
Politecnico di Torino
Master of Science in Aerospace Engineering

Master’s Degree Thesis

MACHINE LEARNING CONTROL OF 3D
LIQUID FILM

Supervisors:
Prof. Gaetano Maria Di Cicca
Prof. Miguel Alfonso Mendez
PhD. Fabio Pino

Candidate:
Francesco Margani

Academic Year 2022/2023

Summary

The rise of machine learning has made it a crucial element in the field of fluid
dynamics, and it seems very promising indeed when applied to flow control problems.
This work focuses on the development of ML algorithms that can be used in
the hot-dip galvanizing process to regulate the thickness of the liquid zinc film,
reduce instabilities, and obtain a smoother surface, which can be critical to the
performance of the final product for industrial applications. In this study, we
seek to enhance the simulation of a physical problem by implementing and testing
several algorithms: Bayesian Optimization (BO), Lipschitz global optimization
(LIPO), and Reinforcement Learning algorithm (RL). These algorithms are applied
within a simulated environment called BLEW (Boundary Layer Wiping). Our
approach involves an initial analysis of the experimental setup, where we assess
various configurations of jets and sensors. Additionally, we focus on optimizing the
models’ hyperparameters and defining appropriate actions and a cost function to
improve learning performance. The results are visualized through learning curves,
followed by a comparative analysis of the different algorithms employed.

Keywords: machine learning, reinforcement learning, flow control, thickness
regulation, instability reduction, learning performance.

iii

Summary

L’ascesa del machine learning ha reso fondamentale la sua integrazione con la
dinamica dei fluidi tanto da diventare cruciale nei problemi di flow control. Questa
tesi si concentra sullo sviluppo di algoritmi di apprendimento automatico utilizzati
nel processo di zincatura a caldo per regolare lo spessore dello strato di zinco liquido
per ottenere una superficie priva di difetti che potrebbero influire sulle prestazioni
del prodotto finito.

Per ottenere un controllo ideale dello strato di film liquido, sono stati testati
vari algoritmi, tra cui l’ottimizzazione bayesiana (BO), l’ottimizzazione di Lipschitz
(LIPO) e algoritmi Reinforcement Learning(RL). Questi algoritmi vengono applicati
in un ambiente simulato chiamato BLEW (Boundary LayEr Wiping). Inizialmente,
è stata eseguita un’analisi preliminare per determinare il corretto compromesso tra
posizione dei getti e quella dei sensori. Successivamente, sono stati ottimizzati gli
iperparametri dell’algoritmo di machine learning e sono state affinate la funzione
di costo e le azioni dei getti. Infine, sono state eseguite simulazioni su un elevato
numero di episodi per osservare l’apprendimento dell’agente, valutato attraverso le
curve di apprendimento e il test del modello allenato su un episodio di valutazione.

iv

Acknowledgements

This Master’s Thesis project aligns with a wider research area pursued at the Von
Karman Institute (VKI) by my advisor, F. Pino, and my supervisor, Prof. M.
A. Mendez. I express my heartfelt gratitude to both of them for their invaluable
assistance and unwavering guidance throughout the course of this Master’s thesis.
Their exceptional creativity and profound ideas have left an indelible mark on my
mind.

Additionally, I would like to extend my sincere appreciation to my supervisor at
Politecnico di Torino, Prof. Gaetano Maria Di Cicca. It is his support that has
made this extraordinary experience at VKI possible.

v

Table of Contents

List of Tables ix

List of Figures x

Acronyms xiii

List of Symbols xvi

1 Introduction 2
1.1 Physical overview . 2
1.2 From Navier-Stokes equation to BLEW 4

2 Machine Learning (ML) 9
2.1 Optimal control and Reinforcement

Learning (RL) . 9
2.2 Bayesian Optimization (BO) . 12
2.3 Lipschitz Global Optimization (LIPO) 14
2.4 Proximal Policy Optimization (PPO2) 14
2.5 Deep Deterministic Policy Gradient (DDPG) 16
2.6 OpenAI Gym Tutorials . 17

3 Jet Wiping 22
3.1 Jet characterisation . 22
3.2 Exit flow velocity . 23
3.3 Pressure and shear stress distribution 25

4 Optimization 29
4.1 Observation points . 30
4.2 Hyperparameters optimization (HPO) 34
4.3 Artificial Neural Network (ANN) size 38
4.4 Jet position . 39
4.5 Reward area . 41

vii

4.6 Multiprocess environment . 41

5 Cost function and actions 46
5.1 Actions . 46
5.2 Cost function . 47

6 Results 50
6.1 Undulation control . 50

6.1.1 Learning on 100 episodes . 51
6.1.2 Learning on 1000 episodes 57
6.1.3 10000 episodes multiprocess environment 62

Conclusions 66

Future trends 67

Bibliography 70

viii

List of Tables

1.1 reference quantities used for the Navier-Stokes long-wave formulation
[2] . 4

6.1 Time required for each simulation 56

ix

List of Figures

1.1 Hot-dip galvanization process with controller for undulation. 3
1.2 Schematic jet wiping . 5

2.1 RL scheme . 10
2.2 Bayesian Optimization . 12
2.3 BO pseudo-code . 13
2.4 LIPO pseudo-code . 14
2.5 LIPO on 1D function . 15
2.6 PPO2 pseudo-code . 15
2.7 ANN for DDPG, actor-critic model 16
2.8 DDPG Pseudo-code . 17
2.9 Mountain car . 18
2.10 LC Mountain Car . 18
2.11 Lunar Lander . 19
2.12 LC Lunar Lander . 20

3.1 Control problem set-up . 23
3.2 Jet flow region . 24
3.3 Actuator model using in BLEW . 26
3.4 Pressure and shear stress distribution 27
3.5 ML actions scheme . 27

4.1 Code Map . 29
4.2 Default set-up . 31
4.3 Correlation Matrix of 4 obs points aligned 31
4.4 LHS distribution . 32
4.5 Correlation Matrix LHS . 32
4.6 Comparison between the signal in 2 obs points 33
4.7 Optuna features . 34
4.8 Optuna HPO . 36
4.9 PPO2 HPO conf . 37

x

4.10 Neural Network . 38
4.11 Jets’ position . 39
4.12 Comparison of learning outcomes between two configurations 40
4.13 Multiprocess scheme . 42
4.14 Multiprocess Env running in 100 cpu 43

6.1 LC 100 episodes . 51
6.2 LC DDPG 100 ep . 53
6.3 Actor and critic loss for ddpg 100 episodes 53
6.4 GIF 100 ep PPO2 . 54
6.5 3D GIF 100 ep PPO2 . 55
6.6 Actions of an evaluation episode for the first jet 56
6.7 LC 1000 ep . 57
6.8 GIF 1000 ep PPO2 . 58
6.9 Actions of one jet for PPO2 after learning 59
6.10 2D GIF 300 ep DDPG . 59
6.11 Actor and critic loss for 300 ep (about 800000 timesteps) 60
6.12 3D GIF 300 ep DDPG . 61
6.13 Episode reward for 30 millions of timesteps (10k episodes) 63
6.14 Reward comparison on 10 evaluation episodes 63
6.15 GIF of the PPO2 with 10000 episodes of learning 64

xi

Acronyms

VKI Von Karman Institute

BLEW Boundary LayEr Wiping

NS Navier-Stokes

PDE Partial Different Equation

FV Finite Volume

ML Machine Learning

RL Reinforcement Learning

BO Bayesian Optimization

GPr Gaussian Process regression

LIPO Lipschitz Global optimization

PPO2 Proximal Policy Optimization

DDPG Deep Deterministic Policy Gradient

MLP Multi Layer Perception

LC Learning Curves

HPO Huper Paramteres optimization

LHS Latin Hypercube Sampling

xiii

ANN Artificial Neural Network

EMA Exponential Moving Avarage

Std Standard Deviation

env Environment

obs Observation point

xiv

List of Symbols

[h] dimensionless thickness of the liquid film
[x] streamwise reference length
Up vertical velocity of the metal strip
τg shear stress distribution
pg shear stress distribution
Ca capillary number
Re Reynolds Number
νl kinematic viscosity liquid
µl dynamic viscosity liquid
ρl liquid density
σl surface tension liquid
g gravity constant
d jet diameter
Z stand-off distance
∆PN stagnation pressure inside the nozzle
q̂ flow rate
s(t) state
a(t) control action
R(s(t), a(t)) Reward
π(s(t), t) policy
γ discount factor
vπ value of state s
Qπ Q-value
M Mach number
h enthalpy
Uj exit flow velocity
Πg wiping number
ρg gas density
ps pressure at impinging point
τ0m maximum shear stress

xvi

Chapter 1

Introduction

1.1 Physical overview

One of the great challenges in metallurgy is the optimization of the process of
galvanization, which is a crucial part of the proprieties of the final product. Using a
coat of zinc metal alloy as a protection, the metal can be protected from corrosion
and oxidation improving mechanical performance.

The galvanization industry has a worldwide production capacity of around 100
million tons of steel per year across over 450 galvanizing lines; there have been
advancements in the industry, such as the introduction of fresh chemical coating
compositions, novel steel grades, and alternative surface treatments. Developing
these innovative products necessitates changes to the process to attain the desired
final coating quality.

One of the most useful types of galvanizing in siderurgy is continuously hot dip
coating, in which a metal strip is immersed in a molten liquid zinc bath and then
moved vertically to reduce and regulate the thickness with some nozzles. It is done
by some rolls that give the metal strip a certain speed, and after the liquid bath,
some high-speed gas jet can control the thickness of the zinc, leaving a thinner and
uniform coat in the substrate. This kind of application is called jet wiping.

But after an initial phase of gas jet wiping, some instabilities may occur: they
resemble waves and are called undulation, and may cause problems in the post-
processing of the final product and can reduce its mechanical features. The goal is
to reduce these imperfections as much as possible, and the challenge is to use a
new system of Machine Learning algorithms to control these instabilities.

This is a closed-loop control, which is a system with mechanical or electronic
devices that automatically try to maintain a desired state or set point without
human interaction. In this case study, it is made with a series of sensors that take
as an input the liquid film’s thickness and a controller with an ML algorithm, which

2

Introduction

dictates the actions for the nozzles.
For this project, the sensors that can be chosen should be laser triangulation or

video inspector, while the actuators should be hydrodynamic actuators or magnetic
actuators. By the way, the facility should be built in Canada in a few years as
shown in Figure 1.1.

Continuous research is also conducted to enhance the process’s dependability
and durability and to be competitive in cost and time.

Figure 1.1: Hot-dip galvanization process with controller for undulation.
Schematic of the galvanization process with two phases: a normal jet wiping and an
undulation control made with the system of actuators, controller, and sensors [1].

3

Introduction

1.2 From Navier-Stokes equation to BLEW
The thesis focuses on the dynamics of a liquid film that falls along a vertical plate
moving upwards, while a gas jet is directed onto it. It is assumed that the gas jet
is not affected by the presence of the liquid.

Starting with the Navier-Stokes equations, the focus is on analyzing the flow
behavior of the liquid film[2].

∂ρ

∂t
+ ∇ · (ρv) = 0 (1.1)

∂v
∂t

+ v · ∇v = −1
ρ

∇p + ν∇2v + fv (1.2)

All of the mathematical models studied are based on the Navier-Stokes equation
and its associated boundary conditions as a ’long-wave’ formulation. This formula-
tion is obtained by proportionally reducing the dimensions perpendicular to the
flow direction using a reference length [h] which is the dimensionless thickness of
the liquid film and it is significantly smaller than the reference length in the flow
direction [x] oriented in the direction of gravity.

[h] << [x] (1.3)
Before starting to liquid film fluid dynamics description as shown in Figure 1.2,

is important to define the references quantities that are used to scale the problem
in Table 1.1

Table 1.1: reference quantities used for the Navier-Stokes long-wave formulation
[2]

Reference Quantity Definition Expression
[h] (νl[u]/g)1/2 (νlUp/g)1/2

[x] [h]/ε (νlUp/g)1/2 Ca−1/3

[u] Up Up

[v] εUp UpCa1/3

[p] ρlg[x] (µlρlgUp)1/2 Ca−1/3

[τ] µl[u]/[h] (µlρgUp)1/2

[t] [x]/[u] (νl/Upg)1/2 Ca−1/3

In the long-wave formulation of the problem, the dimensionless continuity and
the momentum equation in the x and the y directions reduce to the boundary layer
equations, which are written considering dimensionless variables scaled concerning
the quantities in Table 1.1 are indicated with a hat (ex. ĥ = h/[h]) as done in [2]:

4

Introduction

∂x̂û + ∂ŷv̂ = 0,

ε Re (∂t̂û + û∂x̂û + v̂∂ŷû) = −∂x̂p̂l + ∂ŷŷû + 1,

0 = ∂ŷp̂l,

(1.4)

where p̂l is the pressure in the liquid, û and v̂ are the streamwise and cross-stream
velocity components, ε = [h]/[x] = Ca1/3 is the film parameter, with Ca = µlUp/σ

the capillary number and Re = [u][h]/νl =
1
U3

p /gνl

21/2
is the global Reynolds

number of the process. The formulation proposed in this work is also valid for the
experimental conditions encountered at the von Karman Institute (VKI), operating
with water (µl = 0.001Pa ∗ s, σ = 0.07N/m at Up = 1m/s (i.e. Ca = 0.003 − 0.03).

Figure 1.2: Schematic jet wiping
A nozzle with an opening d and a stagnation pressure ∆PN releases a jet flow at a

distance Z from a dip-coated substrate moving at a speed Up. Thickness hf is
modelled by pressure pg and shear stress distribution τg[2]

To reduce the complexity of the system is possible to use the Integral Boundary
Layer (IBL) model to represent this as a 1D problem (more details in [2]). After
that, a numerical method can be used to solve this PDEs hyperbolic equations
that can be written in the general form as a model equation:

∂tV(x, t) + ∂xF(x, V) = S(x, t, V) (1.5)

with V the state vector of the problem, F the conservative flux and S the source
term.

5

Introduction

The state vector is represented by:

V =
C
ĥ
q̂

D
(1.6)

where

U⃗ =
1
ĥ, q̂x, q̂z

2T
q̂z =

Ú ĥ

0
ŵdŷ q̂x =

Ú ĥ

0
ûdŷ (1.7)

so it is represented by the value of the dimensionless high of liquid film ĥ and
the two flow rates q̂z and q̂x.

The flux term is:

F =
C

−q̂

−F̂(ĥ, q̂)

D
(1.8)

where q̂ is the volumetric flow rate and F is the advection term that is in this
case

F =
Ú ĥ

0
û2dŷ (1.9)

The source term is

S =
C

0
−ĥ∂x̂p̂g + ĥ + ϵ3

Ca
ĥ∂x̂x̂x̂ĥ + τ̂g + τ̂w(q̂, ĥ)

D
(1.10)

It includes the pressure gradient, surface tension, gravity, and shear stress effect.
In this case, the IBL has been used, and for this, the β parameter is set to 1 as
done in [2] equation 6.2.

Two methods can be used to solve this set of PDEs: methods based on the
Riemann problem solution or methods based on the Lax-Friedrics Lax-Wendroff
scheme. The first one is more useful in case of shock, while the second has less
computational cost. Since this problem has no shock wave, the second one can be
the best option. BLEW (Boundary LayEr Wiping) code is based on the solution
of the model equation using the finite volume method (FV) that in its standard
form for this problem can be written as:

Vk+1
i = Vk

i − ∆t

∆x

è
F+ − F−

é
+ ∆tSk

i (1.11)

that allows us to solve the system of PDE with numerical simulations as done
in [2]. In this case, the BLEW code is developed utilizing the preceding equations
to operate alongside machine learning algorithms, whereas the fluctuation arises

6

Introduction

from authentic perturbations whose values are derived from Large Eddy Simulation
(LES).

Thus, this work aims to edit the code already implemented at VKI using machine
learning methods to control a complex 3D instability of a falling liquid film over a
moving substrate.

Indeed, using these types of algorithms, it is possible to analyze large amounts of
data and identify patterns that human operators may overlook. By training models
on historical data, machine learning can accurately predict liquid thickness based on
input variables such as flow rate, temperature, viscosity, and other relevant factors
and also can lead to improved efficiency, reduced material waste, and enhanced
overall process performance.

7

Chapter 2

Machine Learning (ML)

In closed-loop control, several ML algorithms can be used. This thesis aims to focus
on two types of Reinforcement Learning algorithms and Bayesian Optimization.
These machine learning control methods differ in the way they are learned and
modify the controller parametrization. In this project, machine learning algorithms
are implemented in Python using respectively the Skopt [3] library for the Bayesian
Optimization and Lipschitz global Optimization (LIPO) while Stable Baselines [4]
library (based on TensorFlow v.1.14 [5]) has been used for RL algorithm.

2.1 Optimal control and Reinforcement
Learning (RL)

In control problem [6] we are dealing with a dynamical system that evolves according
to some function. Some calls this the plant others call it the environment. The goal
is to keep the system as close as possible to a certain trajectory in the system’s
phase space. To do that, there is a controller (or for others an agent) that acts
on the system, and we have a performance measure that tells us how good or bad
we are doing. We can craft this as a reward to maximize or a cost to minimize,
but either way, our goal is to find the optimal set of actions. The reward or cost is
computed within a specific time range, which we will call an episode, within which
our controller/agent interacts with the plant/environment.

The environment is defined as

˙s(t) = f(s(t), a(t)) (2.1)

s(0) = s0 (2.2)

where s(t) is the state and a(t) is the control action.

9

Machine Learning (ML)

Figure 2.1: RL scheme
The learning subject of reinforcement learning is called the agent. The state in the
environment is perceived by the agent, and the state at step t is denoted by s(t).

The agent chooses an action from the set of actions available at the current state.
The action taken at step t is denoted by a(t)

We have a variational problem: we must find a function that optimizes another
function.

This function from states to action is what some of us call control law others
call policy and is represented by π(s(t), t) that decides the action a(t) at each time
step.

In Figure 2.1, is possible to see the RL scheme with all the elements that
characterize it and their interactions. It is clear to see that the action influences
the state and the reward in an iterative process aimed at reducing/maximizing the
cost/reward R.

In RL, the value function represents the reward that an agent receives for being
in a particular state. To determine this reward, the agent’s actions must be taken
into consideration, which is where policy comes in. The Bellman equation is a
fundamental formula that calculates the expected value of rewards received from a
given policy, taking into account the discount factor γ that balances the importance
of immediate and future rewards. It has a value between 0 and 1: a value of 0
means that more importance is given to the immediate reward and a value of 1
means that more importance is given to future rewards

Bellman equation:

vπ(s) = Eπ[Gt|St = s] = Eπ[Rt+1 + γRt+2 + γ2Rt+3...[St = s] (2.3)

The Q-Value, also known as Quality Value, is a similar algorithm to the Bellman
equation that estimates the optimal state-action values. It represents the value of

10

Machine Learning (ML)

taking a particular action in a given state with a policy.

Qπ(s, a) = Eπ[Gn|sn = s, an = a] (2.4)

Once the optimal Q-Values have been determined, the optimal policy can be
easily defined as the action with the highest Q-Value for each state.

π∗(s) = argmaxQ∗(s, a) (2.5)

Q-Learning is a popular technique that involves observing an agent playing a
task and improving its estimates of the Q-Values over time. Once the Q-Values are
accurate enough, the optimal policy can be achieved by choosing the action with
the highest Q-Value

In our case study, the environment is the BLEW env, represented by a fluid film
with some waves to simulate wave motion. It consists of a system of observation
points and nozzles that receive as input the thickness of the fluid film and as an
output of the controller the action for the nozzles. To evaluate how good the
selected actions are, a cost function gives a reward for each episode, and the goal
of machine learning is to adjust this action to maximize this reward. The policy
can change its weights according to the reward so that after a sufficient number
of episodes, it should learn what to do in that environment for each perturbation.
Several algorithms can be used to optimize this process, but the most favorable
in terms of computational cost and efficiency are Bayesian Optimization(BO),
Proximal Policy Optimization (PPO2), and Deep Deterministic Policy Gradient
(DDPG).

11

Machine Learning (ML)

2.2 Bayesian Optimization (BO)
Bayesian optimization (BO) is a method used for optimizing a function by creating
a probabilistic model of it, typically using a Gaussian Process regression (GPr)
model. It has been implemented and analyzed by Shahriari [7].

It has two important parts: the first is a model that uses a probabilistic surrogate
model to guess how an unknown objective function works, based on assumptions.
It also includes a way to describe how data is generated. The second part is a loss
function to measure how good a sequence of queries is. This is often done using
regret, which can be either simple or cumulative. Mathematically, BO consists in
finding a global maximum or minimum of an objective function f :

x⋆ = arg max
x∈X

f(x) (2.6)

As it is shown in Figure 2.2, the goal in this case for a 1D function is to
minimize the distance between the black and the dashed line, and we can see
how the acquisition function works: it is low in the sampled point, where the
value is known, while it is high in the exploration phase; Moving on step by step
(n = 2, n = 3, n = 4), it tries to rebuild the original function.

Figure 2.2: Bayesian Optimization
The visual representations depict the average value and confidence intervals, which
are determined using a probabilistic model that represents the objective function in
3 steps. Although the actual objective function is depicted in the illustrations, it

remains unknown in practical scenarios.[7].

12

Machine Learning (ML)

The GPr model estimates the probability of a particular reward given the
observations (input-output pairs) of the function being optimized. In BO, this is
usually the cumulative reward function R(w).

To build the GPr model, a set of tested weights W and their associated cumula-
tive rewards R are used. The GPr model computes the probability of a reward for
a new set of weights W . This is done by assuming that the new candidate solutions
belong to the same GPr as the observed data (W , R) and using a kernel function
to compute the covariance matrix.

BO combines the GPr model with a function that suggests where to sample next.
Different variants of BO exist, each providing its own exploration/exploitation
balance. BO is a popular black-box optimization method for expensive cost
functions.

Figure 2.3: BO pseudo-code
The essence of this algorithm lies in the process of adjusting an initial, or prior,

belief based on newly sampled information, subsequently yielding a final, or
posterior, estimation..[7]

13

Machine Learning (ML)

2.3 Lipschitz Global Optimization (LIPO)
The primary concept of the Lipschitz Global Optimization(LIPO) as presented in
[8] involves the maintenance of a piecewise linear upper bound for the function
f(x). This method is utilized to determine which values of x to assess during the
optimization process. Once certain values of x, such as x1, x2, ..., and xt, have
been evaluated, a basic upper bound for f(x) can be created as follows:

U(x) = min(f(xi) + k||x − xi||2) (2.7)

The Lipschitz constant for f(x) is represented by k. A straightforward technique
known as LIPO involves selecting random points and determining if the upper
bound for the new point surpasses the best point seen so far. If it does, the
algorithm selects it as the following point to evaluate as in the example for a 1D
function in Figure 2.5. In the end, it tries to rebuild the original function.

Figure 2.4: LIPO pseudo-code
The inputs of the LIPO algorithm are a number n of function evaluations, a
Lipschitz constant k, the input space X and the unknown function f. At each

iteration, a random variable is sampled uniformly over the input space X and the
algorithm decides whether or not to evaluate the function at this point [8].

2.4 Proximal Policy Optimization (PPO2)
PPO2[9] propose a novel set of policy gradient techniques for reinforcement learning
that involve iterative sampling of data through interaction with the environment,
followed by optimization of a "surrogate" objective function using stochastic gradient
ascent.

ĝ = Êt

è
∇θ log πθ (at | st) Ât

é
(2.8)

where πθ is the policy and A is the estimator of advantage.

14

Machine Learning (ML)

Figure 2.5: LIPO on 1D function
This figure shows a plot of a simple f(x) in red with a plot of its associated upper

bound U(x) in green [8]

The main idea is that after an update, the new policy should be not too far
from the old policy. For that, PPO uses clipping to avoid too large an update.

In contrast to conventional policy gradient methods, which perform a single
gradient update per data sample, we introduce a new objective function that
facilitates the use of multiple epochs of minibatch updates. This approach, known
as proximal policy optimization (PPO), shares some advantages of Trust Region
Policy Optimization (TRPO), an iterative procedure for optimizing policies, with
guaranteed monotonic improvement. However, based on our empirical results, it is
easier to implement, more flexible, and has superior sample complexity.

Figure 2.6: PPO2 pseudo-code
Each iteration, each of N (parallel) actors collect T timesteps of data. Then we
construct the surrogate loss on these NT timesteps of data, and optimize it [9]

15

Machine Learning (ML)

2.5 Deep Deterministic Policy Gradient (DDPG)

DDPG [10] is another kind of black box RL deterministic algorithm based on an
actor-critic model that can operate in a continuous action space. Two regressors are
needed to evaluate an actor-critic model each timestep based on a neural network
to evaluate the Q-function and to learn the policy (actor) and the oracle (critic).

In the Actor-Critic method, the policy is referred to as the actor that proposes a
set of possible actions given a state, and the estimated value function is referred to
as the critic, which evaluates actions taken by the actor based on the given policy.
The critic Q(s, a) is learned using the Bellman equation as in Q-learning. In other
words, DDPG uses data and the Bellman equation to learn the Q-function and uses
the Q-function to learn the policy. The objective is to evaluate the gradient of the
two functions and update both of them. The DDPG policy is an MLP (Multi-Layer
Perception) policy, which is a neural network that contains more than one layer;
each one is composed of neurons and information passes from layer to layer, from
input to output, as in figure 2.7 where is possible to see the 2 regressors and
how they work with the neural network. We present the neural network structure
utilized in this study: the diagram illustrates the interconnection between the
Π network and the Q network. Within this framework, the intermediate layers
facilitate the mapping of the present state and the action (generated by the Π
network) to the central component of the Q network.

Figure 2.7: ANN for DDPG, actor-critic model
Throughout the exploration stage, the two networks are effectively disconnected

due to the inclusion of the stochastic element ϵ, which facilitates the exploration of
the space of possible actions [6]

16

Machine Learning (ML)

Figure 2.8: DDPG Pseudo-code
Starting from random values, in each iteration, both actor and critic are updated

by minimizing loss [10]

2.6 OpenAI Gym Tutorials
Using an ML algorithm to work on BLEW can be useful use to solve some trivial
problems. For example, OpenAI, the largest artificial intelligence organization,
provides a Gym [11] with some simple environments that can be used to better
understand how the ML algorithm works and to prepare users for more complex
environments. More information can be found in the Gym documentation and on
GitHub[12].

It can be interesting to use some RL algorithms like PPO2 and DDPG to solve
some trivial problems and see how the algorithm’s policy can learn.

• Mountain Car
This simple environment consists of a car that is initially in a valley. The
goal is to give the car actions to reach the mountain, and only in this case
it receives a positive reward; otherwise, it receives a negative reward. If the
actions cannot give the car enough power, the reward is −0.1 ∗ Actions1, but
if the mountain car reaches the goal, then a positive reward of +100 is added
to the negative reward for each timestep. To solve this environment a DDPG
has been used, and after a 500000 timestep of training the policy can give the
action to reach the valley to the car as shown in figure 2.9.

17

Machine Learning (ML)

(a) (b)

Figure 2.9: Mountain car
In the first figure (a), the car is in the valley. In the second (b), after the training

of the agent, it reaches the mountain

It may also be interesting to observe the ability to learn from the policy for
this environment. In ML it may be useful to plot learning curves representing
the value of the reward for each episode. They start with a random value, and
if ML learns well, the reward should increase at each step until it reaches its
maximum. Visualizing this in Tensorboard, a Tensorflow dashboard, and then
seeing the LC as in Figure 2.10 is possible.

Figure 2.10: LC Mountain Car
The reward starts from a random point, and after many iterations, it converges to

the expected value

18

Machine Learning (ML)

• Lunar Lander

This is another trivial problem of OpenAI gym. In this case, the goal is to
give action to the rover to allow it to land between the two flags. In this game,
the lander will receive negative points if it moves away from the landing pad.
Similarly, if it crashes, the lander will lose an extra 100 points, while coming
to a complete stop will earn it an additional 100 points. Each leg of the lander
that has contact with the ground is worth 10 points. So the only way to earn
a positive reward is to land between the two flags as shown in Figure 2.11 To
solve this environment a PPO2 has been used with about 500000 episodes of
training

(a)

(b)

Figure 2.11: Lunar Lander
In the first figure (a) the rover is landing. Without the agent’s learning, it will
crash at a random point. After the training, it lands between the two flags (b)

19

Machine Learning (ML)

As for Mountain cars, it can be useful to see the learning curves for this
environment with Tensorboard in Figure 2.12

Figure 2.12: LC Lunar Lander
After a certain number of episodes, the reward converges as we expected

20

Chapter 3

Jet Wiping

The goal of finding the best parameters that can optimize the height of the fluid film,
h, is the reward for reinforcement learning. Thus, the most important parameters
that can be analyzed are the characteristics of the nozzle interacting with the flow,
considering a decoupling between the airflow and the film flow to obtain better
results for the numerical simulation so that the jet is not affected by the fluid as it
impinges on the flat plate. The first approach is to set the parameters such as the
distance H and the nozzle diameter d. It is also interesting to determine the exit
velocity max Uj taking into account the throttling condition of the nozzle and thus
the value of the pressure in the nozzle Pj. Starting from this, let’s compute the
shear stress and pressure distribution to model the liquid film thickness, and it is
the problem set-up as shown in Figure 3.1.

3.1 Jet characterisation
Impinging circular jets are a special type of jet that is commonly used in jet wiping
and characterized by their circular shape and perpendicular impact on the surface
to be coated as described by Beltaos e Rajaratnam [13]. Considering a jet impinging
normally on a smooth surface, such as the metal strip, it is possible to distinguish
three distinct areas of the flow as shown in Figure 3.2. The first region has the same
characteristics as a free jet with a potential core, where Vj = V0j, the transitional
zone, and the self-similar region. In the second region, the flow has a deflection
caused by the metal sheet, it is no longer perpendicular to the surface but parallel.
Right after impingement, the flow re-accelerates, so a peak of velocity and pressure
fluctuations arise, with a generation of turbulence close to the wall. In the end,
there is the wall jet region, where the flow is aligned with the foil.

The area where the flow directly hits the boundary is known as the impingement
region, and it is where the most intense hydrodynamic forces are experienced. In

22

Jet Wiping

Figure 3.1: Control problem set-up
This summarizes the goal of this section, which is to model the jets and its related

pg and τg to give actions for reducing liquid film instabilities [1].

this region, both the wall shear stress and pressure gradients are substantial, so
the study of them is necessary to analyze the interaction between jet wiping and
liquid film to reduce its thickness.

3.2 Exit flow velocity
It should be interesting to evaluate the velocity flow limit: it is strictly connected
to the number of Mach because the goal is to avoid the choking condition in the
nozzle.

In this case study, it is necessary to use a compressible formulation of Bernoulli
for a gas (negligible gravitational effects).

h2 + U2
2

2 = h1 + U2
1

2 + W − Q + Wv (3.1)

where U is the flow velocity, h is the enthalpy, W is shaft work that could be
introduced by a machine, Q is the exchanged heat and Wv is the energy lost due
to friction, rotationality, and any other effect. In this case point 1 is the nozzle
chamber and 2 is the outlet. So, in 2 it can be possible to use the value of Tamb e

23

Jet Wiping

Figure 3.2: Jet flow region
Considering a jet impinging normally on a plane smooth surface, three reasonably

distinct regions of flow could be recognized [13].

pamb, and U1 = 0. Furthermore, for an ideal nozzle W, Q, Wv = 0. So computing
the nozzle exit velocity from eequation 3.1:

Ui =
ñ

2(h1 − h2) (3.2)

Now it is necessary to evaluate the enthalpy. It can be written as h = cpT where
cp is the specific heat at pressure constant and for air, with the hypothesis of ideal
flow is about 1005 J/Kg K. From this, it is possible to evaluate the temperature as

T1

T2
= (1 + γ − 1

2 M2
2) (3.3)

the maximum velocity is calculated in the condition of choking flow, that since
it is the condition of M = 1. So from this, it is easy to evaluate the value of T1
and then Ui.

But this is not the real exit flow velocity, because for this the nozzle’s losses are
not negligible. So the most common way to compute the nozzle efficiency is to
compute the so-called discharge coefficient, which considers also the compressibility
of the flow and other losses such as skin friction in the nozzle:

CD = 1
2

ρU2
j

∆PN

=
U2

j

U2
i

(3.4)

where ∆PN is the gauge pressure inside the nozzle and CD = 0.8 Finally, it
is possible to compute the value of the flow exit velocity, which will be an input
parameter of the BLEW code.

24

Jet Wiping

But for this category of jet wiping, the value of the pressure gauge is about
∆P = 2 − 30KPa, as reported in the literature, so, in this case, the exit flow
velocity will be strictly connected to it. Then, it is possible to compute the exit
flow velocity using 3.4 as Uj = 190m/s and this is less than the max velocity to
avoid the choking condition.

Moreover, it is possible to evaluate the wiping number, to have an idea of the
wiping capabilities of the layout of the jet

Πg = CD
∆Pnd

ρlgZ2 (3.5)

This dimensionless parameter weights the pressure gradient generated by the
gas with the hydrostatic pressure gradient of the liquid film. In this case, it leads
to Πg = 3.3, theoretically guaranteeing a discrete actuation capability over the
liquid film.

3.3 Pressure and shear stress distribution
To model the height of the liquid film, firstly one must evaluate how the jet wiping
interact with the liquid coat. To do this, an interesting approach is proposed by
Beltaos [13], with an experimental facility to compute the relationship of shear
stress and pressure distribution for circular jets impinging in a strip. They both
depend on the value of stand-off distance H and the diameter of the nozzle d and
for this kind of application it is H/d ≥ 6, which is a compromise between wiping
performance and the nozzle gas flow rate. Another crucial parameter that must be
set up is the gauge of pressure in the nozzle, so the project variables are ∆P and
H/D. A model of jet wiping is represented in Figure 3.3,

Firstly, assume the liquid film thickness h is much smaller than the stand-off
distance, the pressure at the impinging point, or stagnation pressure is calculated,
where the experimental relationship is

ps = 50
ρgU2

j

2

3
H

d

4−2
(3.6)

and the value of maximum shear stress

τ0m = 0.16ρgU2
j

3
H

d

4−2
(3.7)

From this and the motion equation in the axial direction, it’s possible to compute
the expression of pressure distribution and shear stress distribution so that in the
impingement region they fit closely to the curve given by

25

Jet Wiping

Figure 3.3: Actuator model using in BLEW
Schematic model of jet wiping, with the max pressure at impinging points and max

shear stress in red

pg = pse
(−114(r/H)2) (3.8)

and

τg = 0.18τ0m

3
1 − e114(r/H)2

4
H

r
− 9.43 r

H
e(r/H)2 (3.9)

From this relationship, the shear stress distribution and the pressure distribution,
which represents the effective jet effect on the liquid film, can be derived. While the
pressure distribution has its maximum at the point of impact, which is perpendicular
to the nozzle, the shear stress is maximized at a certain point, namely at r/h = 0.14,
as can be seen in the plot in Figure 3.4.

Therefore, it can be observed how the shear stresses have a great influence also
outside of the impinging region, dictated by r = 0.14H. The suggested value for
the dimensionless distance then depends on how strict the limit on the shear stress
is.

At this point, it is possible to define the best option for the spacing and the
nozzle diameter to obtain a correct pressure and shear stress distribution. In this
case

H = 0.015m

d = 0.0015m

Once the relationship between shear stress and pressure distribution and the
nozzle parameters are defined, it is possible to define the effect of the wiping jet for
BLEW environment. Instead, the output of the ML algorithm is a value between
0 and 1 and therefore must be converted to a physical value. This is possible

26

Jet Wiping

(a) (b)

Figure 3.4: Pressure and shear stress distribution
Graphs illustrating the variation of dimensionless pressure (a) and shear stress (b)

along the radial dimensionless distance are presented for BLEW. The highest
magnitude occurs at the point of impingement in the pressure distribution, while

the maximum value for the shear stress distribution is observed at a radial distance
of r = 0.14H.

by normalizing the value for the maximum exit velocity and in this way simply
evaluating the shear stress and pressure distribution to model the thickness of the
fluid film as it is shown in Figure 3.5.

Figure 3.5: ML actions scheme
How ML algorithm works to give actions to model the thickness of the liquid film,

from its generated value between 0 and 1 to the interaction with the fluid.

27

Chapter 4

Optimization

In this section the goal is to analyze and optimize all the main features of BLEW,
to obtain the best setup and then use the ML algorithm to learn the agent.

Let’s start with a map that shows how BLEW code is structured as shown in
Figure 4.1. In this case, the main is the environment, so it is composed of all the
features of an ML env (step, render, action, cost function...)

Figure 4.1: Code Map
How the code is composed, with the main code, the solver implemented with FV,
the gas perturbation to compute the jets’ actions, and other tools for writing and

saving

Based on the wavelength of the perturbation, the domain size is defined along x
and z, while the time step is based on the CFL value provided by the user and the

29

Optimization

value of the spatial discretization step and the velocity of the strip:

dt = CFL ∗ dx

Up

where CFL = 0.5
The primary aim of BLEW is to replicate these fluctuations in a finite domain,

gauge the efficacy of machine learning algorithms in such an environment, and
subsequently implement them in practical settings.

4.1 Observation points
The first step in optimization is to set the position of observation points. In BLEW
they are represented by red points, but in the facility, they are physic sensors. They
can be expensive and also they have a volume, so finding the best position can
be useful in optimal control. Optimize jet position means that the goal is to give
the controller much information about the state as possible, so they must give the
controller the liquid film height as an input. It is a crucial part because from this
the controller decides the action to give to the nozzle to reduce the instabilities
that may appear. The number of sensors must be a compromise between the area
covered and their volume and cost, so the number that can be chosen is 8 sensors.
In the first setup, the 4 jets are positioned aligned with the jets as shown in Figure
4.2. It may be a good solution, but we have no confirmation that is the best. In
order to enhance the efficacy of conducting a subsequent analysis, it is valuable
to minimize the possibility of jets providing identical data to the controller. This
scenario poses a challenge for the machine learning algorithm to effectively ascertain
and determine the optimal course of action for all the jets involved. For this reason,
a solution can be to analyze the correlation coefficient Cij, which represents an
index of how much these signals are related to each other.

Cij = O′
iOj

∥O′
i∥∥Oj∥

(4.1)

Where O is the vector of the observation for the episode length. If the correlation
coefficient is 0, it means that signals are not correlated, otherwise if it is 1 they are
fully correlated. Let’s start with 1 line of 4 observation points as shown in Figure
4.2 and then analyze the signal through the correlation matrix that is shown in
Figure 4.3.

Now is interesting to try another configuration. One solution may be to use a
Latin hypercube distribution, a particular distribution implemented in PyDOE [14]
a Python library. Latin Hypercube Sampling (LHS) is a way of generating random
samples of parameter values. It is widely used in Monte Carlo simulation because

30

Optimization

Figure 4.2: Default set-up
Initial set-up with 4 obs points aligned and 4 jets aligned

Figure 4.3: Correlation Matrix of 4 obs points aligned
Correlation numbers are so high, so signal are correlated with each other

it can drastically reduce the number of runs necessary to achieve a reasonably
accurate result. LHS is based on the Latin square design, which has a single sample
in each row and column. A “hypercube” is a cube with more than three dimensions;
the Latin square is extended to sample from multiple dimensions and multiple
hyperplanes. Such configuration is similar to having N rooks on a chess board
without threatening each other. Let’s try with an LHS such as Figure 4.4

In this case with 8 obs points, the correlation matrix will be an 8x8 as in Figure
4.5

It can be easy to see that the correlation coefficient is so close to 0, and they
are more minor than the matrix with 4 points. This implies that in this scenario,
it becomes feasible to provide the controller with additional data regarding the

31

Optimization

Figure 4.4: LHS distribution
New set-up with LHS distribution of obs points to optimize the correlation

coefficient

Figure 4.5: Correlation Matrix LHS
In this case, opposite figure 4.3, the correlation coefficient are small, and most of

them are close to zero

condition, as evident from the graphical representation of the signal of h at two
specific sampling instances, as depicted in Figure 4.6.

But before giving this information about the state to the ML algorithm, is
important to normalize these values. To learn well, the policy needs observation as
a value between 0 and 1, so, in this case, is important to define an observation space
functional for the ML policy. An effective approach to standardize the observations
is by utilizing the highest and lowest values derived from perturbation inlet realistic.

32

Optimization

(a) (b)

Figure 4.6: Comparison between the signal in 2 obs points
Plot of the signal of liquid film thickness in 2 of the new obs points.

After acquiring these values, it is possible to normalize them as

obs[i] = obs[i] − min(obs)
max(obs) − min(obs) (4.2)

Now all the ingredients for the obs point of the environment are defined and
they are ready to pass to the controller.

33

Optimization

4.2 Hyperparameters optimization (HPO)
Hyperparameters optimization (HPO) is the process of selecting the optimal values
for the hyperparameters of a machine learning model to achieve better performance.
In the context of reinforcement learning (RL) algorithms, HPO refers to the process
of selecting the optimal hyperparameters for the RL algorithm to improve its
learning and decision-making capabilities.

RL algorithms have several hyperparameters that can significantly affect their
performance, such as the learning rate, discount factor, exploration rate, batch size,
and neural network architecture. HPO methods aim to find the best combination of
hyperparameters that optimize the performance of the RL algorithm on a specific
task.

There are various HPO techniques available for RL algorithms, such as grid
search, random search, Bayesian optimization, and evolutionary algorithms. These
techniques search through the hyperparameter space and try different combinations
of hyperparameters to identify the best set of hyperparameters that optimize the
RL algorithm’s performance on a given task.

For the HPO it can be used a library called Optuna [15], which is an optimizer
based on Bayesian Optimization to optimize hyperparameters of the reinforcement
learning algorithm. It has some features that make it more efficient applied to
BLEW such as easy parallelization and efficient and fast trial search as shown in
Figure 4.7.

Figure 4.7: Optuna features
By leveraging the features offered by Optuna, we can efficiently tune the
hyperparameters of the reinforcement learning algorithm for flow control,
ultimately leading to improved performance and better convergence. [15].

HPO is crucial in RL because the optimal set of hyperparameters varies depend-
ing on the task and environment, and a suboptimal set of hyperparameters can lead
to poor performance or slow learning. Therefore, optimizing hyperparameters is
essential to achieve the best performance of RL algorithms in various applications.

In this case, finding the best trade-off of hyperparameters for RL algorithms

34

Optimization

such as PPO2 and DDPG applied on BLEW can influence the capabilities to learn
of the agent because they are set as input of the model. So the goal is tuning
Hyperparameters to find the best setup to optimize the learning process in terms
of time and performance

In PPO2 the main hyperparameters that need to be changed from the default,
are

• discount factor γ

It usually is a value between 0.9 and 0.99 and it is an index of how much the
new action in the present is influenced by the past.

• n steps
It is a parameter that denotes how many steps the policy is updated changing
the weights of the neural network. If it is too small, the policy may have
not enough information to update well, on the other hand, if it is too high
the computational cost increases, and also the training can become unstable
without converging. It is usually about the same length as one episode.

• learning rate
It decides how much to update the weights of the neural network. It can be
between 0 and 1: if it is 1 the algorithm can learn quickly, but it is more
unstable with a lot of entropy loss. If it is too slow, the algorithm may take
too much time to learn.

• entropy coefficient
in RL, entropy refers to the predictability of the actions of an agent. This is
closely related to the certainty of its policy about what action will yield the
highest cumulative reward in the long run: if certainty is high, entropy is low,
and vice versa.

In this case it is possible to set the number of trials and the number of training
for each agent trial. For this kind of RL algorithm, the objective value is the reward
from the cost function, so BO tries to set the hyperparameters to minimize it. In
the end, is it possible to show the results through the Optuna dashboard to see all
the parameters and how they change during this training as in Figure 4.8.

Let s compare now the learning curves of a selected setup using several hyperpa-
rameters as shown in Figure 4.9. The first one is done using default hyperparameters
from the library stable baselines while the second is done after HPO. The notable
enhancement in the reward is associated with modifying the hyperparameter nsteps,
which could potentially be of a similar value as the duration of the episode.

From this learning curve is clear that the ability to learn of the policy increase
changing hyperparameters, as we expected, and for example, in this case, the
performance of PPO2 is improved by about 5% evaluated on 1000 episodes.

35

Optimization

(a)

(b)

(c)

Figure 4.8: Optuna HPO
In figure (a) how Optuna has worked to optimize reward changing hyperparameters,
in (b) how hyperparameters change in each trial, in (c) how each hyperparameter

influences the reward

36

Optimization

Figure 4.9: PPO2 HPO conf
Comparison in terms of learning curves for a PPO2 before and after the HPO. The

reward after HPO is much better.

37

Optimization

4.3 Artificial Neural Network (ANN) size
This type of optimal control works with a neural network. To explain how it works,
you can imagine that they are similar to the neurons that make up the human
body. It is inspired by the way the human brain processes information: it’s made
up of layers and neurons, and they decide on the information for each learning
step, with some weights updated at each step. The network takes an input signal
and applies a series of mathematical operations to it, passing it through the layers
of neurons until it produces a predictable signal output. An example of a neural
network with 3 hidden layers and 9 neurons each one is shown in Figure 4.10.

In this case, it is important to find a good compromise between the number
of layers and the number of neurons: If the number of neurons is too high, the
ML algorithm can learn well, but the computational cost increases dramatically.
Therefore, a good compromise is to use a neural network with 4 layers, with 64,
128, 128, and 64 neurons in each layer.

It means that we have 4 layers for the actors and the oracle with the same
number of neurons, which take as input the obs, and then they interface respectively
with the action and the value.

Figure 4.10: Neural Network
From the input layer, the information passes through 3 hidden layers until arriving

at the output layer. Each layer is composed by 9 neurons [16]

Another point to improve policy performance is to use regularization for the
neural network. In this case it may be useful to use the L2 regularization, also
known as weight decay, which is a common technique used in machine learning, to
prevent overfitting and improve generalization. It works by adding a regularization
term to the loss function, which encourages the model to have smaller weights.
This can be applied to the neural network parameters to control the complexity of
the model and reduce overfitting. The regularization term is added to the original

38

Optimization

objective function being optimized during the training process.

4.4 Jet position
Now that the main features of the ML algorithm such as hyperparameters and
neural network size have been determined, it is time to define the position of the
nozzles. Using the Beltaos distribution for impinging circular jets as in Chapter 3, it
is feasible to calculate the shear stress and pressure distribution, and subsequently
observe how the outcomes vary in relation to the positioning of the jets in terms
of learning performance. For this reason, various experimental arrangements can
be tried as shown in Figure 4.11, and the interference of each ray with the others
must also be considered. One possibility is to work with alternating jets in two
lines to solve the problem of interference with an opposite control, but when using,
for example, 7 jets, there is still the problem of high computational costs.

Figure 4.11: Jets’ position
Multiple nozzle configurations can be examined to assess various arrangements

aiming to enhance the overall performance outcome.

39

Optimization

The efficiency of that configuration is evaluated in terms of learning curves, that
represent the ability of the policy to learn and then to give the best reward. In this
case, is possible to compare the learning curves for each jet setup, and then evaluate
the final reward. After some episode of training is clear that the best choice is to
use jets closer than the original configuration. The distance between each jet should
be at least the distance that permits the pressure and shear stress distribution to
not interfere with the others. For this reason, the distance is estimated to have
pw = pamb and τ = 0.2τmax. Known distribution, it is not difficult to evaluate the
point that satisfies this condition, and after that to convert the nominal value in
dimensionless coordinates for BLEW code.

(a)

(b)

Figure 4.12: Comparison of learning outcomes between two configurations
In the first setup (a), the level of reward is minimal, whereas in the optimal

configuration (b), we experience a remarkable improvement after just 100 episodes
of learning.

40

Optimization

We compare different configurations based on training performances over 100
episodes. It is clear to see that with the last configuration, the gain is higher than
the other, with a performance improvement of more than 10% using the BO and
about 8% using the PPO2 as shown in Figure 4.12.

These sims are made with a very low number of episodes because they are used
just to choose the best setup for made longer simulations using all the improved
performances.

4.5 Reward area
Another crucial part of the machine learning algorithm that needs to be improved
is the reward area, which is a part of the domain where the reward is evaluated.
So in this case it represents the area where the sensor takes the info about the
thickness of the liquid film after the control of jets. The goal is to maximize the
reward of the cost function in this area. One of the main problems in this numerical
simulation is the numerical dispersion, so the wave may be auto-dumped by itself.
So, if the reward area is too far from the jets, it is clear that it is not possible to
evaluate the performance of ML because in this case, we are evaluating not the
effect of the jet wiping but the effect of the numerical dispersion. For this reason,
considering the domain’s size, it is important to consider the reward area from
about the position of jets, where the perturbation starts, to a point before the end
of the domain. For this reason, the reward area is chosen in a strategic position
that is 10 < x̂ < 50.

4.6 Multiprocess environment
These fluid dynamics simulations are very expensive for computational costs.
For this reason, one solution to reduce the time is to use a multiprocess custom
environment: in this way is possible to run in parallel more episodes, and, depending
on the number of CPUs that are used, reducing dramatically the time of sims. The
scheme of how the ML algorithm with a multiprocess environment works is shown
in Figure 4.13.

But using a vectorized env present some advantage and some disadvantages
Advantages:

• Increased efficiency
With multiple processes running in parallel, the RL agent can interact with the
environment and collect experience data more quickly. This can significantly
speed up the learning process compared to a single-process environment.

41

Optimization

Figure 4.13: Multiprocess scheme
How algorithms operate within the vectorized environment: Multiple environments
are executed simultaneously on each CPU, and the action vector ak dictates their

respective actions.

• Enhanced exploration
In RL, exploration is crucial for discovering optimal policies. Multi-process
environments can enable different instances of the RL agent to explore different
parts of the environment simultaneously, leading to more diverse experiences
and potentially better policy exploration.

• Utilization of multi-core systems
Modern computers often have multiple CPU cores, and multi-process environ-
ments can utilize these cores effectively. By distributing computation across
cores, the RL algorithm can take advantage of parallelism and achieve faster
training.

Disadvantages:

42

Optimization

• Increased complexity
Managing multiple processes introduces additional complexity to the RL al-
gorithm. Coordinating data sharing, synchronization, and communication
between processes requires careful implementation and can be error-prone.
Debugging and maintaining a multi-process environment can be more chal-
lenging.

• Communication overhead
Inter-process communication overhead can be a bottleneck in multi-process en-
vironments. Sharing information between processes may incur delays, reducing
the overall efficiency gained from parallelization.

• Synchronization issues
In RL, it is often necessary to synchronize different processes to update
the agent’s policy or value functions. Ensuring proper synchronization and
avoiding race conditions can be non-trivial, especially when dealing with
complex RL algorithms or distributed systems.

• Resource utilization
Multi-process environments consume more system resources, including CPU,
and memory. If the RL algorithm and the environment are not efficiently
designed or if the system lacks sufficient resources, the overall performance
may be compromised.

Figure 4.14: Multiprocess Env running in 100 cpu
All cores of the machine runs for the vectorized env

43

Optimization

It is also important to find a good compromise between the time of simulations
and machine occupation because if the computer is saturated, the processor starts
to run in parallel, and the runtime increase. Figure 4.14 is shown the processors of
the computer which are running to solve a multiprocess environment.

For this kind of environment, a good strategy of optimization can be to use
a random environment, in which each episode starts from a random point of the
simulation; in this way, it is possible to maximize the efficiency of the multiprocess
because each core can have its env different from the others and the policy takes
information from all of them.

44

Chapter 5

Cost function and actions

For an ML policy is fundamental to define as well as possible the cost function. It
gives the reward to the algorithm, so if it is not definite correctly the algorithm
can’t learn about the state of the system or it can’t understand how to work to
optimize it. In the same way, a crucial part is the choice of the actions to give to
jets to regulate the shear stress and pressure distribution.

5.1 Actions

The actions represent the choices that an RL agent can take in a given state of the
environment and through it interacts and influences the environment. First of all,
is crucial to define a correct action space. The action space refers to the set of all
possible actions that the agent can choose from. It can be discrete, where there
is a finite number of actions, or continuous, where actions lie within a continuous
range. In BLEW, the action space is continuous. Actions from ML are between 0
and 1, but choosing directly these values as boundary limits for the action space
can cause some instability problems, mainly for the PPO2, which is parametrized
by a Gaussian so can in theory output infinite values. In practice, the action is
clipped to match the boundaries but because of that and the initialization, it is
recommended to do the rescaling inside the environment and keep the bounds in
[-1, 1].

After that, can be useful to use a filter for the action, to have more smoothed
actions, and to delete some peaks. To do this, a good strategy is to use the
Exponential Moving Average (EMA) that considers not only the action at time step
t but also the previous actions. In other words, it is like giving more importance to
the last experience or memories than to older ones, assuming those are represented
by data points.

46

Cost function and actions

ŷT +1|T = αyT + α(1 − α)yT −1 + α(1 − α)2yT −2 + · · · , (5.1)

where y is the action and α is the smoothing parameter between 0 and 1 and is the
only controlling parameter that controls the smoothness of the fitted curve so it can
be used as a filter. In this case the smoothing parameter is α = 0.5. Consequently,
this filtering process enables the controller to operate unrestrictedly within the
desired frequency range for addressing the control issue while safeguarding the
stability of the numerical solver by averting sudden alterations.

5.2 Cost function
• Variance

The first idea is to use the variance to evaluate how much in each episode the
thickness of the liquid film, the h, is far from the desired value, which in this
case is the h’s value at the inlet. For this reason, the first approach may be to
use the variance, which is defined as

R = 1
N

NØ
i=1

(h − h0)2 (5.2)

where h is the thickness of the liquid film in each point, h0 is the thickness
at the inlet and N is the number of points in the reward area. This value is
summed for all the points in the reward area, and then multiplied for −103 to
have more sensibility in the reward; RL algorithm has a maximize direction, so
the reward is a negative number. The final goal is to have the greatest possible
reward, and to do that the policy has to minimize the standard deviation in
each episode, through jets; working on shear stress and pressure distribution
policy can learn that to reduce the reward the best option is to have a more
flat substrate of film, so it mince that the value of h − h0 is more close to 0;
in this way the policy can give to the jets the best action to do.
Minimizing variance as a reward can simplify the control problem by focusing
on a single metric. Instead of dealing with multiple conflicting objectives
or constraints, the agent’s objective becomes straightforward: to reduce
variance, that mince reduces fluctuations and disturbances within the film.
This simplification can make the learning process more tractable and improve
the interpretability of the control policy. This is why in this case the variance
can be the best choice.

47

Cost function and actions

• Variance and mean
Using just the variance, the ML algorithm should not understand what it
must do well. For this reason, a good strategy to define the cost function is to
use both variance and mean, to give more sensibility to the system and try to
help the policy to learn. In this case, the reward can be defined as

R = σ2

h̄
(5.3)

But if the sensibility of the reward increase, on the other hand, the algorithm
has two directions of optimization, the variance and the mean. This may be a
problem in such a simulation because it can optimize just the direction of the
mean and not the variance, and in this case, the result is just to wipe more,
and it is not the expected result. In this case, a sensibility analysis may occur,
to be sure that both variance and mean have the same influence on the reward
and that they are about of the same order. But in this case, it is very hard to
learn for an ML algorithm and it may take more episodes than the variance.

48

Chapter 6

Results

6.1 Undulation control
In this section, we showcase the results of the diverse control algorithms concerning
their learning progress graphs and control actions for the liquid film instabilities.
Considering the heuristic nature of these control strategies, we conducted multiple
training sessions for each approach, employing various seed values for the random
number generator. The learning curve is defined as the maximum cumulative
reward R achieved in each episode across the different training sessions.

As said before, this thesis aimed to control the instabilities called undulation,
that in BLEW are represented by waves. So using empirical shear stress and
pressure distribution induced by the nozzle, the goal is to smooth as much as
possible this wave to have a more laminar substrate. To do this, a good strategy
is to compare the reward after training the ML agent with the reward in the
uncontrolled condition, which minces with action jets null. After defining the jets
and obs points position, let’s start to see the results, plotting the learning curves
and the gif in 2D and 3D .

In this case, the cost function is defined as said in Chapter 5, so it is negative;
it minces that if the ML algorithm works well, it should maximize the reward,
starting from a random value and trying to arrive at to value close to 0.

The reward is given by the cost function as a sum of the variance in the reward
area. In the case of the uncontrolled condition, the results are

R = −1906

So in the following graph, it is possible to see how the reward goes to reduce
with a different kind of ML algorithm. Each episode is composed of 3120 timesteps
and the environment can be a serial deterministic environment, which is used in
serial simulation, or randomic environment, which is more useful in a multiprocess

50

Results

environment.
After a phase of learning each agent trained is tested again in an evaluation

episode, which consists in load the model learned in a new environment. If the
reward, in this case, is better than the uncontrolled condition, in mince that it has
learned and the simulation has gone as expected. It can be possible because after
a phase of learning all the features of the policy, such as neural network weights
and control low, are saved in a file that is the output of all the ML algorithms.

6.1.1 Learning on 100 episodes

Following the learning phase, the rewards obtained in each episode are recorded
in a monitoring system, allowing for the visualization of learning curves. These
curves provide valuable insights into the performance of the learning process. By
comparing different algorithms, one can discern which algorithm exhibits the highest
efficiency in terms of learning and computational cost. Let’s start to see the LC
with 100 ep for all kinds of algorithms presented in Chapter 2 (Figure 6.1)

Figure 6.1: LC 100 episodes
Learning curves with upper bounds for LIPO, BO, DDPG, and PPO2 evaluated on

100 ep of training

51

Results

This LC is plotted with the upper bound strategy, which minces that the lower
bound of a set of numbers is the smallest number in the set represented. From this
plot, the best result is the PPO2, and in this case, is

R = −1543

so it means that in this case, the gain compared with the uncontrolled condition is
about 19% of the reduction of instabilities.

But before going ahead is important to do a premise. In the field of reinforcement
learning, the primary objective of an agent is to acquire knowledge on how to
make optimal decisions by gathering and analyzing data through interactions with
its environment. To achieve a high-performing decision-making strategy, it is
crucial to accumulate data that exhibits sufficiently favorable behavior, which
includes sequences of states, actions, and corresponding rewards. One prevalent
and straightforward approach to enhance the quality of collected data involves
introducing randomness into the action selection process, called action noise. By
injecting noise into the decision-making mechanism, the agent explores a broader
spectrum of action sequences, ultimately leading to the discovery of valuable insights
and knowledge. All these RL algorithms are implemented with the action noise
so the results are also influenced by them and they may have a random part that
is more significant when the number of episodes is not too high. In this case, the
noise used is the time-correlated Uhlenbeck-Ornstein noise which is the most useful
in this application.

Let’s continue plotting the learning curves without upper bounds, to see the
ability to learn the ML algorithm as in Figure 6.2. In this case, it’s interesting to
plot the DDPG, which is clear that starts from a very high and random value and
that it decreases each timestep, to represent that the policy is effectively learning.

But to evaluate how the policy is learning, a good strategy can be to see the
parameters through a tensorboard (Figure 6.3), where it is possible to visualize for
the DDPG the actor loss and the critic loss. They are two indexes and the actor
loss is typically defined as the negative expected value of the critic’s Q-value for the
chosen action while the critic loss is computed by comparing the predicted Q-value
with the target Q-value, which is usually obtained using the Bellman equation.
While the critic is going close to zero, the actor loss increase in each episode, and
this is a clear signal that the learning is not completed.

To see how the waves each step can be reduced, it can be possible to make a gif
for an episode(Figure 6.4). To evaluate the performance of the ML algorithm, we
test the trained model on a single episode, called evaluation episodes, where it is
possible to see the improvement.

52

Results

Figure 6.2: LC DDPG 100 ep
learning curves without upper bound for DDPG. It is evident the descendent trend

because starting from a random point it is learning

(a) (b)

Figure 6.3: Actor and critic loss for ddpg 100 episodes
While the critic is performing well because its loss is close to zero, the actor loss

increases to represent that the learning is not finished

And it can be interesting also to plot a 3D visualization as in Figure 6.5, where
it is clear to see that the perturbation at the inlet is smoothed by the control jets,
represented in the plan upstairs.

53

Results

(a)

(b)

Figure 6.4: GIF 100 ep PPO2
Two frames of the gif as results of the DDPG.

54

Results

(a)

(b)

Figure 6.5: 3D GIF 100 ep PPO2
two frames of the 3D visualization

55

Results

But on the other hand, despite these results can be interesting, 100 ep are such
a very low number of episodes to train well an agent. It means that the algorithm
is doing an exploration phase, so it is trying several control low to find the best.
For this reason, should be interesting to observe simulations with more episodes.

In this case, if we examine the behaviors of the jets in the evaluation episodes,
we can observe that they predominantly remain constant (Figure 6.6). This can
be attributed primarily to the normalization and definition of the action space
boundaries, as well as the limited number of episodes. Essentially, the algorithm
suggests that the optimal solution is to wipe more. The action space box is between
[-1,1] as defined in Chapter 5 and represented in Figure 6.6, so these values are
firstly normalized between 0 and 1 and then multiplied for the maximum exit
flow velocity to obtain the instantaneous value of Uj. This calculated value is
then provided as input to the solver to evaluate the shear stress and pressure
distribution.

Figure 6.6: Actions of an evaluation episode for the first jet
These actions are in the space box [-1,1], so after normalization, they correspond to

about 0.5; it is clear that they are mainly constant because their interval is so
restricted so it minces that in this case, the solution is to do an extra wiping

Finally, let’s compute the time of each simulation to evaluate the computational
cost (Table 6.1).

Table 6.1: Time required for each simulation

Algorithm Time (min)
BO 632

LIPO 1082
PPO2 763
DDPG 2913

56

Results

6.1.2 Learning on 1000 episodes
Let’s analyze some results in terms of learning curves with 1000 episodes (Figure
6.7)

Figure 6.7: LC 1000 ep
After 1000 episodes of learning, we have a great improvement with PPO2

The DDPG is trained on just 300 for its high computational cost. In this case,
it is possible to see that the best results are from PPO2, after HPO. The reward in
this case is

R = −1437
which corresponds to about

25%
of reduction of instabilities, which may be an interesting result in terms of final

performances.

57

Results

To evaluate if the policy has learned, now let’s try using the model trained to test
in an evaluation episode. In this case, with the PPO2, the result is an improvement
of the reward compared with the uncontrolled condition, as we expected. Let’s see
the gif in Figure 6.8

(a) (b)

(c) (d)

Figure 6.8: GIF 1000 ep PPO2
4 frames of the GIF that show the control of the thickness of liquid film

And plotting the actions of the jets it is possible to see that they are less constant
than the simulations done with 100 episodes as shown Figure 6.9.

Particularly interesting is the DDPG gif (Figure 6.10),where it is possible to
see that it has started to do a wave’s control despite it being trained with a very
low number of episodes. On the other hand, the rewards which come from the
evaluation episodes are higher that the uncontrolled condition

And in this case, it can be useful to plot the actor and the critic’s loss to see
how good is going the learning (Figure 6.11). Initially, the actor explores various

58

Results

Figure 6.9: Actions of one jet for PPO2 after learning
After episodes learning the actions are no constant. In fact, from this plot, it is

clear that the output value of ML algorithm is between 0.025 and 0.2.

(a) (b)

Figure 6.10: 2D GIF 300 ep DDPG
DDPG gif, the most interesting for the control but with the agent learned with just

300 episodes for the high computational cost

actions to gather experience. As training progresses, the actor starts exploiting
the learned policy, focusing on actions that have yielded higher rewards. This shift
from exploration to exploitation can stabilize the loss, as the actor becomes more
deterministic and focused on the most optimal actions. The convergence of the
actor loss may also indicate that the algorithm has found a near-optimal policy
for the given task. The actor loss measures the discrepancy between the predicted

59

Results

actions and the actions that maximize the expected rewards. As the algorithm
learns and refines its policy, it gradually reduces this discrepancy until it reaches a
point where further improvements are minimal.

(a)

(b)

Figure 6.11: Actor and critic loss for 300 ep (about 800000 timesteps)
Actor(a) and critic(b) loss. The critic’s performance is good because it goes close

to zero, while the actor converges to a certain value

Finally, the results can be represented by a 3D gif as done before in Figure 6.12

60

Results

(a)

(b)

Figure 6.12: 3D GIF 300 ep DDPG
two frames of DDPG 3D gif, it is clear that the jets positioned at x̂ try to reduce

the instabilities

61

Results

6.1.3 10000 episodes multiprocess environment
In this section, we discuss about the multiprocess environment, as said in Chapter
4. In this case, we ran several simulations in parallel in each processor to have
more episodes for the agent’s learning.

To do it, the environment should be firstly vectorized, and after that, it should
be modified in a way that each processor starts from a different point with a
different noise, and in this way, the exploration efficiency increase because it allows
the agent to explore different areas of the environment simultaneously, potentially
discovering optimal strategies faster. But on the other hand, randomizing starting
points can lead to episodes with varying lengths and trajectories, resulting in more
diverse training data. However, this diversity may introduce correlation issues in
the training data. Correlated samples can bias the learning process and make it
more challenging for the RL agent to generalize effectively. For this reason, it can
be possible that the multiprocess random environment needs more episodes to learn
that the serial.

Using this kind of environment it is possible to run simulations for more episodes
in a much more feasible time, and it can do mainly for the reinforcement learning
algorithm.

Let’s see the results for the multiprocess environment with the PPO2 for about
10000 episodes as shown in Figure 6.13. It is clear that there is a descendent
trend after 20 million timesteps, about 6500 episodes, and it minces that after the
exploration the policy has started to learn.

After this phase, to see if the policy has been learned, let’s try to do an evaluation
episode using the model trained, and as we expected the result is a final reward
higher than the uncontrolled condition of about

R = −1527

that is a mean of 10 episodes run using the trained agent. Figure 6.14 it is
shown the reward on 10 episodes in control and uncontrolled condition with the
mean. It is clear that there is a gain, but also using a multiprocess environment is
very hard to go over 25% of instabilities’ reduction.

After an extensive training period of 10.000 episodes, we have determined that
the behaviors remain predominantly consistent during the evaluation episodes
conducted with the trained model. This indicates that one of the most effective
approaches is to physically engage in an extra wiping by activating a button that
initiates a wiping action, as shown in Figure 6.15. It represents also a random
environment, as it is possible to see from the simulation time. It means that after
several episodes of learning the main behavior is to go in the direction of extra
wiping and constant actions.

62

Results

Figure 6.13: Episode reward for 30 millions of timesteps (10k episodes)
Episode rewards for the learning with tensorboard visualizaion

Figure 6.14: Reward comparison on 10 evaluation episodes
It is clear that the average reward in the controlled condition is better than the

uncontrolled with a gain of about 20%

63

Results

(a)

(b)

Figure 6.15: GIF of the PPO2 with 10000 episodes of learning
two frames generated using the PPO2 algorithm by a trained agent while operating
within a randomized environment during evaluation episodes. The agent’s actions

appear to remain mainly constant.

64

Conclusions

This approach demonstrates the power of data-driven techniques in tackling complex
fluid dynamics problems. By leveraging the capabilities of machine learning, it has
the potential to significantly enhance our understanding and control of liquid film
instabilities.

From some simulations, after learning about the agent, it is clear that one of
the possibilities to reduce undulation is to give constant actions. Physically this
solution means that one way to reduce waves and instabilities is to do an extra
wiping. The key finding highlights the intricate nature of this control problem,
suggesting that additional wiping action after the first phase of thickness regulation
is highly effective also for undulation reduction. Consequently, for such applications,
employing an open-loop control mechanism appears to be more advantageous than
a closed-loop control. This assertion is supported by numerous simulations where
the actions remain predominantly consistent, in particular after the PPO2 with
10000 episodes of learning. This analysis can be useful to define the parameters of
the open-loop control, such as the exit flow velocity.

After the optimization of all the main features of the RL algorithm and custom
environment, we arrive to reduce the reward by about 25%, which can be an
interesting result that should be tested. Of course, if the number of episodes of
learning increases the agent can learn better, and it is possible to further reduce
the instabilities.

Comparing several algorithms for the control, we can conclude that the PPO2
is the most efficient in terms of final reward. On the other hand, DDPG exhibits
superior learning capabilities and offers intriguing alternatives due to its resemblance
to closed-loop control. However, its extensive computational requirements pose
challenges when attempting to train it with a larger number of episodes.

In conclusion, by utilizing an ML algorithm to reduce the instabilities of a 3D
liquid film, it is possible to achieve a more efficient coating or deposition process
with a considerable reduction of undulation. By automating the control of the
coating process, ML algorithms can make real-time adjustments to achieve the
desired thickness more efficiently, saving both time and resources.

66

Future trends

This thesis should be a starting point for other successful research. After a
preliminary analysis, we define a final setup that can be further improved for sure.

• Firstly, we should try to run this simulation with more episodes, e.g. 100000
for the serial DDPG, to evaluate the learning performance of the agent. These
simulations are very computationally intensive, so a good strategy for the
future is to run them on more powerful computers or vectorize the environment
to run the same environment on more computers in parallel. Another issue is
to find a new and more complex cost function that may be more efficient.

• It should be interesting to compare several integral models presented in [2],
such as the ILB and the WILB to see the difference. Another analysis can be
done by comparing the results obtained with integral models and the solutions
of NS equations using a DNS.

• Robustness analysis might also be of interest to also evaluate the impact of
noise and give the algorithm more reliability to be tested in the real world.

• Another idea is to use new relations for pressure and shear stress distribution:
those of Beltaos, are such an old experimental and empirical law that it should
be interesting to find new equations. If we have the opportunity to conduct
fresh experiments, it would certainly be intriguing to explore novel hypotheses
by examining alternative scenarios. For instance, by introducing a specific
variable, let’s say alpha as a nozzle angle and incorporating an additional
degree of freedom, we can strive to discover enhanced efficiencies or uncover
previously unknown laws.

• The world of ML is getting better every day, so another point is to test this
environment with other ML algorithms using new versions released by stable
baselines 3, such as Twin Delayed DDPG (TD3) and Soft Actor-Critic (SAC),
which are similar to DDPG, and Sample Efficient Actor-Critic with Experience
Replay (ACER). In complex liquid film control scenarios, multiple agents can
collaborate or compete to optimize different aspects of the system. Using

67

Future trends

multi-agent reinforcement learning techniques can enable coordinated control
actions and handle complex interactions between liquid film regions or different
control objectives. By continuously updating and retraining the models with
new data, the algorithms can refine their predictions and control strategies.
This adaptability allows for better precision and responsiveness in maintaining
the desired liquid thickness.

• As machine learning techniques become more prevalent in real-world applica-
tions, the need for explainability and interpretability increases. Researchers
may focus on developing methods to interpret the decisions made by machine
learning models in liquid film thickness control systems. Explainable AI
techniques can provide insights into why certain control actions are taken,
increasing trust and enabling easier integration with existing control frame-
works.

• On the other hand, despite machine learning offers promising results for liquid
thickness control, it’s important to acknowledge potential challenges. Data
quality, availability, and representativeness are crucial factors for training
accurate models. The need for continuous monitoring, model updates, and
potential system complexities may also pose implementation challenges.

• Finally, in a few years, it will be interesting to test the control in the plant
that will be built in Canada to get real feedback and compare the numerical
results with the experimental ones. In this case, may be interesting to integrate
machine learning techniques with traditional control methods that can combine
the strengths of both approaches. Combining model-based control strategies
with data-driven approaches can provide better stability guarantees and handle
scenarios with limited data or challenging dynamics.

68

Bibliography

[1] Anne Gosset, Miguel Alfonso Mendez, and Jean-Marie Buchlin. «An experi-
mental analysis of the stability of the jet wiping process: Part i–characterization
of the coating uniformity». In: Experimental Thermal and Fluid Science 103
(2019), pp. 51–65 (cit. on pp. 3, 23).

[2] Miguel Alfonso Mendez, Anne Gosset, Benoıt Scheid, Mikhael Balabane, and
Jean-Marie Buchlin. «Dynamics of the jet wiping process via integral models».
In: Journal of Fluid Mechanics 911 (2021), A47 (cit. on pp. 4–6, 67).

[3] Skopt. https://scikit-optimize.github.io/stable/modules/generate
d/skopt.Optimizer.html (cit. on p. 9).

[4] Ashley Hill et al. Stable Baselines. https://github.com/hill-a/stable-
baselines. 2018 (cit. on p. 9).

[5] tensorflow 1.14. https://www.tensorflow.org/. 2021 (cit. on p. 9).
[6] Fabio Pino, Lorenzo Schena, Jean Rabault, and Miguel Alfonso Mendez.

«Comparative analysis of machine learning methods for active flow control».
In: Journal of Fluid Mechanics 958 (2023), A39 (cit. on pp. 9, 16).

[7] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando
De Freitas. «Taking the human out of the loop: A review of Bayesian opti-
mization». In: Proceedings of the IEEE 104.1 (2015), pp. 148–175 (cit. on
pp. 12, 13).

[8] Cédric Malherbe and Nicolas Vayatis. «Global optimization of Lipschitz
functions». In: International Conference on Machine Learning. PMLR. 2017,
pp. 2314–2323 (cit. on pp. 14, 15).

[9] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. «Proximal policy optimization algorithms». In: arXiv preprint arXiv:1707.06347
(2017) (cit. on pp. 14, 15).

[10] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. «Continuous control with
deep reinforcement learning». In: arXiv preprint arXiv:1509.02971 (2015)
(cit. on pp. 16, 17).

70

https://scikit-optimize.github.io/stable/modules/generated/skopt.Optimizer.html
https://scikit-optimize.github.io/stable/modules/generated/skopt.Optimizer.html
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://www.tensorflow.org/

BIBLIOGRAPHY

[11] OpenAI gym. https://www.gymlibrary.dev/ (cit. on p. 17).
[12] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John

Schulman, Jie Tang, and Wojciech Zaremba. OpenAI Gym. 2016. eprint:
arXiv:1606.01540 (cit. on p. 17).

[13] Spyridon Beltaos and Nallamuthu Rajaratnam. «Impinging circular turbulent
jets». In: Journal of the hydraulics division 100.10 (1974), pp. 1313–1328
(cit. on pp. 22, 24, 25).

[14] PyDOE. https://pythonhosted.org/pyDOE/ (cit. on p. 30).
[15] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori

Koyama. «Optuna: A Next-generation Hyperparameter Optimization Frame-
work». In: Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. 2019 (cit. on p. 34).

[16] Neural Network Architectures. https://freecontent.manning.com/neural-
network-architectures/ (cit. on p. 38).

71

https://www.gymlibrary.dev/
arXiv:1606.01540
https://pythonhosted.org/pyDOE/
https://freecontent.manning.com/neural-network-architectures/
https://freecontent.manning.com/neural-network-architectures/

	List of Tables
	List of Figures
	Acronyms
	List of Symbols
	Introduction
	Physical overview
	From Navier-Stokes equation to BLEW

	Machine Learning (ML)
	Optimal control and Reinforcement Learning (RL)
	Bayesian Optimization (BO)
	Lipschitz Global Optimization (LIPO)
	Proximal Policy Optimization (PPO2)
	Deep Deterministic Policy Gradient (DDPG)
	OpenAI Gym Tutorials

	Jet Wiping
	Jet characterisation
	Exit flow velocity
	Pressure and shear stress distribution

	Optimization
	Observation points
	Hyperparameters optimization (HPO)
	Artificial Neural Network (ANN) size
	Jet position
	Reward area
	Multiprocess environment

	Cost function and actions
	Actions
	Cost function

	Results
	Undulation control
	Learning on 100 episodes
	Learning on 1000 episodes
	10000 episodes multiprocess environment

	Conclusions
	Future trends
	Bibliography

