminary tests it was found that the performance of the frame-
work, after the newly implemented functions were insufficient. Upon analysing the
code, the primary cause of this performance and scalability issue was identified as
the presence of various soft constraints. In particular the ones aimed to ensure the
selection of the fastest VPN solution.

Soft constraints are constraints that are not strictly enforced, allowing some de-
gree of violation or relaxation. Unlike hard constraints, which must be satisfied
without exception, soft constraints can be violated to some extent based on a cost
or penalty function associated with each violation. The solver’s objective is to find
an assignment that minimizes the total cost of constraint violations.

The reason why soft constraints have such an impact on the framework perfor-
mance is primarily the increased complexity and search space involved. Solving
soft constraints typically requires exploring a larger solution space to find an as-
signment that minimizes the overall cost. This search process involves exploring
multiple possible assignments, evaluating the cost associated with each assignment,
and iteratively refining the solution to minimize the total cost.
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As a result, it was decided to modify the code to provide the administrator with
the option to prioritize either the search for the fastest VPN solution or overall
performance. In the latter case, the framework would still offer a valid solution
based on the security property requirements. However, if multiple valid solutions
exist, there is no longer a guarantee that the fastest solution would be selected.

After this choice to improve the scalability of the framework, further analysis was
conducted to enhance its performance even further. To achieve these objective dif-
ferent approaches were taken.

Firstly, the function ’supportCap’ was removed.

SUPPORT CAP (n, f, s) ⇒ Boolean with n ∈ N, f ∈ F, s ∈ S

where:

- N is the set of all network nodes.

- F is the set of all network flows.

- S is the set of all possible combination of virtual private network technologies,
encryption algorithm and authentication algorithm.

This function aimed to link the VPN technology with the authentication and en-
cryption algorithms using a single string element.
However, this approach became outdated due to the increasing number of prop-
erties that the administrator can now choose from. The new approach performs
this check using the constraint defined for the function USED TECHNOLOGY, as
discussed in Chapter 6. The new solution is more modular, making it easier to
maintain and enhance by expanding the supported technologies.

Another approach taken was to reduce the number of constraints passed to the
z3 solver. This was achieved by implementing a check to ensure that no duplicate
constraints were added to the solver. However, this solution did not yield the ex-
pected results. Despite a slight reduction of slightly above 3% in the total number
of constraints, the performance of the framework only improved insignificantly. One
possible explanation is that z3 automatically optimizes the received constraints and
manages duplicate ones autonomously.

With this in mind, we proceeded to subdivide the concatenations of constraints
linked by a logical ’and’ into smaller constraints to be passed to z3. However, this
approach, like the previous one, did not result in significant improvements. A pos-
sible reason is that although it allows the solver to optimize the constraints better,
the number of constraints grows significantly.

Finally, analysing the code were identified some constraints needed to simplify the
work of the translator to present the result of the solver in a user-friendly manner.
Upon further investigation was discovered that these constraints were no longer
necessary and removed. As shown in the following pictures, these constraints had a

62



Implementation, Validation and Performance Analysis

significant impact on the overall performance of the framework. In fact, the perfor-
mance improvement becomes more pronounced as the number of allocation points
and policy requirements increases, as clearly shown in the table.
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The previous test and all the following were performed on a 4-core Intel i7-6700
3.40 GHz workstation with 32 GB of RAM and for each input value, each test was
repeated 50 times. The networks used in the tests were automatically generated
using a program. The program aimed to create a realistic network by inserting the
number of clients and servers as input. The number of policies increased with the
desired number of end hosts. The network generated by the program can be seen
in the following pictures:

Figure 7.5: Example of Starting Test Network
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The base structures are the one left and the one right of the central allocation
point. Considering the requested number of client and server a base structure can
be added linked to one of the untrusted nodes or allocation point, for example if
twenty nine client and four servers are requested the generated network will be the
following:

Figure 7.6: Example of Test Network with 29 Client and 4 Server

Different kinds of tests were performed, using various type of policies as input,
to better understand the impact of the different part of the program on the perfor-
mance of the framework.
First were evaluated very simple policies that request only the secure communica-
tion between two endpoints. An example of this policies is the following.

<PropertyDefinition>
<Property graph="0" name="ProtectionProperty" src="10.0.0.1"

dst="20.0.0.1">
<protectionInfo encryptionAlgorithm="AES_256_CBC"

authenticationAlgorithm="SHA2_256">
<untrustedNode node="30.0.0.1"></untrustedNode>

</protectionInfo>
</Property>
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</PropertyDefinition>

Listing 7.13: Example Input Security Requirements

The achieved results are presented in the following graph. Upon examining the
graph, becomes evident that the rise in execution time does not exhibit an expo-
nential growth pattern. This finding holds significant importance, particularly when
considering the computational expenses associated with the MaxSMT problem.
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Figure 7.7: Basic Policy Performance Graph

In the following graph the number of Allocation Points remain constant and
equal to six, the number of End Point is constant as well and is equal to nine, the
number of Secuirty Policy instead grows.

69



Implementation, Validation and Performance Analysis

Figure 7.8: Constant AP and End Host

The next graph instead shows the performance in case of increasing number of
Allocation Points and End Points with a constant number of Security Policy equals
to one.
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Figure 7.9: Constant NSRs

Is immediately possible to observe that the bigger impact on the framework
performances is the number of End Points, this is caused by the solver requiring
more time to find the correct path between the two ends of the VPN.
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Other tests were performed requesting the use of a specific VPN technology, so
the policy had the following form:

<PropertyDefinition>
<Property graph="0" name="ProtectionProperty" src="10.0.0.1"

dst="20.0.0.1">
<protectionInfo encryptionAlgorithm="AES_256_CBC"

authenticationAlgorithm="SHA2_256">
<untrustedNode node="30.0.0.1"></untrustedNode>
<securityTechnology>IPSEC</securityTechnology>

</protectionInfo>
</Property>

</PropertyDefinition>

Listing 7.14: Example Input Security Requirements

As shown by the next graph the obtained performance are better than the previ-
ous one, this can be explained considering the formulation of the constraints that
allowed the solver to discard constraint relative to the unsupported properties of
each technology.
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Figure 7.10: Requested Specific VPN Technology Performance Graph

The next graph shows again the performance in case the number of Allocation
Points remain constant and equal to six, with an also constant number of End Point
equal to nine, and with a growing number of Secuirty Policy.
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Figure 7.11: Constant AP and End Host

The next graph instead shows the performance in case of increasing number of
Allocation Points and End Points with a constant number of Security Policy equals
to one.

74



Implementation, Validation and Performance Analysis

Figure 7.12: Constant NSRs

The general behaviour of the framework is the same of the previous case, so the
number of End Points is still the main cause for the deterioration of the perfor-
mance, but we can notice an improvement over the previous case.
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Finally, the worst-case scenario was analysed, the one where all the field of the
security properties are given a value, that is randomly selected from the set of all
possible combinations that have a viable solution. A possible example can be the
following:

<Property graph="0" name="ProtectionProperty" src="10.0.0.1"
dst="20.0.0.1">
<protectionInfo encryptionAlgorithm="AES_256_CBC"

authenticationAlgorithm="SHA2_256">
<untrustedNode node="30.0.0.1"></untrustedNode>
<requiredProtection>

<confidentialityInternalHeader>true</confidentialityInternalHeader>
<integrityInternalHeader>true</integrityInternalHeader>
<integrityAdditionalHeader>true</integrityAdditionalHeader>
<integrityInternalPayload>false</integrityInternalPayload>
<serverAuthentication>true</serverAuthentication>
<clientAuthentication>false</clientAuthentication>

</requiredProtection>
</protectionInfo>

</Property>

Listing 7.15: Example Input Security Requirements

As we can see in the next graph the performance deteriorates faster than in all the
previous case, and with 144 requested policies the time to obtain a solution became
considerable.
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Figure 7.13: Requested Full NSR Performance Graph

As in the previous cases the next graph shows what happens to the performances
with a constant number of Allocation Points equal to six, with an also constant
number of End Point equal to nine, and with a growing number of Secuirty Policy.
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Figure 7.14: Constant AP and End Host

The next graph illustrates the performance when the number of Allocation
Points and End Points is increased while keeping the number of Security Policies
constant at one. Some outlier points, whose values sometimes exceed 2,000,000 ms,
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have been omitted from the graph to ensure readability.

Figure 7.15: Constant NSRs
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Another notable observation from the above graphs is that as the average per-
formance deteriorates, the timing of the tests becomes increasingly varied despite
having the same initial conditions. This phenomenon is particularly pronounced in
the last case, where it is also exacerbated by the fact that the required protection
properties are not consistent across all the tests. Instead, they are randomly se-
lected from the set of all possible combinations that have a viable solution.

The following graphs provides a better comparison of the performance of the frame-
work both before and after the introduction of the changes implemented in this the-
sis work. Notably, in the case of policies requiring a specific VPN technology, the
performance is better than the initial one. This attests the successful achievement
of the final objective of the thesis work, which effectively enhanced the performance
of the framework.
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Instead in the following graph and table we compare the number of total con-
straints that the framework must solve to find the solution.
Before analysing the graph, we can notice that the data from of the full constraints
policy is represented until the performance of the framework begin to deteriorate
to fast as seen previously.

An interesting fact that emerges from the observation of this data is that the new
functionalities to be implemented required a significant increment in the number
of hard and soft constraints to be solved.
This does not reflect directly on the performance of the framework. In fact, as
shown in the previous graph the performance differs in a very significant way be-
tween the policy where a specific VPN technology is requested and the one where
all the field of the security properties are given a value, even tough the total number
of constraints is similar.
The same behaviour can be seen also if we focus our attention on the performance
of the framework before the changes introduced by this thesis work. Indeed, in this
case the total number of constraints is significantly lower than in the other cases
analysed, but this does not automatically translate into better performance.
This testifies how important it is for performance how constraints are written and
structured.
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Chapter 8

Conclusions

In this thesis work, significant enhancements were made to VEREFOO, expanding
its capabilities and functionalities. The framework underwent extensive develop-
ment to not only automate the allocation and configuration of the Channel Pro-
tection System for network security requirements, ensuring secure communication
enforcement, but also to enable the selection of the most optimal VPN technology
for the task at hand.

To lay the foundation for these advancements, a comprehensive study was con-
ducted, specifically focusing on various TLS-based VPNs. This investigation was
crucial since, unlike IPsec, there is no standardized protocol for implementing TLS-
based VPNs. Therefore, it was essential to identify the similarities and differences
among each protocol to develop a comprehensive solution.

The next step was to conduct a thorough examination to find the similarities and
differences between TLS-based and IPsec-base VPNs, with a particular focus on
identifying the different types of security that each approach could provide.

Following this initial research phase, Communication Protection Policies and Rule
models were updated with the introduction of new fields and possible values. A
series of hard and soft constraints were introduced to enable the framework to
choose the best possible VPN technology with its architecture and mode. The
XML schema dedicated to the Network Security Requirements was expanded and
modified to allow the implementation of the new functionality.

The implementation of this new functionalities was extensively tested thanks to
the definition of numerous JUnit tests. Numerous network topology and all the
various possible combinations of security properties that an admin may require
were considered.

Research of way to improve the performance of VEREFOO was also conducted
and the result achieved were presented. After completing all these tasks, a se-
ries of performance tests were conducted to assess the impact of the number of
communication security requirements and the number of allocation points on the
scalability of the system. Different types of scenarios were considered to allow a
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deeper comprehension of what affected the most the performance of the framework.

There are several possible future works that can be considered to improve VERE-
FOO.
The definition of higher-level policy and the mapping from high to middle level
policy and vice versa. The implementation of a non-enforceability report could
also be an interesting addition to the functions of the framework. This way the
tool could be more user friendly and be used by a wider audience.

Furthermore, there is a potential for further improvement in VEREFOO’s per-
formance, particularly by focusing on formulating constraints.
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