
POLITECNICO DI TORINO

Master’s degree in Communication and Computer Networks
Engineering

Master’s degree thesis

Advanced Semantic Discovery and Query in
oneM2M

Supervisors:
Prof. Claudio CASETTI
Prof. Luigi LIQUORI

Candidate:
Behrad SHIRMARD

July 2023

http://www.polito.it
https://www.telematica.polito.it/member/claudio-casetti/
https://luigiliquori.wixsite.com/atinria
https://www.linkedin.com/in/behrad-shirmard/

ii

“Computers are incredibly fast, accurate, and stupid. Human beings are incredibly slow, inaccu-
rate, and brilliant. Together they are powerful beyond imagination.”

- Albert Einstein, physicist

iii

POLITECNICO DI TORINO

Abstract
Department of Electronics and Telecommunications

Master’s degree in Communication and Computer Networks Engineering

Advanced Semantic Discovery and Query in oneM2M

by Behrad SHIRMARD

Currently oneM2M in its service layer has native discovery capabilities which work prop-
erly only if the search is related to specific known sources of information (e.g. searching
for the values of a known set of containers) or if the discovery is well scoped and de-
signed (e.g. the lights in a house). When oneM2M is used to discover wide sets of data or
unknown sets of data, the functionality is typically integrated by ad-hoc applications that
are expanding the oneM2M functionality. This means that this core service layer function
(discovery) may be implemented with different flavors and this is not optimal when it
comes to interworking and interoperability.

The objective of the present research is the study, development, and simulation of
Advanced Semantic Discovery and Query capabilities for oneM2M and its contribution
to the oneM2M standard.

The main aim is to enable an easy and efficient discovery of information and a proper
interworking with external source/consumers of information (e.g. a distributed data
base in a smart city or in a firm), or directly to search information in the oneM2M system
for big data purposes. Following Research is done in INRIA labs for ETSI standards.

https://www.det.polito.it/

v

Contents

Abstract iii

1 Introduction to oneM2M the IoT Standard [1] 1
1.1 oneM2M Basics . 1

1.1.1 Service Layer . 1
1.1.2 Functional Architecture . 2

oneM2M Nodes . 3
oneM2M Reference Points . 4

1.1.3 Common Service Functions (CSFs) 5
1.1.4 Data Management . 6
1.1.5 Horizontal Platform . 6

1.2 oneM2M API . 6
1.2.1 oneM2M REST Architecture . 7
1.2.2 oneM2M Security Mechanisms . 8

Enrolment . 8
Security association establishment 8
Authorization . 8
End-to-end security . 8
Privacy management . 8

1.2.3 oneM2M Primitives . 9
Primitive structure . 9

1.2.4 oneM2M Resources . 11
Resource Template . 11
Resource Structure . 11
Resource Attributes . 12
Resource Schema . 13

1.2.5 oneM2M Procedures . 13
Access Resources in Local CSE . 14
Access Resources in Remote CSE . 14
CREATE operation . 15
RETRIEVE Operation . 15
UPDATE Operation . 15
DELETE Operation . 16
NOTIFY Operation . 16

1.3 oneM2M REST RESOURCES . 16
1.3.1 Common Services Entity (CSE) Base 16
1.3.2 Application Entity (AE) . 16
1.3.3 Container . 16

Access Control Policy . 17
1.3.4 Subscription & Notification . 19
1.3.5 Discovery . 19
1.3.6 Groups . 19

vi

1.3.7 flexContainer . 20

2 Advanced Discovery and Query Use Cases And Requirements 21
2.1 Definition of terms . 21
2.2 Semantic discovery in presence of a network of M2M Service Providers

(M2MSP) . 22
2.2.1 Description . 22
2.2.2 Actors . 22
2.2.3 Pre-Conditions . 23
2.2.4 Triggers . 23
2.2.5 Normal Flow . 24
2.2.6 Alternative Flow . 25
2.2.7 Post-Conditions . 25
2.2.8 Potential Requirements for the oneM2M system 26

2.3 Semantic recommendation in CSEs for discovery 26
2.3.1 Description . 26
2.3.2 Source . 27
2.3.3 Actors . 27
2.3.4 Pre-Conditions . 28
2.3.5 Triggers . 28
2.3.6 Normal Flow . 28
2.3.7 Post-Conditions . 29
2.3.8 High-Level illustration . 29
2.3.9 Potential Requirements for the oneM2M system 29

2.4 Facility management of a supermarket chain 29
2.4.1 Description . 29
2.4.2 Source . 30
2.4.3 Actors . 30
2.4.4 Pre-Conditions . 30
2.4.5 Triggers . 31
2.4.6 Normal Flow . 31
2.4.7 Alternative Flow . 31
2.4.8 Post-Conditions . 32
2.4.9 High-Level illustration . 32
2.4.10 Potential Requirements for the oneM2M system 32

2.5 Healthcare network and clinical knowledge administration 33
2.5.1 Description . 33
2.5.2 Source . 34
2.5.3 Actors . 34
2.5.4 Pre-Conditions . 34
2.5.5 Triggers . 35
2.5.6 Normal Flow . 35
2.5.7 Post-Condition . 35
2.5.8 High-Level illustration . 36
2.5.9 Potential Requirements for the oneM2M system 36

3 Advanced Semantic Discovery 37
3.1 Introduction . 37
3.2 Functional description of oneM2M Advanced Semantic Discovery 37

3.2.1 Semantic Discovery Agreements . 37
3.2.2 Semantic Non-Functional Issues . 38

vii

ASD Query with Priorities . 38
Performance of ASD . 39
Searching Multiple set of Targets . 40

3.2.3 Semantic Discovery Query and Query Language 40
3.2.4 Semantic Discovery Routing and Resolution Mechanism 40
3.2.5 Semantic Routing Tables . 43
3.2.6 Semantic Routing Tables Upgrade and Propagation 44
3.2.7 Semantic Recommendation System 45

4 Implementing ASD and their Components in the OMNeT++ Discrete Network
Event Simulation Tool 47
4.1 OMNeT++ discrete network event simulator 47
4.2 oneM2M Components . 48

4.2.1 oneM2M components to be simulated 48
4.3 Semantic Discovery Agreements between CSEs 49

4.3.1 Introducing new oneM2M roles for CSE and Agreements between
CSEs . 49

4.3.2 OMNeT++ implementation of CSEs semantic discovery agreements 49
4.4 Semantic Routing Table (SRT) . 50

4.4.1 oneM2M semantic routing table embedded in every CSE 50
4.5 Updating Semantic Routing Tables . 51

4.5.1 oneM2M registration and ASD notification 51
4.5.2 OMNeT++ implementation of registration and ASD notification . . 52

4.6 Semantic Discovery Routing (SDR) . 53
4.6.1 oneM2M unicast routing: efficiently forwards a query to the next

CSE hop by inspecting the routing table 53
4.6.2 oneM2M multicast routing: efficiently chooses and forwards a query

to many CSE by inspecting the routing table 54
Multicast routing . 54

4.6.3 OMNeT++ implementation of unicast and multicast Semantic Dis-
covery Routing . 54

4.7 Semantic Recommendation System (SRS) 57
4.7.1 oneM2M Semantic Recommendation System embedded in each CSE 57

5 ASDQ Performance Evaluation on OMNeT++ 59
5.1 Terminology . 59
5.2 Simulation and Results . 60

5.2.1 Simulation procedure in brief . 60
5.2.2 An example . 60

5.3 Conclusion . 61

References 67

ix

List of Figures

1.1 Service Layer . 1
1.2 oneM2M Architecture . 2
1.3 oneM2M node topology . 4
1.4 oneM2M functional architecture . 5
1.5 Reference points in oneM2M . 5
1.6 Horizontal Platforms . 6
1.7 General primitive flow . 9
1.8 oneM2M communications . 9
1.9 Primitive structure . 10
1.10 Example of control part bound to HTTP . 10
1.11 oneM2M <container>resource representation in JSON format 10
1.12 oneM2M<container>resource representation in XML format 11
1.13 Resource types and its attributes . 11
1.14 CSEBase resource example . 12
1.15 AE resource example . 13
1.16 Example of resource schema . 13
1.17 Access Resources in Local CSE . 14
1.18 Access Resources in Remote CSE . 14
1.19 CREATE operation . 15
1.20 RETRIEVE Operation . 15
1.21 UPDATE Operation . 15
1.22 DELETE Operation . 16
1.23 NOTIFY Operation . 16
1.24 Example of resources tree . 17
1.25 <accessControlPolicy>resources . 18
1.26 Access Control Operations . 18
1.27 Discovery example of oneM2M . 18
1.28 Subscription and notification example . 19
1.29 Discovery example in oneM2M . 19

2.1 Pre-Condition topology . 23
2.2 Pre-Condition topology for alternative flow 25
2.3 High-level illustration for multiple service providers semantic discovery

use case . 26
2.4 Semantic Recommendation in CSEs for Discovery 29
2.5 Facility management of a supermarket chain 32
2.6 Healthcare network and clinical knowledge administration 36

3.1 C2P and P2P and S2S CSE relationships . 38
3.2 Advanced Semantic Discovery Routing Flow 41
3.3 Alternative Advanced Semantic Discovery Routing Flow 42
3.4 Semantic Routing Table . 43
3.5 SDA-Table . 43

x

3.6 Routing table hosted in a CSE . 44
3.7 Upgrading a Semantic Routing Table with y new AE-THERMOMETERS . 45
3.8 Upgrading the adjacent SRT CSEs with the new y AE-THERMOMETERS 45
3.9 SRT with Recommendation System . 46

4.1 Gates SDA definition in OMNeT++ . 50
4.2 Example of Semantic Routing Table . 50
4.3 Semantic Routing Table data structure . 51
4.4 ASD notification message . 52
4.5 Registration of AE . 52
4.6 Notification message generation . 53
4.7 Checking the routing table for solving the query 55
4.8 Propagating the query on multicast for solving the query 56
4.9 Sending the query to the appropriate CSE 57
4.10 Semantic Routing Table with the CSE_BUCKETS 58

5.1 success rate vs. time to live, ND=1 . 61
5.2 success rate vs. time to live, ND=1 . 62
5.3 success rate vs. time to live, ND=1 . 62
5.4 success rate vs. time to live, ND=2 . 63
5.5 success rate vs. time to live, ND=2 . 63
5.6 success rate vs. time to live, ND=2 . 64
5.7 sample network, this network has less entities in order to be visible. . . . 65

xi

List of Abbreviations

ACK ACKnowledge message
ACP Access Control Policy
AE Application Entity
API Application Program Interface
AQL Arango Query Language
AS Autonomous System
ASD Advanced Semantic Discovery
ASDQ Advanced Semantic Discovery Query
ASDQL Advanced Semantic Discovery Query Language
ASN Application Service Node
BGP Border Gateway Protocol
BGP4 Border Gateway Protocol 4
C2P Customer-to-Provider
CAIDA Center for Applied Internet Data Analysis
CBOR Concise Binary Object Representation
CC Creative Commons
CMDH Communication Management and Delivery Handling
CNF Conjunctive Normal Form
CRUD Create RetrieveUpdate Delete
CSE Common Services Entity
CSF Common Service Function
CSV Certified Server Validation
DCL Data Control Language
DDL Data Definition Language
DIS Discovery
DNF Disjunctive Normal Form
DNS Domain Name System
drt Desired identifier Result
ETSI European Telecommunications Standards Institute
FQDN Fully Qualified Domain Name
GraphQL Graph Query Language
HTTP Hypertext Transfer Protocol
IN Infrastructure Node
IN-CSE Infrastructure Node - Common Services Entity
IoT Internet of Things
IP Internet Protocol
IRR Internet level Routing Registries
ISP Internet Service Provider
JSON JavaScript Object Notation
KETI Korean Electronics Technology Institute
lbl label
M2M Machine-to-Machine

xii

Mca Reference Point for M2M Communication with AE
Mcc Reference Point for M2M Communication with CSE
MN Middle Node
MN-CSE Middle Node - Common Services Entity
NoSQL Not only SQL
OA Optional Announced
OLAP Online Analytical Processing
OLTP Online Transactional Processing
OSPF Open Shortest Path First
OWL Web Ontology Language
P2P Peer-to-Peer
PDP Policy Decision Point
PEP Policy Enforcement Point
PHP Hypertext Preprocessor (originally: "Personal Home Page Tools")
PIP Policy Information Point
PPM Privacy Policy Manager
PRP Policy Retrieval Point
QoS Quality of Service
RBAC Role Based Access Control
RC Remote Control
RDBMS Relational Database Management System
RDF Resource Description Framework
REST Representational State Transfer
RS Routing Recommendation System
S2S Sibling-to-Sibling
SAREF Smart Applications REFerence ontology
SDA Semantic Discovery Agreement
SDPR Semantic Discovery Routing Protocol
SDQ Semantic Discovery Query
SDR Semantic Discovery Routing
SDRM Semantic Discovery Routing Mechanism
SLA Service Level Agreement
SP Service Provider
SPARQL Simple Protocol And RDF Query Language
SQL Structured Query Language
SQR Semantic Query Resolution
SQRM Semantic Resolution Query Mechanism
SQRS Semantic Query Resolution System
SR Semantic Recommendation system
SRT Semantic Routing Table
SSN Semantic Sensor Network
TD Thing Description
TR Technical Report
TTL Time To Live
UPM Universidad Politecnica de Madrid
URI Uniform Resource Identifier
W3C World Wide Web Consortium
WoT Web of Things
XML eXtensible Markup Language

1

Chapter 1

Introduction to oneM2M the IoT
Standard [1]

1.1 oneM2M Basics

oneM2M is similar to a distributed Operating System for the Internet of Things. It takes
the form of a middleware service layer consisting of a suite of common service functions
(CSFs). The middleware service layer sits between applications and connectivity trans-
port. oneM2M’s common service functions (CSFs) are exposed to applications and to IoT
devices via RESTful APIs.

A oneM2M service layer and/or applications can reside in field devices and sensors,
on gateways and in back-end or cloud applications. This supports cooperative intelli-
gence in distributed IoT systems.

This section covers the following topics:

1. Service Layer

2. Functional Architecture

3. Common Service Functions (CSFs)

4. Data Management

5. Horizontal Platform

1.1.1 Service Layer

oneM2M’s Service Layer is typically implemented as a software layer. It sits between IoT
applications and processing or communication hardware corresponding to the connec-
tivity layer. Data storage, processing and transport in the connectivity layer normally
rides on top of IP. However, oneM2M also supports non-IP transports via interworking
proxies.

FIGURE 1.1: Service Layer in oneM2M.

2 Chapter 1. Introduction to oneM2M the IoT Standard [1]

The oneM2M Service Layer provides commonly needed functions for IoT applica-
tions. To date, oneM2M specifications cover fourteen such functions. Developers can use
these functions progressively for their applications, beginning with the most frequently
required ones such as device management, registration and security. More complex ap-
plications can incorporate features to support semantic interoperability and location ser-
vices, for example.

oneM2M follows a modular standardisation roadmap. This allows for future IoT re-
quirements and new common service functions.

1.1.2 Functional Architecture

oneM2M standards comprise a horizontal architecture in the form of a three-layer model
comprising applications, middleware services and networks.

FIGURE 1.2: Horizontal Architecture of oneM2M

The oneM2M functional architecture comprises the following entities:

• Application Entity (AE): The Application Entity is an entity in the application layer
that implements application service logic. Examples of AEs include an instance of
a fleet tracking application, a remote blood sugar measuring application, a power
metering application or a pump controlling application. Each application service
logic can be resident in a number of nodes and/or more than once on a single node.
Each execution instance of an application service logic is termed an "Application
Entity" (AE) and is identified with a unique AE-ID.

• Common Services Entity (CSE): A Common Services Entity represents an instanti-
ation of a set of "common service functions" of the oneM2M Service Layer. A CSE
is actually the entity that contains the collection of oneM2M-specified common ser-
vice functions that AEs are able to use. Examples of service functions offered by a
CSE include: data storage and sharing with access control and authorization, event
detection and notification, group communication, scheduling of data exchanges,
device management, and location services. Each CSE is identified with a unique
CSE-ID.

• Underlying Network Services Entity (NSE): A Network Services Entity provides
services from the underlying network to the CSEs. Examples of such services in-
clude location services, device triggering, certain sleep modes like PSM in 3GPP
based networks or long sleep cycles.

Application Entities (AEs) are hosted on nodes (e.g., enterprise server, device). These
nodes may be virtualized or physical instances. AEs communicate with each other by
sending requests to a Common Service Entity (CSE) that, in turn routes the request to the

1.1. oneM2M Basics 3

target AE while providing services based on the request. CSEs are hosted on virtualized
or physical nodes. An AE and a CSE can share the same node (e.g., device).

It is possible to enable bi-directional communications between oneM2M and non-
oneM2M systems via an IPE (Interworking Proxy Entity). This is a specialized AE (Ap-
plication Entity) that allows the oneM2M system to interact with any non-oneM2M sys-
tem, in a seamless way, through the Mca interface. It relies on the capability to remap
non-oneM2M data models to oneM2M resources (<AE>, <container>, <flexContainer>,
etc.).

oneM2M Nodes

oneM2M has defined a set of Nodes that are logical entities identifiable in the oneM2M
System. oneM2M Nodes typically contain CSEs and/or AEs. For the definition of Node
types, oneM2M distinguishes between Nodes in the “Field Domain” – i.e. the domain in
which sensors / actuators / aggregators / gateways are deployed – and the “Infrastruc-
ture Domain” – i.e. the domain in which servers and applications on larger computers
reside.

Nodes can be of the following types:

• Application Service Node (ASN): a Node that contains one CSE and contains at
least one Application Entity (AE), located in the Field Domain. An ASN could
be implemented on a range of different devices ranging from resource constrained
devices up to more powerful hardware. Examples of devices that could be repre-
sented by ASNs include data collection devices, more capable sensors and actuators
including simple server functions.

• Application Dedicated Node (ADN): a Node that contains at least one AE and does
not contain a CSE. It is located in the Field Domain. An ADN would typically be
implemented on a resource constrained device that may not have access to ample
storage or processing resources and – therefore – may be limited to only host a
oneM2M AE and not a CSE. Examples for devices that could be represented by
ADNs include simple sensor or actuator devices.

• Middle Node (MN): a Node that contains one CSE and could also contain AEs.
MNs are located in the Field Domain. There could be several MNs in the Field Do-
main of the oneM2M System. Typically an MN would reside in an M2M Gateway.
MNs would be used to establish a logical tree structure of oneM2M nodes, e.g. to
hierarchically aggregate data of buildings / neighborhoods / cities / counties /
states etc.

• Infrastructure Node (IN): a Node that contains one CSE and could also contain AEs.
There is exactly one IN in the Infrastructure Domain per oneM2M Service Provider.

• Non-oneM2M Node (NoDN): A Node that does not contain oneM2M Entities (nei-
ther AEs nor CSEs). Typically such Nodes would host some non-oneM2M IoT im-
plementations or legacy technology which can be connected to the oneM2M system
via interworking proxies.

4 Chapter 1. Introduction to oneM2M the IoT Standard [1]

FIGURE 1.3: oneM2M node topology.

oneM2M Reference Points

The oneM2M functional architecture defines the following reference points:

• Mca: Reference point for the communication flows between an Application Entity
(AE) and a Common Services Entity (CSE). These flows enable the AE to use the
services supported by the CSE, and for the CSE to communicate with the AE. The
AE and the CSE may or may not be co-located within the same Node.

• Mcc: Reference point for the communication flows between two Common Services
Entities (CSEs). These flows enable a CSE to use the services supported by another
CSE.

• Mcn: Reference point for the communication flows between a Common Services
Entity (CSE) and the Network Services Entity (NSE). These flows enable a CSE to
use the supported services provided by the NSE. While the oneM2M Service Layer
is, usually independent of the underlying network – as long as it supports IP trans-
port – it leverages specific M2M/IoT optimization such as 3GPP’s eMTC features
(e.g. device triggering, power saving mode, long sleep cycles, etc).

• Mcc’: Reference point for the communication flows between two Common Services
Entities (CSEs) in Infrastructure Nodes (IN) that are oneM2M compliant and that
reside in different M2M Service Provider domains.

1.1. oneM2M Basics 5

FIGURE 1.4: oneM2M functional architecture.

1.1.3 Common Service Functions (CSFs)

oneM2M defines a set of common service functions that apply to all the IoT domains.
Think of these functions as items in a large toolbox to solve a number of IoT problems
across many different domains. For example, a screwdriver can be used to fasten screws
in a car as well as in a plane. In the same way, oneM2M CSFs, such as device manage-
ment or security, are applicable to different IoT use cases and across different industry
domains.

oneM2M members analysed a large number of IoT use cases to identify a set of com-
mon requirements in the initial phase of standardisation. This process resulted in the
design of a set of Common Service Functions. Furthermore, oneM2M standardized how
these functions are executed, i.e. it defined uniform APIs to access these functions.

FIGURE 1.5: Reference points in oneM2M.

CSFs are general purpose services and are not specific to any IoT domain in particular.
This enables each domain to build on top of this service layer and focus on its specific
industrial needs. This is similar to functions of a generic operating system (OS) exposed
to applications running on that OS. For instance, many applications read and write to
files. File I/O is typically provided by the OS. oneM2M’s Service Layer provides similar
functions in a generic way to many different IoT Applications.

The common services functions reside within a CSE They provide services to the AEs
via the Mca reference point and to other CSEs via the Mcc reference point.

6 Chapter 1. Introduction to oneM2M the IoT Standard [1]

1.1.4 Data Management

Within oneM2M, data storage relies on a Container type of resource. A Container is an
entity that is associated with an object within an IoT system. This could be a specific
sensor or a specific location, such as a room in a building, for example.

Containers are defined by the publisher of the data. This requires a function to dis-
cover and understand the data that an application wishes to consume. The scope of data
management within oneM2M encompasses a set of CSFs that allow developers to man-
age Access Control Policies, Subscription & Notification functions and Discovery.

1.1.5 Horizontal Platform

The practice of building single-purpose and “vertical” domain applications leads to iso-
lated silos. This makes it difficult to exchange data and to address cross-domain use
cases. In contrast, a “horizontal” architecture allows the provision of a seamless interac-
tion between applications and devices, even across silos and “verticals”.

Using the example of a smart building use case, a security application can detect when
nobody is in the building. It could then trigger lights to be switched off and for the air
conditioning system to operate on a reduced setting.

FIGURE 1.6: Horizontal Platforms.

1.2 oneM2M API

The oneM2M API is used by CSEs and AEs to communicate with one another as well
as for data retrieval services. oneM2M REST APIs handle CRUD+N (Create, Retrieve,
Update, Delete and Notification) operations.

The oneM2M API includes the following components:

• Primitives

• Resources + Attributes

• Data Types

• Protocol Bindings

• Procedures (CRUD+N).

1.2. oneM2M API 7

Primitives are used to perform CRUD+N operations on resources hosted by CSEs or
to send notifications to AEs. Each CRUD+N operation consists of a pair of Request and
Response primitives.

Communication can originate from an AE or a CSE depending on the operation.
Communication occurs via the exchange of oneM2M primitives across three reference
points (Mca/Mcc/Mcc’) defined in the oneM2M standard. Access and manipulation of
the resources is subject to access control privileges.

1.2.1 oneM2M REST Architecture

Representational State Transfer (REST) is a software architectural style that defines a set
of constraints to be used for creating web services. As REST is an architecture style, it can
be mapped to multiple protocols such as HTTP, CoAP, etc.

RESTful services allow requesting systems to access and manipulate textual repre-
sentations of resources by using a uniform and predefined set of stateless operations. A
stateless protocol operation does not require the server to retain session information or
status about each communicating partner for the duration of multiple requests.

REST is not a protocol. It is about manipulating resources, uniquely identified by
URIs. A resource is stateful and may contain links pointing to another resource. All the
actions on resources are done through a Uniform Interface.

Six guiding constraints define a RESTful system. These constraints restrict the ways
in which a server can process and respond to client requests:

• Client-server: separation of concerns is the principle behind the client-server con-
straints.

• Stateless server: request from client to server contains all of the information neces-
sary to understand the request, and cannot take advantage of any stored context on
the server.

• Cache: the client can reuse response data, sent by the server, by storing it in a local
cache.

• Layered system: allows an architecture to be composed of hierarchical layers. It
enables the addition of features like a gateway, a load balancer, or a firewall to
accommodate system scaling.

• Code-on-demand: (optional) REST allows client functionality to be extended by
downloading and executing code in the form of scripts (e.g. JavaScript).

• Uniform interface

– dentification of resources: resource identifier enables the identification of the
particular resource involved in an interaction between components.

– Manipulation of resources through representations: resource representations
are the state of a resource that is transferred between components.

– Self-descriptive messages: contain metadata to describe the meaning of the
message.

– Hypermedia as the engine of application state (HATEOAS): Clients find their
way through the API by following links available in the resource representa-
tions

8 Chapter 1. Introduction to oneM2M the IoT Standard [1]

1.2.2 oneM2M Security Mechanisms

oneM2M defines a security framework for IoT deployments consisting of the following
security centric capabilities:

• Enrolment

• Aecurity association establishment

• Authorization

• End-to-end security

• Privacy management

Enrolment

IoT applications or devices go through an initialization or joining process to connect se-
curely to a system and become trusted. This requires provisioning and configuration of
identifiers and security credentials. oneM2M supports the capability to remotely boot-
strap and provision IoT devices and applications with the necessary identifiers and cre-
dentials. The oneM2M entity responsible for enrolment is called the M2M Enrolment
Function (MEF).

Security association establishment

To services offered by the oneM2M Service Layer securely, devices/applications need to
be mutually authenticated and establish what is known as a oneM2M security associa-
tion with the Service Layer. oneM2M supports security associations based on pairwise
symmetric keys, public key certificates and mutual third-party authentication. The secu-
rity association results in a TLS or DTLS session being established between the oneM2M
entities.

Authorization

oneM2M supports several options for authorizing the access to services and information
stored within the Service Layer. The owner of the service or information can define pol-
icy rules to grant access to other oneM2M entities. Many possibilities are defined for
the access rules by the Service Layer: static through an access list, dynamic with token
generation, or distributed authorization system.

End-to-end security

Besides having security associations between oneM2M entities, the standard makes it
possible to have end-to-end secure communication between source and destination end-
points. Hence, oneM2M supports the capability to end-to-end protect the confidentiality
and integrity of oneM2M messages that flow through the Service Layer via intermediate
oneM2M nodes.

Privacy management

oneM2M supports user privacy protection via a personal data management framework
which converts a user’s privacy preferences into access control information that protects
a user’s Personally Identifiable Information. oneM2M offers users the possibility to set
up their privacy preferences.

1.2. oneM2M API 9

1.2.3 oneM2M Primitives

Primitives are service layer messages transmitted over the Mca/Mcc/Mcc’ reference points
between Originators and Receivers. An Originator and Receiver can be an AE or a CSE.
Each CRUD+N operation consists of one request and one response primitive.

FIGURE 1.7: General primitive flow.

Primitives are binded to underlying transport layer protocols such as HTTP, CoAP ,
MQTT or WebSocket. Primitives are generic with respect to underlying network trans-
port protocols. The binding for each primitive can be to zero or more messages in the
transport layer.

FIGURE 1.8: oneM2M communications.

Primitive structure

A primitive consists of two parts; control and content.

• The control part contains parameters required for the processing of the primitive
itself (e.g. request or response parameters).

• The content part is optional based on the type of primitive and contains the repre-
sentation of the resource consisting of all or a subset of the resource attributes.

10 Chapter 1. Introduction to oneM2M the IoT Standard [1]

FIGURE 1.9: Primitive structure.

Primitives are encoded and serialized based on the particular oneM2M protocol bind-
ing being used. The originator and receiver of each primitive use the same binding,
and thus use compatible forms of encoding/ decoding and serialization/de-serialization.
During transfer, the control part is encoded based on the protocol binding being used and
the content portion is serialized using XML, JSON or CBOR.

FIGURE 1.10: Example of control part bound to HTTP.

The Content part of a primitive contains a serialized representation of a resource.
Here is an example of a oneM2M <container>resource representation in JSON format.

FIGURE 1.11: oneM2M <container>resource representation in JSON for-
mat.

1.2. oneM2M API 11

Here is an example of a oneM2M<container>resource representation in XML format.

FIGURE 1.12: oneM2M<container>resource representation in XML format.

1.2.4 oneM2M Resources

This section describes the parameters that define oneM2M Resources and how they are
used.

Resource Template

All information in the oneM2M System corresponding to AEs, CSEs, application data
representing sensors, commands, etc. is represented as resources in the CSE. Each re-
source has its own specific type. Each resource type has a defined set of mandatory and
optional attributes as well as child resources.

FIGURE 1.13: Resource types and its attributes.

Each resource is addressable and can be the target of CRUD operations specified in
oneM2M primitives.

Resource Structure

The root of the oneM2M resource structure is <CSEBase>. The <CSEBase>resource is
assigned an absolute address. All other child resources are addressed relative to <CSE-
Base>. Depending on the type of child resource it is instantiated 0..n times.

12 Chapter 1. Introduction to oneM2M the IoT Standard [1]

FIGURE 1.14: CSEBase resource example.

Resource Attributes

Each resource contains attributes that store information pertaining to the resource itself.
The attributes are:

• Universal Attributes: which appear in all resources

• Common Attributes: which appear in more than one resource and have the same
meaning whenever they do appear.

• Resource-specific attributes

1.2. oneM2M API 13

FIGURE 1.15: AE resource example.

Resource Schema

oneM2M defines XML, JSON and CBOR schemas which define the attributes of each
resource type. Schemas bind oneM2M attributes to well-known data types defined by
XML Schema definitions (e.g. xs:string, xs:anyURI, etc . . .). Schemas also bind oneM2M
attributes to oneM2M defined data types (e.g. m2m:id, m2m:stringList, etc ...).

FIGURE 1.16: Example of resource schema.

1.2.5 oneM2M Procedures

oneM2M defines a set of procedures for developers to access resources in local and re-
mote CSEs. Developers can then execute CREATE, RETRIEVE, UPDATE, DELETE and
NOTIFY operations.

14 Chapter 1. Introduction to oneM2M the IoT Standard [1]

Access Resources in Local CSE

FIGURE 1.17: Access Resources in Local CSE.

Access Resources in Remote CSE

FIGURE 1.18: Access Resources in Remote CSE.

1.2. oneM2M API 15

CREATE operation

FIGURE 1.19: CREATE operation.

RETRIEVE Operation

FIGURE 1.20: RETRIEVE Operation.

UPDATE Operation

FIGURE 1.21: UPDATE Operation.

16 Chapter 1. Introduction to oneM2M the IoT Standard [1]

DELETE Operation

FIGURE 1.22: DELETE Operation.

NOTIFY Operation

FIGURE 1.23: NOTIFY Operation.

1.3 oneM2M REST RESOURCES

1.3.1 Common Services Entity (CSE) Base

A <CSEBase>resource represents a CSE and serves as the root resource for all resources
that are residing in the CSE.

1.3.2 Application Entity (AE)

An <AE>resource represents an Application Entity that is registered to a CSE. An <AE>resource
supports attributes such as identifiers, contact information, status and capabilities of the
Application Entity. An <AE>resource also serves as the root resource for all child re-
sources of the Application Entity. For example, <container>, <flexContainer>, <subscrip-
tion>and <group>resources of an Application Entity.

1.3.3 Container

Containers describe attributes of the data and child resources which are useful for rep-
resenting hierarchical data structures. They can be created and organised in a similar

1.3. oneM2M REST RESOURCES 17

manner to folders on a computer. Each Container is allocated a unique ID and prop-
erty fields that hold information about that container’s contents. A container can contain
additional containers which are analogous to subfolders on a computer.

A Container for data instances is represented by the <container>resource. It stores
data that is used to share information with other entities and to track data. A <con-
tainer>resource does not store actual values in the resource itself. Actual values from a
sensor, for example, are stored in child-resources of <container>, i.e. <contentInstance>or
further <container>resources. A single <contentInstance>contains a single piece of data
sent by the publishing application.

<container>is the only resource allowed to have recursive child resources i.s. A <con-
tainer>resource can have other <container>resources as child resources. This property is
useful for representing hierarchical data structures.

FIGURE 1.24: Example of resources tree.

Access Control Policy

Access Control Policies (ACPs) are used by the CSE to control access to resources. Re-
sources are always linked to Access Control Policies. ACPs are shared between several
resources.

Access Control Policies contain the rules (Privileges) defining:

• WHO can access the Resource (e.g. Identifiers of authorized AE/CSE).

• For WHAT operation (CREATE / RETRIEVE / UPDATE / DELETE...).

• Under WHICH contextual circumstances (Time, Location, IP address).

ACPs are represented by <accessControlPolicy>resources.These consist of privilege
and selfPrivilege attributes that implement Access Control Rules (acr) through Access
Control Originator (acor) and Access Control Operation (acop) procedures.

18 Chapter 1. Introduction to oneM2M the IoT Standard [1]

FIGURE 1.25: <accessControlPolicy>resources.

Access Control Operations are invoked through a value that is set on the basis of
designated operation codes. The value ‘5’, for example, corresponds to “CREATE and
UPDATE” operations.

Operation Codes:

• CREATE 1

• RETRIEVE 2

• UPDATE 4

• DELETE 8

• NOTIFY 16

• DISCOVER 32

FIGURE 1.26: Access Control Operations.

Common attribute accessControlPolicyIDs link resources that are not <accessCon-
trolPolicy>resources to <accessControlPolicy>resources. All resources are accessible only
if the privileges from the ACP grants it. All resources have an associated accessCon-
trolPolicyIDs attribute, either explicitly or implicitly.

FIGURE 1.27: Discovery example of oneM2M.

1.3. oneM2M REST RESOURCES 19

1.3.4 Subscription & Notification

Events generated by resources can be received using the <subscription>resource. The
<subscription>resource contains subscription information for its "subscribed-to" resource.
The <subscription>resource is a child resource of the "subscribed-to" resource.

The originator (resource subscriber) has RETRIEVE privileges to the "subscribed-to"
resource in order to create the <subscription>resource.

Notification policies specified in the attributes can be applied to the <subscription>.
These specify which, when, and how notifications are sent. An example is the batchNo-
tify attribute which indicates the receipt of notifications in batches rather than one at a
time.

FIGURE 1.28: Subscription and notification example.

1.3.5 Discovery

Resource Discovery can be accomplished using the RETRIEVE operation by an Origina-
tor.

FIGURE 1.29: Discovery example in oneM2M.

Use of the filterCriteria parameter allows developers to limit the scope of results
through parameters such as Type, Labels, Content Size.

1.3.6 Groups

A <group>resource represents a group of resources. A <group>resource can be used
to do bulk manipulations on the member resources of the group. The <group>resource
contains an attribute (i.e. memberIDs) that represents the members of the group and
a <fanOutPoint>virtual resource that enables operations to be performed on all these
member resources in either a unicast or multicast fashion.

20 Chapter 1. Introduction to oneM2M the IoT Standard [1]

1.3.7 flexContainer

A <flexContainer>is a customizable container for data instances. Like a <container>resource,
<flexContainer>resources are used to share information with other entities and poten-
tially to track the data. While the <container>resource includes data to be made accessible
to oneM2M entities inside <contentInstance>child resources, a <flexContainer>resource
supports content directly inside the <flexContainer>resource by means of one or more
custom attribute(s). The attribute name and attribute data type of each custom attribute
are defined explicitly for each customized <flexContainer>, i.e. the specific set of attribute
name and type are defined in a corresponding XSD-file.

21

Chapter 2

Advanced Discovery and Query Use
Cases And Requirements

2.1 Definition of terms

Advanced Semantic Discovery (ASD): an extension of the present oneM2M semantic
discovery across a network of CSEs statically connected among them in a tree-like topol-
ogy inside a single or multiple Service Provider (SP), including non oneM2M ones and in
a mesh-like topology between the root of the different SPs

Advanced Semantic Discovery Query (ASDQ): word in the Advanced Semantic Dis-
covery Query Language (ASDQL) according to the Theory of Formal Languages

Advanced Semantic Discovery Query Language (ASDQL): extension of the actual
oneM2M Semantic Discovery Query Language (SDQL), which has to be suitable enough
to describe queries that will be resolved in a cooperative way by a distributed network
of CSEs

Note: Each CSE involved in the resolution participates in resolving subqueries and
aggregating results by coordinating and cooperating among each other’s.

Semantic Discovery Agreement (SDA): aims at adding a semantic registering infor-
mation for the cooperation between CSEs

Note1: With ananalogy with the Border Gateway Protocol 2 kinds of cooperations are
set:

• CSE1 to CSE2 meaning that CSE1 takes advantage of the infrastructure, MN-CSEs,
and AEs registered in CSE2, and also shares security policies of CSE2. CSE1 is a
CUSTOMER and CSE2 is a PROVIDER.

• CSE1 to CSE2 means that CSE1 and CSE2 mutually share infrastructure, MN-CSEs,
and AEs and common security policies. CSE1 and CSE2 are PEERS.

NOTE 2: CUSTOMER and PROVIDER are roles that conform an asymmetric relation-
ship, while PEER is a role conforming a symmetric relationship.

NOTE 3: Inside a single Service Provider, the SDA is not mandatory since it can be
considered as PEER.

Semantic Discovery Routing (SDR): CSEs support a distributed Semantic Discovery
Routing that listens for Advanced Semantic Discovery Query (ASDQ) and

1. reduces the Advanced Semantic Discovery Query (ASDQ) by means of the Seman-
tic Query Resolution (SQR);

2. solves and forwards in a distributed way the queries;

3. reconstructs the partial results, sending back to the originator of the Advanced Se-
mantic Discovery Query (ASDQ).

22 Chapter 2. Advanced Discovery and Query Use Cases And Requirements

NOTE: Generally, two kinds of routing are discriminated, namely:

1. "Exhaustive". As an example, in the case that a semantic resource exists somewhere
in the CSEs network, then the system will explore the entire distributed network
until it will found it.

2. "Non-exhaustive". As an example, even in the case a semantic resource that exists
somewhere in the CSEs network, the system will explore part of the distributed
network until it will be stopped.

Semantic Query Resolution (SQR): each CSE contains a Semantic Query Resolution
capability that takes as input an Advanced Semantic Discovery Query (ASDQ) and:

1. as output, produces a normalized Advanced Semantic Discovery Query (ASDQ);

2. produces a set of ordinary oneM2M Semantic Discovery Query (SDQ) from the
normalized Advanced Semantic Discovery Query (ASDQ) one.

Semantic Recommendation (SR): capability in the CSE that takes routing decisions for
forwarding a received Advanced Semantic Discovery Query (ASDQ)

NOTE: This capability uses the Semantic Routing Tables (SRT) and the Semantics Dis-
covery Agreement (SDA).

Semantic Routing Table (SRT): contained in each CSE provides suitable routes to
propagate the discovery queries according to the SDA

2.2 Semantic discovery in presence of a network of M2M Service
Providers (M2MSP)

2.2.1 Description

The oneM2M system has implemented basic native discovery capabilities. This use case
could be considered "parametric use-case" for Advanced Semantic Discovery (ASD) and
it can be instantiated in many domain specific cases and illustrates the needs for an ASD
within distributed network of CSEs belonging a single Service Provider and across dif-
ferent IoT Service Providers. It shows the importance of formalizing:

• an Advanced Semantic Discovery Query Language (ASDQL) able to write Ad-
vanced Semantic Discovery Query (ASDQ);

• a Semantic Discovery Routing Protocol (SDRP) to route an Advanced Semantic Dis-
covery Query (ASDQ) between different CSEs;

• a Semantic Discovery Agreement (SDA), to state some communication agreements
between CSEs;

• a Semantic Query Resolution functionality (SQR) allowing to locally resolve an Ad-
vanced Semantic Discovery Query (ASDQ) into some elementary standard oneM2M
Semantic Discovery Queries (SDQ).

2.2.2 Actors

• Application Entities (AE) X of type T1, Y of type T2, Z of type T3, V of type T4, and
W of type T5.

• 2 Middle Node Common Service Entities (MN-CSE) P, and Q:

2.2. Semantic discovery in presence of a network of M2M Service Providers (M2MSP)23

– A MN-CSE has a local database containing information on their registered
AE. The local database includes location information (where each device is
presently located), the device type, etc. Assuming P and Q have some Seman-
tic Discovery Agreement (SDA) with A. Semantic Discovery Agreement (SDA)
can be relaxed inside a single Service Provider.

• 4 Infrastructure Node Common Service Entities (IN-CSE) A, B, C, and D:

– An IN-CSE has a local database containing information on their registered
MN-CSE and AE. The local database includes location information (where
each device is currently located), the device type, etc. Assuming A, B, C, and
D have some "Semantic Discovery Agreement" (SDA) among each other.

2.2.3 Pre-Conditions

Consider the following topology:

FIGURE 2.1: Pre-Condition topology.

2.2.4 Triggers

This clause presents, informally, three examples of the Advanced Semantic Discovery
Query Language (ASDQL). Assuming AND, OR, NOT be non-terminals and ?T means a
meta-variable of type T to be resolved.

EXAMPLE 1: X:T1 send to MN-CSE P:
ASDQ1 = ?T2|FC2 AND ?T3|FC3 AND ?T4|FC4 AND ?T5|FC5
The query can be intuitively read as follows: X is looking for:
some AE of type T2 registered in any CSE satisfying the filter criteria FC2, AND
some AE of type T3 registered in any CSE satisfying the filter criteria FC3, AND
some AE of type T4 registered in any CSE satisfying the filter criteria FC4, AND
some AE of type T5 registered in any CSE satisfying the filter criteria FC5
EXAMPLE 2: X:T1 send to MN-CSE P
ASDQ = ?T2|FC2 OR ?T3|FC3 OR ?T4|FC4 OR ?T5|FC5
The query can be intuitively read as follows: X is looking for:
some AE of type T2 registered in any CSE satisfying the filter criteria FC2, OR
some AE of type T3 registered in any CSE satisfying the filter criteria FC3, OR
some AE of type T4 registered in any CSE satisfying the filter criteria FC4, OR
some AE of type T5 registered in any CSE satisfying the filter criteria FC5
EXAMPLE 3: X:T1 send to MN-CSE P

24 Chapter 2. Advanced Discovery and Query Use Cases And Requirements

ASDQ = (?T2|FC2 OR ?T3|FC3) AND (?T4|FC4 OR ?T5|FC5)
EXAMPLE 4: X:T1 send to MN-CSE P
ASDQ = (?T2|FC2 AND ?T3|FC3) OR (?T4|FC4 AND ?T5|FC5)
EXAMPLE 5: X:T1 send to MN-CSE P
ASDQ = (?T2|FC2 AND ?T3|FC3) OR (?T4|FC4 AND (NOT ?T5|FC5))
It is also possible to consider other non-terminals, such as (list not exhaustive):
ANY = search in all CSE databases;
CURRENT = search in the CSE local database;
CUSTOMER[N] = search in the databases of N CUSTOMER CSE;
PROVIDER[N] = search in the databases of N PROVIDER CSE;
PEER[N] = search start on the databases of N PEER CSE;
BETWEEN_TIME[SEC] = search should return in SEC;
BETWEEN_SPACE[METER] = search should give results in METER;
OF_BRAND[NAME] = search should give results of brand NAME.

2.2.5 Normal Flow

A "trace" of the Semantic Discovery Routing (SDR) generated by Example 1 is presented,
the other examples can be easily traced following the same logic. This trace is inspired to
a semantic discovery routing as follows:

• X sends an Advanced Semantic Discovery Query (ASDQ1) to P.

• P verifies the integrity of ASDQ1 and forwards the ASDQ1 to A that starts the
Semantic Discovery Routing Protocol (SDPR) into the network of CSE.

• ASDQ1 is resolved using the Semantic Query Resolution System (SQRS) locally in
A into four subqueries, namely ASDQ2, ASDQ3, ASDQ4, and ASDQ5, where:

– ASDQ2 = ?T2|FC2

– ASDQ3 = ?T3|FC3

– ASDQ4 = ?T4|FC4

– ASDQ5 = ?T5|FC5

1. A starts lookups in its local database, trying to solve ASDQ 2,3,4,5 but fail.

2. A down-forwards ASDQ1 to Q via an mcc pointer.

3. Q solve the subquery ASDQ2 ?T2|FC2 in its local database returning Y to A.

4. A send backY to P and X

5. A up-forwards ASDQ3 and ASDQ4 and ASDQ5 to B via an mcc’ pointer.

6. B solves the ASDQ3 ?T3|FC3 in its local database returning Z to A (and back to P
and X).

7. B side-forwards ASDQ4 and ASDQ5 to C.

8. C solves the ASDQ4 ?T4|FC2 in its local database returning V to B (and back to A,
P and X).

9. C down-forwards ASDQ5 to D.

2.2. Semantic discovery in presence of a network of M2M Service Providers (M2MSP)25

10. D solves the ASDQ5 ?T5|FC5 in its local database returning W to C (and back to B,
A, P and X).

NOTE: When A up-forwards to B, it follows that A respect the CUSTOMER-PROVIDER
SDA with B (e.g. A respects the SDA directives of B). When B side-forwards to C, it fol-
lows that B and C respect the PEER- PEER SDA directives. When C down-forwards to D,
it follows that D respects the PROVIDER- CUSTOMER SDA with C (e.g. D respects the
SDA directives of C).

The moral is: B and C should be "acknowledged” for their "routing job".

2.2.6 Alternative Flow

In the following alternative topology the CUSTOMER-PROVIDER SDA are reversed.

FIGURE 2.2: Pre-Condition topology for alternative flow.

A possible "trace" of the SDRM is expecting for the following caveat.
Caveat. When A down-forwards to B, it expects that B should respect the provider-

customer SDA with A (e.g. B should acknowledge A. This is not intuitive since B does a
favour to A and acknowledge A). When B side-forwards to C, it expects that B and C have
a common SDA agreement and, as such, they do not acknowledge it each other. When C
up-forwards to D, it expects that C and D have a common SDA agreement (e.g. C should
acknowledge D. This is not intuitive since C do a favour to D and acknowledges D).

The moral is: B and C do a job for their providers and, moreover, they have to ac-
knowledge for their "routing job".

Alternative traces happen in practice. Because of the distributed nature of the SDR,
it is beneficial to try to incentivize routing respecting the SDA, and, as such, avoid rout-
ing not respecting the SDA. Those situations are not new in Internet and are referred as
VALLEY ROUTING by Gao [6]. "Good routing" should guarantee that routing is always
"valley preserving" (or "no valley").

2.2.7 Post-Conditions

X can start to interact with Y, Z, V, and W.

26 Chapter 2. Advanced Discovery and Query Use Cases And Requirements

FIGURE 2.3: High-level illustration for multiple service providers semantic
discovery use case.

2.2.8 Potential Requirements for the oneM2M system

1. The oneM2M system should provide mechanisms for Advanced Semantic Discov-
ery (ASD) across a distributed network of IoT nodes within a single oneM2M Ser-
vice Provider and across different IoT Service Providers.

2. A CSE receiving an Advanced Semantic Discovery Query (ASDQ) should extract
the Semantic Discovery Query (SDQ), embedded in the packet payload, and shall
resolve the query with respect to the locally available information and shall for-
ward to other suitable CSEs the Advanced Semantic Discovery Query (ASDQ) to
complete the discovery.

3. More specifically, the M2M system should provide:

• an Advanced Semantic Discovery Query Language (ASDQL) that the ability
to write Advanced Semantic Discovery Query (ASDQ);

• a Semantic Discovery Agreement (SDA) to state some communication agree-
ments between CSE;

• a Semantic Query Resolution (SQR) that allows to locally translate an Ad-
vanced Semantic Discovery Query (ASDQ) into some elementary oneM2M
Semantic Discovery Queries (SDQ);

• a Semantic Discovery Routing (SDR) to route an Advanced Semantic Discov-
ery Query (ASDQ) between different CSEs.

2.3 Semantic recommendation in CSEs for discovery

2.3.1 Description

This use case is built upon a cross-domain scenario in which a hospital has a large num-
ber of IoT devices which are in charge of performing different tasks. The IoT devices
can be classified into the following categories: energy devices (load consumption, flexi-
bility monitoring, energy switch, etc.), building devices (lights, door sensors, occupancy
sensors, etc.) , personal devices (smart bands, smartphones, etc.), and devices related to
health (hearth rate sensor, glucose monitor, etc.). These IoT devices are connected across
the hospital network, but they do not necessarily belong to the same oneM2M Service
Provider.

2.3. Semantic recommendation in CSEs for discovery 27

In this scenario, several actors need to discover and use IoT devices that are allocated
outside their oneM2M Service Provider. For instance, if the energy devices detect an
incoming negative peak of energy, entailing that a large number of devices should be
switched off to avoid the whole hospital to run out of energy (losing critical systems for
the patients). Then, the energy devices (or an application in charge) should be able to
discover all the sensors in the building that are related to energy (like light bulbs or air
condition) and switch them off. Also, the same actor (the energy devices or an application
in charge) should detect the critical eHealth IoT devices for the patients and ensure that
they are switched on. In the case that one of the eHealth IoT devices would run off, then
the energy devices, or an application in charge, should perform a discovery task over the
personal devices in order to find relevant people, i.e. doctors, nearby the critical eHealth
IoT devices that are running out of energy in order to assist the patients.

This use case assumes that there is an interoperability platform (oneM2M) that allows
monitoring and controlling the different IoT devices regardless their vendor. Also, the
platform should ensure a secure and private environment so no unauthorized third party
could access the network. This platform should ensure a sufficient rich discovery in order
to meet the previous example.

• It is fully distributed in order for the Advanced Semantic Discovery (ASD) to reach
from one oneM2M Service Provider to others that may contain relevant infrastruc-
tures.

• The Advanced Semantic Discovery Query (ASDQ) is expressed using an Advanced
Semantic Discovery Query Language (ASDQL) so specific semantic terms from do-
mains like energy or eHealth can be used.

• The Advanced Semantic Discovery (ASD) needs to happen in quasi real-time and
therefore the communication mechanism across infrastructures that belongs to dif-
ferent Service Providers should not be blind; instead it should be guided by a Se-
mantic Recommendation (SR).

This use case can be generalized to other domains in which IoT devices are spitted
in different Service Providers and discovery needs be performed across them avoiding
flooding the infrastructures, i.e. relying on a guided Semantic Recommendation System
(SRS) to which infrastructures perform the Advanced Semantic Discovery (ASD), and to
which discard, leveraging the network load.

2.3.2 Source

• oneM2M TS-0012: "oneM2M Base Ontology"

• oneM2M TR-0045: "Developer Guide Implementing Semantics"

• oneM2M TS-0001: "Functional Architecture"

2.3.3 Actors

• M2M Applications, M2M Service providers.

• IN-CSE and MN-CSE.

• IoT devices from the different domains.

• Medical staff, building staff, or technicians.

28 Chapter 2. Advanced Discovery and Query Use Cases And Requirements

2.3.4 Pre-Conditions

network infrastructure distributed across different Service Providers. Intuitively, net-
work infrastructure of oneM2M Service Providers is a set of M2M devices and Applica-
tion Entities (AE) that have been installed and registered to their corresponding MN-CSE
(Middle Node - Common Services Entity). The MN-CSEs have in turn been registered to
the corresponding IN-CSE (Infrastructure Node - Common Service Entity).

All the different CSEs have Semantic Discovery Agreements (SDA) with each other,
resulting in a tree-like network topology. In such a topology, the CSEs should rely as a Se-
mantic Recommendation (SR) in order to assist the advanced semantic discovery resolu-
tion task performed by the CSEs involved in. As smarter the Semantic Recommendation
(SR) is, as efficient will be the discovery in terms of time, CSEs visited, and number of
query forwarded, among others. The discovery should allow expressing some network
directives to address efficient routing across CSEs.

Both the registering and the discovery should be expressed according to the oneM2M
described in oneM2M TS-0012 [i.20]. Nevertheless, due to tailored-domain terms re-
quired in the use case, the registering and the discovery should be also expressed with
specific domain ontologies like the different extensions of SAREF.

2.3.5 Triggers

The IoT energy devices, or a technician, send first an Advanced Semantic Discovery
Query (ASDQ) to find all the non- critical IoT devices allocated in the building. Then,
a second ASDQ is issued to find all the critical IoT devices from the eHealth domain,
and if required, a third ASDQ is issued to find relevant medical staff that could be near
critical devices. The different ASDQs will rely on specific semantics, the first will contain
information about devices and if they consume energy, the second about eHealth devices
that are critical and cannot be switched off, and the third about the people, their roles in
hospital, and their location.

2.3.6 Normal Flow

Following the first discovery task is showcased:

1. An IoT energy device, or a technician, sends an ordinary oneM2M Semantic Discov-
ery Query (SDQ) to its CSE, written in SPARQL. The SPARQL query will contain
terms about sensors that consume energy, are not from the eHealth domain, and
are located in the b

2. The CSE verifies the integrity of the SDQ, and it tries to answer. If the CSE is not
able to reply, it builds an ASDQ wrapping the SDQ.

3. Then the CSE forwards the ASDQ to other CSEs that may be located in the same
oneM2M Service Provider, or in a different oneM2M Service Providers, or even sent
to a non oneM2M IoT Service Provider.

4. Relying on the SR, the CSE selects and queries the relevant CSEs.

5. The CSE of the building will receive the ASDQ and will try to solve the embedded
SDQ. The building contains suitable IoT devices so that the CSE will be able to
produce and forward back a positive answer.

6. Finally the IoT energy device, or a technician, will receive the answer and the se-
mantic discovery terminates successfully.

2.4. Facility management of a supermarket chain 29

2.3.7 Post-Conditions

The query is answered if a resource that fulfills the discovery criteria is present in the
network and "reasonably" reachable. For example, the discovery task needs be completed
in a given threshold time even when crossing different IoT Service Providers is required.

2.3.8 High-Level illustration

FIGURE 2.4: Semantic Recommendation in CSEs for Discovery.

2.3.9 Potential Requirements for the oneM2M system

1. The oneM2M system should integrate already standardized ontology extensions to
the current oneM2M ontology to cope with new specific domains (e.g. SAREF core
and its extensions)

2. Based on semantic information, the oneM2M system shall take routing decisions
for forwarding a received ASDQ. The semantic information will allow the oneM2M
system to maximize and to accelerate the semantic discovery process.

2.4 Facility management of a supermarket chain

2.4.1 Description

Building and facility managers need a helicopter view of the facilities management pro-
cesses, regardless of existing building installations in order to make better-informed de-
cisions and to enforce cross building policies. Building managers are faced with hetero-
geneous and vendor-specific installations. Centralized management of buildings often-
times forces the owners to go through costly replacements to adopt mono-vendor solu-
tions. Installation of new equipment requires costly system integration because devices
are often designed to communicate with specific applications only.

This use case assumes a facility manager working for a supermarket chain and re-
sponsible of dozens of buildings. It is supposed that there is an interoperability platform

30 Chapter 2. Advanced Discovery and Query Use Cases And Requirements

(oneM2M) that offers a standard interface to monitor and control all the buildings re-
gardless of vendor. The facility manager could apply energy efficiency strategies to all
buildings on large scale. He could for example, compare buildings to detect leaks, adjust
the heat and the lighting according to forecast or predictive models, and compliant with
applicable regulations.

The exposure of the huge amounts of data through modern APIs allows prolifera-
tion of new building services such as situational awareness, energy efficiency, intrusion
detection, preventive maintenance and smart data.

Through further APIs, wider integration of the buildings with the outside world is
achieved to give rise to fully integrated cities. The buildings start to interwork with
energy grids (smart and micro grids), smart parking, electrical vehicle charging, waste
management, etc., the ultimate goal for buildings to be considered really smart.

Assuring interoperability between all the data producing, data storing, and data pro-
cessing components, semantic discovery and query mechanisms across and between sen-
sors, devices, APIs and even IoT platforms are essential.

This use case is similar to the use case "Semantics query for device discovery across
M2M Service Providers in clause 12.9 of oneM2M TR-0001-Use_Cases_Collection-V4_3_0.
However, it extends the requirements with a focus on the discovery and query capabili-
ties, introducing a direct relation with the semantic aspects and enabling more sophisti-
cated semantic queries.

2.4.2 Source

• ETSI SR 003 680: "SmartM2M; Guidelines for Security, Privacy and Interoperability
in IoT System Definition; A Concrete Approach"

2.4.3 Actors

• M2M devices as e.g. energy meters, temperature sensors, fire detectors, leak detec-
tors, lightning controls, heat and air condition controls, surveillance cameras , cash
boxes, inventory controls.

• Facility manager.

• M2M Service providers.

• M2M Applications e.g. data analytics, fault detection, energy efficiency, hypervi-
sion.

2.4.4 Pre-Conditions

M2M devices in the super markets have been installed and registered to their correspond-
ing MN-CSE (Middle Node - Common Services Entity). The MN-CSEs have been regis-
tered to the corresponding IN-CSE (Infrastructure Node - Common Services Entity).

The M2M Application Provider 1 has contractual relationships with the M2M Service
Providers 2, 3 and 4. The M2M Service Providers 1 and 2 have databases that contain
information on the devices located in the supermarkets of the supermarket chain.

The facility manager wants to make use of the devices within his supermarkets and
of the API "Facility management" in order to apply energy efficiency strategies to all
buildings on large scale and to compare buildings to detect leaks, adjust the heat and
the lighting according to forecast or predictive models, and compliant with applicable
regulations. Assessing the warehouses stocks enables to refill it in time and a centralized
fault detection ensures to take countermeasures.

2.4. Facility management of a supermarket chain 31

The M2M Service Provider 3 wants to access data from energy consuming/measuring
devices and/or respective databases of the M2M Service Providers 1 and 2 in order to
optimize his energy providing balance.

The M2M Service Provider 4 wants to access data from parking lot sensors, from
charging stations for electrical vehicles, data about the product range and warehouse
stocks of the M2M Service Providers 1 and 2 in order to provide relevant services to the
city inhabitants.

2.4.5 Triggers

The facility manager, the API "Facility management", the M2M Service Provider 3 or 4
(further on called "REQUESTER") sends an Advanced Semantic Discovery Query to the
M2M Service Provider 1 or 2 (further on called "REQUEST RECEIVER"). The request
contains information about the device to be discovered, e.g. a device type, a localization
and other filters criteria.

2.4.6 Normal Flow

Following, one example of a typical scenario is described:

1. Via a device (e.g. user terminal), which is connected to the API "Facility man-
agement", the facility manager initiates an Advanced Semantic Discovery Query
within the domain of the M2M Service Provider 1 to the smart meters of a specific
area of a special supermarket, which enquires information about its energy con-
sumption.

2. The API "Facility management" verifies the integrity of the Advanced Semantic Dis-
covery Query and sends a semantic discovery request to the MN-CSE of the super-
market.

3. The MN-CSE searches for the specific requested type of devices whether they are
connected t or not.

4. If the requested type of devices are connected to the MN-CSE, then it returns the
requested information of the devices to the M2M Application.

5. If the requested devices are not connected to the MN-CSE, then a negative acknowl-
edge is sent back to the M2M Application.

6. The API "Facility management" processes, if necessary, the received information
and forwards it to the requesting device of the facility manager.

2.4.7 Alternative Flow

Following, one example of an alternative scenario is described:

1. An M2M Application of the Service provider 4 (Smart Cities domain) initiates an
Advanced Semantic Discovery Query within the domain of M2M Service Providers
1 and 2 to find and identify the sensors of their parking lots, which enquires infor-
mation about free parking spaces.

2. The IN-CSE of the Service provider 1 verifies the integrity of the Advanced Seman-
tic Discovery Query and distributes it to the MN-CSEs of the supermarkets.

32 Chapter 2. Advanced Discovery and Query Use Cases And Requirements

3. The MN-CSEs search for the specific requested type of devices whether they are
connected to not.

4. If the requested type of devices are connected to the MN-CSE, then it returns the
requested information of the devices to the IN-CSE, which forwards it to the re-
questing Service Provider 4.

5. If the requested devices are not connected to the MN-CSE, then a negative ac-
knowledge is sent back to the IN-CSE, which forwards it to the requesting Service
Provider 4.

6. The requesting M2M Application of Service Provider 4 processes the data and pro-
vides them in an appropriate way to the users of the M2M Application (e.g. city
inhabitants).

2.4.8 Post-Conditions

The facility manager, the API "Facility management", the M2M Service Provider 3 or 4
can start to employ the devices based on the Advanced Semantic Discovery Query sent
to the M2M Service Provider 1 or 2.

2.4.9 High-Level illustration

FIGURE 2.5: Facility management of a supermarket chain.

2.4.10 Potential Requirements for the oneM2M system

The following potential requirements are additional to the ones already identified in
clauses 5 and 6.

1. Advanced Semantic Discovery shall support queries written with specific domain
ontologies, e.g. SAREF.

2. Advanced Semantic Discovery shall support semantic reasoning between the base-
line oneM2M ontology and the identified domain specific ontologies, e.g. SAREF.

2.5. Healthcare network and clinical knowledge administration 33

As example, if a query is looking for a oneM2M device observing Celsius temper-
ature, then the Advanced Semantic Discovery would potentially return a SAREF
temperature sensor.

3. Advanced Semantic Discovery shall provide capabilities to identify multiple set of
targets, and a multiplicity of searches (e.g. by setting parameters or filters).

4. The oneM2M Access Control Policy shall include discovery permissions to sup-
port Advanced Semantic Discovery. When an Advanced Semantic Discovery is
performed by the oneM2M System, it shall operate according to the indications
associated with the desired information.

It is also expected that:

• The solution would be based an evolution of the current oneM2M architecture and
functionality and would reuse existing standard ontology mechanisms e.g. consid-
ering the SAREF standard developed in ETSI TC SmartM2M (which is also aligned
with the W3C ontology approach). This intends to assure also a smooth interwork-
ing with relevant non-oneM2M solutions.

• The solution would be complete and will be a part of the oneM2M core functions,
to avoid the need of ad hoc applications designed to expand the oneM2M function-
ality with the risk of being implemented with different flavours.

2.5 Healthcare network and clinical knowledge administration

2.5.1 Description

This use case looks at the semantic discovery requirements through a networking envi-
ronment between people with disease (patients), the elderly, who want to live an inde-
pendent life while remaining in their homes, special invalid people with a high risk of
falling in their homes, doctors/care taking people, people practicing fitness exercises to
improve their health, and institutions/organizations, who manage a clinical knowledge
and information data basis or analyses of patient data.

On one side the number of the elderly is increasing permanently, on the other side,
the doctors’ anterooms are overcrowded. Therefore, telecare and telehealth systems get
more and more important. M2M applications for eHealth support the remote manage-
ment of patient illnesses by e.g. tracking blood sugar levels, controlling insulin dosage,
measuring blood pressure and heartbeat, record infrequent abnormal heart rhythms, etc.

M2M applications for eHealth can enable the elderly to live an independent life and
remain in their homes in cases when normally assistance would be needed. Remote mon-
itoring of patient vital signs (e.g. pulse, temperature, weight, and blood pressure) min-
imizes the number of required doctor office visits. Further caretaking measures ensure
that patients are taking their medications according to the required schedule and to track
the activity level of seniors (e.g. time spent in bed each day, amount of daily movement
in their homes) as a way of inferring their overall health and detecting changes that may
require a doctor’s or some other person’s attention.

Various studies have concluded that falls in the home are the most common cause
of injury among the elderly population, and one of the leading causes of morbidity and
mortality among this population. A so called ’long lie’ is a fall, in which the person re-
mains on the ground for 5 min or more before being able to get up without assistance, or
help arriving, which could detrimentally affect both the psychological as well as physical

34 Chapter 2. Advanced Discovery and Query Use Cases And Requirements

wellbeing of the individual. Automated fall detection systems are using worn fall de-
tectors, which trigger an alarm, when both the orientation and acceleration forces of the
person reach a pre-set threshold. In case of an emergency detection, an alarm will be sent
immediately to the emergency service centre, possibly together with pictures or videos,
which a camera being installed in the home has taken.

M2M applications for eHealth can be used to record health and fitness indicators such
as heart and breathing rates, energy consumption, fat burning rate, etc. during exercise
sessions, and to log the frequency and duration of workouts, the intensity of exercises,
running distances, etc. When this information is uploaded to a back-end server, it can
be used by the user’s physician as part of their health profile, and by the user’s personal
trainer to provide feedback to the user on the progress of their exercise program. It allows
adapting exercise programs or physiotherapy more precisely and more quickly to the
needs of the patient/user.

This use case assumes that there is an interoperability platform (oneM2M) that offers
a standard interface to monitor and control all the eHealth devices regardless of vendor.
It is supposed that professional knowledge generation bodies (e.g. colleges/universities)
get authorization to access the patient data. They can assist clinicians for the appropriate
diagnosis and method of treatment by providing clinical (textual) guidelines and recom-
mendations in order to reduce the risk of medical errors and to assist in decision-making
processes.

Assuring interoperability between all the various data producing, data storing, and
data processing components, semantic discovery and query mechanisms across and be-
tween sensors, devices, APIs and even IoT platforms are essential.

2.5.2 Source

• ETSI SR 003 680: "SmartM2M; Guidelines for Security, Privacy and Interoperability
in IoT System Definition; A Concrete Approach"

• ETSI TR 102 732: "Machine-to-Machine Communications (M2M); Use Cases of M2M
applications for eHealth"

• AIOTI Report: "IoT Relation and Impact on 5G, Release 3.0"

2.5.3 Actors

• M2M eHealth devices as e.g. wearable sensors, falling detectors, blood pressure
meter.

• Emergency supervisor.

• Doctors and caring people.

• Knowledge generation bodies.

• M2M Service providers.

• M2M Applications e.g. data analytics.

2.5.4 Pre-Conditions

M2M devices in the patients/the elderly homes and fitness locations have been installed
and registered to their corresponding M2M Service Provider. In this use case, the devices
are represented by devices that are ADN registered to MN-CSEs.

2.5. Healthcare network and clinical knowledge administration 35

The M2M Application Providers 1, 2 and 3 have relationships one with each other.
The M2M Service Providers 1 and 2 host information on the devices located in the pa-
tients/the elderly homes and fitness locations.

The doctors and caring people want to make use of the devices in the patients/the
elderly homes and fitness locations in order to check the health or behavioral data of the
patients as a way of inferring their overall health and detecting changes that may require
a doctor’s or some other person’s attention. The emergency supervisor is operating the
Intelligent Emergency Response System and manages alarms.

The M2M Service Provider 3 wants to access data from of the M2M Service Providers
1 and 2 in order to manage its knowledge data basis and to update analysis results, rec-
ommendations and guidelines.

2.5.5 Triggers

The doctor or caring person, the API "Clinicians patient data analysis" or the M2M Service
Provider 3 (further on called "REQUESTER") sends an Advanced Semantic Discovery
Query to the M2M Service Provider 1 or 2 (further on called "REQUEST RECEIVER").
The request contains information about the device to be discovered, e.g. a device type, a
localization and other filters criteria.

2.5.6 Normal Flow

Following, one example of a typical scenario is described:

1. Via a device (e.g. user terminal), which is connected to the API "Doctors or car-
ing people", the doctor or caring person initiates an Advanced Semantic Discovery
Query within the domain of the M2M Service Provider 1 to an eHealth device type
of a specific group of patients, which enquires information about the pulse, temper-
ature, weight or blood pressure.

2. The API "Doctors or caring people" verifies the integrity of the Advanced Semantic
Discovery Query and sends a semantic discovery request to the MN-CSE of the
specific group of patients.

3. The MN-CSE searches for the specific requested type of devices whether they are
connected or not.

4. If the requested type of devices are connected to the MN-CSE, then it returns the
requested information of the devices to the M2M Application.

5. If the requested devices are not connected to the MN-CSE, then a negative acknowl-
edge is sent back to the M2M Application.

6. The API "Doctors or caring people" processes, if necessary, the received information
and forwards it to the requesting device of the doctor or caring person.

2.5.7 Post-Condition

The REQUESTER (doctors or caring people, the API "Clinicians patient data analysis"
or the M2M Service Provider 3) can start to employ the devices based on the Advanced
Semantic Discovery Query sent to the M2M Service Provider 1 or 2.

36 Chapter 2. Advanced Discovery and Query Use Cases And Requirements

2.5.8 High-Level illustration

FIGURE 2.6: Healthcare network and clinical knowledge administration.

2.5.9 Potential Requirements for the oneM2M system

The following potential requirements are additional to the ones already identified in
clause 5, 6 and 7:

1. Advanced Semantic Discovery shall prioritize queries, e.g. to ensure a quick re-
sponse to urgent situations.

2. Advanced Semantic Discovery shall minimize complexity to avoid impacting neg-
atively the oneM2M system performance.

37

Chapter 3

Advanced Semantic Discovery

3.1 Introduction

The present clause is based on the ETSI Technical Report ETSI TR 103 714 (4 use cases
and 17 potential requirements concerning an Advanced Semantic Discovery related Work
Item on oneM2M).

The present clause describes the Advanced Semantic Discovery functionalities and its
impact in the oneM2M specification.

The clause gives a High-Level View of Advanced Semantic Discovery functionalities
and a Detailed Forecast of the impact on the oneM2M specification (e.g. new feature, new
resources, new parameters, modifications to the existing ones and on the oneM2M API).

Each clause of an Advanced Semantic Discovery functionality is composed by further
clauses of representing one Functional feature or an enhancement of oneM2M resources
or an API extension as necessary to achieve the Advanced Semantic Discovery solution.

It presents a description of the mechanism designed to support Advanced Semantic
Discovery and the main building blocks that will be part of the Advanced Semantic Dis-
covery. It may contain figures and examples. The information contained are the basis to
develop the detailed contribution to oneM2M in ETSI TR 103 717 and such as could be
written with precise references to the oneM2M elements and terminology.

3.2 Functional description of oneM2M Advanced Semantic Dis-
covery

3.2.1 Semantic Discovery Agreements

The rationale of SDA is rather simple: Advanced Semantic Discovery induces some traffic
flow: each CSE is considered as an Autonomous System in BGP. As an example, Figure
3.1, inspired by the oneM2M architecture (see oneM2M TS-0001 [i.5]), presents some CSEs
with their respective abstract relationships.

38 Chapter 3. Advanced Semantic Discovery

FIGURE 3.1: C2P and P2P and S2S CSE relationships.

CSE_A and CSE_B are in CUSTOMER-to-PROVIDER relationship when CSE_A takes
advantage of the Infrastructure and AEs registered in CSE_B, and they also share the
same Security Policies.

CSE_A and CSE_B are in a PEER-to-PEER relationship, when both CSEs mutually
take advantage of the AEs and the infrastructure of each other and share compatible
Security Policies.

CSE_A and CSE_B are in a SIBLING-to-SIBLING relationship, when both CSE belong
to the same Trusted Domain or appear as a result of mergers and acquisitions.

When a CSE receives an advanced discovery, from downstream (i.e. from one of its
customer) or from upstream (i.e. from one of it providers) or from side stream (e.g. from
one of those peers) it can choose to forward the query through some (but not all) its
customers, or peers or providers. The "strategy" to select the next hop heavily depends
on the SDA. The same happens when a CSE generates an advanced discovery query. A
simple rule of thumb, directly derived by BGP protocol is as follows: a semantic routing
not respecting the SDA will produce routing that generate e.g. a routing path of the
shape:

PROVIDER -> CUSTOMER -> PROVIDER
This path is unwelcome for the customer that pay the provider generating the query

but also the provider where the query is destinated: in other words: it "pay" the two cus-
tomers for an unwanted connectivity. As such, all no-valley routing paths are admitted
during the Advanced Semantic Discovery routing. No-valley routing are therefore of the
shape:

CUSTOMER->PEER->PEER->PROVIDER -> CUSTOMER
In other words, a valid path should have the following valid path pattern: zero or

more CUSTOMER-to-PROVIDER links, followed by zero or one PEER-to-PEER link,
followed by zero or more PROVIDER-to-CUSTOMER links. In addition, SIBLING-to-
SIBLING links can appear in any number anywhere in the path.

3.2.2 Semantic Non-Functional Issues

ASD Query with Priorities

AEs can generate Advanced Semantic Queries looking for some discovery TYPES and
adding special FILTER CRITERIA, such as TIME[SEC] or SPACE[METERS]. When a CSE

3.2. Functional description of oneM2M Advanced Semantic Discovery 39

receives this query it should put it "on the top of the stack" and route before the others
scheduled queries.

To give a simple intuition, the scheduler can be build (in C++ syntax) as a map like:

std::map<int,std::tuple<int,time_t,int>> schedulerMap;

where:

• Id is the unique local identifier of the query, generated sequentially by the CSE;

• GateIndex indicates the CSE-to-CSE SDA relationship where the query is coming
from, i.e. from a Customer CSE, or a Peer CSE or a Provider CSE or a Sibling CSE;

• StartTime denotes the (absolute) time the query was generated;

• MaxTime is the maximum time (in seconds) that the AE is supposed to wait before
receiving an answer;

• Direction can be one of the following: up forward, down forward, or side forward,
in compliance with the SDA and the no-valleys routing restrictions.

The scheduler will be in charge to rearrange the queue and reschedule queries that
has not yet received a response.

Performance of ASD

Every CSE should be able to self-measure the local performance of the Advanced Seman-
tic Discovery. The CSE will produce a LOG file listing the following information (list not
exhaustive):

• the absolute number of queries received, aggregated by:

– AE directly registered to the CSE;
– Provider CSEs;
– Customer CSEs;
– Sibling CSEs;
– Peers CSEs;
– FEA TURE-TYPES;

• the response time of each query forwarder to a neighbor CSE, aggregated by:

– Provider CSEs;
– Customer CSEs;
– Sibling CSEs;
– Peers CSEs;

• the success and failure rate of queries generated by all the AE directly registered in
the CSE itself;

• the success and failure rate of queries forwarded and aggregated by:

– Provider CSEs;
– Customer CSEs;
– Sibling CSEs;
– Peers CSEs.

This file should be sent to the first IN-CSE in the CSE registration chain on demand or
every N seconds or every M queries received or generated or forwarded.

40 Chapter 3. Advanced Semantic Discovery

Searching Multiple set of Targets

According to the requirement elicitation, the Advanced Semantic Discovery Query (ASDQ)
should be implemented according to the SPARQL 1.1 protocol, and the Advanced Se-
mantic Discovery Query Language (ASDQL) should be implemented according to the
SPARQL 1.1 Query Language. Following both SPARQL standards, the Advanced Se-
mantic Discovery will be able of searching over multiple set of targets.

3.2.3 Semantic Discovery Query and Query Language

According to the requirement elicitation, the Advanced Semantic Discovery Query (ASDQ)
needs to be implemented using the well-known and established W3C SPARQL proto-
col. Additionally, as for the Advanced Semantic Discovery Query Language the W3C
SPARQL query language can be adopted. Both standards meet the requirements listed in
the aforementioned clauses; nevertheless the SP ARQL protocol may be adjusted to meet
the potential requirement number 4 for the oneM2M system.

3.2.4 Semantic Discovery Routing and Resolution Mechanism

A "trace" of the Semantic Discovery Routing (SDR) generated in Figure 3.2 (red lines rep-
resents request and reply Advanced Semantic routing paths from the AE that originates
the complex query till the searched AE). The other examples in the same clause can be
easily traced following the same logic. This trace is inspired to a semantic discovery
routing as described in [i.24] and [i.25] and proceeds as follows:

• X sends an Advanced Semantic Discovery Query (ASDQ1) to P;

• P verifies the integrity of ASDQ1 and forwards the ASDQ1 to A that starts the
Semantic Discovery Routing Protocol (SDPR) into the network of CSE;

• ASDQ1 is resolved using the Semantic Query Resolution System (SQRS) locally in
A into four subqueries, namely ASDQ2, ASDQ3, ASDQ4, and ASDQ5, where:

ASDQ2 = ?T2|FC2
ASDQ3 = ?T3|FC3
ASDQ4 = ?T4|FC4
ASDQ5 = ?T5|FC5

1. A starts lookups in its local database, trying to solve ASDQ 2,3,4,5 but fails;

2. A down-forwards ASDQ1 to Q via an mcc pointer;

3. Q solve the subquery ASDQ2 ?T2|FC2 in its local database returning Y to A;

4. A sends back Y to P and X;

5. A up-forwards ASDQ3 and ASDQ4 and ASDQ5 to B via an mcc’ pointer;

6. B solves the ASDQ3 ?T3|FC3 in its local database returning Z to A (and back to P
and X);

7. B side-forwards ASDQ4 and ASDQ5 to C;

8. C solves the ASDQ4 ?T4|FC2 in its local database returning V to B (and back to A,
P and X);

3.2. Functional description of oneM2M Advanced Semantic Discovery 41

9. C down-forwards ASDQ5 to D;

10. D solves the ASDQ5 ?T5|FC5 in its local database returning W to C (and back to B,
A, P and X).

NOTE 1: When A up-forwards to B, it follows that A respect the CUSTOMER-to-
PROVIDER SDA with B (e.g. A respects the SDA directives of B). When B side-forwards
to C, it follows that B and C respect the PEER- to-PEER SDA directives. When C down-
forwards to D, it follows that D respects the PROVIDER-to- CUSTOMER SDA with C
(e.g. D respects the SDA directives of C).

The moral is: B and C should be "acknowledged" for their "routing job".

FIGURE 3.2: Advanced Semantic Discovery Routing Flow.

In Figure 3.3, an alternative flow is represented. In this alternative topology the
CUSTOMER-to-PROVIDER SDA are reversed.

42 Chapter 3. Advanced Semantic Discovery

FIGURE 3.3: Alternative Advanced Semantic Discovery Routing Flow.

A possible "trace" of the SDRM, proceeds as in clause 5.5 of ETSI TR 103 714, excepting
for the following caveat.

Caveat. When A down-forwards to B, it expects that B should respect the PROVIDER-
to-CUSTOMER SDA with A (e.g. B should acknowledge A. This is not intuitive since B
does a favour to A and acknowledge A). When B side- forwards to C, it expects that B and
C have a common SDA agreement and, as such, they do not acknowledge it each other.
When C up-forwards to D, it expects that C and D have a common SDA agreement (e.g.
C should acknowledge D. This is not intuitive since C do a favor to D and acknowledges
D).

The moral is: B and C do a job for their providers and, moreover, they have to ac-
knowledge for their "routing job".

Alternative traces are possible but they should not be incentivized by the SDA in
practice. Because of the distributed nature of the SDR, it is beneficial to try to incentivize
routing respecting the SDA, and, as such, avoid routing not respecting the SDA. Those
situations are not new in Internet and are referred as VALLEY ROUTING by Gao [6].
"Good Advanced Semantic Routing" in oneM2M should guarantee that routing is always
"valley preserving" (or "no valley").

Algorithmic description of the routing
The CSEs support a distributed Semantic Discovery Routing (SDR) that listens for

Advanced Semantic Discovery Query (ASDQ) and:

1. It extracts the Advanced Semantic Discovery Query (ASDQ).

2. It reduces the Advanced Semantic Discovery Query (ASDQ) into a set of #m Seman-
tic Discovery Queries (SDQ) by means of the Semantic Query Resolution System
(SQRS).

3. It solve as much Semantic Discovery Queries (SDQ) as it can, using resources reg-
istered in the CURRENT CSE, say #n.

4. It forwards the remaining #(m-n) Semantic Discovery Queries (SDQ) to α-CSE Cus-
tomer (in "downstream"), taken from the CURRENT Semantic Routing Table (SRT),
resolving say #p.

3.2. Functional description of oneM2M Advanced Semantic Discovery 43

5. It forwards the remaining #(m-n-p) Semantic Discovery Queries (SDQ) to β-CSE
PEER (in "side stream"), taken from the CURRENT Semantic Routing Table (SRT),
resolving say #q.

6. It forwards the remaining #(m-n-p-q) Semantic Discovery Queries (SDQ) to γ-CSE
PROVIDERS (in "upstream"), taken from the CURRENT Semantic Routing Table
(SRT), resolving say #r ≤ #(m-n-p-q).

7. It reconstructs in a reverse order the partial results, sending back to the originator
of the Advanced Semantic Discovery Query (ASDQ).

Note2: α, β, and γ are protocol specific parameters that can be locally modified in
each CSE.

Note3: if #r=#(m-n-p-q), then the query is exhaustive, and this is in contrast with
non-exhaustive routing. Generally, two kinds of routing are discriminated, namely: "Ex-
haustive". As example, in the case that a semantic resource exists somewhere in the CSEs
network, then the system will explore the entire distributed network until it will found
it. "Non-exhaustive". As example, even in the case a semantic resource that exists some-
where in the CSEs network, then the system will explore part of the distributed network
until it will be stopped.

3.2.5 Semantic Routing Tables

A simplified example of a local resource database hosted in a CSE can be represented as
follows.

FIGURE 3.4: Semantic Routing Table.

Each CSE has a SDA Routing Table listing (aka, PHYSICAL Routing Table) for each
CSE the number of CSE physically connected with their corresponding SDA, see Figure
3.5 below.

FIGURE 3.5: SDA-Table.

An alternative example of routing table hosted in a CSE is the following:

44 Chapter 3. Advanced Semantic Discovery

FIGURE 3.6: Routing table hosted in a CSE.

The previous Semantic Routing Table is implemented as an RDF document using
an example ontology, i.e. ads, to describe its concepts. This routing table contains two
entries, one for a peer CSE (http://cse1.com/002) and another one for a customer CSE
(http://cse1.com/003). For those entries the table contains the response ratio of each of
those CSEs, and also, for each, a summary of the resource description resisted in those
target CSEs.

Considering that in either oneM2M and in the Advanced Semantic Discovery the
query language required is SPARQL, having RDF summaries of the resource descriptions
stored in other CSEs will improve the routing. On the one hand, since the summaries
are RDF and the query language is SPARQL, choosing relevant CSEs depending on the
terms specified in the query and relying on the terms of the summaries will be the same
as solving partially the SP ARQL query over them. On the other hand, regardless the
implementation of the semantic routing table they also store some attributes referring to
the topology of the network (like if a CSE is a customer or a peer), or features like the
response ratio, to provide routing capabilities considering also these physical features.

3.2.6 Semantic Routing Tables Upgrade and Propagation

Each time a resource register inside a CSE, this should send a SEMANTIC UPGRADE
message to all neighbors CSEs. As example, when y news AE-THERMOMETER with
URI_1 ... URI_y register on that CSE, the Semantic Routing Table will be upgraded (in
red the upgrades) as in Figure 3.7.

3.2. Functional description of oneM2M Advanced Semantic Discovery 45

FIGURE 3.7: Upgrading a Semantic Routing Table with y new AE-
THERMOMETERS.

And the following NOTIFICATION messages will be sent to all the adjacent CSEs:

NOTIFY CSEcust1 WITH #+y THERMOMETER
NOTIFY CSEcust2 WITH #+y THERMOMETER
NOTIFY CSEpeer WITH #+y THERMOMETER
NOTIFY CSEprov WITH #+y THERMOMETER

When an adjacent CSE will receive the NOTIFY message, its routing table will be
modified shown in Figure 3.8 (in yellow the upgrades).

FIGURE 3.8: Upgrading the adjacent SRT CSEs with the new y AE-
THERMOMETERS.

Analogously, when a resource unregisters on that CSE, a corresponding notify mes-
sage:

NOTIFY URI{cust1,cust2,peer,prov} WITH #-1 THERMOMETER

Will be sent to all adjacent CSEs.

3.2.7 Semantic Recommendation System

Semantic Recommendation system (SR), a mechanism is meant to be embedded in each
CSE, that, upon a reception of an Advanced Semantic Query from a registered AE or from
another CSE, should be able to:

46 Chapter 3. Advanced Semantic Discovery

1. read the SDA-Table and the SRT;

2. take the best decision to found the next hops for the Advanced Semantic Query;

3. annotate all the CSE belonging to the SDA-Table that participate pro-actively to
successful routing.

The solution proposed to implement is inspired to the Kademlia P2P overlay network.

FIGURE 3.9: SRT with Recommendation System.

In a nutshell: the new column CSE RECOMMENDED (aka BUCKETS[TYPE]) is
added to the SRT. For each TYPE SRT[TYPE][CSE-RECOMMENDED] is set as an or-
dered LIST[100][CSE]. As in Kademlia, those lists are called BUCKETS and in oneM2M
BUCKETS[TYPE]. At the beginning the CSE RECOMMENDED column is empty for all
TYPE. As soon as the Advanced Semantic Routing proceeds the list of 100-best CSEs start
to be filled.

A sketch of the algorithm to enter the BUCKET[TYPE] is the following:

1. IF the CSE answers successfully to an Advances Semantic Query for that TYPE and
already is in the BUCKET[TYPE], then move it to the tail of the list;

2. OTHERWISE:

(a) IF the BUCKET[TYPE] has fewer than 100 entries, then inserts the news CSE
at the tail of the list;

3. OTHERWISE:

(a) ping the least-recently seen CSE;

(b) IF the least-recently seen CSE fails to respond, THEN it is evicted from BUCK-
ETS[TYPE] and the new CSE is inserted at the tail;

4. OTHERWISE it is moved to the tail of the list, and the new CSE is discarded.

NOTE 1: BUCKETS[TYPE] will generally be kept constantly fresh, due to traffic of
requests traveling through nodes.

NOTE2: When there is no traffic: each CSE picks a random CSE in one of their K
BUCKETS[TYPE] and performs an Advanced Semantic Discovery node search for that
TYPE.

47

Chapter 4

Implementing ASD and their
Components in the OMNeT++
Discrete Network Event Simulation
Tool

4.1 OMNeT++ discrete network event simulator

OMNeT++ is an object-oriented discrete event network simulation framework. It pro-
vides a user-friendly interface and script/procedural and OO languages for modeling
and simulating network structure and behaviors. OMNeT++ is strongly considered as
a component-oriented approach which promotes structured and reusable models, which
communicate with message passing; using the simulation class library.

The modeling and simulation rely on different files and formats:

• Network infrastructure can be described either in the OMNeT++ graphical editor or
with the NEtwork Description (NED) language. NED language allows the user to
make or reuse some simple modules and assemble them into compound modules.

• Behavior of modules are defined in a C++ code.

• Initialization file where the parameters and the scenarios for the simulation are set

The modeling elements in OMNeT++ are simple and compound modules that can
declare input, output, or bidirectional gates. Gates interface the modules: on the gates,
messages are sent out through output gates and arrive through input gates. OMNeT++
allows to reuse the predefined messages templates or the definition of new ones with spe-
cific payload. Input and output gates of two different modules are linked with channels.
Channels are created either in simple modules or module hierarchy: within a compound
module, corresponding gates of two submodules, or a gate of one submodule and a gate
of the compound module can be connected. The NED language has several features
which let it scale well to large projects.

The behaviors of modules are defined in a source file in C++. Modules are intercon-
nected through channels that originate and end on gates. OMNeT++ proposes a large set
of libraries that cover the main protocols of the internet with a large set of modules that
can be reused. As in the current experimentation, it is also possible to design a specific
protocol and to that aim, OMNeT++ proposes efficient libraries for managing the clas-
sical data structures used in the Net (routing table, data of protocols). The definition of
new messages with specific payload are set in an .msg file. The message is linked with
the source file and then sent between the modules using gates.

48
Chapter 4. Implementing ASD and their Components in the OMNeT++ Discrete

Network Event Simulation Tool

In OMNeT++, simulation models are parameterized and configured for execution us-
ing configuration files called INI files. Such a file is linked to the network defined in the
NED file and allows to initialize the parameters of different modules and the network
topology. OMNeT++ provides a source file format and also a configuration form to spec-
ify the parameters and network. The INI File Editor is a very useful feature because it
contains the detailed parameters of the simulation model.

• The logic of simulation modules is implemented in the C++ source files. Every
module declared in the NED file has its behavior encoded in a C++ source file.
There are two specific methods assigned to a module: initialize and handleMessage
where the logic should be programmed. The simulator first executes an initializa-
tion phase where the initialize method of each instance of modules is run. A phase
follows, in which the handleMessage methods of each module are run in sequence.
This method checks the presence of message at the gates. Depending on this status,
the simulator either runs the sequential code of the module or waits for the next
simulation step.

At a fine grain, various policies for simulation exist, which can be chosen: event-by-
event, normal, fast, express, run until (a scheduled event, any event in a module, or given
simulation time).

Once the simulation has been run, the result can be analyzed. The Analysis file (.ANF
extension), a trace of simulation, has been stored either in a vector or scalar form depend-
ing on the format defined in the NED and initialization file. The statistical methods can
be applied on the results to extract the relevant information and to plot the final result.

Concerning the technological aspects the simulation can be run from:

• Command line (Cmdenv): adequate for big and batch simulation, it does not pro-
vide any graphical or visual view of the simulation.

• Tkenv: a graphical user interface used in the development stage of the simulation
and also for presentations. Tkenv allows to debug and trace the simulation at any
point of the execution and to provide a batch simulation.

• Qtenv: supports interactive simulation results, animation, inspection, tracing and
debugging. In addition to model development and verification, it allows a detailed
picture of the simulation state and it logs its execution.

4.2 oneM2M Components

4.2.1 oneM2M components to be simulated

This clause provides an overview of the components involved in the simulator of the Ad-
vanced Semantic Resource Discovery (ASRD). Some of them are standardized oneM2M
components, some others are additional elements needed as additional resources or data
structures for an ASRD protocol.

• Application Entity (AE): Application Entities are closely related to the end-user
part; they can be sensors or actuators or they can be associated to some mobile
agents controlling it, like, e.g. power metering application, or a controlling appli-
cation. They constitute the end leaf of a tree made of several CSEs interconnected.
AEs are the end resources of the oneM2M infrastructure. An AE can be registered or
simply announced in one or multiple CSEs. This entity is the starting point for the

4.3. Semantic Discovery Agreements between CSEs 49

resource discovery as they originate the query. An AE is referenced with a unique
identifier called URI.

• Common Service Entity (CSE): in a oneM2M architecture, a CSE manages multiple
services such as the registration, the notification of AEs and the inter-networking
services for the connexion between CSEs. A CSE plays the role of a gateway for
storing resources. Each CSE has a local resource database containing information
on the registered AEs and CSEs. It also plays a role of a gateway for forwarding
certain queries such as those for the resource discovery. IN-CSE and MN-CSE have
not been distinguished in the simulation. More or less both play the same role. A
CSE is referenced with a unique identifier called URI.

4.3 Semantic Discovery Agreements between CSEs

4.3.1 Introducing new oneM2M roles for CSE and Agreements between CSEs

The Semantic Discovery Agreement (SDA) aims at adding a semantic registration infor-
mation for the cooperation between CSEs. Three kinds of abstract relationships between
CSEs need to be settled: CUSTOMER-to-PROVIDER (C2P), PEER-to-PEER (P2P) and
SIBLING-to-SIBLING (S2S) Those relations are useful to set up Routing Paths Weight in-
tra and interTrusted Domains and Service Providers (SP) and to define valid and invalid
Advanced Semantic Discovery routing paths.

Intuitively, a Path Weight corresponds to a kind of "cost of communication", related
to bandwidth, or any other efficiency parameters or even property of the link. This cost
is also related to the direction of the communication and, therefore, can be either positive
or negative. Thanks to the path weight, it could be possible to establish a local and global
cost of communication for a given query.

The "strategy" to select the next hop heavily depends on the SDA. A simple rule of
thumb, directly derived by the BGP protocol IETF RFC 4271, is as follows: a semantic
routing not respecting the SDA could generate e.g. a routing path of the shape:

PROVIDER -> CUSTOMER -> PROVIDER

The associated path weight is negative. In BGP [i.15], this routing path is called a
VALLEY ROUTING by Gao [6] and it is usually unwelcome for the customer that "pays"
the provider generating the query but also the provider where the query is destined, in
other words: it "pays" the two CSEs for an unwanted connectivity (a service that is given
to the two providers instead of being payed because offering that connectivity).

Following the same approach, only no-valley routing paths are admitted in Advanced
Semantic Discovery routing (which is equivalent to say that valley-routing are forbid-
den). Therefore, a valid path should have the following pattern: "zero or more CUSTOMER-
to-PROVIDER links, followed by zero or one PEER-to-PEER link, followed by zero or
more PROVIDER-to-CUSTOMER links. In addition, SIBLING-to-SIBLING links can ap-
pear in any number anywhere in the path".

4.3.2 OMNeT++ implementation of CSEs semantic discovery agreements

The semantic discovery agreements are implemented by defining roles for gates. The
interconnection of gates of different types characterizes the relationships between CSEs.

50
Chapter 4. Implementing ASD and their Components in the OMNeT++ Discrete

Network Event Simulation Tool

FIGURE 4.1: Gates SDA definition in OMNeT++

Figure 4.1 shows the definition of gates in a CSE module. CSE module may have
potentially five different gates that interface the module with others CSE. One gate can
be used to connect with AE.

The valley-free property of the modules is ensured by using the gates definition and
properties. The weight of the associated path is managed by applying a unique and
constant cost (0, 1 or -1) on paths in the source file of the CSE. The SDA table shows the
Semantic Discovery Agreements between the CSEs. In the OMNeT++ implementation
those CSEs discovery agreements can be inferred by using the gates keyword.

4.4 Semantic Routing Table (SRT)

4.4.1 oneM2M semantic routing table embedded in every CSE

The Semantic Routing Table (SRT) is a data structure, embedded in each CSE, that con-
tains information to route an Advanced Semantic Query received by a CSE and routed to
another CSE. The data structure should contain at least the following information:

1. Semantic Discovery Agreement (SDA)-table listing the URI of all the CSEs con-
nected and the associated relationship (Customer-2-Provider, Peer-2-Peer and Sibling-
2-Sibling);

2. FEATURE_TYPE-table listing the URI of all AEs, having the FEATURE_TYPE and
directly registered (or announced) in the current CSE;

3. AE_NUMEROSITY-table: for each FEATURE_TYPE, the SRT should indicate the
"number" of AEs of that type grouped by the SDA relationships.

FIGURE 4.2: Example of Semantic Routing Table.

Figure 4.2 shows a simple routing table, as implemented in OMNeT++. The SDA
relationships are implemented in the routing table. The URI is the ID of the directly
connected AE of the type. The "#" symbol in the tables means the number of the type of

4.5. Updating Semantic Routing Tables 51

resources connected via Customer, Peer, Sibling and Provider. The CSEs will send notify
messages to their first neighbors to inform them about new added resources. The node
has to send a notification message that a new resource of this type is added in the local
database. The protocol provides the possibility to send notification messages at Level
Array [customer, sibling, peer, provider]. Setting the Level Array at [1,1,1,1] means, that
notifications have to be sent to all first neighbors; a Level Array of [1,1,1,2] means the
notify will be forwarded to first neighbors at Customer and Peer and 2 levels towards
Provider, and so on.

The Level Array is used to improve the efficiency of the routing and the view of
network resources. Providers will improve visibility and availability of resources. Peers
and Siblings will improve inter domain routing. Customers are helpful in routing in
multiple providers.

Semantic Routing Tables are implemented in a C++ source file associated to a CSE
module. The implementation relies on data structures called map which are associative
containers that store elements in a mapped fashion with a unique key value to identify
elements (the mapped value). Maps come with basic and efficient functions to write and
search data.

In the case of routing tables, the map key is the feature type and the value is a structure
named Routing Entry:

std::map<std::string feature_type, RoutingEntry> SemanticRoutingTable

The Routing Entry structure, given in Figure 4.3, composes itself with five maps. The
routing entries contain, for each feature type, the URI list of customers, peers, siblings,
provider and local database and the number of the resources of that feature type.

The key is an URI for these maps and the value is the number of the resources. For
example (1,30) means that there are 30 resources with an URI equal to 1 of that feature
type. The Routing Entry structure is shown below:

FIGURE 4.3: Semantic Routing Table data structure.

Data structure in Figure 4.3 is updated dynamically. Each time a CSE receives the
registration message from the AE, it registers this AE in the local database and notifies
neighbours about it. On reception of a notify message, the CSE updates its routing table
accordingly. The sending of notify and registration messages helps keeping the routing
table updated.

4.5 Updating Semantic Routing Tables

4.5.1 oneM2M registration and ASD notification

In oneM2M an AE registers to a CSE. The resource type or FEATURE_TYPE is stored in
the local database. Every time a resource is added or deleted, the AE informs the CSE by
sending a registration message which allow the CSE to keep its local database updated.

52
Chapter 4. Implementing ASD and their Components in the OMNeT++ Discrete

Network Event Simulation Tool

The ASD protocol uses the notification service, presented on Figure 4.4. A CSE sends
a notification message to inform the neighbor CSEs about the new added/modified re-
sources. The notify message will help the CSEs to keep their Semantic Routing Tables
updated. Whenever the CSE registers some resource it will inform the neighbors about it
and also in case when the resource is unregistered or deleted.

The notify message contains a condensed information defining the feature type and
the number variation, e.g. :

FIGURE 4.4: ASD notification message.

The receiving CSE will modify its routing table accordingly. For example:

NOTIFY CSEcust WITH #+1 thermometer

After receiving this notification message from the CSEprovider, CSEcust will update its
table accordingly.

Analogously, when a resource unregisters on that CSE, a corresponding notify mes-
sage will be sent to all neighbor CSEs:

NOTIFY URI {cust1,cust2,peer,sibling,prov} WITH #-1 thermometer

4.5.2 OMNeT++ implementation of registration and ASD notification

In OMNeT++, the notification and registration are implemented as messages. Registra-
tion messages are sent by all AEs to the CSE and can be sent by CSEs, as shown in Figure
4.5.

FIGURE 4.5: Registration of AE.

4.6. Semantic Discovery Routing (SDR) 53

During the registration the URI and the feature_type are set. Those information is the
minimal one, needed to proceed with an ASD further. The ASD notification is a service
called by a CSE to notify any modification of the routing table to the other CSEs.

Notify the neighbors is implemented as in Figure |refNMG.

FIGURE 4.6: Notification message generation.

4.6 Semantic Discovery Routing (SDR)

4.6.1 oneM2M unicast routing: efficiently forwards a query to the next CSE
hop by inspecting the routing table

The Semantic Discovery Routing Mechanism (SDRM) is a software entity embedded in
each CSE, that listens for an Advanced Semantic Discovery Query (ASDQ) and:

1. Reduces and fragments an Advanced Semantic Discovery Query compound query
into unitary queries.

2. Solves and forwards the queries in a distributed way.

54
Chapter 4. Implementing ASD and their Components in the OMNeT++ Discrete

Network Event Simulation Tool

3. Reconstructs the partial results, sending back to the originator of the Advanced
Semantic Discovery Query (ASDQ).

4. In case of Advanced Semantic Discovery Routing, the next hop for query is cho-
sen based on the contents of Semantic Routing Table (SRT). The records are in-
spected and searched in the map with the FEATURE_TYPE key. Then, columns of
the record are inspected by the relationship type between CSEs - Customer, Sibling,
Peer, Provider.

The order of prevalence is chosen by using the following list:

1. Customer

2. Sibling

3. Peer

4. Provider

This order has been pre-chosen based on potential weight of communication and type
of the relationship between CSEs. Similarly to the BGP protocol [i.15], valley-free routing
has to be achieved programmatically. In other words, if record for sought resource is
present in Customer column, the Semantic Routing Table (SRT) lookup will be stopped,
and next hop will be deduced from the Customer column.

4.6.2 oneM2M multicast routing: efficiently chooses and forwards a query to
many CSE by inspecting the routing table

Multicast routing

Multicast strategy is used when a Semantic Routing Table (SRT) does not have any indi-
cation of records that satisfy the query. Multicast routing is parameterized with 4 values:

Alpha: maximal number of Customers to reroute query to;
Beta: maximal number of Providers to reroute query to;
Gamma: maximal number of Siblings to reroute query to;
Delta: maximal number of Peers to reroute query to.
These four independent parameters are used to optimize the routing. These parame-

ters are based on the current topology, the relationships between CSEs and the network
size. Multicast routing still complies with the valley-free routing.

The multicast can unfortunately generate loops during the forwarding. In the current
case these loops are detected and the routing is organized in a loop-free manner. Loop-
free routing is implemented to ensure the most efficient way of querying the system, e.g.
to avoid same node processing query more than once. Loop-free property is achieved
using two distinct approaches:

• Buffer of queries processed, e.g., redirected, by the CSE;

• Query path memorization.

4.6.3 OMNeT++ implementation of unicast and multicast Semantic Discov-
ery Routing

The semantic routing determines the best match for the query based on records in the
semantic routing table. It will return the best fit for the first match, with respect to link
hierarchy.

4.6. Semantic Discovery Routing (SDR) 55

Figure 4.7 presents some OMNeT++ code of the routing. First, the routing lookup
in the local database. If no resources can be found, the code looks in the routing table
data structure to check for the resource, starting with the customers, then the Siblings,
the Peers and finally the Providers.

FIGURE 4.7: Checking the routing table for solving the query.

If no resources are found and the resulting vector is empty, it means that SRT does
not have any records satisfying the query. In that case, a multicast routing is launched.
Figure 4.8 shows the code for multicasting the query.

56
Chapter 4. Implementing ASD and their Components in the OMNeT++ Discrete

Network Event Simulation Tool

FIGURE 4.8: Propagating the query on multicast for solving the query.

Processed queries buffer implementation in OMNeT++. The so called queryKey holds
pair - URI of the sender of the query and sequential query ID. These two values are
sufficient to uniquely identify the query. The processed query buffer is represented via
triplets - URI of query sender, queryID, TTL (end of life for the query).

This approach allows for so-called Loop-Free Routing. Having a local buffer of pro-
cessed queries allows to drop already seen queries, thus drastically reducing request
flood caused by single query. The desired effect is achieved by numbering queries sent by
nodes in increasing manner. The (URI, queryID) pair allows to uniquely identify a query
sent by the node. A processed query buffer will be useful for buffering results and for

4.7. Semantic Recommendation System (SRS) 57

performing batch updates in the network - regarding notification about resource registra-
tion or cancellation, Simulation implementation imposes certain limitations, which may
be absent in real world system. Nonetheless, this approach can be adopted in order to
achieve the same effect, reducing overhead and relieving load imposed on the network.
Loop-Free Routing is an essential part of the proposed Advanced Semantic Routing im-
plementation:

typedef std::pair<URI, int> queryKey;
std::map<queryKey, int64_t> processedQueries;

Checking for query in local buffer is showed in Figure 4.9.

FIGURE 4.9: Sending the query to the appropriate CSE.

4.7 Semantic Recommendation System (SRS)

4.7.1 oneM2M Semantic Recommendation System embedded in each CSE

The Semantic Recommendation System (SRS) is a piece of software embedded in each
CSE. The SRS grants an access to the SRT and can be seen as an observer of each query
and a help to the CSE to set up the next hop to be taken. Intuitively, when a CSE receives
an Advanced Semantic Query, the SRS will look up the SDA-table and Semantic Routing
Table and it will take the best possible decision to find the next hop for the query. The
process can be succinctly descripted in points as follows:

1. read the SRT (and the SDA-Table encoded in the SRT of the OMNeT++ implemen-
tation);

2. take the best decision to choose the next hop(s) for the Advanced Semantic Query;

3. annotate all the CSEs belonging to the SRT that participate pro-actively to successful
routing.

58
Chapter 4. Implementing ASD and their Components in the OMNeT++ Discrete

Network Event Simulation Tool

The SRS will be empty, when the simulation starts and will be updated upon reception
of each Semantic Query reply. The approach and the behavior of a SRS is inspired from
the Kademlia P2P overlay network ETSI

One column in the SRT is added, namely CSE_BUCKET which will have the number
of the CSEs which successfully participated in the routing before as shown in Figure 4.10
below.

For each FEATURE_TYPE, SRT[FEATURE_TYPE][CSE-RECOMMENDED] is set as
an ordered LIST[100][CSE]. As in Kademlia, those lists are called BUCKETS and in oneM2M
CSE_BUCKETS[FEATURE_TYPE].

The algorithm can be sketched as follows (see ETSI TR 103 715 [i.2]):

1. IF the CSE answers successfully to an Advances Semantic Query for that TYPE and
already is in the:

• BUCKET[FEATURE_TYPE], THEN move it to the tail of the list;

2. OTHERWISE:

• IF the BUCKET[FEATURE_TYPE] has fewer than 100 entries, THEN inserts
the news CSE at the tail of the list;

3. OTHERWISE:

• ping the least-recently seen CSE;

• IF the least-recently seen CSE fails to respond, THEN it is evicted from BUCK-
ETS[FEATURE_TYPE] and the new CSE is inserted at the tail;

4. OTHERWISE: it is moved to the tail of the list, and the new CSE is discarded.

FIGURE 4.10: Semantic Routing Table with the CSE_BUCKETS.

59

Chapter 5

ASDQ Performance Evaluation on
OMNeT++

In this chapter the aim is to discuss about the performance evaluation of the Advanced
Semantic Discovery and Query (ASDQ). First, the terminology will be discussed to be
clarified what are the meaning of abbreviations which are used in simulation, and then,
some explanation will be given about how simulation works alongside the final results
related to the ASDQ.

5.1 Terminology

The list of definitions for some abbreviations are as follow:
Application Entity (AE): An IoT device in the network, it can be user or resource

which is directly connected to the CSE.
Common Service Entity (CSE): An entity in the network that has specific functions

and serving the AEs and CSEs which are connected to it. Routing the query and saving
the AEs information are the examples of these functions.

Notification Depth (ND): When the AE is connecting to the network, first, it registers
itself in the local CSE and then the CSE notifies the other CSEs which are its neighbors.
Notification depth equal to 1 means that CSE only notifies about its AEs just to the con-
nected neighbors as Customer or Provider or Peer or Sibling. Notification depth equal to
2, means, CSE notifies its resources to the neighbors of the neighbors as well.

Time to Live (ttl): Number of hops that the query is allowed to investigate the net-
work.

Success Rate [%]: Percentage that defines the quantity of the resources which are
discovered, out of total number of resources in the network.

Alpha (α): Downstream multicast parameter, provider to customer (p2c). The number
of customer CSEs which are in possession of resources. For instance, if the alpha is 1, it
means, the CSE can route the query just to one of its customer CSEs which have the
highest number of resources. CSEs in routing table are sorted based on the number of
resources they have, in decreasing manner.

Beta (β): Sidestream multicast parameter, sibling to sibling (s2s). The number of sib-
ling CSEs which are in possession of resources. For instance, if the beta is 1, it means, the
CSE can route the query just to one of its sibling CSEs which have the highest number of
resources. CSEs in routing table are sorted based on the number of resources they have,
in decreasing manner.

Gamma (γ): Upstream mlticast parameter, customer to provider (c2p). The number
of provider CSEs which are in possession of resources. For instance, if the gamma is 1,
it means, the CSE can route the query just to one of its provider CSEs which have the

60 Chapter 5. ASDQ Performance Evaluation on OMNeT++

highest number of resources. CSEs are sorted based on the number of resources they
have, in decreasing manner.

Delta (δ): Sidestream multicast parameter, peer to peer (p2p). The number of peer
CSEs which are in possession of resources. For instance, if the delta is 1, it means, the
CSE can route the query just to one of its peer CSEs which have the highest number of
resources. CSEs are sorted based on the number of resources they have, in decreasing
manner.

BGP: Border Gate Protocol.
Objective Modular Network Testbed in C++ (OMNeT++): It is a Discrete Event

Simulator for Networks.

5.2 Simulation and Results

In this section, the procedure of the ASDQ during the simulation on the OMNeT++ plat-
form will be explained and the graphs will be presented as results/proof of the simu-
lation. Figure 5.7 shows a sample network with small amount of entities in order to be
visible in OMNeT++

5.2.1 Simulation procedure in brief

In reality, all of the IoT devices or AEs register themselves in the CSEs whenever they
connect to the network regardless of either the queries are running in network or they
are going to start after registration. In our simulation we took the second scenario as the
starting point of the simulation, and therefore, the query starts after registering all the
AEs or resources in the network. During the query process, registering or unregistering
the AEs or resources is possible. In order to explain the results which are taken from the
simulation, we start to explain from the beginning, that is, registering the AEs in CSEs.

As it is mentioned before, first, AEs register themselves to the CSEs which are con-
nected to them, after registering, every CSE notifies its resources based on Notification
Depth to the neighbors which are as customers, providers, siblings, and peers. After all
of these processes the query starts from the random AE or AEs in the network as an user
requesting for resources, this request can be asking for either all resources in the network
(exhaustive) or defined number of resources in the network(non-exhaustive). In our case,
since the aim is to show the strength of the protocol, therefore, all results are based on
exhaustive discovery. By starting the discovery and query, AE asks its parent CSE for
the resources with defined type, then, the parent CSE reroutes the query to its neighbors
based on α, β, γ, and δ parameters.

The ASDQ protocol is the BGP-Aware protocol in which the mentioned parameters (
α, β, γ, δ) are adjusting the ASDQ protocol to be compatible with the No-Valley routing
based on BGP.

5.2.2 An example

For instance, in figure 5.1 notification depth (ND) is equal to 1 and there are four different
curves with different parameters in percentage. The violet curve has just [α] parameter
equal to 10%. It means every CSE routes the query just to 10% of its customer CSEs which
are its neighbors.

5.3. Conclusion 61

 0.1

 1

 10

 100

 1 2 3 4 5 6 7 8 9 10

notification depth=1

su
cc

e
ss

 r
a
te

 [
%

]
in

 l
o
g
 s

ca
le

time to live (ttl) [hop]

α=10%, β=0, γ=0, δ=0
α=10%, β=10%, γ=0, δ=0

α=10%, β=10%, γ=10%, δ=0
α=10%, β=10%, γ=10%, δ=10%

FIGURE 5.1: success rate vs. time to live, ND=1

5.3 Conclusion

It is plane to understand that in figures 5.1, 5.2, 5.3, 5.4, 5.5, and 5.6 the success rate is
increases by increasing the routing parameters and especially time to live (ttl) in every
trend (curve) which is very important in routing the query to far distances even to other
Service Providers to retrieve the resources information.

————————————————————
Figures 5.3, 5.4, 5.5, and 5.6 are on the next pages.

62 Chapter 5. ASDQ Performance Evaluation on OMNeT++

 1

 10

 100

 1 2 3 4 5 6 7 8 9 10

notification depth=1

su
cc

e
ss

 r
a
te

 [
%

]
in

 l
o
g
 s

ca
le

time to live (ttl) [hop]

α=50%, β=0, γ=0, δ=0
α=50%, β=50%, γ=0, δ=0

α=50%, β=50%, γ=50%, δ=0
α=50%, β=50%, γ=50%, δ=50%

FIGURE 5.2: success rate vs. time to live, ND=1

 1

 10

 100

 1 2 3 4 5 6 7 8 9 10

notification depth=1

su
cc

e
ss

 r
a
te

 [
%

]
in

 l
o
g
 s

ca
le

time to live (ttl) [hop]

α=100%, β=0, γ=0, δ=0
α=100%, β=100%, γ=0, δ=0

α=100%, β=100%, γ=100%, δ=0
α=100%, β=100%, γ=100%, δ=100%

FIGURE 5.3: success rate vs. time to live, ND=1

5.3. Conclusion 63

 0.1

 1

 10

 100

 1 2 3 4 5 6 7 8 9 10

notification depth=2

su
cc

e
ss

 r
a
te

 [
%

]
in

 l
o
g
 s

ca
le

time to live (ttl) [hop]

α=10%, β=0, γ=0, δ=0
α=10%, β=10%, γ=0, δ=0

α=10%, β=10%, γ=10%, δ=0
α=10%, β=10%, γ=10%, δ=10%

FIGURE 5.4: success rate vs. time to live, ND=2

 1

 10

 100

 1 2 3 4 5 6 7 8 9 10

notification depth=2

su
cc

e
ss

 r
a
te

 [
%

]
in

 l
o
g
 s

ca
le

time to live (ttl) [hop]

α=50%, β=0, γ=0, δ=0
α=50%, β=50%, γ=0, δ=0

α=50%, β=50%, γ=50%, δ=0
α=50%, β=50%, γ=50%, δ=50%

FIGURE 5.5: success rate vs. time to live, ND=2

64 Chapter 5. ASDQ Performance Evaluation on OMNeT++

 1

 10

 100

 1 2 3 4 5 6 7 8 9 10

notification depth=2

su
cc

e
ss

 r
a
te

 [
%

]
in

 l
o
g
 s

ca
le

time to live (ttl) [hop]

α=100%, β=0, γ=0, δ=0
α=100%, β=100%, γ=0, δ=0

α=100%, β=100%, γ=100%, δ=0
α=100%, β=100%, γ=100%, δ=100%

FIGURE 5.6: success rate vs. time to live, ND=2

5.3. Conclusion 65

BigNetwork

IN_CSE[0]

IN_CSE[1]

IN_CSE[2]

MN_CSE[0]

MN_CSE[1]

MN_CSE[2]

MN_CSE[3]

MN_CSE[4]

MN_CSE[5]

MN_CSE[6]

MN_CSE[7]

MN_CSE[8]

MN_CSE[9]

MN_CSE[10]

MN_CSE[11]

MN_CSE[12]

MN_CSE[13]

MN_CSE[14]

MN_CSE[15]

MN_CSE[16]

MN_CSE[17]
MN_CSE[18]

MN_CSE[19]

AE[0]

AE[1]

AE[2]

AE[3]

AE[4]AE[5]

AE[6]

AE[7]

AE[8]

AE[9]

AE[10]

AE[11]

AE[12]

AE[13]

AE[14]

AE[15]

AE[16]
AE[17]

AE[18]

AE[19]

AE[20]

AE[21]

AE[22]

AE[23]

AE[24]

AE[25]

AE[26]

AE[27]

AE[28]

AE[29]

AE[30]

AE[31]

AE[32] AE[33]

AE[34]

AE[35]

AE[36]

AE[37]

AE[38]
AE[39]

AE[40]
AE[41]AE[42]

AE[43]

AE[44]

AE[45]

AE[46]

AE[47]

AE[48]

AE[49]

AE[50]

AE[51]

AE[52]

AE[53]

AE[54]

AE[55]
AE[56]

AE[57]

AE[58]

AE[59]

AE[60]

Resource[0]

Resource[1]

Resource[2]

FIGURE 5.7: sample network, this network has less entities in order to be
visible.

67

References

[1] URL: https://www.onem2m.org/.

[2] ETSI TR 103 714.

[3] ETSI TR 103 715.

[4] ETSI TR 103 716.

[5] ETSI TR 103 717.

[6] Lixin Gao. “"On inferring autonomous system relationships in the internet. IEEE/ACM
Trans.” In: Netw.9(6) 733-745 (2001).

https://www.onem2m.org/

	Abstract
	Introduction to oneM2M the IoT Standard 1
	oneM2M Basics
	Service Layer
	Functional Architecture
	oneM2M Nodes
	oneM2M Reference Points

	Common Service Functions (CSFs)
	Data Management
	Horizontal Platform

	oneM2M API
	 oneM2M REST Architecture
	 oneM2M Security Mechanisms
	Enrolment
	Security association establishment
	Authorization
	End-to-end security
	Privacy management

	 oneM2M Primitives
	Primitive structure

	oneM2M Resources
	Resource Template
	Resource Structure
	Resource Attributes
	Resource Schema

	 oneM2M Procedures
	Access Resources in Local CSE
	Access Resources in Remote CSE
	CREATE operation
	RETRIEVE Operation
	UPDATE Operation
	DELETE Operation
	NOTIFY Operation

	oneM2M REST RESOURCES
	Common Services Entity (CSE) Base
	Application Entity (AE)
	Container
	Access Control Policy

	Subscription & Notification
	Discovery
	Groups
	flexContainer

	Advanced Discovery and Query Use Cases And Requirements
	Definition of terms
	Semantic discovery in presence of a network of M2M Service Providers (M2MSP)
	Description
	Actors
	Pre-Conditions
	Triggers
	Normal Flow
	Alternative Flow
	Post-Conditions
	Potential Requirements for the oneM2M system

	Semantic recommendation in CSEs for discovery
	Description
	Source
	Actors
	Pre-Conditions
	Triggers
	Normal Flow
	Post-Conditions
	High-Level illustration
	Potential Requirements for the oneM2M system

	Facility management of a supermarket chain
	Description
	Source
	Actors
	Pre-Conditions
	Triggers
	Normal Flow
	Alternative Flow
	Post-Conditions
	High-Level illustration
	Potential Requirements for the oneM2M system

	Healthcare network and clinical knowledge administration
	Description
	Source
	Actors
	Pre-Conditions
	Triggers
	Normal Flow
	Post-Condition
	High-Level illustration
	Potential Requirements for the oneM2M system

	Advanced Semantic Discovery
	Introduction
	Functional description of oneM2M Advanced Semantic Discovery
	Semantic Discovery Agreements
	Semantic Non-Functional Issues
	ASD Query with Priorities
	Performance of ASD
	Searching Multiple set of Targets

	Semantic Discovery Query and Query Language
	Semantic Discovery Routing and Resolution Mechanism
	Semantic Routing Tables
	Semantic Routing Tables Upgrade and Propagation
	Semantic Recommendation System

	Implementing ASD and their Components in the OMNeT++ Discrete Network Event Simulation Tool
	OMNeT++ discrete network event simulator
	oneM2M Components
	oneM2M components to be simulated

	Semantic Discovery Agreements between CSEs
	Introducing new oneM2M roles for CSE and Agreements between CSEs
	OMNeT++ implementation of CSEs semantic discovery agreements

	Semantic Routing Table (SRT)
	oneM2M semantic routing table embedded in every CSE

	Updating Semantic Routing Tables
	oneM2M registration and ASD notification
	OMNeT++ implementation of registration and ASD notification

	Semantic Discovery Routing (SDR)
	oneM2M unicast routing: efficiently forwards a query to the next CSE hop by inspecting the routing table
	oneM2M multicast routing: efficiently chooses and forwards a query to many CSE by inspecting the routing table
	Multicast routing

	OMNeT++ implementation of unicast and multicast Semantic Discovery Routing

	Semantic Recommendation System (SRS)
	oneM2M Semantic Recommendation System embedded in each CSE

	ASDQ Performance Evaluation on OMNeT++
	Terminology
	Simulation and Results
	Simulation procedure in brief
	An example

	Conclusion

	References

