
POLITECNICO DI TORINO
Master’s Degree in Aerospace Engineering

Master’s Degree Thesis

IMPLEMENTATION AND
BENCHMARKING OF MODEL BASED
AND MODEL FREE CONTROLLERS

FOR WIND TURBINES

Supervisors

Prof. Gioacchino CAFIERO

Prof. Gaetano IUSO

Prof. Miguel Alfonso MENDEZ

PhD Lorenzo SCHENA

PhD Emmanuel GILLYNS

Candidate

Sebastiano RANDINO

Academic Year 2022/2023

Abstract

Wind turbines are sophisticated machines designed to harness the raw power of
the wind and convert it into electrical energy. Developing a controller for wind
turbines is a challenging task due to their complex nature. Their operation is
indeed influenced by turbulent external winds and characterized by nonlinear
dynamics dictated by aerodynamics. The state of the art in wind turbine control
employs classical controllers, but recently the community started to explore AI
solutions to improve their performance. This thesis focuses on the development
and benchmarking of such control techniques. It articulates on both a numerical
and experimental phases.

On the numerical side, a custom-built Python environment is developed to simu-
late the behavior of different controllers. The model utilizes a simplified, nonlinear
first-order representation of wind turbines. The project begins by establishing
baseline control techniques, including the widely-used Proportional Integral (PI)
controller and the K omega squared technique. These techniques are validated
against the existing controllers, specifically the ROSCO package developed by
NREL, demonstrating a high level of agreement. Model-based methodologies such
as Model Predictive Control (MPC) and data-driven approaches like Genetic Pro-
gramming (GP), Bayesian Optimization (BO), and Reinforcement Learning (RL)
are explored. Comparisons are conducted to evaluate their performance.

The experimental campaign is conducted in the Low Speed Wind Tunnel L-2B
at the von Karman Institute. The wind tunnel features a test section area of 0.35
cm x 0.35 cm, with a maximum incoming flow velocity of 35 m/s. Efforts are
dedicated to implementing the reading of rotational speed from an encoder with an
Arduino master-slave architecture, which interacts with a Python code responsible
for wind turbine control. Experimental testing involves the PI controller and the
optimization of the PI controller’s weights using Bayesian Optimization (BO).
Lastly, a specific experimental setup is designed to simulate real-world conditions
in wind turbine farms, positioning one wind turbine downstream of another. This
configuration enables the validation of the controller’s performance in mitigating
wake interference and optimizing overall wind farm performance.

In conclusion, based on the promising outcomes achieved with data-driven
controllers in the numerical simulations, further experimental testing of these
controllers would be of great interest for future research.

ii

Acknowledgements

I would like to thank everyone who supported me throughout my thesis project
at the von Karman Institute, starting with my supervisor, Prof. Miguel Alfonso
Mendez, and my two advisors, PhD Lorenzo Schena and PhD Emmanuel Gillyns,
for their invaluable assistance. A heartfelt thank you to Lorenzo for his insights
in the numerical part and to Emmanuel for his guidance during the experimental
phase. Furthermore, I would like to extend my thanks to PhD Nicolas Coudou
for his support and for granting me permission to use the wind turbine model he
developed.

Lastly, I would like to express my gratitude to my supervisors at Politecnico di
Torino, Prof. Gioacchino Cafiero and Prof. Gaetano Iuso, who not only instilled in
me a deep passion for experimental aerodynamics over the years but also made the
VKI experience possible.

iii

Table of Contents

List of Tables viii

List of Figures ix

Acronyms xiv

1 Introduction 1
1.1 General Introduction to Wind Turbines 1
1.2 Control and Safety Systems . 3

1.2.1 Closed Loop Control . 3
1.2.2 Sensors and Actuators . 6

1.3 The Wind . 7
1.4 Wind Turbine Aerodynamics . 8

1.4.1 Actuator Disc Model . 8
1.4.2 Blade Element Momentum theory 9

1.5 Framework and Goals of this Thesis 10
1.6 Thesis Outline . 10

2 Numerical Methods and Objective 13
2.1 Control Objectives . 13
2.2 Employed Models . 14

2.2.1 First Order Model . 14
2.2.2 Synthetic generated Wind Speed 18
2.2.3 Controller Scheme . 21

2.3 Baseline Controllers . 21
2.3.1 Model Linearization . 22
2.3.2 PI Pitch Controller . 23
2.3.3 PI Scheduling . 28
2.3.4 Kω2 Torque Controller . 30

2.4 Advanced Model Based Controller 32
2.4.1 Model Predictive Control (MPC) 32

v

2.5 Model Free Controllers . 37
2.5.1 Bayesian Optimization (BO) 38
2.5.2 Genetic Programming (GP) 41
2.5.3 Reinforcement Learning (RL) 49
2.5.4 Algorithms . 55

3 Experimental Methods and Objective 57
3.1 Control Objective . 57
3.2 Experimental Setup . 58

3.2.1 Arduino Architecture . 61
3.2.2 Power Measurement and Resistors 63

3.3 Power coefficient curve . 64
3.3.1 Measurement setup . 64
3.3.2 Post processing . 65

3.4 Baseline Controllers . 66
3.4.1 Experimental Linearization 67
3.4.2 PI Controller . 69
3.4.3 PI Schedule . 69

3.5 Model Free Controller . 70
3.5.1 PI with BO . 71

3.6 Two Turbine Test Case . 72

4 Results 75
4.1 Numerical Results . 75

4.1.1 Validation of Baseline Controllers against ROSCO 75
4.1.2 Data Driven Controllers Leaning Curves 77
4.1.3 Controllers Benchmarking 80

4.2 Experimental Results . 83
4.2.1 Power Curve . 83
4.2.2 PI Baseline . 85
4.2.3 PI Schedule . 87
4.2.4 PI with BO . 88
4.2.5 Two Turbine Test Case . 89

5 Conclusions 93

6 Future Works 95

A Numerical Methods Employed 97

B Pressure Transducer Calibration 99

vi

Bibliography 103

vii

List of Tables

1.1 Data of NREL 5MW wind turbine 6

2.1 Parameters of TurbSim input file 18
2.2 Set of the wind profiles and their characteristics used for training

the model-free controllers . 55

4.1 Number of training episodes and the corresponding minimum reward
obtained during the training of the model-free controllers 80

4.2 Set of the wind profiles and their characteristics used for testing the
model-free controllers . 81

4.3 Numerical results of the performance of each controller in terms of
episode rewards for each testing wind speed 82

4.4 Experimental results of the performance of each controller in terms
of dimensionless episode rewards for each testing wind speed 92

viii

List of Figures

1.1 Examples of vertical and horizontal axis wind turbine, reference [1] 2
1.2 NREL 5MW Power Envelope . 5
1.3 Typical van der Hoven spectrum, reference [6] 7

2.1 First order model of the wind turbine 15
2.2 NREL 5MW CP 2D map . 16
2.3 Pitch actuator model, reference [1] 17
2.4 Example of a TurbSim wind profile generated with the power law . 19
2.5 Wind time series extracted from the wind profile 19
2.6 Bode diagram of the employed first-order Butterworth low-pass filter 20
2.7 Example of wind speed after being filtered 20
2.8 General scheme of the closed-loop controller 21
2.9 Rotor speed response under a step change in wind speed from

v = 17m/s to 18m/s with different values of ζ (fixed ωn) 26
2.10 Pitch angle response under a step change in wind speed from v =

17m/s to 18m/s with different values of ζ (fixed ωn) 26
2.11 Rotor speed response under a step change in wind speed from

v = 17m/s to 18m/s with different values of ωn (fixed ζ) 27
2.12 Pitch angle response under a step change in wind speed from v =

17m/s to 18m/s with different values of ωn (fixed ζ) 27
2.13 Bode diagram of the closed-loop transfer function of the system . . 28
2.14 Rotor speed response without scheduling under two different steps in

wind speed: from v = 17m/s to 18m/s in blue and from v = 12m/s
to 13m/s in orange . 29

2.15 Proportional and integral gains as a function of wind speed 30
2.16 Rotor speed response with scheduling under two different steps in

wind speed: from v = 17m/s to 18m/s in blue and from v = 12m/s
to 13m/s in orange . 30

2.17 Response of rotational speed and dimensionless power coefficient
with his maximum value to a step change in wind speed from 5 m/s
to 6 m/s . 31

ix

2.18 BO iterative process, reference [18] 39
2.19 BO interpreted as a black box optimization problem of a parameter-

ized control law . 40
2.20 Primitive set of GP, reference [20] 41
2.21 Root of the tree formalism, reference [20] 42
2.22 Example of a tree, reference [20] . 42
2.23 Replication, mutation and crossover in GP, reference [20] 43
2.24 GP workflow, reference [20] . 44
2.25 Formation of a tree with the full method, reference [20] 45
2.26 Formation of a tree with the grow method, reference [20] 45
2.27 Tournament method for the selection of the individuals, reference [20] 46
2.28 Fitness proportional method for the selection of the individuals,

reference [20] . 46
2.29 RL algorithm, reference [22] . 50
2.30 ANN scheme, reference [20] . 52
2.31 ANN for DDPG, actor-acritc model, reference [20] 53
2.32 DDPG structure implemented in this thesis 54

3.1 Experimental Setup, courtesy of Lorenzo Schena and Emmanuel
Gillyns . 58

3.2 Scheme of the L2-B wind tunnel at the von Karman Institute,
reference [25] . 59

3.3 L2-B at the von Karman Institute 59
3.4 Wind turbine model utilized in the experimental campaign, designed

by Nicolas Coudou [26] . 60
3.5 Wind turbine position in the test section and the relative Pitot tube

position used for wind speed feedback 60
3.6 Master-Slave Arduino architecture 62
3.7 Electrical circuit employed for power measurement and load adjust-

ment on the turbine . 63
3.8 Power coefficient measurement chain 64
3.9 Scheme of the closed-loop experimental controller 66
3.10 Characteristic times inside each time step 66
3.11 Rotational speed of the model wind turbine during the transient

caused by a known step in torque 68
3.12 Raw data of the rotational speed during the transient in blue, with

the fitted curve represented in orange 68
3.13 Fitted curve of the action values required to maintain a constant

rotational speed under steady-state conditions 70
3.14 Experimental setup modified by incorporating an additional up-

stream wind turbine . 72

x

3.15 Tower installed beneath the test section to enable vertical movement
of the Pitot tube . 73

4.1 Validation of the baseline kω2 controller against ROSCO in Region 1 76
4.2 Validation of the baseline PI controllers against ROSCO in Region 2 76
4.3 Learning curve of the numerical optimization using BO 77
4.4 GP learning curve . 79
4.5 DDPG learning curve . 79
4.6 Comparison of the learning curves of the model-free controllers, with

the cost function of the Baseline PI controller used as a reference
(shown in red) . 80

4.7 Performance of each controller for each testing wind speed presented
in a radar diagram. Model-free controllers are depicted in red, while
model-based controllers are shown in green. 81

4.8 Experimental power curves of the wind turbine 83
4.9 Power coefficient in function of the actions applied 84
4.10 Rotational speed vs actions . 85
4.11 Response of the model wind turbine with the PI baseline controller

at different values of ζ (with fixed ωn) 86
4.12 Response of the model wind turbine with the PI baseline controller

at different values of ωn (with fixed ζ) 86
4.13 Test case of the experimental PI scheduling controller by varying

the speed in the test section . 87
4.14 Experimental Learning Curve BO 88
4.15 Test case of the experimental PI optimized with BO by varying the

speed in the test section . 88
4.16 Wake wind speed profile that affects the controlled wind turbine . . 89
4.17 The two turbine models and the wake caused by the first turbine,

which impacts the second . 89
4.18 Wind speed sensed by the Pitot tube with and without the upstream

turbine . 90
4.19 Filtered wind speed sensed by the Pitot tube 91
4.20 Test case with two wind turbines: the case without a controller

depicted in blue, the case with a PI controller with scheduling shown
in orange, and the case with a PI controller optimized using BO
represented in green . 91

A.1 Numerical scheme . 97

B.1 M20 Validyne . 99
B.2 Validyne Demodulator . 99
B.3 Betz manometer . 100

xi

B.4 Pressure transducer calibration curve 100

xii

Acronyms

WECS
Wind Energy Conversion System

BEM
Blade Element Momentum (theory)

PID
Proportional Integrative Derivative (controller)

MPC
Model Predictive Control

BO
Bayesian Optimization

GP
Genetic Programming

RL
Reinforcement Learning

ANN
Artificial Neural Network

DRL
Deep Reinforcement Learning

DDPG
Deep Deterministic Policy Gradient

xiv

Chapter 1

Introduction

1.1 General Introduction to Wind Turbines
A wind turbine is a Wind Energy Conversion System (WECS). It refers to the
infrastructure and technology used to harness wind energy and convert it into
electrical energy.

Over time, many designs for a wind turbine have been proposed. The two main
ones are classified depending on the rotor position:

• vertical-axis wind turbines;

• horizontal-axis wind turbines;

There are pro and cons for each type of wind turbine. The most important feature
of a vertical-axis turbine is that the transmission devices and generator are located
at ground level. Accessibility is simplified, eliminating the need for climbing
the turbine and reducing associated costs. Additionally mounting the generator
separately reduces structural loads on the turbine and mitigates noise and vibration
issues. Another advantage is that a vertical turbine can capture the wind energy
from any direction. However, these advantages are cancelled by the fact that
the rotor capture a low percentage of the wind speed. Furthermore, their higher
mechanical complexity and maintenance requirements can increase operational
costs. As a result, the utilization of vertical-axis wind turbines has significantly
decreased in recent decades [1].

Nowadays, horizontal-axis two-bladed or three-bladed rotors are predominantly
employed in commercial wind turbines connected to the grid. The main components
of an horizontal-axis wind turbine include the rotor, nacelle and tower. The rotor
is located at the top of the tower and its purpose is to convert as much as possible
of the kinetic energy of the wind into mechanical energy, which is then used to spin
the low-speed shaft inside the nacelle. A gearbox is used to increase the rotational

1

Introduction

speed of the low-speed shaft, which in turn drives a second shaft to power the
electrical generator. There is also a yaw mechanism that turns the rotor and nacelle
to face the wind [2].

Figure 1.1: Examples of vertical and horizontal axis wind turbine, reference [1]

Discussing about horizontal-axis wind turbines, it is important to note that various
configurations can be employed:

• constant rotor speed: the rotor maintains a constant speed. This configura-
tion is capable of extracting the maximum power from the wind, but only at a
specific wind speed. One advantage of this setup is its simplicity in extracting
power from the wind. However, these turbines have become less prevalent due
to their limitations in adapting to varying wind conditions;

• variable rotor speed: this is the configuration that is widely used in modern
wind turbines. It offers higher aerodynamic efficiency for a range of wind
speeds, but it requires electrical power processing to ensure the generated
electricity is fed into the grid at the correct frequency;

• fixed pitch angle: the orientation of the blades along the longitudinal axes
remains constant. This design simplifies the mechanical structure and control
system of the turbine;

• variable pitch angle: it is possible to rotate all the blades or a portion of
them. This is achieved through the use of hydraulic or electric actuators. The
advantage of load reduction offered by variable pitch turbines has led to their
dominance in modern utility-scale turbine markets.

In this thesis horizontal wind turbines with variable rotor speed and variable
pitch angle are treated for the advantages depicted above.

2

1.2 – Control and Safety Systems

1.2 Control and Safety Systems
The requirement for control has been present since the inception of wind turbines.
Initially, the primary objectives of control were to restrict power and speed to
predefined limits, ensuring safe operation of the turbine during high wind conditions.
Early wind turbines relied on rudimentary mechanical devices to achieve these
goals. However, as wind turbines grew in size and power output, the demands
for control became more stringent, necessitating the development of advanced
regulatory mechanisms.
There are different levels of controls in a wind turbine [3]:

• supervisory control: involves transitioning between operational states,
including stand-by, start-up, power production, shutdown, and stopped with
fault. It ensures smooth transitions and monitors various conditions to optimize
turbine performance. For example, in low wind speeds, the turbine is often
stopped to avoid inefficiencies and insufficient energy production. Similarly,
during high wind speeds, the turbine can reach its load limit, requiring a halt
to prevent damage. The supervisory control acts as a controller, stopping the
turbine when load limits are exceeded or system faults occur. Its primary
objective is to maintain safe and efficient turbine operation.

• closed loop control: is an essential software-based system that dynamically
adjusts the operational state of the wind turbine to maintain it within a
predefined operating curve or characteristic. It performs various functions
such as controlling the blade pitch or adjusting generator torque to maximize
power extraction or implementing power limitation strategies. These objectives
will be further discussed in the following section.

• safety system: is separate from the main control system and is responsible
for bringing the turbine to a safe condition in case of serious problems. It acts
as a backup to the main control system and takes over if the main system
fails to ensure safety. It includes various fail-safe actions such as disconnecting
electrical systems and applying the shaft brake. The safety system can be
triggered by events like rotor overspeed, operator-pressed emergency stop
button, or other faults indicating potential control issues.

1.2.1 Closed Loop Control
In this thesis, the focus will be solely on closed loop control, as the supervisory
control is not a subject of interest for control design. Operational control can be
divided into different regions, each with its own control objective. Conversely, the
question is to find a well balanced compromise among them. These partial goals
can be summed up in the following [1]:

3

Introduction

• energy capture: maximize the capture of energy while considering important
operational constraints such as rated power, rated speed, and cut-out wind
speed;

• mechanical loads: this objective encompasses various aspects, including
alleviating transient loads, mitigating high-frequency loads, and avoiding
resonance;

• power quality: condition the generated power in order to comply with
interconnection standards.

In this thesis, only the energy capture aspect will be considered, while the other
two aspects will be neglected.

There are different regions in operational control that correspond to specific
control strategies for energy capture. Some of the common regions include [4]:

• Region 0: it is the region at low wind speed where the power available in the
wind is low compared to losses in the turbine system. This velocity is called
cut-in wind speed vmin. The turbine in this region is turned off.

• Region 1: is the region for mid-range wind speeds when the wind speed is
above the cut-in wind speed v > vmin. In this region, the wind turbine operates
at its maximum aerodynamic efficiency and extracts the maximum available
power from the wind, regulating the rotational speed with the generator torque.
The pitch angle in this region is kept constant at its optimal value.

• Region 1.5: is when the wind speed is larger than the wind speed that
corresponds with rated rotor speed, but less than the wind speed that corre-
sponds with rated power. Both torque and pitch control are applied in this
transitional region between Region 1 and 2.

• Region 2: when the wind speed is above the rated wind speed v > vrated,
the power output of the wind turbine is limited to its rated value to prevent
exceeding electrical and mechanical load limits. In this region, the generator
torque is maintained at a constant value, and the pitch angle of the blades is
actively controlled. The purpose of controlling the pitch angle is to adjust the
rotational speed of the turbine and keep it at the rated value, ensuring that
the turbine consistently produces the rated power output.

• Region 3: this region occurs when the wind speed exceeds the cut-out wind
speed of the turbine, denoted as vmax. In Region 3, the blades of the turbine
are pitched such that the rotor thrust is reduced to zero. This means that the
wind turbine is effectively shut down in this regime because it is not designed
to operate under such extreme wind conditions.

4

1.2 – Control and Safety Systems

It is usual to represent the power extraction as a curve in relation to the wind
speed. The figure above shows the power envelope of a specific wind turbine, the
NREL 5MW (1.2.1), which will be utilized for designing and testing numerically
the controllers in this thesis.

Figure 1.2: NREL 5MW Power Envelope

In Figure 1.2, the different operational regions of a wind turbine can be observed.
It is important to note that this plot represents the steady-state ideal conditions
in which the wind turbine is expected to operate. In reality, due to the unsteady
nature of the wind load (turbulent wind), the turbine will experience operation in
non-steady conditions throughout its lifespan. This implies that the turbine may
not always follow the power curve depicted in the plot. The goal of the closed-loop
controller is to try to operate the wind turbine as closely as possible to this curve.

NREL 5MW Wind Turbine

The NREL 5MW wind turbine is a widely used reference model for designing
wind turbine control systems. It is a modern utility-scale turbine with a variable
speed and variable pitch control system, and it has been extensively tested and
validated in various research projects. The turbine’s advanced control algorithms
enable it to operate at high efficiency across a wide range of wind speeds, while
also maintaining safe and reliable operation. As a result, the NREL 5MW turbine
serves as a benchmark for the development of new wind turbine control strategies
and technologies.

In the table below, it can be seen all the data related to this turbine [5]:

5

Introduction

Parameter Value
Rated power 5 MW
Cut-in wind speed 3 m/s
Rated wind speed 11.4 m/s
Cut-out wind speed 25 m/s
Rotor diameter 126 m
Hub height 90 m
Blade chord length 4.19 m
Blade twist angle -13.308◦ to 4.275◦

Rated rotor speed 12.1 RPM
Gearbox ratio 97:1
Generator efficiency 96%

Table 1.1: Data of NREL 5MW wind turbine

1.2.2 Sensors and Actuators
The wind turbine control system comprises various sensors and actuators, along
with a hardware and software system. This system receives input signals from the
sensors, processes them, and produces output signals to control the actuators.
The actuators in a wind turbine are:

• yaw motor: aligns the nacelle with the main direction of the wind;

• generator: it can be commanded to follow a desired torque or load. It
determines how much torque is extracted from the turbine. The net torque
on the rotor depends on the input torque from the wind and the torque from
the generator. The generator torque it can be used to change the acceleration
and deceleration of the rotor;

• blade-pitch motor: there is a motor for each blade, so the blades can
be controlled collectively or independently. Changing the pitch angle, the
aerodynamic torque due to the wind vary and the rotor speed can be controlled;

The most commonly used sensors include:

• rotor speed sensor: measures the rotational speed of the wind turbine rotor;

• anemometer: measures wind speed. It helps determine the intensity of the
wind, which is essential for optimizing the turbine’s operation;

6

1.3 – The Wind

• pitch position sensor: is responsible for monitoring the angle of the turbine
blades. It enables precise control of blade pitch adjustment;

• electrical power sensor: measures the electrical power output of the wind
turbine. It provides real-time data on the energy generated, allowing for
efficient power management and performance monitoring.

1.3 The Wind
Wind turbines are typically positioned in the lower region of the atmosphere
known as the shear layer. This layer, referred to as the planetary shear layer,
directly engages with the Earth’s surface. Due to the non-slip condition, the
velocity at ground level is zero, leading to a significant velocity gradient. Given the
large scale of wind turbine systems, the flow is characterized by a high Reynolds
number and exhibits turbulent behavior. Generally, the height of the shear layer is
approximately 2 km. One fascinating aspect of surface winds is how their kinetic
energy is distributed across different frequencies, known as the van der Hoven
spectrum. If the van der Hoven spectrum is analyzed in this region, it can provide
valuable insights into the characteristics of wind turbulence.

Figure 1.3: Typical van der Hoven spectrum, reference [6]

For instance, in Figure 1.3, the spectrum exhibits two energy peaks at two different
frequencies, approximately 0.01 cycles/hour and 50 cycles/hour. This allows us to
decompose the wind into two components:

v = vm + vt (1.1)
one corresponding to the first frequency, which represents the mean part of the
wind vm, and the other representing the turbulent part vt.
Considering both components of the wind, the power carried by the wind with
density ρ passing through a section A is given by:

Pv = 1
2ρAv3 (1.2)

which represents the source from which the wind turbine extracts power.

7

Introduction

1.4 Wind Turbine Aerodynamics
A parameter to evaluate the performance of a wind turbine in its ability to extract
power from the wind is the coefficient of power:

CP = P

Pv

= P
1
2ρAv3 (1.3)

which is defined as the ratio of the power produced by the wind turbine P to the
power of the wind Pv, which is the maximum available power. The power coefficient
is determined by the aerodynamics of the wind turbine and can be calculated using
various methods.

1.4.1 Actuator Disc Model
One of the simplest approaches is to use an actuator disk model. In this model,
the rotor is represented as a permeable disc that slows down the incoming wind
flow, leading to a localized pressure drop at the disk.
If one denote the velocity at the rotor as vD, typically the velocity at the actuator
disc is expressed as:

vD = (1 − a)v (1.4)

where a is defined as the induction factor.
From the conservation of flow rate in the flow tube passing through the turbine
rotor section A, and by applying Bernoulli’s equation to derive the pressure drop
on the rotor, one can obtain:

FD = 2ρAv2a(1 − a) (1.5)

that is the force that is produced by the rotor FD. Then, the power harvested from
the airflow by the actuator disc can be determined using the following equation:

P = FDvD = 2ρAv3a(1 − a) (1.6)

Therefore, in this case, it can be found that:

CP = 4a(1 − a)2 (1.7)

From here, it can be observed that the maximum possible power coefficient, also
known as the Betz limit, is reached at a value of a = 1/3, and it is equal to
CPmax = 0.593. This represents the upper limit for any turbine, indicating that it
is impossible to extract all the available wind energy.
The actuator disc model has several limitations. It simplifies the representation of
flow, neglects the influence of the shape of the blade aerodynamic profiles, assumes

8

1.4 – Wind Turbine Aerodynamics

a uniform velocity distribution, and lacks accuracy at high angles of attack while
considering the flow as frictionless. These limitations can lead to inaccuracies when
predicting power output, loads, and stall behavior of wind turbines. However, this
model is important to realize the upper limit to the maximum energy that can be
extracted from the wind.

1.4.2 Blade Element Momentum theory
A second possible approach to calculate the power coefficient is the Blade Element
Momentum (BEM) method. The BEM method considers the variation of aerody-
namic forces across the rotor’s span, resulting in improved accuracy for predicting
turbine performance. It also takes into account the influence of blade geometry
and airfoil characteristics, enabling a more comprehensive analysis of the flow field.
The flow tube encompassing the swept area of the turbine is divided into in-
finitesimally small concentric annular stream tubes. Each stream tube is treated
independently.

By considering the relative velocity impacting each profile of the blade, it is
possible to calculate the lift and drag forces per unit length for each blade element,
knowing the aerodynamic coefficients of the profile:

fL = ρc

2 vrelCL(α) (1.8)

fD = ρc

2 vrelCD(α) (1.9)

where c is the chord length, vrel is the composition between the upstream wind
speed and the tangential blade element speed and α is the incidence angle. This
angle is the combination of the angle between the local flow direction ϕ and the
pitch angle β:

α(r) = ϕ(r) − β(r) (1.10)

It is dependent on the radial position r of the considered blade element. From the
the lift and drag forces the rotational torque per unit length can be computed:

τr = ρc

2 v2
relr[CL(ϕ(r) − β(r))sin(ϕ(r)) − CD(ϕ(r) − β(r))cos(ϕ(r))] (1.11)

By integrating (1.11) along the blades length, torque produced by the entire rotor
can be obtained. By multiplying it by the rotational velocity, the power generated
P can be obtained. Typically, the power generated is expressed in adimensional
form using the coefficient of pressure:

CP (λ, β) = P

Pv

(1.12)

9

Introduction

From the previous equation, it can be observed that the power coefficient is
dependent from the tip speed ratio λ and the pitch angle β of the blades:

λ = ωrR

v
(1.13)

where ωr is the rotational speed of the rotor and R is the turbine’s rotor radius.

1.5 Framework and Goals of this Thesis
This project originated under the guidance of the research group led by my su-
pervisor, Prof. Mendez. His research group is applying data-driven controllers in
various fluid dynamics contexts [7].
In particular, one of my two advisors, PhD Lorenzo Schena, is working on data-
driven approaches for wind turbine controllers [8]. In collaboration with my other
PhD advisor, Emmanuel Gillyns, they have implemented an experimental setup to
experimentally test these solutions [9].

Therefore, my thesis is based on this framework, aiming to develop controllers
for wind turbines in Region 2. This is done in a numerical environment and
subsequently apply the knowledge obtained from the numerical simulations in
an experimental setup. The numerical objectives involve creating a simulation
environment that adequately represents the dynamics of a wind turbine. Once
this environment is established, the focus shifts to the development of baseline
controllers that serve as references for benchmarking more advanced model-based
and model-free controllers. The aim is to compare the performance of each different
controller and evaluate the advantages and disadvantages of using model-free
methods for wind turbine control. Finally, based on the obtained numerical results,
a proof of concept is sought by conducting experimental tests on a small-scale wind
turbine model to validate the findings from the numerical simulations.

1.6 Thesis Outline
The thesis is organized as follows: Section 2 provides the methodology used for the
numerical implementation of the controllers. It includes a review of the theoretical
foundations underlying the development of controllers.

Section 3 offers a comprehensive overview of the experimental setup and de-
lineates the methodology employed in the experimental phase. Additionally, this
section presents the objectives of the various test cases.

In Section 4, results are presented. The focus in the numerical part is on
comparing the performance of the different controllers, including highlighting

10

1.6 – Thesis Outline

the learning curves of the data-driven controllers. The obtained experimental
results are also presented, although direct comparisons between the numerical and
experimental parts are not possible due to the architecture of the experimental
controller.

Section 5 contains the conclusions drawn from the results presented in the thesis.
Lastly, Section 6 outlines potential future work and research directions.

11

12

Chapter 2

Numerical Methods and
Objective

The process of developing a wind turbine controller, as outlined in [10], can be
summarized in the following steps: determining control objectives, developing
a simplified dynamic model, applying control theory, and performing dynamic
simulations to evaluate closed-loop system performance.

In this chapter, a comprehensive explanation of each step in the wind turbine
controller development process is provided. Firstly, the control objectives and
employed model are presented. Finally, the implementation of baseline controllers,
model-based controllers, and model-free controllers is discussed. The results of the
simulation for each controller can be found in Chapter 4.

2.1 Control Objectives
The main objective is to develop controllers focusing on Region 2 of operation. As
discussed in (1.2.1), the control objective in Region 2 is to maintain the power
produced by the wind turbine at its rated value:

P = Prated

This is achieved by controlling the rotational speed to remain at its nominal value
through the pitch angle of the blades, while maintaining the generator torque at
its nominal level so that the produced power, which is the product of these two
quantities, remains constant. In this sense, it can be said that the set-point to
be maintained and therefore the primary objective of the controller is to keep the
rotor rotational speed at the nominal level.

Due to the turbulent nature of the wind, it is possible that for certain periods of
time, even though the controller mostly operates in Region 2, it may enter Region

13

Numerical Methods and Objective

1 or 1.5. For this reason, in this thesis is developed a baseline controller for Region
1, in case the wind conditions lead to operation in that region. The objectives of a
controller in Region 1 can be summarized as follows. Contrary to Region 2, the
goal in Region 1 is to maximize power output. In this case, the set-point is to track
the optimal rotational speed using torque based on the wind speed.

2.2 Employed Models
The second step of the controller’s development, it is to have a model that represents
the dynamics of the system. To capture the dynamic behavior of a wind turbine, it
is essential to model the entire environment in which it operates. In this section,
the dynamic model that will be utilized to simulate the behavior of the wind
turbine is presented. Subsequently, the corresponding wind model employed in the
simulations is discussed.

2.2.1 First Order Model
The level of complexity for the model used in control design is determined by the
desired objectives. Various approaches utilize different techniques to model turbine
dynamics. One such approach is the multi-body approach, which divides the system
into multiple rigid bodies that interact with each other through constraints.

For this preliminary investigation, a simplified first order model has been utilized,
encompassing the essential aspects of wind turbine dynamics. This model is widely
employed by control engineers in wind applications [2] [4], rendering it suitable for
an initial comparative analysis between model-free and conventional controllers.
The assumptions of the model are:

• the system is treated as a rigid body. Deformations of the blades, tower
and other parts of the system are not allowed. This means that the aeroe-
lastic coupling between the structure and the external aerodynamics is not
considered;

• The power coefficient follows the map proposed by the Blade Element Momen-
tum (BEM) theory;

• the inertia momentum considered in the model is only that of the rotor, while
the others are considered negligible;

• the dynamics of the system are solely dependent on the wind speed at the
center of the rotor, and therefore, a uniform distribution of wind on the blades
is assumed;

• the response of torque to a control input is considered instantaneous.

14

2.2 – Employed Models

Figure 2.1: First order model of the wind turbine

The model used in this study is illustrated in Figure 2.1. By applying the torque
equilibrium equation in the shaft of the turbine rotor, the following expression is
obtained:

Jω̇r = τaero − τload (2.1)

where J is the inertia momentum of the rotor, ωr is the rotational speed of the
rotor, τaero is the aerodynamic torque of the rotor and τload is the reaction torque
in the rotor shaft that is applied by the gearbox. To calculate the reaction torque
on the rotor shaft, one must take into account the efficiency of the gear box η. This
efficiency can be used to relate the torque of the generator to the load torque on
the rotor shaft, as shown in the following equation:

η = ωgτg

ωrτload

= ωrNgτg

ωrτload

= Ngτg

τload

(2.2)

τload = Ng

η
τg (2.3)

where Ng is the gear box ratio, τg is the net torque of the generator and ωg is the
angular velocity of the generator. This relationship is important for understanding
the power transfer between the rotor and generator.
The aerodynamic torque of the rotor is given by:

Pr = 1
2ρAv3CP (λ, β) (2.4)

Pr = ωr · τaero (2.5)

τaero = Pr

ωr

= 1
2ρAv3 CP (λ, β)

ωr

(2.6)

15

Numerical Methods and Objective

At the end we came up with the following equation:

ω̇r = 1
J

A
1
2ρA

CP (λ, β)
ωr

v3 − Ng

η
τg

B
(2.7)

The given equation is a first-order nonlinear ordinary differential equation with the
wind speed v that represents the forcing term. It can be seen from this equation
that indeed the system can be controlled through the torque of the generator τg

and the pitch angle β, which are the two terms that can affect the dynamic of the
turbine.

The choice of this first-order model is very limiting in real-world applications,
especially for large-scale wind turbines. However, it is useful for gaining a simplified
understanding of how to develop controllers. Even with a more advanced model,
the steps to follow essentially remain the same, albeit with increased difficulty in
their development.

In order to solve (2.7), the power coefficient CP (λ, β) for the NREL 5 MW
wind turbine was computed using the Blade Element Momentum formulation, as
illustrated in (1.4.2), using the WISDEM CCBlade Python package [11]. The
power coefficient map obtained for the NREL 5MW turbine is a 2D contour plot
that depends on pitch angle and tip speed ratio, as can be seen in Figure 2.2.

Figure 2.2: NREL 5MW CP 2D map

The relationship between the power coefficient CP , the tip speed ratio λ and the
pitch angle β is a non-linear function that is specific to each turbine. Also it can be
observed that the maximum power coefficient is indeed smaller than the Betz limit:

CPmax = 0.446
and it is obtained at the optimal pitch angle:

βopt = 0◦

16

2.2 – Employed Models

and at the optimal tip speed ratio:

λopt = 7.5

Pitch Subsystem

As said in (1.2.2) actuators are necessary to change the pitch angle of the blades.
In modern applications, hydraulic or electromechanical actuators are utilized to
efficiently control the speed and power limitations. The pitch actuator, which is a
nonlinear servo, typically rotates all the blades, or a portion of them, simultaneously.

To enhance the realism in the simulator, in this project the dynamic behavior of
the pitch actuator is incorporated. The controller generates a desired pitch angle
βd, but due to the actuator’s inherent dynamics, it cannot instantaneously reach
this angle. As a result, there exists a delay between the desired angle and the
actual angle achieved, denoted as β. Despite its non-linearity, the pitch actuator
can be modeled as a first-order dynamic system with amplitude and derivative
saturation.

The dynamic behaviour of the pitch actuator operating in its linear region is
described by the differential equation:

β̇ = −1
τ

β + 1
τ

βd (2.8)

where βd is the desired angle, β is the actual angle and τ is the typical time constant
and it depends on the specific actuator. The scheme of the dynamic of the pitch
actuator could be sum-up in Figure 2.3.

Figure 2.3: Pitch actuator model, reference [1]

The equations (2.7) and (2.8) represent the equations that need to be simulta-
neously solved to obtain the numerical solution of the turbine dynamics. To solve
each of these two ODEs, a fourth-order Runge-Kutta method is implemented in a
Python script. Further details about the numerical scheme used in this simulator
can be found in Appendix A.

17

Numerical Methods and Objective

2.2.2 Synthetic generated Wind Speed
To solve Equation (2.7), the input of wind speed is required. The wind was
simulated using the TurbSim Python package [12], which provides a comprehensive
framework for generating realistic wind profiles. By using TurbSim, the wind
characteristics, such as wind speed, turbulence intensity, and wind direction, can
be accurately modeled to reflect real-world conditions.

The wind is generated through an input file, from which various parameters
can be specified. The first section of the input file contains specifications for the
turbine/model, including time step and simulation duration. The second section of
the input file contains specifications for the Meteorological Boundary Conditions.
These include the spectral model used, turbulence intensity settings, the mean
wind profile, the reference wind speed height and mean stream-wise wind speed.

The two most important parameters that influence the temporal behavior of
the wind speed are the spectral models and the wind profile. The spectral models
define the spectral model used to generate wind velocity fluctuations. Examples of
spectral models include the Kaimal model, the von Karman model, and the smooth
terrain model. These models describe the distribution of wind velocity fluctuations
as a function of frequency. The wind profile specifies the mean wind profile of
the shear layer. There are different types of wind profiles, such as the logarithmic
profile, the power law profile, and the low-level jet profile. These profiles depict
the variation of wind velocity with height above the ground and thus represent the
behavior of the planetary boundary layer.

In Table 2.1, some of the parameters used to generate an example of synthetic
wind are summarized.

Parameter Value

Time Step 0.05 s
Analysis Duration 300 s
Hub Height 90 m
Spectral Model Used von Karman spectrum
Turbulence Intensity Settings 10%
Mean Wind Profile Power law
Mean Streamwise Wind Speed 16 m/s

Table 2.1: Parameters of TurbSim input file

The wind profile taken as an example follows the power law, which is expressed in
the following form:

v(z) = v(zref)
A

z

zref

Bα

(2.9)

18

2.2 – Employed Models

where z is the height above ground, v(z) is the wind speed at height z, zref is a
reference height above ground where the wind speed V (zref) is known and α is the
power law exponent.

Figure 2.4: Example of a TurbSim wind profile generated with the power law

In Figure 2.4, the velocity profile obtained, which represents the mean of the
turbulent velocity field, is depicted. The time series used for simulation is extracted
from the point on the profile that aligns with the hub height of the wind turbine,
highlighted in red in Figure 2.4. Figure 2.5 illustrates the time series extracted from
this specific point. As depicted in this figure, the generated wind exhibits turbulence,
with notable velocity variations. This presents an ideal testing environment to
evaluate the performance of different controllers in a realistic scenario.

Figure 2.5: Wind time series extracted from the wind profile

19

Numerical Methods and Objective

Wind Speed Filter

According to the literature, a low-pass filter was employed to filter the wind speed.
This filtering approach helps in improving the performance and stability of the
control system by reducing the impact of rapid wind speed variations on the
turbine’s response.

In this thesis, a first-order digital low-pass Butterworth filter was used. The
cut-off frequency of the filter was set to one-fourth of the blade resonance frequency,
as specified in the NREL 5 MW technical document [5]:

fc.o. = fr

4 = 0.25Hz (2.10)

The cutoff frequency in the filter corresponds to the frequency at which the signal
is attenuated by -3dB, as observed from the Bode plot of the filter in Figure 2.6.

Figure 2.6: Bode diagram of the employed first-order Butterworth low-pass filter

In Figure 2.7, the filtered wind speed of the generated wind signal in Section (2.2.2)
is illustrated.

Figure 2.7: Example of wind speed after being filtered

20

2.3 – Baseline Controllers

The choice of a first-order filter was made because, although its attenuation is
not the strongest possible, it introduces less phase deviation in the filtered signal
compared to higher-order filters.

2.2.3 Controller Scheme
Each controller developed in this thesis interacts with the plant/environment as
depicted in Figure 2.8. The controller operates in a closed-loop configuration. It
can take both the rotational speed ω and filtered wind speed vfilt states as inputs.
Depending on the control region, the controller’s output will either be the pitch
angle β or the torque τ .

Figure 2.8: General scheme of the closed-loop controller

2.3 Baseline Controllers
The initial phase of this thesis was dedicated to developing controllers based on the
mathematical model of the wind turbine. These controllers represent the current
state of the art in wind turbine control and are widely utilized as a reference for
benchmarking purposes.
Before describing the implementation of the baseline controllers, it is necessary to
discuss the linearization of the model, which is essential in linear control theory.

21

Numerical Methods and Objective

2.3.1 Model Linearization
The development of a baseline controller relies on linear theories, necessitating
the linearization of the nonlinear turbine model. Hence, it is crucial to choose an
appropriate operating point for linearization. The model described by Equation
(2.7) can be linearized around a specific operating point 0 using the Taylor series:

ẇ = f(w, v, β, τg) =

= f(w0, v0, β0, τg0) +
A

∂f

∂w

B
0

(w − w0) +
A

∂f

∂v

B
0

(v − v0)+

+
A

∂f

∂β

B
0

(β − β0) +
A

∂f

∂τg

B
0

(τg − τg0) + ...

(2.11)

If the series is truncated at the first order, the nonlinear equation can be approxi-
mated as follows:

ẇ = A0 + A(w − w0) + Bv(v − v0) + Bβ(β − β0) + Bτ (τg − τg0) (2.12)

where the coefficients A0,A,Bv,Bβ and Bτ are described in the following.
The first coefficient is just the value of the left side of (2.7) evaluated on the
operating point 0:

A0 = f(w0, v0, β0, τg0) (2.13)
If the point is a stady-state point this term is zero.
The second term is the partial derivative with respect to the rotational speed of
the rotor:

A =
A

∂f

∂w

B
0

= 1
J

A
∂τa

∂λ

B
0

A
∂λ

∂w

B
0

(2.14)

A
∂λ

∂w

B
0

= R

v0A
∂τa

∂λ

B
0

= 1
2ρAR

v2
0

λ2
0

CA
∂CP

∂λ

B
0

λ0 − CP0

D
Due to the lack of an analytical solution for the partial derivative of CP with
respect to λ, this derivative has been approximated using a central finite difference
scheme centered around the point 0, utilizing the data from the discrete CP map:A

∂CP

∂λ

B
0

= CP (λ0 + h) − CP (λ0 − h)
2h

The third term represents the partial derivative with respect to the wind speed:

Bv =
A

∂f

∂v

B
0

= 1
J

A
∂τa

∂v

B
0

(2.15)

22

2.3 – Baseline Controllers

A
∂τa

∂v

B
0

= 1
2ρA

1
ω0

CA
∂CP

∂v

B
0

v3
0 + 3CP0v2

0

D
A

∂CP

∂v

B
0

=
A

∂CP

∂λ

B
0

A
∂λ

∂v

B
0A

∂λ

∂v

B
0

= −ω0R

v2
0

The fourth term is the term sensitive to the pitch angle:

Bβ =
A

∂f

∂β

B
0

= 1
J

1
2ρA

v3
0

ω0

A
∂CP

∂β

B
0

(2.16)

Similarly to the previous case, the partial derivative of CP with respect to β is
calculated using a central finite difference scheme:A

∂CP

∂β

B
0

= CP (β0 + h) − CP (β0 − h)
2h

Last term is the derivative of the torque, that is already a linear term:

Bτ = − Ng

Jηg

(2.17)

Thanks to linearization, the system’s behavior around an operating point can
be described by a first-order linear differential equation. However, this model’s
accuracy diminishes as one moves away from the linearization point.

2.3.2 PI Pitch Controller
The state-of-the-art approach for pitch control in Region 2 involves the utilization
of a Proportional-Integrative-Derivative (PID) control law:

β(t) = kP ωe(t) + kI

Ú t

0
ωe(τ)dτ + kD

dωe(t)
dt

(2.18)

where ωe = ω − ωrated is the error between the actual rotor speed and the desired
rotor speed (in this case the rated rotor speed) and the parameters kP , kI , and
kD represent the proportional, integral, and derivative gains of the PID controller,
respectively.
In wind turbine control, the derivative term in a PID controller is often not used

23

Numerical Methods and Objective

because it can amplify measurement noise and introduce instability [13]. At the
end the controller law is just a PI:

β(t) = kP ωe(t) + kI

Ú t

0
ωe(τ)dτ (2.19)

According to linear control theory, the gains kP and kI are obtained from the
linearization of the system around a specific operating point (2.3.1). Typically, the
linearization point is selected as the steady-state value within the operating region
of the turbine.
In this case, the linearization point chosen is:

• ω0 = ωrated;

• v0 = 17m/s;

• τ0 = τrated;

• β0 = βss;

The steady-state point is chosen to satisfy the desired objectives in Region 2.
Multiple steady-state points can be arbitrarily selected within Region 2 based on
the expected wind speed value. In this case, linearization was performed around
the mean operational wind speed within Region 2 of 17 m/s. To obtain the pitch
angle value that ensures this steady-state operation βss, the non-linear equation
was solved:

1
2ρA

CP (βss)
ωrated

v3
0 − τrated = 0 (2.20)

The linearized equation expressed in terms of perturbed variables with respect to
the steady-state value is as follows:

∆ω̇ = A∆ω + Bβ∆β + Bv∆v (2.21)

where the torque term is not present as the torque is kept constant in Region 2
and where:

• ∆ω = w − ωrated

• ∆β = β − βss

• ∆v = v − vlin

These perturbations are assumed to represent small deviations of these variables
away from their equilibrium values at steady state.
By taking the Laplace transform of the controller equation using perturbed values:

∆β = kP ∆ω + kI

Ú T

0
∆ωdt (2.22)

24

2.3 – Baseline Controllers

∆β(s) = kP ∆ω(s) + kI
∆ω(s)

s
(2.23)

the controller transfer function can be derived:

C(s) = ∆β(s)
∆ω(s) = kP + kI

s
(2.24)

At the same way, if the Laplace transform is applied to (2.21):

∆ω̇ = A∆ω + Bβ∆β + Bv∆v (2.25)

s∆ω(s) = A∆ω(s) + Bβ∆β(s) + Bv∆v(s) (2.26)

and putting (2.24) into (2.26):

(s − A)∆ω = Bβ

A
kP + kI

s

B
∆ω + Bv∆v (2.27)

one can derive the transfer function that describes the closed-loop system:

H(s) = ∆ω(s)
∆v(s) = Bvs

s2 − (BβkP + A)s − BβkI

(2.28)

It can be noticed that this system has the same poles of a simple second-order
system:

s2 − (BβkP + A)s − BβkI = 0 (2.29)

s2 + 2ωnζs + ω2
n = 0 (2.30)

By defining the desired natural frequency ωn and damping ratio ζ of the rotor
speed response, one can obtain the weights of the controller:

kP = − 1
Bβ

(2ζωn + A) (2.31)

kI = − ω2
n

Bβ

(2.32)

In linear control theory, it is known that changing these two parameters can have
various effects on the system’s behavior:

• ζ is the damping ratio and it is a dimensionless quantity that determines the
decay of oscillations in the system’s natural response. If ζ is less than 1, the
system exhibits oscillatory behavior. Conversely, if ζ is greater than 1, the
system displays non-oscillatory behavior.

25

Numerical Methods and Objective

• ωn is the natural frequency of the system and it regulates the frequency
response of the system.

In order to investigate the effects of different damping ratios ζ on the system, some
simulations are conducted by applying a step function to the wind input. This
enables the observation of the controller’s response for various ζ values.

The simulation is done under the following conditions:

• the simulation takes t = 200s;

• a step wind from v = 17m/s to 18m/s is applied to the system after t = 100s;

• ζ = [0.5,1,2], while ωn is keep constant;

The response of the rotor speed can be observed under these conditions, providing
insights into its behavior and dynamics.

Figure 2.9: Rotor speed response
under a step change in wind speed
from v = 17m/s to 18m/s with differ-
ent values of ζ (fixed ωn)

Figure 2.10: Pitch angle response
under a step change in wind speed
from v = 17m/s to 18m/s with differ-
ent values of ζ (fixed ωn)

In Figures 2.9 and 2.10, the results of these simulations are presented. Under
the condition of ζ = 0.5, as expected, the rotor speed exhibits a damped oscillation.
When ζ = 1, the response becomes critically damped, characterized by the fastest
possible decay time. Increasing ζ to 2 leads to a longer decay time as the solution.
It is generally undesirable for the pitch angle to exhibit oscillatory behavior. The
optimal value for ζ in this application is indeed 1 because it provides the faster
time response, which is well-suited for applications such as wind turbines where
external wind conditions change rapidly.

The effect of the parameter ωn was studied by conducting an identical simulation
while varying the value of the coefficient ωn and keeping the value of ζ fixed at 1.

26

2.3 – Baseline Controllers

Figure 2.11: Rotor speed response
under a step change in wind speed
from v = 17m/s to 18m/s with differ-
ent values of ωn (fixed ζ)

Figure 2.12: Pitch angle response
under a step change in wind speed
from v = 17m/s to 18m/s with differ-
ent values of ωn (fixed ζ)

From Figure 2.11 and 2.12, it is observed that the pitch angle exhibits an
overshoot in all cases. Among the different values of ωn, the smoothest overshoot
is observed when ωn = 0.5. On the other hand, higher values of ωn result in a
shorter decay time but with a higher overshoot. The desired compromise is to have
a smooth overshoot in order to reduce fatigue on the turbine blades. A commonly
suggested value in the literature [4] is ωn = 0.6.

Based on the conducted test cases, the two optimal parameters suitable for
controlling the wind turbine are as follows:

ωn = 0.6

ζ = 1

Finally, from the coefficients obtained through the linearization process:

• A = −0.238 1/s

• Bv = 0.029 rad/(ms)

• Bβ = −1.229 1/s2

the PI gains can be determined:

kp = 0.782s

ki = 0.292

27

Numerical Methods and Objective

Closed loop Bode Diagram

To analyze the controller’s performance under the oscillatory behavior of the
turbulent wind, the Bode diagram of (2.28) is plotted.

Figure 2.13: Bode diagram of the closed-loop transfer function of the system

From Figure 2.13, one can observe that there exists a specific frequency at which
the controller exhibits the lowest attenuation and no phase shift in the output
signal.

The expected operating region is the one between 0.1-0.5 rad/s, which represents
the typical turbulence frequencies. This is precisely the region where the controller
experiences minimal phase shift but also less attenuation.

2.3.3 PI Scheduling
The problem with using linear control theory for a nonlinear system is that the design
performance is only guaranteed near the design operating point. In applications
such as wind turbines, where the external wind force undergoes rapid variations,
the system experiences frequent changes in its operating point, deviating from the
design point. As a consequence, the system’s performance may deviate from the
expected behavior.

Figure 2.14 depicts the response of the turbine’s rotational speed when subjected
to two different step of the wind: a step from 17 m/s to 18 m/s (in blue) and a step
from 12 m/s to 13 m/s (in orange). When the operating point is altered, it becomes

28

2.3 – Baseline Controllers

Figure 2.14: Rotor speed response without scheduling under two different steps
in wind speed: from v = 17m/s to 18m/s in blue and from v = 12m/s to 13m/s in
orange

apparent that the system’s response, using the previously tuned gains, deviates
from the desired response demonstrated earlier. Specifically, when subjected to
a wind step from 12m/s to 13m/s, the system exhibits oscillatory behavior, as
indicated by the orange curve. The approach to address this issue involves selecting
different weights by different choosing linearization points around various operating
points.

The procedure remains the same as in the previous section, but this time there is
no specific wind speed chosen for linearization. Instead, the coefficients of Equation
(2.21) are dependent on the wind speed:

∆ω̇ = A(v)∆ω + Bβ(v)∆β + Bv(v)∆v (2.33)

From Equation (2.31) and Equation (2.32), it is evident that both gains, kP and kI ,
are dependent on the wind speed (Figure 2.15). In this case, the controller requires
the external wind speed as an additional input to adjust the gain values.

One of the drawbacks of gain scheduling is that it limits the frequency response
analysis to small intervals around specific wind speeds. Since the gains change
with different wind speeds, the linear analysis techniques typically employed for
linear systems become limited in their applicability. This leads to the concept of
a nonlinear proportional-integral (PI) controller, where the controller’s behavior
becomes dependent on the wind speed and non-linearity is introduced into the
controller.

From Figure 2.16, it can be observed that by implementing scheduling, the
controller’s performance can be aligned with the design specifications, resulting in
beneficial effects.

29

Numerical Methods and Objective

Figure 2.15: Proportional and integral gains as a function of wind speed

Figure 2.16: Rotor speed response with scheduling under two different steps in
wind speed: from v = 17m/s to 18m/s in blue and from v = 12m/s to 13m/s in
orange

2.3.4 Kω2 Torque Controller
The need to develop a baseline controller, as mentioned in Section (2.1), arises from
the requirement to handle situations where, for brief periods or certain wind speeds,
the controller may enter Region 1-1.5. In this thesis, the kω2 torque controller,
which is widely used in the state-of-the-art, was chosen as the baseline controller.
However, the Proportional-Integral (PI) controller, employed for pitch control, can
also be adapted for the torque control. Since the maximum power coefficient CPmax

is achieved at the optimal Tip Speed Ratio λ∗, the reference velocity wref should
be adjusted as follows:

wref = λ∗ v

R
(2.34)

30

2.3 – Baseline Controllers

The Kω2 controller for wind turbines implements a torque control strategy to
regulate the generator torque, aiming to achieve maximum power output while
maintaining safe operating conditions. The aim of the controller is to control the
generator torque, in order to reach the CPmax at steady state conditions.

One can set the torque at the steady state value as:

ω̇ = 1
2ρAR3 CPmax

λ3
∗

ω2 − Ng

η
τg = 0 (2.35)

and the torque generator can be determined by:

τg = 1
2ρAR3 CPmax

λ3
∗

η

Ng

ω2 = Kω2 (2.36)

where:
K = 1

2ρAR3 CPmax

λ3
∗

η

Ng

(2.37)

It can be observed that the coefficient K depends on both the turbine characteristics
and the environmental conditions, as well as the level of turbine degradation.
Moreover, this controller does not require wind velocity as a control feedback, but
the only required feedback is the rotation speed of the turbine.

In this case, the controller was also tested using a wind step of 1 m/s inten-
sity from 5m/s to 6m/s. As observed in Figure 2.17, the rotor rotation speed
adjusts itself to reach the optimal TSR. Additionally, it can be seen that the coeffi-
cient of power tends to approach its maximum value under steady-state conditions.

Figure 2.17: Response of rotational speed and dimensionless power coefficient
with his maximum value to a step change in wind speed from 5 m/s to 6 m/s

31

Numerical Methods and Objective

2.4 Advanced Model Based Controller
In the application of classical controllers to wind turbines, there are several lim-
itations associated with these approaches. As mentioned earlier, these methods
rely on a linear model that is accurate only near the linearization point. Hence,
there is a need to find a controller that can optimize performance across the entire
operating range. One such controller that can meet these requirements is Model
Predictive Control (MPC).
MPC is a control approach that is still based on the wind turbine model, but it
offers several advantages [14]:

• it allows for optimal decision-making for dynamic systems, considering both
the current state and predicted future behavior;

• it offers the capacity to handle constraints, such as pitch rate and rotor speed,
by incorporating them into the optimization problem formulation;

• it allows for handling Multi-Input-Multi-Output (MIMO) control problems.

While this thesis focuses on the development of Single-Input-Single-Output (SISO)
controllers, the first two advantages mentioned above are promising for the devel-
opment of such controllers.

2.4.1 Model Predictive Control (MPC)
MPC enables optimal decision-making for dynamic systems subject to operational
constraints. It relies on predicting future system behaviors and iteratively optimiz-
ing control signals to achieve desired objectives while ensuring compliance with
specific constraints.
In this thesis, a linear and discrete Model Predictive Control (MPC) approach is
developed as a proof of concept. Although a non-linear continuous MPC would
have been a more suitable choice in theory, its implementation complexity led to
the preference for the linear MPC, which shares fundamental similarities in key
aspects of the control strategy.
MPC is associated with the following definitions:

• sampling time ∆t: is the time interval between consecutive measurements
of system states (for continuous-time systems ∆t = 0);

• time horizon NT : is the total number of time steps of the entire simulation;

• prediction horizon N : is the number of time steps of the prediction window
over which future states are estimated and optimized;

32

2.4 – Advanced Model Based Controller

• cost function J : is a mathematical formulation that quantifies the perfor-
mance objectives of the control problem. By minimizing this function, the
optimal control inputs can be found.

Referring to (2.21) the transformation into the discrete-time linear time-invariant
(LTI) system is:

∆ωk+1 = Ad∆ωk + Bd
β∆βk + Bd

v∆vk (2.38)

It can be noticed that the matrices A, Bτ , and Bv of the continuous system are
different from the matrices of the discrete system, denoted with the superscript d.
When applying the explicit Euler method to discretize the linear ordinary differential
equation, it is observed that:

Ad = 1 + ∆tA

Bd
β = ∆tBβ

Bd
v = ∆tBv

The constrained sets for the state and control input can be defined as follows:

X = {∆ω ∈ R : Fx∆ω ≤ gx} (2.39)

U = {∆β ∈ R : Fu∆β ≤ gu} (2.40)

In this case, the essential constraints regarding the rotational speed can be defined
as follows:

0 ≤ ω ≤ 2 · ωrated (2.41)

This set could be written in terms of the perturbed values:

−ωrated ≤ ∆ω ≤ ωrated (2.42)

One can write these constraints in a compact way:

Fx∆ω ≤ gx (2.43)

where the matrices are:
Fx =

C
1

−1

D
gx =

C
ωrated

ωrated

D
(2.44)

Constraints for the pitch controller can be defined as follows:

• pitch angle limits:
βmin ≤ β ≤ βmax (2.45)

• pitch rate limits:
β̇min ≤ β̇ ≤ β̇max (2.46)

33

Numerical Methods and Objective

If the pitch angle ratio constraints are discretized using the explicit Euler method:

β̇ = β − βk−1

∆t
(2.47)

they can be rewritten as follows:

βk−1 + β̇min∆t ≤ β ≤ βk−1 + β̇max∆t (2.48)

Considering both the pitch angle and the pitch angle ratio saturation constraints
that need to be respected, the overall constraints can be summarized as follows:

max(βmin, βk−1 + β̇min∆t) ≤ β ≤ min(βmax, βk−1 + β̇max∆t) (2.49)

Pitch angle constraints can be expressed concisely as follows:

Fu∆β ≤ gu (2.50)

where the matrices are:

Fu =
C

1
−1

D
gu =

C
min(βmax, βk−1 + β̇max∆t) − βss

−max(βmin, βk−1 + β̇min∆t) + βss

D
(2.51)

The cost function with a prediction horizon N at time instant k is defined as
follow:

Jk = ∆ωT
k+N |kQN∆ωk+N |k +

k+N−1Ø
i=k

∆ωT
i|kQ∆ωi|k + ∆βT

i|kR∆βi|k (2.52)

where the predicted state ∆ωi|k and control input ∆βi|k at time instant i are
computed during the prediction step at time instant k. The coefficients R and Q
are weight coefficients that can be arbitrarily chosen and represent the importance
in optimizing the states or the control law. For instance, if the matrix R is larger
than Q, it implies that the control law is more important than the desired state.
Optimizing the control law might be necessary to minimize the energy expended in
controlling the system. On the contrary, as chosen in this thesis, having a greater
Q matrix than R means giving more importance to the state being controlled. The
coefficient QN is called the terminal cost coefficient and is necessary to achieve
stability. The stability of the optimal control problem can be demonstrated if the
terminal cost QN is appropriately chosen [15].
By assuming an LQR feedback law βk = Kωk, the terminal cost coefficient can be
determined by imposing that the optimal cost should decrease at the next step:

J∗
k ≥ J∗

k+1

34

2.4 – Advanced Model Based Controller

where the superscript ∗ represents the optimal solution. As shown in [15], the
terminal set can be found by solving the discrete-time Riccati equation:

Q + K⊤RK − QN + (Ad + Bd
βK)⊤QN(Ad + Bd

βK) = 0 (2.53)

The MPC approach, given the current state ∆ωk|k, aims to optimize the cost
function Jk over a certain time window composed of N < NT timesteps:

Jk = ∆ωT
k+N |kQN∆ωk+N |k +

k+N−1Ø
i=k

∆ωT
i|kQ∆ωi|k + ∆βT

i|kR∆βi|k

that is subjected to the following constraints:

∆ωk+1 = Ad∆ωk + Bd
β∆βk + Bd

v∆vk

Fx∆ω ≤ gx

Fu∆β ≤ gu

The result of the MPC is a control sequence over the time horizon, from which only
the first value of the sequence βk|k will be taken and applied to the system. The
same optimization problem is repeated for each time step in the MPC approach.
In this thesis, (2.38) is simplified as follows:

∆ωk+1 = Ad∆ωk + Bd
β∆βk (2.54)

The cancellation of the external wind disturbance forcing term was carried out due
to the absence of the capability to predict future wind conditions in the considered
architecture. This action resulted in assuming a constant and fixed wind speed at
time instant k across the entire prediction horizon. It is important to note that
new wind turbine architectures equipped with LIDAR technology enable wind
speed prediction within a time window. However, for the purpose of conducting a
comparison with other controllers’ architectures, the choice was made to refrain
from using this predictive capability and, instead, assume a constant wind speed
for the entire prediction horizon.
As shown in [16], the previously described optimization problem can be reformulated
to make it more manageable and easier to implement. From (2.54) it can be
obtained:

ωk|k
ωk+1|k

·
·
·

ωk+N |k

=

I
Ad

·
·
·

AdN

ωk +

0 0 · · · 0
Bβ 0 · · · 0
· · · · · ·
· · · · · ·
· · · · · ·

AdN−1
Bβ AdN−2

Bβ · · · Bβ

βk|k
βk+1|k

·
·
·

βk+N−1|k

(2.55)

35

Numerical Methods and Objective

In matrix form, it becomes:

Ωk = AXωk + BXUk (2.56)

Similarly, by defining:

QX =

Q · 0 0
· · · ·
0 · Q 0
0 · 0 QN

 ; RU =

R · 0 0
· · · ·
0 · R 0
0 · 0 R

 ; (2.57)

the cost function (2.52) can be represented:

Jk = Ωk
T QXΩk + Uk

T RUUk (2.58)

By expressing:

FX =

Fx · 0 0
· · · ·
0 · Fx 0
0 · 0 Fx

 ; gX =

gx
·

gx
gx

 ; FU =

Fu · 0 0
· · · ·
0 · Fu 0
0 · 0 Fu

 ; gU =

gu
·

gu
gu

 ;

(2.59)
the constraints can be represented in:

FXΩk ≤ gX (2.60)

FUUk ≤ gU (2.61)

Finally, by setting the following matrices:

z =
C
Ωk
Uk

D
; H =

C
QX 0
0 RU

D
; (2.62)

the cost function can be represented with a single vector:

Jk = zT Hz (2.63)

The constraints can also be combined into a single vector:

Fz ≤ g (2.64)

by defining the matrices:

F =
C
FX 0
0 FU

D
; g =

C
gX
gU

D
; (2.65)

36

2.5 – Model Free Controllers

The equation (2.54) can be compacted in:

Feqz = geq (2.66)

by combining the matrices:

Feq =
è
I −BU

é
; geq = AXωk; (2.67)

The original optimization problem can be represented as a quadratic programming
(QP) problem as below:

minimize zT Hz
subject to Fz ≤ g

Feqz = geq

In this form, this QP problem can be solved using the Python package cvxopt [17].
In MPC this optimization problem is solved during each time instant k and the
first element of U∗

k is applied to the system:

βk = βk|k

in whitch the superscript ∗ represents the optimal solution.

2.5 Model Free Controllers
In the context of model-free controllers, a control problem can be seen as an
optimization problem where the objective is to find the optimal control function
while satisfying the system dynamics. The goal is to minimize or maximize a
function that quantifies the controller’s performance. Control methods can be
categorized as white, grey, or black, depending on the level of system knowledge
utilized in the optimization process. A white approach (as the controllers described
before) relies heavily on the analytical description of the system, while a black-box
or model-free approach relies solely on input-output data and interacts directly
with the system. These models have the flexibility to describe nonlinear functions
without the need for prior knowledge or assumptions, making them suitable for
problems that are challenging to address analytically or replicate accurately in
numerical simulations. Machine learning methods, such as Genetic Programming
and Reinforcement Learning, and global optimization techniques, such as Bayesian
Optimization, have gained prominence in the field of control.

By harnessing the potential of machine learning, the complex control challenges
encountered in wind turbine systems can be address. As discussed in the previous

37

Numerical Methods and Objective

sections, these challenges often involve nonlinear dynamics and may lack a precise
mathematical representation. Machine learning approaches, with their model-free
nature, offer significant advantages such as adaptability and robustness, enabling
the controllers to adapt to changing environmental conditions and uncertainties.
These characteristics make machine learning particularly suitable for wind turbines,
which are subjected to varying wind speeds and turbulence, leading to dynamic
complexities.

In the subsequent sections, some of the most important model-free control
approaches and their applications are presented.

2.5.1 Bayesian Optimization (BO)
The Bayesian Optimization (BO) is arguably the most popular "surrogate-based",
derivative-free, global optimization tool. In its simplest mathematical form, the
problem can be formulated as follows:

x∗ = arg min
x

f(x) (2.68)

The key components of BO include:

• cost function: in this case denoted as f(x), represents the objective that
needs to be minimized. It maps input parameters x to a scalar value that
measures the performance or quality of a given configuration.

• acquisition function: determines the utility or desirability of evaluating
a specific point in the parameter space. It combines information from the
current state of knowledge about the cost function and its uncertainty. The
acquisition function guides the search by balancing exploration (sampling
points with high uncertainty) and exploitation (sampling points with high
potential for improvement).

BO leverages these components to iteratively search for the optimal solution,
aiming to minimize the number of evaluations required while efficiently exploring
the parameter space. In its most classic form the BO uses a Gaussian process for
regression of the cost function under evaluation and the acquisition function to
decide where to sample next. BO is particularly useful when the objective function
is expensive to evaluate, as it intelligently selects new points to evaluate based on
the surrogate model’s predictions [18].

For these reasons, BO is a powerful approach for optimizing black-box functions.
When applied to black-box optimization problems, BO aims to find the global
optimum of an objective function without making any assumptions about its
analytical form or structure.

The BO process can be summarised as:

38

2.5 – Model Free Controllers

Figure 2.18: BO iterative process, reference [18]

• Initially, a surrogate model, such as a Gaussian process, is fitted to the observed
data points. This surrogate model represents the unknown response surface of
the objective function.

• The acquisition function guides the search by evaluating the utility of sampling
a new point in the search space.

• The optimization process iteratively selects the next point to evaluate based
on the acquisition function. The objective function is then evaluated at this
point, and the surrogate model is updated with the new observation.

• This iterative process continues until a stopping criterion, such as a maximum
number of iterations or a convergence threshold, is met.

Implementation

In this scenario, the training of a model-free controller is converted into a black-
box optimization problem by prescribing the parametric form of the control law
(Figure 2.19). The problem at hand involves determining the optimal gains for a
Proportional-Integral (PI) controller, without any prior knowledge of the underlying
system model. The aim of Bayesian Optimization (BO) is to identify the parameter
values of kP and kI that minimize the cost function value J over an episode:

J(kP , kI) =
Ø

t

(ω − ωrated)2

N
(2.69)

39

Numerical Methods and Objective

It should be noted that the cost function is a function of the gains of the PI
controller, as these gains determine the dynamic response of the system.

The problem (2.68) can be reformulated as follows:

k∗ = arg min
k

J(k) (2.70)

where:
k =

C
kP

kI

D
(2.71)

Figure 2.19: BO interpreted as a black box optimization problem of a parameter-
ized control law

In this thesis, the Python package "gp minimize" from Skopt was utilized to
execute the optimization code. Skopt is a library in Python that provides tools
for Bayesian optimization [19]. Gp minimize is a specific function within Skopt
that implements the Gaussian Process-based Bayesian optimization algorithm for
finding the minimum of a given objective function.

Gp minimize offers various parameters for Bayesian optimization. In this work,
the following parameters were used:

• The dimension of the search space, representing the bounds for the two gains
of the PI controller, was selected based with their theoretical values:

kP = [0,100] (2.72)

kI = [0,100] (2.73)
This ensures that the optimization process explores a relevant range of values
within the parameter space to find an optimal solution.

• "gp hedge" acquisition function was used. It probabilistically choose one of the
following acquisition functions at every iteration: "LCB" (Lower Confidence
Bound),"EI" (Expected Improvement),"PI" (Probability of Improvement).

• The remaining parameters were left at their default values.

40

2.5 – Model Free Controllers

2.5.2 Genetic Programming (GP)
Genetic programming (GP) algorithms offer the advantage of exploring a large
solution space and effectively handling non-linearities in optimization problems. In
contrast to the parametric optimization approach (e.g., Bayesian Optimization), the
method used in this application involves optimizing both the parameters and the
structure of the program. Specifically, Genetic Programming (GP) falls within the
category of Evolutionary Algorithms (EA), which draw inspiration from the natural
process of evolution. EA commences with a population of candidate solutions
and applies genetic operators like mutation and crossover iteratively to generate
new candidates. The fitness of each solution is evaluated based on an objective
function, and the fittest individuals are selected to reproduce and pass on their
genetic information to the next generation. Through this process, the algorithm
converges towards an optimal solution to the problem at hand. In the context of
this thesis, GP will be applied to find the wind turbine’s control law, utilizing its
ability to optimize both parameters and program structures to achieve effective
control strategies.

There are several key components that need to be defined to program with GP.
One of them is the primitive set (Figure 2.20) which in turn is composed of:

• function set: is a set of arithmetic functions that allow the algorithm to test
and explore during his search (+, −, ·, ...);

• terminal set that is composed by:

– arguments: such as some inputs of the system (x, ...);
– constants: some particulars constant value that one want to pass to the

GP algorithm (1.0, ...);

Figure 2.20: Primitive set of GP, reference [20]

In the context of the tree formalism, the representation of the primitive set can
be achieved. For instance, considering a function from the function set, like
multiplication with two inputs, the resulting tree structure exhibits two branches
(Figure 2.21).

41

Numerical Methods and Objective

Figure 2.21: Root of the tree formalism, reference [20]

Each branch can be associated with an argument, a constant value from the
terminal set, or another function with additional branches. The tree ends when all
its branches are occupied by values from the terminal set (Figure 2.22).

Figure 2.22: Example of a tree, reference [20]

The tree can thus be interpreted as a function:

f(x) = x(x − 1) + 1

Every tree represents a function and is referred to as an individual. The opti-
mization process involves evolving these individuals. The way in which individuals
evolve is possible thanks to the genetic operations of:

• replication: involves the creation of offspring by replicating genetic material
from selected parent individuals;

• mutation: involve creating sub-trees. By replacing a terminal set element
with a function from the function set, the tree’s complexity can be increased;

42

2.5 – Model Free Controllers

• crossover: is the genetic operation where two individuals exchange genetic
material, resulting in a new individual that combines characteristics from both
parents.

In Figure 2.23, the genetic operations are summarized graphically.

Figure 2.23: Replication, mutation and crossover in GP, reference [20]

Another essential element in GP is the cost function. Once the search space is
defined using the primitive set, the quality of an individual can be assessed through
the cost function. As mentioned in the previous sections, the cost function is a
mathematical function that assigns a scalar value to an individual, representing its
fitness. A lower value of the cost function indicates a better individual in terms of
the optimization objective.

The workflow followed by GP is illustrated in Figure 2.24:

• the initial step involves having a given population consisting of a pool of trees;

• each tree represents a solution candidate that takes specific arguments as
inputs and produces corresponding outputs to be evaluated using the cost
function;

43

Numerical Methods and Objective

Figure 2.24: GP workflow, reference [20]

• after obtaining the fitness values for each individual in the population, a
selection process is performed to retain the better individuals, ensuring their
progression to the next generation;

• finally, the best individuals are evolved by applying genetic operations such
as mutation and crossover, leading to the creation of new individuals for the
subsequent iterations.

The initialization of the population holds great significance as it defines the initial
search space in which an optimal solution is sought. The optimization process is
profoundly influenced by the initial conditions, necessitating a well-defined initial
population that allows for thorough exploration of all potential opportunities within
the search space.

Firstly, the tree needs to be defined for:

• depth: refers to the distance from the root node to the farthest leaf node,
representing the number of levels or generations within the tree structure;

• length: refers to the total number of nodes or elements present in the genetic
programming tree, including both internal nodes and terminal nodes.

There are mainly 3 methods to carry out the formation of a tree:

44

2.5 – Model Free Controllers

• full method: given a maximum depth nodes are chosen randomly in the
function set. Then the leafs are filled randomly with terminals (Figure 2.25).

Figure 2.25: Formation of a tree with the full method, reference [20]

• grow method: the nodes are chosen not only by the function set but also
from the terminal set randomly until the maximum depth is satisfied (Figure
2.26).

Figure 2.26: Formation of a tree with the grow method, reference [20]

• half-half method: is a combination of the two previous methods, where half
of the population is generated using one method and the other half using the
other method.

After defining the primitive set, the evaluation of each individual in the pop-
ulation is performed using the cost function to assess their fitness. This step
allows us to measure the quality of the solutions and identify the better-performing
individuals.

When presented with a list of cost functions for each individual in the population,
two primary methods can be employed to select the best individuals to retain in
the optimization algorithm:

• tournament selection: this algorithm takes randomly N individual from
the population and take the best one (Figure 2.27).

45

Numerical Methods and Objective

Figure 2.27: Tournament method for the selection of the individuals, reference
[20]

• fitness proportional: this method discard worst and evolve best according
to their obtained fitness (Figure 2.28).

Figure 2.28: Fitness proportional method for the selection of the individuals,
reference [20]

Once the individuals have been selected, the evolution process involves applying
genetic operations and potentially performing eliminations. Various approaches
can be utilized in this context:

• eaSimple: is the simplest evolutionary algorithm without the elimination
part. The parent population Pµ is duplicated, and all the genetic operations
are performed on this subset. Then, the parents are replaced by the offspring
Pλ, and the next step of the optimization problem is carried out.

• µ + λ method: is an evolution of the previous approach. The populations
of parents and offspring are kept separate, and the best individuals from
both populations are selected. This method retains the best solutions from
the previous optimization, aiding the convergence of the algorithm in the
subsequent steps.

• (µ, λ) method: only individuals from the offspring population are selected
for the next generation. In the literature, it is often suggested to have a larger

46

2.5 – Model Free Controllers

parent population compared to the offspring population, and a typical optimal
ratio is:

Pµ

Pλ
≈ 5

Implementation

In this application of GP, the objective is to identify the optimal policy for controlling
the pitch angle during above-rated operation. The following presents all the
parameters and methods utilized to configure the GP application for pitch angle
control.

In that thesis, the DEAP framework is utilized, which is a Python library offering
tools for creating and executing evolutionary algorithms and genetic programming
[21]. With DEAP, the primitive set can be defined, including the specification of
the individual’s size. In the genetic programming algorithm developed for this
project, the operation set includes:

• add (addition, arity 2)

• sub (subtraction, arity 2)

• mul (multiplication, arity 2)

• protectedSquare (protected square, arity 1)

• abs (absolute value, arity 1)

• protectedSqrt (protected square root, arity 1)

• protectedDiv (protected division, arity 2)

• protectedLog (protected logarithm, arity 1)

• protectedExp (protected exponential, arity 1)

• sin (sine, arity 1)

• tanh (hyperbolic tangent, arity 1)

The protected functions are similar to their counterparts, but include safeguards
to prevent certain mathematical errors (such as division by zero or taking the
square root of a negative number). These operations were chosen based on their
relevance to the problem being addressed and their ability to express a wide range
of mathematical relationships.

As terminal set arguments were chosen:

• the instantaneous rotor speed

47

Numerical Methods and Objective

• the instantaneous wind speed

• the time-integral of the error:Ú T

0
e(t) dt =

Ú T

0
[ω(t) − ωrated(t)] dt

On the other hand, as terminal set variables, random constants ranging from −1
to 1 and the rated wind speed value wrated were taken. These choices were made
based on their relevance to the problem at hand and the nature of the optimization
algorithm. The inclusion of the time-integral of the error allows the algorithm to
account for past performance and adjust accordingly, while the random constants
offer an element of exploration to the search process. Finally, the use of the rated
rotor speed value ωrated ensures that the resulting solution will perform optimally
under normal operating conditions.

After the initialization of the population is done, the cost function, which needs
to be minimized in this case, is defined as in (2.69):

J =
Ø

t

(ω − ωrated)2

N
(2.74)

A half-and-half method is utilized, as previously described, with a minimum and
maximum tree depth of 1 and 3 respectively. By utilizing this method, the genetic
programming algorithm can explore and evolve individuals with varying depths to
find an optimal policy for controlling the wind turbine’s pitch angle.
In this simulation, tournament selection is used to select individuals for the next
generation in which the size of our tournament algorithm is 7.

The size of the population is a crucial parameter that needs to be carefully
chosen. A larger population allows for a bigger search space, potentially leading to
better solutions, but it also increases the computational time. The (µ + λ) method
was chosen, which combines the parent and offspring populations and selects the
best individuals from both. The following lines summarize the other parameters
have been used :

• 50 is the number of individuals for each population;

• 65 is the maximum number of offspring;

• 0.65 is the crossover probability;

• 0.25 is the mutation probability;

• the algorithm runs for 43 generations, after which it identifies the best indi-
vidual that represents the solution to the optimization problem.

48

2.5 – Model Free Controllers

2.5.3 Reinforcement Learning (RL)
Machine Learning (ML) is a field of artificial intelligence where algorithms enable
computers to learn from data and improve their performance on a specific task
without being explicitly programmed.

It is possible to identify three categories of ML:

• supervised learning: is the branch of machine learning that maps from
input to output. It involves training the model on a known data set, allowing
it to generalize and predict the correct output for unseen inputs.

• unsupervised learning: learns to map input data to itself. Its primary
objective is to discover inherent structures, patterns, or representations within
the data, such as clustering similar data points together.

• reinforcement learning: is a sub-field of machine learning that deals with
the problem of an agent learning how to make sequential decisions in an
environment to maximize a cumulative reward. The agent interacts with the
environment and receives feedback in the form of rewards or penalties based
on its actions. The goal of RL is to find an optimal policy or strategy that
guides the agent to take actions that lead to the highest possible long-term
reward.

Below, the most important concepts underlying RL are introduced:

• environment: refers to the external system or the context in which an agent
operates and interacts. It encompasses all dynamics that the agent interacts
with, including the state of the system, possible actions the agent can take,
and the feedback received in response to its actions.

• agent: is an entity or an algorithm that interacts with the environment to
learn and make decisions. The agent’s objective is to maximize the reward it
receives from the environment over time.

• state s(t): represents the current situation or configuration of the environment
at a specific point in time.

• action a(t): represents the specific move or decision that the agent can take
in response to a given state.

• reward r(t): is a scalar value or feedback signal that the environment provides
to the agent after it takes a particular action in a given state.

• policy π: is a strategy to map the agent’s actions based on its current state
or the observed environment. It specifies the agent’s behavior and guides its

49

Numerical Methods and Objective

decision-making process to maximize the expected cumulative reward over
time. The policy in RL can be either stochastic or deterministic, guiding the
agent’s decision-making process with randomness or determinism, respectively.

• value function V (s) or Q(s, a): is a function that estimates the expected
cumulative reward an agent can achieve from a specific state or state-action
pair, based on a given policy. It serves as a critical tool for guiding the agent’s
decision-making process to maximize long-term rewards during the learning
process.

In general, a Reinforcement Learning (RL) algorithm follows the scheme of the
Figure 2.29.

Figure 2.29: RL algorithm, reference [22]

It works by allowing an agent to interact with an environment over multiple time
steps. The agent takes actions based on a policy to explore and learn from the
consequences of its decisions. Through trial and error, the agent receives rewards or
penalties, updating its knowledge and improving its policy to maximize cumulative
rewards over time, leading to a more effective decision-making strategy.

It is important to emphasize that there are two approaches to RL: model-based
and model-free. The main difference lies in the fact that the model-based approach
uses a learned model of the environment to plan actions, while the model-free
approach directly learns the policy or value function without explicitly modeling
the environment. In this thesis, the model-free approach has been chosen.

The total discounted reward represents the sum of the rewards an agent expects
to receive from the current time step to the end of the episode, where future rewards
are discounted by a factor to account for the uncertainty and time preference:

Gt =
∞Ø

k=0
γkrt+k+1 (2.75)

where:

• rt+k+1 is the reward received at time step t + k + 1;

50

2.5 – Model Free Controllers

• γ is the discount factor and 0 ≤ γ ≤ 1;

The total discounted reward serves as a measure of the cumulative rewards an agent
can expect to receive over time, factoring in the time preference and uncertainty
through the discount factor. The discount factor determines the importance of
immediate rewards relative to future rewards. A smaller γ emphasizes immediate
rewards, while a larger γ values future rewards more.

As mentioned earlier, the value function is an estimate of the potential reward
achievable starting from state sk and following policy π for the action selection
process until the end of the episode:

V π(sk) = Eπ [Gt | sk] (2.76)

where Eπ represents the expected return conditioned on the state sk, considering
the actions chosen according to the policy π. In essence, the equation expresses
the expected cumulative reward in the future when starting from state sk and
following the policy π. At the same way, it can be defined the action-value function
as the expectation of the sum of rewards an agent can obtain starting from state
sk, taking action ak, and then following policy π for the action selection process
until the end of the episode:

Qπ(sk, ak) = Eπ [Gt | sk, ak] (2.77)

The only difference between the value function and the action-value function is that
in the latter, there is no averaging over the policy, as the action being evaluated is
assumed to be already known. Both (2.76) and (2.77) are known also as Bellman
equations.

In summary, the objective of RL is to maximize the value function or the
action-value function of the initial state by following a policy π that has been
parameterized with some weights w.

Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) refers to the combination of deep learning
techniques with reinforcement learning algorithms. In DRL, Artificial Neural
Networks (ANN) are utilized to approximate the value function, policy function,
or a combination of both in the RL process. These neural networks enable the
RL agent to effectively handle high-dimensional input spaces and learn intricate
representations of the environment.

A neural network is a computational model inspired by the structure and function
of the human brain. It consists of interconnected layers of artificial neurons that
process and transform data, allowing it to learn patterns, make predictions, and
solve complex tasks through a process known as deep learning. A neuron is a

51

Numerical Methods and Objective

computational units that hold a number, typically between 0 and 1. As said
previously, neurons are organized into layers: an input layer, one or more hidden
layers, and an output layer. Neurons within each layer are fully connected to neurons
in the subsequent layer. The input layer receives data, and the hidden layers process
and transform it through weighted connections and activation functions, while
the output layer generates the final predictions or results of the network. The
functioning of a neural network can be better explained by considering, for example,
the structure proposed in the Figure 2.30.

Figure 2.30: ANN scheme, reference [20]

Taking the example of the first neuron in the second hidden layer, this is obtained
by:

y
(3)
1 = σ(w(2)

1,1y
(2)
1 + w

(2)
2,1y

(2)
2 + b

(3)
1) (2.78)

where:

• y
(j)
i is the value associated at the neuron i in the layer j;

• w
(j)
i,k is the weight of the neuron i in the layer j that relate the neuron k;

• b
(j)
i is the bias, an additional parameter added to each neuron that allows the

network to model non-linear relationships, of the neuron i in the layer j;

• σ is the activation function. Since each neuron should be a value between 0
and 1, this function scales the output to ensure it falls within the range of 0
and 1. One of the most commonly used functions is the sigmoid function:

σ(z) = 1
1 + e−z

(2.79)

The output of the third layer it can be written in matrix form:

y(3) = σ(W23y(2) + b(3)) (2.80)

52

2.5 – Model Free Controllers

where:

W23 =

w

(2)
1,1 w

(2)
2,1

w
(2)
1,2 w

(2)
2,2

w
(2)
1,3 w

(2)
2,3

y(2) =
C
y

(2)
1

y
(2)
1

D
b(3) =

b

(3)
1

b
(3)
2

b
(3)
3

 (2.81)

Therefore, using the matrix formula, starting from the input layer, one can proceed
through the network layers to reach the output layer and obtain the output values.
Of course, both the input layer and the output layer can consist of multiple neurons,
and there can be multiple hidden layers in between. The function obtained at the
end is highly nonlinear and can approximate any function.

The architecture described above is a feed-forward neural network, where data
moves in a single direction, from the input layer to the output layer. There are
no cycles or feedback in the architecture, and data flows only forward. Another
example of neural network architectures is the recurrent neural network. It is an
architecture that allows cyclic connections between neurons.

To achieve the desired performance of the ANN, it requires training, which
involves adjusting the weights. The main steps to train a neural network are
initializing the parameters, performing a forward pass for predictions, calculating
the loss, and iteratively updating the parameters using optimization algorithms
like gradient descent to minimize the loss and improve performance.

Deep Deterministic Policy Gradient

In this thesis, the Deep Deterministic Policy Gradient (DDPG) is employed. DDPG
is a model-free off-policy RL algorithm that combines deep learning and policy
gradient methods to handle continuous action spaces. It is particularly well-suited
for tasks with continuous control, such as wind turbine control. DDPG maintains
two neural networks, an actor network and a critic network (Figure 2.31).

Figure 2.31: ANN for DDPG, actor-acritc model, reference [20]

53

Numerical Methods and Objective

The actor network takes the current state of the environment as input and
outputs a continuous action. The critic network, on the other hand, takes both
the current state and the action as inputs and estimates the expected cumulative
reward. The core idea behind DDPG is to use the actor network to approximate
the optimal policy and the critic network to approximate the optimal action-value
function. The actor network is updated by following the gradient of the expected
cumulative reward with respect to the policy parameters. The critic network
is updated using the temporal difference error, which measures the discrepancy
between the estimated value of a state-action pair and the actual observed reward.
One key aspect of DDPG is the use of replay buffers, which store the agent’s
experiences (state, action, reward, next state) in a memory buffer. During training,
samples are randomly drawn from the replay buffer to break the sequential corre-
lation and improve the learning efficiency. Overall, DDPG leverages deep neural
networks to learn both a policy and an action-value function to guide the agent’s
decision-making process in continuous action spaces. It combines the benefits of
policy gradient methods and the stability of Q-learning to achieve effective and
stable learning in complex environments.

Implementation

In this thesis, the Python package Stable Baselines [23] with TensorFlow [24] was
used to implement DDPG. Stable Baselines is a powerful library that provides a
collection of state-of-the-art reinforcement learning algorithms, including DDPG.

The most important aspect of the implementation is creating the environment
with which DDPG interacts. Stable Baselines provides support for creating custom
environments, and the structure of the environment implemented in this thesis is
as depicted in the Figure 2.32.

Figure 2.32: DDPG structure implemented in this thesis

The environment interacts with the agent at each time step k. At each time
step, the environment provides the agent with the 2-dimensional states (rotational

54

2.5 – Model Free Controllers

speed ωk and filtered wind speed vk) as well as the instantaneous reward rk:
rk = −(ωk − ωrated)2 (2.82)

The agent then generates a single continuous output action βk based on this
information.

The default configuration in Stable Baselines for the actor and critic networks
consists of two fully connected hidden layers with 64 neurons each (MLP policy).

The number of trainable parameters in the DDPG policy using Stable Baselines
with two state values and a single continuous action can be estimated to be
approximately 257 parameters for the actor network and 8257 parameters for the
critic network. The total number of parameters to be trained is 8514.

2.5.4 Algorithms
Each model free controller was trained using the same environment to enable
meaningful comparisons.

The performance evaluation is conducted within episodes of duration T = 300
s. Each episode defines the length of one simulation, and since the simulation’s
time step is ∆t = 0.025s, the total length of one episode is T/∆t = 12000 time
steps. The chosen time T is adequate as it strikes a balance between allowing
sufficient time for the controller’s performance to settle and avoiding prolonged
initial transients that may render them less meaningful. Additionally, from a
physical standpoint, it is significant as it corresponds to approximately 60 rotations
under rated conditions.

Five different wind profiles were generated using TurbSim, each characterized
by varying levels of turbulence intensity and spanning the entire Region 2 (Table
2.2).

Wind Mean Wind Speed [m/s] Turbulence Intensity (TI) [%]
Wind1 13 5
Wind2 15 8
Wind3 17 9
Wind4 20 11
Wind5 23 12

Table 2.2: Set of the wind profiles and their characteristics used for training the
model-free controllers

These profiles were randomly generated to capture the stochastic nature of
real-world wind conditions. The wind signal was passed through a filtered control
system, as explained earlier.

55

Numerical Methods and Objective

An instantaneous reward signal r(t) is produced at each time step (for RL):

r(t) = −(ω(t) − ωrated)2

and a cumulative reward signal R is produced at the end of the episode (for BO
and GP):

R =
Ø

t

(ω − ωrated)2

N

Both measure the controller performances and are maximum (for RL) and minimum
(for GP and BO) when the control law is optimal.

BO and GP updates the control law at the end of the episodes (line 11-12) while
the reinforcement learning algorithm updates at each episode.

The following algorithm was followed:

Algorithm 1 Approach for the Optimal Control Law Derivation
1: Initialize a possible control law β = π(v; w);
2: for n in (1, Nepisodes) do
3: Initialize the inflow velocity v∞ by randomly choosing one of the 5 wind

profiles in Region 2;
4: for t in (1, T) do
5: Feed the current state s = (vt, ωt) to the controller;
6: Get action βt+1 following current control law π;
7: Evolve the wind-turbine state st → st+1;
8: Compute the reward rt associated with the change of state st → st+1

and current action βt;
9: Update control law weights (for DDPG);

10: end for
11: Update control law weights (for BO);
12: Update control law π (for GP);
13: end for

56

Chapter 3

Experimental Methods and
Objective

3.1 Control Objective

The objective of the experimental campaign is to test some of the various controllers
developed in the numerical part in wind tunnel with a scale model of a wind turbine.
The intention is to provide a proof of concept for the actual functioning in a real
application of the previously developed controllers.

The control objectives of this experimental campaign were to develop a control
system that reproduces the same conditions as Region 2. As explained earlier, the
goal is to maintain a constant rotational speed by simulating a condition where the
wind speed is above the rated speed. However, the wind turbine model used does
not allow control through pitch. For this reason, rotational speed control is achieved
through torque. This leads to slight differences in the control law compared to
those developed in the numerical part.

The paragraph structure closely resembles the methodology employed in the nu-
merical section. It begins with an introductory section explaining the experimental
setup, followed by a description of how the power coefficient curve of the turbine
is derived. The subsequent section presents the implementation of the developed
controllers (PI, PI with scheduling, and PI with BO) in the experimental phase.
Lastly, the setup is modified in the final phase by introducing a second wind turbine
upstream to generate a turbulent wake that affects the second controlled turbine.
This particular test case facilitates the statistical evaluation of the controller’s
performance under these specific conditions.

57

Experimental Methods and Objective

3.2 Experimental Setup
The setup for this study had already been designed by my two advisors at the von
Karman Institute, Emmanuel Gillyns and Lorenzo Schena [8]. My contribution to
the research involved refining the existing setup by enhancing the architecture, for
instance, by improving the master-slave architecture of Arduino. The experimental
setup is illustrated Figure 3.1.

Figure 3.1: Experimental Setup, courtesy of Lorenzo Schena and Emmanuel
Gillyns

The experimental campaign was carried out in the subsonic wind tunnel L2B at
the von Karman Institute. This wind tunnel is an open-circuit facility designed for
low-speed testing. A diagram of the wind tunnel is provided in Figure 3.2 and 3.3
for a visualization of the wind tunnel’s layout.
The facility incorporates an axial fan, driven by a variable-speed DC motor,
positioned at the end of the wind tunnel, enabling a continuous velocity range in
the test section from 0 to 35 m/s. Air is drawn in through an air intake and then
directed through meshes to dissipate turbulent structures. Afterwards, it undergoes
acceleration within a test chamber featuring minimal residual turbulence before
being expelled and decelerated by a divergent. The test section of the facility
can be modified, with the L2A test section measuring St1 = 0.35m × 0.35m and
the L2-B test section St2 = 0.5m × 0.6m that is employed for this experimental
campaign. The L2B test section is of the open jet type, which means that the
model needs to be positioned within the potential core zone with dimensions of

58

3.2 – Experimental Setup

Figure 3.2: Scheme of the L2-B wind
tunnel at the von Karman Institute, ref-
erence [25]

Figure 3.3: L2-B at the von Kar-
man Institute

0.35m × 0.35m. Essentially, it is as if a 0.35m × 0.35m section is being utilized,
but with the advantage of having more space available for model installation.

The experiments involve the use of a three-bladed wind-turbine scale model,
which was designed by PhD Nicolas Coudou at the von Karman Institute. This
model has a rotor diameter of 0.15 meters and a hub height of 0.2 meters. It serves
as a representative scaled version of a 2 MW offshore wind turbine, specifically
scaled at 1/440 of the Vestas V66-2MW model. The rotors of the wind turbine are
constructed using the HAM-STD HS1-606 airfoil and are optimized through the
Blade Element Momentum (BEM) theory to perform efficiently under an incoming
velocity of 8 m/s at hub height [26]. Each rotor is attached to a direct current
(DC) motor (Faulhaber 1331T006SR) that functions as a generator, allowing power
extraction from the incoming wind and enabling turbine control. The motor is
directly connected to the rotor, and an encoder is integrated within the motor to
read the rotational speed of the rotor. In Figure 3.4 is presented an image of the
turbine model.

The blockage caused by the turbine, considering the test section of Sf =
0.35m × 0.35m, can be calculated as follows:

BF = Sm

St

= π(7.5cm)2

(0.35m)2 = 14.425% (3.1)

The blockage is significantly high and approaching the limit that guarantees
accurate measurements. In this case, the increased blockage could affect the
velocity measurements. Unfortunately, it was not possible to decrease this value
due to limitations in the available time.

A Pitot tube was placed in front of the wind turbine at the hub height to receive
feedback on the wind speed state of the system (Figure 3.5). Although the Pitot
tube position would have been more appropriate at the beginning of the test section
to obtain an accurate indication of the free stream velocity, this configuration was

59

Experimental Methods and Objective

Figure 3.4: Wind turbine model utilized in the experimental campaign, designed
by Nicolas Coudou [26]

chosen because the relevant wind information for control purposes is the one at the
center of the rotor. This configuration also reflects real-world applications as the
only feasible measurement of the wind is behind the rotor.

Figure 3.5: Wind turbine position in the test section and the relative Pitot tube
position used for wind speed feedback

The wind speed measurement was obtained using a differential pressure trans-
ducer connected to the total pressure tap of the Pitot tube and a static pressure
tap on the side wall of the test section. Prior to data acquisition, the transducer
was calibrated, and the calibration procedure can be found in Appendix B.

A thermocouple was used to obtain temperature measurements in the test section

60

3.2 – Experimental Setup

(which are useful for calculating density). The thermocouple is pre-calibrated with
a calibration constant of:

K = 100°C/V

The VKI’s local servers provide access to atmospheric pressure data, which
is measured using a Druck DPI 150 Precision Pressure Indicator installed in the
control room of S1 facility at the institute. The data acquisition process can be
easily managed using Python, allowing users to retrieve the information directly
from the VKI servers.

The rotation speed was acquired using the encoder mounted on the wind turbine
generator. The encoder was then connected to an Arduino, which is capable of
calculating the rotation speed and sending it to the PC.

The measurements of extracted electrical power were obtained by multiplying
the voltage difference across the generator with the current flowing through the
circuit. The load to be applied to the wind turbine was achieved by connecting
electrical resistors to the generator. By using relays controlled by Arduino, it is
possible to change the value of the resistors.

All the data was acquired using a National Instruments DAQ system, with a
4-channel card connected. The data acquisition was performed using the Python
package called nidaqmx [27]. This solution allows for a more straightforward
management of the data acquired through the NI board, as it is directly extracted
within the Python code.

3.2.1 Arduino Architecture
The configuration used involves connecting two Arduino boards together using the
I2C communication protocol, which utilizes two signal lines: SDA (Serial Data
Line) and SCL (Serial Clock Line) (Figure 3.6). In this setup, one Arduino is
designated as the master while the other Arduino acts as the slave:

• The Arduino slave is responsible for continuously measuring the rotation speed
of the turbine. The Arduino interrupt function was used to detect each rising
edge of the electrical signal. Knowing that the encoder resolution is 50 pulses
per revolution, the interrupt function made it possible to measure the time
difference ∆t between two rising edges of the signal. From the delta time, the
rotation speed of the turbine could be calculated:

ω = 2π

∆t · 50[rad/s] (3.2)

A two-Arduino configuration was used because the use of the interrupt function
in Arduino blocks the execution of any other command in the main loop. Since
the master Arduino is responsible for sending commands to the relays, it

61

Experimental Methods and Objective

is not possible to measure the speed with the master Arduino as it would
interrupt these functions. Therefore, the sole task of the Arduino slave is to
continuously read the rotational speed.

• The Arduino master is responsible for requesting the rotation speed from the
slave as needed and sending commands to the relays. The master Arduino
can communicate with the PC via the serial port using the Python package
Pyserial [28]. Some of the functionalities that can be used through Python on
the Arduino master are:

– Changing the acquisition frequency of the rotation speed: is accomplished
by using the request event function in Arduino, which utilizes the I2C
communication protocol between the two Arduinos. The request event is
invoked at different time intervals based on the acquisition frequency sent
to the master Arduino via serial communication.

– Controlling when to start and stop the data transmission from the Arduino
slave: is also managed through a flag that activates/deactivates the request
event function of Arduino. This flag is responsible for initiating or halting
the data transmission as needed.

– Sending commands to the relays to change the resistances: is achieved
by using a serial command that activates or deactivates the pins of the
relays.

Figure 3.6: Master-Slave Arduino architecture

62

3.2 – Experimental Setup

3.2.2 Power Measurement and Resistors
Figure 3.7 shows the electrical schematic.

Figure 3.7: Electrical circuit employed for power measurement and load adjust-
ment on the turbine

The power measurement was conducted by measuring the voltage difference V1
and V2. A series resistor of 0.5 Ohm was connected to measure the current flowing
through the circuit:

I = V2

0.5Ω
Therefore, the electrical power produced by the generator is calculated as follows:

P = V1 · I

The resistors connected in parallel are 11, and they have the following values:
R1 = 1.5Ω, R2 = 3Ω, R3 = 3Ω, R4 = 12Ω, R5 = 24Ω, R6 = 48Ω, R7 = 96Ω,
R8 = 192Ω, R9 = 384Ω, R10 = 768Ω and R11 = 1536Ω.

The combinations that can be made using the relays with the 11 resistors are:
actions = 211 = 2048

Therefore, the system can be manipulated with 2048 different resistance values. The
minimum and maximum values of these resistances that can be applied, considering
the resistors are connected in parallel, are respectively:

Rmin = 1
1

R1
+ ... + 1

R11

= 0.66696Ω

Rmax = 1536Ω
In the following, each resistance value will be indicated as a numerical value that
corresponds to an action on the system. The value 1 corresponds to the maximum
resistance, while the value 2048 corresponds to the minimum resistance value.

63

Experimental Methods and Objective

3.3 Power coefficient curve
The first experimental test aims to obtain the power coefficient (CP) curve. Since
the turbine has a fixed pitch angle, the 2D curve becomes a 1D curve relative to a
specific value of the pitch angle.

3.3.1 Measurement setup
The measurement chain is summarized in Figure 3.8.

Figure 3.8: Power coefficient measurement chain

The experimental procedure began by setting a certain rotational speed of
the wind tunnel fan while keeping the wind speed constant. Subsequently, data
acquisition took place by changing the applied action value through the relays, thus
setting different resistance values, and gradually acquiring the various data points.

From the NI board, the potential difference coming from the pressure transducer
E0, the amplifier of the thermocouple E1 and the generator E2 and E3 were acquired
from the smallest to the largest action in a Python script using:

ts = 15s

fs,NI = 1000Hz
The advantage of using serial communication with Arduino is that while the data
is being acquired with the NI board, Arduino continuously fills the serial port with
data, which can be read after the NI acquisition is completed. This allows for
simultaneous measurements of rotation speed along with the other data:

fs,Arduino = 100Hz
A certain amount of time was waited between each measurement from one action

to another to eliminate disturbances caused by transients:
ttransient = 10s

64

3.3 – Power coefficient curve

As mentioned before, the atmospheric pressure data was obtained through a Python
script that interacts with VKI servers.

3.3.2 Post processing
The post-processing of the data was performed by taking the average values over
ts. The test chamber temperature is obtained using the calibration relationship
provided by the manufacturer, as indicated in (3.2):

T = K · E1 (3.3)

From the temperature, the density in the test chamber can be obtained:

ρ = patm

RT
(3.4)

From the calibration of the pressure transducer (B.1), it is possible to derive the
value of dynamic pressure pq = p0 − p measured by the Pitot tube, from which the
velocity can be determined:

v =
ó

2pq

ρ
(3.5)

from which it is possible to calculate the available power in the wind:

Pwind = 1
2ρπR2v3 (3.6)

and the tip speed ratio:
λ = ωR

v
(3.7)

The electrical power produced by the generator was obtained as indicated in (3.2.2):

I = E3

0.5Ω (3.8)

P = E2 · I (3.9)
from which it is possible to determine the electrical power coefficient:

CP = P

Pwind

(3.10)

It should be noted that the obtained power coefficient is related to electrical power.
If one wants to obtain the coefficient of mechanical power developed, one should
introduce a efficiency factor η that quantifies the relative losses in the conversion
system. The same procedure was repeated for different wind speeds. Results are
presented in (4.2.1).

65

Experimental Methods and Objective

3.4 Baseline Controllers
The workflow of the experimental closed-loop wind turbine controller is summarized
in Figure 3.9.

Figure 3.9: Scheme of the closed-loop experimental controller

The most crucial part of the controller is the Python script that wraps the
entire facility. At each time step, dynamic pressure and temperature data are
acquired from the NI board. Meanwhile, the serial communication receives data
from the Arduino master. At the end of each acquisition, the data is processed
in real-time as done in (3.3.2). Specifically, the data was acquired (thus defining
the control time step) every time step of ts = 0.2s, with a sampling frequency of
NI fs,NI = 1000Hz and Arduino fs,Ard = 100Hz. These processed data serve as
inputs to the controller, also implemented in the Python code, which produces the
action to be applied. This action is sent to the Arduino master, which controls the
relays to connect/disconnect various resistances attached to the generator. As a
result, the load on the generator changes, and consequently, the torque applied to
the wind turbine model also changes. It should be noted that the final outcome is
a closed-loop controller. The controller utilizes wind speed and turbine rotation
speed as feedback or system states at each time step. For each time step, there are
certain characteristic times associated with this procedure, which are summarized
in Figure 3.10.

Figure 3.10: Characteristic times inside each time step

66

3.4 – Baseline Controllers

For each time step:

• a certain time interval is spent acquiring data from the NI board and through
serial communication with Arduino. The data acquisition time can be specified
via Python, but there is a stochastic component of acquisition time that
cannot be predicted, which is around 0.15 seconds. This delay exceeds the
data acquisition time, during which data from the NI board is not received,
but the data from the turbine rotation speed is still received. This is because
the rotation speed data comes from the buffer of the serial communication
with Arduino, which continues to fill up during that time.;

• the acquired data is processed in real time within another time interval during
the time step;

• with the processed data, another portion of the time step is required for the
calculations to be performed by the controller in order to generate the control
output.

3.4.1 Experimental Linearization
As mentioned in (4.2.1), the objective of the controller is to accurately simulate
control in Region 2 by utilizing torque as the control variable. This aligns with the
desired control objective in the numerical section of the study. In (2.3.2), to find the
gains of the PI controller, the system was linearized around the chosen operating
point. However, in this particular case, where there is no experimental model of
the turbine, the associated linear system can be determined experimentally. As
done in (2.3.2), the initial design of the PI controller was performed choosing a
steady-state operating point of linearization. In this experimental case, the chosen
operating point was:

v0 = 3.285m/s

ω0 = 400rad/s

action0 = 240

To obtain the linear system associated with this operating point, the time constant
and gain were experimentally derived by applying a known step action to the system
∆action = 40. By analyzing the system’s behavior following this perturbation, the
time constant and gain can be estimated.

The transient on the rotational speed caused by this step action was record-
ed/acquired with fs,Arduino = 100Hz (Figure 3.11).

67

Experimental Methods and Objective

Figure 3.11: Rotational speed of the model wind turbine during the transient
caused by a known step in torque

Assuming that the system is linear near this operational point, the transient
response was fitted using the solution of a classical linear ODE:

ω(t) = ω0e
− t

τ + ω1
1
1 − e− t

τ

2
(3.11)

Fitting (3.11) the gain and time constant associated with the linear system were
determined (Figure 3.12):

τt = 0.949s

K = ∆ω

∆action
= −0.52559rad/s

Figure 3.12: Raw data of the rotational speed during the transient in blue, with
the fitted curve represented in orange

Therefore, the linear ODE that can approximate the dynamics of the turbine
around the operational point is:

τt∆̇ω = −∆ω + K∆action (3.12)

68

3.4 – Baseline Controllers

which can be rewritten in the form:

∆ω̇ = A∆ω + Ba∆action (3.13)

It is important to emphasize that equation (3.13) does not have a physically
meaningful interpretation. In this case, since there is no available correlation for
the torque applied to the rotor, instead of using the torque, the applied action was
used as a variable, which does not have a direct physical meaning as it is a discrete
value defined arbitrarily. Nevertheless, the linear system obtained in this way is
useful for tuning the controller, which has the applied action as its output.

Knowing the values of coefficients A and Ba, the tuning can be performed as
done in (2.3.2) by assigning the values of ωn and ζ derived from the second-order
transfer function in order to achieve the desired response:

kp = − 1
Ba

(2ζωn + A) (3.14)

ki = − ω2
n

Ba

(3.15)

3.4.2 PI Controller
The resulting control law of the baseline PI controller is as follows:

action(ω) = action0 + kp(ω − 400rad/s) + ki

Ú t

0
(ω − 400rad/s)dτ (3.16)

As can be seen from the previous equation the controller takes as input only the
rotation speed ω at each time-step.

Several tests with different values of ζ (damping ratio) and ωn (natural frequency)
were conducted to observe the effects on the response of the system when these
parameters are changed. Results are presented in (4.2.2).

3.4.3 PI Schedule
As seen in the numerical part, the scheduling of the PI controller brings significant
benefits to the control law.

Since the model of the experimental turbine is unavailable, it is being attempted
to derive it through experimentation. In this case, in order to develop a scheduling
controller, the action values required to maintain a constant rotational speed (400
rad/s) under steady-state conditions at different wind velocities were determined
experimentally.

69

Experimental Methods and Objective

Figure 3.13: Fitted curve of the action values required to maintain a constant
rotational speed under steady-state conditions

The stationary points were fitted with the following curve:

action(v) = a + b · vc (3.17)

The best fit for those points is (Figure 3.13):

action(v) = −21.5879 + 0.37838 · v5.4630328

with an R2 of:
R2 = 0.999879

The weights kP (v) and ki(v) were determined as explained in (3.4.1), with ωn = 0.6
and ζ = 1, varying the wind speeds as done in (2.3.3).

The resulting PI controller, therefore, is as follows:

action(ω, v) = action(v)+kp(v)(ω −400rad/s)+ki(v)
Ú t

0
(ω −400rad/s)dτ (3.18)

In this case, the controller takes as input both rotational speed ω and wind speed
v from the Pitot tube placed at hub height at each time-step.

A preliminary test of the PI controller with scheduling was tested by varying
the wind speed in the wind tunnel and results are presented in (4.2.3).

3.5 Model Free Controller
Just like in the numerical part, experimental efforts were made to apply the
principles of model-free controllers in a practical application. In this case, for the
sake of simplicity and immediacy, Bayesian Optimization (BO) was applied to
determine the weights of the PI controller, as described in Section (2.5.1).

70

3.5 – Model Free Controller

3.5.1 PI with BO
The application of BO for experimental rotor speed control is exactly the same as
described in (2.5.1). What changes in this case is the parameterized control law
that BO needs to optimize. In this case the following policy was passed to BO
with the following parameterization:

action(ω, v) = action(v) + kp(ω − 400rad/s) + ki

Ú t

0
(ω − 400rad/s)dτ (3.19)

with:
action(v) = a · vb (3.20)

The controller does not directly rely on the "model" of the turbine. In fact, in
previous sections, assumptions were made regarding the dynamics (such as the
assumption that it follows a linear model near a linearization point), which were then
experimentally derived. However, in this case, we directly feed the parameterized
control law to the optimization of Bayesian Optimization (BO) in order to obtain
the coefficients from the optimization. For this reason, it can still be considered
model-free approach. The result of BO will be the four coefficients a, b, kp and ki.

The cost function for each episode is defined as stated in (2.5.1):

J(a, b, kp, ki) =
Ø

t

(ω − 400rad/s)2 (3.21)

The dimension of the search space, representing the bounds for the four parameters,
were:

a = [0,5] (3.22)

b = [0,5] (3.23)

kp = [0,20] (3.24)

ki = [0,20] (3.25)

The stopping criterion for the optimization was set to reach a maximum of 30
episodes. Each episode lasted for T = 60 s with a time step of ∆t = 0.3 s, resulting
in a length of approximately T/∆t ≈ 200 time steps. In each episode, to enhance
training, the rotation speed of the wind tunnel fans was randomly varied to change
the wind velocity.

In this case, the ’gp hedge’ acquisition function (implemented in ’gp minimize’)
was also used, and the remaining parameters were left at their default values.

Results of this implementation is in section (4.2.4).

71

Experimental Methods and Objective

3.6 Two Turbine Test Case
Lastly, a specific experimental setup was designed to simulate real-world conditions
in wind turbine farms, where one wind turbine is positioned downstream of another
(Figure 3.14). This configuration served as a test case to validate the performance of
the controller in mitigating wake interference and optimizing overall performance.

Figure 3.14: Experimental setup modified by incorporating an additional upstream
wind turbine

To assess the impact of the upstream wind turbine, the first step involved
measuring the wake generated by the first turbine in front of the second, which is
the turbine to be controlled.

The wake velocity profile was measured using Pitot tube measurements. It is
known that the Pitot tube is not the ideal method for characterizing turbulent
airflow. A hot-wire probe would have been more appropriate for this purpose.
However, by taking certain precautions such as minimizing the length of the
connecting tubes between the Pitot tube and the pressure transducer, a reasonably
accurate indication of the average wake velocity profile can be obtained.

The Pitot tube can be vertically maneuvered using a tower installed beneath
the test section (Figure 3.15).

The wake profile measurement was carried out by moving the Pitot tube vertically
and acquiring the data for:

fs = 5000Hz

ts = 15s

The acquisition time is sufficiently long to capture the average flow behavior along
the wake. The obtained average velocity profile of the wake is shown in the section
(4.2.5).
The final part of this thesis focused on testing the PI scheduling and optimized

72

3.6 – Two Turbine Test Case

Figure 3.15: Tower installed beneath the test section to enable vertical movement
of the Pitot tube

PI controllers with BO on the disturbance caused by the wake of the first turbine.
The results of this latter part are presented in (4.2.5).

73

74

Chapter 4

Results

4.1 Numerical Results
In this section, the numerical results obtained in this thesis are presented. Firstly,
a comparison against ROSCO is conducted to assess the robustness of the in-house
baseline controllers. Next, the learning performances of the different model-free
controllers are individually examined and compared. Finally, the results of each
controller in terms of performance is presented.

4.1.1 Validation of Baseline Controllers against ROSCO
The validation of the developed baseline controllers, along with the ODE solver,
has been performed by comparing the obtained results with those obtained using
the ROSCO (Rotor Optimization for COntrol) software [4]. ROSCO is a Python
package specifically designed for wind turbine control and optimization. It provides
a set of tools and functionalities to simulate and analyze wind turbine behavior,
as well as to develop and test control algorithms. Overall, ROSCO provides a
comprehensive framework for wind turbine control analysis, optimization, and
algorithm development, making it a valuable tool for researchers and engineers in
the field of wind energy.

The validation of the various baseline controllers was performed by applying
the same wind profile with the parameters of the NREL 5 MW wind turbine
(1.2.1). The obtained results were compared in terms of rotor rotational speed.
Comparisons were made for both torque control and pitch control in Region 1 and
2 respectively.

A preliminary test was conducted with a highly turbulent wind profile, having
an average velocity of 5 m/s for a duration of 200 seconds, in Region 1 to assess
the performance of the Kω2 controller.

75

Results

Figure 4.1: Validation of the baseline kω2 controller against ROSCO in Region 1

As can be observed from Figure 4.1, the developed controller aligns well with
the ROSCO controller.

Results were also compared with PI controllers, both with and without scheduling,
on a turbulent wind profile with an average velocity of 16 m/s in Region 2 for a
duration of 200 seconds.

Figure 4.2: Validation of the baseline PI controllers against ROSCO in Region 2

In this case as well, there is a strong agreement between the results obtained from
ROSCO and the ones developed in this study (Figure 4.2). Furthermore, it is
highlighted that implementing scheduling on the PI controller brings benefits in
terms of control performance.

The validation of these baseline controllers with state-of-the-art software pro-
vides a solid foundation for comparing them with other controllers developed
subsequently. This allows for meaningful comparisons and assessments of the

76

4.1 – Numerical Results

performance and effectiveness of different control strategies. By establishing a
strong baseline, it becomes possible to evaluate and benchmark the performance of
new controllers developed in the following parts against these validated baseline
controllers.

4.1.2 Data Driven Controllers Leaning Curves
In this section, the learning curves of the different model-free controllers are
presented. Studying the learning curve offers insights into the performance and
convergence behavior of the controllers over time. By analyzing the learning
curve, one can observe how the controller’s performance improves or stabilizes
with increasing experience or training iterations. This information is crucial for
understanding the effectiveness and efficiency of the control algorithms.

BO

Figure 4.3 displays the plots illustrating the cost function and the values of the two
parameters as functions of the optimization episodes, as defined in Section 2.5.4.

Figure 4.3: Learning curve of the numerical optimization using BO

The optimization of weights using Bayesian optimization led to the following result:

kp = 15.852

77

Results

ki = 0.507

Comparing the weights obtained with the scheduling in section (2.3.3), it is evident
that the proportional gain is significantly higher than the scheduling values. On
the other hand, the integral gain appears to be of the same order of magnitude,
and it is an average of the integral gains derived from the scheduling.

GP

Through the process of genetic programming the control law was obtained, show-
casing the discovered relationships between input parameters and the desired
output:

β(t, ω, v) = ω +
Ú t

0
(ω − ωrated)dt+

−log (tanh ((log (tanh (H)) − ωrated) − log (ω − ωrated)))
(4.1)

where H is:

H = log

ñs t

0(ω − ωrated)dt

tanh
1s t

0(ω − ωrated)dt
2

+ log
1s t

0(ω − ωrated)dt
2
+

+
ó

v ·
Ú t

0
(ω − ωrated)dt − sin (log(ω)) − 1

(4.2)

The control law obtained through GP is complex, exhibiting high nonlinearity
and utilizing the integral of the error. It incorporates a wide range of functions
from the function set, reflecting the nonlinear nature of the control problem. The
resulting function tree captures the dependencies and past information through the
integration of the error. This complexity is expected, given the highly nonlinear
nature of the wind turbine control problem. Figure 4.4 illustrates the cost function
for each episode.

RL

Figure 4.5 presents the learning curve of reinforcement learning over 200 episodes,
depicting the cumulative reward R. The cumulative reward is obtained by summing
the individual instantaneous rewards r for each time step within an episode.

It can be observed that the method converges, and increasing the number of
iterations would likely lead to further convergence.

78

4.1 – Numerical Results

Figure 4.4: GP learning curve

Figure 4.5: DDPG learning curve

Learning Curves Comparison

In the graph below, the cost functions of Bayesian Optimization (BO) and Genetic
Programming (GP) are compared with the cumulative reward of Reinforcement
Learning (RL). The RL curve is modified by changing its sign to be compared with
the others approaches. Additionally, the reward R obtained from the PI scheduling
controller in a single episode has also been added, as a reference.

The different rewards as a function of episodes are shown in Figure 4.6 following
logarithmic graph on both axes.

79

Results

Figure 4.6: Comparison of the learning curves of the model-free controllers, with
the cost function of the Baseline PI controller used as a reference (shown in red)

The minimum reward and number of training episodes are summarized in Table
4.1.

Controller Number of training episodes Reward Min [(rad/s)2]
PI scheduling — 11.26785

BO 2500 1.42754
GP 12420 1.24940
RL 200 0.15554

Table 4.1: Number of training episodes and the corresponding minimum reward
obtained during the training of the model-free controllers

From Table 4.1, the effectiveness of RL can be observed both in terms of
minimum reward and learning. Furthermore, BO achieves convergence with fewer
iterations rather than GP, but GP achieves a slightly lower reward.

4.1.3 Controllers Benchmarking
To evaluate the performance of the different controllers, they were tested on five
different wind profiles that covered the entire range of average values in control
Region 2. Furthermore, the controllers were also tested on wind profiles that were
different from those used during the training phase.

The characteristics of each wind profile are summarized in Table 4.2.

80

4.1 – Numerical Results

Wind Mean Wind Speed [m/s] Turbulence Intensity (TI) [%]
Wind1 12.5 4
Wind2 14 8
Wind3 16 9
Wind4 19 11
Wind5 22 12

Table 4.2: Set of the wind profiles and their characteristics used for testing the
model-free controllers

The reward used to evaluate the performance is chosen as:

J =
Ø

t

(ω − ωrated)2 (4.3)

The obtained results are presented in Figure 4.7 and Table 4.3, represented in
terms of R = 1

J
, so that in this way higher values indicate better performance.

Figure 4.7: Performance of each controller for each testing wind speed presented
in a radar diagram. Model-free controllers are depicted in red, while model-based
controllers are shown in green.

In Figure 4.7, the model-based controllers are represented in green, while the

81

Results

model-free controllers are represented in red. It is evident that there is a gap
between the two families of controllers.

From these results, it is evident that data-driven controllers consistently outper-
form model-based controllers that rely on system modeling and linearization. In
particular, the best performances are highlighted in bold in Table 4.3.

Controllers Wind1 Wind2 Wind3 Wind4 Wind5
PI 0.67776 0.30713 0.21694 0.14326 0.10138

PI scheduling 4.42931 0.81805 0.41696 0.17343 0.28945
MPC 2.35280 0.59302 0.60023 0.17050 0.24005
PI BO 29.28858 9.10788 5.09868 1.81539 0.96480

GP 50.73824 5.81132 2.11630 0.77073 0.31587
RL 13.65467 11.83278 5.93398 0.98210 0.63939

Best Controller GP RL RL BO BO

Table 4.3: Numerical results of the performance of each controller in terms of
episode rewards for each testing wind speed

It can be inferred that one of the best controllers overall is the one based on
RL. As observed in the comparison of the learning curves, RL was able to learn
better than the others and in significantly fewer iterations. However, it should
be noted that the PI optimized with BO controller also yields good results, even
considering the fact that it does not take the wind speed as an input. One of the
advantages of this PI controller is that it does not require scheduling and external
wind speed feedback, making it well-suited for real-world applications where wind
speed measurement is prone to significant errors and uncertainties.

82

4.2 – Experimental Results

4.2 Experimental Results
In this section, the numerical results obtained in this thesis are presented. The first
part focuses on the power curve of the scaled model wind turbine. Following that, the
experimental results of the developed controllers are presented. Finally, the results
and comparison applying the controllers in the two-wind-turbine configuration are
discussed.

4.2.1 Power Curve
The power curve of the model wind turbine is depicted in Figure 4.8.

Figure 4.8: Experimental power curves of the wind turbine

It is immediately apparent that the power curves do not follow the theoretical
expectations. In theory, these curves should collapse into a single curve for all wind
speeds. This discrepancy could be due to different facts:

• the model blocking in the test chamber could be excessive. To overcome this
issue, the free stream velocity could be corrected, as indicated in [29], using
correction factors that take into account the configuration of the test section
(open jet in this case) and the blockage factor BF .

• the position of the Pitot tube, at the hub of the turbine, is not suitable. In
fact, the Pitot tube is placed in the divergent zone of the flow tube that passes
through the turbine rotor. As a result, the measured wind velocity will be
lower than the actual free stream velocity. Referring to the actuator disc
theory (1.4), it is as if one measure vD instead of v. Due to the available

83

Results

instrumentation, it was not possible to place a Pitot tube immediately after
the convergent section to effectively measure the free stream velocity.

• another aspect to consider is that the wind turbine model is not rigid, and it
could deform with increasing wind velocity, resulting in a change in the shape
of the blade.

The small model of the turbine does not allow for pitch control, so it would be
reasonable to focus on torque control (Region 1). The goal of this controller, as
seen in previous chapters, is to always operate at the maximum power coefficient.

However, when plotting the power coefficient as a function of the applied action
(Figure 4.9), it can be observed that the maximum power coefficient is consistently
obtained at approximately the same action value. Therefore, using a different
control law with different objectives would be better to observe the effect of control
on the wind turbine.

Figure 4.9: Power coefficient in function of the actions applied

A control law that would be more effective is simulating control in Region 2
using torque, which involves maintaining a constant rotational speed. The objective
becomes identical to that of the numerical part, with the only difference being
that control is achieved through generator torque. It should be noted that this
inevitably does not coincide with the strict power control objective of Region 2,
which is to maintain a constant power output at the rated value, due to the change
in torque with wind speed. Nonetheless, it is useful for simulating control in Region
2 when only torque control is available.

Figure 4.10 illustrates the relationship between rotational speed and actions
under steady-state conditions for two different wind speeds (approximately 2.5 m/s
and 4.5 m/s), providing insights into defining control objectives.

84

4.2 – Experimental Results

Figure 4.10: Rotational speed vs actions

An appropriate control objective would be to maintain the rotational speed at
400 rad/s, effectively simulating the maximum rated speed at this velocity. From
the graph, it is evident that changing the wind speed has a significant impact on
the required action value to sustain this rotational speed. Therefore, this enables a
clearer observation of the controller’s effect, highlighting its influence under different
wind speed conditions.
It is important to note that the controller is designed to operate within a specific
speed range, namely between 2.5 m/s and 4.5 m/s. Beyond this interval, there is
no action value that can guarantee a steady-state speed of 400 rad/s.

4.2.2 PI Baseline
To test the baseline PI controller developed in (3.4.2), several experiments were
conducted at a constant wind speed of approximately v = 3.2m/s, varying the
values of ζ and ωn.
In the first set of tests, the value of ζ was changed while keeping ωn constant to
observe the system’s response. Subsequently, ωn was varied while ζ remained fixed.

The controller was activated with an initial condition of rotational velocity
around 600 rad/s, simulating a step change in the operating condition. The results
of these tests are presented in Figure 4.11 and 4.12.

85

Results

Figure 4.11: Response of the model wind turbine with the PI baseline controller
at different values of ζ (with fixed ωn)

Figure 4.12: Response of the model wind turbine with the PI baseline controller
at different values of ωn (with fixed ζ)

As can be seen from Figure 4.11 and 4.12, the behavior aligns with the expec-
tations from theory: for ζ < 1, the system is underdamped, and the frequency
response increases as the ωn parameter grows. As done in (2.3.2), to tune the gains

86

4.2 – Experimental Results

of the baseline PI controller, the values of the two parameters chosen are:

ωn = 0.6

ζ = 1

4.2.3 PI Schedule
A preliminary test case was conducted to evaluate the performance of the PI
controller with scheduling. The wind speed in the wind tunnel was varied, and
the controller was activated with an initial condition of rotational velocity at
approximately 600 rad/s. To obtain a parameter measuring the effectiveness of the
controller, a previous test was conducted on the turbine without the controller’s
action. This was done by maintaining a constant input of action=10 to the system.
Results are shown in Figure 4.13.

Figure 4.13: Test case of the experimental PI scheduling controller by varying
the speed in the test section

Clearly, it is impossible to make direct comparisons between the case with the
controller and the case without it due to the wind speed, which, as seen from the
plot, cannot be varied exactly in the same way between the two tests. However,
by comparing the overall trends of the two cases, differences can be observed. As
can be seen from the graph, the controller has a significant effect on controlling
the rotational velocity. The blue line represents the case without control, while
the orange line represents the case with the controller. The controller is able to
effectively respond to variations in the wind.

87

Results

4.2.4 PI with BO
The results obtained with BO in terms of learning curve are presented in Figure
4.14.

Figure 4.14: Experimental Learning Curve BO

Even though the training was stopped before achieving absolute convergence as
it can be seen by the slope of the learning curve, it is evident that the method is
improving. The value of the four optimal parameters are: a = 1.39454, b = 4.62470,
kp = 13.62306 and ki = 4.24846. A similar test as the previous controller was
conducted to evaluate the effectiveness of this controller (Figure 4.15).

Figure 4.15: Test case of the experimental PI optimized with BO by varying the
speed in the test section

88

4.2 – Experimental Results

4.2.5 Two Turbine Test Case
The introduction of an additional wind turbine model upstream of the controlled
wind turbine generates a wake profile that impacts the second turbine under control.
The results of this wake profile, measured using a Pitot tube, are presented in
Figure 4.16.

Figure 4.16: Wake wind speed profile that affects the controlled wind turbine

Figure 4.16 depicts the average values of the wind speed profile at the location
of the controlled turbine, with each data point accompanied by its corresponding
standard deviation, providing an indication of the turbulence level. A small portion
of the boundary layer can be observed, while at the top, the strong wake caused by
the first turbine is visible.

Figure 4.17: The two turbine models and the wake caused by the first turbine,
which impacts the second

89

Results

In Figure 4.17, one can observe how the inflow changes for the second turbine.
The strong influence of the upstream turbine on the second turbine located 40
cm downstream can be observed. The first turbine has a height of 13 cm, while
the second turbine has a height of 20 cm. The turbine to be controlled will be
partially exposed to the wake and partially operating in the free stream. The
hub of the turbine will experience an average velocity of 3 m/s. Furthermore, by
examining the values of the standard deviation for each point in Figure 4.16, it
can be observed that the highest turbulence occurs at the center of the wake.

In Figure 4.18, the difference in the wind signal sensed by the Pitot tube at the
hub height of the second turbine (indicated in red on the graph) with and without
the first turbine is observed, confirming that the presence of the upstream turbine
causes a strong unsteady field.

Figure 4.18: Wind speed sensed by the Pitot tube with and without the upstream
turbine

In Figure 4.18, it can be observed that the field exhibits significant unsteadiness,
with fluctuations exceeding 1 m/s. This indicates that this configuration is suit-
able for testing and comparing different controllers under these wind conditions.
Although the wind profile may vary in each test, the turbulent nature enables
statistical comparisons. To obtain meaningful statistical results, the different con-
trollers were tested over a sufficiently long period of T = 120 s. Additionally, to
ensure statistical reliability, four separate tests were conducted for each type of
controller.

As observed from the results of sections (4.2.3) and (4.2.4), the controllers that
takes the wind speed as input exhibits oscillatory behavior. This, in contrast to the
results obtained in (4.2.2), could be attributed to the controller’s strong sensitivity
to small variations in wind. For this reason, before passing the wind signal to the
controller, it was filtered as indicated in (2.2.2). The cutoff frequency of the filter
was chosen based on the time constant obtained in (3.4.1):

fc.o. = 1
τt

= 1.054Hz

In Figure 4.19, the filtered wind speed can be observed.

90

4.2 – Experimental Results

Figure 4.19: Filtered wind speed sensed by the Pitot tube

Finally, the performance of the controllers was evaluated in the presence of the
upstream turbine. Figure 4.20 illustrates the results for three scenarios: the case
without a controller in blue, the case with a PI controller with scheduling in orange,
and the case with a PI controller optimized using BO in green. For the sake of
clarity, filtered wind speed is presented in this figure.

Figure 4.20: Test case with two wind turbines: the case without a controller
depicted in blue, the case with a PI controller with scheduling shown in orange,
and the case with a PI controller optimized using BO represented in green

It can be observed that both the PI controllers effectively mitigates the fluc-
tuations caused by the upstream turbine, leading to a smoother and more stable
response.

Although not highly accurate, the performance of the two controllers can be
compared by evaluating the following cost function over episodes of T=120s with

91

Results

the following cost function:

J =
Ø

t

(ω − 400rad/s)2 (4.4)

The results are summarised in Table 4.4, with the values dimensionless compared
to the cost function obtained without a controller.

Controllers Test 1 Test 2 Test 3 Test 4
No control 1 – – –

PI scheduling 0.11302 0.10482 0.09588 0.14049
PI BO 0.07349 0.07132 0.05889 0.05982

Table 4.4: Experimental results of the performance of each controller in terms of
dimensionless episode rewards for each testing wind speed

This latest test case and the results from various tests confirm the trend observed
in the numerical section. In this case, the controller optimized with BO outperforms
the model-based controller obtained through experimental modeling of the wind
turbine.

92

Chapter 5

Conclusions

The main objective of this thesis was to implement and compare different controllers
for wind turbines, with a primary focus on operating within Region 2. In this
operational Region, the goal was to maintain the power output at the rated value
by controlling the rotational speed through the pitch angle of the blades while
ensuring a constant generator torque. The model-based controllers developed in
this thesis include classical controllers commonly employed in the state-of-the-art,
such as Proportional-Integral (PI) and Model Predictive Control (MPC). On the
other hand, the model-free controllers developed are based on machine learning
techniques, including Bayesian Optimization (BO), Gaussian Processes (GP), and
Reinforcement Learning (RL). The comparison primarily aimed to evaluate the
performance of model-based and model-free controller families, using both numerical
simulations and experimental validations.

The numerical study results showed that, in general, model-free controllers
outperformed model-based controllers. Within the model-free controller family,
certain approaches demonstrated superior training efficiency and performance.
Specifically, RL showed the best overall performance and required fewer training
episodes, although it necessitated training more parameters compared to BO and
GP. However, BO showed excellent results, closely matching the performance of
RL. Notably, BO has an advantage over RL as it doesn’t rely on wind velocity
feedback, which is prone to noise in current measurement techniques. This suggests
that a simple PI controller may be sufficient for certain applications that prioritize
good performance rather than achieving the absolute best outcome. On the other
hand, GP exhibited lower sample efficiency, requiring a larger number of system
interactions due to its quasi-random search characteristics.

In contrast to model-based controllers, data-driven controllers effectively capture
the dynamic behavior of wind turbines by utilizing input-output data, rather than
relying on simplified models. The model-based approach may not always account
for minor details or deviations from the assumed model, while data-driven methods

93

Conclusions

offer flexibility to adapt to such variations. This thesis addressed this aspect by
intentionally neglecting pitch actuator dynamics in the model-based controller,
recognizing the challenges of accurately modeling every aspect due to uncertainties
and real-world complexities. By incorporating these deviations into the simulator,
the thesis aimed to simulate the challenges of accurately modeling the system,
mirroring real-world scenarios where achieving a perfect model may be impossible.

In conclusion, the experimental part of the study confirmed the findings presented
in the numerical section. The implementation techniques proposed in the numerical
analysis were validated through experimental results. The performance evaluation
of the baseline PI controller and the PI controller with BO optimization in a realistic
environment, simulating wake interactions caused by an upstream turbine in a
wind farm, indicates the relevance of these implementations in practical scenarios.
Furthermore, the statistical analysis demonstrates that the performance of the
BO-based controller is superior to that of the model-based controller. Despite
the model-based controller relying on a model derived from experimental data,
the model-free controller outperformed it by effectively managing the interactions
between the controller and the wind turbine.

94

Chapter 6

Future Works

This thesis provides valuable insights and lays the groundwork for promising future
research directions. Several potential improvements and areas for future studies
can be identified:

• Firstly, in the numerical part, the model used is a highly simplified represen-
tation of wind turbine dynamics. Future studies can focus on enhancing the
simulation model by incorporating approaches such as multibody dynamics,
which consider the deformation of various turbine components, particularly the
blades and the tower. These deformations give rise to an aeroelastic coupling
between the structure and the external wind. Subsequently, it is necessary to
validate the different controllers tested in this study with these more advanced
models.

• The formulation of the MPC could be extended to a continuous and nonlinear
model. This difference in implementation, as mentioned, could lead to an
improvement in the performance of this controller.

• The model-free controllers were implemented using Python libraries, with
basic parameters left unchanged. A more in-depth investigation could involve
adapting the different parameters based on the problem and assessing whether
there are any counter-trends in the learning performance compared to the
baseline case.

• From an experimental perspective, numerous improvements can be made.
Firstly, it is possible to attempt a calibration model between the load applied
to the wind turbine using resistors and the actual mechanical torque applied by
the generator to the turbine rotor. This enables a comparison of the accuracy
of a first-order model (as utilized in the numerical section) in modeling the
behavior of a small wind turbine. From here, the development of various

95

Future Works

controllers can be expanded, allowing for a direct comparison. Furthermore,
by implementing a system to change the pitch angle, it would be possible to
test the numerical controls in a manner that ensures correspondence.

• Experimental testing of all the model-free controllers could be conducted to
determine if they indeed reflect the trends observed in the numerical section,
further validating their performance in real-world scenarios.

96

Appendix A

Numerical Methods
Employed

The numerical scheme used to solve the control problem can be summarized by the
following figure:

Figure A.1: Numerical scheme

The scheme highlights the numerical evolution from one iteration k − 1 to the
subsequent iteration k. The essential components of the controller are the turbine
model and the pitch subsystem model, which interact with the controller at each
iteration. To solve the ODEs of the turbine model and the pitch subsystem model,
a fourth-order Runge-Kutta method has been employed:

97

Numerical Methods Employed

k1 = hf(tn, yn)

k2 = hf(tn + h

2 , yn + k1

2)

k3 = hf(tn + h

2 , yn + k2

2)

k4 = hf(tn + h, yn + k3)

yn+1 = yn + 1
6(k1 + 2k2 + 2k3 + k4)

where h is the step size, tn represents the current time, yn is the current approxi-
mation of the solution, and f(tn, yn) is the derivative function evaluated at (tn, yn).

All the developed and utilized codes in this thesis can be found at the following
link:
https://github.com/SebastianoRandino/SebastianoRandinoMasterThesisCodes.git

98

https://github.com/SebastianoRandino/SebastianoRandinoMasterThesisCodes.git

Appendix B

Pressure Transducer
Calibration

The measurements of total and static pressure difference, obtained from the Pitot
tube to calculate the wind velocity, were derived from a Validyne membrane
differential pressure transducer. The pressure transducer is associated with a
Validyne demodulator, which allows for adjustments of the zero and slope of the
calibration curve:

Figure B.1: M20 Validyne Figure B.2: Validyne Demodulator

The membrane used (M20) can withstand up to double the pressure compared to
860 Pa. The calibration process involved adjusting the values of the demodulator
to align the zero point when the pressure difference is zero, and maximizing the
potential difference for the maximum expected pressure reading in the test chamber
(v ≈ 10[m/s]):

∆p = p0 − p = 1
2ρv2

inf ≈ 61Pa

This was done to maximize the sensitivity of the pressure readings as much as
possible. The calibration was performed using a Betz water manometer, knowing

99

Pressure Transducer Calibration

the values of the applied pressure difference to the pressure sensor:

Figure B.3: Betz manometer

Indeed, one output of the transducer was connected in common with the pressure
gauge, and the other two outputs, both from the Betz gauge and the transducer,
were left open to ambient pressure.
The data was acquired for:

ts = 1s

fs = 1000Hz

The obtained calibration curve is as follows:

Figure B.4: Pressure transducer calibration curve

100

Pressure Transducer Calibration

p = kpE + b = 58.966E + 0.561 (B.1)

with an R2 parameter of:
R2 = 0.9999433

indicating that the calibration is considered a very good accuracy.

101

102

Bibliography

[1] F.D. Bianchi, H. de Battista, and R.J. Mantz. Wind Turbine Control Systems:
Principles, Modelling and Gain Scheduling Design. Advances in Industrial
Control. Springer London, 2010. isbn: 9781849966115. url: https://books.
google.it/books?id=46SicQAACAAJ (cit. on pp. 1–3, 17).

[2] Lucy Y Pao and Kathryn E Johnson. «Control of wind turbines». In: IEEE
Control systems magazine 31.2 (2011), pp. 44–62 (cit. on pp. 2, 14).

[3] Tony Burton, Nick Jenkins, David Sharpe, and Ervin Bossanyi. Wind energy
handbook. John Wiley & Sons, 2011 (cit. on p. 3).

[4] Nikhar J Abbas, Daniel S Zalkind, Lucy Pao, and Alan Wright. «A reference
open-source controller for fixed and floating offshore wind turbines». In: Wind
Energy Science 7.1 (2022), pp. 53–73 (cit. on pp. 4, 14, 27, 75).

[5] Jason Jonkman, Sandy Butterfield, Walter Musial, and George Scott. Def-
inition of a 5-MW reference wind turbine for offshore system development.
Tech. rep. National Renewable Energy Lab.(NREL), Golden, CO (United
States), 2009 (cit. on pp. 5, 20).

[6] Tony El Tawil. Van Der Hoven spectrum. url: %7Bhttps://www.resear
chgate.net/figure/Van-Der-Hoven-spectrum-13_fig15_323543174/
actions#reference%7D (cit. on p. 7).

[7] Fabio Pino, Lorenzo Schena, Jean Rabault, and Miguel A Mendez. «Com-
parative analysis of machine learning methods for active flow control». In:
Journal of Fluid Mechanics 958 (2023), A39 (cit. on p. 10).

[8] Lorenzo Schena, Emmanuel Gillyns, Wim Munters, Sophia Buckingham, and
Miguel Alfonso Mendez. «Wind Turbine Control using Machine Learning
techniques». In: ECCOMAS Congress 2022-8th European Congress on Com-
putational Methods in Applied Sciences and Engineering. 2022 (cit. on pp. 10,
58).

103

https://books.google.it/books?id=46SicQAACAAJ
https://books.google.it/books?id=46SicQAACAAJ
%7Bhttps://www.researchgate.net/figure/Van-Der-Hoven-spectrum-13_fig15_323543174/actions#reference%7D
%7Bhttps://www.researchgate.net/figure/Van-Der-Hoven-spectrum-13_fig15_323543174/actions#reference%7D
%7Bhttps://www.researchgate.net/figure/Van-Der-Hoven-spectrum-13_fig15_323543174/actions#reference%7D

BIBLIOGRAPHY

[9] Emmanuel Gillyns, Sophia Buckingham, and Grégoire Winckelmans. «Imple-
mentation and Validation of an Algebraic Wall Model for LES in Nek5000».
In: Flow, Turbulence and Combustion 109.4 (2022), pp. 1111–1131 (cit. on
p. 10).

[10] Allan D Wright and LJ Fingersh. Advanced control design for wind turbines;
Part I: control design, implementation, and initial tests. Tech. rep. National
Renewable Energy Lab.(NREL), Golden, CO (United States), 2008 (cit. on
p. 13).

[11] Katherine Dykes, S Andrew Ning, George Scott, and Peter Graf. WISDEM®(Wind-
Plant Integrated System Design and Engineering Model). Tech. rep. National
Renewable Energy Lab.(NREL), Golden, CO (United States), 2021 (cit. on
p. 16).

[12] Bonnie J Jonkman. TurbSim user’s guide. Tech. rep. National Renewable
Energy Lab.(NREL), Golden, CO (United States), 2006 (cit. on p. 18).

[13] Morten H Hansen, Anca Hansen, Torben J Larsen, Stig Øye, Poul Sørensen,
and Peter Fuglsang. «Control design for a pitch-regulated, variable speed
wind turbine». In: (2005) (cit. on p. 24).

[14] Wai Hou Lio, JA Rossiter, and Bryn L Jones. «A review on applications
of model predictive control to wind turbines». In: 2014 Ukacc international
conference on control (control). IEEE. 2014, pp. 673–678 (cit. on p. 32).

[15] Michael Fink. «Implementation of Linear Model Predictive Control–Tutorial».
In: arXiv preprint arXiv:2109.11986 (2021) (cit. on pp. 34, 35).

[16] Midhun T Augustine. «MODEL PREDICTIVE CONTROL USING MAT-
LAB». In: (2021) (cit. on p. 35).

[17] Joachin Dahl and Lieven Vandenberghe. «Cvxopt: A python package for
convex optimization». In: Proc. eur. conf. op. res. Vol. 2. 2006, p. 3 (cit. on
p. 37).

[18] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando
De Freitas. «Taking the human out of the loop: A review of Bayesian opti-
mization». In: Proceedings of the IEEE 104.1 (2015), pp. 148–175 (cit. on
pp. 38, 39).

[19] Stanislav Markov. «Skopt documentation». In: (2017) (cit. on p. 40).
[20] Samuel Ahizi, Pedro Marques, Jan Van den Berghe, Lorenzo Schena, Fabio

Pino, Matilde Fiore, Romain Poletti, and Miguel Mendez. «Hands-on Machine
Learning for Fluid Dynamics, Second Edition». In: Jan. 2023 (cit. on pp. 41–
46, 52, 53).

104

BIBLIOGRAPHY

[21] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner,
Marc Parizeau, and Christian Gagné. «DEAP: Evolutionary Algorithms
Made Easy». In: Journal of Machine Learning Research 13 (July 2012),
pp. 2171–2175 (cit. on p. 47).

[22] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduc-
tion. MIT press, 2018 (cit. on p. 50).

[23] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. «Continuous control with
deep reinforcement learning». In: arXiv preprint arXiv:1509.02971 (2015)
(cit. on p. 54).

[24] TensorFlow Developers. «TensorFlow». In: Zenodo (2022) (cit. on p. 54).
[25] Van Der Hoven spectrum. url: %7Bhttps://www.vki.ac.be/index.php/

facilities-other-menu-148/low-speed-wind-tunnels/48-research-
and-consulting/facilities/low-speed-wind-tunnels/60-low-speed-
wind-tunnel-l-2b%7D (cit. on p. 59).

[26] Nicolas Coudou, Maud Moens, Yves Marichal, Jeroen Van Beeck, Laurent
Bricteux, and Philippe Chatelain. «Development of wake meandering detection
algorithms and their application to large eddy simulations of an isolated wind
turbine and a wind farm». In: Journal of physics: Conference series. Vol. 1037.
7. IOP Publishing. 2018, p. 072024 (cit. on pp. 59, 60).

[27] NI-DAQmx Python Documentation. https://nidaqmx-python.readthedoc
s.io (cit. on p. 61).

[28] Chris Liechti. «PySerial documentation». In: Versión: 2.6, Diciembre 2011
(2016) (cit. on p. 62).

[29] Abdelgalil Eltayesh, Magdy Bassily Hanna, Francesco Castellani, AS Huza-
yyin, Hesham M El-Batsh, Massimiliano Burlando, and Matteo Becchetti.
«Effect of wind tunnel blockage on the performance of a horizontal axis wind
turbine with different blade number». In: Energies 12.10 (2019), p. 1988
(cit. on p. 83).

105

%7Bhttps://www.vki.ac.be/index.php/facilities-other-menu-148/low-speed-wind-tunnels/48-research-and-consulting/facilities/low-speed-wind-tunnels/60-low-speed-wind-tunnel-l-2b%7D
%7Bhttps://www.vki.ac.be/index.php/facilities-other-menu-148/low-speed-wind-tunnels/48-research-and-consulting/facilities/low-speed-wind-tunnels/60-low-speed-wind-tunnel-l-2b%7D
%7Bhttps://www.vki.ac.be/index.php/facilities-other-menu-148/low-speed-wind-tunnels/48-research-and-consulting/facilities/low-speed-wind-tunnels/60-low-speed-wind-tunnel-l-2b%7D
%7Bhttps://www.vki.ac.be/index.php/facilities-other-menu-148/low-speed-wind-tunnels/48-research-and-consulting/facilities/low-speed-wind-tunnels/60-low-speed-wind-tunnel-l-2b%7D
https://nidaqmx-python.readthedocs.io
https://nidaqmx-python.readthedocs.io

	List of Tables
	List of Figures
	Acronyms
	Introduction
	General Introduction to Wind Turbines
	Control and Safety Systems
	Closed Loop Control
	Sensors and Actuators

	The Wind
	Wind Turbine Aerodynamics
	Actuator Disc Model
	Blade Element Momentum theory

	Framework and Goals of this Thesis
	Thesis Outline

	Numerical Methods and Objective
	Control Objectives
	Employed Models
	First Order Model
	Synthetic generated Wind Speed
	Controller Scheme

	Baseline Controllers
	Model Linearization
	PI Pitch Controller
	PI Scheduling
	K2 Torque Controller

	Advanced Model Based Controller
	Model Predictive Control (MPC)

	Model Free Controllers
	Bayesian Optimization (BO)
	Genetic Programming (GP)
	Reinforcement Learning (RL)
	Algorithms

	Experimental Methods and Objective
	Control Objective
	Experimental Setup
	Arduino Architecture
	Power Measurement and Resistors

	Power coefficient curve
	Measurement setup
	Post processing

	Baseline Controllers
	Experimental Linearization
	PI Controller
	PI Schedule

	Model Free Controller
	PI with BO

	Two Turbine Test Case

	Results
	Numerical Results
	Validation of Baseline Controllers against ROSCO
	Data Driven Controllers Leaning Curves
	Controllers Benchmarking

	Experimental Results
	Power Curve
	PI Baseline
	PI Schedule
	PI with BO
	Two Turbine Test Case

	Conclusions
	Future Works
	Numerical Methods Employed
	Pressure Transducer Calibration
	Bibliography

