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Abstract  
Conventional vehicles with internal combustion engine (ICE) provide a good performance and long 

operating range by utilizing the high energy-density advantages of petroleum fuels. However, the 

conventional ICE-vehicles suffer the disadvantages of poor fuel economy and environmental air 

pollution. One of the immediate alternative solutions is the HEVs (Hybrid-Electric vehicle). In HEV, 

the introduction of one or more power sources increases the complexity of powertrain architecture 

and offers additional degrees of freedom in controlling the power-split between the power sources. 

In this energy management scenario, the Reinforcement learning (RL) allows to obtain a global 

optimization implemented in real-time differently from rule-based or optimization-based control 

strategies. In this work, a Deep Reinforcement Learning (DRL) algorithm, i.e., Double Deep-Q-

network (DDQN), is adopted to control the power-split and the gear number. DDQN aims to 

simultaneously minimize the fuel consumption (FC) and maintain the state of charge (SOC) of the 

battery within the operating range. The case study is a parallel P2-HEV, passenger car. The software 

used is composed by three elements: Simulator, Agent and Environment Interface. The Simulator, is 

implemented in MATLAB, represents the model of the vehicle, and communicates with the Agent 

and Environment Interface, implemented in Python. The Environment Interface is the interface 

between the communication components of the Agent and physical simulation. The Agent has a 

logical interface divided into three elements: Training algorithm, Approximator (Artificial neural 

network) and Exploration strategy that is the component of the agent that allows to obtain optimal 

action-value function and find the optimal policy. The main goal of this work is to compare five 

different reward functions in order to demonstrate how this crucial function affects the performance 

of the algorithm. The DDQN algorithm and reward functions are analysed on four real driving cycles 

(CLUST), covering many possible vehicle driving scenarios. The results demonstrate how a good 

calibration on the reward coefficient allows to improve the effectiveness of the reward function, 

achieving a better performance and minimizing the fuel consumption (FC). The results are also 

compared to the Equivalent Consumption Minimization Strategy (ECMS) used as a benchmark 

energy management strategy. 
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1. Introduction 
1.1.  Motivations 

The automotive sector is in continuously changing and evolution in order to deal with air pollution 
(figure 1) and global warming mainly caused by CO2. Due to that, the EU legislative set the Climate 
and Energy package designed to reach three core targets by 2020 [1]: 

• 20% reduction in EU greenhouse gas emissions from 1990 levels. 

• 20% increase in the share of EU energy consumption produced from renewable resources. 

• 20% improvement in the EU's energy efficiency. 

In EU Road mobility and transport are globally asked to reduce more than 30% the TTW CO2 
emissions in the next 10 years and more stringent regulation are incoming. 

Since the BEV (Battery electric vehicle) solution cannot be the only solution able to satisfy these EU 
road mobility requirements since has some limitations related to the limited range (“range anxiety”), 
to the impact of battery cost on TCO (Total Cost of Ownership), to the thermal comfort (and related 
impact on driving range), to the mechanical protection of the battery, and to the charging time 
(customer acceptance).  

In this scenario, the prediction is that in 2040/2050, the road transport show that efficiency and 
environmental targets will be reached by a suitable mix of technological solutions (improved 
efficiency, alternative and biofuels, electrification, hybrid solutions). 

The HEVs and (P)HEVs represent a medium and long-term solution. 

 

Figure 1. Selected primary air pollutants and their sources 
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1.2. Hybrid-electric vehicles (HEV) 
 

1.2.1. Why Hybrid-electric vehicles (HEV) 
In order to guarantee an alternative solution respect to the internal combustion engine vehicles 

(ICEs) that is an on-board energy-power source based on the chemical energy-power of a fuel (still 

today usually liquid hydrocarbons as gasoline or diesel); there are a lot of solutions available on the 

market like battery electric vehicles (BEVs), alternative/biofuels vehicles, fuel cell electric vehicles 

(FCEV) or electrification of the conventional powertrain (hybrid solution) [2]. 

The hybrid solution (HEVs) can be divided into three macro-categories (figure 2): 

 

Figure 2. HEVs classification based on power and voltage 

• Micro-hybrid: using the electric motor (EM) of few power [kW] as a belt driven starter 

generator (BSG) replacing the conventional alternator. The battery is a 12V battery (lithium-

ion) that can be directly connected or indirectly connected to the 12V lead-acid battery 

through DC-DC converter. This solution guarantees a torque support during acceleration and 

ICE re-cranking (Start&Stop).  

• Mild-hybrid: the battery is a 48V solution and 48V-12V DC-DC converter using e-machine 

(with power between 15 kW and 30 kW) in alternator position or between the transmission 

and engine. These solutions guarantee e-assist and e-boost (EM can support the ICE), 

downsizing the ICE, regenerative braking more effective, engine cranking more effective, 

small pure electric mode. 

• Full-Hybrid: using high voltage battery (HV battery) with one or two e-machines with 

different positions (with a power between 10 kW and 100 kW). This solution is preferable 

because it guarantees all the features of an HEV in a more efficient way.  
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The hybrid solution is a perfect compromise between conventional vehicle (ICEs) and battery electric 

vehicles (BEVs). The characteristics of HEV are:  

• Regenerative braking: in which part of the energy not needed to brake the vehicle is 

recovered into kinetic energy using the e-machine as an electric generator in order to 

recharge the battery.  

• ICE off in idle: the usage of EM allows to avoid the ICE in idle avoiding the cold start and 

guaranteed the re-cranking of the ICE avoiding worst efficiency working points of the internal 

combustion engine causing HC/CO/NOx emissions. The pure electric transient motion can be 

used in less energy demanding request in short time like parking, queue conditions, reverse 

speed. 

• ICE better efficiency: the e-motor guarantees e-assist (full performance acceleration using 

EM and ICE) and e-boost (EM torque boosting). These two features allow to properly work the 

ICE in more efficient working points. 

• ICE Downsizing/Downspeeding: using an e-motor in the powertrain, the engine (ICE) can be 

sized with a low engine displacement (downsized) and it can work at low engine speed 

(downspeeding) guaranteeing better efficiency.  

1.2.2. HEV powertrain architecture (HEV) 
The HEV powertrain is composed by: 

• Internal combustion engine (ICE): the ICE used in HEVs solutions is downsized (1.0 L) rather 

than conventional vehicle in order to be complied with advanced technologies to reduce 

emissions and increase the efficiency of the powertrain, besides reduces weight. Typically, it 

is a gasoline engine since the coupling between diesel engine and electric motor is not 

efficient given the good performance of the diesel engine at low speed and low load and the 

air pollutants emitted by this type of engine, above all Nitrogen-oxide (NOx) and particulate 

matter (PM).  

• Fuel Tank: in order to store the gasoline fuel. 

• Electric motor (EM): in HEVs solutions, it can be possible to have one or more electric motor 

on board depending on the solutions applied. Thanks to the DC/AC converter (inverter), the 

electric motor can act as a motor (to propel the vehicle) or as generator (to recharge the high 

voltage battery in braking).  

• Battery (B): lithium-ion high voltage battery with a energy stored between 1.5 to 10 kWh. 

• Multi-speed transmission: allowing the mechanical energy coming from the ICE to be 

transmitted to the wheels. 

• Torque-coupling device 
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There can be two possible HEV configurations: Series-HEV and parallel-HEV:  

• Simple Series-HEV: the series hybrid propulsion system has only one powertrain with the 

electric motor as torque actuator. The hybridisation is realised at energy source level with 

one electric link (realised or directly or through a power converter) connecting one electric 

source (typically but not necessarily a battery pack) to an electric generation system based 

on an ICE mechanically coupled to an e-machine mainly or solely used as generator. 

Therefore, the electric transmission can be seen as a series hybrid with no electric source 

(figure 3). 

 

Figure 3. Simple Thermal-Electric series-HEV 

In this type of configuration, it is possible to define series hybridization ratio 𝑅ℎ𝑠𝑒𝑟𝑖𝑒𝑠 as the ration 

between the internal combustion engine power and the electric power:  

𝑅ℎ𝑠𝑒𝑟𝑖𝑒𝑠 =
𝑃𝐼𝐶𝐸
𝑃𝐸𝑀

 

Where: 

• 𝑅ℎ𝑠𝑒𝑟𝑖𝑒𝑠 = 1: the vehicle is an electric transmission vehicle (series-HEV without battery). 

• 𝑅ℎ𝑠𝑒𝑟𝑖𝑒𝑠 = 0: the vehicle is a battery electric vehicle (BEV). 

• 𝑅ℎ𝑠𝑒𝑟𝑖𝑒𝑠 = (0; 1): depending on the hybridisation ratio used in the sizing of the two electric 

power- energy sources, different series hybrid configurations can be defined: 

o Range extender: in which the power of hybridization unit (HU=ICE, e-generator and 

power converter) is equal to the average power of a reference cycle representative 

of the real usage. 

o Load follower: in which the HU power is equal to the continuous maximum power 

condition (load follower). 

o Full performance: in which the HU power is equal to to the transient maximum power 

condition. 
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• Simple Parallel-HEV: the simple parallel hybrid (figure 4) is a traction system made of two 

elementary traction systems (one based on an ICE and one on an e-motor) with as main 

energy source the ICE fuel stored in the on-board tank and as possible secondary energy 

source the electric energy of an electric storage system (typically a high voltage battery pack). 

The hybridisation is realised at powertrain level with a mechanical direct (through clutches, 

joints, gears) or an indirect link (with two powertrains one for each axle and coupled through 

the road). In order to limit the volume-weight oversizing and related extra-cost, usually the 

battery pack is sized for the power requests accepting to sacrifice the pure electric range 

(electrically assisted thermal engine-based vehicle) 

 

Figure 4. Simple Thermal-electric parallel-HEV 

In this type of configuration, it is possible to define series hybridization ratio 𝑅ℎ𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 as the ratio 

between the internal combustion engine power and the sum between internal combustion engine 

power and electric power:  

𝑅ℎ𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =
𝑃𝐼𝐶𝐸

𝑃𝐸𝑀 + 𝑃𝐼𝐶𝐸
 

Where: 

• 𝑅ℎ𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = 1: the vehicle is a pure conventional ICE-based vehicle. 

• 𝑅ℎ𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = 0: the vehicle is a pure electric vehicle (EV). 

• 𝑅ℎ𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = (0; 1): depending on the hybridisation ratio used in the sizing of the two 

electric power-energy sources, different parallel hybrid configurations can be defined: 

o Mini-Hybrid: in which the electric motor is used as Belt stater generator (BSG) 

operating as starter to re-crank the ICE at each automatic cranking bypassing 

conventional starter motor. The high voltage battery is 12V. 

o Mild-Hybrid: the high voltage battery is at 48V. The electric motor is a 48 V solution 

in general with one e-machine (in the alternator position or between transmission 

and engine). 

o Full performance (Full-hybrid): HV battery solution (in general hundreds of volts) with 

one (or two) e-machines (with different possible positions).  
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1.2.3. Parallel-HEV: Classifications based on e-machine position of parallel-HEV  
There are two types of methods to classify the simple parallel-HEV: 

- Beretta method (Traction method): it is a power/energy method used to evaluate the 

different traction systems from an energy perspective. It is based on the elementary traction 

system concept (sum of all the devices actively involved in the energy flux for the vehicle 

motion). 

- P-method 

 

• Beretta method 

In Parallel Simple Thermal-Electric Hybrids (Parallel-HEV), the elementary traction systems (On-

board energy/power source and powertrain) are connected mechanically, when the connection 

is at powertrain level. The two mechanical actuators are an Internal combustion engine (ICE) and 

an electric motor (EM) 

The parallel-HEV are classified into (figure 5): 

 

Figure 5. Classification of simple parallel-HEV (Beretta method) 

- Double drive system:  the connection between actuators is at wheel level, this is the typical 

solution for four-wheel-drive (4WD), in order to operate on one axle with EM (typically rear 

axle) and on the other axle with ICE (typically front axle) 

- Double shaft system: the connection is at transmission level. 

- Single shaft system: the connection is at motor level; this is the most used configuration. 

The first two solutions have two transmissions (causing more weight and more costs), the 

advantage is that can be chosen the best operating points from EM and ICE working separately; 

instead in the third solution (single shaft), there is less flexibility. 
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The Single shaft system can further be classified into (figure 6): 

- Coaxial solution: this solution allows to integrate the ICE side clutch under the rotor bore in 

order to limit the powertrain length. This is guaranteed with the usage of electric motor in 

disc shape (𝜆 < 0.2) with high pair pole numbers to increase the torque. The two actuators 

rotate at the same engine speed.  

- Non-coaxial solution: in this solution, the two actuators are not on the same axle, but t is 

used metallic chain applied to the engine flywheel with the clutch integrated. This solution 

allows the usage of e-machine with 𝜆 > 1 usually with a low pair pole number (2 or 3 for 

passenger car applications). 

 

 

Figure 6. Single shaft: Coaxial and non-coaxial solution 
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• P-method 

This method is applied to the simple parallel-HEV in which there is a clear distinction between 

engine front and engine rear, and the mechanical transmission and differential unit are not 

integrated in one housing, but they are decoupled (figure 7): 

 

Figure 7. P-method for simple parallel-HEV 

This P-method is classified based on the position of e-machine and it is typically applied to the RWD 

(rear-wheel-drive) vehicles with longitudinal engine layout: 

- P1f: the e-machine is replacing the conventional alternator. There is a reduction-multiplying 

ratio (pulleys and belt coupling) between ICE and e-machine (typically 1:3 or 1:4). 

- P1r: the e-machine is replacing the flywheel with a direct 1:1 speed ratio. 

- P2: it is an extension of P1r thanks to the second clutch on the ICE side (in this case the ICE 

needs anyway a passive flywheel even if smaller than the one of an Internal combustion 

engine vehicle (ICEV) application. 

- P3: the e-machine is connected to the transmission shaft between mechanical transmission 

and the rear differential unit (this is a typical solution for Commercial vehicles). 

- P4: the e-machine. 

-  on the “other axle” (other in respect of the ICE propelled one).  

The P-method can be also applied to the FWD (Front-wheel drive) vehicle with transversal engine 

layout: 

- P1f: e-machine as auxiliary drive engine side. 

- P1r: e-machine as the engine transmission side. 

- P3: not possible solution in transversal layout transmission since the differential unit is fully 

integrated in the transmission housing. 

- P4: e-machine on the rear axle. 
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1.3.  Energy management strategy for HEV 
The energy management strategy (EMS) is fundamental for hybrid electric vehicles (HEVs) since it 
plays a decisive role on the performance of the vehicle (fuel consumption FC and the state of charge 
SOC). The goal in HEV study is to minimize the fuel consumption of the vehicle maintaining the state 
of charge within a certain range [0,55−0,65] during the cycle, the initial SOC (𝑆𝑂𝐶𝑖𝑛) has to be equal 
to the SOC at the end of driving cycle (𝑆𝑂𝐶𝑒𝑛𝑑). 

However, design a highly efficient EMS is still a challenging task due to the complex structure of HEVs 
and the uncertain driving mission. 

The existing EMS methods can be generally classified into the following three categories (figure 8): 

 

Figure 8. Classification of energy management strategy (EMS) 

• Rule-based EMS: these strategies can be easily implemented, but the flexibility is critically 

limited by working conditions and, consequently, are not adaptive to different driving cycles. 

• Optimization-based EMS: these strategies can find the optimal power-split solution respect 

to a specific driving cycle, not for all the driving mission possibilities. These methods suffer 

from the “curse of dimensionality” problem, which prevents their wide adoption in real-time 

applications. In this strategies, global optimum solutions can be obtained by performing 

optimization over a predefined driving cycle. So, it is not possible to perform real-time energy 

management. In any case, the results of these optimum solutions can be used to benchmark 

other control strategies and as a basis to define rules for online implementation [4]. 

• Learning-based EMS: these strategies can manage complex environmental and can be easily 

implemented in the software of ECU.  Reinforcement learning (RL) can manage all the difficult 

computational, managing complex variable without computational cost [5] (figure 9). 

 

Figure 9. Comparison between EMS 
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The Optimisation-based control strategy can be sub-divided into two categories: 

- Offline strategies: they require knowledge of the entire driving cycle. they can be seen as a 

good analysis, design and assessment tool for other types of strategies; due to their 

computational complexity, they are not directly implementable for real-time operation: 

1. linear programming (LP): LP solves the problem of fuel consumption optimization by 

approximating a convex nonlinear optimization problem with a linear programming 

method. Its problem is that the approximate formulation restricts its application to 

simple series HEV architectures.  

2. dynamic programming (DP): uses a numerical or analytical model to compute the 

optimal control strategy to achieve the best fuel consumption. It is able to deal with 

nonlinearity to find the global optimal solution. 

3. metaheuristic search methods: solve optimization problems using stochastic search 

techniques that reproduce natural processes (e.g., genetic algorithms, particle swarm 

optimization and simulated annealing). 

They are effective to solve complex optimization problems with nonlinear, multimodal, and non-

convex objective functions. All these offline optimization strategies cannot be used in real-time 

applications but can provide a benchmark for design and comparison. 

- Online strategies: Online strategies are used when real-time analysis is required. In these 

strategies, the global criterion of global optimization techniques has to be reduced to an 

instantaneous optimization, introducing a cost function that only depends on the present 

state of the system parameters. 

1. ECMS: an equivalent fuel factor is calculated, expressed as the actual fuel 

consumption that is required to recharge the batteries and to recover the energy of 

the regenerative braking. The total equivalent fuel consumption is the sum of the real 

fuel consumption of the internal combustion engine (ICE) and the equivalent fuel 

consumption of the electric motor. An instantaneous cost function can be calculated 

and minimized without the necessity for future predictions. The disadvantage of this 

strategy is that it does not guarantee charge sustainability (𝑆𝑂𝐶𝑖𝑛  =  𝑆𝑂𝐶𝑒𝑛𝑑). 

2. model predictive control (MPC): this control strategy in first step calculates the 

optimal inputs over a prediction horizon to minimize the objective function subject 

to the constraints; then it implements the first element of the derived optimal inputs 

to the physical plant; finally, it moves the entire prediction horizon forward and 

repeats the first step. 
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1.4. Work target  
This work is focused on the study of DDQN algorithm and on the sensitivity of the immediate reward. 

The double deep-Q-network (DDQN) has been developed to overcome the overestimation bias, a 

defect present in the DRL strategies such as Deep-Q-network (DQN). The DDQN is considered as a 

groundbreaking work in the field of Deep Reinforcement Learning. 

The DDQL-based strategy shows more promising performance than DQL on convergence rate and 

policy searching ability, since that DQL algorithm is generally vastly overoptimistic about the iterative 

value of greedy policy.  

In addition to this, this work is focused on the reward function comparing different solutions that 

highly affects the performance of DRL. The optimization objective is the vehicle fuel economy, the 

reward represents a crucial function since it is designed in order to simultaneously control the fuel 

consumption (FC) of the internal combustion engine (ICE) and the state of charge of the battery 

(SOC) 

The sensitivity analysis on the five reward functions analysed shows how calibrating correctly this 

crucial function of the algorithm allows to improve the effectiveness of the reward having a better 

performance of the DRL algorithm and maximize the goal of the energy management strategy: 

𝑅𝑡 = 𝑓(𝐹𝐶(𝑡), 𝑆𝑂𝐶(𝑡)) 

The DDQN and the different reward functions analysed are tested on four different driving cycles 

(urban, extra-urban, highway and mixed driving cycles) that cover most possible driving scenario of 

a passenger car. 
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2. Vehicle model 
For this case study, the vehicle chosen is a parallel P2-HEV full performance passenger car. The layout 

refers to the driveline of a hybridized front-wheels driven passenger car equipped with a 

conventional downsized ICE and a 6-gears transmission (Figure 10). 

2.1 Vehicle architecture 
More specifically, it is a simple-thermal electric parallel hybrid (P2-HEV) with two torque actuators 

(ICE and MG) in which the hybridization is obtained through mechanical link (Torque coupling device 

TCD and clutches C1 and C2): 

 

Figure 10. Powertrain configuration of parallel P2-HEV (case study) 

This architecture (shown in figure 10) allows the possibility to use four macro-operating modes [6]: 

• Pure Thermal mode (PT): engaging the clutch C1 while disengaging the clutch C2 so that the 

ICE can be used as a stand-alone component. 

• Pure Electric mode (PE): engaging clutch C2 while disengaging clutch C1 so that the motor-

generator (MG) and the battery (BATT) can be used as a stand-alone component. 

• Power-split mode (PS): engaging both clutches C1 and C2 in order to demanding power to 

both the propellers. In this work are considered three different power-split (𝛼=0.25/0.5/0.75) 

in which 𝛼 =
𝑃𝐸𝑀

𝑃𝑟𝑒𝑞
 . 

• Battery charging mode (BC): engaging both clutches C1 and C2 using the MG as generator 

with the capability of transferring a given share of power to the battery even during traction. 
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The vehicle data are listed into table 1: 

 

Table 1. vehicle data 

The efficiencies have been considered for each powertrain component (ICE and MG) including final 

drive (FD), multi-gears transmission (TR), torque-coupling device (TCD) and inverter (AC-DC) 

considering fixed efficiency to be paid both during traction and braking phases. 

Instead, the transmission ratio (TR) has been modelled according to different efficiency for each gear. 

 

2.2 Vehicle model (kinematic backward approach) 
A kinematic backward approach (figure 11) has been used to compute the power requested to the 

different stages of the powertrain (from the traction power requested by driving cycle to the 

requested by power components): 

 

Figure 11. OD-kinematic model for ICE (up) and EM (down) 

The driving cycle is known as input, it produces a torque at wheel, the torque is managed by the 

powertrain model and produces a requested torque/power, this torque is sent to the controller that 

decide the power split (figure 12): 

- Torque to fuel maps 𝑇𝐼𝐶𝐸  provided FC that enters in the objective function. 

- Torque to EM 𝑇𝐸𝑀enters in the battery model and produced the SOC (state variable). 

 

Paramaters value unit

Kerb weight 750 [kg]

Vehicle mass (with powertrain components) 1200 [kg]

Tyre diameter 0,6014 [m]

wheel inertia 1,05 [kg * m^2]

Rolling resistance 0,0879 [N/kg]

Aerodinamic drag resistance coefficient (Cx) 0,27 [/]

Frontal area 2,19 [m^2]

Front/Rear braking distribution 0,75 [/]

Vehicle



                                                                         

 

21 
Pasquale Ciccullo 

 Reinforcement Learning for Hybrid/electric vehicle: 

Analysis and performance of reward functions in a real-time algorithm for P2-HEV 

Automotive Engineering 

A.Y. 2019-2020 

With this approach, everything is managed with maps-based, except the battery model (time history 

of SOC). 

 

Figure 12. Kinematic vehicle simulator (quasi-static simulation) 

The kinematic backward approach is analysed in following:  

Computing the required traction power 𝑃𝑡𝑟𝑎𝑐(𝑡)  given by the speed profile and by the resistive 

power 𝑃𝑟𝑒𝑠(𝑡) acting on the longitudinal dynamics of the vehicle and sum of the aerodynamic force 

and rolling resistance force (the slope is assumed to be 0 and so the slope resistive force is null): 

𝑃𝑡𝑟𝑎𝑐(𝑡) = 𝑚 ∗ 𝑣(𝑡) ∗  
𝑑𝑣(𝑡)

𝑑𝑡
+ 𝑃𝑟𝑒𝑠(𝑡) 

This allows to compute the wheel power and speed using vehicle’s apparent mass model through 

the ICE and MG components and evaluating the power requested by the power sources (𝑃𝑟𝑒𝑞). 

𝑃𝑟𝑒𝑞 = 𝑃𝑔𝑏𝑖𝑛𝑛𝑒𝑟 + P𝑖𝑛𝑒𝑟𝑡𝑖𝑎, 𝐼𝐶𝐸 + P𝑖𝑛𝑒𝑟𝑡𝑖𝑎, 𝐸𝑀 + P𝐺𝐵, 𝑖𝑐𝑒𝑠ℎ𝑎𝑓𝑡 

Splitting the power demand between ICE (𝑃𝐼𝐶𝐸) and EM (𝑃𝐸𝑀) using the coefficient 𝛼 and the 

different operating modes allowed in a parallel P2-HEV configuration (table 2): 

{
𝑃𝐼𝐶𝐸 =  (1 − 𝛼) ∗ 𝑃𝑟𝑒𝑞
𝑃𝐸𝑀 =  𝛼 ∗ 𝑃𝑟𝑒𝑞             

 

where: 𝛼 =
𝑃𝐸𝑀

𝑃𝑟𝑒𝑞
 

 

Table 2. alpha configuration depending on the driving mode 

Finally, it is possible to evaluate the two final outputs of the model: fuel consumption (FC) by the ICE 

and SOC (state of charge of the battery). 
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2.2.1 Internal combustion engine (ICE) model 
In order to compute fuel consumption and the motor efficiency of the ICE is experimentally derived 

two-dimensional look-up: 

𝑚𝑓𝑐 = 𝑚𝑓𝑐(𝑃𝐼𝐶𝐸 ,  𝜔𝐼𝐶𝐸) 

The experimental data allows to know the speed-power map of the ICE, the engine chosen for the 

hybridization is a gasoline engine, the characteristics are shown in the table 3: 

 

Table 3. ICE parameters 

2.2.2 Electric motor (EM) and inverter models 
For the electric motor (EM), the efficiency is experimentally derived two-dimensional look-up: 

𝜂𝐸𝑀 = 𝜂𝐸𝑀(𝑤𝐸𝑀 ,  𝑇𝐸𝑀) 

Instead for the EM, the experimental data allows to know the speed-torque map in both side (motor 

and generator), the characteristics are shown in the table 4: 

 

Table 4. EM and inverter parameters 

 

 

 

 

 

 

 

∙ ∙ 
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2.2.3 Li-ion Battery model  
The battery used in the vehicle are lithium-ion based, cylindrical type. 

The battery performances have been accounted for by a zero-order Rint model (figure 13), static 

model in which the effect of environmental temperature, battery temperature and aging process 

have been ignored: 

 

Figure 13. Internal resistance model of the battery (Rint model) 

In this model, the internal resistance 𝑅0 and the open circuit voltage 𝑉𝑂𝐶  are only functions of the 

state of charge (SOC). 

The maximum power achieved by the battery is linked to both electric and chemical phenomena.  

The internal parameters of the battery have to be evaluated at each battery SOC level; the 

discharging/charging current has to be evaluated according to the following formulation: 

- In traction: 

𝑃𝑏𝑎𝑡𝑡, 𝑚𝑎𝑥, 𝑒𝑙
𝑡𝑟 (𝑆𝑂𝐶) =

𝑉𝑂𝐶
2 (𝑆𝑂𝐶)

4 ∗ 𝑅𝑒𝑞(𝑆𝑂𝐶)
 

𝑃𝑏𝑎𝑡𝑡, 𝑚𝑎𝑥, 𝑐ℎ𝑒𝑚
𝑡𝑟 (𝑆𝑂𝐶) = 𝑉𝑜𝐶(𝑆𝑂𝐶) ∗ 𝐼𝑚𝑎𝑥,𝑑𝑖𝑠 − 𝑅𝑒𝑞(𝑆𝑂𝐶) ∗ 𝐼𝑚𝑎𝑥, 𝑑𝑖𝑠

2  

𝑃𝑏𝑎𝑡𝑡, 𝑚𝑎𝑥(𝑆𝑂𝐶) = 𝑚𝑖𝑛 (𝑃𝑏𝑎𝑡𝑡, 𝑚𝑎𝑥, 𝑒𝑙
𝑡𝑟 (𝑆𝑂𝐶), 𝑃𝑏𝑎𝑡𝑡, 𝑚𝑎𝑥, 𝑐ℎ𝑒𝑚

𝑡𝑟 (𝑆𝑂𝐶)) 

- In braking: 

𝑃𝑏𝑎𝑡𝑡, 𝑚𝑎𝑥
𝑏𝑟 (𝑆𝑂𝐶) = −(𝑉𝑂𝐶(𝑆𝑂𝐶) ∗ 𝐼𝑚𝑎𝑥,𝑐ℎ + 𝑅𝑒𝑞(𝑆𝑂𝐶) ∗ 𝐼𝑚𝑎𝑥,𝑐ℎ

2 ) 

Where:  

• 𝐼𝑚𝑎𝑥,𝑑𝑖𝑠 = 𝐶𝑏𝑎𝑡𝑡 ∗ 𝐶𝑚𝑎𝑥, 𝑑𝑖𝑠 

• 𝐼𝑚𝑎𝑥,𝑐ℎ = 𝐶𝑏𝑎𝑡𝑡 ∗ 𝐶𝑚𝑎𝑥, 𝑐ℎ 

• 𝐶𝑏𝑎𝑡𝑡 =
𝐸𝑏𝑎𝑡𝑡

𝑉𝑏𝑎𝑡𝑡, 𝑛𝑜𝑚
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After evaluated the battery required power in traction and braking, the battery SOC variation and 

the current of the battery can be computed as follow: 

𝑆𝑂𝐶𝑡 = 𝑆𝑂𝐶𝑡−1 − ∫
𝐼𝑏𝑎𝑡𝑡

𝐶𝑏𝑎𝑡𝑡
∗ 𝑑𝑡 → 𝐼𝑏𝑎𝑡𝑡 =

𝑉𝑂𝐶(𝑆𝑂𝐶)−√𝑉𝑂𝐶
2 (𝑆𝑂𝐶)−4∗𝑅𝑒𝑞(𝑆𝑂𝐶)∗𝑃𝑏𝑎𝑡𝑡

2∗𝑅𝑒𝑞(𝑆𝑂𝐶)
 

 

The architecture of the Li-Ion battery is shown in the figure 14:  

 

Figure 14. Typical architecture of high voltage Li-Ion battery  

Knowing the configuration of the battery (number of units in parallel 𝑁𝑝𝑢 and number of modules in 

series 𝑁𝑠𝑚, the curves of the battery equivalent internal resistance and open circuit voltage can be 

evaluated: 

{
𝑅𝑒𝑞(𝑆𝑂𝐶) = 𝑅𝑒𝑞, 𝑟𝑒𝑓(𝑆𝑂𝐶) ∗

𝑁𝑠𝑚 ∗ 𝑁𝑐
𝑁𝑝𝑢

𝑉𝑂𝐶(𝑆𝑂𝐶) = 𝑉𝑂𝐶, 𝑟𝑒𝑓(𝑆𝑂𝐶) ∗ 𝑁𝑠𝑚 ∗ 𝑁𝑐  

 

Where:  

• 𝑁𝑝𝑢 =
𝐶𝑏𝑎𝑡𝑡

𝐶𝑢
 

• 𝑁𝑠𝑚 =
𝑉𝑏𝑎𝑡𝑡, 𝑛𝑜𝑚

𝑉𝑚
 

The complete configuration of the battery is reported in the table 5: 

 

Table 5. battery parameters 
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2.2.4 Gearbox, final drive and torque coupling device (TCD) models  
In the gearbox model has been considered experimental data: considering six gears ratio, the 

efficiency of the transmission in the corresponding gear ratio selected, the gearbox momentum of 

inertia and the gearbox mass. 

The gearbox parameters chosen are listed in the table 6: 

 

Table 6. gearbox parameters 

Instead, the final drive and torque coupling device (TCD) parameters are listed in the table 7: 

 

Table 7. final drive and torque coupling device parameters 
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3. Algorithm 
The algorithm analysed in this work is a Double Deep-Q-network (DDQN). This algorithm is a Model-

free Deep Reinforcement learning (DRL) algorithm. The DRL is a subcategory of Reinforcement 

learning. In the following section, the fundamental concepts of Reinforcement learning will be 

analysed.  

3.1 Key concepts of Reinforcement learning 
The purpose of reinforcement learning (figure 15) is to make optimal decisions through trial-and-

error based on observations and analysis of system behaviour to improve system performance. The 

basic idea is to learn the optimal strategy for achieving the goal by maximizing the accumulated 

reward value obtained by the agent from the environment [14]. 

 

Figure 15. Basic concept of Reinforcement Learning 

At every time step, the agent receives an observation 𝑂𝑡, that is equivalent to the state 𝑆𝑡, and a 

reward 𝑅𝑡. Then, the agent performs an action 𝑎𝑡 that modified the envoirnment from the state 𝑆𝑡to 

the state 𝑆𝑡+1, during this transition it is associated a new reward 𝑅𝑡+1 in numerical scalar value.  

This cycle is finished with the episode and the agent’s goal is to maximize the total amount of scalar 

reward (Cumulative reward).  
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3.1.1. MDP (Markov decision process) 
A learning-based method needs a formal description of the environment. In Reinforcement 

Learning, it is usually assumed that the environment can be described by Markov decision process 

(MDP) [8]. 

The MDP is a tuple < 𝑆, ℎ, 𝐴, 𝑃, 𝑟, 𝑦 >: 

- S: it is a finite set of states. 

- h: it is a function from state space to observation. 

- A: it is a finite set of actions that can be chosen in the state space S. 

- P: it is a state transition probability -> 𝑃𝑎(𝑠, 𝑠′) = 𝑃𝑟(𝑠𝑡+1 = 𝑠′ | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎). 

- r: it is a reward function that indicates the reward received using the action a to pass from 

state 𝑠𝑡  to 𝑠𝑡+1. 

- 𝛾: it is a discount factor. 

A state 𝑠𝑡 can be considered Markovian state if: 

𝑃[𝑠𝑡+1|𝑠𝑡] = 𝑃[𝑠𝑡+1|𝑠1, … . , 𝑠𝑡] 
 

All the relevant actions in the past are captured in the current state. 

3.1.2. Return 
In Reinforcement learning problems, the goal is to find optimal policy that maximizes the sum of all 

the rewards obtained during the episodes. For this reason, it is necessary to introduce the concept 

of Return. 

In a finite horizon (T), the Return 𝐺𝑡 is defined as the sum of immediate reward 𝑟𝑡 obtained in the 

time instant t: 

𝐺𝑡 =∑𝑟𝑡

𝑇

𝑡=0

 

But mathematically the control strategy of the HEV can be formulated as an infinite horizon dynamic 

optimization problem as follows:  

𝑅 =∑𝛾𝑡 𝑟(𝑡)

∞

𝑡=0

 

In which:  

- 𝛾 ∈ (0, 1) is a discount factor that assures the infinite sum of cost function convergence. 

- 𝑟𝑡: it is the immediate reward incurred by action 𝑎𝑡 at time t. 

In this expression, the rewards are discounted by this factor 𝛾, decreasing this factor the incidence 

of future reward decreases, preferring the immediate reward.  

 



                                                                         

 

28 
Pasquale Ciccullo 

 Reinforcement Learning for Hybrid/electric vehicle: 

Analysis and performance of reward functions in a real-time algorithm for P2-HEV 

Automotive Engineering 

A.Y. 2019-2020 

3.1.3. Optimal policy 
The basic idea is to learn the optimal strategy for achieving the goal by maximizing the accumulated 

reward value obtained by the agent from the environment. 

The control policy π is the distribution over the control actions a, given the current state s. The 

optimal value function 𝑉𝜋(𝑠) is exhibited as the finite expected discounted sum of the rewards: 

𝑉𝜋(𝑠) = 𝐸𝜋 (∑𝛾𝑘
∞

𝑘=0

𝑟𝑡+𝑘 | s𝑡 = 𝑠) 

Where:  

- 𝐸𝜋: it represents the expectation return, following the policy 𝜋 

It is possible to also define an Action-value function (Q-function): 

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋 (∑𝛾𝑘
∞

𝑘=0

𝑟𝑡+𝑘 | s𝑡 = 𝑠, 𝑎𝑡 = 𝑎) 

The agent’s goal is to find optimal policy that maximize the Return. The best action is the one that 

optimize the Q-value at evert instant of time:  

𝜋∗(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑄𝜋∗(𝑠, 𝑎)     ∀𝑠 ∈ 𝑆 

3.1.4. Bellmann equation  
The Bellmann equation is used to express the generic policy 𝜋, summing the expected reward with 

the discounted factor (𝛾) multiplied by the Q-values of the following state (𝑠𝑡+1) associated to the 

action 𝑎′: 

𝑄𝜋(𝑠, 𝑎) = 𝐸𝜋(𝑟𝑡 + 𝛾𝑄𝜋(𝑠𝑡+1,𝑎′)| s𝑡 = 𝑠, 𝑎𝑡 = 𝑎) 

The Bellman’s equation can be also expressed to define the optimal value to represent the maximum 

accumulative reward which can be obtained by taking the action 𝑎𝑡 in the state 𝑠𝑡: 

𝑄𝜋∗(𝑠, 𝑎) = 𝐸𝜋∗ (𝑟𝑡 + 𝛾max
𝑎′

𝑄𝜋∗(𝑠𝑡+1,𝑎′) | s𝑡 = 𝑠, 𝑎𝑡 = 𝑎) 

The Bellmann’s optimality equation defined the Q-values in the optimal policy 𝜋∗ as the immediate 

reward for the state 𝑠𝑡 and action 𝑎𝑡 added the maximum possible value among all the actions taken 

in the next state multiplied by the discounted factor 𝛾. 
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3.1.5. Exploitation/Exploration strategy 
One of the key factors in a Reinforcement Learning problem is the determination of the policy 𝜋 in 

which the algorithm selects the actions to be performed.  

Usually in Reinforcement Learning, it is used the 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 𝑝𝑜𝑙𝑖𝑐𝑦 that consists of choose the best 

move with 1 − 𝜀 probability and to choose a random move with probability 𝜀: 

𝜋(𝑠𝑡) = {
𝑎𝑟𝑔max

𝑎′∈𝐴
𝑄(𝑠𝑡, 𝑎′)  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜀

𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛 𝑎 ∈ 𝐴 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜀
 

Using this policy, it is fundamental to tune the parameter 𝜀 in order to have the correct relationship 

between exploration and exploitation guaranteeing an exploration in the initial stage of training and 

then having almost complete exploitation. A minimum exploration it is needed, in order that the 

algorithm does not remain trapped in the local maximum.  
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3.2 Model-free Deep Reinforcement learning (DRL)  
The Deep-reinforcement learning (DRL) is a sub-category of Reinforcement learning (figure 16), 

combining the knowledge of reinforcement learning and neural network. This category is evolving 

quickly with the development of machine learning (ML) [9]: 

 

Figure 16. Deep Reinforcement learning (DRL) classification 

The DRL is implemented as an alternative solution replacing the conventional discrete value function 

(Q-learning algorithm). It is innovative for three reasons: 

• Firstly, the numerous inputs of matrix-form system of one state variable are replaced by a 

continuously changing value, resolving the “curse of dimensionality” problem. 

• The discretization error is eliminated. 

• Thanks to the neural network great capability of nonlinear fitting and generalization, it can 

well correlate the complex driving conditions and the optimal energy management strategy. 

Another important feature of the DQL algorithm, with respect to the RL strategies, is the experience 

replay: data segments which are randomly sampled from the training data will be restored in the 

experience pool, and the weights of neural network will be further updated after being trained by 

randomization of experience information. 
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3.2.1 Q-learning 
Q-learning is a famous and effective RL algorithm and has been applied in HEV energy management 

strategy recently.  

Q-learning algorithm can give the satisfactory control orders only if action value function has been 

well trained. The form of action value function in Q-learning is a discretized look up-table matrix 

whose size is decided by dimensions of state and action variables. However, in HEV energy 

management problems, continuous or multi-dimensional state variables are usually needed which 

led the iterative computation of this matrix increase sharply and result in intractable for convergence 

of the training process. 

The goal of Q-learning is to approximate the Q-values using the Bellmann’s equation upgrading the 

look up-table and the temporal difference method (TD): 

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄𝑣𝑎𝑙𝑢𝑒
(𝑜𝑙𝑑)

− 𝑇𝐷 𝑒𝑟𝑟𝑜𝑟 

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄𝑣𝑎𝑙𝑢𝑒
(𝑜𝑙𝑑)

+ (𝑄𝑣𝑎𝑙𝑢𝑒
(𝑛𝑒𝑤)

− 𝑄𝑣𝑎𝑙𝑢𝑒
(𝑜𝑙𝑑)

)  

𝑄𝑣𝑎𝑙𝑢𝑒
(𝑛𝑒𝑤)

← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼 ∗ (𝑟𝑡 + 𝛾max
𝑎′

𝑠𝑡+1, 𝑎
′ − 𝑄(𝑠𝑡, 𝑎𝑡)) 

In the last equation, 𝛼 ∈ (0,1) is the learning rate that indicates how fast the agent is learning [7]. 

In complex power component structure one or two state variables may not fully represent the 

vehicle state in the environment and thus more state variables and more accurate grids are 

necessary in order to get lower fuel consumption. The property of action-value function clearly 

becomes a limitation of Q learning in dealing with complex problems. 

Q learning-based strategy can achieve energy management task in some condition.  

Nevertheless, faced with high-dimensional state space or even continuous state variables, the 

discretized state grid leads the matrix size increase rapidly and most likely leads to long computation 

time and bad convergence ability, which is also called the “Curse of Dimensionality” [15]. 
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3.2.2 Artificial neural networks 
In order to overcome the limits (approximation functions) of Q-learning, the DRL uses neural 

network in order to operate in continuous spaces in order to approximate the Q-values for any 

actions given a certain state.  

The neural network (figure 17) is organized into:  

 

Figure 17. Structure of the neural network 

• Forward propagation: the prediction process is evaluated from the input layer to the output 

layer, during which each neuron calculates the output value 𝑧𝑗 applying an activation function 

(𝑅𝑒𝐿𝑢) in order to correct the weights 𝑊𝑖 and bias 𝑏 to well predict the Q-values. The 

rectified linear unit is used as the activation function for hidden layers (figure 19): 
 

 

Figure 18. Neuron of the network 

𝑧𝑗 =∑𝑊𝑖 ∗ 𝑋𝑖 + 𝑏  

𝑖

 

𝑎𝑗 = 𝑓(𝑧𝑗) 

𝑓𝑥 = max(0, 𝑥) 
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Figure 19. ReLu activation function 

• Backward propagation: the optimization of neural network is based on the cost function 𝐽 

using this squared error signal, the neural network can upgrade the weights using a gradient 

descent and minimize the cost function. The gradient descent (figure 20) changes the values 

of weights using the learning rate 𝛼 that indicates the step size and controls the learning 

velocity: increasing it allows fast training but suboptimal weights values, otherwise 

decreasing it allows to obtain optimal weight values The learning rate represents one of the 

hyperparameters of DRL to optimize in order to obtain good performance of the algorithm 

extending the training time: 

 

𝐽 =  (𝑄𝑣𝑎𝑙𝑢𝑒
𝑡𝑎𝑟𝑔𝑒𝑡

− 𝑄𝑣𝑎𝑙𝑢𝑒
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒

)
2
 

𝑊𝑖 ← 𝑊𝑖 − 𝛼
𝜕𝐽

𝜕𝑊𝑖

 

Where:  

• Learning rate: 𝛼 ∈ [0,1] 
 

 
Figure 20. Gradient descent (cost function as function of weights) 
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3.2.3 Deep-Q-network (DQN) 
The combination between the logic of reinforcement learning (RL) and the artificial neural network 

allows to solve complex problem such as the energy management problem of HEV since the 

algorithm is able to work in continuous space [10] (figure 21): 

 

Figure 21. DRL agent-based framework for HEV EMS 

The deep neural networks changed the original action-value function of Q-learning algorithm: 

- Different from the discretization matrix, any continuous change in state variables can be 

reflected in a DNN-based decision system, which allows a more accurate identification of the 

system state without increasing computational load. 

- Deep-neural network (DNN) is insensitive to the increase of state dimension numbers. These 

features solve the problems caused by discretization of Q-learning matrix. 

- The Deep neural network has a powerful ability of function approximation, which means that 

the convergence speed of the action value will be greatly accelerated. 

In DQN, the agent initially estimates the Q-values and explore the environment using 𝜀−𝑔𝑟𝑒𝑒𝑑𝑦 

policy; progressively during the training episodes, the agent trains to predict the Q-values more and 

more accurately by modifying the weights through the loss function 𝐿𝑡. The mean squared error 

between the target Q-value and the inferred output of neural network is defined as loss function: 

𝐿𝑡 =  (𝐸 [𝑟𝑡 +  𝛾max𝑄(𝑠𝑡+1,  𝑎
′)] − 𝑄 (𝑠𝑡 , 𝑎𝑡))

2
 

Where: 

- 𝑄 (𝑠𝑡, 𝑎𝑡): it is the output of the neural network. 

- 𝑟𝑡 +  𝛾max𝑄(𝑠𝑡+1,  𝑎
′): it is the target Q-value. 

The goal is to minimize the loss function (error) in order that the network prevision get as close as 

possible to the desired result (expected return). Minimizing the loss function, the agent can take 

decisions (actions) in order to maximize the discounted return.  
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The main elements of Deep-Q-network are: 

- Q-network: predict the Q-values based on certain action 𝑎𝑡 in the state 𝑠𝑡 i in the generic 

instant 𝑡. The weights are upgraded at every time in order to get the prevised value as close 

as possible to the desired value. 

- Q-target network: predict the Q-target value based on the immediate reward to which the 

best value of Q-values among all the actions that can be chosen by the state 𝑠𝑡+1 is added. 

The weights are upgraded according to a certain frequency (target update frequency) in 

order to have stable training since, only after a certain interval, the weights trained in Q-

network are copied into Q-target network.  

- Experience replay: buffer that store some experience, each experience is a tuple (𝑠𝑡, 𝑎𝑡, 
𝑟𝑡, 𝑠𝑡+1). During the training, at every time instant, N tuples are randomly extracted in order 

that the network can learn weights that well generalize all the possible scenarios that the 

agent will have to manage. The experience replay is helping to obtain more stable training.  
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3.2.4 Double Deep-Q-network (DDQN) 
The Double Deep-Q-network (DDQN) is an upgrading version of the DQN (Deep-Q-network). The 

algorithm’s logic [..] is shown in Figure 22 [11]: 

 

Figure 22. DDQN algorithm 

The process of the energy management strategy based on DDQN algorithm [12] is presented in the 

figure 23: 

 

Figure 23. Process of the energy management strategy based on DDQN algorithm 
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We initialize Q-network 𝑄𝑛and target network 𝑄𝑡 with random weights, for each episode. 

The agent is trained on multiple time steps in many episodes and performs a sequence of operations 

at each time step of the simulation. During the learning process, the algorithm selects the maximum 

Q-value action with probability 1 − ε and selects a random action with probability ε based on the 

observation of the state 𝑂𝑡 and a reward 𝑅𝑡 is obtained. The state action transition tuple is stored in 

memory replay buffer and then a mini batch of transition tuples is drawn randomly from the memory 

replay buffer. Computing the loss function of the Q-network, the weights in Q-network 𝑄𝑛 are 

updated by using the gradient descent method, instead the target network 𝑄𝑡 is periodically updated 

by copying parameters from the Q-network 𝑄𝑛. 

In DQN, the Q-value in the loss function is calculated with the reward 𝑅𝑡 added to the next state 

maximum Q-value so that the Q-value will become higher every time. This logic in which the Q-

values are evaluated, does not allow that the neural network is upgrading if in some condition for 

some memory experience an action 𝑏 is the better than action 𝑎 in the state 𝑠. 

In the DDQN, the index of the highest Q-value is evaluated in the main model, and it is used to obtain 

the action in the second model. 
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3.3 Software framework and configuration  
The software used in this work is composed by (figure 24): 

 

Figura 24. Software framework configuration 

- Simulator: implemented in MATLAB and represents the vehicle model (physical part of the 

environment). 

- Environment interface and Agent: implemented in Python.  

At every physical step computed by the Simulator corresponds a logic step (step computed by the 

agent).  

When the physical step is completed, the agent through UDP protocol send a logical state to the 

Environmental interface that allows the transformation between the agent and the simulator. The 

observation is a part of the logical state that the agent can see, the reward instead is the prize that 

the agent receives by the environment interface [7]. 

The agent has a logical interface that can be divided into: 

- Training algorithm  

- Approximator: artificial neural network (in this case). 

- Exploration strategy: a component of the agent that allows to obtain optimal action-value 

function and find the optimal policy that guarantees the maximization of the discounted 

return. 

After the exploration strategy, it is obtained a logical action that becomes a physical action in the 

simulator.  

The training cycle of a DDQN’s agent is divided into training and testing episodes. The test episodes 

are run at predefined intervals to monitor the progress of the learning in the absence of exploration 

components. 
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The important parameters for the performance of a neural network agent are: 

- learning starts: which determines the initial part of the training, i.e., the number of steps 

before the network starts updating.  

- Batch-size: the learning starts hyperparameters is in communication with a minibatch 

characterized by a certain size (batch size), so the Q network is starting to train when it can 

be approximately assumed that the samples within the minibatch are independent of each 

other.  

- replay memory buffer:  which contains a limited number of transitions (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1, 𝑑𝑜𝑛𝑒), 

it should be configured so that the agent forgets information that is no longer useful. 

- target update frequency: it is the frequency in which the weights of Q-network 𝑄𝑛 are copied 

within the target network 𝑄𝑡. This parameter must be calibrated in order to guarantee a good 

stability of the agent. This parameter is calibrated according to the different driving cycle. 

All these parameters are calibrated according to a parametric study done in a previous work [7]. A 

sub-optimal parametric solution using the approval driving cycle WLTP has been obtained. 

The final configuration chosen is reported into table 8:  

 

 

 

Table 8. Final configuration  

 

 

 

Clust12Mod 1600

Clust 11 2000

Clust 1 2500

Clust 19 5300

Target update frequency
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3.3.1 Control variables 
The agent can be chosen two different control actions:  

- Power-flow (PF)  

- Gear number (GN)  

The control variables are discretized in the following values:  

- The power-flow number 𝑁𝑃𝐹 is discretized in seven values according to the value of 𝛼 

described in the paragraph 2.2:  

o 𝛼 = 1: pure electric mode. 

o 𝛼 = 0: pure thermal mode. 

o 𝛼 = 0.25/0.5/0.75: power-split mode. 

o 𝛼 = −0.5/−1: battery charging mode. 

 

- The gear number 𝑁𝐺𝐵 is discretized in six values according to the gear used (from the first 

gear to sixth gear).  

The total number of actions that the agent can choose is the combination between power-flow and 

gear number: 

𝑁𝐴𝑍 = 𝑁𝐺𝐵 ∗ 𝑁𝑃𝐹 

In addition to this, there are also Boolean variables (feas and new feas) that allows to the agent to 

execute only feasible subset combination of power-flow and gear number. The Boolean variables 

consider of the maximum speed reachable from the electric motor and internal combustion engine, 

consider of the maximum power absorption by the power sources and the maximum battery power 

allowed (according to the C-rate).  
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3.3.2 States 
As it is anticipated previously, the deep-neural network allows to operate in continuous space, 

overcoming the limitations of the Q-learning algorithm. The state chosen in this configuration are: 

- SOC 

- SOC_high  

- SOC_low  

- Feas 

- FC 

- FC_norm  

- battPel 

- roadVel  

- time  

- roadPower 

- roadGrade 

- next_roadVel 

- next_roadPower 

- next_roadGrade 

- action_mask 

The selection of the state is one of the crucial functions of the agent since they give the information 

to take the decision in choosing the actions in order to maximize the Discounted return and 

improving the performance of the algorithm. 

Another crucial function that affects the performance of the agent is the reward function that will 

be analysed in the chapter 4. 
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3.3 Equivalent consumption minimization strategy (ECMS) 
The ECMS (Equivalent Consumption Minimization Strategy) is online optimization-based energy 

management strategy based on the global criterion to an instantaneous optimization problem, 

introducing a cost function dependent only on the system variables at the current time. In this work 

has been chosen as a benchmark energy management strategy to explore the fuel economy 

potential.  

3.3.1 ECMS algorithm  
The logic is based on instantaneous cost function that is evaluated as a sum of the fuel consumption 

�̇�𝑓 and an equivalent fuel consumption related to the SOC variation 𝑃𝑏𝑎𝑡𝑡(𝑡) ∗
𝑠

𝑄𝐿𝐻𝑉
:  

�̇�𝑒𝑞𝑣 = �̇�𝑓 + 𝑃𝑏𝑎𝑡𝑡(𝑡) ∗
𝑠

𝑄𝐿𝐻𝑉
 

The assumption behind this approach is that every variation in the state of charge will be 

compensated in the future by the engine running at the current operating point. 

Since the electrical energy and the fuel energy are not directly comparable, an equivalence factor is 

needed.  

The overall fuel consumption can be considered as a function of the equivalence factors and a 

systematic optimization can be used in order to find the equivalence factors that minimize the overall 

fuel consumption constrained to the SOC sustainability (final SOC equal to the initial SOC). 
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3.3.2 Optimization of equivalence factors 
The tuning of the equivalence factors is needed in order to obtain the charge-sustaining solution for 

each driving cycle, since the local optimization is not depending on the driving mission. The choice 

of the equivalence factor affects two parameters: 

- Charge-sustainability solution  

- Effectiveness of the energy management strategy  

The equivalence factors 𝑠𝑐ℎ𝑔and 𝑠𝑑𝑖𝑠 must be chosen as a trade-off between the fuel consumption 

minimization and the charge-sustaining operating mode of the HEV model:  

- If the equivalence factors are too low: it is attributed a poor cost the usage of electric energy, 

this means that the high-voltage battery is depleting very fast. 

- If the equivalence factors are too high: it is considered an excessive cost of the usage of 

battery, it is not exploited the total potential of the hybridization. 

 

 

 

Figure 25. ECMS flow chart 

In order to optimize the equivalence factor, has been built a matrix containing all the possible 

equivalent fuel consumption (figure 25): 

- Each i-row represents the equivalent fuel consumption at the i-time of the driving cycle. 

- Each j-column is the corresponding value of the power split parameter α. 
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By selecting, for each time instant of the cycle, the minimum equivalent fuel consumption among 

the n-columns, it is possible to compute the vector𝛼𝑓𝑖𝑛 containing the power-split parameter 

associated to the minimum value of the equivalent fuel consumption. Finally, by knowing how the 

power is divided in each time instant using the models of internal combustion engine, electric motor 

and battery, the fuel consumption and the SoC associated to the value of s initially chosen can be 

computed.  

In order to tune the optimal equivalence factor, it is used the following expression: 

𝑠𝑘+1 = 𝑠𝑘 + (𝑆𝑜𝐶𝑘 − 𝑆𝑜𝐶𝑟𝑒𝑓) ∗ 𝐺 

where: 

- 𝐺 =
𝑠1

(𝑆𝑜𝐶1−𝑆𝑜𝐶𝑟𝑒𝑓)
 

- 𝑆𝑜𝐶𝑟𝑒𝑓= 0.6 

The first value assigned to s (𝑠𝑘) is set at 1.5 and for the following values were changed by hand 

based on the difference between the final and the reference state of charge. 

In the following table 9 are reported the equivalence factors after the optimization for each driving 

cycle: 

 

Table 9. equivalence factors 

 

 

 

 

 

 

 

 

 

 

 

 

Driving cycle value
Clust12Mod 2.307

Clust11 2.385

Clust 1 2.684

Clust 19 2.633

Equivalence factors
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4. Reward function  
The reward functions analysed in this work are five (table 10): 

 

Table 10. Reward functions analysed 

The first three are normalized FC-oriented reward based on the weighted average. The fourth reward 

is based on the traditional equivalent consumption minimization strategy (ECMS) logic. The fifth 

reward is based on alpha coefficient that determines the weight of the battery state of charge (SOC) 

and fuel consumption (FC). 

4.1.  Normalized FC-oriented Reward 
 

𝑖𝑓 →

{
 
 
 

 
 
 
𝑆𝑂𝐶 > 𝑆𝑂𝐶𝑟𝑒𝑓 →      𝑟𝑠𝑜𝑐 = 1                                                                                                     

                                                                                                         

𝑆𝑂𝐶 < 𝑆𝑂𝐶𝑟𝑒𝑓 →  

{
 
 

 
 𝑟𝑠𝑜𝑐 = 1 − 2

(𝑆𝑂𝐶 − 𝑆𝑂𝐶𝑟𝑒𝑓)
2

(𝑆𝑂𝐶𝑚𝑖𝑛 − 𝑆𝑂𝐶𝑟𝑒𝑓)
2

𝑅𝑒𝑤𝑎𝑟𝑑(𝑠, 𝑎) =
(𝑐𝑠𝑜𝑐 ∗ 𝑟𝑠𝑜𝑐) + (𝑐𝐹𝐶 ∗ 𝑟𝐹𝐶) + (𝑐𝐹𝐶𝑛𝑜𝑟𝑚 ∗ 𝑟𝐹𝐶𝑛𝑜𝑟𝑚)

𝑐𝑠𝑜𝑐 + 𝑐𝑓𝑐 + 𝑐𝑓𝑐,𝑛𝑜𝑟𝑚 

 

Where: 

- 𝑟𝑓𝑐𝑛𝑜𝑟𝑚 = 1 − 2 ∗ (
𝐹𝐶

max (𝐹𝐶𝑡)
) 

- 𝑟𝐹𝐶 = 1 − 2 ∗ (
𝐹𝐶

𝐹𝐶𝑚𝑎𝑥
) 

- 𝐹𝐶𝑚𝑎𝑥 = 0.05 [𝑘𝑔] 

The three rewards are based on weighted average concept in order to generalize this function since 

it is crucial in order to get the simultaneous objective (minimize as soon as possible the fuel 

consumption and keeping the battery state of charge between the range [0,55-0,65] stabilized for 

HEV vehicle energy management problem. 

The reward is based on: 

- 𝑐𝑠𝑜𝑐 , 𝑐𝐹𝐶 , 𝑐𝐹𝐶𝑛𝑜𝑟𝑚: three offline coefficients chosen by the user. 

- 𝑟𝑠𝑜𝑐 , 𝑟𝐹𝐶 , 𝑟𝐹𝐶𝑛𝑜𝑟𝑚 three reward coefficients calculated in order to penalize the reward 

calculated in the state 𝑠 with action 𝑎: 

o 𝑟𝑠𝑜𝑐: penalyzing the reward if the SOC level is below the SOC threshold 

(𝑆𝑂𝐶_𝑟𝑒𝑓=0,6). 

o 𝑟𝐹𝐶: penalyzing the reward using a normalized coefficient between the fuel 

consumption and the maximum possible fuel consumption from ICE. 

o 𝑟𝐹𝐶𝑛𝑜𝑟𝑚: penalyzing the reward using a normalized coefficient between the fuel 

consumption and the maximum fuel consumption in the determined time cycle. 
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The configuration of three reward is listed into table 11: 

 

Table 11. Normalized FC-oriented reward (Reward 1,2,3) 

4.2.  ECMS-based reward 
The fourth reward founded in literature [13] and it is based on the traditional equivalent 

consumption minimization strategy (ECMS) logic in which the equivalence factors 𝑆𝑑𝑖𝑠 and 

𝑆𝑐ℎ𝑔according to the tuning of the equivalence factors analysed in the chapter 3.3.2. on the different 

driving cycles analysed; instead 𝜂𝑑𝑖𝑠 and 𝜂𝑐ℎ𝑔 are supposed to be 0.95: 

Reward = −𝑚𝑓𝑢𝑒𝑙 + 1 
 

Where: 

- 𝑚𝑓𝑢𝑒𝑙, 𝑏𝑎𝑡𝑡 = (𝑎 
𝑆𝑑𝑖𝑠

𝜂𝑑𝑖𝑠
+ (1 − 𝑎)𝑆𝑐ℎ𝑔𝜂𝑐ℎ𝑔)  ∆𝑡 

- 𝑚𝑓𝑢𝑒𝑙 = (𝑚𝑓𝑢𝑒𝑙,𝐼𝐶𝐸 +𝑚𝑓𝑢𝑒𝑙, 𝑏𝑎𝑡𝑡) ∆𝑡 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c_soc c_fc c_fc_norm

Reward 1 2 1 1

Reward 2 1 1 0

Reward 3 1 0 1

Normalized FC-oriented reward
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4.3.  FC-oriented reward 
The fifth reward, based on literature [10], is based on alpha coefficient that determines the weight 

of the battery state of charge (SOC) and fuel consumption rate (
𝑑𝑓𝑢𝑒𝑙

𝑑𝑡
): 

𝑹𝒆𝒘𝒂𝒓𝒅 = 1 − (𝛼
𝑑𝑓𝑢𝑒𝑙

𝑑𝑡
+ (1 − 𝛼) (𝑆𝑂𝐶 − 0.6)2) 

The optimization of the alpha coefficient is done after several testing on Clust 7 (extra-urban driving 

cycle analysed in previous work) using three alpha configurations (0.25/0.5/0.75).  

In following are represented the results in terms of state of charge and cumulative fuel consumption 

(figure 26-27-28), cumulative reward (figure 29-30-31): 

 

Figure 26. SOC and cumulative FC windows (alpha=0.25) 

 

Figure 27. SOC and cumulative FC windows (alpha=0.5) 
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Figure 28. SOC and cumulative FC windows (alpha=0.75) 

 

 

Table 12. SOC and cumulative FC results (Reward 5 – alpha optimization) 

 

Figure 29. Cumulative reward (alpha=0.25) 

alpha SoC [/] cumulative FC [kg]

0.25 failed failed

0.5 failed failed

0.75 0.578 0.199

Reward 5
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Figure 30. Cumulative reward (alpha=0.5) 

 

Figure 31. Cumulative reward (alpha=0.75) 

 

Table 13. Cumulative reward results (Reward 5 – alpha optimization) 

 

 

After analysing the results, the value chosen is alpha = 0.75. 

 

 

alpha Cumulative reward [/]

0.25 failed

0.5 failed

0.75 650.79

Reward 5
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5. Driving cycles 
The driving cycles analysed in this work are listed into table 14: 

 

Table 14. Driving cycles analysed 

5.1.  Urban driving cycles  
The parameters of the urban driving cycle (Clust12Mod) are reported in the following table 15: 

 

Table 15. Clust 12Mod parameters 

 

Figure 32. Clust 12Mod 

 

 

Urban driving cycle Clust12Mod

Extra-urban driving cycle Clust11

Highway driving cycle Clust 1

Mixed driving cycle Clust 19

Driving cycles

Parameters value unit

Duration 400 s

Idling time 21 s

Average speed (with no stops) 22.8 km/h

Average speed (with  stops) 19.01 km/h

max. acceleration 2.257 m/s^2

min. acceleration -2.67 m/s^2

Urban driving cycle (Clust 12Mod)
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5.2.  Extra-Urban driving cycles  
The parameters of the extra-urban driving cycle (Clust11) are reported in the following table 16: 

 

 

Table 16. Clust 11 parameters 

 

Figure 33. Clust 11 

 

 

 

 

 

 

 

 

 

Parameters value unit

Duration 653 s

Idling time 57 s

Average speed (with no stops) 39.93 km/h

Average speed (with  stops) 36.36 km/h

max. acceleration 2.465 m/s^2

min. acceleration -2.62 m/s^2

Extra-urban driving cycle (Clust 11)
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5.3.  Highway driving cycles  
The parameters of the highway driving cycle (Clust1) are reported in the following table 17: 

 

 

Table 17. Clust 1 parameters 

 

Figure 34. Clust 1 

 

 

 

 

 

 

 

 

Parameters value unit

Duration 851 s

Idling time 17 s

Average speed (with no stops) 103.71 km/h

Average speed (with  stops) 101.71 km/h

max. acceleration 1.2 m/s^2

min. acceleration -1.88 m/s^2
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5.4.  Mixed driving cycles  
The parameters of the mixed driving cycle (Clust19) are reported in the following table 18: 

 

Table 18. Clust 19 parameters 

 

 

Figura 35. Clust 19 

 

 

 

 

 

 

 

 

 

Parameters value unit

Duration 1935 s

Idling time 95 s

Average speed (with no stops) 66.34 km/h

Average speed (with  stops) 63.09 km/h

max. acceleration 2.47 m/s^2

min. acceleration -3.51 m/s^2

Mixed driving cycle (Clust 19)

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200 1400 1600 1800 2000

ve
h

ic
le

 s
p

ee
d

 [
km

/h
]

time [s]



                                                                         

 

54 
Pasquale Ciccullo 

 Reinforcement Learning for Hybrid/electric vehicle: 

Analysis and performance of reward functions in a real-time algorithm for P2-HEV 

Automotive Engineering 

A.Y. 2019-2020 

6. Results 
The results of this work are represented in terms of state of charge of the battery SOC (figure 36-40-

43-46), cumulative fuel consumption FC (figure 37-41-44-47) and cumulative reward (figure 38-39-

42-45-48) for each driving cycle analysed. 

 

6.1.  Clust 12Mod 

 

Figure 36. SoC development (Clust 12Mod) 

The results of the last test episode in terms of state of charge of the battery are reported into table 

19: 

 

Table 19. SOC results in the last test episode (Clust 12Mod) 
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Figure 37. Cumulative FC (Clust 12Mod) 

The results of the last test episode in terms of cumulative FC and equivalent FC are listed into table 

20 below: 

 

Table 20. Cumulative FC and equivalent FC results in the last test episode (Clust 12Mod) 
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Reward Cumulative FC [kg] Equivalent FC [kg]

Reward 1 0.071 0.071

Reward 2 0.091 0.091

Reward 3 0.041 0.065

Reward 4 0.078 0.086

Reward 5 0.065 0.112

ECMS-benchmark 0.064 0.064

Clust12Mod
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Figure 38. Cumulative reward (Clust 12Mod) 

 

 

Figure 39. Cumulative reward zoom for Reward 4 and Reward 5(Clust 12Mod) 
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In the urban driving cycle, in the SoC development the Reward 1/2/3 are able to maintain the SOC 

level closed to the desired value 0.6. The reward-4 has a similar behaviour to the first three rewards 

and it is capable to maintain the SOC level close to the set reference 0.6. The reward-5 drammatically 

decreased the state of charge preferring to use more electric power. 

In the Cumulative fuel consumption development: the reward-3 is able to reduce the fuel 

consumption to a value very close to the one obtained in the ECMS-benchmark. This shows how the 

𝑟𝑓𝑐,𝑛𝑜𝑟𝑚 coefficient is more efficient than 𝑟𝑓𝑐.  

The reward 4 and reward 5 preferring the battery usage, decreases the cumulative FC. But since in 

HEV energy management problem the initial SOC (𝑆𝑂𝐶𝑖𝑛) has to be equal to the SOC at the end of 

driving cycle (𝑆𝑂𝐶𝑒𝑛𝑑), this translates in increasing the equivalent FC. 

The DDQN agent is stable, in fact all the training episodes are finished and the cumulative reward is 

increasing (figure 38 and 39). The agent is able to find the optimal policy in order to reduce the loss 

function (error). 
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6.2.  Clust 11 

 

Figure 40. SoC development (Clust 11) 

The results in terms of state charge of the battery for the last test episode are listed into table 21: 

 

Table 21. SOC results in the last test episode (Clust 11) 
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Figure 41. Cumulative FC development (Clust 11) 

The results in terms of cumulative FC and equivalent FC in the last test episode are listed into table 

22: 

 

Table 22. Cumulative FC and equivalent FC in the last test episode (Clust 11) 
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Figure 42. Cumulative reward (Clust 11) 

In the extra-urban driving cycle, only the Reward 1 is able to maintain the SOC level close to the 

desired value 0.6. The reward-2 has a strange behaviour in the second part of the driving cycle 

increasing a lot the state of charge (excessive usage of battery charging modes). The Reward 3/4/5 

instead drammatically decreased the state of charge preferring to use more electric power. 

For what concerns the FC development, the reward 3 based on the weighted average is able to 

reduce the fuel consumption to a value very close to the one obtained in the ECMS-benchmark. This 

shows again how the 𝑟𝑓𝑐,𝑛𝑜𝑟𝑚 coefficient is more efficient than 𝑟𝑓𝑐.  Also in this driving cycle, the 

reward 1 reaches good values in terms of fuel consumption rather than the reward 2. 

The reward-4 and reward-5 instead have the same behaviour shown in the urban driving cycle (Clust 

12Mod), increasing too much the equivalent FC respect to the Reward 1 and Reward 3. 

The DDQN agent shows less stability respect to the urban driving cycle, this means that the training 

parameters are not well generalized changing the driving conditions (figure 42). 
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6.3.  Clust 1 
 

 

Figure 43. SoC development (Clust 1) 

The results in terms of state of charge of the battery are listed into table 23 below: 

 

Table 23. SOC results in the last test episode (Clust 1) 
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Figure 44. Cumulative FC development (Clust 1) 

The results in terms of cumulative FC and equivalent FC are listed into table 24 below: 

 

Table 24. Cumulative FC and equivalent FC results in the last test episode (Clust 1) 
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Figura 45. Cumulative reward (Clust 1) 

In the high-way driving cycle, the reward-1 and reward-3 are able to maintain the SOC level close to 

the desired value 0.6. The reward-2 shows a strange behaviour during all the driving cycle increasing 

a lot the state of charge (excessive usage of battery charging modes) as shown in the extra-urban 

driving cycle (Clust 11). The reward-4 and reward-5 instead fail the last test episode since this driving 

cycle requires higher demanding power that decreases the SOC level below the minimum threshold 

causing the stop of the test episode. 

For what concerns the FC development, the Reward 1/2/3 based on the weighted average can 

reduce the fuel consumption but far from the value obtained by the ECMS-benchmark strategy. The 

reward-4 and reward-5 failed.  

The DDQN agent shows less stability also in the highway driving cycle, this means that the training 

parameters are not well generalized changing the driving conditions (figure 45). 
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6.4.  Clust 19  

 

Figure 46. SoC development (Clust 19) 

The results in terms of state of charge are listed into table 25 below: 

 

Table 25. SOC results in the last test episode (Clust 19) 

0

20

40

60

80

100

120

140

160

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

0 200 400 600 800 1000 1200 1400 1600 1800 2000

ve
h

ic
le

 s
p

ee
d

 [
km

/h
]

So
C

 [
/]

time [s]

SoC

Reward 1 Reward 2 Reward 3

Reward 4 Reward 5 ECMS-benchmark control strategy

vehicle speed

Reward SoC

Reward 1 0.601

Reward 2 0.612

Reward 3 0.588

Reward 4 failed

Reward 5 failed

ECMS-benchmark 0.6

Clust19



                                                                         

 

65 
Pasquale Ciccullo 

 Reinforcement Learning for Hybrid/electric vehicle: 

Analysis and performance of reward functions in a real-time algorithm for P2-HEV 

Automotive Engineering 

A.Y. 2019-2020 

 

Figure 47. Cumulative FC development (Clust 19) 

The results in terms of cumulative FC and equivalent FC are listed into table 26 below: 

 

Table 26. Cumulative FC and equivalent FC results in the last test episode (Clust 19) 
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Figura 48. Cumulative reward (Clust 19) 

.  

In the mixed driving cycle, the Reward 1/2/3 based on the weighted average are able to maintain 

the SOC level closed to the desired value 0.6. The reward-4 fails the last test episode in the urban 

part of the driving cycle. The reward-5 fails the last test episode in the extra-urban part of the driving 

cycle. 

In the FC development, the Reward 1/2/3 based on the weighted average are able to reduce the fuel 

consumption but far from the value obtained by the ECMS-benchmark strategy. Also in this driving 

cycle, the Reward-3 better reduces the fuel consumption respect the Reward 2. This shows again 

how the 𝑟𝑓𝑐,𝑛𝑜𝑟𝑚 coefficient is more efficient than 𝑟𝑓𝑐. The reward-4 and reward-5 failed. 

The DDQN agent shows less stability, this means that the training parameters are not well 

generalized changing the driving conditions. Only the Reward 1 seems to be stable (figure 48). 
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6.5. Tables 
In this section are reported the results tables for each driving cycle: 

 

 

Table 27. Results (Clust 12Mod) 

 

Table 28. Results (Clust 11) 

 

Table 29. Results (Clust 1) 

 

Reward SoC Cumulative FC [kg] Equivalent FC [kg] delta FC [%]

Reward 1 0.604 0.071 0.071 10.55%

Reward 2 0.609 0.091 0.091 41.75%

Reward 3 0.587 0.041 0.065 1.81%

Reward 4-ECMS 0.595 0.078 0.086 33.99%

Reward 5 0.568 0.065 0.112 74.76%

ECMS-benchmark 0.6 0.064 0.064 /

Clust12Mod

Reward SoC Cumulative FC [kg] Equivalent FC [kg] delta FC [%]

Reward 1 0.593 0.168 0.178 19.97%

Reward 2 0.614 0.237 0.237 59.71%

Reward 3 0.577 0.138 0.171 15.25%

Reward 4-ECMS 0.574 0.149 0.187 25.75%

Reward 5 0.578 0.199 0.230 55.25%

ECMS-benchmark 0.6 0.148 0.148 /

Clust11

Reward SoC Cumulative FC [kg] Equivalent FC [kg] delta FC [%]

Reward 1 0.60 1.018 1.018 26.12%

Reward 2 0.612 1.008 1.008 24.86%

Reward 3 0.59 1.047 1.065 31.96%

Reward 4-ECMS failed failed failed failed

Reward 5 failed failed failed failed

ECMS-benchmark 0.60 0.807 0.807 /

Clust1
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Table 30. Results (Clust 19) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reward SoC Cumulative FC [kg] Equivalent FC [kg] delta FC [%]

Reward 1 0.601 1.306 1.306 25.74%

Reward 2 0.612 1.295 1.295 24.68%

Reward 3 0.588 1.253 1.271 22.37%

Reward 4 failed failed failed failed

Reward 5 failed failed failed failed

ECMS-benchmark 0.6 1.039 1.039 /

Clust19
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7. Conclusions 
In this thesis work has been analysed an algorithm based on the Double-Deep Q-network focussing 

on the search of the reward function that better generalized this crucial function in Reinforcement 

learning problems; in order to better minimize the fuel consumption (FC) keeping the battery state 

of charge within the operating range for P2-HEV application. Using a sub-optimal parametric solution 

that allows to obtain a correct calibration of the hyperparameters of the DDQN’s algorithm such as 

learning starts, replay memory size, batch size, learning rate. The target update frequency, instead, 

it was calibrated according to the duration of the driving cycle. The algorithm has been analysed in 

four different driving cycles (CLUST), that are real driving cycles that covering many possible driving 

scenarios for a passenger car such as sudden acceleration or deceleration, urban driving conditions 

such as in traffic or highway driving. The algorithm has been tested using five different reward 

functions: the first three based on the weighted average, the fourth and fifth reward functions are 

based on literature [..]. Since the fourth reward is based on equivalent consumption minimization 

strategy (ECMS) logic, before testing, haven been properly calibrated the equivalence factors for 

each driving cycle using an offline ECMS’s algorithm developed in the MATLAB environment. Also in 

the fifth reward based on literature [..], has been calibrated the coefficient that gives a weight 

between the internal combustion engine fuel consumption rate and the state of charge of the 

battery; the calibration has been developed simulating the reward using three different 

combinations of the alpha coefficient. The results obtained has been compared with the ECMS 

algorithm developed in the MATLAB environment used as a benchmark energy management 

strategy. The results shown how the Reward 1 and Reward 3, based on weighted average 

characterized by the coefficient 𝑟𝑓𝑐,𝑛𝑜𝑟𝑚, allows to obtain comparable results respect to the ECMS-

benchmark strategy guaranteeing a very small increase of FC (10,55% for the Reward 1 and 1,81% 

for the Reward 3) in the urban driving cycle (Clust12Mod). The Reward 2, instead, using 

𝑟𝑓𝑐  normalized coefficient between the fuel consumption and the maximum possible fuel 

consumption from internal combustion engine (ICE) dramatically increases the fuel consumption 

(41,75% in the Clust12Mod) respect to the ECMS-benchmark. It is evident how the performance of 

the Reward 1 and Reward 3 are reduced when a driving cycle with a more power request is used 

such as the Clust 1 or Clust 19. The Reward 4 and Reward 5 based on literature do not obtain 

competitive results in terms of fuel consumption and in addition to this, they are not capable to 

maintain the battery state of charge (SOC) within the operating range causing the failure of the 

simulation for the highway driving cycle (Clust 1) and mixed driving cycle (Clust 19). 

One of the possible future studies could be a study on the loss function in order to allow a better 

robustness and performance of the DDQN agent on different driving scenario.  

The tools used in this work could also be extended on different hybrid architecture such as plug-in 

HEV (PHEV) or complex HEV with more than two power sources after a suitable calibration on the 

parameters considering the case study.  
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